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ABSTRACT

The propagation of waves in solids, especially when characterized by dispersion, re-

mains a topic of profound interest in the field of signal processing. Dispersion rep-

resents a phenomenon where wave speed becomes a function of frequency and re-

sults in multiple oscillatory modes. Such signals find application in structural health

monitoring for identifying potential damage sensitive features in complex materials.

Consequently, it becomes important to find matched time-frequency representations

for characterizing the properties of the multiple frequency-dependent modes of prop-

agation in dispersive material. Various time-frequency representations have been

used for dispersive signal analysis. However, some of them suffered from poor time-

frequency localization or were designed to match only specific dispersion modes with

known characteristics, or could not reconstruct individual dispersive modes. This

thesis proposes a new time-frequency representation, the nonlinear synchrosqueezing

transform (NSST) that is designed to offer high localization to signals with nonlin-

ear time-frequency group delay signatures. The NSST follows the technique used

by reassignment and synchrosqueezing methods to reassign time-frequency points of

the short-time Fourier transform and wavelet transform to specific localized regions

in the time-frequency plane. As the NSST is designed to match signals with third

order polynomial phase functions in the frequency domain, we derive matched group

delay estimators for the time-frequency point reassignment. This leads to a highly lo-

calized representation for nonlinear time-frequency characteristics that also allow for

the reconstruction of individual dispersive modes from multicomponent signals. For

the reconstruction process, we propose a novel unsupervised learning approach that

does not require prior information on the variation or number of modes in the signal.

We also propose a Bayesian group delay mode merging approach for reconstructing

modes that overlap in time and frequency. In addition to using simulated signals, we
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demonstrate the performance of the new NSST, together with mode extraction, using

real experimental data of ultrasonic guided waves propagating through a composite

plate.
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Chapter 1

INTRODUCTION

1.1 Motivation: Time Frequency Analysis of Dispersive Propagation

Ultrasonic guided wave (UGW) testing is commonly used for structural health

monitoring, based on processing waves propagating through structures. The method

exploits resonances between structure boundaries in order to detect changes that can

be used to evaluate the degree of damage and localize defects in the structure [9]. As

UGWs propagate through a structure, they undergo frequency-dependent attenuation

and dispersion due to changes in their velocity as a result of multiple reflection modes

and material and geometry of the structure.

Due to their highly dispersive characteristics, UGWs are time-varying signals, that

is signals whose frequency content changes with time. Such signals can be successfully

analyzed using time-frequency representations (TFRs), which are two-dimensional

(2-D) signal transformations that provide joint time and frequency information [10].

Various TFRs used for dispersive signal analysis include linear TFRs such as the

short-time Fourier transform (STFT) and wavelet transform (WT).

However, these transforms result in trade off between time and frequency lo-

calization [11, 12]. The Wigner Distribution (WD) quadratic TFR preserves many

desirable signal properties. However, the presence of oscillatory cross terms when

analyzing multicomponent signals can lead to misinterpretation of signal informa-

tion [10]. Smoothed versions of the WD were also used to analyze guided wave modes

[13]. Note, however, that smoothing can remove some of the cross terms, it also causes
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some loss of time-frequency (TF) resolution. The Matching Pursuit Decomposition

(MPD) TF method is useful in extracting highly localized features in composites [14].

But, as the MPD is an iterative approach, it can be very computationally intensive

for analyzing highly nonlinear signal modes. Data-driven approaches to signal de-

composition such as the the Empirical Mode Decomposition (EMD) [15] have been

proposed. Although the methodology is attractive for various applications, it lacks a

mathematical formulation and relies on heuristics to select the appropriate Intrinsic

Mode Function (IMF) from a filter bank.

1.2 Historical Development of TFRs for SHM

The squared magnitude of the STFT, referred to as the spectrogram, is one of

the most widely used TFRs to analyze a time domain signal jointly in time and fre-

quency. However the STFT technique suffers from poor localization. One way to

overcome the poor localization issue is to utilize the phase information which is dis-

carded in the spectrogram. Kodera [16] first introduced a modification to the STFT

by taking into account the phase information of the signal. The group delay and

instantaneous frequency of the signal are calculated and is distributed at the cor-

responding TF points resulting in a highly localized TFR. Auger and Flandrin [17]

presented the reassignment method which is a nonlinear technique that utilizes the

phase and magnitude signal characteristics to improve the time frequency localiza-

tion of the spectrogram. They developed a mathematically rigorous formulation by

concentrating the signal energy around the local instantaneous frequency and group

delay. Daubechies [18] introduced the Synchrosqueezed Transform (SST) to over-

come the limitations of Empirical Mode Decomposition (EMD). The SST provides

the same high TF resolution properties as the reassignment method, but with the

additional advantage of reconstructing the signal components under assumptions on

2



the time-varying phase function.

Signal processing is a critical component of structural health monitoring (SHM)

systems when distinguishing between damaged and undamaged states of a material.

The objective of signal processing in ultrasonic guided wave (UGW) based SHM is

to extract information from sensors to analyze the structural state of the system. A

damaged structure causes modification of structural characteristics such as stiffness,

resulting in subtle differences in the measured signal. Hence, robust signal process-

ing techniques are required to extract features that quantify presence of damage and

severity as seen in figure. The signal processing technique should be exhibit robust

sensitivity to noise as the sensors are generally susceptible to noise from the envi-

ronment. Various denoising algorithms have been shown to be effective such as the

statistical global averaging [19] and the time reversal method [20]. After signal de-

noising is achieved, the most critical task is feature extraction which is the selection of

damage sensitive parameters from the sensor signal. A significant amount of research

has been conducted for efficient feature extraction using signal processing of UGWs.

In the early 1990s, Alleyne and Cawley [11, 21] experimentally generated frequency-

wavenumber plots to characterize dispersion using the two dimensional Fourier Trans-

form. The technique relies on collecting frequency domain information over equally

spaced intervals on a structure and plotting amplitude versus frequency-wavenumber

information. The primary drawback of the technique was the loss of time informa-

tion essential for signal analysis. Dalton [22] demonstrated the potential for UGW

based signal processing for large aircraft structures, however due to complex mate-

rials involved in aircrafts, multimodal dispersive propagation limited the successful

analysis to localized regions on the aircraft. Similarly Wilcox [23, 24] also highlighted

dispersion as a major challenge in signal processing of UGWs. Sohn et al. [25] used

3



to compensate for dispersion using the time reversal method. The method used a

combination of narrow band and multiresolution signal processing to minimize dis-

persion in the experimental signal. However, the major drawback of this technique is

the requirement of prior knowledge of propagation.

While time domain analysis can provide spatial information about the signal,

Fourier analysis provides information about the frequency spectrum of a signal. How-

ever, it does not offer any visual representation of which frequency components appear

at specific moments in the signal. TFRs are specifically engineered to accomplish this

task by producing an image that maps onto the time-frequency plane, followed by ex-

traction of time-frequency centers of individual modes. TFRs such as the reassigned

spectrogram, were used to analyze UGWs. [26, 27]. TFRs were also used to identify

and extract individual dispersive modes [28, 29, 30]. Warped TFRs have also been

considered as they better match dispersive characteristics [28]; however, the resulting

analysis suffers from time-frequency (TF) resolution. The Chirplet Transform (CT)

[29] requires prior knowledge of the dispersion characteristic for mode identification.

The Synchrosqueezing Transform (ST) TFR was recently developed that provides

high localization along the signal’s Instantaneous Frequency (IF) [30]. It can also

reconstruct individual mode components provided they are sufficiently separable in

TF and the IF is not highly dispersive [31, 32]. A second-order ST was introduced

to improve the localization of strongly modulated signals [4, 5]; higher order estima-

tors for IF were also proposed , for both biased and unbiased estimation [6]. These

aforementioned ST-based methods concentrate on estimating the IF of a signal. For

UGW propagation modeling, however, the TF signature of interest is group delay

(GD), as it can be related to UGW group velocity. The potential of ST for inspec-

tion of UGW propagating in highly dispersive and inhomogeneous medium, such as

integrated circuit package, was demonstrated by extracting TF features. [30].
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The detection of structural defects has become increasingly important in the fields

of aerospace engineering [33], civil infrastructure monitoring [34], as well as micro-

electronics packaging [30]. The process of interrogating the structure using actuators

and sensors to extract damage sensitive features is formally defined as structural

health monitoring. Historically, SHM applications have focused on improving con-

dition monitoring, damage prognosis and non destructive evaluation. The four key

issues in SHM are detection, localization, quantification, and prognosis. Detection of

the defect determines if there is indeed a defect in the structure. Localization deals

with identifying where the damage exists in the structure. Quantification dictates the

severity of the damage. Finally, the advanced field of prognosis deals with forecasting

the remaining useful life (RUL) of the material.

High fidelity detection of damage is the first critical task in SHM. Sensing tech-

nologies are used to obtain information about the condition of a structure or object.

Two of the most useful SHM techniques are vibration based and ultrasonic guided

waves structural interrogation.

Vibration-based approaches utilize mode shapes and natural frequencies of the

structure to detect damage. When the damage occurs, the natural frequencies and

mode shapes of the structure change, and by monitoring this change is possible to

identify damage [35]. While vibration-based approaches are simple to implement,

they have key limitations that the technique is not sensitive to small scale damage or

precursors of damage and does not provide spatial data critical for defect localization.

Moreover, because the vibration based techniques are influenced by the environmental

factors such as temperature and humidity, it becomes a challenging task to detect

damage in real world applications.

The use of UGWs is one of the most important techniques in SHM because it allows
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for the detection of hidden damage over the entire structure. UGWs are elastic stress

waves which propagate in bounded, thin-walled structures and allow for subsurface

inspection and analysis of damage sensitive characteristics [36]. When damage occurs,

the guided waves will be scattered or reflected. By monitoring the changes in the

guided waves, it is possible to identify damage. Despite the advantages, UGW requires

advanced signal processing techniques. Moreover UGW are challenging to use in SHM

because they have frequency-dependent propagation velocity which leads to multiple

dispersive modes. The modes behave differently based on the material and cannot

be analytically derived for all material. When damage is present, scattering and

mode conversions further complicate this problem. As a result, modeling the wave

propagation and dispersion is important for SHM. The complexity of such modeling

depends on the material and can be used to determine frequency-dependent group

velocity, dispersion relation, and multi mode characteristics. Knowledge of these

dispersive properties for different material can then be used to investigate structural

failure modes. For anisotropic material, closed form solutions are not easily available

and numerical methods are often used for modeling; however, the modeling complexity

increases for composite material [37]. We thus require advanced signal processing

techniques to analyze closely-spaced propagating dispersive modes.

1.3 Localized TFRs

Recently, localized TFR matched to signals with linear GD have been reported

which offer high localization by reassigning the STFT time and frequency axis along

the signal’s IF and/or GD. The Reassignment method is one such method that im-

proves the TF resolution, however does not allow for the transform of the signal

back to the time domain [27]. The SST is another such TFR that provides high TF

localization for signals with slow varying frequency modulation and can also recon-

6



struct signal components [31, 3, 5]. The frequency-reassigned (FR) SST is designed

to reassign TF points of the short-time Fourier transform (STFT) along the signal’s

instantaneous frequency (IF) [31]. The original SST is based on frequency reassign-

ment. The localization property depends on some signal constraints, including weak

frequency modulation. Due to this weak localization condition, the TFR are not

suitable for UGW applications.

1.4 Contributions

The proposed research focuses on developing methods for analyzing, separating

and reconstructing multiple dispersive signal components or modes. In particular,

we first propose a new TFR that provides a highly-localized representation for multi-

component signals with nonlinear group delay characteristics. We then integrate the

new TFR with a novel unsupervised learning approach to separate and reconstruct

the individual dispersive modes. For the more challenging case of modes overlapping

both in time and frequency, we propose a Bayesian mode merging algorithm that

infers and merges clusters belonging to the same mode, before mode reconstruction.

Contribution 1: Ultrasonic guided wave based inspection of integrated circuit

packages using the synchrosqueezing transform.

UGW signals can be used to inspect integrated circuit (IC) packages using wave

based techniques due to their excellent sub surface penetration through metallic and

dielectric material. Guided waves in a heterogeneous composite assembly such as

an IC package have modes with complex dispersion characteristics due to multiple

layers of material with intricate geometry. No analytical solution exists for predicting

dispersion in highly anisotropic composites. Numerical methods, such as the finite

element method, have been used to model dispersion in composites, however these
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methods are computationally intensive and not feasible for predicting dispersion in

IC packages. We study the time-frequency characteristics of guided waves propagat-

ing through a complex IC using the the highly localized synchrosqueezing transform.

This transform has been shown to be robust to bounded signal perturbations, pro-

vide highly localized time and frequency information for highly nonlinear modes, and

reconstruct the signal corresponding to each mode. Reference UGW signals were

collected for the IC package in its healthy and damaged states using piezoelectric

transducers to characterize the dispersion modes in the excitation region. Initial re-

sults demonstrate that the dispersive mode information from the extracted transform

ridges provide an effective damage indicator for IC packaging [? 30, 38].

Contribution 2: Synchrosqueezing time-frequency processing matched to non-

linear group delay characteristics.

The UGW signal propagation of dispersion modes for isotropic materials is char-

acterized by estimating the modes’ dispersive group velocity [39]. We thus propose

a new nonlinear synchrosqueezing transform (NSST) that can be used to provide ac-

curate estimates of the dispersive group velocities. This is because we formulate the

NSST such that it is matched to provide high localization to signals with nonlinear

time-frequency signatures. We mathematically derive the NSST formulation using a

third order Taylor series approximation of the nonlinear phase function of the signal

spectrum.

Contribution 3: Unsupervised mode extraction for separation and reconstruc-

tion of NSST dispersive modes

In UGW signal analysis, it is important to be able to localize and separately an-

alyze each of the multiple dispersive components. The proposed NSST can be used
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to reconstruct individual modes, provided the time-frequency region of the mode is

identified. This is a difficult problem, especially because the number of modes is

unknown. With UGW propagation, new modes result when the wave encounters a

different boundary and each different modes can provide different information, such

as varying thickness of a structure or defect detection sensitivity. We consider a mode

reconstruction method that is based on the unsupervised graph-based algorithm used

for efficient image segmentation. The method does not require training or tuning

parameters. Using this approach, multicomponent signals with nonlinear and high

varying time-frequency characteristics can be decomposed and reconstructed into in-

dividual components, without prior knowledge on the number of modes.

Contribution 4: Bayesian-based merging approach for reconstructing modes

overlapping in the time-frequency domain.

UGW signal propagation can result in modes that have overlapping time-frequency

characteristics. For such casees, more clusters than the number of modes can be

extracted. We propose a Bayesian mode merging method to address the problem of

overlapping modes. The method uses Bayesian inference to identify cluster regions

that are continuous over a span of time-frequency points. This allows for adaptively

merging clusters belonging to the same mode.

We demonstrate the performance of our aforementioned contributions using both

real and simulated signals. The simulations were carried out on hyperbolic frequency

modulation (HFM) and parabolic frequency modulation (PFM) signals. Additionally

propagation of UGW in isotropic Aluminum plate is demonstrated using the waveform

revealer software [40]. Real data on propagation of UGW in composite material is

obtained using the Open Guided Wave platform [41].
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1.5 Research Organization

Chapter 2 lays the conceptual foundations of a specific case of dispersive propaga-

tion. Ultrasonic guided waves are introduced and the challenges posed by dispersive

propagation in structural health monitoring are explained.

Chapter 3 introduces the signal processing techniques used in dispersive signal

processing with special focus on the STFT,Wigner Distribution, and the reassignment

technique. This chapter also discusses applications of time-frequency signal processing

in structural health monitoring. The chapter concludes with a detailed discussion on

the investigations in interactions of UGW with anisotropic and non-homogeneous

materials such as an integrated circuit.

Chapter 4 develops the use of new synchrosqueezing transform for analysis of a

special case of UGW, which is isotropic propagation in context of Lamb waves mod-

elled by a simulation software. The framework establishes in detail the estimation

of group velocity of dispersive lamb wave modes with the synchrosqueezing trans-

form. The chapter also references proposals from Chapter 2 during the discussion

of time frequency analysis of Lamb waves. Chapter 4 also establishes an in-depth

mathematical framework of nonlinear synchrosqueezing. Quantitative assessment of

the transform are demonstrated. These include the normalized energy method and

reconstruction quality factor. All the factors show that the new transform is robust

to noise and provides statistically better results than the state of the art techniques.

Chapter 5 introduces a new unsupervised mode extraction algorithm which does

not rely on apriori information of heuristic parameters. Mode extraction of three

hyperbolic frequency modulated signals is demonstrated as well as the statistical

efficiency of the separated modes. Simulated isotropic dispersion as well as real CFRP
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plate dispersion are shown. It is proven that the technique can effectively detect

anamolies in a structural material.

Chapter 6 discusses the Bayesian mode merging algorithm to address the case

of intersecting modes. The technique is applied to simulated signals to demonstrate

effectiveness.

Finally important conclusions, discussions from the research as well as avenues for

future work are presented in Chapter 7.
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Chapter 2

DISPERSION IN ULTRASONIC GUIDED WAVES

2.1 Ultrasonic Guided Waves

An important step in analyzing the structural health of a system is processing the

sensor signal for damage sensitive characteristics. Time frequency representations

have been shown to be effective signal processing paradigm for sensitive damage

sensing applications. Figure 2.1 depicts the various time frequency techniques and

their application in damage detection. The Short Time Fourier Transform (STFT)

using a time varying spectrum has been shown to be effective in identifying damage

in cylindrical shells [42]. Dispersion adapted STFT has also been used to characterize

the dispersion of simple structures for which elastic properties are known in advance

[43]. The use of Wigner Distribution provides a sharp TF representation, albeit

with the introduction of cross terms [13]. The Wavelet Transform (WT) has been

shown to be effective for the analysis of beams [44]. Several adaptive TF techniques

[2, 45, 46, 47] have been proposed which are tailored for specific applications.

Despite the implementation of signal analysis techniques, the phenomenon of dis-

persive propagation continues to be a challenging task. Wave propagation through

material is considered dispersive if the wave velocity (phase velocity) changes with

frequency [48]. This means that the signal experiences temporal spreading and mag-

nitude attenuation as it propagates through the material [43]. The cause of dispersion

is because of multiple factors such as geometry, boundaries, interfaces, material prop-

erties, scattering, and dissipation. The graphical relationship between frequency and

phase velocity is referred to as the dispersion curve of the material and is obtained
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Figure 2.1: Time Frequency Techniques and Select Applications.

by solving a system of wave equations. In order to extract meaningful insights, signal

processing techniques can be used account for the dispersive nature of the waveform.

Figure 2.2 shows a dispersion curve of an Aluminum alloy. The product of frequency

and material thickness is plotted on the x-axis and is referred to as the damage

sensitive parameter. It can be seen that multiple propagation modes exist due to

dispersion which results in complications for signal processing algorithms.

Wave propagation through material can be further subdivided into bulk wave and

guided wave propagation. Bulk waves refer to wave propagation in infinite media

such that the waves do not encounter material boundaries. In contrast, elastic waves

that are guided by the path defined by the structural boundary are referred to as

guided waves. Since the commonly used frequencies for guided wave testing is in
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Figure 2.2: Theoretical Dispersion Curves For Aluminium-6061.

the ultrasonic range from 10 kilohertz (kHz) through several megahertz (MHz), these

waves are more commonly referred to as ultrasonic guided waves (UGW).

The frequency of excitation as well as the presence of boundaries (such as in

plates, rods and tubes) determine if the bulk waves or guided waves are generated.

As postulated by [36], if the excitation wavelength is greater than the thickness of

the structure, then guided waves will be generated. For example, we consider guided

wave propagation through a 1 millimeter thick aluminum plate. The speed of sound

in aluminum is 6320 m/s. For an excitation frequency of 100 kHz, the corresponding

wavelength is calculated using the relationship, λ = c
f
, where λ is the wavelength,

c is the speed of sound in the material and f is the excitation frequency. Using this

relation, we obtain the propagating wavelength of 63.2 mm. Because the excitation

wavelength is greater than the material thickness of 1 mm, hence guided waves would

be generated in this case.
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UGW allow for subsurface inspection over long distances as compared to bulk

waves, which have limited inspection capability, only directly below the area of in-

spection. Moreover, UGW allow for the extraction and analysis of damage sensitive

material characteristics. These characteristics include time of flight, amplitude and

frequency variations as a function of propagation distance. This is because when

the UGW encounters a discontinuity in the material, the UGW is scattered in all

directions. The discontinuity can either be a structural boundary or damage, such as

crack or delamination. In order for scattering to occur, the size of the discontinuity

should be comparable to the wavelength of the UGW. These characteristics make

UGW inspection highly sensitive to subsurface damage. Sensor architecture and sig-

nal processing are used to extract the features of interest in the structure. Apriori

information about the undamaged state can be compared to the existing state to

assess the health of the structure.

2.2 Lamb Wave Dispersion

The classic problem of Lamb wave propagation in isotropic plate is reviewed,

since the exact solution has been obtained using different approaches. Lamb waves

are plane strain waves that occur in a free plate and the related traction forces vanish

at upper and lower surfaces. Lamb waves propagate between two parallel traction

free plate like structure. The free plate geometry in figure 2.3 is considered. Mode

conversions occur as UGW reflect off the upper and lower boundaries of the plate.

Superposition of the reflected waves results in the formation of wave packets known

as guided wave modes.

Using the the tensor notation [9] in conjunction with equation, two uncoupled
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Figure 2.3: Schematic Description of Lamb Wave Generation in Aluminum Plate.
Image Source: [1]

.

equations for plane strain are obtained for longitudinal and shear waves,

δ2ϕ

δx2
+
δ2ϕ

δz2
=

1

c2L

δ2ϕ

δt2
(2.1)

δ2ψ

δx2
+
δ2ψ

δz2
=

1

c2T

δ2ψ

δt2
(2.2)

where cL and cT are the longitudinal and transverse waves respectively.

One of the most effective and widely used way to solve the Navier equations for

elastic wave propagation is known as the wave potential approach. By defining the

scalar potential ϕ and ψ, the wave potential based formulations can be formed. The

analysis assumes the solution to the equations (2.2) and (2.1) in the form of

ϕ = Φ(z)exp[j(kx− ωt)]

and

ψ = Φ(z)exp[j(kx− ωt)]

These solutions represent the travelling waves in the x direction and standing waves

in the z direction. Substituting these equations in (2.2) and (2.1) leads to the solution

ϕ = Φ(z) = A1sin(pz) + A2cos(pz)

16



ψ = Ψ(z) = B1sin(qz) +B2cos(qz)

where p2 = ω2

c2L
− k2 and q2 = ω2

c2T
− k2

If plane stress condition is assumed, then the displacements and stresses can be sim-

plified as the expression,

u1 =

[
ikΦ +

dΨ

dz

]
u3 =

[
dΦ

dz
+ ikΨ

]
σ31 = µ

[
2ik

dΦ

dz
++k2Ψ+

d2Ψ

dz2

]

σ33 =

[
λ

(
−k2Φ +

d2Φ

dz2

)
+ 2µ

(
d2Φ

dz2
− ik

dΨ

dz

)]
It is possible to split the solution of these equations into two sets of modes called

symmetric and antisymmetric modes.

Symmetric modes are given by :

Φ = A2cos(pz); Ψ = B1sin(qz),

u1 = −ikA2cos(pz) + qB1cos(qz),

u3 = −pA2sin(pz)− ikB1sin(qz),

σ31 = µ[−2ikpA2sin(pz) + (k2 − q2)B1sin(qz)],

σ33 = −λ(k2 + p2)A2cos(pz)− 2µ[p2A2cos(pz) + ikqB1cos(qz)],

Antisymmetric modes are given by:

Φ = A1sin(pz); Ψ = B2cos(qz),

u1 = ikA1sin(pz)− qB2cos(qz),
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u3 = −pA1cos(pz)− ikB2cos(qz),

σ31 = µ[2ikpA1cos(pz) + (k2 − q2)B2sin(qz)],

σ33 = −λ(k2 + p2)A1sin(pz)− 2µ[p2A1sin(pz)− ikqB2sin(qz)],

By applying traction free boundary conditions σ31 = σ33 = 0 at boundaries and

simplifying for the plane strain, two equations known as the Rayleigh-Lamb wave

frequency relationships are obtained.

tan(q h)

tan(p h)
= − 4 k2 p q

(q2 − k2)2
and

tan(q h)

tan(p h)
= −(q2 − k2)2

4 k2 p q

The expressions can be expanded as p2 = ( ω
cL
)2 − k2 and q2 = ( ω

cT
)2 − k2. As

wavenumber is given by the expression k = ω
cp

and the corresponding phase velocity

is cp =
ω
2π
λ.

These equations can only be solved using numerical methods if boundary condi-

tions and material properties are known.

The numerical solutions of equations (2.3) are represented by the wavenumber

of the symmetric and antisymmetric modes. The group velocity is an important

characteristic of lamb waves which can be obtained by the formula cg = dω
dk
, where

k = ω
cp
. After simplifications, an expression of group velocity in terms of phase

velocity, cp, and damage sensitive parameter which is the product of frequency and

plate thickness, fd, is obtained.

cg = c2p

[
cp − (fd)

dcp
d(fd)

]−1
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2.3 Anisotropic Dispersion

UGW modes cannot be split up into symmetric and antisymmetric modes in

anisotropic plates. This is due to the fact that phenomenon specific to anisotropic

propagation has to be taken into account. In isotropic propagation, phase velocities

of the propagating modes were direction independent. However, for the anisotropic

case, there is a strong dependence of group velocity on propagation direction. As

explained in [49], the incident and the reflected waves in an anisotropic media cannot

be thought to be purely longitudinal or shear and the group velocity is not normal to

the wave-front. In such a case, a sixth order polynomial has to be solved and complete

elastic properties of the individual material must be known. In other words, the only

way to predict the behavior of UGW in anisotropic media is if the stiffness matrix

is known using material properties. The unique challenges for accurately modelling

UGW propagation are discussed in [50] and [51]. In addition to multiples modes

and dispersive behavior, the anisotropic propagation phenomenon have to be taken

into account such as Steering effect, mode coupling, directional dependence on group

velocity and higher attenuation than isotropic case. Due to these reasons, it is not

possible to analytically model wave propagation behavior in anisotropic plates without

a fully coupled physics-based model which constitutes the complete dynamics of the

system.

2.4 UGW for Damage Detection

Unlike bulk waves, the solution to the equation must satisfy the physical bound-

ary conditions. A physical actuator probe or Piezoelectric Transducer (PZT) is used

to excite the UGW in the plate and a sensor is used to detect the material response.

However, as described in the prior sections, challenges arise with real world appli-
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cations due to dispersive nature of UGW, generation of multiple modes, reflections

at structural boundaries, mode conversions, sensitivity to environmental factors and

mode conversions

2.4.1 Numerical Modeling of UGW

One way to account for the complexity of UGW wave analysis is to numerically

model the dispersive propagation through the material. Dispersion causes the UGW

modes to be frequency dependent which leads to spreading of the wave packet in

space and time as it propagates through the structure. The spreading of the wave

packet in space and time results in reduced signal resolution.

To numerically predict dispersive propagation, it is essential to develop a model

that describes the behavior of the UGW wave packet propagation in a dispersive

medium. Such a model would be able to predict the shape of the UGW signal at

any given distance from the source. Figure 2.4 summarizes the progressive increase

in difficulty to obtain an analytical solution and to model the dispersion caused by

material complexity.

Figure 2.4: Challenges in Dispersion Modelling
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2.4.2 Dispersion Compensation

Ultrasonic guided waves, exhibit a unique property known as dispersion, which

fundamentally affects their propagation characteristics [9]. Dispersion occurs when

the phase velocity of a wave mode is frequency-dependent, resulting in different fre-

quency components of a wave packet traveling at different velocities. This can lead

to the spreading or distortion of the wave packet as it propagates along a structure.

The phenomenon arises due to the geometry and boundary conditions of the struc-

ture, combined with the elastic properties of the material from which it is made. For

example, in cylindrical structures like pipes, different guided wave modes, such as the

longitudinal L(0,1), torsional T(0,1), and flexural F(n,1) modes, each exhibit distinct

dispersive behaviors [52]. Accurate understanding and modeling of dispersion is es-

sential in the application of guided waves for structural health monitoring (SHM) and

NDE, as it affects signal interpretation, defect detection, and localization.

Efforts to minimize the effects of dispersion have been attempted. Most impor-

tantly, the use of very limited bandwidth input signals would concentrate the energy

over a specific frequency range of the dispersion curve such that the group velocity is

stationary. However, due to the Heisenberg uncertainty principle, it is impossible to

concentrate all the energy of a finite time duration signal at a single frequency.

Wilcox et al. [53] proposed a technique called Minimum Resolvable Distance

(MRD) to compare dispersion along an Aluminum plate in order to predict th shape

of the UGW. However, a major limitation of the technique is that the complete disper-

sion curve data for the group velocity and phase velocity must be known in advance.

Since such information is only available for simple geometries and homogeneous ma-

terial, the technique cannot be used for real world applications.
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A similar dispersion compensation algorithm was also proposed [54] to minimize

the effects of dispersion. In this technique, the time to distance mapping from the

frequency-wavelength domain is used. While this technique provides the ability to

map time domain signals to propagation distance, it suffers from the same limitation

that the complete dispersion curve information must be known apriori.

In conclusion, it can be stated that due to the complexity of the material, it is

not possible to completely and sufficiently model dispersion by numerical modeling.

Moreover, it is not possible to completely eliminate dispersion due to the physics of

the Heisenberg uncertainty principle as well not having prior knowledge of complete

group velocity information of real world applications.
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Chapter 3

SIGNAL PROCESSING IN SHM

3.1 Overview of Signal Analysis

A time domain signal x(t) can be classified as stationary or time-varying. For

a time varying signal x(t) = Aej2πf0t, the amplitude and/or frequency changes with

time. Since the phase function is is linear f0, the signal exhibits a single frequency

f0 over all time. In another case, x(t) = ej2παt
2
[55], the phase function varies in a

quadratic manner over the range of the signal. We can write the generalized form of

a time varying signal as:

x(t) = a(t)ej2πcζ(
t
tr

)

Where a(t) is the time varying amplitude modulation (AM), ζ( t
tr
) is the time varying

phase modulation (PM), tr > 0 is the normalization time constant and c is the rate

of change of information also known as the FM rate. As an example a generalized

frequency modulated signal (GFM) signal can be shown as:

xc(t) =
√
|ν(t)|ej2πcζ(

t
tr

)

Which is a time varying signal whose amplitude modulation is fixed to a(t) =
√
|ν(t)|,

ν(t) = d
dt
ζ( t

tr
) describes how the signal phase information changes over time and the

range of ζ( t
tr
) is the set of real numbers.

Historically, the mathematical formulation of the frequency representation of sig-

nals was invented by Fourier in 1807, whose main motivation was the solution of the

heat equations which have discontinuities from hot to cold temperatures. His idea was

that a discontinuous function may be represented as a sum of continuous functions.
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The implementation and usefulness of this technique occurred with the advent of the

spectroscope in 1865 [10]. The frequency representation of the signal primarily has

several advantages. The physical understanding and knowledge about the material

can be obtained. Additionally, since the wave propagation in the medium is disper-

sive, a simplified understanding of the waveform allows for mathematical modeling.

The GFM signal can be used to generalize the Fourier transform (FT) [55]:

X(f) =

∫
x(t)e−j2πftdt

The FT can be interpreted as decomposing the signal x(t) into its complex sinusoids.

When the FT is matched to complex sinusoids when, x(t) = ej2πf1t:

X(f) =

∫
ej2πf1te−j2πftdt = δ(f − f1)

The Heisenberg uncertainty principle, originally formulated in the realm of quan-

tum mechanics, posits an inherent limit to the precision with which pairs of physi-

cal properties of a particle, such as position and momentum, can simultaneously be

known. This principle has found analogous applications in the field of signal pro-

cessing, especially in the context of time-frequency analysis. In signal processing,

the principle underscores an intrinsic trade-off between the localization of a function

in the time domain and its localization in the frequency domain. More precisely,

it can be described by the inequality ∆t∆f ≥ 1
4π
, where ∆t and ∆f represent the

uncertainties (or spreads) in time and frequency, respectively. This implies that it’s

impossible to have a signal that is simultaneously arbitrarily localized in both time

and frequency domains. The Gabor limit, named after Dennis Gabor, who first rec-

ognized the relevance of the uncertainty principle in signal analysis [56], quantifies

this trade-off and forms the basis for many time-frequency representation techniques,

such as the Short-Time Fourier Transform (STFT) and Wavelet Transform. The
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principle also has implications in the design of window functions: a narrower window

in the time domain results in a broader spectral width and vice versa. This inherent

trade-off serves as a fundamental constraint in various signal processing tasks, such

as filtering and signal decomposition.

The Heisenberg uncertainty principle, also known as the time-bandwidth product

theorem was initially presented in the context of quantum mechanics which is inher-

ently probabilistic in nature. The extension of the Heisenberg uncertainty principle

in the signal analysis domain occurred in the context of join time-frequency domain

analysis. The simplified definition of the principle is that it is not possible to con-

struct a signal with time duration and frequency bandwidth arbitrarily small. In

other words, the signal cannot have arbitrarily small concentration in both time and

frequency domain. Mathematically the lower bound on the time-bandwidth product

TxFx of the signal can be represented as:

TxFx ≥ 1

4π

where Tx is the duration and Fx is the bandwidth of the signal. It can be shown that

the only signal that achieves the lower bound is the Gaussian signal, hence it is the

most concentrated signal in the TF plane.

s(t) = ce−αt2 =⇒ TxFx =
1

4π

With these definitions established we discuss some of the signal processing meth-

ods used in practical analysis of UGW. There are several methodologies to investigate

UGW in SHM. A non-exhaustive list of techniques is shown in figure 3.1.
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Figure 3.1: Signal Processing in SHM.

3.1.1 Time of Flight Based Defect Detection

Due to simplicity of use, time of flight (TOF) methods have been extensively

used in signal processing for SHM to extract information from signals. The choice of

input signals is a critical factor in determining which TOF algorithm to use. For most

applications a narrow band pulse is preferred in order to minimize dispersion. However

due to the Heisenberg uncertainty principle it is not possible to eliminate dispersion

entirely. Moreover the frequency of the narrow band pulse has to be carefully chosen

apriori. For instance, even though the fundamental antisymmetric mode A0 becomes

less susceptible to dispersion at higher frequencies, the use of the higher frequency

itself results in excitation of more UGWmodes. Moreover at higher frequencies the A0

mode becomes highly attenuating resulting in a weaker response. Hence, the choice

of narrow band signal frequency is a critical decision in TOF detection frameworks.

An implementation of the TOF signal processing method using narrow band signal
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excitation for detaction and localization was conducted by Tua [57]. The techniques

was used to localize damage in Aluminum plates using Lamb wave propagation. The

localization algorithm relied on TOF extraction by the signal processing technique

known as the Hilbert Huang Transform (HHT) [15]. The HHT decomposes the signal

into intrinsic mode functions (IMF) and the TOF is extracted from the energy-time

spectrum. The limitation of HHT is that it lacks a robust mathematical framework,

and as a result relies on setting heuristic parameters. Moreover the experimental

techniques requires tuning the input narrowband signal for best performance for the

defect type known in advance. Similar TOF methods utilizing thresholds [58] and

peak finding [41, 59] have been used demonstrating the same limitations as peak

detection uncertainty and not accounting for dispersive propagation.

A modified peak detection algorithm was proposed by [60] using the normalized

hilbert transform in the form of an envelop vector. The guided wave modes were

tracked by correlating wave modes in the time-space domain. However due to the

dispersive nature of the UGW, mode tracking is complicated due to the fact that the

number of modes are not known in advance. To mitigate this limitation the number

of modes have to be predetermined by analyzing the kernal density function of the

initial peak vector. Another major limitation of the mode tracking approach is that if

there exist overlapping modes as in the case of anisotropic propagation, the algorithm

is unable to track the overlapping peaks effectively.

3.1.2 Wavelet Transform for SHM

TheWavelet Transform (WT) has emerged as a versatile tool in the domain of sig-

nal processing, providing a multi-resolution analysis of signals. Unlike the traditional

Fourier Transform, which decomposes signals into sinusoidal bases, the WT employs

wavelets - functions localized in both time and frequency. The fundamental advan-
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tage of the WT is its ability to represent signals with varying temporal characteristics

more effectively. This is particularly useful in scenarios where the signal has tran-

sient or non-stationary features. Mathematically, the continuous wavelet transform

of a signal f(t) with respect to a wavelet ψ(t) is given by:

Wf (a, b) =

∫ ∞

−∞
f(t) · ψ∗

(
t− b

a

)
dt (3.1)

where a and b are the scale and translation parameters, respectively, and ψ∗ denotes

the complex conjugate of the wavelet. The adaptability of wavelets to various appli-

cations in signal processing, ranging from compression to denoising, underscores the

significance of the wavelet transform in contemporary research.

Sohn et al. [61] present a approach for detecting delamination in composite struc-

tures using wavelet-based active sensing. The technique involves using an active

piezoelectric transducer to emit a wavelet signal, which is then analyzed using a

wavelet transform to identify the presence of delamination in the structure. The

authors conducted experiments on composite panels with artificially introduced de-

lamination and demonstrated that the proposed approach is effective in detecting and

localizing delamination in composite structures.

Dispersion curve analysis of Lamb waves using the chirplet transform was per-

formed by Niethammer et al. [62]. The study utilizes the chirplet transform technique

to analyze dispersive wave signals based on a dispersion model. The chirplet trans-

form is a more advanced version of the wavelet and short-time Fourier transforms,

which can extract specific components of a signal with a particular instantaneous fre-

quency and group delay. To extract the proportional energy distribution of a single

mode from a multimode dispersive wave signal, an adaptive algorithm identifies fre-

quency regions and uses locally adapted chirplets based on a dispersion curve model,

allowing quantitative statements to be made about an individual mode’s energy. The

28



adaptive chirplet algorithm proposed in this study is based on a model that uses the

Rayleigh-Lamb equations to describe the dispersion relationship. By fitting chirplets

to the known modelines based on this model, the algorithm assigns wave energy to

the individual propagation modes.

Multiresolution analysis provides a systematic way to decompose a signal into

its constituent scales or frequencies, making it an essential tool in signal processing

[63]. The fundamental idea behind multiresolution analysis is to represent a signal

at various levels of resolution, ranging from coarse approximations to detailed infor-

mation. Wavelet transform, which stems from multiresolution analysis, has gained

immense popularity for its capability to represent non-stationary signals with both

time and frequency localization [64]. This multiresolution approach facilitates effi-

cient signal compression, denoising, and feature extraction, especially in scenarios

where the signal exhibits diverse spectral characteristics over different time intervals.

By allowing for a hierarchical representation of the signal, multiresolution techniques

enable a more intuitive and compact representation of complex signals, making them

indispensable in modern signal processing tasks.

3.1.3 Wigner Distribution

The Wigner distribution, also referred to as the Wigner-Ville distribution (WVD),

is a well-established tool in the domain of time-frequency signal analysis, providing a

representation of a signal in both time and frequency domains simultaneously [65, 66].

The WVD is defined for a continuous-time signal x(t) as

Wx(t, f) =

∫ ∞

−∞
x
(
t+

τ

2

)
x∗

(
t− τ

2

)
e−j2πfτdτ,

where x∗(t) is the complex conjugate of x(t). One of the significant advantages of the

WVD is its ability to provide a high-resolution view of the signal’s time-frequency
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characteristics. However, it may also introduce cross-terms that can obscure the

signal’s actual time-frequency content, especially in multi-component signals [67].

Despite this limitation, the Wigner distribution remains a cornerstone in various

signal processing applications, from radar to speech processing.

3.1.4 Matching Pursuit Decomposition

The matching pursuit decomposition (MPD) algorithm [68] is an iterative process-

ing method that expands a signal into a weighted linear combination of elementary

basis functions or “atoms” chosen from a complete dictionary. A comprehensive

dictionary is utilized to choose atoms through progressive estimations of the signal

using orthogonal projections on dictionary components. This involves a dictionary

comprising of Gaussian atoms that have all potential time-frequency shifts and scale

changes, and a quadratic time-frequency representation (TFR) is created by adding

up the Wigner distribution (WD) of every chosen atom in the expansion. The altered

WD maintains the signal energy, time-frequency shifts, and scale changes, while be-

ing free from any cross terms [69]. Various MPD algorithms have been suggested to

accommodate signals with different nonlinear time-frequency characteristics [2]

The MPD dictionary is formed using a basic Gaussian signal g(t) = e−t2/2 as it

is the most concentrated signal in TF, according to the uncertainty principle [10].

The dictionary D consists of time-shifted, frequency-shifted and scaled versions of

the basic Gaussian signal

gγk(t) =
√
ak g(ak(t− τk) e

j2πνk t =
√
ak exp

(
−a2k (t− τk)

2/2
)
ej2πνk t

The parameter set of the kth dictionary atom is γk = {τk, νk, ak}, γk ∈ Γ where

τk ∈ R is time-shift, νk ∈ R is frequency-shift and ak ∈ R+ is scale parameter.
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We use the MPD to iteratively decompose a finite energy signal x(t) as

x(t) =
∞∑
i=0

βi gγi(t)

where gγi(t) and βi is the ith selected dictionary atom and expansion coefficient,

respectively. At the ith iteration, and starting with r0(t) = x(t), we form the inner

product of the residual signal ri(t) and each dictionary element. We then select the

ith element gγi(t) that results in the maximum inner product. Specifically, we select

gγi(t) such that

gγi(t) = arg max
gγ∈D

∣∣∣∣∫ ∞

−∞
ri(t) g

∗
γ(t) dt

∣∣∣∣ = arg max
gγ∈D

| ⟨ri, gγ⟩ |

The residual signal is given by

ri+1(t) = ri(t)− βi gγi

where the ith expansion coefficient is given by

βi =

∫ ∞

−∞
ri(t) g

∗
γi(t) dt

The signal representation up to the ith iteration is

x(t) = ri+1(t) +
i∑

ℓ=0

βℓ gγℓ(t)

The maximum number of iterations L is normally selected to ensure that E% of

the signal energy has been extracted, where E is a pre-defined threshold. After L

iterations, the signal can be represented as

x(t) = rL(t) +
L−1∑
i=0

βi gγi(t)

A block diagram summarizing the MPD is given in Figure 3.2
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Figure 3.2: Flowchart Summarizing the Matching Pursuit Decomposition Algo-
rithm [2]

3.1.5 Orthogonal Matching Pursuit

Orthogonal Matching Pursuit (OMP) is a greedy algorithm employed for sparse

signal representation and has gained significant traction in the field of signal process-

ing, especially in the domain of compressive sensing [70]. The fundamental principle

behind OMP is to iteratively select the dictionary atom that is most correlated with

the current residual, followed by the update of the signal approximation and the resid-

ual itself. Upon each iteration, OMP projects the original signal onto the subspace

spanned by the selected dictionary atoms, ensuring an orthogonal projection, hence

the name orthogonal matching pursuit [68]. The process is repeated until a predefined

number of atoms are selected or the residual reaches a specified threshold. OMP’s

greedy nature ensures a computationally efficient approach to sparse decomposition,

especially when compared to non-greedy methods that might involve convex opti-

mization solutions, such as Basis Pursuit [71]. However, it is worth noting that while

OMP can provide a near-optimal solution, there’s no guarantee for a globally optimal
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solution to the sparse representation problem, especially in the presence of highly

coherent dictionaries. Nevertheless, the success of OMP in practical applications,

such as image processing, audio signal reconstruction, and radar signal processing,

highlights its robustness and efficiency in extracting sparse representations from re-

dundant dictionaries.

3.1.6 Reassignment

Reassignment is a technique used in signal processing to refine the representation

of energy in a time-frequency distribution, improving its readability and interpretabil-

ity [17]. The core idea behind reassignment is to move energy from an original loca-

tion in a spectrogram to a location that better represents the true center of energy of

the nearby region. This technique often involves the use of the Short-Time Fourier

Transform (STFT) along with its instantaneous frequency and group delay compo-

nents. Reassignment effectively sharpens blurry regions in a spectrogram, enhancing

the visualization of time-frequency characteristics of signals and facilitating a clearer

distinction between closely spaced signal components [72]. Its application spans vari-

ous fields, from music signal analysis to biomedical signal processing, where accurate

time-frequency representation is crucial.

3.2 Highly Localized Time Frequency Transforms

A wide range of signal processing techniques are available to study UGW for

SHM applications, however there are significant challenges in analyzing signals when

complex material systems are involved. Firstly, while dispersive propagation is suffi-

ciently understood for very simple material such as Aluminum plates, when dealing

with anisotropic and heterogeneous material, no closed form solution exists to simu-

late dispersion characteristics. Experimental methods cannot simulate every possible
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wave propagation scenario.

3.2.1 UGW Inspection of Integrated Circuits Using MPD

One such novel application of UGW is detection of defects in integrated circuit

(IC) packages was investigated by Ikram et al [73]. Adhesive failure in an IC package

occurs due to certain loading conditions or manufacturing induced defects such as

the presence of residual moisture, foreign material or insufficient copper roughening,

causing delamination between the layers and subsequent failure of the IC package. A

key component of an integrated circuit (IC) package is the substrate, which consists of

alternating layers of copper conductors on epoxy dielectric layers, laminated on to a

fiberglass epoxy matrix core and is held together by mechanical adhesion as shown in

figure 3.3. IC packages typically range from a few millimeters to tens of millimeters in

length and width; the thickness of these packages is typically a few hundred microns.

Heterogeneous integration of various components such as the silicon die, integrated

heat spreader and printed circuit board lead to anisotropy in the assembled package.

The presence of the geometric constraints, material anisotropy and sample fragility

introduces enormous challenges in detection of subsurface defects in IC packages.

Furthermore, the delamination defect size may be as small as a few hundred microns,

further complicating the resolution requirements.

Figure 3.3: Cross Section View of a Typical IC Package

The use of NDE for detection of delamination in the IHS-Sealant interface requires

penetration of few hundred millimeters and a sub millimeter spatial resolution. Due
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to manufacturing design rules, the footprint of the interface is only a few millimeters

wide, which poses an additional geometric constraint on sensor placement. Tradi-

tional X-Ray inspection techniques are expensive and pose a radiation hazard. An-

other state of the art in delamination inspection is the scanning acoustic microscopy

(SAM) method, which is widely used in the semiconductor industry to conduct ul-

trasonic inspection in IC packages [2]. Research has been conducted using SAM with

immersion based ultrasonic transducers to find sub surface defects in IC packages

[74, 75]. In IC packaging, ultrasonic guided wave based techniques have potential to

inspect bonded assemblies due to good sub surface penetration through metallic and

dielectric material. However, the presence of a diverse range of material properties

pose significant challenges in developing an ultrasonic wave based NDE methodology.

The heterogeneity, anisotropy and nonlinear behavior of IC packages have a detrimen-

tal impact on transmission and detection of ultrasonic waves. A promising solution

to these challenges is the use of guided ultrasonic waves to assess the condition of IC

package. Guided waves allow instrumentation of the IC package over a large area and

the IC package does not need to be submerged in liquid.

Figure 3.4: Actuator and Sensors Bonded to an IC Package

Sensor placement is critical for signal acquisition. A key considerations in sensor

placement is wave reflections which occur every time a wave encounters an interface.
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Hence it is essential to limit interfacial boundaries at the inspection region. Moreover,

Scattering can occur at higher frequencies from coarse grain structures or inhomoge-

neous materials. Sensors should be placed in a region of highest homogeneity.

Piezoelectric (PZT) sensors are bonded to various locations on the IC package for

evaluation. Various combinations of sensor placement were examined to determine

the optimal sensor location paradigm, and the bonding locations are shown in figure

3.4. This results in a guided wave signal due to the variation between each unit lead-

ing to several mode conversions in the guided wave. Ten samples were examined with

this configuration and the guided wave profile was not repeatable. An appropriate

excitation frequency needs to be used for exciting guided waves in the test sample.

Figure 3.5 shows the amplitude of the sensor place on the region of interest. The max-

imum amplitude is obtained when a frequency of 375 kHz is used. Hence a frequency

of 375 kHz frequency will be used as the excitation frequency. The PZT sensors were

excited using a digital acquisition card (National Instruments) and ultrasonic energy

was transmitted through the test sample in the form of guided waves.

The MPD can be used to obtain highly localized and concentrated time-frequency

representation. The MPD algorithm is capable of extracting MPD energy and their

associated frequency components. The time-frequency representation is used to sep-

arate the modes in the time-frequency domain. The IHS-Sealant interface is now

delaminated and instrumented under the same conditions. The results show a clear

impact of delamination on the presence of guided wave modes as shown in figure 3.5.

Guided wave based NDE technique has been shown a promising application for

detecting the delamination of the IC package at the IHS-Sealant interface that result

in catastrophic failure of the part. In this study, results were presented on detection
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(a) MPD Results for Healthy IC (b) MPD Results for Damaged IC

Figure 3.5: Matching Pursuit Decomposition to Detect Damage in IC Packages

of delamination of the IHS-Sealant interface when instrumented with surface mount

PZT actuator and Sensor at 375 kHz frequency. Optimal sensor placement paradigm

was evaluated. Effects of damage on guided wave propagation through IHS-Sealant

interface were studied. Due to material heterogeneity, it is not possible to obtain

dispersion curves. Instead, a calibration methodology was incorporated to monitor

the observable and repeatable changes in time-frequency domain. MPD algorithm is

used to iteratively decompose and then represents the time-frequency components of

the signal. The result of delamination is the elimination of higher order modes. This

methodology can be used for structural health monitoring (SHM) of IC packages

because active monitoring of health level is possible and has the potential to be

extended to real time monitoring. The main limitation of this study is that the

effects of dispersion are not considered in detail.
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3.2.2 UGW Inspection of Integrated Circuits Using the Synchrosqueezing

Transform

In order to incorporate the effects of dispersion while analyzing IC packages, Ikram

et al [38] used first order SST. This is a transform that has been shown to be robust

to bounded signal perturbations, to provide highly localized time and frequency in-

formation for highly nonlinear modes, and to reconstruct the signal corresponding to

each mode. Reference ultrasonic guided wave signals are collected for the IC package

in its healthy and damaged states using piezoelectric transducers to characterize the

dispersion modes in the excitation region. Initial results demonstrate that the dis-

persive mode information from the extracted SST ridges provide an effective damage

indicator for IC packaging.

The IC package used in this study is a large form factor (56 mm x 40 mm) IC

package. The experimental setup uses the National Instruments PXI 14 bit 100

MS/s arbitrary wave generator (AWG) and 12 bits 60 MS/s digitizer are used to

generate a 5-cycle cosine tone burst excitation signal and collect signals from each

sensor with sampling frequency of 20 MHz. The adjacent actuator-sensor pairs are

also placed at maximum distances from each other so that the signals have minimal

superposition. This configuration also ensures that the boundary reflections arrive

at the offset in the temporal domain, and hence can be filtered out of the data.

Additionally, in order to optimize the signal-to-noise ratio, we select the frequency of

maximum guided wave amplitude. This is experimentally achieved by scanning the

frequency ranges from 100 kHz to 600 kHz in 25 kHz intervals. It is observed that

at lower frequencies, the amplitude of the signal is lowest. The highest amplitude is

around 400 kHz, after which the signal amplitude declines. The final signal was the

average of ten measurements in order to maintain maximum signal integrity. The
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Figure 3.6: Signal Reconstruction for Healthy and Damaged States

framework consists of dispersion calibration, data collection and analysis.

The first order SST algorithm developed by Thakur et al [76] is used to analyze

the signal. The time domain signals from healthy and damage IC packages are trans-

formed to the TF domain. Ridge extraction and reconstruction is used to convert to

the time domain without mode separation for comparison. Preliminary IC package

health inspection results from experimental data shown in figure 3.6 demonstrate the

effectiveness of the data driven approach. The methodology does not require numer-

ical modeling as features can be directly estimated over the entire excitation range

in the TF domain using experimental methods. The limitation of this approach is

that while the algorithm utilizes the SST to account for dispersion, the algorithm

is not matched to the signal characteristics and as a result does not account for

non-linearities in the system.

3.2.3 Group Velocity Estimation for UGW Propagating in Dispersive Material

In order to account for nonlinear behavior of UGW and to account for disper-

sion, Ikram et al [39] developed an approach for characterizing frequency-dependent
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mode properties of ultrasonic guided wave propagation in dispersive material. The

approach exploits the relation between propagation group velocity and signal group

delay changes to study a highly-localized time- frequency representation.

The short-time Fourier transform (STFT) of a signal x(t) is

Sx(t, f ; g) =

∫
x(τ) g(τ − t) e−j2πfτdτ , (3.2)

where g(t) is an analysis window. Although the STFT can resolve multicomponent

signals, it suffers from loss of TF resolution caused by windowing. By reassigning the

STFT along the signal’s IF, ζx(t; f), result in the ST, given by

STx(t, f ; g) =

∫
Sx(t, ν; g) δ(f − ζx(t; ν)) e

j2πtfdν , (3.3)

where

ζx(t; f) = f + Im

(
Sx(t, f ; gd)

Sx(t, f ; g)

)
, (3.4)

gd(t) = ġ(t) = d
dt
g(t), and the operator Im(·) takes the imaginary part of a complex

value. Note that the IF ζx(t; f) in (3.4) assumes a differentiable window g(t) and non-

zero STFT values in the denominator. In addition to offering high TF localization

along the signal’s IF, it is possible to use the ST to reconstruct individual signal

components and estimate their IFs; this is under the assumption that the signal

satisfies some constraints, including weak frequency modulation [31, 4].

The assumed signal model

x(t)=a(t) ej2π(fct+0.5α t2)

is of a linear frequency-modulated (LFM) chirp signal with Gaussian amplitude mod-

ulation given by a(t)= e−0.5 t2/T 2
x ; the LFM IF is obtained as fc + α t. Following [5],

x(t) and its partial derivative ẋ(t) with respect to time can be shown to be related
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according to

ẋ(t)=(qx t+ px)x(t)

where qx = j2πα − (1/T 2
x ) and px = j2πfc + (1/T 2

x ). Making use of this relation,

and taking the partial derivative of the STFT with respect to time, an unbiased IF

estimate can be obtained by solving for the LFM rate α. This estimate is given by

ζx,1(t; f) = f +
Im (Sx(t, f ; gd)Sx(t, f ; gm))

Re (Sx(t, f ; g)Sx(t, f ; gt))

where gm(t) = t g(t) and the operator Re(·) takes the real part of a complex value.

A modified ST, that corresponds to a first-order synchrosqueezed STFT, leads to

unbiased IF estimates; this TFR can be obtained by replacing ζ(t; f) in Equation

(3.3) with ζx,1(t; f). As was shown in [5], new unbiased LFM IF estimates can be

obtained by taking multiple partial derivatives of the STFT with respect to time; using

higher order derivatives yields in unbiased estimators that offer better TF localization

for strongly frequency modulated signals.

GD Based Dual Synchrosqueezing Transform

For UGW propagation modeling, we require a TFR that is highly localized along the

signal’s GD in addition to being able to reconstruct individual modes. Using Fourier

transform (FT) duality, the time domain signal x(t) and its IF are dual pairs to the

signal’s FT X(f) and its GD. As a result, a dual ST can be obtained as in (3.5), but

reassigning the STFT the signal GD τx(f ; t). Specifically, re-formulating the STFT

in the FT domain, we obtain

Sx(t, f ;G) = ej2πtf
∫
X(ν)G(ν − f) e−j2πtνdν
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where G(f) is the FT of the window g(t). Reassigning the STFT along the signal’s

GD results in the DST is given by

DSTx(t, f ; g) =

∫
Sx(t̂, f ; g) δ(t− τx(f ; t̂)) e

j2πt̂fdt̂ , (3.5)

where

τx(f ; t) = t− Re

(
Sx(t, f ;Gd)

Sx(t, f ;G)

)
.

and Gd = Ġ(f) = d
df
G(f). Note that other ST modifications that concentrate on

estimating GD have been independently proposed by the authors in [6] and [77].

Modified DST for Group Velocity Estimation

We propose a modification to the DST (MDST) that replaces τx(f ; t) in (3.5) with

an unbiased GD estimate that is better matched to the stronger modulation resulting

from UGW propagation. In order to match the MDST to dispersive group velocity

modes, we assume that the transmit signal x(t), with FT X(f) , is a windowed

sinusoid with frequency fc and Gaussian amplitude modulation. Specifically, x(t)=

a(t) ej2πfct=e−0.5 t2/T 2
x ej2πfct, with FT given by X(f)=2π Tx e

−2π2 Tx(f−fc)2 . Note that

the parameter Tx is directly related to the signal duration in time. Thus, the spectral

mode at distance r is thus given by

Xr(f) = 2π Tx e
−2π2 Tx(f−fc)2 ej2πk(f)r . (3.6)

As the phase function of Xr(f) is k(f), the mode group velocity cg(f) = 1/τ(f).

Following similar steps as in [5] but in the frequency domain, we can show that Xr(f)

is related to its first order derivative with respect to frequency according to

Ẋr(f) =
(
j2πr τ(f)− 4π2 Tx(f − fc)

)
Xr(f) . (3.7)
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When re-written as Ẋr(f) = (Qx τ(f) + Px)Xr(f), this relation is dually similar to

the one for the LFM case, qx f + px. However, simply taking partial derivatives of

the STFT with respect to frequency does not provide an estimate of the GD, τ(f).

It is important to note from Equation (3.7) that transmit signals must have short

durations as Tx cannot go to infinity.

Using a second-order Taylor series’ expansion about the transmit frequency, we

approximate the phase function in (3.6) as k(f) ≈ k(fc)+k
′(fc) (f−fc)+ 1

2!
k′′(fc) (f−

fc)
2. Here, k′(f) and k′′(f) are the first and second order derivatives of k(f) with re-

spect to frequency. Using this approximation, and computing second order derivatives

of the STFT with respect to frequency, we derive the new GD estimate as

τx,2(f ; t) = t− Re

(
Sx(Gdd)Sx(G)− S2

x(Gd)

Sx(Gd)Sx(Gm)− Sx(Gmd)Sx(G)

)
(3.8)

where, for ease of notation, Sx(G) ≡ Sx(t, f ;G); also, the STFT windows are given by

Gdd =
d2

df2Gd(f), Gm(f) = fGd(f), and Gmd(f) = f
d

df
G(f). A modified DST (MDST),

that corresponds to a second-order synchrosqueezed STFT, leads to unbiased GD

estimates; this TFR can be obtained by replacing τ(f ; t) in Equation (3.5) with

τx,2(f ; t). Note that the MDST is different from the TFR obtained when taking

partial derivatives of the STFT with respect to frequency, with the STFT defined as

in (4.1) (see Equation (17) in [5]).

Simulation Results

The proposed MDST TFR can be used to extract individual GD signal components.

The performance of this new approach for extracting individual group velocity modes

using wave propagation through an isotropic Aluminium plate. We used the Wave-

form Revealer software tool [40] to simulate UGWs propagating in isotropic Alu-

minum 6061 with 2 mm thickness and 2700 kg/m3 material density. The input signal
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is a tone burst with center frequency ranging from 100 to 1500 kHz, in 1 kHz intervals;

this results in exciting both symmetric and anti-symmetric Lamb waves through the

plate. Measurements are provided using two sensors placed in a pitch-catch configura-

tion. The first sensor is collocated with the actuator to measure the excitation wave;

the second sensor is placed at a distance of 500 mm away from the source. Dispersion

leads to Lamb wave modes traveling with varying group velocities through the plate.

Figure 3.7a shows the time-domain UGW received at the sensor. By implementing

the GD estimator defined in equation (3.8), the highly-localized MDST of the same

signal is shown in Figure 3.7b.

Dispersion Evaluation

The dispersive model accuracy is improved by the use of the unbiased GD estimator in

the MDST formulation. The multimodal energy distribution from the MDST can be

visualized in the slowness-frequency domain, where slowness is inversely proportional

to the group velocity, as shown in figure 3.8. Moreover, the group velocity can be

accurately extracted and represented as shown in 3.8 (a). Figures 3.8 (b) and 3.8 (c)

show that the extracted group velocity modes are in agreement with the theoretical

calculations.

3.3 Conclusion

A novel approach to analyze UGW is developed by extracting and characterizing

dispersive ultrasonic guided wave modes in isotropic media. The approach first derives

an unbiased group delay estimator that is matched to strongly modulated signals; the

estimator is then incorporated into a synchrosqueezed short-time Fourier transform.

The resulting time-frequency representation (TFR) is well matched to guided wave

dispersive propagation. Individual dispersive modes are extracted using this TFR
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and an unsupervised clustering algorithm followed by curve fitting.
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Figure 3.7: (a) Time Domain and (b) MDST of an UGW Signal.
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Figure 3.8: Dispersion Analysis of UGW in Isotropic Medium.
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Chapter 4

NEW TIME FREQUENCY TRANSFORM MATCHED TO GROUP DELAY

4.1 Problem Formulation

Interpretation of UGW propagation by numerical modelling and analytical simula-

tion can potentially allow for robust damage detection. However, analytical solutions

for UGW propagation are extremely challenging for complex structures due to the

dispersive nature of these waves. Despite the challenges of modelling highly disper-

sive UGW, significant efforts have been made in developing analytical solutions for

dispersion curves. In his classical work on elastic wave propagation in 1885, Lord

Rayleigh was the first to investigate the behavior of waves in free surface of an in-

finite, homogeneous and isotropic solids [78]. He determined that such a case was

analogous to that of deep water waves and that such waves are confined to the sur-

face of the elastic solid. Hence such waves came to be known as surface waves. In

1911, Love generalized the surface wave solution by incorporating an additional finite

thickness layer [79]. The study developed the horizontally polarized shear-horizontal

(SH) wave. Soon afterwards Lamb published his groundbreaking study of wave prop-

agation in a layer of finite thickness and identified the two possible wave modes that

can propagate in such a situation. These wave modes are called the symmetric and

antisymmetric wave modes [80].

Until this point in time, most of the research on wave propagation had occurred

in the context of seismology. The study of elastic wave propagation in multilayered

media was introduced by Thomson [81] and Haskell [82] in which they used the matrix

transfer method. The matrix method systematizes the analysis by directly relating
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the stresses and displacements at the top of the individual layers to the bottom of the

neighboring layer when the interface conditions are satisfied. However such a method

suffered from numerical instability when the product of frequency and thickness, was

large. An alternative to the matrix method, called the direct method was proposed by

Schmidt [83]. In the direct method, the matrix solution of each layer is re-assembled

as a single matrix once all interfacial conditions are satisfied. Many improvements and

permutations of the direct method as well as the matrix method have been proposed

in literature, however the solutions are problem dependent and vary in degree of

computational complexity as well as assumptions on material geometry.

However, these modelling efforts were not able to account for all possible wave

propagation scenarios, and in particular, were insufficient for anisotropic materials.

Composite materials for example, consist of multiple layers to form a laminate which

is both anisotropic and inhomogeneous. The material properties in the anisotropic

case are dependent on the direction of the composite material. Moreover, when

modelling interaction of UGW with anisotropic material, the elastic properties of

each constituent material and layer should be known apriori. The properties vary,

depending on individual components of the lamina. Efforts to develop approximate

models to predict effective properties of composite material have been undertaken

[84]. Other numerical techniques to model wave propagation in complex material

have been proposed such as using the finite element method [85, 86], local interaction

simulation approach (LISA) [87] and more recently a detailed physics based wave

propagation model [88]. Despite these efforts, no closed form analytical solution has

been developed for dispersion characterization of UGW in complex materials because

of the difficulty in accurately modelling highly dispersive wave modes.

Since robust modelling of wave propagation through dispersive material is not
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possible for many complex material systems, efforts have been made to analyze the

experimental signals directly in the time domain. Time domain analysis methods

primarily rely on identifying the time of flight (TOF) information associated with

individual modes to identify and localize damage. TOF is the time it takes the sen-

sor to receive the wave mode from the actuator or a reflected wave from interfaces

and damage. For a known propagation distance, the time of flight can be calcu-

lated only if the wave velocity is known. However dispersive waves have frequency

dependent wave velocities and multiple propagating modes. Due to the uncertainty

in determining the frequency wave velocity, the TOF cannot be accurately predicted

without special methods. One such method is dispersion compensation, which allows

the frequency dependent velocity to be taken into account by using apriori knowl-

edge of the dispersion curve [24]. While dispersion compensation can limit the effects

of dispersion in simple scenarios such as isotropic single layered medium, for most

non-isotropic or multilayered cases the dispersion curves cannot be calculated in ad-

vance. Similarly, use of narrow band excitation such as tone burst has been proposed

with the aim of minimizing the affects of dispersive propagation [48]. However these

techniques cannot completely eliminate dispersion, as such tone bursts will disperse

as they propagate through the material. Time reversal techniques are also proposed

which calculates TOF information from forward and backward propagating wave-

forms [89, 90]. Although simple, this technique is only shown to be effective for

simple situations and single mode propagation as the technique does not account for

dispersion.

In summary, for multimode dispersive propagation, time domain methods are

less accurate The first reason for this phenomenon is dispersion. TOF estimation

is complicated because time domain techniques do not take dispersion into account.

Use of narrow band excitation and dispersion compensation techniques have been
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proposed that aim to minimize the affects of dispersive propagation, however these

techniques cannot completely eliminate dispersion. Moreover the techniques rely

on apriori knowledge of materials hence limiting their applications. Secondly, the

detection of peaks is an important part of the analysis. TOF determination in the

time domain is a very challenging task in multimodal systems since various peaks

may overlap. Moreover attenuation and noise may also affect determination of the

mode peaks.

The complexity of modeling the dispersive UGW wave propagation depends on

the material and cannot always be derived analytically. However, knowledge of the in-

herent dispersive properties for different material is critical in investigating structural

failure modes. For UGW propagation modeling, we require a TFR that is highly

localized along the signal’s GD in addition to being able to reconstruct individual

modes. In other words, we require analysis tools that can both separate guided wave

dispersion curves that are closely spaced as well as extract highly localized informa-

tion. The Synchrosqueezing technique with time reassignment, addresses the main

requirements for UGW propagation analysis: high GD localization, substantial sep-

aration, and reconstruction of individual signal component modes. We thus propose

a new SST TFR that is aimed to better match signals with nonlinear GD function.

The use of UGW propagation in SHM requires methods to analyze and extract the

multiple dispersive modes. One such method involves highly-localized TFRs due to

the multiple frequencies present in the signal at any given time [91]. The Wigner dis-

tribution (WD) is a highly localized TFR but suffers from interference terms for mul-

ticomponent signals and signals with nonlinear TF characteristics. Another widely

used TFR is the short-time Fourier transform (STFT) given by

Sx(t, f ;H) =

∫
X(f − ν)H(ν) e−j2πtν dν , (4.1)
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Matched Phase Estimator Approach

ϕ(t) ∝ t IF FRO with ∂
∂t

of STFT phase [94, 3]

ϕ(t) ∝ t GD TRO [6]

ϕ(t) ∝ t2 IF enhanced FRO with ∂2

∂t2
of STFT phase [4]

ϕ(t) ∝ t2 IF UBE with ∂
∂t

and ∂n

∂tn
or ∂

∂t
and ∂n

∂fn of STFT [5]

ϕ(t) ∝ t2 GD enhanced TRO [6]

ϕ(t) ∝ t3 IF ∂3

∂t3
of STFT [95]

ϕ(t) ∝ tn IF estimator with ∂
∂t

of STFT, and n−1 iter. of ∂
∂f
[96]

ϕ(t) ∝ f 2 GD estimator with ∂2

∂f2 of STFT [39]

ϕ(t) ∝ f 3 GD estimator with ∂
∂f
, ∂2

∂f2 and ∂
∂t

∂
∂f

of STFT [7]

Table 4.1: Summary of Synchrosqueezed STFT TFRs Providing High TF Local-
ization for Signals with Time Domain Phase Function ϕ(t) and Signals with Fre-
quency Domain Phase Function Φ(f).

where X(f) and H(f) are the Fourier transforms of the analysis signal x(t) and

real and even window h(t). Although simple to implement and does not exhibit

interference terms, the STFT, and its squared magnitude, the spectrogram, face a

window-dependent trade off between time and frequency localization. The reassigned

spectrogram resolves the localization issue by mapping TF points to regions of high

signal concentration using a time reassignment operator (TRO) and frequency reas-

signment operator (FRO) [92, 17, 93]. It is a highly localized TFR for multicomponent

signals and it is specifically matched to signals with quadratic phase function [17].

However, it cannot be used to reconstruct individual signal components.

The synchrosqueezing transform (SST) applied to the STFT exploits the high

localization offered by the reassignment operators while allowing for signal mode

reconstruction [97, 94, 3, 31]. The SST TFR is given by [94, 3]

SSTx(t, f) =

∫
Sx(t, ν;h) δ(f − ζx(t; ν)) e

j2πtf dν , (4.2)
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where ζx(t; f) = f + Im{Sx(t, f ;hd)/Sx(t, f ;h)} is the FRO in [17], Im{z} denotes

the imaginary part of z, and h(t) and hd(t) =
d
dt
h(t) are STFT windows in time.

The TFR was shown to provide high localization for weakly-modulated signals also

provide perfect localization for signals with linear phase in time (constant IF). Dif-

ferent synchrosqueezed STFT TFRs have been proposed in the literature (see Table

4.1) that differ in the domain of reassignment as well as the signal they match. Fre-

quency SSTs (FSSTs or vertical SSTs) reassign in frequency using a local IF estimator

f̂x(t, f), thus moving a STFT TF point (t, f) to a new TF point (t, f̂x(t, f)) along

the IF. On the other hand, time SSTs (TSSTs or horizontal SSTs) reassign in time

using a local GD estimator; a STFT TF point (t, f) is thus moved to a new TF

point (t̂x(t, f), f) along the IF. As the FRO can be obtained from the first-order time

derivative of the STFT phase, the TFR in (4.2) is considered a first-order FSST. A

second-order FSST TFR was proposed in [4, 98] using second-order time derivatives

of the STFT phase; it is matched to signals with quadratic phase in time (linear

IF). Another second-order FSST was proposed in [5] based on multiple unbiased IF

estimators obtained by solving a system of two linear equations. One equation is

formed using the first-order time derivative of the STFT whereas multiple choices for

the second equation result from the second or higher order time or frequency deriva-

tives of the STFT. The higher-order FSST in [96] was developed to match signals

with nth order polynomial phase function in time and thus provide high localization

for stronger modulated signals. The frequency reassignment for this TFR is per-

formed by first obtaining a local IF estimate using the first-order time derivative of

the STFT, followed by n−1 iterations of the first-order frequency derivative of the

IF estimate. This TFR was used to analyze seismic signals, fault bearing features,

voice jitter and radar signals [99, 100, 101, 102]. Recently, a third-order FSST was

obtained using third-order time-derivatives of the STFT for signals with third-order
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polynomial phase in time [95]. TSST TFRs of first and second order were proposed

in [6] using the TRO and an enhanced TRO for estimating GD. These TFRs were

shown to provide high localization for impulsive signals. Note that a similar approach

to [96] for vertical SST was presented for horizontal SSTs in [103].

4.2 Proposed Group Delay Estimation Approach

For matched analysis, we consider the generalized time-modulated (GTM) signal

x(t) with FT:

X(f)=A(f) e−j2πΦ(f/fr)

where Φ(f/fr) is the nonlinear phase function, fr = 1 is a normalization frequency

unit, and τ(f)= d
df
Φ(f) is the signal’s GD. Note that the amplitude modulation allows

for orthogonality if selected as A(f) =
√

|τ(f)| assuming the phase is an invertible

and differentiable function [104]. For UGW propagation, the GTM phase matches

that of the ℓth dispersive mode

Φ(f)=rℓ kℓ(f)

GTM examples include hyperbolic time-modulated (HTM) signals with time-

modulation rate (TMR) c and logarithmic phase Φ(f) ∝ ln(f), f > 0, and power

time-modulated (PTM) signals with real power parameter κ and power-law phase

Φ(f)∝fκ. Whereas HTM signals have similar TF characteristics as the echolocation

signals of bats and dolphins [105, 106], PTM signals have similar TF structure as the

echo returns from acoustic transmissions along a steel beam [107].

A matched TFR for the GTM signal can be obtained using the synchrosqueezing

approach as

DSSTx(t, f ;H) =

∫
Sx(η, f ;H) δ(t− τ̂x(f ; η)) e

−j2πηf dη , (4.3)
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STFT Analysis Window

S ≡ Sx(t, f ;H) in (4.1) H(f)

SD ≡ Sx(t, f ;DH) (DH)(f)= d
df
H(f)

SM ≡ Sx(t, f ;MH) (MH)(f)=f H(f)

SD2 ≡ Sx(t, f ;D2H) (DDH)(f)= d
df2H(f)

SM2 ≡ Sx(t, f ;M
2H) (M2H)(f)=f 2H(f)

SMD ≡ Sx(t, f ;MDH) (MDH)(f)=f d
df
H(f)

SM2D ≡ Sx(t, f ;M2DH) (M2DH)(f)=f 2 d
df
H(f)

SM3 ≡ Sx(t, f ;M
3H) (M3H)(f)=f 3H(f)

Table 4.2: Notation of STFTs Based on Choice of Window. Operators D and M
Denote Differentiation and Multiplication, Respectively. The Operator Precedence
Follows, for Example, (M2DH)(f)=(M(M(DH))) (f).

provided τ̂x(f ; t) is a matched estimator of the signal’s GD. In order to find such an

estimator, we assume a class of signals with power-law GD characteristics. Following

[96], we can also assume an arbitrary nonlinear phase function that can be approx-

imated by a polynomial using a Taylor’s series expansion. In particular, we assume

cubic polynomial phase function ,

Φ(f)=Φ0 + tx f + (bx/2) f
2 + (cx/3) f

3

resulting in the quadratic GD function

τ(f)= tx + bx f + cx f
2

Thus, τ̂x(f ; t) in (4.3) is obtained by estimating the time constant tx, the linear

term bx and the quadratic TMR parameter cx.
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Following the general approach in [4, 5], we formulate and solve a system of three

linear equations that are derived by taking derivative of the STFTs. This derivation

of the system of equations is provided in Appendix A In matrix form, the system of

equations is given by
SD

SDD

SMD + S

 =


SM2 SM S

SM2D SMD SD

SD3 SM2 SM




Rx

Qx(f)

Px(f) + j2πt

 (4.4)

where

Υx(f)=−j2π(tx + bx f + cx f
2)

L(f)=j2π(bx + 2 cx f)

Cx=−j2πcx

the STFTs with varying windows are defined in Table 4.2. The system in (4.4) was solved

using Cramer’s rule and validated numerically to obtain

Ĉx =
SDDS

2
M − 2SMSMDSD − S SMSD + S S2

MD + S2 SMD − S SM2SDD + SM2S2
D

SDS2
M2 − S SMDSM2DSM2 − SM3SDSM + S SM3SMD

(4.5)

L̂x(f) =
S2SM2D+SM3S2

D+S SM2DSMD−SM2DSMSD+SM2SMSDD−SM2SMDSD−S SM2SD−SM3SDD
SDS2

M2−SMDSM2SM−S SM2DSM2+SM2DSM2−SM3SDSM+S SM3SMD
(4.6)

and Υ̂x(f) + j2πt=Γ(t, f)/Λ(t, f), where

Γ(t, f) = −SM2S2
MD + S2

M2SDD + SM2DSMSMD − SM2SM2DSD + S SM2DSM − S SM2SMD 

− SM3SMSDD + SM3SMDSD 

Λ(t, f) = SDS
2
M2 − SMDSM2SM − S SM2DSM2 + SM2DS

2
M − SM3SDSM + S SM3SD .

To obtain the GD estimate, we need to solve for τ(f) = tx + bx f + cx f
2. Since j2π(tx +

bx f + cx f
2)=j2πt− Γ(t, f)/Λ(t, f), taking the imaginary part of both sides results in

τ̂(f ; t) = (t̂x + b̂x f + ĉx f
2) = t− 1

2π
Im

{
Γ(t, f)/Λ(t, f)

}
. (4.7)
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Using the estimated GD τ̂(f ; t) in Equation (4.3), we obtain the new dispersive SST (DSST)

TFR. In addition to the GD estimate in (4.7), the solution of (4.4) provides an estimate of

the quadratic TMR parameter ĉx=− 1
2π Im{Ĉx} using Equation (4.5). This is an important

parameter that provides information on the rate of nonlinear change in group delay. The

detailed mathematical derivation is provided in Appendix A.

4.3 Analysis of Parabolic Frequency Modulated Signal

To illustrate the performance of the new NSST, we consider a parabolic frequency mod-

ulation (PFM) signal modelled in the frequency domain. The reason to use this type of

signal is to simulate high level of nonlinearity. PFM signals are a special case of frequency

modulated signals and are frequently used in a variety of communication such as radar com-

munication. PFM signals can suffer from non-linear distortion, which can lead to unwanted

harmonic distortion and can be more sensitive to noise and interference than other types of

signals.

The cubic coefficients and the maximum bandwidth of the PFM signal is selected to

simulate a highly non-linear signal. The frequency modulated signal is generated with the

phase function in the frequency domain such that

Φ(f) =
c3
3
f3 +

c2
2
f2 + c3f + c1

where c3 = 0.001, c2 = 0.00000001, c1 = 1.9 and c4 = 0.001. A maximum frequency

bandwidth from −fmax

2 to fmax

2 is set such that fmax = 402. The signal does not suffer from

aliasing, as the number of points is calculated to be N = (GDmax −GDmin) ∗ fmax which

leads to a large value of N= 16241. Figure 4.1 compares the TFRs: STFT, FR-SST [3], FR-

SST2 [4, 5], TR-SST2[6] and NSST[7]. Note that in the simulation, in the regions of high

modulations such as slope changes, NSST provides a more concentrated representation.
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Figure 4.1: Time Frequency Representations: STFT, FR-SST [3], FR-SST2 [4, 5],
TR-SST2[6] and NSST[7]

58



4.4 Quantitative Comparison

4.4.1 Normalized Energy

A qualitative comparison of the TFR can be obtained by illustrating the normalized

energy as first proposed in [4]. In this technique, the normalized energy associated with

the first N coefficients and the growth of energy towards 1 is computed. A faster growth

towards 1 represents a sharper TFR. The analysis method is implemented by first sorting

the absolute values of the TFR coefficients in descending order. The cumulative sum of

the sorted coefficients is then calculated by the formula
(
Cumsum(T 2)

Sum(T 2)

)
. The abscissae are

calculated by computing the number of coefficients over the size N of the signal which can

be interpretted as the average number of coefficients for each column of the TF plane.

Figure 4.2 displays the normalized energies of the TFRs: STFT, FR-SST, FR-SST2,

TR-SST2 and NSST. The energy of the NSST exhibits the fastest increase in energy to

1. Within just one coefficient, 99 percent of the energy of the NSST is retrieved. The

explanation for the high energy localization is the optimal reassignment of TFR coefficients

in the TF plane. In comparison, 95 percent of the FR-SST2 signal energy is retrieved within

one coefficient, while the TR-SST2 requires 3 coefficients to reach maximum energy. SST

and STFT stagnate at 20 percent, which implies that the signal is not retrieved within a

reasonable number of coefficients.
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Figure 4.2: Normalized Energy as a Function of the Number of Coefficients.
Faster Growth of Energy Towards 1 Represents Sharper Representation.

4.4.2 Signal Reconstruction

Synchrosqueezing techniques offer a significant benefit over traditional reassignment

techniques due to the ability of the TF transform to be inverted back to the Time domain.

The reconstruction formula used to reconstruct the mode in the time domain is:

fk(t) =

∫
DSSTx(t, f ;H)df (4.8)

The signal reconstruction superimposed on the original signal shown in figure 4.3 demon-

strates perfect reconstruction of the signal. A statistical analysis of reconstruction quality

in the presence of noise is carried out in the next section.
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Figure 4.3: Signal Reconstructed from TF Domain to Time Domain

4.4.3 Reconstruction Quality Factor

In order to illustrate the influence of noise, we contaminate a PFM signal which has

coefficients c3 = 0.0001, c2 = 0.0001, c1 = 0.1 and c4 = 1 with white Gaussian noise ranging

from 10dB to 50dB. The reconstruction quality factory (RQF) is given by

RQF = 10log10

(
Σ|x[n]|2

Σ|x[n]− x̂[n]|2

)
The equation is used to quantitatively assess the signal reconstruction capability of TFRs

with noise. The RQF comparison is made between the NSST and the state of the art GD

estimator TR-SST2 [6] in the presence of noise. Note that the other estimators proposed

in literature are IF estimators [5, 3, 4, 18] and not GD estimators. Figure 4.4 demonstrates

that the NSST obtains significantly higher RQF than the TR-SST2 [6]. The advantages

of considering frequency modulation for representation and reconstruction purposes were

demonstrated through numerical experiments. Notably, the new transformation displayed

remarkable noise robustness.
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Figure 4.4: Analysis of Performance in Noise Using Reconstruction Quality Fac-
tor. Higher Value of RQF Represents Better Reconstruction Performance
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4.5 Hyperbolic Frequency Modulated Signals

Hyperbolic Frequency Modulated (HFM) signals are a subclass of continuous-wave radar

signals [108]. Unlike the linear frequency modulated signals, where the frequency increases

or decreases linearly with time, in HFM signals the rate of frequency change varies hyper-

bolically over the pulse duration. Mathematically, the instantaneous frequency of an HFM

signal can be expressed as:

f(t) = f0 +B · ln(C · t+ 1)

where f0 is the starting frequency, B is the bandwidth, C is a modulation constant, and t

is the time. One of the primary advantages of using HFM signals in radar systems is their

potential to improve range and velocity ambiguity resolution. Moreover, these signals are

inherently resistant to certain types of electronic countermeasures, making them valuable

in defense and electronic warfare applications.

The performance of the NSST is demonstarted by analyzing an HFM frequency-domain

signal defined as X(f)=A(f) exp (−j2πc ln(f + fr)). The HFM has hyperbolic GD τ(f)=

c/(f + fr), where c is the frequency modulation (FM) rate and fr is a small frequency. For

a modulation rate set at c=40, figure 4.5 shows the comparison of the MATLAB STFT

implementation compared to the NSST. For visual verification, we compare the localization

of the signal at Frequency at 200Hz using the line function. The TFR depict the perfect

localization achieved by the NSST for this signal.
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Figure 4.5: Perfect Localization in TF Plane for Nonlinear HFM Signal
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Chapter 5

UNSUPERVISED MODE EXTRACTION

5.1 Previous Methods of Mode Extraction

In signal processing, the extraction of oscillatory modes from complex signals is a cru-

cial task for various applications, including biomedical signal analysis, mechanical vibration

monitoring, and financial data processing. Traditional methods, such as the Short-Time

Fourier Transform (STFT) and the Wavelet Transform (WT), provide time-frequency repre-

sentations of signals but often suffer from either poor temporal or poor frequency resolution

due to the uncertainty principle. To address this limitation, the synchrosqueezing tech-

nique was introduced as an enhancement to the continuous wavelet transform (CWT)[18].

The core idea of synchrosqueezing is to refine the time-frequency representation by reas-

signing the energy of the wavelet transform to the true instantaneous frequencies, leading

to an improved clarity and concentration in the time-frequency plane. As a result, this

method enables sharper mode extraction, especially for signals with closely spaced oscilla-

tory components. By using synchrosqueezing, one can achieve more precise identification

and separation of oscillatory modes, enhancing the analysis and understanding of intricate

signal behaviors [109]. However, it’s essential to select an appropriate mother wavelet and

ensure careful implementation to maximize the benefits of the synchrosqueezing technique.

Mode separation for multicomponent signals has been classically implemented using the

ridge detection method proposed by Carmona et al [110]. The procedure uses a Markov

Chain Monte Carlo (MCMC) approach called the Crazy climbers algorithm. The algorithm

initializes random points on the TF grid, which then evolve based on the local magnitudes

of the TFR. However the algorithm assumes a slow varying and smooth ridge function

and hence is not suitable for analysis of dispersive signals. Another commonly used mode
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separation technique was introduced by Thakur and Brevdo [76] for noisy and non uniformly

sampled time series. In this method, an approximated energy curve for modes is found to

be:

Es(c) =

∫
log|Ts(c(t), t)|dt

and J(c) =
∫
|c′(t)|2dt being the measure of irregularity. c(t) represent the IF curve and Ts

is the TFR. The ridges are then extracted by minimizing

E(c) = J(c)− λEs(c)

However, λ is a heuristic parameter that has to be set a priori. This method also approxi-

mates the curve c, based on the smooth and slowly varying function assumption. Improve-

ments to the ridge extraction method were proposed by mathematical computation of local

minima of the energy function [32]. However the proposed extraction procedure contained

heuristic optimization control parameters λ and β. Moreover, the number of modes to be

extracted are assumed to be known.

5.2 Unsupervised Mode Extraction

Various methods have been considered for detecting and identifying TF regions of high

energy localization in the TF domain due to multiple components in the analysis signal

[110, 76, 32]. Most of these methods assume a known number of components with slow-

varying TF characteristics. Considering the received UGW signal spectrum with multiple

signal modes,

Y (f) =

L∑
ℓ=1

X(f) e−j2πrℓkℓ(f) ,

the resulting GD functions τℓ(f) = rℓ
d
df kℓ(f) can be highly dispersive. Also, the number

of modes L is unknown as new modes can be generated every time the wave encounters

a boundary. We thus consider an unsupervised mode segmentation method to cluster TF

points to their corresponding modes without prior knowledge on the number of modes. The

method uses a graph-based segmentation algorithm adopted from image processing [111].
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Figure 5.1: UMS Algorithm Example, Nine Time Frequency Vertices with Edge
Weights

Similar to a graph-based representation of an image, we regard the DSST TFR as an

edge-weighted undirected graph. Specifically, assuming N DSST TF points, the ith TF

point (ti, fi) is the ith graph vertex, and the ith and jth neighboring TF points correspond

to the ijth graph edge with edge weight (Ti − Tj), where Ti = |DSSTx(ti, fi;h)| in (4.3),

i=1, . . . , N . The clustering of the TF points uses the TFR-based minimum spanning tree

(MST) which is formed as an acyclic subgraph of all DSST TF points with minimum total

edge weight. Although different methods have been considered for MST-based clustering,

we adopt the unsupervised mode separation (UMS) algorithm that follows the efficient

image segmentation in [111]. The UMS algorithm uses two clustering metrics to adaptively

separate all TF points based on the local characteristics of the DSST TFR. These metrics

are used to decide whether two TF point clusters should be merged into one cluster; if they

are merged, then all TF points are associated with the same mode.
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(a) Each TF Point is its Own Component (b) Lowest Weight Component C1 and C5

(c) Merge Components C2 and C4 (d) Merge C3 and C7

Figure 5.2: Step by Step Implementation of UMS Algorithm Starting with Lowest
Edge Weight to Largest for Component 1
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(a) Merge Component C6 and C8 (b) Merge Component C9

Figure 5.3: Step by Step Implementation of UMS Algorithm Starting with Lowest
Edge Weight to Largest for Component 2

The UMS algorithm for separating TF modes is outlined in Algorithm 1. The algorithm

initially orders the M =(N − 1) edge weights of the MST graph in ascending order ϖ1 ≤

ϖ2 ≤ . . . ≤ ϖM and then assigns the ith cluster C
(0)
i to the ith TF point, i = 1, . . . , N .

The clustering process undergoes M iterations. At the mth iteration, the two TF points

connecting the edge with weight ϖm are labeled Pi=(ti, fi) and Pj=(tj , fj). The clustering

of these two points was determined at the (m−1)th iteration. Specifically, Pk is a TF point

in Cluster C
(m−1)
k , which includes Lk edges with weights w

(k)
ℓ , ℓ=1, . . . , Lk, for k= i, j. If

the number of TF points in the cluster is |C(m−1)
k |= 1, then Lk = 0 and w

(k)
ℓ = 0. Metric

E
(m)
ij is obtained as the minimum edge weight between the TF points connecting the two

clusters. Metric

I
(m)
ij = min

(
max

ℓ=1,...,Li

(w
(i)
ℓ + γ), max

ℓ=1,...,Lj

(w
(j)
ℓ + γ)

)
, (5.1)

finds the minimum value between the maximum edge weight in each cluster. Note that if

the number of TF points in any one of the two clusters is |C(m−1)
k |=1, k= i, j, then Lk=0,

w
(k)
ℓ =0 and I

(m)
ij =γ. If E

(m)
ij < I

(m)
ij , all TF points from clusters C

(m−1)
i and C

(m−1)
j are
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merged into the new cluster C
(m)
i ; otherwise the two clusters remain separated. Note that

the threshold parameter γ in (5.1) is heuristically selected to control boundaries between

clusters. For example, a large threshold γ results in more clusters merging, thus ensuring

that low intensity noise terms do not form a new mode.

To illustrate the procedure, figure 5.1 shows nine time-frequency points in the TF plane

connected together. The vertices are labelled as Tn. The weight between each vertex is

indicated on the edge. Figure 5.2 shows the step by step implementaiton of the algorithm.

The algorithm starts with initializing each vertex as its own component and cinsidering the

smallest edge weight which is 0.1 between component 1 and component 2. Comparing the

internal difference Imij with component difference Em
ij , we arrive at the conclusion to merge

the components C1 and C2. The next smallest edge weight is considered as 0.2 between C2

and C4 and using a similar approach, the components are merged. Finally components C3

and C7 are also merged within the mode using the same predicate calculation.

However when the next smallest edge weight is considered, component C8 has the min-

imum weight of 18.8 as shown in figure 5.3. Hence the component cannot be merged with

the large newly constructed mode. Next the vertex C8 and C6 are considered and merged

based on the predicate calculations. Finally the component C9 is merged. This leads to a

clear differentiation of the two modes shown in figure 5.3 (b).

The UMS algorithm for separating TF modes is outlined in Algorithm 1. We demon-

strate the effectiveness of the UMS algorithm in separating TF modes using two examples.

In the first example, we consider a signal consisting of the sum of two PTM signals that

were generated using 20 Hz sampling frequency and 1 s duration. The UMS algorithm

was implemented using python’s scikit-image library [112] and γ = 10 was selected as the

threshold value in (5.1).
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5.3 Simulations

5.3.1 Parabolic Frequency Modulation

Parabolic frequency modulation (PFM) is an advanced modulation technique in which

the instantaneous frequency of a signal changes according to a parabolic function over time

[113]. In signal processing, PFM can offer a compromise between linear frequency mod-

ulation (LFM) and hyperbolic frequency modulation (HFM) in terms of time-bandwidth

properties and autocorrelation characteristics [114]. In particular, the PFM waveform pos-

sesses some desirable properties for specific applications, such as radar imaging and sonar,

where the target’s Doppler shifts are unknown and can vary considerably. This modulation

technique can achieve better range resolution than LFM while maintaining a relatively sim-

ple matched filter structure. Moreover, PFM provides an inherent capability to counter the

Doppler effects due to its quadratic phase term. This quadratic phase compensates for the

Doppler shift introduced by a target’s movement, thus making PFM an attractive choice in

scenarios where target motion is unpredictable [115]. As research progresses, advancements

in the PFM domain, coupled with computational techniques, promise enhanced resolution

and improved target detection capabilities in various signal processing applications.

5.3.2 Multiple PFM Signals with No Overlap

In order to demonstrate mode separation for two parabolas we find the parameters of

PFM that best fit the two parabolas. The frequency modulated signal is generated with

the phase function in the frequency domain such that Φ(f) =
c3
3 f

3+ c2
2 f

2+ c3f + c1, where

c3 = 0.6, c2 = 0.001, c1 = 25 and c4 = 1 are the coefficients of the first parabola and c3 = 1,

c2 = −0.5, c1 = 150 and c4 = 1 are the coefficients of the second parabola. A maximum

frequency bandwidth from −fmax

2 to fmax

2 is set such that fmax = 20. The two parabolas do

not overlap in the TF domain and shown in figure Figure 5.4 (a). The modes are separated

using the mode extraction algorithm, and each separated mode is shown in figure Figure

5.4 (b) and (c).
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(a) Two Hyperbolic modes
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(b) Mode 1 separated
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(c) Mode 2 separated

Figure 5.4: Two PFM Matched to Dual Hyperbolas

5.4 Isotropic UGW Analysis

UGW dispersion curves can be obtained using NSST extracted GD and their relation

to dispersive group velocity in Xr(f) = X(f) ej2πrkn(f) We used the Waveform Revealer

(WFR) tool to simulate the multimode UGW behavior in isotropic material [40]. In par-

ticular, we used the WFR to obtain UGW waveforms propagating in Aluminum 6061 plate

with 2mm thickness and 2700 kg/m3 material density. The input signal is a tone burst

with center frequency ranging from 100 to 1500 kHz, in 1 kHz intervals. This input signal

results in exciting both symmetric and antisymmetric Lamb waves through the plate. Mea-

surements are provided using two sensors placed in a pitch-catch configuration. The first
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sensor is collocated with the actuator to measure the excitation wave; the second sensor is

placed 500 mm away from the source. The NSST in Figure 5.5 shows the dispersive TF

characteristics of the modes in a highly localized representation. The mode group velocities

can be calculated from these dispersive modes. Note that, in [39], we proposed an approach

to separate modes using unsupervised clustering and graph-based image segmentation.
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Figure 5.5: NSST GD Estimation in Isotropic Material.

Figure 5.6 plots the group velocity vs damage sensitivity parameter fd, the product

of frequency and thickness. Strong agreement between the estimated group velocity and

theoretical values of group velocity is observed by comparing the A0, S0, A1 and S1 modes

with theoretical values.
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Figure 5.6: Group Velocity Estimation and Comparison of Dispersion curves
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Figure 5.7: Time Domain Signal of Healthy and Damage CFRP

5.5 Defect Detection in Isotropic Media

The waveform of Lamb wave interaction with damage can be obtained by defining dam-

age location and nonlinear parameters such as phase change, mode conversions and higher

harmonics. Figure 5.7 shows the time domain signals of Lamb wave propagation through

a pristine and damaged Aluminum plates. Clearly, the identification of peak intensity of

the UGW modes in TD is a challenging task because the intensity and phase information

is superimposed. Figure 5.8 (a) shows the NSST of wave propagation through the pristine

Aluminum plate. It can be seen that unlike the TD signal, the A0, A1, S0 and S1 modes are

clearly separated in the TF domain. Figure 5.8 (b) shows the NSST of Lamb wave propaga-

tion through an Aluminum plate with damage at location 200mm. We observe occurrence

of new modes due to reflection and mode conversions due to damage. The intensity of A0,

S0 and A1 modes is dissipated due to presence of damage.

5.6 Analysis of Real Data

The performance evaluation for damage detection with real experimental data can be

performed using open source dataset comprising of UGW propagating through composite
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Figure 5.8: NSST Isotropic UGW Simulated Signal with Damage

76



plate [41]. The carbon fiber-reinforced polymer (CFRP) test plate is quasi-isotropic in na-

ture and the dimensions are 500 mm x 500 mm x 2 mm thick. The quasi-isotropic laminate

layup is [45/0/−45/90/−45/0/45/90]s. Twelve piezoelectric transducers (PZT) (DuraAct,

0.2 mm thick, 5 mm in diameter) were embedded on the plate in pitch catch configuration.

The excitation signal is a 0.125 ms broadband linear chirp from 20 to 500 kHz. The guided

wave response is recorded by a 14-bit A/D converter connected to a PD200 (PiezoDrive)

amplifier. Noise reduction was accomplished by taking five baseline measurements and

maintaining a consistent temperature within a climate-controlled chamber. The resulting

data was then averaged. To simulate damage, an omega stringer feature (1.5 mm nominal

thickness and 0.125 mm ply thickness) was bonded to the plate surface. The time domain

response of UGW propagating through the CFRP in healthy and damage state are repre-

sented in the figure 5.9a. The DSST of each of the signals is taken and shown in figures 5.9b

and 5.9c. Significant difference in the higher order modes of the damage and undamaged

DSST is observed.

Damage features were added to cause stiffness asymmetry leading to decrease in ampli-

tude, change in time of flight (TOF) and mode conversions. Figure 5.10 (a) and (b) show

Mode 2 and 3 superimposed. It is clearly seen that the damage modes exhibit intensity

reduction. The mode reconstruction is shown in figures 5.10 (c) and (d) which demonstrates

the difference between healthy and damage modes.
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Algorithm 1 Unsupervised Mode Separation Algorithm

– Input {ti, fi, Ti}, i= 1, . . . , N , for the ith TF point (ti, fi) and corresponding

DSST magnitude Ti= |DSSTx(ti, fi;h)|

– Input threshold γ

1. Compute weight (Ti − Tj), i ̸= j, i, j=1, . . . , N , for the edge between the ith

and jth neighboring TF points

2. Construct minimum spanning tree (MST) as acyclic subgraph of all DSST TF

points with minimum total edge weight

3. Order MST edge weights ϖ in ascending order ϖ1 ≤ ϖ2 ≤ . . . ≤ ϖN−1

4. Set iteration index m=0 and number of clusters L=N

5. Cluster the ith TF point (ti, fi) to the ith cluster, C
(0)
i , i=1, . . . , L

6. Set iteration number m=m+ 1

7. Observe the two TF points of the edge weight ϖm, Pi = (ti, fi) from Cluster

C
(m−1)
i and Pj=(tj, fj) from C

(m−1)
j

8. Observe all TF points and Lk edges with weights w
(k)
ℓ , ℓ=1, . . . , Lk, in Cluster

C
(m−1)
k , k= i, j

9. Obtain E
(m)
ij as the minimum edge weight between the TF points connecting

clusters C
(m−1)
i and C

(m−1)
j

10. Compute I
(m)
ij using γ and Equation (5.1)

if E
(m)
ij < I

(m)
ij then

Merge all TF points from Clusters C
(m−1)
i and C

(m−1)
j into Cluster C

(m)
i

Update number of clusters L=L− 1

else

C
(m)
i =C

(m−1)
i and C

(m)
j =C

(m−1)
j
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Figure 5.9: NSST of UGW Propagating in Quasi-Isotropic Media
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end if

if m ≤ N − 1 then

Return to 6

end if

– Output L clusters; TF points in ℓth cluster form the ℓ mode, ℓ=1, . . . , L



(a) Mode 2 in TF Domain (b) Mode 3 in TF Domain

(c) Mode 2 in Time Domain (d) Mode 3 in Time Domain

Figure 5.10: Damage Detection in CFRP Using DSST with Unsupervised Mode Sepa-
ration
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Chapter 6

BAYESIAN GROUP DELAY MODE MERGING

6.1 Extracting Signals Overlapping in Time-frequency

A very challenging problem when processing time-varying signals is how to separate

multiple signal components from their joint time-frequency representation (TFR) when the

signals time-frequency (TF) signatures overlap in both time and frequency. When two

or more signal components with varying group delays overlap in the TF domain, their

individual group delays in the TFR can become indistinguishable. As multiple TF points

are shared by multiple components, his complicates the use of the TFRs for component

separation, feature extraction, and accurate interpretation of the signal’s behavior. For

TFRs based on the reassignment method, the processing becomes problematic when modes

intersect in TF [26]. In these overlapping TF regions, the reassignment method tends

to favor the mode with the highest energy concentration, treating these regions as the

main focus. This results in obtaining information only on the strongest mode. However,

this causes lesser modes to appear fragmented or separated where they intersect with the

dominant mode. Recent approaches to address the problem of intersecting modes include

the direction of arrival method [116, 117]. The suggested method initially divides sources

using a multi-sensor instantaneous frequency (IF) estimation technique followed by utilizing

the algorithm to estimate the location of the sources. However, the methods exhibit poor

performance in estimating nonlinear signals with overlap in the TF domain. Thus, signal

extraction when overlapping in TF necessitates advanced signal processing techniques to

separate and accurately represent the signal’s individual components.

This challenging problem is particularly important when using our proposed nonlinear

synchrosqueezed transform (NSST) in Chapter 4 to separate multiple modes from ultrasonic
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guided wave (UGW) testing. Our unsupervised mode extraction method in Chapter 5 was

successful in extracting individual signal components from their joint NSST provided the

signals overlapped only in time or only in frequency. However, when using this method to

extract signal components that overlap in both time and frequency, the number of clusters

extracted exceeds the number of signal terms in the NSST. For example, Figure 6.1 shows

the NSST of two parabolic frequency-modulated (PFM) signals that overlap in both time

and frequency. After unsupervised mode extraction clustering, however, instead of two

clusters, we obtained the 6 NSST clusters depicted in Figure 6.2. Note that the intersection

TF points in Figure 6.1 are not clustered in Figure 6.2. This is because we first use the

Hessian filter [118] to identify interrupted edges and their corresponding TF points; the

we use morphological operators to remove these TF points and thus avoid clusters of very

small size.

In this chapter, we propose a new method to extract overlapping signal terms that uses

the multiple clusters of the unsupervised mode extraction approach. The method exploits

Bayesian inference [119], as described in the following sections, to adaptively merge clusters

that belong to a mode whose group delay signature is continuous over a span of TF points.

An illustration of the framework is shown in figure 6.3
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Figure 6.1: NSST of Two Overlapping PFM Signals in the TF Domain.
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(a) Cluster c1 (b) Cluster c2

(c) Cluster c3 (d) Cluster c4

(e) Cluster c5 (f) Cluster c6

Figure 6.2: Cluster Components After Unsupervised Mode Extraction of the
NSST in Figure 6.1.
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Figure 6.3: Mode Merging Framework

6.2 Summary on Bayesian Inference Methods

6.2.1 Bayesian Filtering

Bayesian inference or Bayesian filtering is a statistical approach based on Bayes’ theorem

that can be used to estimate an unknown state parameter by updating its prior distribu-

tion given a new measurement [119, 120]. The approach depends on a prior probability

model to relate the unknown parameter to its previous estimated value and a likelihood

model to relate the measurement to the unknown parameter [119]. Assuming an unknown

time-varying parameter xt at time t and a measurement zt, Bayesian inference estimates

the posterior distribution p(xt | yt) using the prior transition model p(xt | xt−1) and the

likelihood distribution p(yt | xt). Specifically, the posterior can be obtained using

p(xt | zt) ∝ p(zt | xt)
∫

p(xt | xt−1) p(xt−1 | zt−1)dxt−1

where p(xt−1 | zt−1) is the likelihood at the previous time. The estimation model depends on

the Markovian assumption that the current state xt is conditionally independent of all earlier

states x0, . . . , xt−2 given the previous state xt−1, and also that the current measurement

zt is conditionally independent of past measurements z1, . . . , zt−1 given the current state

xt. Written in terms of a state space formulation, the Bayesian filtering problem can be
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described by the state transition equation

xt = g(xt−1) + ut−1 (6.1)

where g(·) is the transition function and ut−1 is a modeling error process, and the measure-

ment equation given by

zt = h(xt) + wt (6.2)

where h(·) is a function that relates the state to the measurement and wt is measurement

noise. If the two functions in Equations (6.1) and (6.2) are linear and the the two processes

are Gaussian, then the unknown state can be obtained sequentially using the Kalman filter

[121]. For nonlinear functions and/or non-Gaussian processes, the particle filter (PF), a

sequential Monte Carlo method, is used [122, 120, 123, 124, 125].

6.2.2 Monte Carlo Methods

Monte Carlo methods are numerical techniques for solving problems through random

sampling [126]. In Bayesian filtering, Monte Carlo methods can be used to approximate

the posterior distribution by drawing samples from it. Particle filtering is one such Monte

Carlo method used for recursive Bayesian estimation. Monte Carlo methods encompass a

broad class of computational algorithms that rely on random sampling to estimate numer-

ical results. These methods have been successfully applied to various problems in signal

processing where analytical solutions are difficult or impossible to obtain. At their core,

Monte Carlo methods generate a large number of random samples from a known distribu-

tion, process the samples samples according to some stochastic model, and aggregate the

the results to obtain an estimate of the desired distribution.

Monte Carlo methods can be used to estimate parameters of a system when the ana-

lytical relationship between parameters and observations is known but intractable. Monte

Carlo techniques, especially particle filtering, are employed to estimate the states of non-

linear and non-Gaussian systems over time using noisy observations. In scenarios where a
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system’s model is unknown, Monte Carlo methods can be applied to identify or approximate

the system’s behavior based on measurements.

6.2.3 Particle Filter Algorithm

The fundamental idea behind particle filtering is to represent the posterior distribution

using a set of weighted samples or “particles” [120, 123, 124, 125]. Each particle corresponds

to a possible state of the system, and its weight represents the likelihood of that state

given the measurements. The particle filtering algorithm is first initialized by sampling Ns

particles from some uniform or Gaussian distribution p(x0). During the prediction stage at

time t, the particles from time t− 1 are propagated to time t using the transition function

in Equation (6.1); specifically,

x
(i)
t ∝ p(x

(i)
t | x(i)t−1), i = 1, . . . , Ns .

During the update stage, weights for each particle are computed based on the likelihood of

the measurements given the state particle in Equation (6.2). The weight of the ith particle

at time t is given by

ω
(i)
t ∝ ω

(i)
t−1 p(zt|x

(i)
t ), i = 1, . . . , Ns.

Note that, at each time t, the particles are resampled so that only particles with large

weights are kept to avoid degeneration where all the particles collapse around a single state

[123]. The predict and update stages are depicted in Figure 6.4, where the particles are

illustrated as circles and the circles with higher radius indicate higher weights. The resulting

posterior distribution is estimated as

p(xt|zt) =
Ns∑
i=1

ω
(i)
t δ(xt − x

(i)
t )

and the estimated unknown state at time t is given by

x̂t =

Ns∑
i=1

ω
(i)
t x

(i)
t
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Figure 6.4: Steps of Particle Filter Algorithm (Taken From [8]).

The PF has been used in many signal processing applications due to its versatility in

handling non-linear and non-Gaussian problems. In particular, it has been used in tracking

applications to estimate the position and velocity of a moving target; in such applications,

the system functions can be highly non-linear due to different types of motion models and

complex environmental models. PFs have also been used in robotics to determine the

position of the robot within an environment and simultaneous perform mapping tasks [127,

128]. Another application of PFs is in speech and audio processing for source separation,

denoising, and acoustic echo cancellation [129, 130].

6.3 Bayesian Mode Merging

We propose a new method that uses the output of the unsupervised mode extraction

algorithm from Chapter 5 to merge matched NSST clusters. By matched clusters, we mean

all NSST clusters that belong to the same signal component as a result of overlapping, and

possibly nonlinear, signatures in the TF plane. We consider a signal x(t) with Mx individual

signal components given by

x(t) =

Mx∑
l=1

xl(t) .

We first compute the NSST NSSTx(t, f) of x(t), as in Chapter 4, resulting in N TF points

(ti, fj), i, j=1, . . . , N . The N NSST TF points are used as input to the unsupervised mode
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extraction algorithm to obtain L ≥ Mx clusters with unique TF points. We denote by Pℓ

the set of unique TF points belonging to the ℓth cluster, ℓ=1, . . . , L. Using these TF points,

we form the following N ×N binary mask for the ℓ cluster

Mℓ(t, f) =

 1, if (ti, fj) ∈ Pℓ, i, j = 1, . . . , N

0, otherwise

Using the binary mask, we compute the NSST corresponding to the ℓ cluster as

MSℓ(t, f) = NSSTx(t, f)Mℓ(t, f) . (6.3)

An example of the process thus far was demonstrated using Figure 6.1, for the NSST TFR

of the sum Mx=2 signal components and Figure 6.2 that shows MSℓ(t, f), ℓ=1, . . . , L, for

the resulting L=6 clusters. For each of the L masked TFRs in Equation (6.3), we extract

the time-domain signal sℓ(t) as (see Equation (4.8))

sℓ(t) =

∫
f∈Pℓ

MSℓ(t, f)df

with corresponding Fourier transform Sℓ(f).

The new method uses a Bayesian sequential approach to approximate the highly-localized

MSℓ(t, f) as a linear combination of Q non-overlapping linear group delay (GD) represen-

tations [131]. Specifically, we express the ℓth cluster NSST as

MSℓ(t, f) =

Q∑
q=1

(τℓ,q + cℓ,q f) pq(f) rq(t) (6.4)

where pq(f) is the frequency spread of each linear GD representation with corresponding

time spread rq(t). Here, we assume that within the support of pq(f) and rq(t), the slope cℓ,q

of the qth TF segment does not change with time. Note that we assume that τℓ,q and the

slope cℓ,q of the qth linear segment of the ℓth cluster remain constant within the segment.

We then estimate the unknown parameters using Bayesian inference by formulating the

estimation problem within a state space model framework in the frequency domain. Note

that this is different from the PF formulation with time-dependent state xt in Section 6.2.
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Specifically, we denote the unknown state as Xℓ,q,f =Xℓ,q={τℓ,q, cℓ,q}, resulting in

Xℓ,q,f = Xℓ,q,f−1 + Uf−1 = Xℓ,q + Uf−1

Zℓ,q,f = ej2π(τℓ,q f+(cℓ,q/2) f
2) +Wf

As the state parameters Xℓ,q,f are constant with respect to frequency, the transition equa-

tion includes a modeling error process Uf that is assumed zero-mean white Gaussian with

very low variance. The measurement equation assumes that the signal model belongs to

a linear frequency-modulated signal. Note that, our actual input to the PF, is the actual

measurements with measurement noise process assumed zero-mean white Gaussian with

known variance.

6.4 Bayesian Mode Merging Simulations

6.4.1 Merging of Two Overlapping Parabolic Frequency-Modulated Signals

We demonstrate the Bayesian mode merging algorithm using the example in Figure 6.1.

In particular, we consider four of the 6 clusters in Figure 6.2 and set Q=1 to demonstrate

the merging of 4 segments into two modes. The four segments are shown in Figure 6.5. The

resulting slope estimates using the PF are shown in Figure 6.6. The merging was decided

based on grouping segment slopes similar in value, resulting in two modes. The merged

Mode 1 NSST is shown in Figure 6.8. Figure 6.9(a) shows the reconstruction of the mode

1 signal into the time domain, superimposed with the actual PFM signal. The root mean-

squared error (RME) between the actual and estimated signals is shown in Figure 6.9(b).

Note that, as TF points from the intersection were not included in the clusters, and are not

used in the reconstruction, the RMSE shows a large RMSE at time t= 2 s. This can be

overcome by performing a region search at the intersection locations and including smaller

segments in the vicinity of the intersection point for reconstruction.
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(d) Cluster c4

Figure 6.5: Segments of 200 Sample Length for 4 Out of the 6 Clusters c1, c2, c3,
And c4 of the Sum of Two PFM Signals in Figure 6.2.

6.4.2 Merging of UGW Modes

The intersecting modes of UGW can be merged by Bayesian mode merging. Figure

6.10 shows the region of intersection of three modes, namely A0, A1 and S0. The Bayesian

GD mode merge algorithm is applied by selecting parameter vectors X=[c, A0; c, S0; c, A1].

Due to intersection, the clustering algorithm provides two segments of A0, two segments of

A1 and a one segment of S0 mode. In order to identify which clusters to merge together,

the sequential Bayesian approach is applied. Figure 6.11 depicts the slopes of the segments

in the vicinity of the intersection location. It can be seen that the modes can be merged
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(d) Segment 4

Figure 6.6: Particle Filter Estimation of the Slopes of the Indicated Segments in
Figure 6.5.

by joining the appropriate linear GD slope. The RMSE is plotted in figure 6.12 shows the

RMSE values of each of the cluster.
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Figure 6.7: Particle Filter Estimation of Slopes

Figure 6.8: Bayesian Mode Merging for Mode 1
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Figure 6.9: Time Domain Signal Reconstruction of Mode 1. Note That the Large
Error Around t=2 s is Due to the Missing Data at Intersection points.

Figure 6.10: Region of Interest for Bayesian Mode Merging.
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(a) A0 Segment 1 (b) A0 Segment 2

(c) A1 Segment 1 (d) A1 Segment 2

(e) S0 Segment 1

Figure 6.11: Particle Filter Estimation of Slopes of the Indicated Segments of
UGW
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(a) A0 Segment 1 (b) A0 Segment 2

(c) A1 Segment 1 (d) A1 Segment 2

(e) S0 Segment 1

Figure 6.12: RMSE of Segments in UGW
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Chapter 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

In this disseration, we proposed new methodologies for processing highly dispersive sig-

nals in the time-frequency domain. We developed a novel time-reassigned synchrosqueez-

ing time-frequency representation (TFR), which provides high-localization in the time-

frequency plane for signals with nonlinear group delay signatures. This transform is well-

matched to analyze the ultrasonic guided wave dispersive propagation in complex materials

and can be used to identify damage features in structural health monitoring applications.

Our first contribution was the use of the first order synchrosqueezing transform and the

matching pursuit decomposition to inspect integrated circuit (IC) packages using ultrasonic

guided waves. The synchrosqueezing transform added the benefit of the reconstruction of

different signal components. We considered both healthy and damage states; the damage

can occur at the integrated interface between the heat spreader and the substrate as a result

of loading conditions or manufacturing defects. Preliminary IC package health inspection

results from experimental data demonstrated the potential usefulness of this approach for

health inspections.

Our second contribution was the mathematical derivation for the nonlinear synchrosqueez-

ing transform (NSST) that was specifically designed to match signals with dispersive time-

frequency characteristics. The transform was obtained by modeling the phase function of

the analysis signal spectrum as a third order polynomial and solving a system of linear

equations to obtain an estimator of the signal’s group delay function. This estimator was

then used in the first order synchrosqueezing transform formulation by reassigning time-

frequency points to the estimated group delay. We demonstrated the effectiveness of the
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NSST by analyzing ultrasonic guided waves propagating in isotropic Aluminum plates. The

NSST provided the expected group velocity of the propagating waves through the isotropic

plate. We also investigated the NSST’s performance for signals in white Gaussian noise

using the reconstruction quality factor for comparison. We demonstrated that the NSST

provided the best reconstruction performance, when compared to other synchrosqueezing

transforms, for signals with quadratic group delay function.

Our third contribution was an unsupervised mode extraction method that separates

and the different signal components using graph-based segmention. When compared to

other ridge extraction methods, the proposed approach does not require knowledge of the

number of signal modes. This is important for UGW propagation as new modes can be

generated based on interactions of the wave with different boundaries in the material. The

new method considers the time-frequeny points of the NSST as vertices on a graph with

connecting edges; the edge weight is the difference in intensity between neighboring time-

frequency points.

Our fourth contribution was the separation of modes that have overlapping time-frequency

characteristics. Using the graph-based segmentation method with the NSST can result in

more clusters than the actual number of components. To avoid this clustering issue, we

proposed a Bayesian mode merging method that uses Bayesian inference to identify cluster

regions that are continuous over a span of time-frequency points.

7.2 Future Work

The new NSST time-frequency representation, together with the unsupervised mode

separation of both non-overlapping and overlapping modes, is very promising for use to

detect damage in structures. Although this was successfully demonstrated with a few ex-

amples, additional processing and evaluation is required to formalize the method as an

effective structural health monitoring tool for localization, quantification and prognosis of

damage. The extracted time-frequency modes can also be used as features in machine
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learning algorithms for modeling or clustering

The Bayesian group delay model merging algorithm can be further improved to in

extracting individual modes. In particular, the clustering algorithm can be modified to

allow for different size clusters; having clusters with a small number of time-frequency

points will increase the extraction of modes at the points of overlap. The performance

of the merging algorithm can be further improved by using the Kullback-Leibler distance

metric to improve the estimation of the constant slope of the linear group delay by the

particle filter [131].
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APPENDIX A

7.3 QUADRATIC GD FUNCTION ESTIMATION
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We consider the GTM signal spectrum X(f)=A(f) e−j2πΦ(f) with phase function

Φ(f)=Φ0 + tx f + bx f
2 + cx f

3 and GD function τ(f)= tx + bx f + cx f
2. We assume

signals with large bandwidth so A(f) can be considered Gaussian with large spread

or constant. To estimate the unknown GD parameters tx, bx and cx, we follow the

approach in [5] that was used to estimate the IF of chirp signals. The GD parameters

are estimated by solving a system of three linear equations that are formed using

derivatives of the STFT in Equation (4.1), which can also be expressed as

Sx(t, f ;H) = e−j2πtf

∫
X(ν)H(f − ν) ej2πtν dν (A-1)

We first take the partial derivative of the STFT in Equation (A-1) with respect to

frequency to obtain

∂

∂f
Sx(t,

∂

∂f

(
e−j2πtf

∫
X(ν)H(f − ν) ej2πtν dν

)

= (−j2πt) e−j2πtf

∫
X(ν)H(f − ν) ej2πtν dν + e−j2πtf

∫
X(ν)

( ∂

∂f
H(f − ν)

)
ej2πtν dν

= −j2πt Sx(t, f ;H) + Sx(t, f ;DH) . (A-2)

where window DH(f) is defined in Table 4.2. Taking the same derivative but using

Equation (4.1), we obtain
∂

∂f
Sx(t, f ;H) =∫ ( ∂

∂f
X(f − ν)

)
H(ν) ej2πtν dν =

∫
X(f − ν) (−j2π) Φ′(f − ν) H(ν) ej2πtν

where we used the relation d
df
X(f) = X(f) d

df
ln(X(f)) = −j2πX(f) Φ′(f). From

(A-3),

Φ′(f − ν) = tx + bx (f − ν) + cx (f − ν)2 = (tx + bx f + cx f
2)− (bx + 2 cx f) ν + cx ν

2 .
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If we define Υx(f)=−j2π(tx+ bx f + cx f 2), L(f)=j2π(bx+2 cx f) and Cx=−j2πcx,

then Equation (A-3) simplifies to

∂

∂f
Sx(t, f ;H) =

∫
X(f − ν)

(
Cx ν

2 + Lx(f) ν +Υx(f)
)
H(ν) ej2πtν dν

= Cx

∫
X(f − ν) ν2H(ν) ej2πtν dν + Lx(f)

∫
X(f − ν) ν H(ν) ej2πtν dν +Υx(f)∫

X(f − ν)H(ν) ej2πtν dν

= Cx Sx

(
t, f ;M2H

)
+ Lx(f)Sx

(
t, f ;MH

)
+Υx(f)Sx(t, f ;H)

(A-4)

Equating (A-2) and (A-4), and using the STFT notation in Table 4.2, We obtain the

first linear system equation as

SD = Cx SM2 + Lx(f)SM +
(
Υx(f) + j2πt

)
S (A-5)

from (A-2) and (A-3) to Sx(t, f ;DH) in (A-5) instead of Sx(t, f ;H). This results in

SDD = Cx SM2D + Lx(f)SMD +
(
Υx(f) + j2πt

)
SD , (A-6)

The third equation is obtained by taking the derivative of

−j2πSMD = −j2πCx SM3−j2πLx(f)SM2−j2π
(
Υx(f)+j2πt

)
SM+j2πS, which

yields the third equation as

SMD + S = Cx SM3 + Lx(f)SM2 +
(
Υx(f) + j2πt

)
SM (A-7)

In summary, the three linear system equations are given by (A-5), (A-6) and (A-7).

Note that similar equations were mentioned, but not solved, in [5] for processing the

IF of third-order polynomials in time.
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