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ABSTRACT

With the breakdown of Dennard scaling, computer architects can no longer rely on

integrated circuit energy efficiency to scale with transistor density, and must under-

clock or power-gate parts of their designs in order to fit within given power budgets.

Hardware accelerators may improve energy efficiency of some compute-intensive tasks,

but as more tasks are accelerated, the general-purpose portions of workloads account

for a larger share of execution time while also leaving less instruction, data, or task-level

parallelism to exploit.

Adaptive computing systems have potential to address these challenges by modify-

ing their behavior at runtime. Adaptation requires runtime decision-making, which

can be performed both in hardware and software. While software-based decision-

making is more flexible and can execute higher complexity operations compared to

hardware, it also incurs a significant latency and power overhead. Hardware designs

are more limited in the space of decisions they can make, but have direct access to

their own internal microarchitectural states and can make faster decisions, allowing

for better-informed adaptation and extracting previously unobtainable performance

and security benefits.

In this dissertation I study (i) the viability and trade-offs of general-purpose

adaptive systems, (ii) the difficulty and complexity of making adaptation decisions,

and (iii) how time spent in the observation-analysis-adaptation cycle affects adaptation

benefits. I introduce techniques for (a) modeling and understanding high performance

computing systems and microarchitecture, (b) enabling hardware learning and decision-

making through low-latency networks, and (c) on securing hardware designs using

runtime decision-making. I propose an always-awake and active learning ‘hardware

nervous system’ pervasive throughout the chip that can reason about the individual
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hardware module performance, energy usage, and security. I present the design and

implementation of (1) a reference architecture and (2) a microarchitecture-aware

static binary instrumentation tool. Finally, I provide results showing (1) that runtime

adaptation is a necessary to continue improving performance on general-purpose tasks,

(2) that significant performance loss and performance variation happens under the

ISA-level, and is unobservable without hardware support, and (3) that hardware must

possess decision-making and ‘self-awareness’ capabilities at the microarchitecture level

in order to efficiently use its own faculties.
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Chapter 1

INTRODUCTION

1.1 General-Purpose Computing Systems

General-purpose computing systems are a type of computer architecture tasked with

executing all programs that do not have more efficient domain-specific or application-

specific accelerators. This class of systems includes microcontrollers, microprocessors,

mainframes, superscalar processors, out-of-order processors, Very Large Instruction

Word (VLIW) processors, multicore and manycore systems, etc. All of these systems

are Turing-complete, i.e., can execute any algorithm given enough memory and storage.

Because of their generality, adoption, and ease of use, they are typically the first (and

often the last) computing platform programmers and users target. As such, improving

the performance, energy efficiency or security of general-purpose computing systems

can have an impact on a very large number of users.

1.1.1 General-Purpose vs. Application-Specific Computing

General-purpose computing platforms are rarely the optimal solution for any given

problem. The cost of their generality is that they do not leverage potential domain-

specific properties of a given workload, which would help to better satisfy user goals.

By building hardware features optimized to help a broad ranges of workloads, many

features provisioned in general-purpose systems go unused on different workloads. For

example, systems may possess large caches, translation lookahead buffers, branch
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predictors, and hardware prefetchers, and all of these features may help some subset

of all workloads, but rarely do all of these features contribute at the same time. In

other words, if a user has a specific application they are targeting, a ‘leaner’ system

may offer e.g., better energy efficiency while maintaining the same performance.

1.1.2 The Need for Accelerating General-Purpose Computing

With the increasing difficulties in miniaturizing semiconductors, along with stalled

core frequencies and slowing improvements in single-threaded performance, computer

architects are seeking alternative ways to accelerate general-purpose programs. Accel-

erators may help some subset of these programs, but the majority of codes cannot or

will not be ported to accelerators, either due to a poor mapping to the accelerator

compute substrate, or due to lack of investment. Similarly, multicore and manycore

systems offer increased task-level parallelism, but many general-purpose tasks are

difficult to parallelize and cannot make good use of such systems. One solution

to improving performance and energy efficiency of general-purpose workloads is to

build general-purpose architectures that ‘adapt’ to workloads, e.g., by powering off

underused hardware features or reconfiguring their microarchitecture to better fit

workload behavior. Instead of ‘optimizing for the average case’, adaptive general-

purpose computing systems can potentially mimic as architectures designed for the

best case.
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1.2 The Obstacles in Improving General-Purpose Computing

The pace of performance improvement in general purpose computers has signif-

icantly decreased since around 2005, as Figure 1.1. The source of this impact is

multi-causal:

1. The breakdown of Dennard scaling means that growing portions of chips must

be turned off in order to fit within a power budget, forcing majority of processors

to be clocked in the low Gigahertz range.

2. Many workloads cannot benefit from wider pipelines due to low instruction-

level parallelism (ILP), preventing designers from further scaling out-of-order

superscalar cores.

3. Low ILP has forced architectures to use deeper pipelines with aggressive spec-

ulation in order to improve performance, but existing designs are pushing the

limits of what can be predicted, and may be limited by natural randomness or

lack of knowledge about incoming workloads.

In this section I will cover these three effects in detail.

1.2.1 End of Dennard’s Scaling and the Dark Silicon Problem

Exponentially increasing transistor counts as predicted by Moore’s law and the

accompanying reduction in power per area known as Dennard scaling (Dennard

et al. 1974) have provided half a century of exponentially growing single-threaded

performance. However, since around 2006 Dennard scaling has broken down (witnessed

by the capped frequency of high-end CPUs) and the slope of transistors per area

predicted by Moore’s law is tapering off. After the breakdown, integrated circuits
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(ICs) built in every new process technology require more power per area to function,

but due to inadequate cooling, a growing percentage of the IC must be turned off to

fit within the power budget.

1.2.2 The Impact of Modern Computing Workloads

Compute workloads have significantly changed in the past two decades with the

introduction of smart phones and increased reliance on cloud computing. Significant

amounts of compute power have moved from desktop computers to the edge and the
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cloud that supports it. Processors are typically designed and tuned to achieve good

performance on representative workloads such as the SPEC and PARSEC benchmarks,

but these workloads do not necessarily follow real-world computing trends.

Recent benchmarks such as CloudSuite (Ferdman et al. 2012) show that modern

applications such as web servers, media streaming, data analytics and web browsing

exhibit significantly different behaviors than that of conventional, compute-heavy

benchmarks found in SPEC and PARSEC. These novel applications often have

low instruction-level parallelism, high instruction cache and TLB miss rates, are

unresponsive to increased L3 cache sizes, and generally have low utilization of modern

superscalar and out-of-order processor features.

They are also difficult to accelerate due to both their generality, and due to the

nature of their performance bottlenecks. Workloads with low ILP can be accelerated

through more ‘aggressive’ speculation, but if control flow is unpredictable, significant

amount of energy will be wasted speculating on branches that are not taken. Similarly,

instruction cache and TLB miss rates may be decreased through larger caches and more

aggressive prefetching, but such approaches tend to increase power usage linearly, and

increase performance asymptotically with scaling. Since processors are increasingly

energy bound, scaling microarchitecture to larger, wider pipelines and caches must be

accompanied with increased energy efficiency.

1.2.3 Limited Architectural Design-Time Opportunities

Modern processors are achieving diminishing returns from aggressive processor

features such as wide pipelines, branch prediction, speculative prefetchers, large caches,

data value prediction, and macro-op fusion. Many existing workloads rely on these
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hardware features and disabling them would significantly decrease their Quality of

Service (QoS). However, workloads that rely on all of these features are rare, i.e.,

only a portion of these hardware features contributes to their performance. Without

a method to specify which features are useful, all of these hardware features use

power. For example, graph processing workloads may require a large amount of

pointer chasing and can be extremely unpredictable in terms of control flow and data

movement. While branch prediction and smarter data prefetching can accelerate these

workloads, wider pipelines and large caches may be underutilized. Since caches often

consume the majority of power of a CPU, graph processing workloads may be wasting

more than half of the energy spent, and have great potential to improve their energy

efficiency. This inefficiency is partly the result of computer architects having limited

visibility into the future workloads. Even if designers had the capability to accurately

predict the landscape of workloads a general-purpose processor will execute, the sheer

diversity of tasks may make any application-specific circuitry impractical.

1.3 Venues for Continued Performance Improvements

Several venues have been proposed in the past decades to supplement the decreased

growth in single-threaded performance, from exploiting application parallelism to

using schedule-time or run-time knowledge about an application in order to adapt the

system running the application.
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1.3.1 Exploiting Weak Parallelism

As Figure 1.1 shows, modern processors have exponentially rising numbers of

cores. Large manycore systems sacrifice single-threaded performance by limiting core

frequency and by being conservative with hardware features in order to save on die

area. In return, these cores on aggregate gain a larger amount of compute power,

assuming the existence of workloads that can fully utilize them. Manycores are well

suited to tasks that exhibit weak scaling — a property of workloads where the workload

may not be directly parallelizable, but growing the workload increases the workload’s

parallel portion. Examples of this are databases and web servers, which cannot utilize

more cores to faster respond to individual queries or requests, but support requests in

parallel given more independent cores, and therefore have better throughput.

1.3.2 Application Specific Architectures

Certain compute-heavy tasks such as graphics rendering, cryptography, machine

learning, media compression, data analytics, and cryptocurrency mining can be made

faster and more efficient through Application Specific Integrated Circuits (ASICs).

These application ‘accelerators’ have become common in the post-Dennard world,

with Graphics Processing Units (GPUs) and neural network accelerators becoming

ubiquitous in high-end System-on-Chip (SoC) devices. These accelerators trade

generality for efficiency, and are ill-fit for accelerating general-purpose tasks that this

work targets.
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1.3.3 Profile-Guided Optimization, Dynamic Binary Optimization and Just-In-Time

Compilation

Profile-Guided Optimization (PGO) is a method for improving the compilation

process by providing the compiler with representative program inputs so that it may

understand the statistical distribution of memory accesses, loop iterations, control flow

decisions, cache misses, etc. Similarly, Dynamic Binary Optimization (DBO) attempts

to augment a program at schedule-time or run-time with newly available knowledge

about the workload or system, e.g., by vectorizing loops with vector instructions

available on that specific processors, or inlining certain loops once program inputs

are known. Interpreted languages such as Python and JavaScript, as well as bytecode

languages such as Java and WebAssembly have great portability but require an OS-

specific interpreter or a runtime in order to be executed. There exists a significant

performance penalty for interpreting these languages, and all of the top-performing

interpreters and runtimes currently use Just-In-Time (JIT) compilation. JIT compilers

compile the inputted code in small increments while simultaneously executing the

generated binaries, typically at the basic block level. The next time an already

executed section of code is ran, it leverages the cached compiled code, achieving

a significant performance improvement. JITs may perform additional optimization

passes once code hot-spots are detected, further improving performance. JITs also

allow leverage runtime information that is typically not available to the compiler,

potentially achieving better results than those of compiled languages, though these

benefits are rarely seen in modern processors that perform similar steps in hardware.

Together, these three types of methods can be viewed as applicable at compile-
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time (PGO), scheduling-time (DBO), and run-time (JIT), as they leverage whatever

information about the workload and system is available to them at the time.

1.3.4 Hardware (Re)Configuration and Provisioning

Reconfigurable architectures such as Field Programmable Gate Arrays (FPGAs)

and Coarse Grained Reconfigurable Architectures (CGRAs) have been proposed

as a method to accelerate workloads by reconfiguring themselves into application

specific circuitry at run-time. While extremely flexible, when emulating general

purpose processors, these architectures achieve significantly lower clock speeds and

energy efficiency compared to ASIC implementations. In order to make up for

this, reconfigurable architectures must exploit some underutilized property of the

workloads to gain a competitive edge over ASICs, but such exploits are by nature

application-specific, hence reconfigurable architectures have not yet found broad use

in general-purpose computing.

1.3.5 System Run-time Adaptation and Introspective Hardware

Adaptive systems change their behavior at run-time to better fit some task or

system state. To adapt, these systems need three components: sensors, actuators,

and decision-making capability. Sensors supply the decision-making system with

information. The decision-making system decides which actuators should be activated

and how. Actuators act on decisions and change system behavior to fit tasks and goals.

The goal of adaptation may be to improve performance, latency, energy efficiency,

security, or some other, possibly user-specified goal.
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Adaptation is similar to dynamic binary optimization and just-in-time compilation

in that it utilizes runtime information unavailable to programmers and the compiler

at compile time. However, hardware adaptation potentially has two advantages above

other approaches. First, hardware adaptation has a greater amount of insight into the

program due to its ability to access both ISA-level and microarchitectural information.

Second, the space of actions JIT or DBO can take is more limited than what hardware

can do, as hardware may adapt its microarchitecture to power down unused hardware

features or provision more shared hardware to processes that may make use of them.

These approaches are complementary though, since the capability of hardware to

perform high-level analysis of running binaries is limited.

1.3.6 Directions for Improving General-Purpose System Performance

The above approaches I have listed above can be separated into two categories: (1)

application-oriented (ASICs / accelerators, weak scaling, JITs, etc.), and (2) system-

oriented (run-time adaptive systems, hardware reconfiguration, provisioning). In this

dissertation I will focus on the second approach, since system-oriented methods for

increasing computing capabilities are more applicable to general-purpose workloads.

1.4 Adaptive, Introspective and Intelligent Systems

In general, computing systems may adapt their behavior with respect to both

running workloads, and internal system states. Examples of the first class are e.g.,

JITs, which change how a workload is executed once a workload is known. Examples
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of the second class are e.g., CPU controls that change core frequency depending on

current compute load.

I will use the term ‘adaptive’ to refer to systems that may change their behavior

over time and have actionability over how workloads are executed. I will use the term

‘introspective’ to refer to systems that have visibility over both workloads and their

internal microarchitecture in order to inform any adaptation decision-making system

about beneficial adaptations. I will use the term ‘intelligent’ to refer to systems that

have agency over runtime adaptation decisions and can learn and change decisions

given more information about workloads or system states. While these three terms

are connected, fundamentally adaptation allows systems to take actions, introspection

allows systems to observe themselves, and intelligence allows systems to make new

decisions which have not been defined at design time.

1.4.1 Adaptive Systems

Static systems are systems that given some workload and initial system state,

always execute the workload using the same subset of the microarchitecture and

exhibit the same behaviors in treating the workload. While small divergences due

to timing, shared resource contention, or initial state may affect the specific states

system microarchitecture will go through to execute the workload, the static system

has no agency and does not significantly change its behavior over repeated runs of the

same workload.

Unlike static systems, adaptive systems are able to change their behavior at run-

time. The adaptive system has a number of actions it can take, with each action

defined through some system actuator or ‘knob’. Examples of such actuators are
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(i) reconfigurable caches which can exchange number of ways for larger number of cache

sets, (ii) tunable CPU pipeline width, allowing processors to load and execute less

instructions in parallel while saving power, (iii) Dynamic Voltage Frequency Scaling

(DVFS), allowing systems to trade-off frequency for energy-efficiency, etc. In this

dissertation I assume the view that many existing adaptation actuators in modern

systems should be considered adaptive. However, these mechanisms are typically

not controlled by learning entities, i.e., entities that observe workload and system

state, decide what changes would benefit the system most, and store memory between

observations in order to improve future decisions. Instead, actuator behavior is often

hard-coded and does not adapt to changing workloads or unexpected system states.

1.4.2 Introspective Systems

Introspective of ‘self-aware’ systems adapt not only to the tasks being executed,

but also have insight into their own internal (microarchitectural) system state. This

state may be accessible to the operating system and potentially user space applications

(e.g., CPU utilization or latency of network traffic), or it may be private (e.g., internal

microarchitecture of a chip).

In the processor design domain, logic is typically split between three layers or

‘fabrics’: the compute, memory, and networking fabrics. Introspective adaptive systems

may gain insight into all three of these fabrics in order to have greater visibility and

control into the system and make better decisions. Therefore, these systems have

a fourth, ‘introspective’ fabric which taps and controls the previous three layers, as

Figure 1.2 shows.
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Figure 1.2: The three typical computing stack layers (network, memory, and compute),
with a fourth, pervasive layer: the introspection fabric.

1.4.3 Intelligent Systems

In this work I consider computing systems ‘intelligent’ if it possesses the ability to

learn: if the system is repeatedly reset to a known fixed initial state and is tasked

with executing the same workload, on subsequent runs the system should change its

behavior in order to improve goal satisfaction. Conversely, a system is ‘unintelligent’

if it is unable to leverage information about previous workloads to improve future

execution. Note that this known initial state into which a system is reset between

workloads applies to system microarchitecture but not to some intelligence subsystem,

since the information about learned lessons must be stored somewhere. For example,

an intelligent processing core might reset its internal state by flushing a whole pipeline,

but a flush should not reset any learned branch prediction patterns.

The intelligence of systems is also a property of the time scale they are observed

within. For example, a given system may be unable to learn on the microarchitectural
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level, and repeating the same program phase may not improve system execution.

However, the system may learn at scheduling time, e.g., by detecting and isolating

misbehaving workloads, so that subsequent workload runs may improve during execu-

tion. Taking a broader view, while a specific core or node may not exhibit intelligent

behavior, a datacenter or HPC system may over larger time scales. For example,

as workloads in a datacenter change, system operators may observe workloads and

install updates or optimize software to better control the system, or may provision

hardware components more appropriate to the workload distribution. With human

operators viewed as a part of the system, the system may exhibit behavior that adapts

to changing workloads.

1.4.4 Design-time, Scheduling-time and Run-time Adaptation

In this work we will observe adaptation at three different time scales: (i) De-

sign-time adaptation: adaptation to workloads or system states during the design

process of the system, based on data collected in simulation or in the field. The

design process may be repeated and upgraded versions of the system may replace

existing systems. (ii) Scheduling-time adaptation: adaptation to workloads in-between

repeated executions of the same or similar workloads, based on data collected after

workload execution has completed. Adaptation may statically configure software or

hardware components to best fit future runs. (iii) Run-time adaptation: adaptation to

workloads during workload execution, based on both information available at schedul-

ing time, and on runtime information available through ISA-level instrumentation and

microarchitectural probing.
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Figure 1.3: Three phases at which adaptation can be performed: at design-time,
scheduling-time, or runtime.

1.4.5 Adaptive System Phases

As mentioned in subsection 1.3.5, adaptive systems have three components: sensors,

actuators, and decision-making mechanisms. Without loss of generality, an adaptive

system can be viewed as operating in a loop shown in Figure 1.4. In practice, a system

will likely both perform measurements, make decisions, and act on those decisions in

parallel, but this framework will be help analyze the theoretical limitations of adaptive

systems in Chapter 7.

1.4.6 Benefits of Adaptive Systems

Adaptive systems can be contrasted with other general-purpose and application-

specific (ASIC) architectures on metrics such as performance, energy efficiency, and

programmability. Figure 1.5 offers a qualitative diagram of how adaptive systems may

compare to other classes of architecture. In terms of performance, while application-
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Figure 1.4: Three and four stage adaptation cycles.

specific architectures such as GPUs and ASICs lead in performance, adaptive archi-

tectures offer equal or superior performance to that of superscalars and many-core

processors, since adaptive architectures are a superset of general-purpose processors.

In terms of energy efficiency, adaptive architectures can use their run-time insight

to lower power usage compared to other processors. In terms of programmability,

similarly to modern out-of-order superscalar processors, adaptive architectures may

offer good performance on untuned code, simplifying development.
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Figure 1.5: A qualitative diagram of the different features of common architectures.
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1.5 Aims, Objectives and Research Questions

In this section I discuss the hypothesis of this dissertation, the research questions

it will tackle, and my objectives and aims for the dissertation.

1.5.1 Dissertation Hypothesis

The hypothesis of this dissertation is that hardware is better suited than software

to make adaptation decisions due hardware’s fast response times and exclusive access

to internal system state, and can therefore exploit previously unobtainable adaptation

benefits, for longer periods of time.

In other words, extracting the full benefits out of general-purpose computing

system adaptation may fundamentally require that decision-making is performed at

the same time and space granularity as useful computation. If so, adaptation decision-

making cannot be performed on the same substrate as general-purpose computation,

and requires specialized architectures and subsystems that can keep pace with the

general-purpose system.

1.5.2 Research Questions

Currently, adaptive systems as defined in this work have seen relatively little

commercial success, and there exist many open questions around their theoretical

limits, design methodology, and practical implementations.

The questions I aim to answer in this dissertation are: assuming oracular decision-

making, what are the limits of system adaptation with respect to adaptation frequency?
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How do adaptation benefits change when adaptation is performed at design-time,

workload scheduling time, and run-time? To make these decisions, decision-making

algorithms must possess a model of the system being controlled. Here I ask: can

systems models describe real system implementations without fully emulating said

systems, and explore their structure, granularity, and complexity? Can systems models

generalize to new workloads, and can they be static or must they change over time?

Can such models be analyzed to better understand the system they are trained on,

and can confidence about their predictions be quantified? Finally, I ask: what level

of system and workload insight is necessary to approach oracular decision-making?

Is architectural (ISA-level) information sufficient to make these decisions, or must

systems be re-architected to expose the system internals? Can these internals be

automatically selected, or must system designers participate in this process?

1.6 Dissertation Contributions

1.6.1 Contributions to System and Workload Modeling

I show that workload behavior clustering is a useful method for labeling and

analyzing workloads, and provide case studies on using hierarchical clustering to

optimize HPC jobs. I show that accurate workload and system models can be built from

post-execution logs, and that these models can be interrogated in order to understand

why workloads or systems behave as they do. I apply HPC clustering insights to

microarchitectural adaptation by clustering and analyzing program execution phases.
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1.6.2 Contributions to Modeling Error Quantification Methodologies

I show that there exist significant roadblocks to the deployment of systems models.

I present a methodology for quantifying why ML models fail when applied to real-

world systems, give a taxonomy of modeling errors, provide litmus tests that quantify

different error components, and provide methods for reducing each noise source. I apply

these insights to design better schedulers, which can analyze why jobs underperform

by querying the error prediction model and determining whether jobs are sensitive to

contention, are novel workloads, etc.

1.6.3 Contributions to Software Instrumentation

I present the Trireme RISC-V Analysis and Instrumentation Library (TRAIL), a

RISC-V-based static binary analysis library that rewrites binaries prior to execution,

adding logging functionality and modifying binary behavior. I show how this library

can be used to gather ISA-level information about workloads. Next, I propose utilizing

the open-source nature of the RISC-V instruction set architecture to (1) enable high-

speed extraction of microarchitectural data which can help train better adaptation

mechanisms, and (2) present a design that minimizes the amount of microarchitectural

pollution that stems from binary instrumentation and microarchitectural probing.

1.7 Outline of the Thesis

In Chapter 2, I provide the motivation for why adaptive and introspective systems

are the necessary next step in general-purpose computing. In Chapter 3, I present
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a formalization of static systems, statically-adaptive systems, dynamically-adaptive

systems, and online-learning system. I introduce ‘systems models’ and conditions

under which systems can be modeled using machine learning algorithms. In Chapter 4,

I introduce an experimental setup for modeling systems and workloads based on

historical data collected from leadership-class supercomputers.

In Chapters 5, 6, and 7 I explore design-time, scheduling-time, and run-time

system adaptation. In Chapter 5, I focus on system design exploration across a

multiple generations of a system, project or product, and present hoppi: a tool for

finding Pareto-optimal system configurations based on both analytical systems models

and simulation data. In Chapter 6, I focus on modeling workloads and develop a

set of machine learning methods that accurately predict how workloads behave on

a specific system. I introduce Gauge, a tool for visualization and exploration of

high-performance computing (HPC) workloads, and present how Gauge can be used to

interpret black-box models of large systems, helping users discover system bottlenecks

and underperforming workloads. In Chapter 7, I focus on applying models from

Chapter 6, and present results from applying ML models of workloads and system in

production. I showcase the difficulties in deploying systems models, and introduce a

taxonomy of systems modeling errors. Finally in 8, I present results and conclude this

dissertation.
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Chapter 2

MOTIVATION

2.1 Existing Venues for Increasing General-Purpose Performance

Methods for increasing system performance on a set of workloads typically fall

into one of the following categories: (i) increasing processor frequency, (ii) increasing

the number of instructions per cycle a core can execute, e.g., in the case of superscalar

and out-of-order processors (instruction-level parallelism or ILP), (iii) operating on

larger amounts of data in parallel through e.g., in the case of vector units and

graphics processors and (data-level parallelism or DLP), (iv) increasing the width

of or combining independent instructions, e.g., in the case of Very Large Instruction

Word (VLIW) computers (bit-level parallelism or BLP) (v) increasing the number

of parallel tasks a system can execute, e.g., in the case of multicore and manycore

processors (task-level parallelism or TLP)

Many types of general-purpose workloads exhibit low parallelism and can benefit

from higher single thread performance, but not from higher processor core counts.

For decades, computer architecture has seen exponential growth in single-threaded

performance (see blue line in Figure 1.1), owing to several venues of research and

development.

Improvements in semiconductor manufacturing have allowed processors to run

at higher frequencies, directly improving single-threaded performance (see green

line in Figure 1.1). Semiconductor miniaturization increased the transistor count

budget available to hardware designs, providing a larger budget for wider pipelines,
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larger caches, and more compute units. However, frequencies have stalled due to the

breakdown of Dennard scaling and the inability of cooling systems to follow CPU

total power draw (see red line in Figure 1.1).

Single-threaded performance has benefited not just from manufacturing, but

also from architectural improvements. By exploiting instruction-level parallelism,

superscalar processors attempt to executed multiple independent instructions at

the same time. To do so, superscalar processors spend their transistor budget to

widen instruction and data cache bandwidths, and increase the number of execution

lanes. Since independent instructions may be several instructions apart, out-of-order

processors spend significant amounts of logic to track instruction dependencies, and

execute them out of order without sacrificing correctness. Increasing pipeline size and

having more instructions in flight can directly improve IPC on a subset of workloads.

However, as pipelines get larger and carry more instructions, control flow penalties

grow proportionally. Since branch instructions are resolved relatively late in a pipeline,

processors typically predict whether a branch is taken or not taken in order to schedule

instructions following a branch. A branch predictor is a processor subsystem that learns

branch behavior and attempts to predict future branch decisions and targets. When

successful, a processor can fill its pipeline and achieve high hardware utilization. When

unsuccessful, the processor must discard instructions behind a mispredicted branch.

Better branch predictors decrease the percentage of in-flight instructions that must be

discarded, directly improving single-threaded performance and allowing designers to

build deeper and wider processor pipelines. Similarly, processors may be bottlenecked

by the ‘memory wall’, where data-intensive programs spend large amounts of time

waiting for memory to arrive from caches or DRAM. By building hardware prefetchers

that predict which addresses will be accessed in the future, designers can again improve
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single-threaded performance. While both of these approaches are provide a significant

performance benefit in modern processors, the leftover mispredicted branches and

cache misses are more random and harder to predict, causing further investment in

terms of hardware area of power yields diminishing returns.

Difficulties in further improving single-threaded performance have incentivized the

development of multicore and manycore systems (see black line in Figure 1.1). These

systems achieve close-to-linear scaling in terms of performance at the cost of increased

programmability. Since many general-purpose tasks are limited by Amdahl’s law, and

most workloads require additional effort to parallelize, task-level parallelism is less

generally applicable compared to other approaches.

Vector and VLIW processing suffers from similar problems: vectorizing applications

can provide significant improvements on a subset of workloads, but is application-

specific and requires programmer effort or auto-vectorizing compilers. While some

benefits can be immediately gained, increasing vector processor widths or very large

instruction word widths offers diminishing returns.

2.2 Necessity of System Adaptation

With semiconductor manufacturing process technology is approaching the fun-

damental limits of physics and microarchitectural approaches are extracting most

of the benefits of instruction-level parallelism, the number of venues that can offer

performance improvements for general-purpose tasks is decreasing.

To illustrate this problem, let’s assume that some future non-adaptive processor

design with (1) a fixed power budget and (2) an unlimited hardware area budget is

mathematically proven to provide optimal performance on a wide set of workloads.
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Since the design is optimal, there exists no improvement in e.g., ALU, pipeline, cache,

or branch predictor architecture that can on average improve performance on a given

set of workloads. While system optimality cannot be disproven, removing some of

the design constraints can invalidate its conclusions. One of those constraints is the

immutable nature of microarchitecture, which specifies that the same microarchitecture

is used for all workloads. If the hardware design can change its design and behavior

for each specific workload ahead of workload execution (at scheduling time), it should

be able to find equal or better-performing configuration for every workload. If the

hardware can change its design and behavior during execution, it may be able to

achieve equal or better performance on every program phase as well. Note that this

argument applies not only to performance, but to other metrics such as security as

well.

The crux of the argument is that optimizing a single system design for a broad

range of workloads leads to suboptimal performance on all of them. In Figure 2.1 I

illustrate an example where a system with two parameters is iteratively optimized

to satisfy workloads from three different applications. A workload is represented

by the configuration of the two parameters which would provide it with the best

performance, energy-efficiency or any other metric being optimized. A single optimal

but static system arrives at equilibrium at the end of the optimization procedure once

the weighted sum of all gradients imposed on the parameters is cancelled out. The

design is Pareto-optimal, in that improving goals of any single application leads to

sacrificing goals of another application.

The promise of system adaptation is that systems do not have to exist as a single

configuration or ‘point’ in the parameter space, but can instead be defined as a space

of possible configurations. A system may be able to choose at scheduling time or
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runtime which point in the space to adapt into, approaching optimal configuration for

given workload once that workload is known.

2.3 Motivating Examples

To illustrate why general-purpose computing architectures need to be able to adapt

at run-time, I will present three different scenarios:

• A situation where more insight into the system can improve quality of service,

• A situation where run-time decision-making and online learning is needed to

stop security attacks,
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• A situation where simple actuators can have a great impact on energy efficiency

of a system.

2.3.1 The Need for Better System Behavior Monitors:

Improving QoS for Contention Sensitive Jobs

Certain workloads or behaviors may be very sensitive to memory, network or

I/O contention. Take network latency sensitive jobs as an example: network latency

sensitive jobs have network communication on their critical path, i.e., their runtime

directly corresponds to the time between network request and response start times.

A typical behavior of both computer networks (Ethernet / Infiniband / etc.) and

Network on Chip (NoC) systems is that as network bandwidth utilization approaches

100%, packet latency approaches infinity. This effect is caused by the fact that when

network sources produce more traffic than network sinks can process, network queues

grow and packets take longer and longer to get processed. These two effects cause

network latency-bound jobs to be particularly sensitive to network utilization, and

may have significantly varying performance on similar systems that only differ in the

amount of network traffic. The effects may be difficult to diagnose, and conventional

general-purpose systems do not provide any support for diagnosing when a job is

network latency sensitive, nor do they typically support any provisions for such jobs.

That is not to say that there are not simple fixes to the problem - take the following

adaptive system sketch as an example. By collecting execution logs containing job

runtime and average network utilization during job execution, the system may infer

that for a certain subset of jobs, there exists a positive correlation between the two.

This sensing is simple to implement: process runtime is already collected on modern
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operating systems, and average network utilization can be collected through software

or hardware performance counters in the Network Interface Card (NIC) or the virtual

channel buffer in NoCs. Once certain jobs are classified as network latency-sensitive,

this knowledge can be used to adapt the system during their execution. Since by

definition, network latency-sensitive jobs execute faster when network latency is low,

while latency-insensitive jobs do not, network latency-sensitive jobs will benefit from

having priority in the network buffer, while other jobs will not sense a significant

performance penalty. Implementing packet prioritization may possibly be performed in

software, but likely requires hardware support on most high-performance systems. This

software or hardware support would be an ‘adaptation knob’: a run-time controllable

parameter that can provide better goal satisfaction given that the controller has access

to the right information about the workload and the system, and makes the right

decisions. This example illustrates that the adaptive system requires that hardware

sensors and architectural monitors are placed at the right locations in the system in

order to inform the decision-making system and extract full adaptation benefits.

2.3.2 The Need for Better Hardware Decision Making:

Real-Time Microarchitectural Attack Detection

When controlling a system that exists within with a possibly random / chaotic

but stationary (time-insensitive) environment, there are typically fundamental limits

in how complex the controller must become to achieve an ideal outcome. For example,

many classical control theory problems have analytically-derived optimal solutions that

are simple to describe and to compute, and work even in the presence of large amounts

of noise. When dealing with a thinking adversary on the other hand, the controller
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complexity can be unbounded. This is apparent from chess engines to antivirus

detectors: when the state space is large, it is difficult to find a perfect strategy to

beat a powerful adversary (powerful in this case means that the adversary can exert

significant control over state transitions, and can perform complex decision-making).

Let us take microarchitectural attacks as an example. Microarchitectural attacks

such as cache timing side-channels, as well as branch prediction and prefetcher

side-channels, abuse the fundamental mechanisms of how modern general-purpose

processors achieve single-threaded speedups. The goal of these attacks is to modify

system behavior and extract private information about the hardware, the operating

system, or other victim processes running on the system. For example, these attacks

may ‘prime’ a branch predictor or prefetcher into behaving in a way beneficial to the

attacker, or may observe victim process behavior through an unintended side-channel

such as the last level cache (LLC). These attacks are particularly insidious because

they do not have easily recognizable payloads typical of other types of malware, but

instead rely only on basic user-space computation to work. Nonetheless, these attacks

may have recognizable signatures that a defender may learn to detect. By collecting

microarchitectural data on these attacks, the defender may build run-time classifiers

which can detect these attacks based on workload behaviors or hardware states, and

either isolate them or kill their processes.

Here the difference between interacting with static environments vs. adversarial

agents becomes apparent: if the environment was causing a side-channel, the system

may be able to model it, prepare for it, and work around it, all ahead of time. However,

a reasoning agent can change its behavior after the workaround, and continuously adapt

as new defenses are put in place (typically referred to as ‘a game of cat and mouse’). If

a system is complex enough, the only viable strategy a defender has to completely stop
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the attacker is to formally prove that no strategy can e.g., cause microarchitectural

information leakage. This however is simply not practical as formal verification costs

typically grow exponentially with system complexity. An alternative, less secure but

more plausible strategy is to attempt to detect microarchitectural attacks, accept

that attackers may find workarounds, but build the defenses flexibly enough so that

the system may be either updated at run-time with new attack detection logic, or

even learn on its own from detected attacks. This example illustrates that even with

unlimited system insight and actuators, without powerful and flexible decision-making,

the adaptation benefits may not be useful or fully-utilized.

2.3.3 The Need for Better System Adaptation Actuators:

Better Energy Efficiency Through Cache Reconfiguration

Actuators are mechanisms available to the adaptive system to control its behavior

or the environment. They may differ by their location in the system, type of control the

exert, their temporal granularity, etc. While actuators may control their environment

(e.g., changing the supply voltage of a CPU), this dissertation will focus mainly on

microarchitectural actuators, i.e., the control mechanisms built from the same logic

cells as the adaptive system, and controlling the same system. The following example

will focus on last level caches (LLCs), since these caches typically have five or more

classes of actuators, controlling cache size, number of sets, ways, line sizes, write

policies, replacement policies, etc. The large number of actuators and the significant

impact that each actuator can have on system behavior provides the system with the

power and flexibility to adapt to workloads.

Modern caches commonly occupy more than 50% of processor die area, and use a
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similar percentage of processor power. Many applications such as big data analytics,

media streaming, or graph processing however have little benefit from large last level

caches (LLC), so power spent on LLCs is wasted. Cache power utilization leads to

lower energy efficiency, creating waste heat and preventing the core from achieving

higher clock rates for longer periods of time. While poor cache utilization by these

workloads is the problem, circumventing caches is not a winning strategy: though

large data movements in these applications do thrash the cache and see large miss

rates, control flow and latency-critical portions of code do benefit from smaller last

level caches.

Reconfigurable caches have been proposed as a solution for helping these types of

workloads achieve better energy efficiency. This type of caches adapt their microarchi-

tecture at runtime to (1) increase hit rates through better workload - cache mapping,

e.g., by changing their associativity when conflict miss rates are high, or (2) lower

waste energy by power-gating cache sets or ways when miss rates when compulsory

or capacity misses are high. Typically reconfigurable caches offer ‘microarchitectural

knobs’ in the form of adjustable number of sets, ways, line sizes, replacement and

write back/through policies, etc. Reconfiguring caches may require flushing dirty sets,

ways, or even the whole cache, which incurs a significant latency and quality of service

penalty. Therefore, judicious control over when and how the cache is reconfigured

is needed. This example illustrates that actuators are the only mechanism with

which the adaptive system controls itself and its environment, and that even with

full workload insight and perfect decision-making capabilities, actuators of the right

power, flexibility and granularity are required to extract adaptation benefits.
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2.3.4 Summary

In summary, adaptive systems require sensing, acting, and decision-making capa-

bilities to extract adaptation benefits. These capabilities must be tailored to each

other, i.e., actuators must be able to control behavior that can affect a workload

and system in a beneficial way, and sensing must be able to collect the necessary

information about the workload and system. Whether decision-making capabilities

are specific to the sensor-system-actuators tuple is not as clear.
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Chapter 3

FORMAL DEFINITION OF ADAPTIVE SYSTEMS

In this chapter we define and provide a formal foundation for the terms work-

loads, workload profiles, system profiles, static systems, statically-adaptive systems,

dynamically-adaptive systems, and online-learning systems. In Section 3.1 we intro-

duce analytical formulations of different types of digital logic systems, and decompose

complex and opaque system equations into smaller functions with more manageable

numbers of inputs. In Section 3.2 we present several lossless and lossy simplifica-

tions and approximations to the systems equations introduced, which allow practical

modeling of digital systems using machine learning and bound the modeling error.

3.1 General Systems Equations

The goal of this section is to:

• provide a set of generally-applicable system equations that can describe any

digital logic system,

• illustrate the complexity and intractability of working with overly-general system

equations, and

• motivate the use of simplified systems models.

Although this dissertation broadly targets general-purpose computing systems, for

the sake of this simplifying analysis in this section we restrict systems to just general-

purpose processors modeled after the Harvard architecture and described as state
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machines. Without loss of generality, all of the conclusions presented in this chapter

apply to other types of systems such as e.g., accelerators or HPC systems.

We define a system to be a state machine that operates on a number of workloads

whose correctness is defined by an Instruction Set Architecture (ISA). The system

is modeled as a Harvard machine with four components: a processing element, data

memory, instruction memory, and I/O. We treat instruction memory as immutable1

and a part of the inputs to the state machine, while we treat data memory as part of

the state machine’s state space. We define a workload to be an immutable (program,

input data) tuple that deterministically defines workload execution, i.e., a workload

targeting a specific system definition (e.g., ISA) will execute2 one and only one

sequence of system operations. We treat workload inputs and outputs as I/O (and

not e.g., as data memory, even if a program statically allocates data), and therefore

external to the state machine. A workload is implementation agnostic, and does not

depend on e.g., whether a system may speculatively execute or execute out-of-order

some operations. We also make two assumptions about all workloads: first, that all

workloads terminate, and second, that all workloads are deterministic. Neither of

these requirements are necessary for the following formulations, but they simplify

the problem of defining systems models. Without the requirement that all programs

terminate, the systems model output may be undefined for certain inputs, and without

determinism, a single (program, input data) tuple no longer maps to a single output.

All of the systems considered here consist of a state machine that operates on

1This assumption is not restrictive, we later describe, the system can be described as operating
on workload execution traces which are recorded beforehand and assumed immutable, instead of
operating on a mutable array of instruction memory.

2A more cautious definition may use the term commit instead of execute, but we leave out this
discussion for the sake of brevity.
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Figure 3.1: Diagram of a static system state machine showing the relationship between
system inputs, system state, a state transition function, and system outputs and
sensors.

a workload of interest specified as a (program, input data) tuple, along with other

inputs such as competing workloads, environmental and system conditions, workload

noise, and internal and external system noise3.

3.1.1 Static Systems Equations

A non-adaptive (static) processor represented as the state machine described above

can be diagrammed as shown in Figure 3.1. The system has a number of inputs:

• w ∈ W: a workload of interest w drawn from a set of all workloads W, with w

represented as an array of instructions or execution trace, describing behavior

of the workload according to some ISA,

• W ⊂ W: a set of competing workloads described in the same format,

3Although a system may possess sources of true randomness, without loss of generality we can
simplify and extract those sources outside of the system and make the system deterministic.
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• c: a set of design-time decided system parameters,

• q0: the initial state of all memory inside the system (including registers),

• et: a time series of external conditions affecting the system during runtime,

• nt: a time series of both internal and external random noise affecting the system

during runtime,

We choose to represent the system as a Moore machine, where the state of the

machine at timestep t+ 1 is determined by the state transition function φ, current

state qt, static system inputs c, w and W , and time-dependent system inputs et and

nt. In a Moore machine, the system outputs ot are only a function of the state qt.

Though not present in all digital designs, we add two additional outputs to the system

in the form of system sensors or ‘monitors’ µs and µw, which observe system and

workload behaviors. The monitors produce time series of sensor readouts, but because

the stream collected from the sensors may be very large and often cannot be stored

due to limited I/O bandwidth, system designers may choose to compress or filter the

readings into some fixed-size log or profile (e.g., as in the case of hardware performance

counters, workload profilers, etc.). In our formulation, the aggregation function Σ

processes the time series from monitors µs and µo into fixed-size variables σ, the

system behavior profile, and ω, the workload execution profile. Note that Σ is not

necessarily the summation function, and can represent other aggregation functions

such as e.g., maximum or minimum functions, different histogram functions, etc.

With these definitions in place, the static system’s next state qt, next output ot,
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and profiles σ and ω can be expressed as:

qt+1 = φ(w,W, c, qt, et, nt)

ot = π(qt)

ω =

thalt∑
t=0

µw(qt)

σ =

thalt∑
t=0

µs(qt)

(3.1)

3.1.2 Statically-Adaptive Systems Equations

Statically-adaptive systems may change their configuration after fabrication to

better fit workloads or current system state. This reconfiguration may happen at

system boot time, when a certain workload has begun execution, or even periodically.

The adaptation is static because it does not use any runtime information about

the system or workload running on it, but relies only on data available ahead of

configuration, e.g., a set of user goals or a workload profile. It is not triggered based

on some runtime event during the execution of the workload or by some runtime

decision-making system. The statically-adaptive system is unable to proactively

respond to situations where a system reconfiguration may be beneficial. We define

statically-adaptive systems as those that can change their configuration only at the

beginning of execution of a workload of interest. Opposite to these systems, we define

dynamically-adaptive systems as those that can change their configuration during the

execution workload of interest.

Figure 3.2 extends Figure 3.1 by adding a configuration scheduler function ζ

(shown in magenta) which accepts the workload of interest w and user goals g. User
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goals g communicate the user’s, the operating system’s, or any other decision-maker’s

optimization objectives to the statically-adaptive system. The optimization objectives

can be e.g., maximizing energy-efficiency or throughput, minimizing latency, improving

security, etc. When ζ is executed prior to workload execution, it predicts which

configuration c is best suited to the workload and goal at the time. This configuration

c affects system behavior and the system transition function φ in some way, and can

be treated as an input to the system, as static systems do in Equation 3.1.1. This

formulation, however, hides system adaptation mechanisms or adaptation actuators

inside φ, making such formalization moot. Instead, Figure 3.2 represents adaptation

actuators by implementing a number of different system transition functions φ1,

φ2, ..., φn, and the configuration c chooses which system transition function should

be used to calculate the next state qt+1. Each transition function describes how a

system behaves when a different set of actuators is active. Although this formulation

obviously leads to a combinatorial explosion in the number of transition functions

since every combination of active or inactive actuators must be described, the goal of

the formulation is not to describe a practical system, but to segregate the system into

static and adaptive components. This formulation will be useful in Section 3.1.5.1

when discussing whether static and adaptive systems are fundamentally different types

of machines.

Assuming that the workload of interest starts at time t = 0 and ends at time

t = thalt, and that the scheduler ζ produces a configuration c at the same time, the
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necessary to enable static adaptation shown in purple.

statically-adaptive system shown in Figure 3.2 can be written as:

c = ζ(w, g)

qt+1 =



φ1(w,W, qt, et, nt) for c = 1

φ2(w,W, qt, et, nt) for c = 2

...

φn(w,W, qt, et, nt) for c = n

ot = π(qt)

ω =

thalt∑
t=0

µw(qt)

σ =

thalt∑
t=0

µs(qt)

(3.2)
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3.1.3 Dynamically-Adaptive Systems Equations

By definition, statically-adaptive systems are incapable of adapting to the changing

runtime requirements of the user, the workload and the system. While they may

potentially possess agency (the ability to reconfigure the system during the runtime),

all of the inputs that the adaptation scheduler ζ receives are constant during the

execution of a given workload. Without any visibility into the runtime conditions of

the system, the scheduler and the system have to maintain the same configuration

made when the workload of interest was initiated.

Dynamically-adaptive systems extend the system with a set of sensors that monitor

the runtime state of the workload and the system, and use runtime decision-making to

possibly change their decision during workload execution. The actuators available to

the dynamically-adaptive system are a superset of those available to statically-adaptive

systems. While statically-adaptive systems only decide between configurations at

scheduling time, dynamically-adaptive systems can change between configurations at

runtime, as well as trigger one-off behaviors implemented by the system (e.g., flush the

cache). Dynamically-adaptive systems are therefore a superset of statically-adaptive

systems.

Figure 3.3 shows a diagram of a dynamically-adaptive system. The system differs

from statically-adaptive systems in two regards. First, the configuration scheduler

function, which is invoked only when a workload is first scheduled, is replaced with a

runtime decision making function, which is invoked continuously during execution.

We will use ζ to represent both functions. Second, the adaptation decision making

function receives an additional input δt, and has an updated function signature

ct+1 = ζ(w, gt, δt). The new input δt is generated by system sensors δt = µd(qt). This
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Figure 3.3: Diagram of a dynamically-adaptive system state machine, with highlighted
changes necessary to enable static adaptation.

output is a time series and represents system state qt (microarchitectural) monitor

readings during the execution of the workload. Unlike in previous systems, sensor

readings are not only compressed into profiles or logs for later analysis, but are also

directly consumed by the adaptation decision making function ζ.

The adaptation decision making function ζ produces a time series of configurations

ct that it decides are beneficial for workload execution and current gt goal satisfaction.

Similarly as in the case of statically-adaptive systems, the adaptation configuration is

used to select between different implementations of the system transition functions φ1,

φ2, ..., φn. However, the dynamically-adaptive computing system can choose between

functions during runtime, significantly broadening the space of system transitions,

possible execution traces, and workload profiles. Furthermore, the runtime system

behavior changes makes the system difficult to model, as transient configurations

(which may be difficult to log and profile) may cause long-lasting effects on the system

in certain situations.
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The dynamically-adaptive system shown in Figure 3.3 can be written as:

δt = µd(qt)

ct+1 = ζ(w, gt, δt)

qt+1 =



φ1(w,W, qt, et, nt) for ct = 1

φ2(w,W, qt, et, nt) for ct = 2

...

φn(w,W, qt, et, nt) for ct = n

ot = π(qt)

ω =

thalt∑
t=0

µw(qt)

σ =

thalt∑
t=0

µs(qt)

(3.3)

Dynamically-adaptive systems are fundamentally different from statically-adaptive

systems in three ways: (i) they have runtime access to system sensors δt, (ii) user

goals gt are allowed to change at runtime, and (iii) the decision-making system can

update its decisions at runtime.

3.1.4 Online-Learning Dynamically-Adaptive Systems Equations

The behavior space of a system is the set of different behaviors a system can choose

to exhibit. System actuators allow systems to change behavior at runtime, and each

actuator can be treated as an orthogonal dimension in system behavior space. As

non-adaptive systems cannot change behaviors at runtime, their behavior space is

zero-dimensional, i.e., a single point. The behavior space of adaptive systems is a

41



Cartesian product C =
∏n

i Ci of behaviors which the n different system actuators

can exhibit. For example, an adaptive system that can set its frequency as either

800MHz, 1600MHz, and 3200MHz, set its cache associativity as either 2-way or 4-way,

and select between two different branch predictors at runtime, can exhibit 12 different

behavior configurations. Understanding the size of the behavior space is useful for

bounding the search space of possible adaptation strategies and detecting whether

the problem of finding an optimal adaptation strategy is tractable.

Not all points in the system behavior space may be valid, as some system con-

figurations may violate correctness, and because some behaviors do not have viable

physical implementations. The feasible space of behaviors an adaptive system can

exhibit is limited by both the limitations of the system actuators and of the system

decision-making logic. The first limitation is also the stronger one, where the bound-

aries of the system behavior space are defined by actuators capabilities, their runtime

flexibility, and any resource constraints that may exist (e.g., limited power or thermal

capacity prevents a design from continuously operating in some high-performance

mode). These actuator boundaries implicitly define a set of feasible configurations

C′ ∈ C in which statically- or dynamically-chosen configurations c ∈ C′ reside in.

Given a maximally-flexible decision-making function ζideal, the range of ζideal = C. In

other words, the ideal decision-making function can order every feasible configuration

of adaptation actuators.

Both statically- and dynamically-adaptive systems change their configuration in

response to change in goal or workload. Additionally, dynamically-adaptive systems

can change configuration in response to system state qt as well. As qt is affected by

contention, environmental inputs, and noise inputs, dynamically-adaptive systems also

respond to changes in those inputs as well. Holding these inputs constant (e.g., by
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rerunning the same workloads under the same conditions), adaptive systems as they

are presently defined do not change their behavior over time, and they are unable to

improve their future behavior based on past experiences. This limitation is a product

of the constant nature of the φ and ζ functions, as they do not change over time. Note

that because dynamically-adaptive systems contain a feedback loop:

qt ⇒ µd(qt) = δt ⇒ ζ(δt, ...) = ct ⇒ φct(...) = qt+1 ⇒ ... (3.4)

the memoryless function ζ can potentially use state qt to store memory and affect

its future behavior. This means that dynamically-adaptive systems may potentially

exhibit behavior that changes over time.

Without the ability to purposefully affect future behavior, statically- and

dynamically-adaptive systems cannot learn based on previous experience, and their be-

havior space is implicitly restricted by the capabilities of the existing decision-making

function ζ.

We define ‘learning systems’ as systems that have purposeful (as opposed to

incidental) functionality to affect future behavior based on data on previous workloads,

system states, environmental effects, etc. Learning is typically classified as either

offline, where data collection and learning are executed asynchronously prior to the

current execution, and online, where data collection, learning and execution are

performed in parallel. Online learning is a set of methods that train machine learning

algorithms at runtime on the same data that the system is evaluated on. The benefit

of online learning is that models can improve their predictions on inputs they initially

mispredicted on, as well as adapt to any input data distribution shift. For example,

online-learning adaptive systems may learn that e.g., previously unseen workloads

benefit from some unexpected configuration and preserve this knowledge for future

scheduling. Similarly, they may learn any change that happens in the environment
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or the system, e.g., a component failing, and again improve future configuration

predictions. Note that in computing systems capable of learning, the distinction

between offline and online learning is less prevalent, as offline learning is rarely

used due to limited communication between the deployed hardware and a hardware

manufacturer that can perform offline training (Rubin et al. 1998). Therefore, we

will use the term learning and online-learning synonymously. Computing systems

that exhibit learning behavior typically do so online, where they actively observe

workloads and update future behavior (e.g., in the case of branch prediction). Due

to the complexity of interfacing with different operating systems to store learned

behaviors, updates to the decision-making logic are typically not persistent and only

last until the next system shutdown.

For computing systems to be learning systems as defined in Equations 3.1.1, 3.1.2

and 3.1.3, we require that (1) they can change their behavior function φ either ahead

of program execution or at runtime, and (2) this change should be a function of past

workloads W or past system states {q0, q1, ..., qt−1}. We however restrict ourselves to

only observing adaptive learning systems, where learning is confined to the scheduler

ζ function. We define an adaptive learning system as one whose choice of behavior

ct = ζ(...) is not just a function of the present factors such as the current workload w

or goal g, but also of past workloads and system behavior. The distinction here is that

online-learning systems require that their behavior φ(...) changes over time, and not

just their inputs. While the system cannot change the space of available actuators and

can only exhibit behaviors φ1, φ2, ..., φn, it can change which behavior is scheduled at

which time. This distinction is useful to distinguish between non-learning dynamically-

adaptive systems that nonetheless respond differently to repeated workload executions

due to change in state qt (even with all other system parameters held constant), and
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online-learning dynamically-adaptive systems that change both their behavior, and

their behavior decision-making during execution. Note that learning is independent

from adaptation: a system may learn from workloads but lack the capability to act

on any gained insight, or vice-versa, a system may have adaptation capabilities that

are underutilized due to lack of learning capability.

Accepting that learning systems are distinguished by having a function ζ whose

behavior may change over time, the decision-making function ζ in these learning

systems can be classified into three categories (fourth one being memoryless, time-

insensitive systems which cannot learn):

1. Containing memory, time-insensitive ζ: this class of decision-making functions

is characterized by the fact that learning is relegated to external memory.

For example, non-parametric models such as the K-Nearest Neighbors (KNN)

algorithm are an example of such functions, since KNNs do not ‘learn’ (the

algorithm does not change over time). Instead, the ‘neighbor’ points presented

to the KNN algorithm may increase in number with each new KNN inference

operation, and future KNN invocations can benefit from these new points.

2. Memoryless, time-sensitive ζ: this class of decision-making functions is charac-

terized by the fact that learning modifies the function itself, and has no larger

store of memory where data can be stored for later analysis. For example,

online-trained neural networks are an example of such functions, since they may

change their internal parameters during training, but any data they were trained

on is potentially lost.

3. Containing memory, time-sensitive ζ: finally, this class of functions is charac-

terized by having both an external store of knowledge which grows with new

data, and also a function that changes with new data. Reinforcement learning
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agents in e.g., self-driving cars are an example of such functions, since as they

acquire new data, they may both update their internal ML models (e.g., neural

networks), and also store data for later processing and active lookups by the

models.

In this work we focus on memoryless, time-sensitive models, since only this class

of models has fixed memory requirements that may be provisioned at design time.

3.1.5 Insights and Conclusions

The design shown in Figure 3.1 is general enough to represent any digital logic

system. However, systems equations shown here are incredibly complex when used to

describe existing digital systems. The complexity stems both from their very large

state space and transition function, and the large amount of iterations (steps, cycles,

etc.) needed to complete workload execution. As such, building systems equations is

equivalent to building a full system implementation. Although the Moore machine

abstraction is helpful in clearly defining the system interface, it neither: (1) improves

our ability to reason about the system at a higher level of abstraction, nor (2) allows

us to more efficiently execute the system. For that reason, in next section we turn to

analytical models of computing systems, which attempt to define lossless and lossy

analytical transformations that can be applied to models of the system, in order to

simplify them and make them practical.

The formulations in Sections 3.1.1, 3.1.2, and 3.1.3 are useful for several reasons.

First, they define how workload and system profiles are created by real systems,

as these profiles will be used in Chapter 6, where machine learning models will be

tasked with predicting system profiles from workload profiles in an attempt to learn
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(a portion of the) system’s behavior φ. Second, in Section 3.1.5.1 they help clarify

the differences between static and dynamic systems, and classify existing systems or

system components into the two categories. Finally, in Sections 3.1.5.2 and 3.1.5.3,

they are useful in explaining the theoretical capabilities of different types of models

when faced with novel or changing workloads and systems.

3.1.5.1 Should Existing Computing Systems Be Considered Dynamically Adaptive?

Note that the three equations for static, statically-adaptive, and dynamically-

adaptive systems are functionally equivalent, and only differ in additional external

inputs. For example, the scheduling function in Section 3.1.2 has an additional input

g and a new scheduling function ζ(w, g). If ζ is subsumed into the system equation

φ and φ receives and additional input g, this new function φ′(g, w,W, qt, et, nt) can

represent any statically-adaptive system. As the statically-adaptive system behavior

function φ′ only differs from static systems behavior function φ by the additional

static user goal input g, statically-adaptive systems are a superset of static systems.

Furthermore, the two sets of machines are equivalent if g is known at design time,

as information about g can be used to choose the static configuration c. A similar

case can be made for dynamically-adaptive systems, as many existing systems exhibit

behavior that fits within the definition of dynamically-adaptive systems. For example,

branch predictors in modern processors (1) sense internal states (e.g., workload control

flow, instruction counters, etc.) during runtime, (2) make decisions on what new state

or behavior would be beneficial (e.g., update a branch history table), and (3) modify

system behavior (e.g., speculate on this branch). In response to this classification, one

may choose to distinguish between static and dynamically-adaptive systems by the
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fact that the latter can choose between multiple distinct behaviors φ1, φ2, ..., φn at

runtime. However, even though there may exist a practical distinction between these

behaviors (e.g., completely separate implementations), one can always construct a

unifying static system as shown by the piecewise definitions of qt+1 in Equations 3.1.2

and 3.1.3.

The question of whether a system is static or adaptive may appear purely pedantic,

but it is important for designers to know the type of system they are designing in

order to apply appropriate adaptive system design methodology. It also raises further

questions about existing designs, as mechanisms such as branch prediction can be

viewed as both a part of the conventional system behavior, or as a dynamically-

adaptive feature of a system. In the first view, although the branch predictor may

adapt to different workloads, this adaptation always follows the same course and offers

no flexibility if user goals or the computing environment changes. This causes the

system to appear static (non-adaptive) if viewed from high-enough granularity. In

the second view, branch prediction can be shown to have a great impact on certain

workloads that typically perform poorly on processors without branch prediction,

all owing to the hard-wired observe-decide-act loop integrated in the predictor. By

analyzing existing computing system designs within the framework presented in this

chapter, new questions about their capability and efficiency can be raised, such as why

branch predictors do not possess programmable goals (e.g., when a user is executing

a security-sensitive piece of code, they may want to stop hardware speculation), or

why hardware prefetchers are not sensitive to cache thrashing by other concurrent

processes.

There exist several properties that are connected to, but do not necessarily imply

that a system is adaptive:
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• the system exhibits workload-dependent behavior,

• the system exhibits goal-dependent behavior,

• the system exhibits external stimuli-dependent behavior,

• the system possesses behavior-affecting programmability and online learning

capability.

Systems that exhibit (1) workload-dependent behavior can change their behavior

depending on workload properties in ways that do not just conform to the correctness

specification, but optimize for other (possibly hard-wired) goals such as performance,

energy efficiency, or security. If this property is sufficient to classify a system as

adaptive, processors with hardware prefetchers or branch predictors should be classified

as dynamically-adaptive. Systems that (2) observe user goals can optimize their

behavior to better fit those goals and achieve higher quality of service (which is

defined with respect to the current goal) compared to static systems. If this property

is sufficient to classify a system as adaptive, then systems that support e.g., BIOS-

controllable hardware prefetching or multithreading should be classified as statically-

adaptive, and systems that support e.g., runtime-controllable power profiles should be

considered dynamically-adaptive. Systems that (3) react to not just the workload of

interest or goals, but also to outside stimuli such as resource contention from other

workloadsW , environmental stimuli et or inherent system noise nt can achieve graceful

degradation as the computing environment conditions worsen. If this property is

sufficient to classify a system as adaptive, systems that e.g., observe cache miss rates

and isolate thrashing processes for performance or security reasons can be treated as

dynamically-adaptive (Novaković et al. 2013). Systems that (4) continuously observe

their adaptation decision quality and learn based on feedback gained during runtime

can adapt to unforeseen deployment environments or novel workloads. If this property
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is sufficient to classify a system as adaptive, then systems that support e.g., learning

schedulers can be classified as online-learning statically-adaptive systems.

While there exists no clear agreement on necessary and sufficient properties that

make up a statically- or dynamically-adaptive system, in the opinion of the author,

adaptation is beneficial in situations where design-time assumptions fail, and where

runtime data offers insights that may be beneficial to the system. All four of the

properties above utilize runtime information unavailable at design time to increase

system quality of service, and in the rest of this dissertation will treat all of these

properties as sufficient to consider a system adaptive. Therefore, systems that contain

branch prediction, learning schedulers, and user-controllable power profiles, will all be

considered adaptive.

3.1.5.2 Capabilities for Adapting to Dynamically Changing Conditions

With the static, statically-adaptive, dynamically-adaptive, and online-learning

system formulations provided above, we can reason about the capabilities of these

systems and how they perform in different environments. As Chapter 2 illustrates,

static systems witness degraded goal satisfaction in conditions different from what

system designers have explicitly provisioned for. Successfully satisfying user goals such

as energy efficiency or performance during periods of changing conditions (contention,

environments, user goals, or noise) requires modifying behavior to best fit those

conditions.

Static adaptation can help adapt the system to slow changing environments

where the average time to execute a workload is shorter than the time between

changing environmental conditions. Dynamic adaptation is required for fast changing
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environments where environmental conditions may change before a workload completes

and any learning mechanism can be executed.

3.1.5.3 Capabilities for Adapting to Novel Workloads and Conditions

While systems may adapt to the changing environment (changing goals, contention,

etc.), they may also have to adapt to changing workload distributions. This is

witnessed when the distribution of workloads at runtime does not match the workload

distribution system parameters were tuned for at design time, and is a called concept

drift (Madireddy et al. 2019a). Though the behavior space of an adaptive system

may consist of hundreds of actuators, this high-dimensional space is dwarfed by the

space of possible workloads. Such high-dimensional spaces are difficult to explore and

describe, hence finding optimal system configurations for novel workloads is more

difficult than finding optimal configurations for novel environments. Some workloads

may potentially be pathological and unless the model has previously seen this type of

workload, the chosen system configurations are likely to be suboptimal. Furthermore,

while the external environment may change slowly, workloads may contain many

phases which warrant completely different system configurations, requiring dynamic

adaptation.

3.2 Workloads and Systems Modeling Preliminaries

Above listed systems equations are expressive enough to represent any digital

logic, but are too complex to practically describe complex systems. In order to

understand how these systems work and what adaptation features may improve their
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functionality, we seek to simplify the above system equations into more tractable

forms. We will simplify the equations by first (1) replacing functions φ, ζ, and µ with

analytical models that operate on compressed forms of the inputs, and later by (2)

building practical, data-driven machine learning models in place of these analytical

models. In this section we present the necessary methods needed to simplify equations

from Section 3.1 and bound their inputs, converting the equations into formats that

conventional machine learning algorithms can interface with.

We define a systems model to be an equation or algorithm that takes as input either

a workload w or workload profile ω and predicts some subset of the system profile σ

after the execution of the workload. These system profile subsets can be execution

time, energy usage, network bandwidth, I/O throughput, etc. We highlight ‘systems’

in systems models, since the system modeling domain has several properties distinct

from other modeling domains which we will discuss later in this chapter. Systems

models differ from systems equations from Section 3.1 since the models are not perfect

representations of the system and sacrifice veracity for practicality of construction.

While the systems equations 3.1.1, 3.1.2, and 3.1.3 calculate both the system

outputs ot as well as system and workload profiles σ and ω, the models we are

concerned with only attempt to predict the profiles. Though the two profiles are direct

results of system state time series qt, systems models, unlike systems equations, do not

necessarily simulate the inner state of the system they model, but instead attempt to

shortcut the path between system inputs (e.g., workload w) and the system profile σ.
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3.2.1 Domain Assumptions

We will make several assumptions about the workloads and systems modeled in

this dissertation:

• All workloads terminate, i.e., always halt. While not strictly necessary, this

property forces a systems model to always have a defined function range.

• Workloads and systems are deterministic, and systems may have separate internal

and external noise sources that the model treats as inputs.

• Systems are general-purpose computing systems, can be modeled as Harvard

machines, and their behavior is defined by an Instruction Set Architecture (ISA)

and memory model.

• Systems can execute multiple workloads in parallel but choose to not isolate

them from each other.

• Initial system conditions have negligible impact on long-running (hot) systems.

• Workload-system interactions do not exhibit long temporal dependencies, i.e.,

the system can only be impacted by recent workload behavior.

• Systems and workloads are not actively adversarial and do not purposefully

resist modeling by exhibiting unpredictable or pathological behavior.

Before we can present analytical models of the four classes of system, we introduce

several modeling simplifications.
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3.2.2 Modeling simplifications

Modeling systems and achieving perfect modeling accuracy may require building

models of the same order of complexity as the system being modeled4. Building such

fully-accurate models is not useful however, since the goal of models is to more easily

represent the object of modeling, to decrease the time or computation needed to

evaluate the object, or to abstract away less important aspects of the object being

modeled.

In this section, I will outline three modeling simplifications that help build useful

models of computing systems. The shared thread between these simplifications is that

they replace variable-sized inputs with fixed-sized inputs. More specifically, while

equations commonly accept elements from some sets as inputs, systems models are often

tasked with working on unordered sets (e.g., sets of competing workloads), ordered

lists (e.g., instruction traces) and time series (e.g., data streams), and unbounded

values (e.g., unbounded program inputs).

The simplifications are:

1. Replacing variable-sized function inputs with constant-sized inputs.

2. Replacing an arbitrary number of concurrent workloads with a single, unified

proxy workload.

3. Replacing nonstationary functions with stationary alternatives extended with

additional timing inputs.

4While this may not be immediately clear, we present the following sketch proof. Assume the
opposite, i.e., that for any system, a simpler model that identically reproduces the system output can
be built. Then, construct a system whose e.g., output, runtime, or some other value is calculated
as a cryptographic function, e.g., hash of inputs and some internal state. To accurately describe
system behavior, one cannot simulate the system as a black box, but must emulate its internals and
have full knowledge of both inputs and internal states. Obviously, this system cannot be simplified
without sacrificing accuracy, and is a counterexample to the above assumption.
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3.2.2.1 Abstracting Away Variable-Sized Inputs

Analytical and ML models of systems may encounter variable-sized inputs where

one or more input dimensions is unknown until the input values are provided. For

example, a single workload can be represented either as a (program, input data) tuple,

or as a stream of instructions that must be executed. Both the program and the

instruction stream have a variable size, though programs are typically bounded in size

while instruction streams can potentially contain an infinite number of instructions if

the workload never terminates. Here I seek a method to represent generic variable-

sized inputs as constant-size inputs in order to enable application of models that only

support fixed-sized inputs.

Constant-size representations of variable-sized inputs are by definition lossy approx-

imations, since any input larger than the provisioned constant cannot be represented

without information loss. While this property in general reduces model accuracy, it

provides a predictable model runtime that enables the use of ML models in production

systems (e.g., CPUs, databases, and HPC systems). Before a variable-sized input can

be fed into a model, it must first be processed by an aggregation function
∑

which

produces a constant-sized output. For example, given a variable-length workload, the

aggregation function may produce a fixed-length workload profile. System models

we study can directly form predictions based on workload profiles, learning to map

measured (system configuration, workload profile) tuples to measured system profiles.

More formally, given an system defined as:

qt+1 = φc(w, qt, ...); (3.5)

these system equations can be seen as mapping the configuration c, the system function

φc, the workload w, and other inputs (contention, environment, noise) to a time series
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of system states qt. Next, the system equations map system states to workload and

system profiles ω and σ as:

ω =

thalt∑
t=0

µw(qt); σ =

thalt∑
t=0

µs(qt) (3.6)

The goal of an ML model f is to learn the system profile σ without learning the time

series qt. The ML model is tasked with mapping the system function φc, configuration

c and workload profile ω to measured system profile σ, and can be written as:

σ̄ = f(ω, φ, c) (3.7)

The model f attempts to minimize the difference between predicted system profile σ̄

and measured system profile σ:

min
f
||σ − σ̄||2 (3.8)

With this simplification, as long as an aggregation function that preserves most

important workload features can be found, conventional ML models such as gradient

boosting machines or neural networks can be used in place of f .

3.2.2.2 Abstracting Away Workload Plurality

Most general-purpose computing systems will run tens or hundreds of different

workloads at a given time. These workloads are contending for shared system resources

and negatively impacting each other’s ability to satisfy goals such as high throughput

and predictable latency. Furthermore, due to the complex nature of the underlying

system, inability of the system to predict future workload behavior, and unclear

interactions between the workloads on a shared medium, the interfering workloads

prevent accurate estimates of the behavior of a specific workload of interest.
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When modeling the interaction between a system and a workload of interest, it is

important to account for how all other workloads affect this target workload. There

exist two difficulties analytical models must solve in order to process such inputs:

first, since the number of competing workloads is unbounded and changes over time,

systems models need to somehow account for the varying number of input workloads.

Second, since there is no imposed order to the workloads running on the system, the

models need to satisfy input permutation invariance, i.e., changing the order of how

workloads are fed to the model should not affect the model outputs. These problems

are not restricted to just analytical models, as machine learning models will need to

overcome these obstacles too.

The above problem can be more clearly and abstractly defined by specifying that if

the systems model is a function f operating on a number of workloads W , the domain

of that function is not an element, but a set of elements with unbounded cardinality.

Both requirements listed above directly flow from this formulation. Given a set of

all workloads W from which the workload of interest wi ∈ W and a set of competing

workloads W ⊆ W are drawn, and temporarily ignoring the other inputs to the model,

a systems model defined as σ̄ = f(wi,W ) has the domain and range:

f : W× 2W → R (3.9)

where 2W is the power set of W. Given a workload of interest wi and a set of n

competing workloads W = {w1, w2, ..., wn}, for the model f to be insensitive to the

workload ordering, it must satisfy the property:

f(wi, w1, w2, ..., wn) = f(wi, wπ(1), wπ(2), ..., wπ(n)) (3.10)

for any permutation function π : {1, 2, ..., n} 1-1−→ {1, 2, ..., n}.
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Due to both its complex signature, as well as the difficulty of forcing ML models

to be commutative with respect to inputs, we seek to split model f into functions p

and f̄ such that:

p : 2W → W

f̄ : W×W→ R
(3.11)

The functions are chosen to minimize:

min
p, f̄

=
∣∣∣∣f(wi, W )− f̄(wi, p(W ))

∣∣∣∣ (3.12)

Here, p is a proxy contention function which maps a plurality of workloads W ⊆ W to

a single proxy workload p(W ) ∈ W which should be approximately equivalent to W

in terms of impact on wi. The model f(wi,W ) is replaced with an updated model

f̄(wi, p(W ), which is now a function of only two and not n + 1 workloads. Note

that the reduction from W to p(W ) cannot be perfect due to the restricted amount

of information that p(W ) can carry. Nonetheless, in our analytical models we will

assume that good approximations can be found and that competing workloads can be

replaced with a single proxy workload.

In terms of a practical implementation, most machine learning models do not

accept sets as input arguments, and working on sets has historically remained in

the domain of classical algorithms. One of the recent ML approaches that supports

variable-sized and permutation-invariant inputs is Deep Sets (Zaheer et al. 2017).

Here, authors prove the following theorem, presented with minimal notational changes:

Theorem 1 A function f(W ) operating on a set W having elements from a countable

universe, is a valid set function, i.e., invariant to the permutation of instances in W ,

iff it can be decomposed as f(W ) = α(
∑
w∈W

β(w)), for suitable functions α and β.
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Through this theorem, we can ensure that the proxy contention function p is com-

mutative and permutation invariant by expressing it using α and β, allowing us to

replace a variable number of workloads causing contention on the workload of interest

with a single encompassing variable. Additionally, under this definition, all functions

have a fixed number of input arguments, simplifying both notation and practical

implementation. Referring the previous formulation, if acceptable α and β are found,

the contention function p can be formulated as:

p(W ) =
∑
w∈W

β(w) (3.13)

and the updated systems model can: be formulated as

f(wi, W ) ≈ f̄(wi, α(p(W ))) (3.14)

Since α can be subsumed into f̄ , we can instead define a third model f̂ :

f̄(wi, α(p(W ))) = f̂(wi, p(W )) (3.15)

Even though this transformation does not reduce the complexity of practical models

(measured by e.g., number of parameters), it allows us to both (1) replace variable-

sized inputs with fixed-size inputs, and (2) decompose large ‘system’ functions into

smaller functions that separately learn how workload contention composes, and how

the system handles an abstract and unified contention proxy p(W ) instead of multiple,

‘raw’ workloads w ∈ W .

3.2.2.3 Abstracting Away Nonstationary Functions

In statistics, stationary processes are stochastic processes whose probability distri-

bution does not change over time. An example of a stationary process is the Bernoulli
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process, a series of (possibly biassed) coin tosses. Since coin tosses are not affected

by the time, the Bernoulli process is stationary. On the other hand, non-stationary

processes are affected by time. For example, a process generating hourly temper-

ature measurements at a certain location will be affected by both the time of day

and the current date. Both the time and date have a strong effect on temperature

mean and variance. We use the terms stationary and nonstationary to distinguish

between functions whose outcomes depend on time, and stationary functions which

are independent of the time. In a similar vein to the previous simplification, we seek

to replace nonstationary functions with stationary functions that have additional

temporal inputs. Such a simplification will useful when modeling adaptive systems,

since these systems can alternate between different behaviors at runtime, so the

function that describes the system is nonstationary.

Assume that a system being modeled changes its behavior over time, e.g., before

some time tx it is governed by function φt<tx(I), while after tx it is governed by

φt≥tx(I), where I is some set of inputs. Now, we seek a generalized stationary function

φ that has both I and time t as an input, but does not change over time. Such a

function can be expressed as:

φ(t, I) =


φt<tx(I) if t < tx

φt≥tx(I) if t ≥ tx

(3.16)

Obviously, a nonstationary function can be replaced with a stationary function that

implements all of the variants the nonstationary function can exhibit over time and

chooses between them based on the time input. We will use this property to describe

adaptive systems whose behavior can depend on what time the system is run.
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3.3 Workloads and Workload Profiles

The problem with system models operating on workloads is that workloads are of

arbitrary size. While not a problem for analytical models, it is beneficial for practical

models to work with fixed function interfaces. Additionally, it may be computationally

infeasible to maintain workload - input pairs and feed these to systems models, since

these systems models will have to significant system functionality in order to evaluate

workload - system interactions. Historically, large processor manufacturers have

replaced workload - input pairs with simpler and more deterministic instruction streams,

in order to reduce evaluation time and increase benchmarking reproducibility. On

the modeling side, multiple prior works modeling systems and workloads assume that

workloads have a fixed-size workload profile, which is then fed into models (Madireddy

et al. 2018b; Isakov et al. 2020). This profile may be application specific, but generally

it consists of a set of parameters that describe application characteristics. The choice

of which workload characteristics to include in the limited space provided by the

profile is guided by which characteristics help the systems model most in modeling

the original workload. While we will discuss how to select these characteristics in

Section 6.5.1, for now we assume that such a selection is provided.

Without loss of generality, we will focus on general-purpose processors in order

to use existing notions of instructions and bits. The definition can be generalized

from processors to systems with only minor notational difficulties. We will assume the

existence of a systems model s(p,d) that given a workload, predicts e.g., the number

of instructions the system will commit 5. The workload passed to the model is defined

5We specifically make the system function only a function of the workload and not any system
properties, in order to avoid having to introduce additional variables that do not aid the argument.
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as a (program p, input data d) tuple. The program p consists of n instructions

p = (i1, i2, ..., in), ij ∈ I, n ∈ N, where I is the finite set of all instructions. Borrowing

notation, we say that a program is therefore a string of arbitrary size formed from

alphabet I. We define P as a language, i.e., the set of all strings over the alphabet

I. The input data d ∈ mathbbN is unbounded but can always be represented as an

positive integer. As we can see, the signature of the system model s is s : P× N→ N.

The question of how to represent a potentially unbounded workloads in a finite

profile remains. The above function signature is problematic both because the string

p ∈ P is unbounded in length, and because d is unbounded in size. First, language

P can be replaced with the set of positive integers N0 by performing the following

substitution: any arbitrary-sized program p, can be represented as positive integer

value p as: p =
∑n

x=1 ix2
bx 6. Therefore, the new signature of the systems model is

s : N× N→ N.

Next, given a limited size of bi bits to store the workload profile ω ∈ Bi, Bi =

{0, 1, ..., 2bi− 1}, we seek to find an approximation s̄ : Bi → Bo of the systems model s,

where Bo is defined similarly to Bi, but with bo bits. We say that s̄ is an approximation

due to the fact that s̄ has a finite while s has an infinite domain. Given that workload

profiles are restricted in size, for each specific workload profile there exist infinitely

many programs that map to it.

A deterministic system-independent function (e.g., number of instructions to

execute a program) can be written as e = s(p,d), p, d, e ∈ N where p and d are the

program and input data, and e is the number of executed instructions. Obviously,

ignoring the halting problem for a moment, there exists a function s̄ : N2 → N that

maps p and d to e.

6For sake of notation, we add 1 to make the domain N instead of N0
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The problem with s̄ is that it has replaced an arbitrary number of bounded inputs

with a constant number of unbounded inputs. Since we are interested in practical and

not just analytical modeling, we are forced to work with bounded inputs. Therefore,

we seek to approximate s̄ with a

an arbitrary-sized program p ∈ N is executed on a system or the system is simulated,

and a program profile ω ∈ [0, 2B − 1] is collected. This profile represents the behavior

of the workload during execution (e.g,. instruction type distribution, average data

dependency values, etc.) and its effects on the system (L1/L2/L3 cache miss rates,

types of conflicts, page fault rates, etc.). These elements of the program profile are

selected to achieve best possible system model accuracy.

Of course, we have no method to bound approximation error, since compressing

an arbitrarily-sized program to a fixed size profile is necessarily lossy whenever the

program is larger than the profile. For any modeling error bound we could provide,

it would be possible to create an adversarial program that has greater error after

approximated. For example, knowing e.g., average L3 cache miss rates is not enough

information to perfectly predict the runtime of a program, nor is even knowing the

full L3 access time distribution.

There are multiple isomorphic ways a workload may be fed into the system:

• As an instruction list - data tuple, where system simulation is needed to determine

how the control flow will be resolved,

• As an instruction trace - initial memory state that will be executed, e.g., collected

from a running processor
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Figure 3.4: Transformation steps and intermediate results of building a workload
profile.
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Chapter 4

EXPERIMENTAL SETUP

4.1 HPC System and Workload Datasets

Although the end goal of this dissertation is to be develop a methodology applicable

to arbitrary computing systems, I first seek an experimental environment that provides

enough visibility into a system so that system insight can be developed. Once such

knowledge is gained, then the viability of adaptation can be further studied.

There are several requirements for a compute environment that will be the subject

of workload and system modeling. First, the set of workloads should be broad enough

that the system requires non-trivial functionality and generality. For example, machine

learning hardware accelerators are not a good target, despite the existence of thousands

of different neural network models whose execution may be studied, since ML workloads

do not significantly differ in behavior and they exhibit little performance variance

run-over-run compared to general-purpose workloads. Second, the system should

exhibit enough complexity to require complex analytical or ML models. For example,

simple in-order cores rarely exhibit pathological behavior on certain workloads, and

simpler models may describe their performance. Third, the system must provide

sufficient insight into its internals out-of-the-box. Hence, commercial processors are

not a good target, since no microarchitectural models or RTL are available.

One candidate domain which fulfills all three requirements (diverse workloads,

complex systems, visible internals) are High-Performance Computing (HPC) storage

systems. The input-output (I/O) subsystems of large supercomputers perform complex
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operations with often highly unpredictable responses to different workloads, the system

states (e.g., filesystem health) can have a significant impact on throughput, and they

are slow enough (requests take milliseconds) to be observed from software without

logging becoming an impediment. This chapter focuses on I/O subsystem modeling,

as the I/O subsystem is observable from software due to lower request frequencies

and limited hardware acceleration, while at the same time I/O bottlenecks are harder

to diagnose due to lack of tooling.

4.1.1 High-Performance Computing System Architectures

High Performance Computing (HPC) systems or ‘supercomputers’ are a good target

for the modeling portion of this dissertation, for several reasons. First, modern HPC

systems are extremely complex, having thousands of nodes (individual but networked

computing systems), and tens or hundreds of thousands of cores on aggregate. They

typically have high bandwidth and low latency network fabrics connecting these nodes,

and have both node-local storage as well as a separate, parallel distributed filesystems

accessed over the network. These filesystems will have separate servers for aggregating

requests, hosting file metadata, and actual storage arrays with hard disk drives (HDD),

solid state drives (SSD), or magnetic tape. Between these distributed filesystems and

the compute nodes may exist additional levels of caching, such as the more recent

SSD-based burst buffers. Figure 4.1 illustrates just such a system.

In this chapter I evaluate two Department of Energy (DOE) leadership-class

supercomputers: the Argonne National Laboratory Theta system, and the Lawrence

Berkeley Cori system.

Theta is a Cray XC40 system with 24 racks and 183 nodes per rack delivering
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Figure 4.1: The high-level infrastructure of a modern high performance computing
system.

11.7 petaflops of computer power. Each compute node has a single-socket Intel 7230

Knight’s Landing (KNL) CPU — a 64 core processor with 16 GiB of on-chip DRAM,

and also contains 192 GiB of DDR4 DRAM, as well as a 128GiB solid state drive. In

aggregate, Theta has 4,392 compute nodes with 281,088 cores, 843,264 GiB DDR4

and 70,272 GiB of on-chip DRAM. Theta is connected to four different distributed

filesystems, averaging between 10 and 100 petabytes (PiB) of storage, with I/O

throughputs in the hundreds of GiB/s. For example, the majority of projects on

Theta in the period between 2017 and 2020 used the theta-fs0 filesystem, which is a

9.2 PiB Lustre file system delivering 240 GiB/s of I/O throughput.

Similarly to Theta, Cori is also a Cray XC40 system, but with 54 racks housing

9,688 Intel KNL nodes and delivering 29.5 petaflops of performance. Each node has

a single 68 core processor, 16 GiB of on-chip and 96 GiB of DDR4 DRAM, with

an aggregate of 658,784 cores and 1.06 PiB of DRAM. Cori is connected to the

Cori-scratch, a Lustre filesystem with 30 PiB of storage and 700 GiB/s of aggregate
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I/O throughput. Cori was also the first system to be equipped with an non-volatile

RAM or NVRAM-based burst buffer.

4.1.2 HPC I/O Subsystems

The I/O subsystem of modern HPC systems is a separate entity dedicated to

providing low-latency and high-bandwidth networked storage to a large number of

HPC jobs. I/O subsystems are often separate from the compute nodes in order to

support execution of jobs on multiple different compute clusters without requiring the

movement of data between compute clusters, as well as easier maintenance since I/O

nodes see higher failure rates than compute nodes due to the amount of mechanical

components they possess.

In order to provide high I/O bandwidth, the parallel distributed filesystems such

as Lustre (Braam and Schwan 2002) and GPFS (Schmuck and Haskin 2002) running

on the I/O subsystem are distributed — files can be stripped across disks, and require

that metadata is stored and accessed in order to learn where and how each file is

stored. These systems typically inherit the POSIX application programming interface

(API), but may also support newer APIs such as MPI-IO. POSIX originally targeted

single-node computers, and the limitations of the POSIX interface can have negative

effects on performance, hence the usage of newer I/O interfaces is encouraged. A large

amount of HPC applications have not yet migrated to the newer technologies, and

the I/O subsystem is often underutilized as a result.
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4.1.3 I/O Logging Tools

Darshan (Carns et al. 2011) is a scalable HPC I/O characterization tool that

collects information about I/O behavior of applications running on a system. It aims

to answer both workload questions such as: what applications are running, what

are their access patterns, how much I/O are they consuming, and how close are

they to the theoretical peak and why, as well as systems questions such as: what

is the I/O subsystem utilization and what is the filesystem health. Darshan is run

by injecting itself statically at compile time or dynamically at runtime into target

applications, which allows Darshan to support both new and legacy workloads. It

works by replacing POSIX or MPI-IO calls with Darshan’s wrapper implementations

which call the original functions but also log each access and collect aggregate or per-

access data. Due to the large latency of I/O operations, Darshan has a minimal impact

on performance, and is enabled by default on both Theta and Cori. Darshan not

only collects data on workload behavior, but also collects system-specific information

such as e.g., the runtime of a job, how long I/O operations took, the distribution

and variances of these times, etc. Darshan also creates some synthetic features, e.g.,

job I/O throughput. It has no direct way to measure I/O throughput because many

different nodes may be accessing many different drives in the I/O subsystem, and thus

each read or write will take a different amount of time to complete. Darshan collects

both how much data each request transferred, and how much time the request took,

and from these features it offers several estimates of I/O throughput. These estimates

are calculated by dividing cumulative I/O volume by either the (1) cumulative time

spent performing reads and writes, (2) cumulative time where files were simply held

open, (3) cumulative time between a file open operation and the last file access, (4)
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cumulative I/O read and write times of the slowest process of the job. Interestingly,

this fourth I/O throughput estimate has been shown to be the most accurate in

practice, as straggler nodes can have a large impact on the whole system whenever

synchronization between nodes is required.

4.1.4 Logfile Sanitization and Pre-processing

Darshan collects hundreds of features about jobs, including amount of data read or

written, access pattern histograms, percentage of read, write, consecutive, sequential,

aligned, etc. accesses, of files that are read-only, write-only, files that are read by a

single process, of which user ran the job, which command was used, etc. Not all of

this data is useful for modeling the system, and a number of logs lack some features,

are corrupted, are collected with an incompatible version of Darshan, etc. Significant

log sanitization, feature pruning, and pre-processing is needed before these logs can

be fed to any machine learning system.

In (Isakov et al. 2020) we present the following Darshan log sanitization and

pre-processing pipeline:

1. Data sanitization: In this step, we remove jobs that are not instrumented

with POSIX or have invalid values (e.g., negative values). Negative values are

typically present when a job was not closed properly or when a hardware fault

occurred. Similarly, we remove features that have a large number of missing

values. These typically arise when the version of Darshan running on Theta has

changed over the years and new features were introduced. In cases where the

features were introduced recently and only a small portion of jobs is extended

with them, we choose to ignore these new features.
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2. Feature pruning: We remove common access size features and all time-sensitive

features. Common access size features store the most common access sizes in

bytes, i.e., describe a histogram of POSIX access sizes. Because the histogram

does not have hard-coded bins but instead is calculated dynamically for each job,

these values are difficult to convert to an ML-digestible format, and we choose to

remove them. Time-sensitive features measure timestamps such as when files are

first opened or closed last. The rationale for removing them is that Darshan uses

some of these features in calculating job throughput. By leaving them in, we risk

that an ML model might pick up Darshan’s implementation details, instead of

the wanted insight. In Section 6.4.3, we provide evidence that models trained on

datasets that have only five features (four time-based features and I/O volume)

significantly outperform models trained on datasets with all non-time-based

features (Table 4.1). Note that other than time-sensitive features, all other

features are a function of the application and input parameters; that is, these

values are largely independent of the actual system the application is running

on.

3. Data normalization: We apply feature engineering to force the values to a

more manageable range. Quick investigation shows that the majority of features

in our dataset have values in a wide range; for example, the total number of

bytes a job has transferred can vary from tens of bytes to multiple petabytes —

almost 15 orders of magnitude. This distribution is consistent across features,

and without treating it in a special way, it is hard to use ML methods on such

wide ranges of values. To tackle this problem, we convert the majority of the

features from absolute values to values relative to some other features. We can

do so because many of the features represent quantities that are portions of other
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quantities. For example, Darshan records both the number of read operations

and the number of consecutive and sequential reads. Therefore, because the last

two features are at most equal to the number of reads, we can convert them

to a percentage of total reads. Arguably, this approach cannot be universally

applied; for example, the number of POSIX seek operations cannot be expressed

as a ratio of a different feature. To tackle this situation, we replace the values of

feature f with log10(f). We use log10 instead of ln since it is simpler to interpret

and translate back to the original value. As all of the features in the dataset

are positive or zero, we increment the feature by a small constant (e.g., 10−5)

so that the logarithm is always defined. Doing so forces the values into a more

controllable range: a majority of the values lie in (-5, 12).

Data sanitization results in removing individual jobs. On Theta, from the original

661,553 collected jobs, we discard 163 jobs that contain corrupted instrumentation

data, 284,464 jobs (43.0%) for which Darshan did not instrument POSIX calls, and

287,082 jobs (43.3%) that have less than 100 MiB of total I/O volume, resulting

in 89,844 (13.6%) jobs. As these small (<100 MiB) jobs occupy a fraction of the

total traffic (Luu et al. 2015) (small jobs transferred 974 GiB in total, while large

jobs transferred 58.9 PiB), we focus on analyzing only large jobs. Data pruning

and normalization results in 45 percentage features and 12 logarithmic features, not

counting I/O throughput (also logarithmic). In Table 4.1 we give a brief overview of

several sets of features, and we refer the reader to our open-source repository with the

experiments for this work (Isakov, Currier, and Del Rosario 2022).

The main difficulty that the pipeline solves is feeding unbounded features to

machine learning models that can only accept bounded values. For example, I/O

volume can vary between KiB and PiB — some twelve orders of magnitude. Although
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some types of models (e.g., decision trees) can accept such large variance, models

that learn using gradient descent (e.g., neural networks) cannot. These features

must first be scaled to acceptable ranges (e.g., [−1, 1]), in a way that still retains

information. Directly performing min-max scaling, where a linear transformation is

applied so that the smallest value before scaling becomes a 0 after, and the largest

value becomes a 1 is unacceptable since most values in the range will be scaled close

to 0. The pipeline applies a base-10 logarithm to such unbounded values, before

applying min-max scaling. Because typically ML model users care about relative

predictions (e.g., “predict I/O throughput within 5% of the true value”), instead of

absolute predictions (e.g., “predict I/O throughput within 1MiB”), logarithmic scaling

preserves the needed information. Table 4.1 provides a list of output features from

the pre-processing pipeline.

Note that because we do not have full visibility into the system, we are unable to

reconstruct the system’s I/O utilization at a given timestamp. Therefore, here our

analysis is geared more toward explaining internal reasons for a job’s I/O throughput

(e.g., by detecting good or bad I/O patterns), and less on external reasons (e.g., I/O

contention).

Note that job I/O throughput is missing from Table 4.1. This is because the later

sections in this chapter predict I/O throughput values of jobs running on a system

based on historical data, hence this feature cannot be fed into the model.
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4.2 Sensing and Monitoring Support for RISC-V

4.2.1 Binary Instrumentation

Binary instrumentation (BI) is a technique for extending a target binary with

additional functionality in order to observe or modify runtime behavior. BI is typically

applied statically by lifting and modifying a binary before any execution inputs are

known, or dynamically by rewriting the binary using a Just-In-Time (JIT) compiler.

Binary instrumentation is particularly useful for hardware development, since it offers

full instruction set architecture (ISA)-level visibility into running executables. Instru-

mentation allows architects to collect workloads, understand performance bottlenecks,

emulate proposed hardware modifications, choose optimal parameter configurations,

etc. However, due to the closed nature of most ISAs, evaluating proposed novel

features is largely limited to software emulation.

RISC-V is an emerging open-source ISA that offers ISA flexibility allowing users

to implement custom instructions, and choice of microarchitecture (µArch) through a

variety of open-source RISC-V-based platforms. Binary instrumentation tools targeting

RISC-V can both speed up hardware development and verification, as well as find

potential synergies through instrumentation-specific hardware extensions. The open

nature of RISC-V has fostered diversity in the number and size of platforms, ranging

from low-power embedded devices without virtual memory support, security and

safety-critical systems, space and rad-hard applications, up to large distributed HPC

systems. This platform diversity is enabled by a modular instruction set architecture,

but it also introduces a number of challenges: in terms of software and ISA-level

support, not all RISC-V systems have the capability to run full-fledged operating
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systems (OS) necessary for certain classes of instrumentation tools, or the OS itself

may be the target of instrumentation. When instrumenting ‘bare-metal’ binaries, the

instrumentation tools may be unable to rely on virtual memory support and must

statically pack both the instrumented binary and the supporting JIT compiler (Engelke,

Okwieka, and Schulz 2021). Similarly, systems may not have the capability to flush

instruction caches and run JIT-generated code, preventing the use of dynamic binary

instrumentation (DBI). In terms of hardware support, BI tools can incur a heavy

performance penalty by generating code at runtime and executing large numbers

of jumps to relocated code. This penalty can be avoided on systems with deeply-

pipelined, out-of-order superscalar processors with branch prediction and hardware

prefetchers (Ruiz-Alvarez and Hazelwood 2008), but many RISC-V platforms may

not have such features. Instead, the instrumented code may be running on FPGAs

with limited cache resources, microarchitectural features, and clock speed, causing

penalties to be more pronounced.

Despite the difficulties, working within RISC-V ecosystem introduces new perfor-

mance and observability opportunities not available to tools targeting proprietary

ISAs such as x86 or ARM. With an open ISA, instrumentation tools and hardware

can cooperate through ISA extensions to e.g., offer hardware-based instrumenta-

tion triggers and lower JIT performance penalty, avoid I-cache thrashing through

instrumentation-specific microcode, minimize the microarchitectural pollution from ex-

ecuting instrumentation code, as well as expose certain microarchitectural information

to verified tools.

In this work we present the Trireme RISC-V Instrumentation and Analysis

Library (TRAIL), a static binary instrumentation tool targeting RISC-V program

analysis, rapid hardware prototyping, and microarchitectural data collection on real
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hardware. We analyze architectural decisions from existing instrumentation tools

and discuss how past design decisions apply to RISC-V. We propose a static binary

instrumentation framework and a set of hardware modification that enables efficiently

exposing microarchitectural information to computer architects.

4.2.2 Instrumentation in Open HW Ecosystems

Instrumentation tools make implicit assumptions about their operational domain,

e.g., whether the user prioritizes precise instruction-level instrumentation or seeks

efficient function-level logging, whether the user wants to modify the behavior of

the program or just observe execution, whether the target binary is dynamically or

statically linked (and whether instrumenting dynamically linked libraries is of interest

to the user), whether skipping or incorrectly instrumenting a portion of the binary

is acceptable, whether binaries are malicious and are actively attempting to subvert

instrumentation, etc.

Developing a binary instrumentation tool targeting RISC-V offers an opportunity

to reevaluate these assumptions in the context of an extensible ISA and the availability

of open-source RISC-V cores. Limitations of previous tools may not necessarily apply

to RISC-V, as these tools have had to work around the constraints of closed ISAs and

opaque, proprietary microarchitectures. At the same time, the less entrenched RISC-V

software infrastructure and the relative nascence of RISC-V hardware platforms pose

both novel challenges and possibilities.

While RISC-V is receiving significant adoption in research areas ranging from IoT

to HPC, currently the majority of deployed hardware is in the embedded domain.

These devices may not have virtual memory or multithreading, and are running
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bare-metal or minimal operating systems. Binary instrumentation tools cannot rely on

the operating system loader to load binaries into memory, preventing instrumentation

through ‘bootstrapping’ (Luk et al. 2005). The user base for such tools is also different:

while e.g., malware research contributes to a significant part of BI user base for

more dominant ISAs, no RISC-V-based malware currently exists. On the other hand,

computer architects and embedded programmers form a sizeable cohort, and may

need better tooling for analyzing low-level bugs in scenarios where they may not trust

hardware correctness as much as e.g., ARM users do. These concerns, along with our

need for hardware introspection of RISC-V workloads, lead us to develop the Trireme

RISC-V Analysis and Instrumentation Library (TRAIL).

TRAIL aims to enable users to: (1) gather ISA-level insight into application state,

allowing users to better optimize code, debug memory and control flow problems,

perform concolic execution (Shoshitaishvili et al. 2016), and analyze malware, (2)

modify program behavior, allowing users to fuzz binaries, prototype hardware through

instruction emulation, and perform taint analysis, and (3) collect privileged microar-

chitectural data with minimal hardware modification, allowing users to collect µArch

traces with minimal microarchitectural pollution, understand design bottlenecks, and

explore and optimize hardware configurations.

What separates TRAIL from existing binary instrumentation libraries is a focus

on speeding up microarchitectural data collection through execution on real hardware,

mainly targeting reconfigurable logic. By occupying a middle-ground between ISA-

level binary instrumentation and hardware signal taps, TRAIL aims to provide the

quick turnaround of software development combined with the full system insight

of microarchitectural probes. As software compilation is typically many orders of

magnitude faster than hardware synthesis, by building generic µArch exfiltration data
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diodes and instrumentation and analysis ISA extensions to configure these diodes,

TRAIL aims to remove the need for modifying hardware signal taps where possible,

speeding up the hardware design and verification cycle.

4.2.3 TRAIL Static Binary Instrumentation

Dynamic binary instrumentation (DBI) is generally preferred over static instru-

mentation due to its instrumentation correctness and coverage guarantees, however,

dynamically-instrumented binaries have higher hardware requirements to run. DBI

may be difficult to run bare-metal and requires an operating system to fork and

load the target binary, the system must have enough memory to pack a JIT com-

piler, must support instruction cache (I-cache) coherence or fences, and must have a

large-enough I-cache to prevent cache thrashing by the JIT. Some of these require-

ments are prohibitive during the hardware development lifecycle, e.g., when targeting

area-constrained FPGAs. TRAIL instead is a static binary instrumentation (SBI)

tool, building deployable binaries with no new dependencies. TRIAL Instrumentation

proceeds in three phases: (i) control flow graph (CFG) recovery, (ii) insertion point

detection, and (iii) code injection.

During the CFG recovery phase, TRAIL traverses the binary and identifies basic

blocks and functions. In RISC-V, the target of branches (B**) and direct jumps (JAL)

instructions can be statically determined, while for indirect jumps (JALR) the target

address is stored in a register and is not directly available at compile time. Indirect

jumps are commonly used for return addresses, case statements, jump tables, virtual

functions, position independent code, etc. Statically resolving the space of possible

indirect jump targets to extract the control flow graph is shown to be undecidable
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in the general case (Horspool and Marovac 1980). Fortunately, most programs are

not obfuscated and actively avoiding detection, and good results can be achieved

through symbolic analysis and heuristics. PEBIL (Laurenzano et al. 2010) uses

peephole exploration to identify address offsets and correctly disassemble 99.0% of

bytes in SPEC CPU2000 integer benchmarks. TRAIL uses the same approach as

PEBIL, accepting that a small portion of code will not be instrumented without

further interaction from the user. For identifying functions, TRAIL currently requires

unstripped binaries and uses symbol tables to determine function starts and ends.

During the insertion point detection phase, TRAIL executes a number of instruction-

level, basic-block-level and function-level user-defined functions which may potentially

inject code. With the symbol table available and the CFI correctly extracted, all three

steps are direct. During the code injection phase, TRAIL receives a list of instruction

addresses at which specific instrumentation routines need to be invoked. TRAIL

replaces the instructions at those addresses with direct jumps to instrumentation

routines. Since RISC-V instructions have a fixed length of 4 bytes (TRAIL currently

does not support compressed instructions), the replaced instructions can be simply

moved to the instrumentation routine without breaking functionality. This feature of

RISC-V is important, since it removes the need to relocate whole blocks or functions

(which could potentially double code size), and also removes the need to modify

relative addressing in the program. If TRAIL skips instrumenting e.g., a basic

block connected by an indirect jump, the instrumentation will not run, but original

functionality is preserved. Finally, TRAIL populates the instrumentation routines

with instrumentation snippets.

Since binary instrumentation tools inject code into a target binary, instruction

pointers (IP) may be modified (either by relocating functions or by inserting new
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instructions and shifting the rest of the binary) and the correspondence between

the original binary and any collected IPs may be lost. Tools such as Intel Pin (Luk

et al. 2005) and DynamoRIO (Bruening and Amarasinghe 2004) put significant effort

into address space transparency, where both the application and the observer see the

original IPs. TRAIL achieves transparency by replacing only a single instruction

with a jump to an instrumentation routine. While this approach technically does

relocate a single instruction, TRAIL takes special precautions in case of program

counter-sensitive instructions such as AUIPC, JAL, and branches, making sure that

these instructions observe the original program counter. Additionally, TRAIL identifies

free registers to use as the return address so that only one instruction needs to be

replaced, since replacing multiple instructions is problematic in cases where e.g.,

multiple branch instructions are issued one after another. TRAIL uses direct jumps

to jump to instrumentation routines, which can be a problem on very large binaries

due to JAL’s ±1 MiB range.

4.2.4 HW / SW Co-Design for Accurate and Extensible Microarchitectural Instru-

mentation

While TRAIL is designed to support RISC-V devices implementing no ISA ex-

tensions (bare RV32-I or RV64-I), by leveraging the open nature of RISC-V, there

exist significant opportunities to (i) decrease the performance impact of instrumen-

tation, (ii) allow introduction of new hardware performance counters, (iii) expose

instrumentation code to possibly precise, microarchitectural events and eliminate the

need for more coarse-grained counters, (iv) remove microarchitectural pollution caused

by instrumentation, (v) increase ISA and microarchitecture-level data exfiltration
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bandwidth, (vi) and prevent software from learning it is instrumented. We will present

two proposals for extending RISC-V processors, sorted by the invasiveness of hardware

modification:

TRAIL Extensible Nodes: a specification and hardware prototype exposing fine-

grained hardware events to software, shown in the top left corner of Figure 4.2.

TRAIL Pair Nodes: a specification and a prototype enabling separation of a target

binary from instrumentation code on separate, loosely-coupled nodes, with a ‘hero’

node executing the binary and sending µArch events to a ‘sidekick’ node which

executes instrumentation code and processes events (bottom row of Figure 4.2).

4.2.4.1 Exposing µArch Events, (Not Counters!), to Software

ISAs typically do not permit software to learn information about the behavior

of the underlying microarchitecture. While knowing whether a load caused a cache

miss or how often a specific branch mispredicts may be useful both at design time

and runtime to optimize hardware or software, and though such information can be

gleaned through e.g., timing side-channels, most ISAs do not expose this information.

Hardware Performance Counters (HPCs) and Performance Monitoring Units (PMUs)

are hardware features that measure microarchitectural events, aggregate them, and

possibly take actions on certain conditions (e.g., raise an interrupt).

Unfortunately, HPCs suffer from a number of issues that limit their usefulness:

(i) HPCs are often imprecise at the instruction or basic block level, returning incorrect

values in the presence of e.g., a large numbers of interrupts (Weaver and McKee 2008);

(ii) accurately counting the numbers of events on Out-of-Order (OoO) processors is is

difficult to correctly implement, since some types of events (e.g., TLB misses) may be
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raised significantly after an instruction is dispatched, and may be attributed to the

wrong instructions or sections of code (Weaver, Terpstra, and Moore 2013); (iii) the

functionality specific HPCs is often ill-defined. For example, L2 caches may or may

not count L1 prefetch misses as L2 accesses (McCalpin 2013); (iv) HPC behavior

can also vary between different versions of a microarchitecture; (v) counters may be

privileged and require OS interaction to access, reducing performance and polluting

data; and (vi) while processors expose hundreds of different events to HPCs, typically

only a handful of counters are implemented due to area hardware constraints. When

performance analysis tools need to collect more HPCs than a processor possesses, the

tools may alternate between collecting disjunct sets of counters and extrapolate total

values, further adding to their error.

There exist no fundamental reasons why most HPCs cannot be made trustwor-

thy (Demme and Sethumadhavan 2011; Nowak et al. 2015). While expensive, counters

can be made aware of interrupts, and their updates can be committed in order, making

HPC read operations sensitive to instruction ordering. Having precise HPCs opens

an interesting use case: by reading a counter before and after an instruction or basic

block, software can learn whether e.g., a branch was successfully predicted or what

was the latency distribution of that operation. Binary instrumentation has additional

synergy with precise HPC updates, since BI tools can collect information above the

ISA, and HPCs can collect µArch information.

To enable users to precisely observe diverse sets of events, we extend the Trireme

Out-of-Order core (Ehret et al. 2022) and Network-on-Chip (NoC) node into a TRAIL

Extensible Node (top row of Figure 4.2). The extensible node contains an HPC

subsystem which taps into a parameterizable number of wires and registers belonging

to the node microarchitecture. The subsystem is designed to be extensible, enabling
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users to change which and how many signals should connect to the HPCs and allowing

users trade-off hardware area for higher frequency. For example, the HPC subsystem

in the prototype TRAIL extensible node connects to a set of wires such as the 1-bit

branch predictor access and mispredict signals and 64-bit target addresses, 1-bit L2

cache access, load/store, prefetch, and miss signals and 64-bit cache access addresses,

etc. While these events directly connect to existing µArch signals, pseudo-events 7

can also be implemented. Pseudo-events may be useful when searching for rare bugs,

where a very specific set of conditions needs to be satisfied to start collecting data,

or when detecting malware, as combinations of HPCs have been shown to be more

discriminative of e.g., side-channel attacks (Mirbagher-Ajorpaz et al. 2020).

The HPC subsystem in the TRAIL extensible node connects these tapped events

to a generic and parameterized number of hardware performance counters. The events

TRAIL taps into are not necessarily single-bit and rare one-hot events. TRAIL takes a

broader view of ‘counters’ and replaces them with ‘aggregators’. Aggregators can count

events, sum event values (e.g., sum ROB occupancy to calculate average utilization),

or perform simple logic operations at the cost of increased die area for arithmetic

operations and storage. A TRAIL HPC consists of four components: a multiplexer,

an aggregator, a value register, and a configuration register. The multiplexer selects

one of the connected events based on configured event type and process ID8. The

aggregator is an n-bit (n ∈ {32, 64, 128}) ALU implementing addition, minimum and

maximum functions, and bitwise AND, OR, and XOR operations. The value register

7Pseudo-events are events not present in the microarchitecture directly, but are a product of
logic performed on collected events within the HPC subsystem, and only serve to improve µArch
observability.

8How events are connected to any HPC is left to the implementation in order to allow area-
flexibility trade-offs.
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has n bits and stores the current HPC value which is hardwired as one of the inputs

to the aggregator (the other being the event). The configuration register has 32 bits

and controls (i) the event which the multiplexer should select, (ii) the PID of the

process being monitored (-1 for the whole system), (iii) whether reading the counter

resets the HPC value, (iv) the aggregation strategy (e.g., count, min, max, any, all,

odd, etc.)

We choose to memory-map HPCs and not have the counters accessible through the

RISC-V CSR registers since the CSR space is limited and TRAIL aims to allow users

to create and expose large numbers of new counters. The value and configuration

registers are mapped to two separate pages, allowing the operating system to freely

map the HPC values to user space without risk that programs will gain unauthorized

access to HPCs. During context switches, the OS stores the value and configuration

registers, updates the configuration for the new process (e.g., by disabling HPCs), and

restores them once a process is resumed.

To illustrate how the TRAIL extensible node is used, in Listing 4.1 we provide

example assembly snippet in which a program loops over an array and calls one of

three functions depending on array values. The user optimizing the loop may want to

know more than the aggregate branch miss count after a number of iterations, seeking

to get an accurate branch prediction time series. By either modifying the source files

or instrumenting the binary to insert the lines with a highlighted in green, the user

can accurately measure the number of branch misses that appeared on lines 18-20 for

every loop iteration.

While the extensible node can provide instruction and basic block-level microar-

chitectural insight, the increased amount of collected data can be as detrimental as it

is beneficial. In the snippet above, 50% of the code comes from the instrumentation
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routines, potentially polluting the µArch by e.g., increasing the distance between

branches which may improve the prediction accuracy of some out-of-order cores.

Ideally, instrumentation code would have no microarchitectural effects, removing

pollution and preventing instrumentation detection.

1 setup_HPCs: # setup the configuration register

2 lui a1, <HPC_1 value address >

3 lui a2, <data exfiltration array address >

4 lui t1, <HPC_1 configuration address >

5 lui t2, <branch mispredict ID , DNE on read >

6 sw t2 , 0(t1) # enable HPC with configuration

7 parse_array: # setup array start and end

8 lui t1, <array address >

9 lui t2, <array size >

10 loop: # iterate loop

11 lw t3 , 0(t1)

12 addi t1, t1 , 4

13 case_statement: # branch depending on array[t1]

14 sw zero , 0(a1) # delete any loop branch miss

15 blt t3, zero , <function_1 >

16 beq t3, zero , <function_2 >

17 bgt t3, zero , <function_3 >

18 lw t4 , 0(a1) # read # of branch mispredicts

19 sw t4 , 0(a2) # store for later processing

20 addi a2, a2 , 4

21 blt t1, t2, loop

22 end: ...

Listing 4.1: Example RISC-V assembly instrumented to collect and store the number

of branch prediction misses inside the for loop for each loop iteration.
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4.2.4.2 Removing µArch Pollution with Sidekick Cores

Instrumentation tools typically support both observing and modifying a running

binary. Limiting instrumentation tools to just observation restricts the direction of

the information flow to just one direction, from binary execution to instrumentation

routines. The unidirectional information flow can help decouple the observer and the

binary in both time and space, e.g., by offloading (a part of) the instrumentation

code, program data, and µArch events to separate processing units. By offloading

and executing all instrumentation code on a separate node, the node executing the

binary can maintain identical microarchitectural state transitions as when executing

the original (pre-instrumentation) binary. We will call the node executing the binary

the ‘hero’ node, and the node executing instrumentation code the ‘sidekick’ node.

The goal of the hero node is to execute functionally the same instrumented code that

the TRAIL Extensible node executes, but offload the instrumentation instructions to

the sidekick node, removing performance penalties and pollution caused by binary

instrumentation. For this offloading to work, the sidekick node needs to be executing

code that has the same control flow graph as the hero node, except that the basic

blocks in the sidekick CFG are populated with only the instrumentation code. The

hero node must communicate to the sidekick node (i) ISA-level information requested

by instrumentation instructions, e.g., register contents and PCs, (ii) a subset of hero

node hardware events requested by the instrumentation, and (iii) necessary dynamic

control flow information (branch resolution, branch targets, etc.) from the binary

running on the hero node, so that the sidekick node may traverse the same path

through the CFG. To follow the same path through the CFG, the sidekick node

decides which branches to take based on the hero’s path, not its own. With these
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modifications, by taking the code from Listing 4.1 and extracting the lines highlighted

in green as well as any branches and jumps into a separate binary with the same

control flow, two programs can run in parallel while traversing the same path through

a CFG, even if the sidekick is trailing behind the hero.

We implement such a flow with TRAIL pair nodes consisting of a hero and a

sidekick node as shown in Figure 4.2. By restricting instrumentation code to purely

observation (i.e., no behavior modification), the sidekick node can observe the hero

node with some latency and not require tight integration which might limit system

frequencies. The hero and sidekick nodes are physically separate and operate in

different clock domains and with separate caches, except for the lower portion of

the memory hierarchy (L3, NoC, memory controllers, DRAM). All communication

between the nodes flows over a number of FIFOs of parameterizable width and depth.

The FIFO is paired with a fullness flag which is raised by the hero node when the

FIFO is full and the hero node must start dropping hardware events. It is mapped

to a number of addresses in memory and popped when the sidekick node reads the

memory address, and the sidekick is able to collect HPC events in the same manner

as the extensible core would We choose to communicate HPC updates over FIFOs

instead of e.g., making updates cache-coherent and visible from other cores due to

the potentially very large communication bandwidth HPCs may require, which would

affect memory bandwidth and pollute microarchitecture. Additionally, deep FIFOs are

preferable since they provide slack and allow for physically separating nodes without

the FIFOs being on any critical path.
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Table 4.1: Condensed feature set and feature count

Darshan features (present on both Theta and Cori) Count

log10 of the job I/O throughput 1
log10 of the total number of {processes, files, accesses, bytes} 4
log10 of the number of POSIX {open, seek, stat, mmap, 6

fsync, mode} calls
log10 of {memory, file} alignment in bytes 2
% of all accesses that are {reads, writes} 2
% of all {reads, writes} that are {consecutive, sequential} 4
% of all accesses that switch between reading and writing 1
% of {read, write} accesses of size in ranges 20

(0B, 100B], (100B, 1KiB], ..., (100MiB, 1GiB], (1GiB+)
% of non-aligned {file, memory} accesses 2
% of all bytes that are {read, written} 2
% of {shared, unique, read-only, read-write, write-only} files 5
% of bytes read/written from {shared, unique, read-only, read-write,
write-only} files

5

Lustre features (Cori only) Count

log10 of file system {byte, inode} fullness {min, mean, max, std} 8
log10 of metadata target {closes, getattrs, getxattrs, links, mkdirs,
mknods, opens, renames, rmdirs, setattrs, statfss, unlinks} operation
mean

12

% of data server {CPU, memory} {min, mean, max, std} 8
% of data target bytes {read, written} {min, mean, max, std} 8
% of metadata server CPU usage {min, mean, max, std} 1

Cobalt features (Theta only) Count

log10 of {core, node} count 2
log10 of job runtime 1
% of job {start, end} time relative to total system time range 2
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Figure 4.2: A Network-on-Chip (NoC) system with a base RISC-V node, an TRAIL
Extensible node, and a Hero-Sidekick pair of nodes. Each node and the NoC sit on a
separate clock domain.
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Chapter 5

DESIGN-TIME OPTIMIZATION AND ADAPTATION

Adaptive systems may be considered synonymous with systems that modify their

own behavior after manufacturing or deployment. However, the necessary mechanisms

for a system to be considered as adaptive — sensing, decision-making, and adaptation

— can be observed in organizations that build (non necessarily adaptive) systems as

well. In this section I will study optimization and adaptation performed at system

design-time.

5.1 Design-Time Optimization as Part of the Adaptation Loop

Fundamentally, adaptive systems attempt to solve the mismatch between design-

time assumptions about the distribution of workloads or working conditions, and

runtime-collected information about specific applications and the system environment.

Instead of making system configuration decisions at design-time, scheduling-time and

run-time adaptive systems invest resources (additional hardware area, power, and

latency) to gain flexibility on which configuration to take.

By taking a broader view of ‘systems’ and focusing on e.g., a line of products

designed by the same organization, adaptation mechanisms present in domains such

as computer architecture or high-performance computing can be studied. Here, the

‘system’ is not be just the physical hardware being designed and deployed, but instead

includes the system design team as well. The system designers act as actuators,

modifying future generations of the deployed devices, the data collected from end
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users acts as sensors, and the decision-making is performed by humans as well as

machines.

In this chapter I analyze such human-in-the-loop design-time adaptive systems,

introduce a tool for automated design space exploration, and show the limits of design-

time adaptation and the necessity of having scheduling-time insight into workloads.

5.1.1 Design-Time Adaptation Goals

General-purpose computing systems may not know end-user requirements, and may

need to support a wide range of goals such as throughput, latency, energy-efficiency,

security, or cost. Optimizing for multiple goals without a method for unifying these

goals (a unifying method may be e.g., by taking a weighted sum of all goals) is a multi-

objective optimization problem, and is typically ‘solved’ not by offering a single point

solution, but by presenting a range of solutions and allowing other decision-makers

(e.g., end users) to select a solution that fits their needs. A number of parallels can

be drawn between (1) scheduling-time or run-time adaptive systems and (2) design

teams developing multiple generations of a general-purpose system:

1. Changing goals: system designers may not know e.g., area, power, latency,

and throughput trade-offs of their designs until late in the system development

cycle. They must therefore develop and maintain a parameterized design that

works for many different goal configurations.

2. Unclear workloads: designers may not precisely know the distribution of

workloads their general-purpose system targets, and their systems must remain

flexible and reconfigurable when new information is provided.

3. Provisioning actuators: adaptive systems may spend some resources such as
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area or power to gain runtime flexibility. Similarly, teams may spend development

effort building and maintaining parameterized, competing, or optional hardware

designs in order to have flexibility once the deployment domain is known.

The cost of this parameterizability is not run-time performance or power, but

development time.

4. Iterative decision-making : both adaptive systems and design teams are often

limited by compute power and the vast search space of possible configurations.

Due to limited visibility into the target domain, neither can claim to reach

optimal system configurations. Instead, both system design teams and adaptive

systems iteratively evaluate best-guess configurations, collect data on goal

satisfaction, and repeat the process. For adaptive systems, this process appears

as scheduling-time or run-time adaptation. For system design teams, this process

involves deploying systems, collecting workload and environment data, updating

their model of workload distributions, and repeating the process.

5.1.2 Actuators in Design-Time Optimization

The difference between static parameterized systems and adaptive systems is that

static systems can change configurations during the design process (before fabrication)

to better fit some target workloads, while adaptive systems may change configurations

after fabrication as well. Viewed at longer timescales, a system is not just an individual

fabricated and deployed device, but can also be a generation of physical systems being

deployed and replaced with newer versions. In that view, a system represents the

logical design, not the physical component, and that logical design is not static, but

instead changes over time, although over longer timescales. For example, Figure 1.3
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illustrates such a system that adapts at three timescales: in milliseconds at runtime,

in minutes or hours between workloads, and over months or years with new software

or hardware deployments.

5.1.3 Sensors in Design-Time Optimization

Adaptive systems may build sensors that measure (i) workload properties (e.g., av-

erage access latencies, number of branches or memory accesses, instruction dependency

distribution, etc.) (ii) system properties (e.g., number branch mispredictions and

cache misses), or (iii) environmental properties (e.g., channel jitter, shared resource

contention, etc.). Similarly, system design teams may build sensors to learn more about

the deployment domain. For example, sets of benchmarks that teams evaluate their

designs on may not be representative of workloads a system will encounter in the field.

Teams may therefore collect application binaries or instruction traces after deploying

a generation of their systems, so that future iterations of the system may benefit

from increased domain insight. Teams may also build hardware modifications such as

Hardware Performance Counters (HPCs) and have deployed systems communicate

back their observations.

5.2 Capabilities and Limitations of Design-Time System Optimization

I distinguish between two types of system design processes aimed at (i) one-off

designs, and (ii) families of designs. A one-off design is a system that after deployment

does not receive further improvements, any insight gained in the field about the

target domain is unused, and no next-generation systems are developed following
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system completion. A design within a chain or a family of designs on the other hand

is planned to receive updates, improvements, and deployments of next-generation

systems. They family may be designed with parameterizability in mind, and built

with data collection subsystems that send deployment-time domain information back

to the design team.

One-off design-time systems should not be considered adaptive at any timescale,

but families of designs may be. Here I investigate some of the difficulties these systems

face.

5.2.1 Limited Design-Time Domain Visibility

Given a non-adaptive parameterized system design, system designers must select a

specific configuration of parameters before system manufacturing or deployment. Given

perfect knowledge of the target domain, designers may execute a parameter search

and find an optimal parameter configuration. However, this approach is typically not

feasible for several reasons:

• Designers are unlikely to have perfect knowledge of the target domain. For

example, the set of all workloads that will be executed on a specific CPU being

developed is too great to enumerate. Additionally, this set must be weighted,

since not all workloads will be run the same amount of times, nor do they have

the same priority.

• The target domain is not stationary: workloads and system conditions change

over time and in unpredictable ways.

• Even with perfect knowledge of the target domain, the design parameter space

may be too large to exhaustively test and optimality cannot be guaranteed.
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• Additionally, perfect knowledge of workloads may be invalidated by unknown

run-time conditions.

5.2.2 Need for Better Design Processes

While scheduling-time and run-time adaptive systems solve many of the problems

listed above, frameworks that treat system design as a continuous process spanning

multiple generations of deployments may offer similar benefits. The framework

I propose aims to enable designers to formalize, collect, quantify, and adapt to:

(i) changing end-user goals, (ii) the unknown and shifting distribution of target

domain workloads, (iii) yet to be determined performance and technological barriers

of individual systems, (iv) the unknown or changing space of environmental effects

affecting the system. In such a framework, deploying a system is not treated as just a

goal, but also as a data-collection experiment used to better understand the target

domain.

5.3 Holistic and Automated Design Space Exploration

Similarly to how adaptive systems use runtime decision-making to find beneficial

configurations, optimizing and adapting systems at design time can be automated.

While some human interaction is necessary for e.g., building new workload and system

sensors, analyzing system bottlenecks, and expanding the configuration space, once

the system configuration parameter space is defined, optimizing system configurations

may be best left to machines.

In this section I present hoppi, a holistic optimal pipeline system design space ex-
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ploration tool. hoppi automatically optimizes systems within some design constraints,

and aims to help dataflow and pipeline system designers to build optimal systems

and answer questions such as: (i) what is the expected performance of a specific

system configuration? (ii) What are the system bottlenecks given this configuration?

(iii) What are the trade-offs between the competing system objectives? (iv) What is

the system Pareto-frontier given this space of configurations? (v) How sensitive is the

system to configuration parameters?

5.3.1 hoppi Motivation and Goals

hoppi was primarily developed to help teams of system designers working on

independent system submodules align their goals and optimize for the same global

objective. The main goal of hoppi to provide a shared infrastructure for rapid

system refinement and communication of priorities. Here, different teams express their

submodules as white, black or grey box models, using analytical equations (white

box), machine learning models (grey box), or software simulations (black box) that

tie into hoppi’s interface, allowing hoppi to evaluate the success of the full system.

hoppi then communicates back to individual teams which objectives and constraints

are affecting their submodules, and each team may receive different feedback.

The main goal of hoppi is to either provide an exhaustive Pareto-frontier for a

given system formulation, or inform the user that the current system simulation cannot

be exhaustively searched. Exhaustive exploration is important as system designers

may want to know that no hidden regions of (possibly superior) solutions exist, or at

least be informed that further model refinement and more compute power is needed

to find them.
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5.3.2 Multi-Objective Optimization

When designing systems, designers typically have multiple competing objectives

such as throughput, latency, energy efficiency, cost, security, error resilience, etc.

The system may also have a number of constraints, e.g., latency, maximum power

draw, cost, or mean time to failure. These objectives and constraints are said to be

competing since for the majority of top-performing designs, improving one objective

necessarily negatively impacts some other objective.

When comparing two designs d1 and d2, each of which is attempting to maximize

objectives o1(di), o2(di), ..., on(di), d1 is said to be dominating d2 if

∀x ∈ {1, 2, ..., n}, ox(d1) > ox(d2) (5.1)

Here, design d1 is objectively better than d2 since it achieves higher satisfaction of

all of the n objectives. A design d1 is said to be Pareto-optimal if there exists no

other design d2 that dominates d1. In other words, given some Pareto optimal design

d1, any change made on d1 that improves one objective must hurt at least one other

objective.

Optimizing around multiple objectives and constraints complicates both design

optimization and system interpretation. Since the majority of optimization methods

(e.g., hill climbing, simulated annealing, genetic algorithms, neural networks, etc.) work

on a single objective, optimizing multi-objective systems requires either converting the

n objectives into a single objective, or restricting the choice of optimization method

to only those which support multiple objectives. A naive approach typically weighs

different objectives using some user-selected weights c1, c2, ..., cn as:

o(d) =
n∑
i=1

cioi(d) (5.2)
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This approach is problematic for three reasons: (i) the weights are selected by the

designer, but the designer may not know the acceptable trade-offs between different

weights until later in the design process, (ii) the objectives may have highly nonlinear

interactions, and small changes in weights may have large and discontinuous impacts

on the final design, and (iii) optimization methods may be sensitive to weights, and

performing a grid search over combinations of weights within a certain range may not

find all Pareto optimal solutions.

When a user does not have a specific objective trade-off in mind, they may seek

to collect a population of Pareto optimal designs which form a Pareto curve. Given

n objectives, a Pareto curve is an (n− 1)-dimensional manifold consisting of Pareto

optimal solutions. By visualizing the Pareto curve, a user that does not know the

final objective trade-offs can nonetheless make meaningful progress in system design.

By observing any nonlinearities in the curve, the user may search for ’knees’ — sharp

bends in the manifold typically indicative of good middle ground between competing

objectives. However, for n > 4, the Pareto curve is four- or higher-dimensional, making

it difficult to visualize and interpret. When projected into two or three dimensions,

these curves typically form dense 2D or 3D regions that may appear opaque due to high

sampling density. At that point, the usability of multi-objective optimization quickly

drops off, leading users to commonly hand select a number of objective trade-offs,

lowering n to an acceptable level. These hard-coded objective trade-offs must later be

evaluated and the results possibly discarded if the trade-offs are considered suboptimal

once a better objective weighing is known.
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5.3.3 Problem Definition

System design space exploration can be formulated as a multi-objective, mixed-

integer and nonlinear optimization problem (MINLP) of the form:

min
d
oi(d), i ∈ {1, 2, ..., n}, d ∈ D

gj(d) ≥ 0, j ∈ {1, 2, ..., p}

ck(d) = 0, k ∈ {1, 2, ..., q}

(5.3)

Here, n is the number of objectives, p is the number of inequality constraints, and q

is the number of equality constraints. D is the space of system configurations, and in

general is mixed-integer and non-convex.

5.3.4 Proposed Solution

Users define their system and subsystem models in hoppi either analytically

(white box models), through machine learning modules (grey box models), or by

encapsulating simulations as black boxes. Through API-agnostic integration with

third-party software such as system emulators and simulators, users can gain accurate

data about those systems and avoid the difficulty of modeling or porting those systems

to hoppi. By connecting external software and expressing it in terms of input metrics

and constraints and output objectives, these third-party tools can be probed by hoppi

during the optimization process.

Through hierarchical system modeling where system models can contain white

box, grey box or black box subsystems, system models can be modularized and used

as parts of other systems, enabling modular refinement and allowing system designers

to quickly gain high-level insight into the general range of feasible solutions. Before
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hoppi can evaluate the whole model, the systems models are translated into sets of

equations, constraints, and objectives specific to a chosen back-end solver that hoppi

will use. Supporting multiple solvers allows hoppi to cover linear (LP), quadratic

(QP), convex (CP), nonlinear (NP), mixed-integer (MIP), and mixed-integer nonlinear

(MINLP) programming solvers.

hoppi supports several features that enhance user productivity and debugging

models. The systems models defined in the Python-based domain specific language

(DSL) can be directly diagrammed and plotted, and the interactive visualization allows

users to collapse subsystems in order to hide model complexity. Once a user completes

a model, the model can be type-checked for convexity, allowing the user to learn which

expressions are non-convex and cannot be efficiently solved. Additionally, hoppi offers

optional dimensionality analysis, where users can assign units to expressions (e.g.,

megabytes per second), and hoppi can confirm that all expressions have matching

dimensions. Finally, once hoppi has found the Pareto front, the front is visualized

using an interactive web-based parallel coordinates plot across all metrics, constraints

and objectives, with controllable ranges and optional 2-dimensional scatter plots.

5.3.5 System Model Definition

hoppi introduces a Python-based Domain-Specific Language (DSL) with the goal

of simplifying defining system models to the end users. The DSL defines 5 primitives:

• Metrics: metrics are user-controllable (or when hoppi is optimizing the system,

hoppi-controllable) system parameters or ‘knobs’ that control system behavior.

hoppi explores how metrics affect constraints and objectives, and searches for
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Pareto-optimal configurations of metrics. Metrics are represented symbolically,

and do not have values until the solver finds them.

• Expressions: hoppi redefines basic operators such as multiplication, exponen-

tiation, etc. to perform symbolic manipulation of the operands, which can

be metrics, expressions, or constants. Expressions are symbolic objects that

represent an operation over one or two operands, and are unresolved until all

leaf nodes (metrics and constants) are resolved, and the solver has found a

configuration of values for them.

• Objectives: objectives extend expressions and set optimization goals for the

solver. The solver is tasked with minimizing or maximizing all objectives that

are defined in a top-level system or its subsystems.

• Constraints: constraints extend expressions with equality and inequality opera-

tors. All system constraints must be satisfied for a solution to be considered

feasible.

• System: systems hold metrics, objectives or constraints, as well as other subsys-

tems. They connect metrics between systems into a cohesive model that can be

fed into mathematical solvers.

In Figure 5.1 I provide an example system definition that describes a hierarchical

system with nonlinear objectives and constraints, explores the design space and arrives

at a Pareto optimal curve.

5.3.6 Design Methodology

In hoppi, users define a hierarchy of systems and subsystems, each governed by

some internal equations or simulations, and the subsystems interact through strictly
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Figure 5.1: Example model declaration defining a system with two subsystems.

defined interfaces, i.e., lists of input and output metrics. hoppi encourages modular

refinement of a hierarchical design, where users first define a top-level system model

with simple approximations for subsystems. For example, In Figure 5.2 I show an

example hierarchical system diagram hoppi generated from the model shown in

Figure 5.1. Here, the circles are constants and expressions, diamonds are objectives,

while green and red boxes are metrics and constraints, respectively. hoppi then
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evaluates this model and learns which subsystems have the largest impact on global

behavior, and allows the user to later refine subsystems through more accurate

analytical models or more complex simulations.
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LRFigure 5.2: Generated diagram from the system definition in Figure 5.1.

User studies using the tool have revealed that defining large, multi-team systems

may seem daunting to users, so hoppi proposes several guidelines:

• Think in terms of black boxes: when subsystems are logically or physically

separate from the other systems, they may be expressed as black boxes with
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a small number of input and output metrics, objectives, or constraints. If

system internals can be hidden behind such interfaces, this simplifies both model

definition, and solving the model.

• Encapsulate complexity: hoppi cannot represent systems that depend on some

temporal component for simulation. Instead, hoppi chooses to integrate and

encapsulate such time-sensitive simulations behind black box models. All that

hoppi requires from time-sensitive (sub)systems is that they export a list of

feasible Pareto optimal configurations from which hoppi can select configurations

most useful to the global system.

• Focus on data flows: hoppi treats all (sub)systems as acyclical message-passing

systems where arbitrary latency in terms of buffers or “FIFOs” can be added

between subsystems. As the subsystem connectivity graph is acyclical, hoppi

can independently optimize subsystems without risk of subsystems interacting

or exchanging information through any channel except the defined interfaces.

5.3.7 Multi-Objective Optimization and Visualization

When hoppi solves a system, it produces not just one solution, but a front of

Pareto-optimal solutions. For a solution to be Pareto-optimal, it must satisfy the

property that further optimizing the value of one of n objectives will necessarily hurt

at least one other objective. Pareto curves are useful when a user knows the set of

objectives a system has, but cannot (yet) decide the acceptable trade-offs between

those objectives. The curve offers the user a ‘menu’ of solutions which are guaranteed

to be (Pareto) optimal, i.e., whatever the final user trade-off is, the optimal solution

is guaranteed to lie on the Pareto curve. In Figure 5.3 I show a parallel coordinate
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plot (top) over model metrics, objectives and constraints, and a scatter plot (bottom)

displaying a Pareto curve obtained by solving the model shown in Figure 5.1.

5.4 Application to General-Purpose System Modeling

To illustrate how hoppi is applied to the domain of general-purpose processor

design and design-time adaptation, using hoppi I model a simple system containing a

compute node, an I/O subsystem, and a storage cache between them. The compute

node is running some set of workloads and accessing external storage, connected to an

I/O subsystem maintaining that storage, and a I/O burst buffer acting as a storage

cache connected between the compute and I/O subsystems. To illustrate the three

types of hoppi systems (analytical models, ML models, and external simulations), I

model the compute node using dynamic binary instrumentation which allows me to

collect all POSIX requests sent to the I/O subsystem. Since hoppi does not model

time (time-sensitive systems must be modeled externally), the compute node only

exposes the distribution of workload’s POSIX access sizes. Next, the burst buffer can

be analytically modeled as a cache (Agarwal, Hennessy, and Horowitz 1989), exposing

predicted miss rates with respect to cache parameters. This miss rate will affect both

latency and throughput of the channel between the compute node and the cache, as

well as the channel between the cache and storage. Finally, the I/O subsystem can be

modeled using machine learning, exposing expected I/O bandwidth and latency given

specific access size distributions. The system is given several objectives: minimize

access latency for the compute node, maximize I/O bandwidth between the compute

node and the cache, and maximize I/O bandwidth between the cache and the I/O
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subsystem. The system is expressed as a set of nonlinear mixed-integer equations,

and solved using the IPOPT solver (Wächter and Biegler 2006).

Given perfect knowledge of a specific workload, this hoppi system can predict I/O

access latencies and bandwidth utilization with accuracy approaching those of full-

system simulations. By evaluating the throughput and latency gradients with respect

to e.g., cache parameters, designers can learn how increasing cache size will impact the

objectives, and may model cost-performance trade-offs of such decisions. By identifying

parameters that have non-zero gradients, designers can understand which parts of

the system are bottlenecks and which are not, allowing them to focus resources on

subsystems that have the highest potential to improve goal satisfaction. Additionally,

by comparing accuracies of full system simulations versus hoppi estimates, designers

can learn which subsystems need better sensors or modeling.

5.4.1 Need for Local Workload Models

Analyzing a range of models shows significant diversity in prediction accuracy

across different workloads. This variance can be traced to the fact that for some

workloads, I/O accesses are relatively independent and can be modeled using a simple

statistical distribution, while other workloads may contain long dependence chains of

accesses where modeling the time component is necessary for accurate system behavior

prediction.

The necessary treatment to improve predictions on different sets of workloads

heavily depends on the specifics of each set. Some workloads need to be described

with additional features which may help improve predictions, some workloads need
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different types of models, and some workloads a resistant to modeling altogether and

require full system simulation.

Using design-time knowledge to model workloads is possible when designing

application-specific systems, and hoppi has been successfully applied to modeling

the data processing pipelines of the CERN Large Hadron Collider’s (LHC) Compact

Muon Solenoid (CMS) detector. However, there exists significant difficulty in modeling

general-purpose systems due to the lack of knowledge about which workloads these

systems will execute while deployed. While building separate models for different

classes of workloads may be possible, these models do not help design-time adaptation

since only stale workload distribution data is available during the design process.

Design-time adaptation is fundamentally limited by the lack of insight into workloads,

and more accurate models cannot be utilized without scheduling-time sensors observing

workload distribution. Additionally, systems models that attempt to learn a wide

variety of general-purpose tasks quickly explode in complexity since in general only

models that accurately model time can fully describe general-purpose workloads.

While the majority of workloads we observe can be described with simple time-

agnostic models, this property is not general. Building local models for each class of

workloads reduces model complexity and decomposes the problem into more practical

and learnable units.

5.5 Results and Insights

By treating system design as an iterative process of (i) developing and configuring

a system, (ii) deploying a system, (iii) collecting data about both the workloads and

the system, (iv) and applying this data to future generations of the system, hoppi
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allows design teams to treat the process of designing a family of systems as an adaptive

system in itself. Within this framework, treating system deployment can be analyzed

in terms of questions such as: what information will be gained once a system is

deployed? What system sensors are most beneficial and cost effective? Is the system

generation release cadence fast enough to track a changing distribution of workloads

and user goals?

5.5.1 Application to System Sensors

While accurate models (whether white box, black box, or grey box) can be

developed during design time, applying appropriate models requires insight into

workloads running on the system. Design-time adaptation can utilize predictions

about the future workload distribution in order to provision appropriate system

resources, however, static (non-adaptive) systems are fundamentally limited by the

lack of ability to adapt to workloads, and shifts in workload distribution make most

design-time optimizations moot.

Two conclusions can be gained from this chapter: (1) scheduling-time insight

into workloads is necessary to unlock potential optimization and adaptation benefits

in domains where workloads can and do often change, and (2) building multiple

independent models for different classes of workloads is necessary due to the exploding

complexity of models that attempt to fit all general-purpose workloads.
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5.5.2 Application to Decision-Making Systems

Many of the design-time decision-making problems such as finding optimal system

configurations for a given workload or identifying system bottlenecks can be directly

postponed to scheduling-time. However, design-space exploration may be too com-

putationally expensive to perform at scheduling-time and performing it then may

outweigh the benefits of scheduling-time adaptation. Local models may simplify or

even solve scheduling-time decision making by solving subproblems that can be more

exhaustively evaluated at design-time. These subproblems typically revolve around

systems whose behavior does not depend on workload behavior, and may be explored

before the exact workload distribution is known. Even if workload information is

necessary, local models that target specific groups of workloads may be able to find

local solutions or reduce the scheduling-time decision-making complexity to a practical

level.

5.5.3 Application to System Actuators

Actuators available to design-time optimization are not strictly defined as in

the case of scheduling and run-time adaptation. During the design process, system

architects have the ability to change or discard any part of the system without any

run-time penalty (i.e., changing a system between generations does not incur e.g.,

performance penalties).

If the system is designed modularly, every new generation of the system consists of a

number of subsystems drawn from a pool of candidates for each role. These subsystem

candidates may differ by their run-time performance, latency, energy efficiency, etc.,
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and if two subsystems serving in the same role (e.g., two competing L1 cache designs)

both offer Pareto-optimal but significantly different functionalities, including both

designs in the final system will increase the system’s behavior space. More likely,

these designs have overlapping functionalities which may be shared between them in

order to conserve e.g., hardware area and cost. Modular refinement and subsystem

reuse is not the only method for designing adaptation actuators though, and designers

may explicitly venture to design these system ‘knobs’.

110



Figure 5.3: A parallel coordinate plot (top) and a scatter plot (bottom) of the set of
Pareto optimal solutions over three objectives of the system model shown in Figure 5.1.
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Chapter 6

STATIC SYSTEM ADAPTATION AND

PRE-EMPTIVE APPLICATION OF SYSTEMS MODELS

6.1 Introduction

In this chapter we focus on applications of machine learning models before a

workload has begun execution. This includes scheduling the workload at an opportune

time, statically configuring the system ahead of time to best fit the workload, affecting

future scheduling behavior to help workloads avoid contention, etc.

6.1.1 The Problem of I/O Modeling

Because of the scale and evolving complexity of high-performance computing

(HPC) systems, critical gaps still remain in our understanding of HPC applications’

runtime behaviors, specifically, compute, communication, and storage behaviors. This

situation is further complicated by the fact that HPC applications come from a diverse

set of scientific domains, can have vastly different characteristics, and are executed

simultaneously, thereby contending for shared resources.

One such gap is the understanding of I/O utilization in these systems. Currently,

application programmers and systems administrators still heavily rely on limited

observations, anecdotes, and scattered experiences to develop design patterns for

applications and manage their runtime performance either at the node level or at

the system level. This approach is tractable only to the extent permitted by limited
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application developer and facility support staff resources and their expertise. Therefore,

automated data-driven methods are needed to streamline this process and reduce

the turnaround time from capturing information to understanding and enacting

improvements in I/O utilization and efficiency. One intuitive way to approach this

situation is not by simply considering application performance in isolation but by

identifying commonalities that reduce the volume of characterization data, simplify

performance modeling efforts, and exploit opportunities for performance improvement

across application domains.

Machine learning (ML) is a promising approach for the data-driven analysis of

I/O performance data. This is evidenced by the growing interest in the design and

development of ML-based methods for various I/O performance analysis and modeling

tasks (Dorier et al. 2014; Xie et al. 2017; Madireddy et al. 2018b; D. Li et al. 2019;

Pavan et al. 2019; Snyder et al. 2016). However, analyzing I/O performance is not

trivial. Figure 6.1 shows that I/O throughput spans almost 14 orders of magnitude

and can vary as much as five orders of magnitude for jobs with the same amount of I/O

volume. Given the complexity of the I/O performance data, the relationship between

the I/O performance and the factors that affect it are often nonlinear. Consequently,

there is a trade-off between explainability and predictive accuracy when out-of-the-box

ML methods are adopted for I/O performance analysis. In particular, the models

that are explainable and intuitive to I/O experts are often simple and based on linear

models. The models that have high predictive accuracy are often black box and cannot

be used directly for explaining the I/O performance.
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Figure 6.1: Frequency of jobs with respect to I/O throughput and the total number
of bytes transferred. Data are collected from the Argonne Leadership Computing
Facility (ALCF) Theta supercomputer. Note that the color bar is logarithmic.

6.1.2 ML Modeling Goals

One approach to building adaptive systems would be: (1) build a system, (2) insert

best guess at needed sensors and actuators, (3) train decision-making at run-time

using e.g., reinforcement learning, (4) evaluate benefits and go to step 2. However,

there are several issues with this approach: (i) significant effort may be needed to build

the sensors and actuators, and much of this effort may be discarded in later steps, (ii)

no guarantee that the reinforcement learning is achieving a good performance exists,

i.e., no baseline nor upper bound on adaptation benefits has been set, and (iii) system

evaluation does not directly present an answer to what should be changed about the

sensors and actuators.

This dissertation explores an alternative approach, where knowledge about a

system is built using a data-driven approach, and this understanding is queried to

design sensors, actuators, and decision-making mechanisms. Machine learning is a

good candidate because general-purpose computing systems are complex enough that
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analytically solving them is not viable. Both supervised and unsupervised learning

approaches will be used to model workloads and the system. Supervised learning

tasks typically attempt to learn some target value or label. Models are built that

predict the target feature based on other, input features, predict model uncertainty,

understand relationships between input and output features, etc. On the other hand,

unsupervised learning deals with unlabeled data, and is limited to clustering data,

describing the data distribution, attempting to reduce data dimensionality, or finding

outliers.

6.1.2.1 Workload Clustering

Facilities such as Argonne Leadership Computing Facility (ALCF) and the National

Energy Research Scientific Computing Center (NERSC) have on-staff supercomputing

and I/O experts that maintain the HPC systems and work with scientists to improve

the applications running on the supercomputers. The sheer number of applications

makes analyzing individual jobs difficult, since expert insight does not scale with the

growing number of new applications. In computer architecture, a similar problem

exists: applications may be tuned with tools such as Intel VTune or NVIDIA Nsight,

but this analysis can only be applied post-hoc, and on select applications.

Workload clustering — a procedure where similar workloads are grouped together

— has been proposed as a method to analyze related workloads in bulk, scaling system

expert insight to larger amounts of jobs. Furthermore, analyzing groups of similar

jobs may reveal hidden patterns not visible when analyzing individual instances.
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6.1.2.2 Workload–System Interaction Modeling

Clustering is an unsupervised learning method, and does not take advantage of any

labeled data from the system. There are several such labels that may be used however,

so supervised learning becomes a viable option. For example, the runtime of a job

highly depends on both the system and the workload characteristics. If a machine

learning model is able to accurately predict a job runtime directly from workload and

system features, the model has built an understanding of how the two components

interact.

6.1.3 Deliverables

We develop an explainable ML platform for I/O performance analysis to answer

a number of I/O performance questions: how can we cluster applications together?

Given an application or task execution, what existing I/O behavior cluster does the

job fall into? What are the key characteristics of the cluster itself? Does it match the

expected execution or performance profile, for example, the requested resources and

the optimality of those resources’ utilization? How does this job’s performance rank

with the rest of the cluster? What parameters influence the job placement within the

cluster? How does the cluster rank with other clusters?

The goal of this work is to answer these questions, and to this end our contributions

are as follows:

• We introduce a log-based feature engineering pipeline for HPC applications. Our

analysis uses 89,844 Darshan logs of I/O volume greater than 100 MiB collected

116



on the Argonne Leadership Computing Facility (ALCF) Theta supercomputer

from 2017 to 2020.

• We show that agglomerative clustering can reveal a large amount of structure in

the dataset and that training models on fine-grained (local) clusters instead of

on the whole dataset yields more robust and useful predictions.

• Using different ML methods, we demonstrate that despite I/O throughput

varying across many orders of magnitude, we can on average predict individual

job I/O throughput within ∼20% of the real value. Furthermore, we show how

the interpretation of ML prediction models can yield useful advice for increasing

application performance.

• To validate the practicality of the proposed feature engineering pipeline and

the clustering techniques, we introduce Gauge, an exploratory I/O throughput

analysis tool with adjustable data granularity and interpretable I/O throughput

models. We illustrate how it can be used by system owners and I/O experts to

optimize the HPC clusters for the workload present or by application developers

to optimize their jobs.

• We release a web-based version of Gauge, information about the tool is available

at http://gaugeviz.org.

6.1.4 Application to Adaptive Systems

The goal of modeling workloads and systems is to better design adaptive systems.

By understanding workloads and the system through data-driven modeling, insights

can be gained that improve all four of the adaptive system stages (sensing → deciding

→ adapting → learning → ...):
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Application to sensing mechanisms: By building models of the system as well

as models of the workload distributions, these models can be queried, and connections

between input features (e.g., hardware performance counters) and target features (e.g.,

system utilization or job runtime) can be discovered. These input features may not

necessarily exist in a given system, but knowledge of these connections can inform a

designer which sensors / monitors to create and expose to the adaptive system.

Application to decision-making mechanisms: System models can be analyzed

and interpreted to discover why a certain system behaves as it does. Building black-box

models of systems may be more practical than analyzing real systems, both because

of the computational difficulty of simulating complex systems, and because ML model

interpretation techniques are applicable to the black-box models. Furthermore, the

same models can be later used in run-time decision making. For example, a model of

the system can be used to predict e.g., the job runtime for different system adaptations,

so that the best adaptation can be chosen. Finally, system models can be evaluated

by their predictive accuracy, and fundamental limits of decision-making capability

can be discovered. Adaptive systems can use this information at run-time to evaluate

decision-making uncertainty.

Application to adaptation mechanisms: By having knowledge of the workload

distribution as well as a set of sensors and actuators, different adaptive system

proposals can be evaluated, and benefit-complexity trade-offs can be made. The

workload distribution can be used to weigh benefits of rare workloads versus the

increased decision-making complexity. Proposals for new actuators can be evaluated

in the context of available sensors and the decision-making capability, providing an

estimate of benefits new actuators can bring. The models of the system can be
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queried to evaluate different adaptation options, in a more efficient manner than

simply simulating the whole system.

Application to learning mechanisms: By building models exposed to limited

sets of data, model generalization capability can be exposed. This generalization

capability is a proxy for how well the decision-making mechanisms will behave when

faced with new workloads. If generalization is limited, the decision-making mechanisms

may need to learn at run-time (typically called “on-line learning”). Benefits of on-line

learning can be evaluated using the same models through training with a new cross-

validation regime. For example, models may be trained on and evaluated on job logs

sorted by time. This training regime would be representative of what a real adaptive

system would face once deployed into the field.
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6.2 Static Adaptation Use Cases

Here I provide several use cases of why sensing and decision making are beneficial

when scheduling workloads:

6.2.1 Pre-emptive System Reconfiguration

Computing systems may offer configuration knobs that modify system behavior,

and can be changed at startup or during execution. A statically-adaptive system

with some configuration capability may be reconfigured at startup or before running

a workload to achieve better user goal satisfaction. The system configuration knobs

can be treated separately from workloads, as the workloads and runtime knowledge

/ constraints may change independently. Some examples of such knobs are e.g.,

BIOS settings allowing system administrators to turn off microarchitectural features

such as multithreading or limit the range of frequencies a processor can run at, or

MPI hints that inform the I/O subsystem of workload access patterns and provide

suggestions on how to handle certain operations. For example, a program may inform

the I/O subsystem of a preferred striping unit, which specifies how data is split across

individual drives. The hint may override a default system value, but the system is

free to ignore this hint, as correctness is preserved either way.

Not all configuration knobs are necessarily beneficial when used, e.g., in the case of

data sieving or access coalescing, where many small accesses may be buffered and sent

through as a single, larger access. Since sieving may happen on multiple levels of the

I/O subsystem hierarchy, a user forcing the system to coalesce accesses may not yield

performance benefits, or may even decrease throughput. Similarly, certain ISAs offer
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prefetch instructions, which preemptively load data into caches. With the advance

of hardware prefetchers, ISA-level prefetching has largely been rendered useless, and

only causes an increase in instruction cache misses. Modern CPUs often ignore these

instructions and treat them as no-ops (no operation). Experience has shown that

simply exposing more system configuration options does not lead to increased goal

satisfaction, as only hardware designers and low-level system programmers have the

necessary expertise to set these options.

Nonetheless, providing greater amount of system configurability can be highly

valuable in certain domains, e.g., real-time computing, where users may prioritize

predictability over raw performance, and removing e.g., highly-speculative behavior

is warranted. Historically however, system configuration knobs are rarely used, as

the knowledge necessary to understand their inner workings and impact on programs

requires possibly proprietary insight into the system systems typically run at same

configuration for all workloads, and cannot change their behavior with changing

workload or user needs.

Static system configuration can be considered a form of static adaptation. The

system may have a wide variety of possible behavior modes, but has to select one for

the duration of core time allocation or the lifetime of a process.

6.2.2 Improving Quality-of-Service with Intelligent Scheduling

Multi-socket systems and larger processors may have multiple NUMA (Non-Uniform

Memory Access) domains. Here, the processors have multiple memory controllers,

each connected to separate DRAM modules. The processors maintain a uniform view

of memory, i.e., each core is able to access memory on any of the DRAM modules.
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Due to the physically distributed nature of DRAM memory, a processor has faster

access to closer DRAM modules, and may need to send requests over the Network on

Chip (NoC) or even to other sockets in order to fetch distant memory.

For more than a decade, the process scheduler in the Linux kernel was unaware of

process memory placement, and would often place processes on the least-busy core,

possibly far from the processes’ memory, causing large performance degradations (Lozi

et al. 2016). Recent NUMA-aware schedulers attempt to keep processes local, and make

more complex trade-offs between optimizing for CPU utilization and memory access

locality. Solving NUMA-aware scheduling required manual diagnosis, architectural

insight, and hard-coded implementation. There currently may exist other unknown

performance degradations that require similar changes, but are undetected due to the

sheer complexity and opaqueness of modern computing systems.

If the scheduler had learning capabilities and the right sensors, it may have noticed

that a certain process has higher or lower commit rates on different cores, as loads

and store instructions are on the critical path and stall the pipeline. The scheduler

may have experimented with different core-process placements at runtime, in order

to explore the decision state space. Even without explicit NUMA-awareness, the

above listed issue may have been solved by having sensing and learning as part of the

scheduling algorithm.

This intelligent scheduling can be considered a form of static adaptation. While

measuring process commit rates requires runtime sensing, the only decision making

and configuration happens at scheduling time.

122



6.2.3 Isolation of Resource-Heavy or Misbehaving Jobs

On conventional processors, only one process uses a core at a time (or two or more

on cores that support simultaneous multithreading) thereby monopolizing core-local

resources for a period of time, other resources are shared between the processes. These

may include any shared caches, e.g., L3 caches (and less commonly L2 caches on some

generations of processors), memory controllers, network on chip, other I/O such as

networking and storage, etc. This contention exists in the spatial domain, i.e., these

resources are being used simultaneously by different physical cores. Contention can

also exist on the temporal domain, e.g., in the case of two processes alternatively being

scheduled on the same core, both of which are using a large portion of e.g., L1 cache,

and which observe large amounts of conflict misses after being scheduled. In the I/O

domain, jobs that have disproportionate amounts of impact on neighboring jobs are

called ‘bully’ jobs (Xu Yang et al. 2016). I/O subsystems are particularly sensitive to

contention due to their nature and complexity, since a bully job can asynchronously

issue many I/O operations and is not limited by the response time of the system they

are abusing.

The above listed situations are problematic for a number of reasons: First, while

some programs have legitimate reasons to attempt to monopolize a resource, many

misbehaving programs do not achieve good system utilization, and are wasting system

resources while preventing other programs from making progress. Second, although

fairly portioning e.g., processing time is trivial, achieving fair distribution of other

resources is more difficult, e.g., in the case of network or storage bandwidth. While

mechanisms could be plausibly built to ration these resources, rationing certain (espe-
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cially low-level) resources may incur an unacceptable performance penalty. Therefore,

fairness is violated by bully jobs.

One solution to monopolization-induced contention and unfair resource distribution

is job isolation. While the majority of jobs are unhindered by the system and allowed

to work as normal, once identified, bully jobs access to share resources is rationed, at

the expense of the bully. By not imposing a performance penalty on other jobs on the

system, this approach may be appropriate in many domains, e.g., I/O rationing or

microarchitectural attack prevention.

This isolation method can be considered a form of static adaptation. While

runtime detection is necessary to spot bully jobs, jobs are placed in isolated hardware

or software environments at scheduling time.
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6.3 Workload Clustering

I use the term ‘clustering’ to mean a bipartite mapping between one set of clusters

and one set of samples. A ‘clustering’ is therefore a set of all clusters, and a cluster

‘contains’ all samples it is connected to in the bipartite graph. Commonly, each sample

belongs to zero or one cluster, though this requirement is sometimes relaxed, e.g.,

in the case of edge samples between two clusters. The process of clustering involves

finding the set of clusters according to some measure of clustering quality.

6.3.1 Clustering Algorithm Requirements and Methods

Clustering has been extensively explored, with hundreds of published algorithms

working under vastly different assumptions and offering different results. Several

requirements limit which clustering algorithm can be applied to workload logs.

First, several clustering algorithms such as k-Means assume that the number of

clusters is known ahead of time. When modeling workloads, even if the number of

applications running on the system is known, there is no guarantee that all jobs from

the same application should belong to a single cluster. This requirement disqualifies

clustering algorithms such as k-Means and k-Medoids, which require the number of

clusters ahead of time.

Second, workload sampling or density is not a property of the domain itself (as

would be in e.g., biology where some species are simply less prevalent). How many

times an HPC workload is ran for is relatively independent of the workload behavior,

and depends on research needs, potential impact, project funding, deadlines, etc.

Therefore, certain workloads may be significantly overrepresented, and a clustering
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algorithm must be able to work when clusters can have orders of magnitude different

densities. This requirement disqualifies clustering methods such as Gaussian Mixture

Models.

Third, the distribution of workloads may be heteroskedastic, i.e., the variance

of certain random variable changes with another variable. For example, a common

pattern in HPC is that certain applications may have large I/O throughput variance

when their I/O volumes are low, but have consistent I/O throughput when jobs are

past a certain size. The clustering algorithm must be tolerant of heteroskedasticity,

which eliminates density-based clustering methods such as DBSCAN, as DBSCAN

assumes a certain acceptable variance within a cluster set by its ε parameter.

6.3.1.1 Comparison of Clustering Algorithms

In (Rosario et al. 2020b), we compare four different clustering methods: k-Means,

Mean Shift Clustering (MSC), Expectation Maximization using Gaussian Mixture

Models, and Density-Based Spatial Clustering of Applications with Noise (DBSCAN).

We use Variation of Information (VI), an information-theoretic measure that evaluates

how much information is lost, and how much is gained when moving from one clustering

to another.

By repeatedly clustering the Theta and Cori datasets with different random seeds,

clustering stability can be evaluated. By clustering with different parameters (e.g.,

number of clusters in k-Means), sensitivity to parameters can be evaluated. In (Rosario

et al. 2020b) we use VI to evaluate whether different clustering algorithms repeatedly

arrive at the same clusterings. When VI is high, either one of the clusters has low

entropy (all samples are in a single cluster or all samples are colored as outliers), or
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the clusterings are significantly different. When VI is low, clusterings are similar. An

appropriate clustering method will have low VI when comparing clusterings initialized

with different seeds and parameters, i.e., it will not be sensitive to noise and poor

parameter selection.

(Rosario et al. 2020b) shows that Hierarchical Density-Based Spatial Clustering of

Applications with Noise (HDBSCAN) (Campello et al. 2015) satisfies all of the above

listed requirements, and reproducibly achieves a low VI measure between repeated

clustering attempts.

6.3.1.2 DBSCAN and HDBSCAN

Since HDBSCAN is hierarchical version of the DBSCAN clustering algorithm, I will

first explain DBSCAN. Density-Based Spatial Clustering of Applications with Noise

(DBSCAN) (Ester et al. 1996) is an agglomerative, non-parametric, density-based

clustering method. Due to its non-parametric nature, DBSCAN does not require

tuning a parameter (unlike e.g., k-Means, where the number of clusters must be tuned),

and typically works better on novel datasets than parametric clustering algorithms.

DBSCAN has an average computational complexity of O(nlogn), and a worst case

complexity of O(n2).

DBSCAN is initialized with a distance parameter ε, and a minimal number of

neighbors n. Executing DBSCAN involves the following steps:

1. Given some distance metric, for each sample in the dataset, find neighboring

samples within a distance ε.

2. Build an undirected graph where samples are nodes in the graph and neighbors

are connected with edges.
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(a) An example DBSCAN clustering. (b) An example HDBSCAN clustering.

Figure 6.2: Non-hierarchical and hierarchical DBSCAN.

3. Color each node with more than n− 1 neighbors as a ‘core’ node.

4. Color each node with less than n− 1 neighbors as ‘edge’ node.

5. Observing only core nodes, find connected components in the graph, and report

each component as a separate cluster.

6. Append edge nodes connected to a single connected component to that cluster.

7. Depending on implementation, append edge nodes connected to a multiple

connected components to neither, both or one of the clusters.

8. Color edge nodes without core node neighbors as outliers.

The advantage of DBSCAN are that it makes no assumption about the shape of a

cluster as long as the cluster maintains a density above ε. This property is beneficial

when encountering new datasets where no domain knowledge exists. Figure 6.2a

illustrates an example DBSCAN clustering, where the ε value is set by the radius

shown on the left, and n = 2. Notice that DBSCAN has no difficulties clustering a

crescent-shaped cluster (teal color).

HDBSCAN is an extension of DBSCAN that instead of producing a set of individual

clusters, effectively runs DBSCAN at every ε value between 0 and infinity. When ε = 0,
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DBSCAN will color each sample as an outlier, while when ε =∞, DBSCAN will group

the whole dataset into a single cluster. HDBSCAN tracks the transition between the

two extremes, and marks at which ε values do small clusters merge into larger clusters.

At the core of HDBSCAN is the minimum spanning tree algorithm: when ε values

are low, only the closest samples will cluster together, and as ε grows, the closest

unconnected clusters or samples merge into larger clusters. Figure 6.2b illustrates

such an example, where a minimum spanning tree is built and edge thicknesses depict

distances.

The benefit of HDBSCAN over DBSCAN is that no knowledge about data density

is needed to perform clustering, and users are free to explore the hierarchy instead

of a fixed ‘cut’ at a certain ε value. A typical method for analyzing an HDBSCAN

clustering is by visualizing a tree, where the y coordinate represents ε values, the root

node represents the whole dataset in a single cluster and is positioned at the smallest

ε value where the whole dataset is in a single cluster, and the tree bifurcates whenever

ε is low enough for clusters to split.

6.3.2 Gauge: a Workload Exploration and Analysis Tool

In (Rosario et al. 2020b) we introduce Gauge, an interactive, web-based, data-

driven HPC I/O exploration tool. The goal of Gauge is to enable HPC facility

staff to analyze large amounts of unsorted workload logs, understand current system

behavior, diagnose performance problems in workloads, and help scientists optimize

their applications.

Gauge works by hierarchically clustering HPC job logs using HDBSCAN and

presenting a tree-based visualization as shown in Figure 6.3. Each node in the
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Figure 6.3: The Gauge cluster hierarchy on the Theta dataset.

hierarchy represents a cluster, where the node y position represents the effective ε

value at which DBSCAN would split that cluster, the x position does not carry any

information, and the node size reflects the number logs in that cluster. The top node

in the hierarchy contains the whole dataset, i.e., all of the logs are in the same cluster.

As the ε parameter is decreased, nodes get split into smaller, more dense clusters.

Gauge is interactive, and allows users to click on up to four clusters in the hierarchy,

which opens a panel as seen in Figure 6.4. Each panel has a number of graphs: the

distribution of applications the job logs belong to and the users that ran the jobs, a

parallel coordinates graph of ratio features (features bounded between 0% and 1%),

a parallel coordinates graph of absolute-valued features (unbounded features whose
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Figure 6.4: An example Gauge cluster column plot with five graphs.

values are shown on a logarithmic scale), as well as a histogram of common POSIX

access sizes.
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6.3.2.1 Interpreting Dataset Structure

While Figure 6.3 reveals the existence of a rich structure in the dataset, it does not

increase our understanding of it. To get better intuition about the data distribution,

we perform a simple experiment: since every node of the HDBSCAN single linkage

tree consists of a number of smaller merged clusters, we train a decision tree that

predicts where each job in the cluster will end up once the cluster splits. To help

interpretability, we train decision trees only of depth 1, namely, trees with only 2

leaves and a single decision splitting the dataset. The annotations and arrows pointing

to nodes in Figure 6.5 explain what the decision trees at those nodes have learned.
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Figure 6.5: HDBSCAN single linkage tree, pruned of clusters smaller than 1,000 jobs
and of clusters clustered at ε < 3. Note the four clusters marked Alpha to Delta.
These clusters are hand-selected using this tree and are used later in the analysis.

Right away, the clustering splits the dataset into jobs that use only read/write

files and jobs that also use read-only and write-only files (top cluster’s annotation).
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Although this split is imbalanced (70K jobs vs. 10K jobs), the accuracy of the decision

tree (98%) is high enough to still be informative. Looking at its smaller child (node

with 10,775 jobs), we see that it splits the dataset with perfect accuracy into jobs that

have more or less than 25% of unique files (unique files are files accessed only by a

single process). Note that other nodes’ decisions might not be so accurate. This is due

to our choice of using a decision tree with a depth of 1. If we allow deeper decision

trees, the accuracy of decisions increases, but interpreting these models becomes more

tedious. In practice, we use the HDBSCAN tree in a more interactive process, allowing

us to test different decision trees using different features, depths, and acceptable

accuracies.

Through analyzing this tree in more depth, we concluded that the clusters in the

dataset occupy very distant spaces, showing different behaviors across several and

often tens of different features. As we decrease ε, the clusters get smaller, and the jobs

within them more and more similar, until we arrive at just dozens of almost identical

runs. We claim that to analyze throughput and extract insight out of a cluster, first

we must select the right granularity at which to make the analysis. Too fine, and

we may be learning the behavior of a single job, not any general trends shared by

different applications running on the HPC system. Too coarse, and we may arrive at

very general interpretations that are not specific to the jobs we are interested in.

6.3.2.2 Deeper Insight with Interactive Parallel Coordinate Plots

If column panels do not show sufficient information to understand or diagnose a

cluster, users may build a larger parallel coordinates plot with features of their choice

through HiPlot (Haziza, Rapin, and Synnaeve 2020). HiPlot is an interactive, web-
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Figure 6.6: Example HiPlot parallel coordinates graph with user-selected features.

based parallel coordinates graph tool that offers flexible selection of axes, interactive

selection of feature ranges, optional histograms and 2-dimensional scatter plots, and

easy integration into existing web applications. An example HiPlot graph with (1) I/O

throughput, the number of total POSIX (2) accesses, (3) files, (4) total runtime, (5)

number of processes, (6) the percentage of POSIX accesses that are read operations,

(7) number of total bytes read or written, (8) application names, and (9) the common

file alignment. Here, HiPlot automatically decided which features to present on a

linear, logarithmic, or a categorical scale, e.g., in the case of I/O throughput, total

POSIX accesses, and application names, respectively.

6.3.3 Grapes: a Domain-Agnostic Dataset Exploration Tool

While Gauge initially targeted the HPC I/O domain, all of the steps Gauge

performs can be generalized to other system analysis domains such as compute and

network bottleneck analysis, microarchitectural modeling, malware detection, side-

channel attack prevention, etc. While different systems may record different features
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which may require new types of preprocessing, and different domains may have different

metrics of how samples are compared, these nuances can be user-specified while the

core of the Gauge tool is shared across domains.

Grapes is a generalized, domain-agnostic implementation of Gauge that replaces

I/O specific components of Gauge with parameterizable, user-specified options. While

Gauge only supports tabular (matrix) data, where each column is a different feature

and each row is a different job, Grapes supports other formats such as images, temporal

sequences such as sounds or stock prices, or even videos. As long as the user provides

either (1) a metric function that can compare two samples, or (2) a distance matrix,

Grapes can perform the clustering. It is the user’s responsibility to provide a domain-

appropriate metric function. For example, when individual samples are images, the

Manhattan distance would likely not be an appropriate metric function, since two

images might be very similar but have significantly different L1 distances.
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6.4 ML Modeling of General-Purpose Computing Systems

There are several reasons why practitioners might build machine learning models:

• These models may be used to automate processes typically performed by humans,

as in the case of optical character recognition systems.

• These models may be used in scenarios where human intervention is too slow or

unscalable, e.g., in the case of high-frequency trading.

• Models may be analyzed to better understand the underlying process being

modeled, as in the case of ML-based medical diagnosis interpretability.

• Models may be built to quantify uncertainty during decision-making in a certain

domain, e.g., in the case of ML-guided prediction markets.

All four use cases are of importance in adaptive systems: (1) adaptive systems

need ML to predict which configurations will be most beneficial in the future, (2)

these states cannot be decided at design-time by computer architects, but must be

chosen automatically, (3) these models must be analyzed during the design process

to understand what sensors, actuators, and model architectures they can benefit

from, and (4) by providing uncertainty estimates, improved quality of service can be

achieved.

Therefore, this dissertation will broadly focus on three ML model use cases:

1. Predictive models and model-based control, whose goal is to map system and

workload inputs to decisions,

2. Model interpretability, whose goal is to learn some part of system behavior and

explain it,
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3. Uncertainty quantification, whose goal is to evaluate system output sensitivity

to external system inputs and internal system states.

6.4.1 System and Workload Modeling Formulation

This dissertation focuses on models that learn to map inputs to outputs, e.g., by

predicting the effect of certain workloads to system states. In this chapter we use

workload and system profiles described in Section 4.1 as inputs, and use machine

learning models to predict the measured system I/O throughput.

To predict I/O performance, we first need to define a metric for evaluating predictive

accuracy. Common metrics such as L1 or L2 loss might not be a good fit for our

data because the throughput ranges from KiB/s to TiB/s and hence will penalize

jobs with higher throughput more than the low- and medium-range ones, forcing our

models to ignore the latter. Therefore, we adopt root mean squared logarithmic error

(RMSLE) and mean absolute logarithmic error (MALE) functions:

RMSLE(y, ŷ) =

√√√√ 1

n

n∑
i=0

(log10(yi)− log10(ŷi))2

=

√√√√ 1

n

n∑
i=0

log10

(
yi
ŷi

) (6.1)

MALE(y, ŷ) =
1

n

n∑
i=0

|log10(yi)− log10(ŷi)|

=
1

n

n∑
i=0

∣∣∣∣log10

(
yi
ŷi

)∣∣∣∣ .
(6.2)

Both of these equations penalize the ratio of the prediction vs. the real value. Hence

the ML model is scale independent and should equally penalize relative prediction

errors on both small and large throughput jobs. Since our ML models already receive
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percentage and logarithmic features and are tasked with predicting the logarithmic

I/O throughput value, they can natively use MSLE/MALE; that is, we never have

to convert the predictions back to the raw values. In subsequent text, we choose to

use MALE over RMSLE, since MALE is less sensitive to outliers and is more directly

interpretable. Using MALE allows us to directly translate median errors to English,

for example, by saying that the model on average predicts I/O throughput with 1.15×

error. For example, if a model predicts a throughput of 13GiB/s for a job that in reality

achieves only 10GiB/s, the MALE error is MALE(10× 109, 13× 109) = | − 0.114|.

To interpret this loss, we calculate the relative error 10|−0.114| = 1.3×. The same

value is calculated if we swap the prediction and target value; that is, this model may

underestimate or overestimate throughput. In either case, we have a good estimate of

the range of the target value.

6.4.2 Black-Box vs. White-Box System Modeling

Two design choices decide how a system can be modeled. The first question is

whether domain knowledge can used to build models, i.e., if this knowledge can inform

the designer which machine learning class or architecture to use? Secondly, is the

system a black-box, i.e., its internals are opaque, or are inner mechanisms visible and

can be measured? When domain knowledge is available, designers can build analytical

models, where model outputs are limited by an analytical model of the underlying

process. For example, analytical models of HPC I/O have been studied in (Isaila

et al. 2015), and physics-constrained models in (Karniadakis et al. 2021). When

domain knowledge is not available, general, data-driven models may be used. Many

classes of machine learning models have formal proofs of universal approximation – a
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property where the model can learn any continuous function. This proof guarantees

that a model can learn system behavior in response to inputs, given enough noiseless

data. For this dissertation’s purposes, systems are too diverse and the scope too large

to build encompassing analytical models of both e.g., HPC systems and processor

microarchitectures. That is why this dissertation focuses on data-driven instead of

analytical models.

The second questions revolves around whether systems are opaque or (semi-)

transparent. Opaque systems may not be modelable if they exhibit non-deterministic

behavior, and even if they are deterministic, the amount of data needed to correctly

model them grows exponentially with the amount of hidden state or memory they

possess 9 Nonetheless, we assume that the systems we are studying are not actively

adversarial and are not specifically designed to be opaque. As we will show, ML

models are able to accurately predict the behavior of such systems up to a certain

accuracy, after which these assumptions need to be reconsidered, as we will do in

Chapter 7.

9A sketch proof of this property involves a simple Moore machine implementing a combination
lock. The machine has an n-bit input I ∈ 0, 1n, a single-bit output, m-bit state S ∈ 0, 1m, an output
function o(I, S), and state transition function t(I, S). The combination lock functionality outputs a
‘1’ when the last k inputs were some correct combination of values (i.e., a key or a passcode), and
otherwise outputs a ‘0’. The questions is: how complex of a code can the machine implement given
only m bits of state, i.e., how large can k be?

The system is considered opaque since it reveals no information about the closeness of the input
sequence to a target passcode. Any model of the system cannot accurately learn the behavior of this
system unless the input-output dataset contains the passcode as an input. As the passcode grows
with k, the probability of the correct passcode being randomly generated when sampling the system
exponentially decays.
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6.4.3 Modeling I/O Performance

We now attempt to create accurate I/O throughput prediction models. The goal

of modeling I/O performance, instead of simply observing it, is to potentially develop

accurate models and analyze them for underlying causes of over-/underperforming

I/O throughput. If the model has good predictive power and generalizes well (can

accurately predict I/O throughput of new jobs), we can apply ML model interpretation

and explanation methods to answer questions such as what parameters influence this

job’s I/O throughput the most and what steps we should take to improve performance.

We have evaluated a number of different types of ML models, such as linear regression,

decision trees, random forests, gradient boosting machines, and neural networks, and

have chosen to use XGBoost (Chen and Guestrin 2016) for our predictions. XGBoost

is a gradient boosting machine library that shows excellent performance on tabular

data and is simpler to tune compared with other powerful models such as neural

networks.

In Figure 6.7, we present training and test errors of an XGBoost model trained

on the whole training set (box plots on the right marked “Global”), as well as a

number of XGBoost models trained on clusters of various granularities (discussed

later). The global model achieves a median error of less than 1.2×; that is, half of the

predictions are less than 1.2× off the true value. Through discussion with HPC domain

experts and system owners, we learned that this sort of misprediction is acceptable,

since I/O throughput can vary by orders of magnitude. Furthermore, pushing this

error lower may be difficult because of external, unobservable factors such as I/O

weather (Lockwood et al. 2017). Since our analysis here does not take into account
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Figure 6.7: I/O throughput prediction results. Top row shows the training and test
error distribution of XGBoost models trained on clusters of various granularities. The
rightmost model is a single model trained on the whole dataset. The bottom row
shows the cumulative histogram of the above error.

the system’s I/O contention present during the job’s execution, we fundamentally

cannot achieve better predictions than I/O weather would allow.
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6.5 Model Interpretation and Knowledge Extraction

Colloquially, computer science algorithms follow a “algorithms in - answers out”

approach, i.e., programmers write algorithms that process data and arrive at answers.

Machine learning algorithms can be seen as the opposite, “answers in - algorithms out”

approach, where ML practitioners supply data, and arrive at algorithms or ‘models’.

Model interpretation techniques attempt to either understand (1) how a machine

learning model arrives individual predictions (e.g., explain a single medical diagnosis),

or (2) derive a transparent program from an opaque ML model. These techniques can

play a central part in ML-guided system design, as I will explain.

6.5.1 Feature Importance Evaluation

Given that an adaptive system may have tens of thousands candidate hardware

sensors or monitors, finding the optimal subset of them to implement is crucial.

Understanding which sensors or monitors allow the decision-making system to choose

good adaptation states is essential for two reasons: first, ranking sensors and monitors

by importance allows system designers to dedicate resources and effort to the most

useful sources of information. Second, the same ranking allows experimentation with

new sensors, where designers can insert potential sensor candidates and evaluate how

they fare against existing ones. In (Isakov et al. 2020), we propose that Permutation

Feature Importance (PFI), a method for ranking ML model input feature importance,

can be used to decide which set of sensors a system should implement.
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6.5.1.1 Permutation Feature Importance (PFI)

When a working machine learning model loses access to one of the many input

features it uses to make predictions, its accuracy will be degraded. Removed features

that cause a greater impact on performance can be said to be more important. PFI

uses this observation to iteratively rank features, starting from the least important.

Directly removing features is not straightforward though, since ‘removing’ a feature

is not typically defined. A naive approach would be to replace all values of a given

feature with some constant, e.g., zero. This approach is flawed, since different constants

will have a different effect on the model, and zero may not always be the best choice.

For example, assume that a feature has a mean value of x >> 0, and the model is a

neural network with ReLU activations. If the feature is removed, many of the neurons

counting on the feature will now have significantly lower activation sums, and ReLU

may always saturate neuron outputs to zero, thereby preventing the network from

making any inference. PFI proposes that instead of replacing values with a constant,

the values should be randomly permuted. There benefits of permuting values are

two-fold: (1) the model still receives values with the same mean and variance on

average, (2) since the permutation is random, the new feature carries no information.

PFI has the following steps:

1. For each of the n features in the dataset, calculate importance:

2. Permute values of feature n for all rows in the test set.

3. Evaluate new model accuracy.

4. Tag feature with lowest impact on accuracy as least important

5. Remove feature, retrain model, repeat

PFI is useful due to its efficient nature, since ranking features only requires
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evaluating the model on the test set n2 times, where n is the number of features, and

the model does not require retraining. The problem of PFI is that certain classes of

models may adversely react to feature removal, and require retraining to properly

evaluate impact of each feature. An alternative implementation simply removes a

column (feature) from a dataset and retrains models. This approach has the added

benefit of allowing a model to adapt to a new dataset, and not suffer from errors that

it could otherwise remove with retraining. It is especially well suited to ML models

that may learn complex relationships between features, compared to weak learners

such as e.g., random forests. However, it requires training n2 separate models, which

may not be possible due to computational limitations.

6.5.1.2 PFI Case Study on Theta Logs

In (Isakov et al. 2020), we use PFI to evaluate the importance of features on I/O

throughput prediction. This ranking allows I/O experts to design better logging tools

and decrease the performance impact of these tools by removing superfluous features.

The questions we ask are: which features are most important in understanding I/O

throughput? How many features are needed to achieve different levels of prediction

accuracy?

We apply PFI to two datasets: the first dataset (orange) consisting of post-

processed features where many features were hand-selected. The second dataset (blue)

contains all of the features collected by Darshan, many of which are timing features

(e.g., measuring runtime, cumulative I/O read time, etc.). Figure 6.8 provides the

reasoning for why timing features were removed from the I/O datasets. Here, models

fed only the top n features (x-axis) are evaluated and their error is plotted on the y
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Figure 6.8: Darshan feature ranking according to Permutation Feature Importance
(PFI).

axis. The top row shows models that are fed only the I/O volume feature, the second

row shows models that are fed both I/O volume and either runtime or R/W ratio,

respectively, etc. As more features are added, models asymptotically approach the

error of models trained on the whole dataset with all the features.

When timing features are removed, PFI and I/O experts agree on which features

should have the most impact on the model: more I/O volume allows the system to

‘warm up’ and achieve greater performance, read operations don’t have coherency

problems as writes do, and therefore improve throughput, small I/O operations are

less efficient than large I/O operations, and have a significant impact on performance,
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etc. Note that these features have the largest impact on I/O throughput, and not

necessarily the most positive impact (as in the case of small I/O operations).

When timing features are added to the dataset (blue), PFI and I/O experts arrive

at a significantly different results, as PFI seems to highly prioritize timing features

over any actual I/O behavior. Further investigation shows that when exposed to I/O

timing features, ML models exposed to timing features do not learn how the system

responds to different workloads, but instead learn how Darshan implements I/O

throughput estimates. Without ranking features, this would not be obvious, since the

models are fed all the features (both workload behavior and timing) and are opaque

in how they use them. Through feature ranking, insights into feature usage allow not

only narrowing down the list of features to implement, but prevent degenerate

6.5.2 Local I/O Model Interpretation

PFI provides insight into which features are impactful across a whole dataset, and

these relationships do not necessarily have to hold for every specific data sample. The

relationships between a feature and target output may be nonlinear, as well as depend

on the specific values of other inputs. This locality property must therefore be studied

locally by observing small regions of similar application and system states.

In this section we focus on developing local models of I/O throughput and inter-

preting them. By local, we mean cluster-specific models, instead of the whole dataset.

As seen in Figure 6.7, by using different ε values in DBSCAN clustering, we have

selected several clustering granularities that result in splitting the whole dataset into

different numbers of clusters. At each granularity, we split each cluster into a training

and a test set, with a 70−−30 ratio. We train one XGBoost model per cluster and
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predict I/O throughput on the cluster’s test set. In Figure 6.7, we present a box

plot of the concatenated errors of all clusters. As we can see, with higher granularity

we achieve better I/O predictions. Note that since we are evaluating the models on

a different set of data from what the model was trained on, we are confident that

the model is not simply memorizing job-throughput pairs but has generalized well

enough. However, notice that in Figure 6.7 the global model and models trained on

coarse-grained clusters (red and green bars) achieve similar performance on both the

training and test sets. On the other hand, when the dataset is split into hundreds of

clusters (orange and blue bars), where each of the per-cluster models is trained on a

small portion of the total data, the models that have excellent performance on the

training set have a considerably worse performance on the test set. This is evidence of

overfitting, pointing to the conclusion that for smaller clusters we should use simpler

models or stronger regularization. Even with possible overfitting, however, on the

test set these small-cluster models achieve considerably better accuracies compared

with the global model. Therefore we seek to interpret these local models. For the

interpretations, we use SHapley Additive exPlanations (SHAP) (Lundberg and Lee

2017; Lundberg et al. 2020), a game theoretic approach to interpreting black-box ML

models. SHAP allows us to gain insight into the impact of each feature on a per-job

level, providing us with information not only about which features are important but

also about how they affect the prediction and how they react to other features.

To apply SHAP on these local models, we design an interactive HPC job analysis

tool we call Gauge. It allows system administrators and I/O experts to select clusters

from the HDBSCAN tree from Figure 6.3 and plot each cluster’s information on a

dashboard. In Figure 6.9, we present a screenshot of Gauge’s dashboard, showing

147



R/W Ops (in
 1000s)10

0

10
3

10
6

Cluster Alpha: 6418 jobs Cluster Beta: 4833 jobs

0%
25%
50%
75%
100%

Cluster Gamma: 17197 jobs Cluster Delta: 11961 jobs

Constant Linear XGBoost

2×

3×
4×

10 8

I/O Volume [GB]

0%

50%

-0.5 0.0
SHAP value (impact on model output)

10 2

10 4

0 1

10 2

10 5

-0.5 -0.25 0 0.25 -0.5 -0.25 0 0.25

10
0

10
3

10
6

10
0

10
3

10
6

10
0

10
3

10
6

0%
25%
50%
75%
100%

0%
25%
50%
75%
100%

0%
25%
50%
75%
100%

R
el

at
iv

e 
Er

ro
r

1×
Constant Linear XGBoost

2×

3×
4×

R
el

at
iv

e 
Er

ro
r

1×
Constant Linear XGBoost

2×

3×
4×

R
el

at
iv

e 
Er

ro
r

1×
Constant Linear XGBoost

2×

3×
4×

R
el

at
iv

e 
Er

ro
r

1×

% R/W
switches

Sequential
read op %

% of read ops
in 4-10 MiB

I/O
volume

SHAP value (impact on model output)

# of open
operations

# of files
opened

Memory not
aligned %

App size
(# of processes)

File not
aligned %

I/O
Volume

% of read ops
in 1-4 MiB

% of consective
write ops

% of read ops
in 1-4 MiB

% if write ops in
100-1000 KiB
% of read ops

in 1-10 KiB
% of read ops in

100-1000 KiB

SHAP value (impact on model output) SHAP value (impact on model output)

Se
qu

en
tia

l
re

ad
 o

p 
%

10 10 10 12
# of open operations

10 2 10 4
I/O Volume [GB]

10 10 10 12 0%
% of read ops in 1-4 MiB

20%

10 2

10 5

# 
of

 fi
le

s o
pe

ne
d

0%

50%

100%

Fi
le

 n
ot

 a
lig

ne
d 

%

10 2 10 1
10 2
10 3

%
 o

f w
rit

e 
op

s
in

 1
00

-1
00

0 
K

iB
 

0%

50%

10 1

10 2

10 3

10 8

I/O Volume [GB]
10 10 10 12

10 2

10 5

10 8

I/O Volume [GB]
10 10 10 12

10 2

10 5

# of open operations
10 2 10 4

# of open operations
10 2 10 4

10 2

10 5

10 2

10 2

10 5

10 2

I/O Volume [GB]
10 10 10 12

I/O Volume [GB]
10 10 10 12

10 1
10 2
10 3

10 1
10 2
10 3

0%
% of read ops in 1-4 MiB

20%

0%
% of read ops in 1-4 MiB

20%

10 1

10 2

10 3

10 1

10 2

10 3

%
  o

f r
ea

d 
op

s
in

 4
-1

0 
M

iB

0%

50%

%
 R

/W
sw

itc
he

s

0%

50%

100%

0%

50%

100%

M
em

or
y 

no
t

al
ig

ne
d 

%

10 2

10 4

A
pp

 si
ze

(#
 o

f p
ro

ce
ss

es
)

0%

25%

50%

%
 o

f r
ea

d 
op

s
in

 1
-4

 M
iB

0%

50%

100%

%
 o

f c
on

se
ct

iv
e

w
rit

e 
op

s

0%

20%

%
 o

f r
ea

d 
op

s
in

 1
-1

0 
K

iB

0%

25%

50%

%
 o

f r
ea

d 
op

s i
n

10
0-

10
00

 K
iB

Throughput [M
B/s]

I/O
 Volume [G

B]

Runtim
e [s]

App siz
e (nprocs)

R/W Ops (in
 1000s)

Throughput [M
B/s]

I/O
 Volume [G

B]

Runtim
e [s]

App siz
e (nprocs)

Files (c
ount)

R/W Ops (in
 1000s)

Throughput [M
B/s]

I/O
 Volume [G

B]

Runtim
e [s]

App siz
e (nprocs)

Files (c
ount)

R/W Ops (in
 1000s)

Throughput [M
B/s]

I/O
 Volume [G

B]

Runtim
e [s]

App siz
e (nprocs)

Files (c
ount)

Read accesses

Read-only file
s

Read/write
 file

s

Write
-only file

s

Unique file
s

Read accesses

Read-only file
s

Read/write
 file

s

Write
-only file

s

Unique file
s

Read accesses

Read-only file
s

Read/write
 file

s

Write
-only file

s

Unique file
s

Read accesses

Read-only file
s

Read/write
 file

s

Write
-only file

s

Unique file
s

Files (c
ount)

I/O
 th

ro
ug

hp
ut

I/O
 th

ro
ug

hp
ut

I/O
 th

ro
ug

hp
ut

I/O
 th

ro
ug

hp
ut

I/O
 th

ro
ug

hp
ut

I/O
 th

ro
ug

hp
ut

I/O
 th

ro
ug

hp
ut

I/O
 th

ro
ug

hp
ut

I/O
 th

ro
ug

hp
ut

I/O
 th

ro
ug

hp
ut

I/O
 th

ro
ug

hp
ut

I/O
 th

ro
ug

hp
ut

Figure 6.9: The Gauge Dashboard. The first and second rows show parallel coordinate
plots of the logarithmic and percentage features for four different clusters. The third
row shows the performance of three different ML models trained on each cluster. The
fourth row shows the SHAP summary plot for each of the clusters. The last three
rows show scatter plots of features selected by SHAP, with the color indicating the
I/O throughput.

information about four clusters, with one cluster per column. Gauge succinctly shows

the general information about each cluster in the first two rows.
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6.5.3 Gauge Dashboard

The first row shows parallel plots of logarithmic features deemed most important

by I/O experts. These plots allow the user to quickly gain insight into the cluster’s

I/O throughput volume, numbers of files, processes, and their relationships. Note the

different units: we display throughput in MiB / s, volume in GiB, and the number

of accesses in thousands, while numbers of processes and files are not modified. We

selected MiB / s, GiB, and accesses in thousands so that the values can be plotted on

the same logarithmic scale.

The second row shows another parallel plot, this time for ratio features. Note

that jobs within the same cluster often have similar percentage features but differ in

logarithmic ones. The reason is that jobs from, say, the same application may exhibit

identical behavior but, because they were run with different inputs, show different IO

volumes, throughputs, runtimes, and so forth.

The third row shows the error distribution of three ML models for predicting

I/O throughput. The first is simply a median predictor—its prediction is a constant,

selected as the median I/O throughput for the whole cluster. While trivial, this

predictor is useful because it often outperforms other predictors once the cluster is

very fine-grained, and it can serve as a baseline. The second classifier is a linear

regression, and the third one is XGBoost. The linear regression performs well on

medium-granularity clusters (with hundreds or thousands of jobs), where typically

only one application’s jobs exist in the cluster and XGBoost may overfit. For anything

larger, XGBoost outperforms the constant and linear predictors, as can be seen in the

third row of Figure 6.9.

The fourth row shows SHAP’s summary plot for the ML models. These graphs
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should be interpreted as follows, There exist four rows per plot (though this is

parameterizable), and each row represents a feature. Red markers correspond to jobs

with higher values and blue markers to lower values of that feature. The position

of these markers indicates SHAP’s predicted impact of the feature on the model’s

prediction. Markers on the right indicate that that job’s feature has a positive impact

on predicted I/O throughput, and markers on the left indicate that the impact is

negative. As an example, the first column’s “Data volume row” has red markers (high

values) on the right, indicating that higher data volume results in higher throughput

for that cluster. Alternatively, the “% R Ops 1–10 KiB” row in the fourth column has

red markers on the left. The mean that larger numbers of reads in the [1–10] KiB

range result in decreased I/O throughput. Note that the scale allows us to compare

the impact of different features on I/O throughput.

Rows five, six, and seven show scatter plots of different features, colored with

I/O throughput. The top feature according to SHAP is used for the x axis on all

three scatter plots, while for the three y axes we use the second, third, and fourth

most important features, respectively. These scatter plots are useful for getting

a better understanding of any correlations or relationships between features. For

example, looking at the bottom three plots in the second column (cluster Beta) we

can immediately spot a linear relationship between the number of open() operations

and the number of files accessed, as well as the number of processes. Gauge supports

increasing the numbers of SHAP features and scatter plots, as well as using other

types of plots such as correlation matrices showing feature correlations, but these are

not shown because of space constraints.

Note that Gauge is an interactive tool. The user is expected to explore different

clustering granularities (perhaps around a certain job or application) and different
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cluster sizes, analyze ML models at those granularities, compare local and global

patterns, and explore the (often nonlinear) relationship between the features using

the scatter plots. Next, we provide a case study using Gauge to analyze jobs from

ALCF’s Theta supercomputer.

6.5.4 I/O Expert Case Study on Using Gauge

The conventional approach to I/O performance analysis in the context of user/fa-

cility interactions is to work collaboratively with individual users to address specific

concerns or improve the productivity of high-profile applications. This hands-on focus

has proven effective in numerous examples (Latham et al. 2012; Kodavasal et al. 2016;

Srinivasan, Sudheer, and Namilae 2016) but fails to capitalize on the potential of

guidance derived from broader contextual analysis:

• Does a given application conform to a contemporary I/O motif at this facility

that is amenable to known optimizations?

• Would novel improvements to this application likely be applicable to other

production applications?

• Is this I/O motif widespread enough to warrant strategic adjustments to provi-

sioning or procurement?

• Beyond ad hoc user feedback, how can administrators allocate limited support

resources for maximum impact?

Facility experts at Argonne Leadership Computing Facility (ALCF) used Gauge

to explore workloads running on their systems, find workloads that do not obey

conventional wisdom in terms of I/O performance., and diagnose sources of sub-

optimal I/O throughput (Rosario et al. 2020b). To illustrate the potential of Gauge in
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finding previously unknown problems, and helping facility staff better understand their

systems, this exploration was open-ended, i.e., the experts did not receive requests

from HPC users to help optimize their codes.

As an illustrative example, experts flagged a cluster shown in Figure 6.4 as

needing further analysis. The cluster consists of jobs from two applications, one

in the quantum chromodynamics and one in the quantum materials domain. Both

applications have similar I/O volumes and number of processes, and are largely

performing read operations, but differ by several orders in magnitude for both runtime

and I/O throughput. These differences are uncommon since other clusters of the same

granularity have less variance across these two features.

Through HiPlot, the I/O expert gained further insight into the cluster by

adding additional features not shown on the main columns of Gauge, shown in

Figure 6.6. By coloring jobs by application and moving the I/O throughput axis

(POSIX_RAW_agg_perf_by_slowest) to the left, several conclusions can be made:

(1) applications transfer data in the 200 MiB – 2 GiB range, (2) orange jobs I/O

throughput is 5 times that of blue jobs, and (3) the blue jobs open a larger number of

files. On a suspicion, the I/O expert added the POSIX_RAW_FILE_ALIGNMENT

column to HiPlot (right axis). This axis strongly separates the two applications,

as one application has 256 KiB file alignments, while the other one has 1 MiB file

alignments. Filesystems commonly have a single file alignment, and these different

values hint at the possibility that these applications might be using files on different

filesystems. Further inquiry showed that the slower application primarily accessed files

on the user’s home filesystems, while the faster application used files on the Lustre

distributed filesystem. The home filesystem is meant for experimentation, software

development and general-purpose use, but cannot offer the needed I/O throughput
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necessary for high-performance computing, so HPC users are typically advised to

move their data to Lustre. Despite ALCF having mandatory training sessions, and

the scientists being briefed on using the HPC system, scientists typically develop their

applications on their local machines, and can easily make such a mistake.

There are several systemic reasons why such mistakes are not diagnosed and fixed.

First, users of many newer applications do not have good estimates of what the

expected runtime is, and may find significantly degraded performance acceptable.

Second, when compute hours are plentiful, users may attempt to scale their applications

to larger numbers of nodes instead of optimizing their applications. Third, no tooling

or system utilization dashboard exists that may inform users that their applications

are misappropriating HPC system resources, and it may be difficult for the scientist

to debug this issue without the manual involvement of an I/O expert. Gauge offers

a more efficient and scalable method for helping HPC system users to understand

and accelerate their workloads, and for helping facility staff extract more performance

out of their systems. Furthermore, Gauge provides rapports that can be used by the

facility staff to visualize and substantiate their insights, improving communication

between HPC users and HPC staff.
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6.6 Results and Insights

6.6.1 Application to System Sensors

Model interpretation techniques such as SHAP and permutation feature importance

are shown to be able to evaluate which logging or system sensors are useful for

predicting job behavior. Since both of these techniques are automated, they open

the possibility of developing sensors and logging utilities without human supervision.

Additionally, by pruning unused features, workload and system logs can be compressed,

allowing for higher-frequency monitoring or additional, useful features to be collected.

6.6.2 Application to Decision-Making Systems

Clustering logs may accelerate workload analysis but still requires human interven-

tion at this moment. While SHAP-based local model interpretation can offer some

insights into workload or system bottlenecks, connecting these conclusions to actuator

control is still under investigation.

Another issue that stands in the deployment of models presented in this chapter

is the fact that the logging and decision-making are performed post hoc. Since the

decision-making system has only limited information about a given scheduled job

(user, program, input dataset, etc.) it can only assume what the scheduled job’s logs

will contain after the job is completed. If the job belongs to a common application,

predicting job features may not be a problem, but this approach does not work for

novel, out-of-distribution jobs.
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A better approach would actively monitor workloads and the system, and dynami-

cally adapt the system when the scheduling-time predictions are deemed unsatisfactory.

6.6.3 Application to System Actuators

Scheduling-time actuators are largely limited to configuring the system before a

job is run, optimizing allocation of shared resources between workloads, and isolation

of misbehaving or possibly malicious jobs. While these actuators are acceptable

when the decision-making system makes decisions at scheduling-time, any runtime

decision-making system would not be able to utilize existing system actuators. In that

case, it may be beneficial if the system is extended with new actuators that allow for

e.g., moving jobs between nodes during job execution, dynamically adapting the I/O

subsystem, or physically separating workloads that do not interact well over shared

resources.
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Chapter 7

RUNTIME MODELING AND ADAPTATION

Adaptive systems can broadly be classified into statically-adaptive and dynamically-

adaptive systems. This chapter explores dynamically-adaptive systems: systems which

can exercise their adaptive ability before as well as during workload execution. In

Section 7.1 I present a case study in deploying ML-based scheduling systems and

showcase the need for dynamic adaptation. In Section 7.2 I analyze why ML-based

scheduling systems fail in production and introduce a method that quantizes model

error by source.

In Section 7.3 I present several obstacles to deploying machine learning models

on real systems and outline solutions for solving these obstacles and evaluate the

advantages of dynamic versus static adaptation.
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7.1 Limits of Scheduling-Time Adaptation

The experimental setup in this chapter closely follows the setup from Chapter 4.1,

with a couple of significant differences. First, all analysis in the previous chapter was

performed post-hoc, with the goal of understanding why workloads are behaving on

the systems as they do, and what insight into workloads and systems is necessary

to facilitate modeling. The resulting models are never directly applied, but are only

dissected to better understand the domain, i.e., the ML models built in the previous

chapter are not the goal of ML modeling. In this chapter, similar HPC I/O prediction

models are applied to queued jobs, with the goal of understanding how to place them,

how they will interact with other jobs, how sensitive to contention are they, etc.

7.1.1 Deployment Scenario

The experimental setup includes a computing system (a leadership-class super-

computer in our case), a job scheduler, and a queue of jobs. The scheduler is tasked

with (1) optimizing system resource utilization, while (2) maintaining fairness be-

tween scheduled jobs. Optimizing resource utilization is the task of utilizing as large

percentage of available compute resources as possible, where compute resources Here,

the smallest compute resource allocation is a node - a (potentially multi-socket),

multi-core machine with a separate memory address space and a separate address on

the network. This is a significantly coarser allocation granularity than e.g., on OS or

cloud schedulers, where individual cores may be divvied up. Node-level allocations

are easier to model as node-level compute, memory and networking belong to a single
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job. Therefore, any resource contention in the system is isolated to the networking

and storage subsystems.

The scheduler uses an ML model of the system to predict workload behavior once

executed. The model may be built to predict e.g., I/O throughput, job runtime,

runtime variability, performance impact on other jobs running on the system, etc. In

this section, we will focus on I/O throughput predictions, and will explore impact

and variability in Chapter 7. Once the model has made a prediction for all candidate

queued jobs, the scheduler can use the model output to decide in what order to execute

the jobs, how many resources to dedicate to each job, whether to potentially isolate

jobs predicted to misbehave or separate pairs of incompatible jobs, etc.

7.1.2 Experimental Setup

When two I/O-heavy jobs are scheduled at the same time on the system, they may

be I/O bound, and spend significant amounts of time idling and waiting for responses

from the I/O subsystem. Since supercomputing resources are typically measured in

node-hours, HPC system users may inefficiently spend allocated node-hours, as the

node CPUs will have low CPU utilization. The goal of the HPC job scheduler is to

accurately estimate job I/O throughput in order to schedule I/O-heavy jobs separate

from each other, in order to allow each I/O-heavy job to fully saturate available I/O

bandwidth. By pairing I/O-heavy jobs with more lightweight jobs, good utilization of

both compute and storage resources may be achieved.

We will observe I/O throughput prediction models fed the same Darshan features

shown in Table 4.1. While such features are not available until after a job has

completed, they serve as a good proxy for other features a scheduler may possess. We
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will use the same model architectures from the previous chapter, specifically XGBoost

with fine-tuned hyperparameters.

In typical machine learning experimental setups, cross-validation is used to create

training, validation and test sets. Models are trained on training sets, their performance

is evaluated on the validation tests, after which model hyperparameters can be

updated, and training can be repeated. Once the training and hyperparameter tuning

is complete, the model is evaluated on the test set. By evaluating the model on the

test set only once, information leakage from the test set to model hyperparameters

can be prevented.

To simulate a realistic environment the scheduler may exist in, we use a modified

version of cross-validation. While the HPC datasets we possess contain jobs ran

throughout 2017 to 2020, we wish to simulate a model deployment environment with

freshly collected data. To do so, we select a timestamp in the 2017 to 2020 range, and

split the existing dataset into two portions, one before the timestamp and one after.

First, the model will get trained, validated and tested on the pre-timestamp dataset.

Once some fine-tuned model has received approval, it may be deployed, at which point

it is evaluated on the post-timestamp dataset. We use the post-timestamp dataset

as a ‘deployment’ test set, since if scheduler’s ML model is only exposed to the pre-

timestamp dataset, and has no knowledge of upcoming test set jobs. Therefore, there

are effectively two different test sets the model is evaluated on: first is a pre-timestamp

‘original’ test set, which is a random subset of the whole pre-timestamp dataset, and

the second is a ‘deployment’ test set, which is the whole post-timestamp dataset.
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Figure 7.1: I/O throughput prediction error for three different dates used for the
training / test set splits.

7.1.3 Real-world Deployment Results

To evaluate how scheduling ML models behave, we initially set the timestamp to

January 1st, 2020, and split the dataset across it. We train and evaluate a model on

HPC jobs collected in between January 2017 and December 2019, with test set errors

shown in the top row of Figure 7.1 (blue line). We then evaluate the same model on

the remainder of the data (the deployment test set), from January 2020 to December

2020 (orange line).

From the perspective of a scheduler programmer or ML practitioner, the model

performs well on the original test set, and receives approval to be used in production.

Since the test set is randomly drawn from the pre-timestamp dataset, and is only

evaluated once, the practitioner is confident that its information did not ‘leak’, and
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that it is representative of the deployment environment. However, immediately after

deployment, the model’s error grows an order of magnitude, from 10%-30% error

on average, to 200%-500% on average. This is unexpected, and may be caused

by two different effects: (1) either the job distribution changed significantly after

model deployment, or (2) the original test set is not representative of the deployment

environment.

To test the first hypothesis, we repeat the experiment two additional times, this

time setting the timestamp to January 1st of 2019 and 2018 (rows two and three in

Figure 7.1). The effect persists when different timestamps are used, pointing to the

fact that models do not generalize to deployment workloads. In the next section, I

explore the sources of the sources of this discrepancy.

7.1.4 Modeling Assumptions Leading to Poor Prediction Accuracy

To model system behavior, we adopt the system modeling formulation from

Chapter 3, expressing the relationship between an HPC job j and its I/O throughput

on the system φ(j) as:

φ(j) = f(j, ζ, ω) (7.1)

Here, j represents HPC job behavior (e.g., I/O volume and access patterns, distribution

of POSIX operations, etc.), ζ represents system state (e.g., file system health, system

configuration, node availability, etc.) and system behavior (e.g., the behavior of other

applications co-located with the modeled application during its run, contention from

resource sharing, etc.) at a given time. ω represents the randomness acting on the

system. The system ζ can be further decomposed as:

ζ = ζg(t) + ζl(t, j) (7.2)
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The component ζg(t) represents the global system impact on all jobs running on the

system (e.g., a service degradation that equally impacts all jobs) and is only a function

of time t. The component ζl(t, j) represents the local system impact on the I/O

throughput of job j caused by resource contention and interactions with other jobs

running on the system. Contrary to the ζg(t) component, ζl(t, j) is job-specific and

depends on the behavior of the current set of applications running on the system and

their location relative to j, the sensitivity of j to resource contention and noise, etc.

Without loss of generality, the I/O throughput from Equation 7.1 can be expressed as:

φ(j) = f(j, ζg(t), ζl(t, j), ω)

= fa(j) + fg(j, ζg(t)) + fl(j, ζl(t, j)) + fn(j, ζ, ω)

(7.3)

The task of modeling a system’s I/O throughput involves predicting the behavior

of the system when tasked with executing a job from some application on some data.

Modeling I/O throughput requires modeling both the HPC system and the jobs

running on it. Machine learning models used in this work attempt to learn the true

function φ by mapping observable features of the job j and the system ζ to measured

I/O throughputs φ(j). A model m(jo, ζo) is tasked with predicting throughput φ(j),

where jo ⊆ j and ζo ⊆ ζ are the observable job and system features.

When designing ML models, the choice of model architecture and model inputs

is based on implicit assumptions about the process that generates the data. When

incorrect assumptions are made about the domain, the model will suffer from errors

that cannot be fixed within that modeling framework, e.g., through hyperparameter

tuning or further data collection. We investigate four common assumptions about the

HPC domain, shown by the branches in Figure 7.2.

All data is in-distribution: a common assumption that ML practitioners make

is that all model errors are the product of insufficiently trained models, inadequate
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model architectures, or missing discriminative features. However, some jobs in the

dataset may be Out of Distribution (OoD), that is, they may be collected at a different

time or environment, or through a different process. The model may underperform on

OoD jobs due to the lack of similar jobs in the training set and not due to lack of

insight (features) into the job. The cause of the problem is epistemic uncertainty (EU)

- the model suffers from reducible uncertainty, i.e., lack of knowledge, since a broader

training set would make the OoD jobs in-distribution (ID). In the HPC domain,

epistemic uncertainty is present in cases of rarely ran or novel jobs or uncommon

system states. Without considering the possibility that a portion of the error is a

product of epistemic uncertainty, practitioners may put effort into tuning models

instead of collecting more underrepresented jobs. Referring to Equation 7.1, this

assumption may be expressed as: deployment time jd and ζd are drawn from a different

distribution from training time jt and ζt.

Noise is absent: all systems have some inherent noise that cannot be modeled and

will impact predictions. Aleatory uncertainty (AU) refers to irreducible uncertainty

which stems from inherent noise or lack of insight into jobs on the system. Modeling

errors due to aleatory uncertainty are different from epistemic uncertainty because

collecting more jobs may not reduce AU, and these errors may be fundamentally

unfixable. Understanding and characterizing a system’s inherent I/O noise is necessary

to quantify ML model uncertainty, and because the amount of noise in the data has

a strong effect on the optimal choice of ML model. HPC I/O domain experts note

that certain systems do have significantly higher or lower I/O noise (Wan et al. 2017;

Xie et al. 2017), but I/O modeling works rarely attempt to quantify ML model

uncertainty (Madireddy et al. 2018a). The assumption that noise is not present in the

dataset can be expressed as follows: The practitioner assumes that the data-generating
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process φ has the form of φ(j) = f(j, ζ) instead of φ(j) = f(j, ζ, ω), i.e., that the

inherent noise impact is zero: fn(j, ζ, ω) = 0.

Sampling is independent: running a job on a system can be viewed as sam-

pling the combination of application behavior and system state and measuring I/O

throughput. Most I/O modeling works implicitly assume that multiple samples taken

at the same time are independent of each other. The system is modeled as equally

affecting all jobs running on it, that is, the placement of different jobs on nodes,

the interactions between neighboring jobs, network contention, etc. do not affect

the job. This assumption can then be expressed as: the process has the form of

φ(j) = f(j, ζg(t)), not φ(j) = f(j, ζ, ω) i.e., that the resource contention impact is

zero: fl(j, ζl(t, j)) = 0.

Process is stationary: a common assumption ML practitioners make is that the

data-generating process is stationary, and that the same job ran at different times

achieves the same I/O throughput. As hardware fails, as new nodes are provisioned,

and shared libraries get updates, the system evolves over time. The stationarity

assumption is therefore incorrect, and ignoring it by e.g., not exposing the ML model

to when a job is run may cause hard-to-diagnose errors. This assumption implies

sampling independence and absence of noise, and can be expressed using the system

modeling formulation as: φ(j) = f(j) and fg(j, ζg(t)) = 0.
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7.2 Understanding Sources of Model Error

During the development of an adaptive general-purpose computing system, hun-

dreds of different architectural designs may be prototyped, iterated on, and evaluated.

As hardware is typically built to be parametrizable, and differently-parametrized

designs may have different behavior, separate ML models of these systems must be

developed and evaluated. While ML configurations may be automatically explored

through Hyper-Parameter Optimization (HPO) and Neural Architecture Searches

(NAS), when these approaches converge, ML practitioners may need to manually

diagnose systemic errors. Due to the large number of complex systems in existence,

manually building and debugging ML models of these systems is a laborious and

unscalable task.

In this section, we seek a systematic, automated, and generalizable method for

diagnosing and measuring sources of model error. The goal of such a method is to

automatically detect when models require further tuning, when additional system

sensors are necessary to achieve good control, when the system is too noisy to be

accurately controlled, when workloads are novel and the system cannot hope to

achieve good control due to lack of training data, etc. With automated diagnostics,

ML practitioners do not need to be a part of the design iteration loop, and allow rapid

prototyping of adaptive systems.

7.2.1 Conventional Methods for Diagnosing Model Errors

When dealing with an underperforming model, ML practitioners may hand-craft,

grid search, or evolve new model architectures, they may attempt to gain more data
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samples, or add more information (features) per sample. If this does not work, they

may manually analyze mispredicted samples, potentially find mislabeled samples in the

training or test sets, try and understand training dynamics, e.g., by observing gradient

magnitudes in neural networks, attempt to classify the problem as e.g., underfitting

or overfitting, possibly perform predictions on the test set themselves in order to

establish a human baseline, etc. All of these methods are applied ad hoc, without a

defined order or unifying framework for diagnosing errors. ML practitioners typically

informally develop experience and ‘know-how’ in dealing with certain domains, e.g.,

image processing or tabular data.

This set of approaches may work on difficult to collect datasets such as e.g., X ray

scans that do not change often. This dissertation targets system modeling, where the

object being modeled (e.g., an HPC system or a CPU microarchitecture) may change

daily. Therefore, in this domain, experts may need to repeatedly re-apply a set of

‘tricks’, and due to the weakly-defined error diagnosis procedure, may not be able to

automate them.

7.2.2 Classifying I/O throughput prediction errors

No matter the problem to which machine learning is applied, a systematic char-

acterization of the sources of errors is crucial to improve model accuracy. While

there is no substitute for ‘looking at the data’ to understand the root cause of the

problem, this approach does not scale for large datasets. We seek a systematic way

to understand the barriers to greater accuracy and improve ML models applied to

systems data.

While the work presented here can be generalized past just I/O to e.g., compute or
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network modeling, we study I/O because I/O bottlenecks are more difficult to diagnose

than compute bottlenecks, and because I/O has a coarser temporal granularity allowing

software to observe I/O subsystems without the need for e.g., hardware performance

counters or binary instrumentation. The key questions we ask in this work are:

What are the impediments to the successful application of learning algorithms in

understanding I/O? Should ML practitioners focus on acquiring more data on HPC

applications or the HPC system? How much of the error stems from poor ML model

architectures? How much of the error can be attributed to the dynamic nature of the

system and the interactions between concurrent jobs? How much of the performance

variation is caused by the system? What fraction of jobs exhibit truly novel I/O

behavior compared to jobs observed thus far? At what point are the applications

too novel, so much so that users should no longer trust the predictions of the I/O

model? We now describe five error classes and dive deeper into error attribution in

Sections 7.2.4, 7.2.5, 7.2.7 and 7.2.6.

The lack of application and system observability, the interaction between running

jobs, the inherent system noise, and the novel or rare applications prevent ML models

from fully capturing system behavior, causing errors. We define the I/O throughput

prediction error of a model m in a job j as:

e(j) = φ(j, ζ, ω)−m(jo, ζo) (7.4)

Following the φ(j) terms from Eq. 7.3 and including the out-of-distribution error, the

error can be broken down as follows:

e(j) = eapp + esystem + eood + econtention + enoise (7.5)

Here, the application modeling error eapp is caused by a poor model fit of applica-

tion behavior (fa(j) component), the global system error esystem is caused by poor
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predictions of global system impact (fg(j, ζg(t)) component), the out-of-distribution

error eood is caused by weak model generalization on novel applications or system

states, the contention error econtention is caused by poor predictions of job interactions

(fl(j, ζl(t, j)) component), and the noise error enoise is caused by the inability of any

model to predict inherent noise (fn(j, ζ, ω) component). These five classes of errors

are shown as leaf nodes at the bottom of Figure 7.2. While attributing cumulative job

error to each class may be difficult on a per-job basis, we will show that estimating

each component across a whole dataset is possible.

7.2.3 I/O Model Error Taxonomy and Litmus Tests

We adopt the term litmus test to mean a test that evaluates the presence, amount,

or ratio of a certain quantity. In the following sections, we introduce a four litmus

tests that split the error from Equation 7.5 into five separate classes. The error

classes in Equation 7.5 must be estimated in the order shown in the bottom row of

Figure 7.2 due to the specifics of individual litmus tests. For example, before the

effect of aleatory and epistemic uncertainty can be separated, a good model must be

found (Egele et al. 2021). Similarly, before global and local system modeling errors

can be separated, OoD jobs must be identified.

Application modeling errors: ML models can have varying expressivity and

may not always have the correct structure or enough parameters to fit the available

data. Models whose structure or training prevents them from learning the shape of the

data-generating process are said to suffer from approximation errors. Approximation

errors cannot be classified as epistemic or aleatory in nature because no new features

or jobs are necessary to remove this error. To estimate AU and EU in the dataset,
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Figure 7.2: Taxonomy of I/O throughput modeling errors, with examples of the effects
of each error class shown in the column on the right.
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methods such as AutoDEUQ (Egele et al. 2021) first require that an appropriate

model architecture is found and trained, placing approximation errors as the first

branch of the taxonomy.

Approximation errors are further divided into application and system modeling

errors. Application modeling errors are caused by poor predictions of application

behavior which can be fixed through hyperparameter searches or better model archi-

tectures. The first column of Figure 7.2 illustrates the impact of application modeling

errors with an example hyperparameter search over two XGBoost parameters on the

Theta dataset (introduced in the next section). The best configuration found by the

grid search has 32 trees with a depth of 21, while the default XGBoost configuration

uses 100 trees of depth 6.

System modeling errors: system behavior changes over time due to transient

or long-term changes such as file system metadata issues, failing components, new

provisions, etc. (Lockwood et al. 2017). A model that is only aware of application

behavior, but not of system state implicitly assumes that the process is stationary.

It will be forced to learn the average system response to I/O patterns, and will

suffer greater prediction errors during periods when system behavior is perturbed.

System modeling errors occur due to poor (or complete lack of) modeling of the global

system component ζg(t). To illustrate this class of errors, the second experiment in

Figure 7.2 shows the per-week average error of two models trained to predict job

I/O throughput. The blue model can be written as m(jo), i.e., it is only exposed to

observable application behavior jo. The orange model can be written as m(jo, t), i.e.,

it also knows the job start time t. During service degradations, the blue model has

long periods of biased errors while the orange model does not, since it knows when

the degradations happen.
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Generalization errors: ML models should perform well on data drawn from

the same distribution from which their training set was collected. When exposed

to samples highly dissimilar from their training set, the same models tend to make

mispredictions. These samples are called ‘out-of-distribution’ (OoD) because they

come from new, shifted, distributions, or the training set does not have full coverage

of the sample space. While models that generalize (perform well on OoD data) may

exist, mispredictions on OoD samples are not always the fault of the model, and in

those cases the only recourse is to (1) detect and exclude samples suspected as out-of-

distribution, (2) seek an expanded training set covering those regions, or (3) apply

domain-specific knowledge. In order not to pollute other classes of errors, samples that

show high epistemic uncertainty must be detected and their error counted towards

generalization errors before other errors are estimated. As an example, the third

column of Figure 7.2 shows model error before (green) and after (red) deployment,

with the error significantly rising when the model is evaluated on data collected outside

the training time span.

Contention and resource sharing errors: a diverse and variable number of

applications compete for compute, networking, and I/O bandwidth on HPC systems

and interact with each other through these shared resources (B. Li et al. 2019; X.

Yang et al. 2016). Although the global system state will impact all jobs equally,

the impact of resource sharing is specific to pairs of jobs that are interacting and is

harder to observe and model. Prediction errors that occur due to lack of visibility

into job interactions are called contention errors and are shown in the fourth column

of Figure 7.2. Here, the I/O throughputs of a number of identical runs (same code

and data) of different applications illustrate that some applications are more sensitive

to contention than others, even when accounting for global system state.
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Inherent noise errors: while hard to measure, contention and resource sharing

errors can be potentially removed through greater insight into the system and workloads.

What fundamentally cannot be removed are inherent noise errors: errors due to

random behavior by the system (e.g., dropped packets, randomness introduced through

scheduling, etc.). Inherent noise is problematic both because ML models are bound

to make errors on samples affected by noise and because noisy samples may impede

model training. The fifth column of Figure 7.2 shows the I/O throughput and start

time differences between pairs of identical jobs. The leftmost column contains identical

jobs that ran at exactly the same time, which often experience 5% or more difference

in I/O throughput.

7.2.4 Application modeling errors

When an ML practitioner is tasked with a classification or a regression problem, the

first model they evaluate will likely under-perform on the task, due to e.g., inadequate

data preprocessing, architecture, or hyperparameters. Therefore, the model will suffer

from approximation errors, which can be removed by tuning the model hyperparameters

or finding more appropriate domain-specific ML model architectures. Since the choice

of model architecture and parameters typically has a dominant effect on model error,

approximation errors must be resolved before more subtle classes of errors become a

limiting factor in improving model performance.

Approximation errors can be split into errors caused by poor modeling of the

available data (i.e., applications), and into errors caused by implicit assumptions

about the domain (e.g., that I/O behavior of a system does not change over time). In
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this section we analyze application modeling errors, and in Section 7.2.5 we analyze

system modeling errors.

This section asks the following questions: do I/O models build faithful representa-

tions of application behavior? What are the limits of I/O application modeling? In

practice, do I/O models faithfully learn application behavior? Can I/O application

modeling benefit from extra hyperparameter fine-tuning or new application features?

7.2.4.1 Estimating limits of application modeling

Here we develop an application modeling error litmus test which separates the

application modeling error eapp from the other four error classes in Equation 7.5. To

do so, we seek a ‘golden model’ (GM) that predicts I/O throughput as accurately

as possible given the observable application behavior. Application modeling error of

a practical ML model is then estimated by comparing its error rate with that of a

golden model.

To build this ‘golden model’, we rely on a property of synthetic datasets where

the data-generating process can be freely and repeatedly sampled. When analyzing

HPC logs, it is common to see records of the same application ran multiple times on

the same data, or data of the same format. For example, system benchmarks such as

IOR (Shan and Shalf 2007) may be run periodically to evaluate file system health

and overall performance. We call these sets of repeated jobs ‘duplicate jobs’. Pairs of

jobs are duplicates if they belong to the same application and all of their observable

application features are identical, typically because the application was ran with the

same configuration and input data. Because jobs from the same set of duplicates

appear identical to an ML model, the model cannot distinguish between them. Given
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a training set that only contains sets of duplicate jobs, the highest possible accuracy

can be achieved by mapping jobs from each individual set of duplicates to the set’s

mean I/O throughput. A model that does not learn to predict a set’s mean value is

said to suffer from application-modeling error.

By restricting the training set to only sets of duplicates, a golden model with

a median absolute error eg can be built for which egapp = 0. This golden model

performs only memorization and does not generalize at all, but is nonetheless useful

for comparison against real ML models. Any practical model with a median error ep

can then learn its application modeling error epapp on the restricted training set by

comparing against the golden model eg as epapp = ep − eg. Since duplicate sets can

have as few as two jobs, I/O throughput estimates for duplicate sets are biased, and

the golden model (GM) may appear to perform better on small sets than on large

sets. By applying Bessel’s correction (Bishop 2006), this effect is mitigated, and the

litmus test is administered as:

Application modeling error litmus test:

1. Find sets of duplicate jobs. For each set:

1.1. Calculate the set’s mean I/O throughput;

1.2. Apply Bessel’s correction to mean;

1.3. Use mean as golden model prediction;

1.4. Calculate per-set mean GM absolute error;

2. Calculate median of real and GM mean set errors;

3. Calc. model’s eapp as difference between the two;

Assuming that duplicate jobs are drawn from the same distribution of applications
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as the rest of the dataset, the golden model median absolute error represents the lower

bound on median absolute error a model can achieve on the whole dataset. Note that

different applications may have different distributions of duplicate I/O throughputs, as

shown in the fourth column of Figure 7.2. For this litmus test to be accurate, a large

sample of applications representative of the HPC system workload must be acquired.

When applied to Theta, 19010 duplicates (23.5% of the dataset) over 3509 sets show a

median absolute error of 10.01%. Cori has 504920 duplicates (54%) in 77390 sets with

a median absolute error of 14.15%. If the litmus test is applied correctly, practical

ML models may approach the golden model’s error but cannot surpass it.

7.2.4.2 Minimizing application modeling error

The next question is whether ML models can practically reach the error lower

bound estimate eg. Several I/O modeling works have explored different types of ML

models: linear regression (Isakov et al. 2020), decision trees (Tuncer et al. 2017),

gradient boosting machines (Isakov et al. 2020; Tuncer et al. 2017; Xie et al. 2021),

Gaussian processes (Madireddy et al. 2018b), neural networks (Madireddy et al. 2019b),

etc. Here, we explore two types of models: XGBoost (Chen and Guestrin 2016), an

implementation of gradient boosting machines, and feedforward neural networks.

These model types are chosen for their accuracy and previous success in I/O modeling.

Neither type of model achieves ideal performance ‘out of the box’. XGBoost model

performance can be improved through hyperparameter tuning, e.g., by exploring

different (1) numbers of decision trees, (2) their depth, (3) the features each tree is

exposed to, and (4) part of the dataset each tree is exposed to. Neural networks are

more complex, since they require tuning hyperparameters (learning rate, weight decay,
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dropout, etc.), while also exploring different architectures (number of layers, their

size, type, and connectivity). In the case of XGBoost, we exhaustively explore four

hyperparameters listed above, for a total of 8046 XGBoost models. In the case of

neural networks, exhaustive exploration is not feasible due to state space explosion,

so we use AgEBO (Egele et al. 2020), a Network Architecture Search (NAS) method

that trains populations of neural networks and updates each subsequent generation’s

hyperparameters and architectures through Bayesian logic.

The leftmost column of Figure 7.2 shows a heatmap of an XGBoost exhaustive

search over two parameters on the Theta dataset, with the other two parameters (%

of columns and rows revealed to the trees) selected from the best possible result found.

The best performing model has an error of 10.51% - close to the predicted bound of

10.01%. The Cori search arrives at a similar configuration with an error of 14.92%.

In the case of neural networks, Figure 7.3 shows a scatter plot of test set errors of

10 generations of neural networks on the Cori system, with 30 networks per generation.

The networks are evolved using a separate validation test to prevent leakage of the

test set into the model parameters. Networks approach the estimated error limit, and

the best result achieves a median absolute error of 14.3%. After extensive tuning both

neural networks and XGBoost models asymptotically approach the estimated limit in

model accuracy. Despite the 300 trained neural networks, NAS does little to improve

models, since only 6 out of 300 different models improve on previous results (gold stars

in Figure 7.3). This suggests that both types of ML models are impeded by the same

barrier and that the architecture and the tuning of models are not the fundamental

issue in achieving better accuracy, i.e., that the source of error lies elsewhere.
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Figure 7.3: Results of the Neural Architecture Search (NAS), with the estimated error
lower bound highlighted in red.

7.2.4.3 Increasing visibility into applications

While hyperparameter and architecture searches approach but do not surpass the

litmus test’s estimated lower bound on error, this is not conclusive evidence that all

application modeling error has been removed and that error stems from other sources.

Possibly, there exist missing application features that might further reduce errors. We

explore two such sets of features: MPI-IO logs and Cobalt scheduler logs.

Figure 7.4 shows the absolute error distribution of hyperparameter-tuned models

trained on three Theta datasets: POSIX, POSIX + MPI-IO, and POSIX + Cobalt

(Cori excluded because of the lack of Cobalt logs). None of the dataset enrichments

help reduce error, corroborating the conclusion that poor application modeling is not

a source of error for these models, and further insight into applications will not help.

Note that this absence of evidence does not imply evidence of absence, i.e., it does

not prove that there exist no features that may help improve predictions. However,

this experiment does present a best-effort attempt at exposing novel features, and the

model’s predictions stay within predicted limits.

Adding Cobalt logs does reduce the error on the training set, and ablation studies

show that the job start and end time features are the cause. Once timing features
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are present in the dataset, no two jobs are duplicates due to small timing variations.

While previously the ML model was not able to overfit the dataset due to the existence

of duplicates, this is no longer the case, and the ML model can differentiate and

memorize each individual sample. In (Isakov et al. 2020) authors remove timing

features for a similar reason: ML models can learn Darshan’s implementation of I/O

throughput calculation and make good predictions without observing job behavior.

Figure 7.4: Error distribution of models trained on POSIX,
POSIX + MPI-IO, and POSIX + Cobalt feature sets.

7.2.5 Global system modeling errors

The second part of the approximation error in the taxonomy is the global system

modeling error. This error refers to I/O climate and I/O weather effects (Lockwood

et al. 2017) that affect all jobs running on the system, and corresponds to the second

component in Equation 7.3. While global and local system impact on job performance
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have complex and overlapping effects, factorizing system impact into impact applied

to all jobs versus the impact that is dependent on pairs of concurrent jobs is useful

for modeling purposes. The main difference between the two is that modeling local

system impact requires modeling relationships between all pairs of concurrent jobs,

while modeling global system impacts requires modeling only a single but pervasive

influence. In other words, global system impact modeling is insensitive to the number of

concurrent jobs running on the system, and can be seen as a form of lossy compression

of system state and contention impact on jobs.

We now ask: How does I/O contention impact job I/O throughput prediction?

What are the limits of global system modeling? Can I/O models approach this limit?

What I/O subsystem features can help improve I/O throughput predictions?

7.2.5.1 Estimating limits of global system modeling

Global system impact ζg(t) on job j from Equation 7.3 can be formalized as some

function ζg(t) = g(J(t)) where J is the set of jobs running at time t. Since jobs have

a start and end time, given a dataset with a dense enough sampling of J , g(J(t))

can be calculated for every point in time. During periods of time where e.g., the file

system is suffering a service degradation, all jobs on the system will be impacted with

varying severity. A model of the system does not need to understand how and why

the degradation happened, it only needs to know degradation start and end times,

and how different types of jobs were impacted. This time-based model is useless for

predicting future performance, and its only utility is in evaluating how much of the

degradation can be described as purely a function of time. A deployed model does

not have insight into the future and will still need to observe the system.
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To evaluate the global system impact, a golden model that exhibits no global

modeling error is developed, against which other, ‘real’ ML models can be compared.

Since the global system impact ζg(t) only depends on time t and may ignore the set of

all jobs J , only application behavior j and the job start time feature are exposed to

the golden model. Both real and golden models have optimized hyperparameters and

should have eapp = 0, but only the golden model has esystem = 0 (assuming enough

data to memorize ζg(t) is available). The litmus test compares these two models to

determine epsystem = ep − eg. Here, a golden model is an XGBoost model fine-tuned

on a validation set and evaluated on a test set. Assuming that the golden model is

exposed to enough jobs throughout the lifetime of the system, it will learn the impact

of ζg(t) even without having access to the underlying system features causing that

impact. This golden model is used in the following litmus test:

System modeling error litmus test:

1. Run grid search on real model, find lowest ep;

2. Insert job start time feature t into the dataset;

3. Run grid search on golden model, find lowest eg;

4. Calc. system modeling error epsystem = ep − eg;

If the litmus test is applied correctly, the golden model only suffers from the last

three classes of errors: poor generalization, local system impact, and inherent noise.

Note that the litmus test is applied on the whole dataset, and not just duplicates,

because the less numerous duplicate jobs do not cover the whole lifetime of the system

well. In Figure 7.5 we evaluate a baseline model (blue) and a model enriched with the

job start time (orange). Adding a start time feature has a large impact on error: on

180



Cori, the error drops 40%, from 16.49% down to 10.02%, while on Theta the error

drops by 30.8%. To obtain this higher accuracy on the POSIX+time dataset, a far

larger model is needed, i.e., one that can remember the I/O weather throughout the

lifetime of the system.

Note that the timestamp feature fed to the golden model serves no purpose at

deployment time, since the ML model cannot learn the state of the system as it is

happening. This golden model is useful to retrospectively analyze past states and

validate that deployment-time models are not suffering from system modeling errors.

7.2.5.2 Improving modeling through I/O visibility

With an estimate of minimal error achievable assuming perfect application and

global system modeling, we investigate whether I/O subsystem logs can help models

approach this limit. Since Theta does not collect I/O subsystem logs, we analyze

Cori, which collects both application and I/O logs. Figure 7.5 shows the XGBoost

performance of three models: a baseline where eapp = 0 (blue), the litmus test’s

golden model where also esystem = 0 (orange), and a Lustre-enriched model (green).

Cori’s median absolute error is reduced by 40%, from 16.49% down to 9.96%. The

Lustre-enriched results are surprisingly close to the litmus test’s predictions, and

suggest that predictions cannot be improved through further I/O insight since the

litmus test’s prediction is reached.
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Figure 7.5: Error distribution of models trained on (1) POSIX, (2) POSIX + the start
time feature, and (3) Darshan and Lustre.

7.2.6 Generalization errors

The remaining three classes of error are caused by lack of data and not poor

modeling, as the top branch of the taxonomy shows. While I/O contention and

inherent noise errors are examples of aleatory uncertainty and are caused by lack of

insight into specific jobs, generalization errors stem from epistemic uncertainty, i.e.,

the lack of other logged jobs around a specific job of interest. To motivate this section,

in the third graph of Figure 7.2 we show error distribution of a model trained on data

from January 2018 to July 2019. When evaluated on held-out data from the same

period, the median absolute error is low (green line). Once the model is deployed

and evaluated on the data collected after the training period (July 2019 and after),

median error spikes up (red line).
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7.2.6.1 Estimating generalization error

Estimating the amount of out-of-distribution error eood is important because any

unaccounted OoD error will be classified as noise or contention. This will make

systems that run a lot of novel jobs appear to be more noisy than they truly are.

Because OoD and ID jobs likely have a similar amount of I/O and contention noise,

false positives (ID jobs classified as OoD) are preferable over false negatives, since

false negatives contribute to overestimating I/O noise. To estimate the impact of

out-of-distribution jobs on error eood, we aim to quantify how much of the error is

epistemic and how much is aleatory in nature, as shown in Figure 7.2 (upper right).

The leading paradigm for uncertainty quantification works by training an ensemble of

models and evaluating all of the models on the test set. If the models make the same

error, the sample has high aleatory uncertainty, but if the models disagree, the sample

has high epistemic uncertainty (Lakshminarayanan, Pritzel, and Blundell 2017). The

intuition is that predictions on out-of-distribution samples will vary significantly on

the basis of the model architecture, whereas predictions on ID but noisy samples will

agree and exhibit the same bias. Since this method relies on ensemble to have great

model diversity, several works have explored increasing diversity through different

model hyperparameters (Wenzel et al. 2020), different architectures (Zaidi et al. 2020),

or both (Egele et al. 2021). We choose to use AutoDEUQ (Egele et al. 2021), a

method that evolves an ensemble of neural network models and jointly optimizes

both the architecture and hyperparameters of the models. While in theory any type

of machine learning model can be used for the model population, neural networks

are attractive due to their high hyperparameter count, diverse architectures found

in practice, and high generalization capability. Additionally, AutoDEUQ’s Neural
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Architecture Search (NAS) is compatible with the NAS search from section 7.2.4,

reducing the computational load of applying the taxonomy. Note that in order for

AutoDEUQ to correctly split error into eood vs. econtention + enoise, first all application

and system modeling errors eapp and esystem must be removed. Therefore, the function

of the NAS is two-fold in this litmus test: (1) eliminate application and system

modeling errors, and (2) create a diverse model population. Figure 7.6 shows the

distribution of epistemic (EU) and aleatory uncertainties (AU) of Theta and Cori test

sets. For both systems, aleatoric uncertainty is significantly higher than epistemic

uncertainty. Furthermore, all jobs seem to have AU larger than about 0.05, hinting

at the inherent noise present in the system. The inverse cumulative distributions on

the margins (red) show what percentage of total error is caused by AU / EU below

that value. For example, for both systems 50% of all error is caused by jobs with EU

below 0.04, while in case of AU, 50% of error is below AU=0.25. The low total EU is

expected since the test set was drawn from the same distribution as the training set,

and increases on the 2020 set (omitted due to space concerns).

Figure 7.6: Distribution of prediction aleatory and epistemic uncertainties for the two
systems, with marginal distributions (blue) and inverse cumulative error (red) shown
on the margins.
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Epistemic uncertainty does not directly translate into the out-of-distribution error

eood from Equation 7.5. When a sample is truly OoD, it may not be possible to

separate aleatory and epistemic uncertainty, since a good estimate of AU requires

dense sampling around the job of interest. Therefore, we choose to attribute all errors

of a sample marked as out-of-distribution to eood. This error attribution requires

classifying every test set sample as either in- or out-of-distribution, but since EU

estimates are continuous values, an EU threshold which will separate OoD and ID

samples is required. Although this threshold is specific to the dataset and may require

tuning, the quick drop or ‘shoulder’ in the inverse cumulative error graph around

EU=0.1 in Figure 7.6 makes the choice of an EU threshold robust. A litmus test that

estimates the error due to out-of-distribution samples has the following steps:

Out-of-Distribution error litmus test:

1. Run network architecture search:

1.1. Minimize epapp and e
p
system for each model;

1.2. Collect best performing models;

2. Estimate epistemic uncertainty using AutoDEUQ;

3. Find a stable epistemic uncertainty threshold;

4. Classify jobs as either ID or OoD based on threshold;

5. Calculate eood as the sum of OoD job errors.

On Theta, for an EU threshold of 0.24, .7% of the samples are classified as OoD,

but constitute 2.4% of the errors, while on Cori 2.1% of error gets removed for the

same EU threshold. In other words, the selected jobs have 3× larger average error

than random samples. By visualizing the high-dimensional job features using the
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Gauge tool (del Rosario et al. 2020a) and interactively exploring the types of jobs

that do get removed, we confirm that OoD-classified jobs are typically rare or novel

applications.

7.2.7 I/O Contention and Inherent Noise Errors

With the ability to estimate the amount of application and system modeling error,

as well as detect outlier jobs, leftover error is caused by system contention or inherent

noise. Both of these error classes are caused by aleatory uncertainty, since the model

lacks deeper insight into jobs or the system, as opposed to the OoD case where the

model lacks samples. While e.g., application error was explainable in terms of broad

application behavior (e.g., this application is slow because it frequently writes to

shared files, but the model fails to learn this effect), the impact of contention and

noise on I/O throughput is caused by lower level, transient effects. Though it may be

possible to observe and log such effects through microarchitectural hardware counters

or network switch logs, such logging would require vast amounts of storage per job

and may impact performance. Lack of practical logging tools makes the last two

error categories typically unobservable. Furthermore, these two classes may only be

separated in hindsight, and while I/O noise levels may be constant, the amount of

I/O contention on the system is unpredictable for a job that is about to run.

The questions we ask in this section are: how can errors due to noise and contention

be separated from errors due to poor modeling or epistemic uncertainty? Is there a

fundamental limit to how accurate I/O models can become? What steps are necessary

to quantify system I/O variability?
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7.2.7.1 Establishing the bounds of I/O modeling

To separate contention and noise impacts from the first three classes of error,

we develop a litmus test based on the test from Section 7.2.4. There, by observing

sets of duplicates, the error of a golden model eg was estimated, where egapp = 0.

Comparing real models against this ideal model allows for calculating a real model’s

eapp. This litmus test works by ‘holding constant’ application behavior j within a set

of duplicates, i.e., by preventing any input variance from reaching the model. The here

introduced noise and contention litmus test seeks to hold constant not only application

behavior, but also global system impact, and impact from poor generalization. We

design a litmus test that works by enforcing a stronger requirement on duplicate sets,

where pairs of jobs are duplicates only if they have the both same application behavior

j and same start time t. The test assumes that identical jobs ran at the same time are

exposed to the same global system impact ζg(t), but not necessarily the same local

impact. The litmus test therefore estimates the sum of contention and noise error for

a golden model, where only concurrent duplicates are observed and both application

behavior j and global system behavior ζg(t) are held static for each duplicate set.
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Contention and noise error litmus test:

1. Remove OoD jobs as per previous litmus test;

2. For each set of concurrent duplicate jobs (∆t = 0):

2.1. Calculate the set’s mean I/O throughput;

2.2. Apply Bessel’s correction to mean;

2.3. Use mean as golden model prediction;

2.4. Calculate per-set mean GM absolute error;

3. Calculate econtention + enoise as median of golden model per-set errors.

In the fifth column of Figure 7.2 we show the distribution of I/O throughput

differences ∆φ and timing differences ∆t between all pairs of Cori duplicate jobs,

weighted so that large duplicate sets are not overrepresented. The vertical strip on

the left contains Cori duplicate jobs that were run simultaneously, largely because

they were batched together. These jobs share j and ζg, but may differ in ζl and ω.

Due to the denser sampling around 1 minute to 1 hour range, it is not immediately

apparent how the I/O difference changes between duplicates ran at the same time and

duplicates ran with a small delay. By grouping duplicates from different ∆t ranges

and independently scaling them, a better understanding of duplicate I/O throughput

distributions across timescales can be made, as shown in Figure 7.7 (Theta shown,

Cori omitted due to lack of space). For both systems, the distributions on the right

contain jobs ran over large periods of time where global system impact ζg might have

changed, explaining the asymmetric shape of some of them. The left-most distributions

are similar, since variance only stems from contention ζl and noise ω. While some

distributions (e.g., the 105 to 106 second) show complex multimodal behavior, all of

the distributions seem to contain the initial zero-second (0s to 1s) distribution.
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Figure 7.7: Distribution of errors for different periods between duplicate runs.

By fitting a normal distribution to the ∆t = 0 distribution (0s to 1s) in Figure 7.7,

we can both (1) learn the lower limit on total modeling error and (2) learn the system’s

I/O noise level, i.e., how much I/O throughput variance should jobs running on the

system expect. However, upon closer inspection, the ∆t = 0 distribution does not

follow a normal distribution. This is surprising, since if noise follows some (not

necessarily normal) stationary distribution, and is independent over time, and its

effects are cumulative, according to the central limit theorem the total noise impact

is a normal distribution. The answer lies in how the concurrent (∆t = 0) duplicates

are sampled. When observing duplicates, in general, duplicate sets have between 2

and hundreds of thousands of identical jobs in them. However, in duplicate sets with

identical start times on Theta, 70% of the sets only have two identical jobs, and 96%

have 6 jobs or less, with similar results on Cori. The issue stems from how small

(sub-30 sample) duplicate set errors are calculated: when only a small number of jobs

exist in the set, the mean I/O throughput of the set is biased by the sampling, i.e.,

the estimated mean is closer to the samples than the real mean is. This causes the set

I/O throughput variance to decrease and therefore duplicate error estimate will be
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reduced as well. Student’s t-distribution describes this effect: when the true mean of a

distribution is known, error calculations follow a normal distribution. When the true

mean is not known, the biased mean estimate makes the error follow the t-distribution.

As the set size increases, the t-distribution approaches a normal distribution. However,

naively taking the variance of the t-distribution will produce a biased sample variance

σ2, which can be de-biased by applying Bessel’s correction as σ̄2 = n
n−1

σ2.

With de-biasing in place, we estimate the I/O noise variance of the two systems.

Results show that a job running on Theta can expect an I/O throughput within

±5.71% of the predicted value 68% of the time, or within ±10.56% 95% of the time.

For Cori, these values are ±7.21% and ±14.99%, respectively. This is a fundamental

barrier not just to I/O model improvement, but to predictable system usage in general.

Although some insight into contention can be gained through low-level logging tools,

noise cannot be overcome. I/O practitioners can use this litmus test to evaluate the

noise levels of their systems, and ML practitioners should reconsider how they evaluate

models, since some systems may be simply harder to model.

7.2.8 Applying the taxonomy

We now illustrate how the proposed taxonomy can be used in practice. In Figure 7.8,

we show the steps a modeler can follow to evaluate the taxonomy on a new system.

Step 1: The modeler splits the available data into training and test sets, and then

trains and evaluates some baseline machine learning model on the task of predicting

I/O throughput. This model does not have to be fine-tuned, as the taxonomy will

reveal the main sources of error and approximately how much the quality of the

model is at fault. Step 2.1: The modeler estimates application modeling errors by
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Figure 7.8: Framework for applying the taxonomy.

Figure 7.9: Results from ALCF Theta and NERSC Cori systems.

finding duplicate jobs and evaluating the mean predictor performance on every set of

duplicates. Assuming that the distribution of duplicate HPC jobs is representative

of the whole population of jobs, this step provides the modeler with a lower bound

on the application modeling error. Step 2.2: By contrasting the baseline model error

(Step 1) and the estimated application modeling error, the modeler can estimate the

percentage of error that can be attributed to poor modeling. The modeler performs

a hyperparameter or network architecture search and arrives at a good model close

to the bound. Step 3.1: The modeler estimates system modeling errors by exposing

the job start time feature to a golden model. This step requires that the modeler has

developed a well-performing model in Step 2.2, i.e., one that achieves close to the

191



estimated ideal performance. The test set error of the model serves as an estimate

of the application + system modeling lower bound. Step 3.2: The modeler explores

adding sources of system data to improve the performance of the baseline model up to

the estimated limit of application and system modeling. Step 4: The modeler identifies

out-of-distribution samples using AutoDEUQ, calculates OoD error that stems from

these samples, and removes them from the dataset. Step 5: The modeler estimates

the error that can be attributed to contention and noise, as well as I/O variance of the

system. This estimate is made by observing the I/O throughput differences between

sets of concurrent duplicates, i.e., duplicate jobs ran at around the same time.

In Figure 7.9 we show the average baseline model error (inner pink circle segment)

of both ANL Theta and NERSC Cori systems, and how that error is broken down

into different classes of error. We do not focus on the cumulative (total) error value

of the two systems; instead, we focus on attributing the baseline model error into

the five classes of errors in the taxonomy (middle circle segments of the pie chart),

and on the percentage of error that can be removed through improved application

and system modeling (outer segments of the pie chart). The inner blue section of

the two pie charts represents the estimated application modeling error, as arrived at

in Step 2.1. The outer blue section represents how much of the error can be fixed

through hyperparameter exploration, as explored in Step 2.2. The inner green section

represents the estimated system modeling error, derived in Step 3.1. Note that the

total percentage of system modeling error is relatively small on both systems; i.e., I/O

contention, filesystem health, hardware faults, etc., do not have a dominant impact

on I/O throughput. The outer green circle segment represents the percentage of error

that can be fixed by including system logs (LMT logs in our case), as described in

Step 3.2. Only the Cori pie chart has this segment, as Theta does not collect LMT
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logs. On Cori, the inclusion of LMT logs helps remove most of the system modeling

errors, reinforcing the conclusion that including other logs (i.e., topology, networking)

may not help to significantly reduce errors. The inner red segment represents the

percentage of error that can be attributed to out-of-distribution samples of the two

systems, as calculated in Step 4. Finally, the yellow circle segment represents the

percentage of error that can be attributed to aleatory uncertainty. For both Theta

and Cori, this is a rather large amount, pointing to the fact that there exists a lot

of innate noise in the behavior of these systems, and setting a relatively high lower

bound on ideal model error.

The similarity between the modeling error estimates (Steps 2.1 and 3.1) and the

actual updated model performance (Steps 2.2 and 3.2) is surprising and serves as

evidence for the quality of the error estimates. However, the estimates of the five

error classes do not add up to 100%. The first three error estimates are just that -

estimates, derived from a subset of data (duplicate HPC jobs) that do not necessarily

follow the same distribution as the rest of the dataset and may be biased. If we add

the estimates, we see that on Theta 32.9% of the error is unexplained, and on Cori

13.5% of the error is unexplained. Cori’s lower unexplained error may be due to the

fact that we have collected some 1.1M jobs compared to 100K on Theta.
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7.3 Results and Insights

Developing production-ready machine learning models that analyze HPC jobs and

predict I/O throughput is difficult: the space of all application behaviors is large, HPC

jobs are competing for resources, and the system changes over time. To efficiently

improve these models, we present a taxonomy of HPC I/O modeling errors that

enables independent study of different types of errors, helps quantify their impact,

and identifies the most promising avenues for model improvement. Our taxonomy

breaks errors into five categories: (1) application and (2) system modeling errors, (3)

poor generalization, (4) resource contention, and (5) I/O noise. We present litmus

tests that quantify what percentage of model error should be attributed to each class,

and show that models improved by using the taxonomy are within a percentage point

of an estimated best-case I/O throughput modeling accuracy. We show that a large

portion of I/O throughput modeling error is irreducible and stems from I/O variability.

We provide tests that quantify the I/O variability and establish an upper bound on

how accurate I/O models can become. Our test shows that jobs ran on Theta and

Cori can expect an I/O throughput standard deviation of 5.7% and 7.2%, respectively.

In future work, we plan to explore why error classes in Figure 7.9 do not add up to

100%. Our hypothesis that poor duplicate distribution is the source of this discrepancy,

and that instead of duplicate jobs, a targeted set of repeated microbenchmarks may

better inform the framework introduced in this work. By tuning and executing

microbenchmarks representative of the system’s application distribution, we hope to

build a minimal set of workloads that evaluate system parameters such as I/O noise

amount or application parameters such as I/O contention sensitivity. We also plan to
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explore how transferable this set of benchmarks is, and whether different HPC system

workloads can be accurately represented by a set of weighted microbenchmarks.

7.3.1 Application to System Sensors

As Figure 7.9 shows, a surprising amount of system unpredictability stems from

low-level workload features that require runtime observations. The duplicate job

litmus test shows that even adding e.g., hardware performance counters monitoring

workload features will not help improve predictions on these jobs. The solution lies in

improving observability of system features: this includes runtime measuring of cache

and network (including I/O) latencies, monitoring compute node microarchitecture,

and communicating this information between nodes in order to e.g., detect stragglers.

Since neither Cori not Theta litmus test account for 100% of errors, additional

sensors may need to be developed in order to close the gap and provide greater

confidence in error allocation. In future work I plan to explore automated and closed-

loop systems that implement sensors, execute workloads, and evaluate the taxonomy,

so that the necessary sensors may be developed automatically.

7.3.2 Application to Decision-Making Systems

Runtime decision-making systems have two main challenges: identifying jobs

that can benefit from adaptation, and deciding on the best course of action for

that adaptation. While the space of actions is highly-specific to the available system

actuators, identifying underperforming jobs is system independent. Any set of duplicate

jobs that has large performance variation is likely sensitive to some low-level system
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effects, and with the correct decision-making and system actuators, all jobs within

that set may be able to perform at the level of the ‘best-in-class’ job. In future work I

plan to develop algorithms for not just predicting job performance, but also predicting

best-case job performance. By comparing these two predictions, jobs with adaptation

potential may be identified and their goal satisfaction may be improved.

7.3.3 Application to System Actuators

Since low-level environmental effects are a major contributor to system unpre-

dictability, these effects cannot be controlled or adapted to at scheduling-time, and

require dynamic adaptation. Due to the transient nature of these effects, low-latency

actuators operating at the same timescale are as the environmental effects are neces-

sary allow the system to react in time. In future work I plan to explore automated

identification of beneficial actuators by building using model interpretation techniques

to narrow down microarchitectural events causing workload unpredictability.
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Chapter 8

CONCLUSION

In this dissertation, I have explored three classes of adaptive architectures, which

adapt (i) during the design time across generations of a family of systems, (ii) at

workload scheduling time between workload executions, and (iii) during workload

execution.

Through the study of design-time general-purpose adaptive systems, I show that

these systems suffer from lack of visibility into the changing distribution of workloads

the system will encounter after deployment. Scheduling-time adaptive systems have

greater visibility into system and workload conditions and can adapt to novel classes

of workload and environments. However, even with scheduling-time adaptation,

workloads exhibit significant unpredictability that cannot be accounted for.

In (Isakov et al. 2020) I develop a set of methods for clustering workloads in order

to enable scalable analysis of large amounts of system logs. By building interpretable

local models of small groups of similar jobs, I present methods that can identify which

sensors or monitors are beneficial for understanding these jobs, as well as diagnose

and explain workload and system bottlenecks. However, these methods arrive at

fundamental limits of system predictability, i.e., they cannot predict workload and

system behavior with less than ≈ 10% variation.

To understand whether more workload logs, more insight into the system, or more

system sensors are needed to improve models of systems and workloads, in (Isakov

et al. 2022) I propose a methodology for classifying sources of system unpredictability.

In this work I show that the majority of unaccounted uncertainty about how a system
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will perform stems from low-level system effects that cannot be efficiently observed

purely through software. With these conclusions, I show that low-level system and

microarchitectural effects have a large but often unobserved impact on performance.

Adapting to these effects requires both low-level sensors and actuators, for which I

propose a RISC-V-based binary instrumentation tool that can observe binaries during

runtime at the ISA-level, as well as a hardware architecture for low-impact monitoring

of system microarchitecture.

8.1 Directions for Future Research

Modeling systems and extracting insight about any system bottlenecks, lack of

visibility into workloads, and candidate system actuators is currently a slow and

manual process. In future work, I plan to develop a system modeling framework that

can: (i) automatically instrument workloads and implement system sensors, (ii) collect

workload data and build system models, (iii) interpret models and present system

bottlenecks and possible improvements, as well as (iv) report the sources of uncertainty

by class. Through such a framework, system designers may be able to quantify the

benefits of different classes of adaptation and whether their systems warrant statically

or dynamic adaptation.

On a separate line of research, I plan to investigate how low-area and low-latency

machine learning algorithms (Isakov, Ehret, and Kinsy 2018; Isakov and Kinsy 2020)

can be used for runtime decision-making and online learning. By building tightly-

integrated sense-decide-act loops in hardware, I aim to answer the question of how

system adaptation timescales affect goal satisfaction, and how fast system actuators

need to be to extract all adaptation benefits.
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