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ABSTRACT

Solving partial differential equations on surfaces has many applications including

modeling chemical diffusion, pattern formation, geophysics and texture mapping.

This dissertation presents two techniques for solving time dependent partial differ-

ential equations on various surfaces using the partition of unity method. A novel

spectral cubed sphere method that utilizes the windowed Fourier technique is pre-

sented and used for both approximating functions on spherical domains and solving

partial differential equations. The spectral cubed sphere method is applied to solve

the transport equation as well as the diffusion equation on the unit sphere. The second

approach is a partition of unity method with local radial basis function approxima-

tions. This technique is also used to explore the effect of the node distribution as it is

well known that node choice plays an important role in the accuracy and stability of

an approximation. A greedy algorithm is implemented to generate good interpolation

nodes using the column pivoting QR factorization. The partition of unity radial basis

function method is applied to solve the diffusion equation on the sphere as well as

a system of reaction-diffusion equations on multiple surfaces including the surface of

a red blood cell, a torus, and the Stanford bunny. Accuracy and stability of both

methods are investigated.
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Chapter 1

INTRODUCTION

In this dissertation, we consider numerical solutions to partial differential equa-

tions (PDEs) defined on surfaces using two variations of the partition of unity method

and pay special attention to the choice of node distribution. Solving PDEs on sur-

faces has applications in numerous fields including geophysics, biology, chemistry,

image processing, fluid dynamics, and computer graphics [16, 8, 44, 31, 32, 45]. In

chemistry, reaction-diffusion equations which take the form of semi-linear parabolic

PDEs are used to model interactions between chemicals on the surface of red blood

cells [44]. Computer graphics are another common application of PDEs on various

surfaces [45]. Numerical solutions of PDEs are often used to create details for ob-

jects by synthesizing textures or patterns on surfaces such as stone walls, grass, etc.

This dissertation pays special attention to PDEs on spherical geometries since they

have important applications in geophysics. PDEs defined on the sphere are used for

weather forecasting and climate modeling [10, 9, 26, 32].

There are many approaches to solving PDEs on arbitrary surfaces and a common

technique is to numerically solve the PDE on a plane and then project the solu-

tion as a parametric texture onto the surface [48]. However, the parametrizations

are often difficult to construct since complicated surfaces cannot be described by a

single parametric function. Another common approach, presented in [45], solves the

PDEs directly on the triangulated surface by discretizing the equations on a general

polygonal grid with finite differences. There has also been much work done using

finite element techniques, as in [13] and [14], where the Laplace-Beltrami operator is

represented in terms of the tangential gradient by projecting the space function gra-
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dient onto the surface using the normal vectors. In [21], radial basis function (RBF)

methods are explored using the projection of the space function gradient onto the

plane tangent to the surface to compute the surface gradient similarly to the finite

element methods. In [34], an RBF representation is also used but the surface gradient

is computed using the orthogonal gradients method.

In Chapter 2 of this dissertation, we concentrate on solving PDEs specifically on

the unit sphere. Spherical harmonics [2], radial basis functions (RBFs) [16], cubed

sphere methods [37], and the double Fourier sphere [42] have all been used to com-

pute approximations on the sphere to machine precision. In the following chapter,

we introduce a novel technique that uses a partition of unity method combined with

Fourier approximations and takes advantage of the convergence results obtained by

spectral methods. Spectral methods consist of representing a function as a truncated

series of known basis functions such as the Fourier series expansion. These methods

are desirable due to their exponential convergence known as spectral accuracy. If the

function is suitably smooth, convergence rates can be achieved at a rate of O(cN) for

some 0 < c < 1 [43]. There are several existing techniques which implement spec-

tral methods on the sphere. A common approach is the use of spherical harmonics

[11]. Spherical harmonic expansions are a global technique analogous to trigonomet-

ric expansions for periodic functions and are a prevalent tool for solving PDEs on the

sphere [2]. Another technique for solving PDEs on the sphere is the double Fourier

sphere method. This approach uses a doubled up longitude latitude grid by trans-

forming a function defined on the sphere to one defined on a rectangular grid while

still preserving the periodicity of the function in both the longitude and latitude di-

rections. The rectangular grid provided by the double Fourier sphere method allows

one to also implement spectral methods on the sphere. “Spherefun” developed in [42]

implements the double Fourier sphere method combined with low rank approxima-
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tions and utilizes it to solve the Poisson equation. Chapter 2 of this dissertation, uses

a variation of the cubed sphere method which also allows us to implement spectral

methods on the sphere by using windowed Fourier approximations. This approach

takes advantage of the fast Fourier transform and uses a node distribution free of

coordinate singularities.

Chapters 3 and 4 are dedicated to solving PDEs on arbitrary surfaces using a

partition of unity method combined with local radial basis function approximations.

RBF approximations is an appealing meshfree technique since it can provide high

order convergence for smooth solutions in complex geometries. The idea behind the

radial basis function partition of unity (RBF-PU) method is to solve many local

problems using RBF approximations and then combine the local solutions using a

partition of unity method. The efficiency of the RBF-PU method comes from solving

many small problems as opposed to one large scale problem. The partition of unity

method with local RBF approximations was first explored in [47] and [27] and then

covered in detail in the book [15]. More recently, it has been applied to solve PDEs in

various scenarios including solving convection-diffusion equations arising in financial

applications in [38] and approximating ice sheet models used to model the velocity

fields of ice flow in glaciers in [1]. Most recently, in [12], the RBF-PU method is used

to approximate curl-free and divergence free vector fields. This dissertation focuses

on using the RBF-PU method to solve PDEs on various surfaces including the unit

sphere, a red blood cell, a torus, and a bunny.

Chapter 3 also investigates the role of the node point distribution in the accuracy

and stability of the RBF-PU method. It is well known that “good” nodes are needed

when creating an accurate and stable approximation. In the case of parameterized

surfaces, it is common to use the parameterization to generate a grid for the nodes.

However, this mapping distorts the node distribution and introduces issues such as

3



artificial singularities. This can most obviously be seen when considering the lon-

gitude latitude grid on the sphere where the coordinate system introduces artificial

singularities and oversampling at the poles. In this work, we utilize a greedy algo-

rithm for finding near optimal nodes for the RBF-PU method. In Chapter 4, the

radial basis function partition of unity method is adapted for larger problems. The

RBF-PU method is ideal for larger problems or intricate surfaces since they both

require a large number of points for accuracy and highlight the benefits of the do-

main decomposition implemented by this technique. The greedy algorithm used for

the point node selection is improved by introducing a preselection process and reduc-

ing the size of the node selection problem by solving an analogous problem using a

randomized projection.

1.1 Partition of Unity

In this dissertation, we explore two variations of the partition of unity method

to numerically solve PDEs on the various surfaces. The application of the partition

of unity method to solve PDEs was first presented in [30] in the 1990s. Generally,

the idea for this technique is to decompose the domain into subdomains and create

local approximations as shown in [15]. The global approximation is then computed

by taking a weighted average of the local approximations. Formally, given an open

and bounded domain Ω ⊂ Rs, we define M subdomains such that for each j ∈

1, . . . ,M , Ωj ⊆ Ω and Ω ⊆
⋃M
j=1 Ωj. Note that each subdomain will have some overlap

with neighboring subdomains. Then a family of compactly supported, nonnegative,

continuous functions, {wj}, are chosen such that each wj is zero outside the closure

of the corresponding subdomain Ωj and for every x ∈ Ω we have

M∑
j=1

wj(x) = 1.

4



Hence, the name partition of unity. Then on each subdomain, an approximation is

constructed, say uj, and the global approximation is given by

ũ(x) =
M∑
j=1

uj(x)wj(x)

for x ∈ Ω. It is important to note that if each local approximation is an interpolant

then the global approximation is also an interpolant. In the following chapters, two

variations of the partition of unity method are implemented by using the windowed

Fourier method and radial basis functions for the local approximations to solve PDEs

on surfaces. Throughout this dissertation we assume the surfaces are connected.

1.2 Summary of Contributions

The main contributions of this dissertation are summarized below. Additionally,

links to the codes for select experiments can be found in the appendix.

Spectral Cubed Sphere Method:

• A novel variation of the cubed sphere method for function approximation on

the sphere is proposed.

• The gradient operators are defined on the sphere.

• Object oriented code for the spectral cubed sphere method is developed. The

accuracy is tested using various functions.

• The method is applied to solve the diffusion and transport equations defined on

the sphere.

• A global filter and a local spectral filter are implemented for stability in the

time stepping scheme.

• Parameter sensitivity is investigated.
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Radial Basis Function Partition of Unity Method:

As noted above, the RBF partition of unity method is not a novel technique and

has been used to solve PDEs in the past such as those arising in financial applications

in [38]. On the other hand, various other approaches which use RBF representations

have been applied to solve PDEs on surfaces such as the finite difference method im-

plemented in [40] and the radial basis function orthogonal gradients method presented

in [34]. However, to our knowledge, the RBF partition of unity method has not been

implemented to solve PDEs defined on surfaces as is done in this dissertation. In

particular, our contributions are summarized as follows:

• A greedy algorithm is used to select the interpolation nodes on the surface for

the partition of unity method with local RBF approximations.

• The RBF partition of unity method is implemented to solve PDEs on smooth

surfaces. The surface normal vectors are used to define the differential operators

on the surface used to solve the diffusion equation on the sphere and a set of

reaction-diffusion equations on various surfaces.

• A time comparison of the node selection process is presented.

• Accuracy and stability of the method are investigated.
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Chapter 2

SPECTRAL CUBED SPHERE METHOD

In this chapter, we explore a novel method that implements the partition of unity

method described in Section 1.1 and utilizes the windowed Fourier technique for the

local approximations. It is well known that spectral methods are computationally

efficient with strong convergence properties under the right conditions. However,

Fourier approximations require smooth functions with periodic boundary conditions

for accuracy and fast convergence. The error observed in a Fourier approximation

near a jump discontinuity of a discontinuous signal occurs in the form of a ringing

artifact known as the Gibbs phenomenon. For nonperiodic functions, the end of the

intervals are considered a jump discontinuity and oscillations are observed in the

approximation. In order to avoid this, the windowed Fourier method is used to create

Fourier approximations for nonperiodic functions.

2.1 Windowed Fourier Method

The windowed Fourier method is an attractive technique used to avoid the Gibbs

phenomenon encountered in Fourier approximations of nonperiodic functions and

is investigated in detail in [35] and [36]. The general idea is to simulate periodic

boundary conditions by multiplying the signal by a window function and computing

a Fourier approximation on the product to take advantage of the spectral properties

inherited from the periodic boundary conditions. For simplicity, the windowed Fourier

method is described here in one dimension. We begin by establishing some properties

of the discrete Fourier transform.
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Given a set of equally spaced points, {xj}Nj=0 ⊂ [−π, π], the standard Fourier

approximation is defined as

FN [u](x) =

N/2∑
n=−N/2

ûn exp(inx).

Here, the coefficients ûn are computed by

û = Fu, with û =

[
û0 . . . ûN/2 û−N/2 . . . û−1

]T
(2.1)

where u is the function evaluated at the points {xj}Nj=0 and F is the Fourier transform

matrix,

Fk,j =
e−i(k−1)x(j−1)

N
, 1 ≤ j ≤ N + 1, 1 ≤ k ≤ N + 1.

The fast Fourier transform (FFT) can be used to efficiently compute the coefficients in

(2.1) by reducing the complexity from O(N2) to O(NlogN). The following theorems

establish the convergence properties of the truncated Fourier series [24].

Theorem 2.1.1 Suppose f ∈ C(q−1)[−π, π], f and its q − 1 derivatives are

2π-periodic, and f (q) ∈ L2[−π, π] with FN defined as above, then

||f − FN [f ]||2 ≤ cN−q,

where c is a positive constant which depends on q but not on N .

If the function is analytic then the truncated Fourier series converges even faster and

exponential convergence is observed.

Theorem 2.1.2 Suppose f is analytic and 2π-periodic, then

||f − FN(f)||2 ≤ Ke−αN

where K,α > 0.
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We now use these properties to formally define the windowed Fourier approxima-

tion of a function. Given a continuous and not necessarily periodic function u on a

bounded domain [−π, π], we consider the product uw where w is a smooth window

function with values and derivatives near zero on the boundaries. Since the function

uw is a continuous periodic function then it can be approximated using a truncated

Fourier series denoted by FN [uw](x). The approximation for u is then constructed

by dividing by the known function w where w is defined such that w(x) is not zero

for x ∈ [−π, π], so

u(x) ≈ FN [uw](x)

w(x)
.

We note then that the accuracy of the approximation of u depends on the accuracy

of the Fourier approximation of uw.

We now illustrate this method with an example. We consider the non-periodic

function u(x) = exp(x/π) + exp(−50x2) shown in Figure 2.1. The window function

used is a super-Gaussian function defined as w(x) = exp(−α(x2λ))) for x ∈ [−π, π]

with λ = 6 and α = 52 ln 2. The windowed Fourier approximation for u using

200 points is also shown in Figure 2.1. It should be noted that since the Fourier

approximation is divided by the window function which is close to zero near the

boundaries, the approximation of u becomes inaccurate in those areas. However, we

recall that the windowed Fourier approximation will be utilized in conjunction with

the partition of unity method which inherently contains overlapping windows. The

windows are chosen large enough so that the inaccuracies near the edges will fall in

the overlap regions and the averaging of the multiple approximations remedies this

issue. In contrast, the Fourier approximation of just the function u using 200 points

can be seen in Figure 2.1. We note that the oscillations due to the Gibbs phenomenon

are observed throughout the approximation.
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Figure 2.1: Top Left: The Function u(x) = exp(x/π) + exp(−50x2) and the Win-
dow Function w(x) = exp(−α(x/π)2λ). Top Right: The Function uw, the Fourier
Approximation of uw, and the Function u. Bottom Left: The Windowed Fourier
Approximation of u and the Function u. Bottom Right: The Fourier Approximation
of u and the Function u.

2.2 Spectral Cubed Sphere Method

In this section, we introduce the spectral cubed sphere method which combines

the partition of unity method with windowed Fourier approximations. This approach

was inspired by the cubed sphere method first introduced in [37] which presented a

new gridding technique for solving PDEs on the unit sphere using finite differences.

The cubed sphere method partitions the unit sphere into six identical regions by

projecting the sides of a cube onto an inscribed sphere as shown in Figure 2.2. This

technique considers the sphere as six coupled regions and derives the node point

distribution by projecting a grid of uniformly spaced points on each face of the cube

onto the sphere. We consider a similar gridding technique for our spectral cubed

10



Figure 2.2: The Unit Sphere Partitioned into Six Similar Regions and the Corre-
sponding Decomposed Cube. The Equally Spaced Nodes on the Face of the Cube
are also Shown with the Corresponding Grid Formed on the Sphere. The Image on
the Right is a Set of Nodes from a Cross Section of the Cube and the Corresponding
Nodes Projected on the Sphere.

sphere method. The main difference with our approach is that we utilize overlapping

regions instead of an exact partition and create the global approximation using the

partition of unity method. Thus our method uses a node point distribution generated

by six uniform square grids on planes tangent to the sphere mapped onto the surface.

The motivation for this technique is to have a uniform square grid on each subdomain

to compute Fourier approximations for the local approximations in the partition of

unity method. Figure 2.3 demonstrates an example of one of these subdomains on

the sphere. In addition, Figure 2.3 also shows all six regions in order to demonstrate

the overlap between the subdomains and the node distributions.

We now define the map necessary to project points onto the sphere from the

tangent planes and vice versa. A simple map that takes any point on the surface of

the unit cube onto the unit sphere is obtained by dividing it by the magnitude of the

vector from the origin to the point. Hence, we define the map R : R3/{0} → R3 as

R(x, y, z)→ (x
d
, y
d
, z
d
), where d =

√
x2 + y2 + z2. The mapping from the sphere to the

cube is constructed by inverting the previously defined map, R. Let (xs, ys, zs) be an

11



Figure 2.3: Left: An Example of the Window Function Defined on One of the
Subdomains. Center: The Overlap of the Window Functions Defined on the Six
Subdomains. Right: Node Distribution for Two Overlapping Subdomains.

arbitrary point on the sphere and (xc, yc, zc) be the corresponding point on the cube.

Then R(xc, yc, zc) = (xs, ys, zs) and the following set of equations can be derived from

the definition of the map R:

xs =
xc
d
, ys =

yc
d
, zs =

zc
d
. (2.2)

The inverse mapping is defined separately for each region of the sphere. The first

map will be defined for the region on the sphere corresponding to the face of the

cube where xc = 1 for all points. Using the fact that xc = 1, we can solve for the

coordinates on the cube using (2.2). Taking the first equation and solving for d we

get,

d =
1

xs
.

Now d can be replaced in (2.2) to get,

xc = 1, yc =
ys
xs
, zc =

zs
xs
.

Hence, the inverse mapping for the first region is defined by R−11 : R3 → R3 as

R−11 (x, y, z)→ (1, y
x
, z
x
). We define the maps R−12 , ..., R−16 in a similar fashion so that
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the constant coordinate on the cube can be used to solve for the mapping. Hence,

each map takes the appropriate region of the sphere and projects it onto the face of

the cube and they are defined as:

R−11 (x, y, z) →
(

1,
y

x
,
z

x

)
, R−12 (x, y, z) →

(
x

y
, 1,

z

y

)
,

R−13 (x, y, z) →
(
−1,
−y
x
,
−z
x

)
, R−14 (x, y, z) →

(
−x
y
,−1,

−z
y

)
,

R−15 (x, y, z) →
(x
z
,
y

z
, 1
)
, R−16 (x, y, z) →

(
−x
z
,
−y
z
,−1

)
.

We now define the windowed Fourier method in two dimensions in order to im-

plement the partition of unity method described in Section 1.1. Since the sphere is

decomposed into six different subdomains, a function defined on the sphere is now

restricted to each of these regions and is no longer periodic. Thus the windowed

Fourier method described in Section 2.1 is an attractive technique which allows us

to create Fourier approximations while preserving the spectral properties that come

with the periodic boundary conditions. Similarly to the one dimensional case and as

in [36], we use a super-Gaussian as the window function, however, there are a variety

of window functions which can be used as explored in [7]. We then define the window

function as

w(t, p) = exp(−α(t2λ + p2λ)),

for (t, p) ∈ [−d, d] × [−d, d] where λ is a positive integer. Here, α is chosen such

that the window function near the boundaries is approximately zero relative to 1. In

our implementation, we use double precision (IEEE 754 standard) and choose α such

that w(±d, ·) ≈ w(·,±d) ≈ 2−52. The parameter d determines the size of the window

functions and the width of the overlapping regions and we note that three regions

overlap in some areas of the sphere as seen in Figure 2.3. Although, larger windows

imply having larger overlap regions which give a more accurate global approximation,
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this is also more computationally expensive. Also, note that a larger choice of λ for

the window function results in a wider window implying more support for the Fourier

approximation. However, a larger value of λ also produces stiffer gradients near the

boundaries which means creating an accurate approximation is harder. This trade-off

in the choice of d and λ is further explored in Section 2.3. Given the window function,

we now consider its product with a function u and note that the result is a periodic

function. The function uw is then approximated using the truncated double Fourier

series defined by

FN [u](x, y) =

N/2∑
m=−N/2

N/2∑
n=−N/2

ûm,n exp

(
iπnx

d
+
iπmy

d

)
, (2.3)

with (x, y) ∈ [−d, d] × [−d, d]. The two dimensional fast Fourier transform can be

used to efficiently compute the coefficients. Then the Fourier approximation of the

product uw is given by FN [uw](t, p) and the local approximation for u is given by

u(t, p) ≈ FN [uw](t, p)

w(t, p)
,

as was done in the one dimensional case in Section 2.1. However, this is the approxi-

mation for only one region and the partition of unity method is used to compute the

global approximation defined as

u(t, p) =
∑
j∈I

FN [uwj](t, p)∑
j∈I wj(t, p)

.

Here, wj for j ∈ I = {1, . . . , 6} are the super-Gaussian window functions defined to be

nonzero on the corresponding regions of the sphere. We recall that the distribution

of node points on the sphere is constructed by projecting six uniform grids from

tangent planes. Therefore, the nodes projected from two neighboring subdomains

will not perfectly align on the sphere as seen in Figure 2.3. Thus, when creating

the weighted average, the points which lie in the overlap regions must be evaluated
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in the Fourier approximations of the neighboring subdomains. While the FFT is

an efficient technique to compute the coefficients of the Fourier approximations, the

non-uniform fast Fourier transform (NUFFT) is an attractive technique that can be

used to efficiently evaluate points in said Fourier approximations. In our method,

we compute the evaluations needed to construct the weighted average by applying a

NUFFT package developed in [4].

2.3 Parameter Choice and Convergence

In this section, we first consider the parameters in the definition of the window

function. We restate the super-Gaussian window function used in this chapter for

convenience, w(x, y) = exp(−α
(
(x/d)2λ + (y/d)2λ

)
). Again, α is chosen such that

w on the boundary is machine zero or w(±d, ·) ≈ 0 ≈ w(·,±d). We recall that the

approximation for uw is defined on a square grid where the parameter d dictates the

size of that square. Thus the magnitude of d determines the size of the overlap regions

and is chosen so that w(·,±1) = w(±1, ·) = 0.5. The motivation for this choice being

that when two windows intersect, the height of each window function is a half and

both windows have equal weight.

The parameter λ dictates the rate at which the window function reduces to zero

on the boundary. A larger λ produces a wider window meaning that the region

where the window is equal to one is larger and produces more support for the Fourier

approximation. However, choosing a larger value for λ also produces a stiffer gradient

near the boundaries which means creating an accurate approximation is harder and

requires more points. The effect of λ is investigated in detail in [36] where it is

concluded that at least 24λ points are need to approximate a smooth function in one

dimension with accuracy of 10−12. We demonstrate how varying λ affects accuracy

in the following example. We consider the function u(x) = sin(50x). A windowed
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Fourier approximation, ũ, is constructed using a super Gaussian window function

with multiple values of λ and N . The error, ||u − ũ||2, over 500 points is shown in

Figure 2.4 where it can be seen that the optimal λ is larger than the lower bound

defined by N/24 for each N .

2 4 6 8 10 12

10
-12

10
-8

10
-4

Figure 2.4: Error for the Windowed Fourier Approximation for the Function u(x) =
sin(50x) for λ = 2, 4, . . . , 12 and N = 50, 75, 100, 125.

Using the parameters chosen above, we consider the convergence of the spectral

cubed sphere method using the following four functions: u1(x, y, z) = sin(100xyz),

u2(x, y, z) = 1/(1 + 100(x2 + y2)), u3(x, y, z) = cos(xz − sin(y)), and u4(x, y, z) =√
(1.05 + xyz). Figure 2.5 and Figure 2.6 show each of the functions and Figure 2.7

shows the error of the approximation, ||u− ũ||∞, evaluated over 500 points. We note

the geometric convergence in all cases.

Figure 2.5: The Functions u1 and u2 on the Sphere.
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Figure 2.6: The Functions u3 and u4 on the Sphere.
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Figure 2.7: Error for the Spectral Cubed Sphere Method Approximation of u1, u2,
u3, and u4 for Various Values of N .
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2.4 Gradient Operators

Since the main motivation for this method is solving PDEs, in this section we

present the surface differentiation operators. The surface gradient is defined by com-

puting the gradient on the equally spaced grid on the faces of the cube and then

using the mapping defined in Section 2.2 to project it onto the sphere. We recall

that the approximation for the function uw is given by the truncated Fourier series,

FN [uw](t, p). Thus it is simple to compute the partial derivative with respect to t

and is defined by

(FN [uw](t, p))t =

N/2∑
m=−N/2

N/2∑
n=−N/2

in ûwm,n exp

(
iπnx

d
+
iπmy

d

)
,

for (t, p) ∈ [−d, d]×[−d, d]. The partial with respect to p is defined similarly. However,

a change of variables is necessary to obtain the partial derivatives of uw with respect

to the Cartesian coordinates x, y, and z on the sphere. For simplicity in notation, we

define f = uw and use the chain rule to find a relationship between the partials,

ft = fxxt + fyyt + fzzt (2.4)

fp = fxxp + fyyp + fzzp. (2.5)

We recall the mapping from the cube to the sphere, R, defined in Section 2.2 and

reduce the domain to two variables since one of the variables is constant and equal to

1 on each face. By properties of the surface gradient, ∇f , it is tangent to the surface

and since Rt and Rp are linearly independent vectors parallel to the surface we can

relate them as

∇f = αRt + βRp. (2.6)
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Then, by combining (2.4), (2.5), and (2.6) we have thatft
fp

 =

xt yt zt

xp yp zp

∇f =

RT
t

RT
p

 (αRt + βRp) .

Letting E = RT
t Rt , F = RT

t Rp, and G = RT
pRp we getft

fp

 =

E F

F G


α
β

 .

Thus, we define the surface gradient as ∇f = αRt + βRp withα
β

 =
1

EG− F 2

 G −F

−F E


ft
fp

 .

Note that we can rewrite EG−F 2 = |Rt×Rp|2 > 0 by Lagrange’s identity from Linear

Algebra and thus 1
EG−F 2 is always defined. In differential geometry, E, F , and G are

known as the “coefficients of the first fundamental form” [22]. For computational

efficiency, we go a step further and rewrite this as

∇f =
1

EG− F 2
[(GRt − FRp)ft + (ERp − FRt)fp] .

It is important to note, that the coefficients of ft and fp do not depend on the function

values and thus when considering iterative methods, they only need to be computed

once. We recall that we defined f = uw and use the product rule applied to uw to

solve for ux, so we obtain

[uw]x = uxw + uwx,

ux =
[uw]x − uwx

w
.

The partials with respect to y and z can be computed in a similar fashion. We note the

importance of the u in the second term since it is the global approximation meaning
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that it communicates information from all six regions. Once the local approximations

for the surface gradient have been obtained, we use the partition of unity formulation

to compute the global approximation,

ux =
∑
j∈I

[uwj]x − u[wj]x∑
j∈I wj

.

2.4.1 Comparison with Radial Basis Function

In this section, we study the accuracy of the Laplacian operator of the spectral

cubed sphere method and compare to a global radial basis function (RBF) colloca-

tion method. The algorithm used for the RBF approximation is studied in detail in

[28]. We consider the function u(x, y, z) = sin(100xyz) and its Laplacian ∆u(x, y, z)

and approximate them using both the spectral cubed sphere method (SCSM) and

the global RBFs. Figure 2.8 shows the relative error for various values of the shape

parameter, ε, for the global RBF approximation. It is well known that high order

accuracy in global RBF approximations is often hard to achieve due to poor condi-

tioning of the interpolation matrix. As expected, the error converges faster than our

method for a small number of points, however, it then hits a minimum and begins to

increase never reaching machine precision. We note that the y-axis is bound to show

the comparison with the RBF approximation and if we zoomed out we would see that

machine precision is reached around 9× 104 total points as shown in Figure 2.7.

2.5 Numerical Examples

In this section, we consider various time dependent problems in order to study

stability and accuracy. Note that for this method there are no boundary conditions on

the sphere. The method of lines is used for the following problems with the spectral

cubed sphere method approximating the spacial component combined with an explicit

time stepping scheme.
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Figure 2.8: Relative Error for Approximations of sin(100xyz) and ∆ sin(100xyz)
Using the Spectral Cubed Sphere Method and a Global RBF Collocation Method
with Various Values of the Shape Parameter ε.

2.5.1 Filters

We introduce two filters that are used for stability in the time stepping schemes

in some of the following problems. A common approach for filtering is to do so in

spectral space so one of the filters used is a low pass filter applied to each of the

subdomains individually. A key benefit of this filter is the ease of implementation.
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To apply this filter, (2.3) is replaced by,

FN [u](x, y) =

N/2∑
m=−N/2

N/2∑
n=−N/2

σ (2n/N)σ (2m/N) ûm,n exp

(
iπnx

d
+
iπmy

d

)
,

where σ is a filter function. We consider the exponential filter function defined in

[24],

σ(k) =


1 |k| ≤ η

exp(−α(k−η
1−η )ρ) |k| > η

.

Here, α is chosen such that σ(1) is machine zero and the choice for the parameters

η and ρ is fully explored in the following section. Although this filter is simple to

implement, the lack of filtering on the global approximation is a drawback since it

is applied only on the subdomains. The second filter we consider is adding artificial

viscosity globally to the PDE formulation. This filter essentially “smooths out” the

solution and mitigates instabilities introduced when patching the local approxima-

tions together with the weighted average. Given the general formulation of a time

dependent PDE:

ut = f,

where f here is a function of u and its derivatives, we consider the PDE with added

viscosity:

ut = f + µ∆u,

where µ is small in magnitude.
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2.5.2 Transport Problem

In this section, we consider the following transport problem on the sphere,

ut = −→v · ∇u,

u(0, x, y, z) = exp(−1((x− 1)2 + y2 + z2)),

where −→v is a velocity field for a constant rotation around the z-axis. Hence, the

solution is equal to the initial condition at each full rotation. For stability, we apply

the second filter defined above and add numerical diffusion and instead solve the

following problem

ut = −→v · ∇u+ µ∆u,

u(0, x, y, z) = exp(−1((x− 1)2 + y2 + z2)),

with µ = 10−4. The spectral cubed sphere method is used with the parameters η = 0.4

and p = 4. The fourth order Runge-Kutta method is used for the time stepping

scheme with a time step of dt = 10−4. Figure 2.9 displays the initial condition and

the solution u after 4 full rotations or when t = 8π. The solution appears as we

Figure 2.9: Initial Condition and Numerical Solution for the Transport Equation at
t = 8π (4 Full Rotations) with Time Step dt = 10−4.
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expected. However, the effect produced by adding the diffusion term is visible in the

magnitude of the peak which is 1 at t = 0 and about 0.990 when t = 8π.

We now consider some convergence properties and the sensitivity of the param-

eters. Figure 2.10 shows the geometric convergence of the largest dt sufficient for

stability of one full rotation for various values of N . Figures 2.11, 2.12, and 2.13

32 64 128 256 512
10

-3

10
-2

10
-1

Figure 2.10: Convergence of the Largest dt Sufficient for Stability of One Full
Rotation of the Numerical Solution for the Transport Equation in Terms of N .

explore the effects of the filter and the choice of parameters on the stability of the

transport problem. Each figure shows two images: a map of the parameter values for

which the transport problem is stable for a full rotation (t = 2π) shown in red and

the corresponding error. Note that the error is only shown for the values that do not

diverge as the diverging spaces are left white. Figure 2.11 considers the parameters

dt and η and show the largest value of t before hitting our criteria for divergence.

The values of η vary from 0.1 to 1 where η = 1 equates to no filtering at all and the

smaller the values of η implies more filtering. The values of dt range from 0.002 to

0.01 as dt larger than 0.01 results in instability regardless of the filter. It is seen that

as dt gets larger, more filtering is needed for stability. However, it should be noted

that filtering too much results in a loss of accuracy as can be seen in the error plot.
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Figure 2.12 shows the effects of the parameters dt and ρ. The value of ρ ranges from

1 to 10 and smaller values of ρ correspond to more filtering. Similar results as in

Figure 2.11 are found since the solution is unstable for dt larger than 0.01 and larger

dt require more filtering. Comparing the error for the two images implies that there is

more sensitivity in the η parameter as the error plot for ρ is more consistent across all

the different values. The last figure, Figure 2.13 shows the effect of η and ρ together.

In this case, dt = 0.01 and the results agree with the previous two experiments as we

see that more filtering corresponding to the left top corner ensures stability at the

cost of accuracy.
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Figure 2.11: Left: Parameter Values for Which the Numerical Solution for the
Transport Problem is Stable for a Full Rotation (t = 2π) Indicated by the Red
Squares when dt and η are Varied. The Rest of the Colors Imply the Value of t
Between 0 and 2π When the Solution Meets Our Divergence Criteria. Right: The
Error for the Numerical Solution After One Full Rotation. If the Solution Diverges
the Error is Not Shown and is Left White.
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Figure 2.12: Left: Parameter Values for Which the Numerical Solution for the
Transport Problem is Stable for a Full Rotation (t = 2π) Indicated by the Red
Squares When dt and ρ are Varied. The Rest of the Colors Imply the Value of t
Between 0 and 2π When the Solution Meets Our Divergence Criteria. Right: The
Error for the Numerical Solution After One Full Rotation. If the Solution Diverges
the Error is Not Shown and is Left White.
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Figure 2.13: Left: Parameter Values for Which the Numerical Solution for the
Transport Problem is Stable for a Full Rotation (t = 2π) Indicated by the Red
Squares when η and ρ are Varied. The Rest of the Colors Imply the Value of t
Between 0 and 2π When the Solution Meets Our Divergence Criteria. Right: The
Error for the Numerical Solution After One Full Rotation. If the Solution Diverges
the Error is Not Shown and is Left White.

26



2.5.3 Diffusion Equation

In this section, we consider the diffusion equation on the sphere:

ut = ∆u,

u(0, x, y, z) = xy.

The initial condition is chosen to be a spherical harmonic as that allows us to find

the solution analytically which is given by

u(t, x, y, z) = e−6txy.

Figure 2.14 shows the initial condition and the solution at t = 1.5 using a forward

Euler time stepping scheme with a time step of dt = 10−6. The magnitude of the

error at t = 1.5 is about ||u− ũ||∞ = 10−7.

Figure 2.14: Initial Condition and Numerical Solution for the Diffusion Equation
at t = 1.5 with Time Step dt = 10−6.

As in the previous problem, we consider some convergence properties. Figure 2.15

shows the convergence of the largest dt sufficient for stability to reach t = 0.4 where

the magnitude of the solution is 10% of the initial condition. As with the transport
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equation, we investigated the sensitivity of the parameters and found similar results

that are therefore are omitted.

32 64 128 256
10

-6

10
-5

10
-4

Figure 2.15: Convergence of the Largest dt Sufficient for Stability to Reach t = 0.4
Where the Magnitude of the Solution is 10% of the Initial Condition.
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Chapter 3

RADIAL BASIS FUNCTION - PARTITION OF UNITY

In this chapter, we explore using radial basis functions (RBFs) for the local ap-

proximations in the partition of unity method described in Section 1.1. We recall that

the global approximation is given by a weighted average of the local approximations

on each subdomain. In this chapter, the point distribution does not have an under-

lying grid and thus RBFs are an attractive choice since they are a meshfree method

and work well with scattered nodes. It is also well known that RBFs provide spectral

like convergence for smooth solutions approximated with infinitely smooth RBFs. In

this chapter we adhere to the variable notation in the following Table 3.1.

M Number of subdomains

ki, i ∈ {1 . . .M} Subdomain centers

wi, i ∈ {1 . . .M} Weight functions for PU method

N Number of interpolation nodes

xj, j ∈ {1 . . . N} RBF centers

φj, j ∈ {1 . . . N} RBFs

Table 3.1: Variable Notation for the RBF Partition of Unity Method.

3.1 Radial Basis Function Interpolation

In this section, we introduce radial basis function interpolation and define the

surface differential operators. Given a set of scattered nodes {xj}Nj=0 the basic RBF
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interpolant takes the form

ũ(x) =
N∑
j=0

cjφ(||x− xj||) (3.1)

where φ is a radial kernel and || · || is the Euclidean norm. The radial kernel is defined

as a radially symmetric function and some common choices are presented in Table

3.2. Note that since the interpolant only depends on x and xj inside the norm then

changing dimensions is trivial. Throughout this dissertation, we consider the case

were the number of basis functions equals the number of interpolation nodes. Thus

solving for the coefficients of the interpolant is equivalent to solving the following

system of equations:

φ(||x0 − x0||) φ(||x0 − x1||) . . . φ(||x0 − xN ||)

φ(||x1 − x0||) φ(||x1 − x1||) . . . φ(||x1 − xN ||)
...

...
. . .

...

φ(||xN − x0||) φ(||xN − x1||) . . . φ(||xN − xN ||)





c0

c1
...

cN


=



y0

y1

...

yN


. (3.2)

Here, the matrix composed of RBF evaluations is referred to as the basis evaluation

matrix.

Gaussian φ(r) = e−(εr)
2

Multiquadric φ(r) =
√

1 + (εr)2

Inverse multiquadric φ(r) = 1/
√

(1 + (εr)2)

Polyharmonic spline φ(r) = rk, k = 1, 3, 5, ...

Thin plate splines φ(r) = r2 ln(r)

Compactly supported RBFs φ(r) =


exp( −1

1−(εr)2 ) for r < 1
ε

0 otherwise

Table 3.2: Commonly Used Radial Basis Function Kernels.
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3.1.1 Shape Parameter

Many of the commonly used radial basis function kernels feature a shape param-

eter, traditionally labeled ε, as can be seen in the RBFs found in Table 3.2. The

shape parameter controls the flatness of the radial kernel and plays an important

role on the accuracy and stability of the interpolant. Figure 3.1 shows the commonly

used multiquadric kernel with various values for the shape parameter. However, the

Figure 3.1: Inverse Multiquadric Radial Basis Functions with Shape Parameter
ε = 1, 2, and 5 from Left to Right.

problem known in the literature as the “uncertainty principle” presented in [39] de-

scribes one of the major limitations of computing the RBF coefficients using equation

(3.2). The issue is characterized by the trade-off faced when using small values for the

shape parameter since decreasing ε increases the convergence order but also increases

the condition number of the interpolation matrix. This problem is most commonly

encountered when using a large number of data points. We explore this issue with

a simple example and consider the function f(x, y) = x for (x, y) ∈ [−1, 1]× [−1, 1].

Figure 3.2 shows the condition number for the basis evaluation matrix using an in-

verse multiquadric kernel with various values of ε where N2 is the number of points

used. Figure 3.2 also shows the error of the RBF interpolant for the various values

of ε and N . Comparing both figures we see that as ε increases the condition number

of the matrix decreases however the error actually increases. There are two main ap-
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Figure 3.2: Left: Condition Number of the Basis Evaluation Matrix for Various
Values of ε and N . Right: Error for the Radial Basis Function Approximation of
f(x, y) = x.

proaches to overcome this issue, the Contour-Padé method described in [19] and the

RBF-QR method explored in [18] and [17]. However, since the work in this disserta-

tion utilizes the partition of unity method, the number of nodes on each subdomain is

small and an acceptable ε can be chosen without obtaining a severely ill conditioned

interpolation matrix.

3.1.2 Differentiation Operators on Surfaces

The following section presents the discrete approximation of the differentiation op-

erators on the surface used for the radial basis function partition of unity (RBF-PU)

method. The surface gradient is computed by using the normal vector to construct

the projected gradient for a general RBF kernel and then discretized to get the differ-

entiation matrix as done in [21] and summarized below. We begin by first computing

the continuous surface gradient in three dimensions for simplicity. Given a smooth

manifold M embedded in R3 and a vector x on M. We denote the unit normal vector

at x by n = (nx, ny, nz) and we let P be the projection into the vector space tangent
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to M at x. Then the surface gradient operator, ∇M, at x is given by

∇M = P∇ = (I − nnT )∇.

If ex, ey, ez, are the standard unit vectors in the x, y, and z directions in R, then

∇M =


(ex · P )∇

(ey · P )∇

(ez · P )∇

 =


(ex − nxn) · ∇

(ey − nyn) · ∇

(ez − nzn) · ∇

 =


px · ∇

py · ∇

pz · ∇

 =:


Gx

Gy

Gz

 .
The surface gradient is then applied to a general radial kernel function. We denote

the radial kernel by φ and the radial basis functions as φj(x) = φ(||x−xj||) with || · ||

being the 2-norm. The chain rule then gives us

∇φj(x) =


∂
∂x
φj(x)

∂
∂y
φj(x)

∂
∂z
φj(x)

 =


φ′(||x− xj||) ∂

∂x
||x− xj||

φ′(||x− xj||) ∂
∂y
||x− xj||

φ′(||x− xj||) ∂
∂z
||x− xj||



=


x−xj
||x−xj ||φ

′(||x− xj||)
y−yj
||x−xj ||φ

′(||x− xj||)
z−zj
||x−xj ||φ

′(||x− xj||)

 =
x− xj
||x− xj||

φ′(||x− xj||).

Here, we have used ′ to denote the derivative with respect to the Euclidean distance.

The surface gradient can then be computed and here we do this for x but it is

analogous for y and z,

Gxφj(x) = px · ∇φj(x)

= (ex − nxn) · ∇φj(x)

= (ex − nxn)
x− xj
||x− xj||

φ′(||x− xj||).
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Thus

Gxφj(x) =




1

0

0

−

nxnx

nxny

nxnz


 ·


x− xj

y − yj

z − zj

 φ
′(||x− xj||)
||x− xj||

=


1− nxnx

−nxny

−nxnz

 ·

x− xj

y − yj

z − zj

 φ
′(||x− xj||)
||x− xj||

= (1− nxnx)(x− xj)− nxny(y − yj)− nxnz(z − zj)
φ′(||x− xj||)
||x− xj||

.

Finally, we take the continuous surface gradient and discretize it to define a differ-

entiation matrix. We now compute the RBF approximation of the surface gradient

using the expression above. We recall the interpolant from (3.1),

ũ(x) =
N∑
j=0

cjφ(||x− xj||).

Applying the projected gradient operator yields,

Gxũ(x) =
N∑
j=0

cj(G
xφj(x))

=
N∑
j=0

cj

(
(1− nxnx)(x− xj)− nxny(y − yj)− nxnz(z − zj)

φ′(||x− xj||)
||x− xj||

)
.

We recall the coefficients are defined by collocation and by assuming A to be the basis

evaluation matrix, the coefficients are determined by c = A−1u(x). Then, by defining

the matrix Dx such that the columns are defined by

Dx
j = (1− nxnx)(x− xj)− nxny(y − yj)− nxnz(z − zj)

φ′(||x− xj||)
||x− xj||

,
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this yields,

Gxũ(x) =
N∑
j=0

cjD
x
j

= Dxc

= Dx(A−1u(x)).

Hence, the differentiation matrix for the first component of the surface gradient is

given by the matrix (DxA−1). The surface Laplacian operator is therefore given by

L = GxGx +GyGy +GzGz. (3.3)

3.2 RBF Partition of Unity

Since RBF interpolation requires us to solve a linear system that can be com-

putationally expensive for large scale problems, we instead consider a localized RBF

approach with the partition of unity method. The rest of the work in this dissertation

focuses on using the RBF-PU method to solve PDEs on various surfaces including the

unit sphere, a red blood cell, a torus, and a bunny. We use the method of lines with

the partition of unity method combined with the discrete differentiation operators

defined in Section 3.1.2 for the local approximations for the spatial component.

3.2.1 Subdomains and Partition of Unity Weight Function

The partition of unity scheme combines local approximations on overlapping

patches as defined in Section 1.1. Various subdomain shapes have been used in

the literature such as squares, ellipses and ellipsoids as well as more general patch

layouts as explored in [23] and [38]. However, we exclusively use disks defined on

the surface to cover the domain. We implement this by choosing the centers of the

subdomains {ki}Mi=0 and defining the subdomains as {x ∈ M| ||x − ki|| < δ} for
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some predetermined δ. The number of centers and magnitude of δ determines the

amount of overlap between the subdomains and the number of subdomains that each

one overlaps with. Figure 3.3 shows an example of the unit sphere decomposed into

30 overlapping regions. The choice of centers for the subdomains is described in the

following section.

Figure 3.3: Unit Sphere Decomposed into 30 Subdomains for the Partition of Unity
Method.

In this section, we also introduce the weight function utilized for the partition of

unity method. As in [3], we use Shepard’s method based on Wendland’s compactly

supported RBFs as the weight function. We use Wendland’s C2 compactly supported

radial basis function [46] applied to the distance from the subdomain center for the

weight function,

w(r) = (1− r)4+(4r + 1).

Assuming {ui} denote our local approximations, then the following Shepard’s method

evaluation gives us the global approximation

ũ(x) =

∑M
i=1wi(||x− xi||)ui(x)∑M

i=1wi(||x− xi||)
=

M∑
i=1

[
wi(||x− xi||)∑M
i=1wi(||x− xi||)

]
ui(x).

The second formulation is typically more convenient when implementing this method.
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3.3 Node Generation

In this section, we describe the algorithm used to generate the nodes used for the

RBF-PU method. It is well known that using “good nodes” is critical for accurate

and stable approximations. Although choosing nodes that lie on a coordinate system

is a common approach, these distributions often result in singularities and distortions.

This is most obviously seen with the over clustering and singularities on the poles

of the sphere with the latitude longitude coordinate system. On the other hand,

scattered nodes don’t inherit these issues as they do not lie on any underlying grid.

Even so, choosing good nodes is still a very difficult task as there is no known set of

“optimal points” for RBF interpolation. However, nodes which are roughly uniformly

distributed have been shown to be desirable when working with RBFs on surfaces [33],

[25]. Although it may be easy to generate equally spaced nodes in simple domains,

that is not the case when working on surfaces. Through out this work, we consider

Fekete points as it has been shown that they are asymptotically equally spaced [6].

In order to define Fekete points, we first define the Vandermonde matrix for any set

of ordered points z = {z1, . . . , zk} and ordered set of polynomials q = {q1, . . . , qk} as

V (z;q) =



q1(z1) q2(z1) . . . qk(z1)

q1(z2) q2(z2) . . . qk(z2)

...
. . .

...

q1(zk) q2(zk) . . . qk(zk)


.

Fekete points are defined as the set of points which maximize the determinant of the

Vandermonde matrix, V , for a set of functions {q1, . . . , qk} or more specifically

max
z
|V (z;q)| .

Evidently, computing Fekete points quickly becomes a computationally expensive

large scale problem since it a nonlinear optimization problem. Given this is an NP-
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Hard problem [5], using true Fekete points is not practical and we opt for using

approximate Fekete points. In [41], Sommariva and Vianello present a straightforward

algorithm for computing approximate Fekete points using a column pivoting QR

factorization. Although this technique was presented for polynomial interpolation,

we find that it does well with RBF interpolation as well. The method considers

the Vandermonde matrix and takes advantage of the fact that the QR factorization

algorithm is a greedy algorithm that selects pivot columns based on maximizing the

associated volume of the submatrices. Algorithm 1 taken from [41] is a sketch of the

greedy QR factorization algorithm used.

Algorithm 1 Greedy Algorithm for QR Factorization

%Initialize Index

id = [ ]

for k = 1, . . . , N do

select column with largest norm, ik, and add it to the index, id = [id, ik]

remove orthogonal projection from remaining columns

end for

The index of the permutations from this algorithm therefore gives a heuristic

ranking of the “importance” of the nodes. We implement this algorithm for choos-

ing our interpolation nodes as well as the centers of the subdomains in the following

numerical examples. Figure 3.4 shows the candidate nodes on the sphere and the cho-

sen interpolation nodes chosen from said candidate nodes using the QR factorization

algorithm. Figure 3.5 is a similar example but on the surface of a red blood cell.
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Figure 3.4: Candidate Points and Nodes Generated by the QR Factorization Algo-
rithm on the Sphere.

Figure 3.5: Candidate Points and Nodes Generated by the QR Factorization Algo-
rithm on the Surface of a Red Blood Cell.

3.4 Numerical Examples

In this section, we use the RBF-PU method to numerically solve two time depen-

dent PDEs and study the accuracy and stability. We consider PDEs defined on the

unit sphere and the surface of a red blood cell and note that there are no boundary

conditions for these problems.

3.4.1 Method of Lines

We use the method of lines to solve the initial value PDEs considered in this

chapter. In the following section, we solve the diffusion equation and a reaction-
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diffusion system on various surfaces. Thus we formulate the general PDE problem as

the following:

∂u

∂t
= δ∆u+ f(t, u). (3.4)

Here δ > 0 is the diffusion coefficient and f is the forcing term. In the case of the

diffusion equation in the following section, the forcing term is simply zero. If we allow

u to be the vector of samples of u, then the method of lines approximation takes the

form,

du

dt
= δLwu + f(t,u). (3.5)

Here, Lw is the weighted average of the differentiation matrices defined in 3.1.2. In

the following section, we use appropriate time stepping-schemes to advance in time

and use this formulation to inquire about stability based on the eigenvalues of the

differentiation matrix.

3.4.2 Unit Sphere

We now apply the method described above to two problems. We first consider the

diffusion equation on the unit sphere,

ut(x, t) = ∆u(x, t), ||x||2 = 1

u(x, 0) = xyz + 2.

Here, the initial condition shown in Figure 3.6 is defined using a spherical harmonic

function, Y (x) = xyz. The choice of initial condition allows us to solve the PDE

analytically and the exact solution is given by

u(x, t) = e−12txyz + 2.

The method of lines is used with the RBF-PU method described above for the

spatial discretization and the forward Euler time stepping scheme is used to progress
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in time. A time step of ∆t = 0.001 is used with 500 total nodes over 20 subdomains.

The centers of the subdomains and the node points are chosen using the QR factor-

ization algorithm described in Section 3.3. Figure 3.6 shows the initial condition as

well as the solution which converges to a constant value of 2 as was expected and the

max error at t = 10 is approximately 8.6× 10−9.

Figure 3.6: Left: The Initial Condition on the Unit Sphere. Right: The Numerical
Solution for the Diffusion Equation at t = 10 with Time Step ∆t = 10−3.

The eigenvalues of the Laplacian operator on the sphere defined in Section 3.1.2

are shown in Figure 3.7. Note that the true eigenvalues of the Laplace operator on

the sphere should all be real non-positive integers. However, the eigenvalues observed

in Figure 3.7 show a couple of eigenvalues with imaginary parts but we point out

the scale of the two axis and note that the magnitude of the imaginary parts are

two orders of magnitude smaller than the real parts. We attribute the error in the

eigenvalues to the partition of unity method since we found it to be unavoidable in

all of our experiments. We again note that the eigenvalues all have non-positive real

parts. It is known that a necessary condition for stability is for the eigenvalues of

the differentiation matrix to be in the stability domain of the time stepping scheme.

Since the stability region of the forward Euler method is defined by the circle on the

left half plane defined by {z ∈ C| |z + 1| ≤ z}, an appropriately small time step

41



ensures the eigenvalues all lie with in the stability region.
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Figure 3.7: Eigenvalues of the Laplacian Operator for the RBF-PU Method on the
Unit Sphere.

Figure 3.8 shows the semi-log plots of the relative error with respect to the square

root of the total number of interpolation nodes. We now study the convergence of the

error of the numerical solution. Note that only the global number of nodes is varied

and the number of subdomains is kept constant. The convergence of the relative error

is shown for ε = 1 and ε = 2 for three different kernels: Gaussian, Multiquadric, and

Inverse Multiquadric. We note that the error for all three kernels converges faster in

the top figure which corresponds with the smaller ε, however, the error stops decaying

due to the ill-conditioning of the interpolation matrices. For ε = 2, on the other hand,

ill-conditioning is not an issue for the number of points used in this experiment.

3.4.3 Reaction-Diffusion System on a Red Blood Cell

We now consider a more interesting problem, a system of reaction-diffusion equa-

tions taken from [21]. This type of system is often used as a model in biology, geol-

ogy, physics, ecology and chemistry. A common application of this system is used for

42



6 8 10 12 14 16 18 20
10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

R
e
la

ti
v
e
 E

rr
o
r

Gaussian

Multiquadric

Inverse multiquadric

6 8 10 12 14 16 18 20
10 -8

10 -6

10 -4

10 -2

10 0

R
e
la

ti
v
e
 E

rr
o
r

Gaussian

Multiquadric

Inverse multiquadric

Figure 3.8: Relative Error of the Numerical Solution of the Diffusion Equation for
Various Values of N .

modeling of local chemical reactions in which the substances diffuse over a surface or

natural pattern formations found in biology. We look at the Turing system presented

in [44],

∂u

∂t
= δu∆u+ αu(1− τ1v2) + v(1− τ2u)

∂v

∂t
= δv∆v + βv(1 +

ατ1
β
uv) + u(γ + τ2u).

This particular nonlinear system leads to stable pattern formations and has gained

recent attention in the computer graphics field for producing interesting textures on

surfaces. The system consists of two equation: the activator u and the inhibitor v.

Based on the choice of parameters, the solution can converge to a state of various
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patterns. We concentrate on the parameters that produce stripes which is favored by

having a larger τ1 as well as spots which is done with a larger τ2. In this particular

example, the reaction-diffusion system is solved on the surface of the cell. The pa-

rameters for the equations are chosen such that we expect a pattern of spots and are

shown in Table 3.3.

δv δu α β γ τ1 τ2

4.5× 10−3 0.516*δv 0.899 -0.91 -0.899 0.02 0.2

Table 3.3: Parameter Values for the Turing System on the Surface of a Red Blood
Cell.

The solution is found using the method of lines described in Section 3.4.1 with

the RBF partition of unity method implemented in the spatial discretization and the

Semi-implicit Backwards Difference Formula of order 2 (SBDF2) for the time stepping

scheme. The SBDF2 is a semi-implicit technique which uses an implicit backward

differentiation formula for the diffusion term and the second order Adams-Bashforth

for the forcing terms. The algorithm we used is followed closely by the one presented

in [21]. Since the forcing terms are handled explicitly by the SBDF2 scheme then

the forcing terms use the previous iterations. However, since an implicit method is

used for the diffusion term, the current iteration of the solution must be solved for

at each iteration. Thus the differentiation matrix needs to be inverted each time

step but is done so efficiently by pre-computing a sparse LU decomposition. The

initial conditions for both u and v are defined as zero except for a strip of values

around the equator drawn from a random uniform distribution between -0.5 and 0.5

as shown in Figure 3.9. Figure 3.9 shows the solution at t = 300 using ∆t = 0.1

and 3,000 total nodes over 300 subdomains. Note the pattern of spots is observed as

expected. We now investigate one aspect of stability for the time stepping scheme
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Figure 3.9: Left: The Initial Condition for the System of Reaction-Diffusion Equa-
tions on the Surface of a Red Blood Cell. Right: The Numerical Solution Using the
Parameters Presented in Table 3.3 for t = 300 and Time Step ∆t = 0.1.

implemented. The eigenvalues of the discrete Laplacian operator on the surface of

the cell are shown in Figure 3.10 where all eigenvalues have negative real parts. We

recall that the Laplacian operator is handled in an implicit backward differentiation

fashion which has a stability region defined by the exterior of a circle located in the

right half plane. Then it can be expected that a necessary requirement for stability is

to have the eigenvalues of the Laplacian operator in the left half plane as is observed

in Figure 3.10.
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Figure 3.10: The Eigenvalues of the Laplacian Operator for the RBF-PU Method
on the Surface of a Red Blood Cell.
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Chapter 4

RBF - PU ON LARGE DATASETS

In this chapter, the radial basis function partition of unity method is adapted for

applications with large data sets. The RBF-PU method is ideal for large and com-

plicated surfaces since the more intricate surfaces require a large number of points

for accuracy and highlight the benefits of the domain decomposition implemented in

our method. We specifically concentrate on solving the reaction-diffusion PDE with

a large set of points on the surface of a torus and then on the surface of the Stanford

bunny.

4.1 Point Node Selection

Although the RBF-PU method described in Chapter 3 is an efficient technique

that only takes a small fraction of the computational time when compared to other

approaches such as the spectral cubed sphere method introduced in Chapter 2, it

can be further improved. In this section, we introduce two techniques to increase the

efficiency of the point node selection process.

4.1.1 Randomized QR Factorization

We recall that the RBF-PU method described in Chapter 3 uses a column pivoting

QR factorization algorithm to find the near optimal points used for the solution of the

PDE. However, the QR factorization in this algorithm takes up a considerable amount

of the computational time for the whole method. Thus in this section, we implement

an algorithm developed in [29], in which randomization is used to accelerate the pivot

selection for the QR factorization. This is done using randomized projections, the idea

being that instead of computing the column pivoting QR factorization of a matrix A,
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we identify the pivot columns by computing the column pivoting QR factorization of

the much smaller randomized projection of A. Note that since we are considering a

random projection of the matrix A, the matrices have approximately the same linear

dependencies between its columns and thus result in similar pivot choices. Formally,

given a m×n matrix A, the b×n sampling matrix Y is created from the product with

G, a Gaussian random matrix of size b× n, so Y = GA. Thus, the column pivoting

QR factorization is performed on this matrix, Y , in order to identify the index of

the pivot columns. This computation is more efficient since b is assumed to be much

smaller than m so Y is small compared to A. This technique is implemented by using

a package developed by Per-Gunnar Martinsson in [29]. This allows us to efficiently

use the column pivoting QR factorization to find good nodes for our RBF-PU method

for large data sets in the following sections.

4.1.2 Point Node Preselection

In this section, we develop a second method to accelerate the point node selec-

tion process. A preselection technique is implemented to decrease the time of the

global point node selection process described in the section above. The surface is

decomposed into various subdomains as in the partition of unity method described

in Section 3.2.1. Then a set of points is chosen on each subdomain using the column

pivoting QR factorization algorithm. Since the set of points on each subdomain is

not very large then randomized QR factorization is not necessary. The nodes selected

on each subdomain are then concatenated and the randomized QR factorization al-

gorithm is used to select the global set of point nodes as described in the section

above. The efficiency of this process comes from the fact that computing multiple

small QR factorizations is faster than one large QR factorization. Note that a QR

factorization is still computed on a large matrix even with the preselection, however,
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the preselection process eliminated a large fraction of the potential candidate points

and the matrix although still large is significantly smaller.

4.1.3 Time Comparison

The computational time difference between these methods is showcased by looking

at the point selection process on the surface of a torus. We consider 45, 000 candidate

points and choose 15, 000 of those points. Table 4.1 shows the time comparison for

the basic MATLAB built in QR factorization, the Randomized QR factorization, and

the preselection with the built in QR factorization as well as the randomized QR

factorization. Using the basic MATLAB built in function for the QR decomposition

for the point selection process was the slowest. Implementing just one of these tech-

niques, mainly the randomized QR factorization method, reduced the computational

time significantly by a third. Note that the randomized QR decomposition used here

is implemented in C using the LAPACK library. However, we feel this is a fair com-

parison since MATLAB uses the LAPACK library in the QR decomposition as well

and for the randomized QR factorization point selection process, only the QR decom-

position is done outside of MATLAB. We also consider the subdomain preselection

alone, in which we use 50 subdomains. On each subdomain, we select 500 nodes

and since some nodes are selected in multiple subdomains, we end up with 20,209

preselected points. From there, we use the basic MATLAB built-in QR factorization

to choose the final 15,000 points. This approach is slightly faster than using just the

randomized QR factorization. Finally, we combine both methods and do the pres-

election on the 50 subdomains as well as use the randomized QR factorization and

we see that the wall time is 14 times faster than using just the built in MATLAB

QR factorization. This is the method that will be implemented for the rest of this

chapter.
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Method Wall Time (minutes)

Built in MATLAB QR 70

Randomized QR 22

Preselection and Built in MATLAB QR 18

Preselection and Randomized QR 5

Table 4.1: Time Comparison of the Column Pivoting QR Factorization Algorithms
for the Point Selection Process.

4.2 Numerical Examples

4.2.1 Reaction-Diffusion System on a Torus

In this section, we focus on large surfaces and look at the system of reaction-

diffusion equations described in Section 3.4.3 on the surface of a torus defined para-

metrically by

x(θ, φ) = (20 + 9 cos(θ)) cos(φ)

y(θ, φ) = (20 + 9 cos(θ)) sin(φ)

z(θ, φ) = 9 sin(θ)

for (θ, φ) ∈ [0, 2π] × [0, 2π]. We apply the RBF-PU method described in Chapter 3

with the QR factorization speed ups discussed in the previous section. We begin by

considering 45,000 candidate points shown in Figure 4.1. The domain is decomposed

into 50 subdomains as seen in Figure 4.1. Figure 4.2 shows the 18,473 points selected

in the preselection process where 750 points were chosen on each subdomain. The

final 12,000 point nodes chosen for computing the solution are shown in Figure 4.2.
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Figure 4.1: Left: The Candidate Points for the Point Selection Process. Right: The
50 Subdomains Used in the Partition of Unity Method.

Figure 4.2: Left: The 23,000 Points Selected in the Preselection Process and the
Final 12,000 Points Selected in the Global Point Selection Process.

We now revisit the reaction-diffusion equations introduced in section 3.4.3,

∂u

∂t
= δu∆u+ αu(1− τ1v2) + v(1− τ2u)

∂v

∂t
= δv∆v + βv(1 +

ατ1
β
uv) + u(γ + τ2u).
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We recall, this particular nonlinear system leads to stable pattern formations of

either spots or stripes. The choice of parameters dictates the pattern that the system

will converge to and in this exercise they are chosen such that the system converges

to a pattern of spots and are shown in Table 4.2.

δv δu α β γ τ1 τ2

5 0.516*δv 0.899 -0.91 -0.899 0.02 0.2

Table 4.2: Parameter Values for the Turing System on the Surface of a Torus.

Again, the solution is found using the method of lines where SBDF2 is used for

the time stepping scheme with a time step of ∆t = 0.01. The initial condition is

defined by uniformly distributed random values between -0.5 to 0.5. Figure 4.3 shows

the solution at t = 300 and the pattern of spots can be seen as expected.

Figure 4.3: Left: The Initial Condition for the System of Reaction-Diffusion Equa-
tions on the Surface of a Torus. Right: The Numerical Solution Using the Parameters
Presented in Table 4.2 at t = 300 and Time Step ∆t = 0.01.
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As stated in Section 3.4.3, a necessary condition for the stability in the time stepping

scheme in the method of lines is for the eigenvalues of the Laplacian operator to be in

the left half plane. Figure 4.4 shows the eigenvalues of the surface Laplacian operator

for the torus and we note that all the eigenvalues have negative real parts.
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Figure 4.4: Eigenvalues for the Laplacian Operator for the RBF-PU Method on the
Surface of a Torus.

4.2.2 Reaction-Diffusion System on the Stanford Bunny

In this section, we apply the RBF partition of unity method to the system of

reaction-diffusion equations described in Chapter 3 with the point selection speed up

once more but on a more intricate surface, specifically on the surface of a rabbit.

The system was similarly solved in [40] using a radial basis function finite difference

method. The point cloud data set used here was derived from the Stanford Bunny

model and can be seen in Figure 4.5.

The original point cloud contained 35,947 points and the point nodes were chosen

by implementing the preselection on 50 subdomains and then using the randomized
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QR factorization algorithm to choose the global set of point nodes used for the solu-

tion. Figure 4.5 shows the original point cloud as well as the 50 subdomains. Figure

4.6 shows the 24,137 total points chosen from the preselection process which selected

500 points on each subdomain as well as the 10,000 points chosen from the final global

selection.

Figure 4.5: Left: The Candidate Points for the Point Selection Process. Right: The
50 Subdomains Used in the Partition of Unity Method.

We state the reaction-diffusion equations again for convenience,

∂u

∂t
= δu∆u+ αu(1− τ1v2) + v(1− τ2u)

∂v

∂t
= δv∆v + βv(1 +

ατ1
β
uv) + u(γ + τ2u).

We recall, the choice of parameters dictates the state that the system will converge

to and we run two experiments to showcase both patterns. The parameters chosen

in these numerical examples are shown in Table 4.3 below and are chosen such that

we expect to see the spots in one case and stripes in the other by emphasizing τ1 in

the case with the stripes and τ2 with the spots.
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Figure 4.6: Left: The 24,137 Points Selected in the Preselection Process and the
Final 10,000 points Selected in the Global Point Selection Process.

δv δu α β γ τ1 τ2

Spots 5× 10−5 0.516*δv 0.899 -0.91 -0.899 0.02 0.2

Stripes 2.5× 10−5 0.516*δv 0.899 -0.91 -0.899 0.35 0

Table 4.3: Parameter Values for the Turing System on the Stanford Bunny.

As in the previous cases, the solution is found using the method of lines which is

described in more detail in Section 3.4.3 where SBDF2 is used for the time stepping

scheme with a time step of ∆t = 0.1. The same initial condition is used in both

cases and is again defined by uniformly distributed random values between -0.5 to

0.5. Figure 4.8 shows the solution at t = 300 for the case were the spots are expected.

We note that the stripes take longer for the pattern to stabilize and Figure 4.9 shows

the solution at t = 3, 000 where the stripes can be seen.

As in the previous two cases on the surface of the red blood cell and torus, the

eigenvalues of the Laplacian operator must lie in the left half plane for stability.
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Figure 4.7: The Initial Condition for the System of Reaction Diffusion Equations
on the Surface of the Stanford Bunny.

Figure 4.8: The Numerical Solution Using the Parameters Presented in the First
Row of Table 4.3 for t = 300 and Time Step ∆t = 0.1.
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Figure 4.9: The Numerical Solution Using the Parameters Presented in the Second
Row of Table 4.3 for t = 3, 000 and Time Step ∆t = 0.1.

Figure 4.10 shows the eigenvalues of the surface Laplacian operator for the surface of

the bunny and we note that all the eigenvalues have negative real parts.
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Figure 4.10: Eigenvalues for the Laplacian Operator for the RBF-PU Method on
the Surface of the Stanford Bunny.
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Chapter 5

FINAL REMARKS

5.1 Ongoing Work

The work in this dissertation can be extended in various directions. The main area

we plan to focus on in the future is in parallelizing the code used in the radial basis

function partition of unity method. One of the key feature of the partition of unity

method is the ability to decompose a large surface into multiple subdomains. The

radial basis function partition of unity code can be improved to run the computations

on each subdomain in parallel and effectively cutting a fraction of the wall time.

The main obstacle in accomplishing this is to efficiently communicate between the

subdomains when computing the weighted averages.

5.2 Conclusion

This dissertation explores two methods for approximating functions on surfaces

and the necessary computations to solve a select variety of PDEs. The novel spectral

cubed sphere method is introduced in Chapter 2. This technique uses the partition

of unity method to decompose the sphere into six overlapping regions which are pro-

jected onto a circumscribed cube. The window Fourier method is then used on the

independent regions and averaged to create a global approximation. The speed asso-

ciated with spectral methods is taken advantage of by using the fast Fourier transform

on each of the subdomains. The spectral version of the cubed sphere method devel-

oped in this paper achieves machine precision for continuous functions defined on the

unit sphere. Four functions are approximated and geometric convergence is observed.
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Computations of the surface gradient and divergence are described in order to inves-

tigate the numerical solution of some time dependent partial differential equations.

The diffusion equation and the transport equation are studied in detail. Two filters

are introduced for stability in time. A filter in the spectral domain is used for local

filtering and a second filter is defined by adding artificial viscosity to the global ap-

proximation. Both the transport and diffusion equation show geometric convergence

for the step size in t.

The radial basis function partition of unity method is explored in Chapter 3. This

technique uses radial basis functions for the local approximations in the partition

of unity method which decomposes the domain and creates a global approximation

using a weighted average. The surface gradient for this approach is computed by

projecting the gradient onto the surface using normal vectors. The Laplace operator

is then computed using the divergence of the surface gradient. The RBF partition

of unity method is explored in conjunction with a point node selection process. A

column pivoting QR factorization algorithm is used to generate near optimal points

on various surfaces. The accuracy of the RBF-PU method is demonstrated with two

applications. The RBF-PU method is used to solve the diffusion equation on the unit

sphere as well as a system of reaction-diffusion equations on the surface of a red blood

cell. Geometric convergence of the error is observed for the solution of the diffusion

equation on the unit sphere. The eigenvalues of the surface Laplacian operator were

presented for both cases and were found to all have have non-positive real parts.

Chapter 4 further explores the radial basis function partition of unity method

but concentrates on the point node selection process for applications on intricate

surfaces. The column pivoting QR factorization algorithm used for selecting points

in Chapter 3 is adapted to be used for large cases. A randomized projection of the

basis evaluation matrix is used to implement the column pivoting QR factorization
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algorithm on a smaller matrix. The speed of the node point selection process is further

improved by implementing a preselection process. The preselection process uses the

subdomains from the partition of unity method to choose a set of near optimal points

on each subdomain which are then concatenated and the randomized QR factorization

algorithm is used to select the global set of point nodes. By implementing both

techniques, the wall time of the point node selection process was found to be 14 times

faster. The RBF partition of unity method with the point node selection speed ups is

used to solve the reaction-diffusion equations on the surface of a torus and the surface

of the Stanford bunny.
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APPENDIX A

LINKS TO CODE
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This appendix provides details for the code used for both the spectral cubed sphere
method presented in Chapter 2 of this dissertation and the radial basis function
partition of unity method found in Chapters 3 and 4.

The software for the spectral cubed sphere method can be downloaded from
https://github.com/gjislas/CS-PUM.git. Note that the FFTW3 [20] and FIN-
UFFT [4] dependencies are required. Additionally, the codes for certain numerical
experiments can be found in the “experiments” folder. In particular, the codes for the
convergence results found in Figure 2.7 and the numerical solution for the transport
equation on the sphere are available for reproducibility.

A sample of the code used for the radial basis function partition of unity method
can be found on https://github.com/gjislas/RBF-PUM.git which requires instal-
lation of the HQRRP package [29]. The code available can be used to replicate the
results for the reaction diffusion equations on the surface of the Stanford bunny pre-
sented in Chapter 4 of this dissertation.
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