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ABSTRACT  

 In the development of autonomous ground vehicles (AGVs), how to guarantee vehicle 

lateral stability is one of the most critical aspects. Based on nonlinear vehicle lateral and 

tire dynamics, new driving requirements of AGVs demand further studies and analyses of 

vehicle lateral stability control strategies. To achieve comprehensive analyses and stability-

guaranteed vehicle lateral driving control, this dissertation presents three main 

contributions. 

First, a new method is proposed to estimate and analyze vehicle lateral driving stability 

regions, which provide a direct and intuitive demonstration for stability control of AGVs. 

Based on a four-wheel vehicle model and a nonlinear 2D analytical LuGre tire model, a 

local linearization method is applied to estimate vehicle lateral driving stability regions by 

analyzing vehicle local stability at each operation point on a phase plane. The obtained 

stability regions are conservative because both vehicle and tire stability are simultaneously 

considered. Such a conservative feature is specifically important for characterizing the 

stability properties of AGVs. 

Second, to analyze vehicle stability, two novel features of the estimated vehicle lateral 

driving stability regions are studied. First, a shifting vector is formulated to explicitly 

describe the shifting feature of the lateral stability regions with respect to the vehicle 

steering angles. Second, dynamic margins of the stability regions are formulated and 

applied to avoid the penetration of vehicle state trajectory with respect to the region 

boundaries. With these two features, the shiftable stability regions are feasible for real-time 

stability analysis. 



 

  ii 

Third, to keep the vehicle states (lateral velocity and yaw rate) always stay in the 

shiftable stability regions, different control methods are developed and evaluated. Based 

on different vehicle control configurations, two dynamic sliding mode controllers (SMC) 

are designed. To better control vehicle stability without suffering chattering issues in SMC, 

a non-overshooting model predictive control is proposed and applied. To further save 

computational burden for real-time implementation, time-varying control-dependent 

invariant sets and time-varying control-dependent barrier functions are proposed and 

adopted in a stability-guaranteed vehicle control problem.  

Finally, to validate the correctness and effectiveness of the proposed theories, 

definitions, and control methods, illustrative simulations and experimental results are 

presented and discussed. 



 

  iii 

ACKNOWLEDGMENTS  

Graduating in 2021 will definitely be an unforgettable experience in my entire life. In 

this year, we appreciate, we cherish, and we learn how to love. Upon finishing my five-

year of doctoral study at Arizona State University, I want to take a moment to express my 

sincere gratitude for all the supports and encouragement I have received during this 

amazing journey.  

First and foremost, I would like to thank my esteemed supervisor and mentor – Dr. Yan 

Chen for his invaluable supervision, support, and tutelage during the entire course of my 

Ph.D. degree. When a younger me first stepped into the research world of vehicle dynamics, 

Dr. Chen’s enthusiasm and profound knowledge greatly encouraged and inspired me to 

explore and solve interesting and cutting-edge problems. On my way to becoming an 

independent researcher, Dr. Chen did not always show his full academic support but also 

taught me the more important things - logical thinking and rigorous research culture. More 

than just the research itself, Dr. Chen’s outstanding working attitude has always been my 

pursuit and spiritual model. Looking back, I feel so lucky and grateful of joining the 

Dynamic Systems and Control Laboratory (DSCL) and having Dr. Chen as my doctoral 

supervisor – thank you!    

My gratitude extends to my other committee members, Dr. Hyunglae Lee, Dr. Yi Ren, 

Dr. Sze Zheng Yong, and Dr. Wenlong Zhang, for their guidance, continuous support, and 

patience at every stage of my Ph.D. study. Taking their courses, discussing and working 

with them as a teaching assistant have been the most precious experience I have ever had 

in ASU. Their inspiration and guidance will always be the treasure in my future career.  



 

  iv 

I would like to thank all my friends, lab mates in DSCL, colleagues, SEMTE and TPS 

staff, and other research teams at Arizona State University. Particularly, I would like to 

thank Dr. Fengchen Wang, Yue Zhao, Hongru Xu, Ao Li, Dr. Yue Shi, Dr. Minghui Ren, 

and Chuan Chang, for their support and valuable suggestions. It has been a great time 

working with them to achieve our dreams. I also want to particularly thank my academic 

advisor, Christine Quintero, for her great support of my plan of graduate studies.  

Last but not least, I would also like to thank my family, to whom this dissertation is 

dedicated. My father, Yunsheng Huang, and my mother, Yuhua Liu have been giving me 

all their love and care, which greatly helped me to be confident and strong during the 

hardest times. I also sincerely appreciate their full support and respect for my choices at 

each important stage in my life.  



 

  v 

TABLE OF CONTENTS 

          Page 

LIST OF TABLES ................................................................................................................... iv  

LIST OF FIGURES .................................................................................................................. v  

LIST OF SYMBOLS / NOMENCLATURE ........................................................................... x  

CHAPTER 

1 INTRODUCTION...................................................................................................  1 

1.1 Background .................................................................................................... 1 

1.2 Literature Review .......................................................................................... 2 

1.3 Contributions and Outlines ........................................................................... 9 

2 VEHICLE MODEL AND EXPERIMENTAL PLATFORM .............................  12 

2.1 Vehicle Model ............................................................................................. 12 

2.2 Tire Model ................................................................................................... 15 

2.3 Over-Actuated Electric Vehicle Platform ................................................... 18 

2.3.1 Power System Configuration .......................................................... 19 

2.3.2 Control System Configuration ........................................................ 20 

2.3.3 Redundant Actuation Systems ........................................................ 21 

2.3.4 Sensing Systems .............................................................................. 22 

3 VEHICLE LATERAL DRIVING STABILITY REGION .................................  24 

3.1 Overview ..................................................................................................... 24 

3.2 Stability Region Estimation ........................................................................ 25 

3.2.1 Local Linearization Method ........................................................... 25



CHAPTER                                                                                                                      Page 

  i 

3.2.2 Analyses and Discussions of Stability Criteria .............................. 34 

3.2.3 Comparisons with the Phase Portrait Method ................................ 37 

3.2.4 Impact of the Lateral Load Transfer ............................................... 45 

3.2.5 Impact of the Vehicle Longitudinal Velocity................................. 46 

3.2.6 Impact of the Tire-Road Friction Coefficient ................................ 47 

3.2.7 Impact of the Front Wheel Steering Angle .................................... 48 

3.2.8 A Case Study by Matlab/Simulink and CarSim® Co-Simulation . 50 

3.3 Conclusions ................................................................................................. 53 

4 REGION-BASED VEHICLE LATERAL STABILITY CONTROL ................  54 

4.1 Overview ..................................................................................................... 54 

4.2 Shifting Function and Dynamic Margin ..................................................... 56 

4.2.1 Shiftable Stability Regions ............................................................. 56 

4.2.2 Dynamic Margin of the Stability Region ....................................... 65 

4.3 Dynamic Sliding Mode Control .................................................................. 68 

4.3.1 AFS and DYC ................................................................................. 69 

4.3.1.1 Controller Design ............................................................... 69 

4.3.1.2 Simulation - High-speed Cornering Maneuver ................. 73 

4.3.1.3 Simulation - Double Lane Change Maneuver ................... 78 

4.3.2 AFS and ARS .................................................................................. 83 

4.3.2.1 Controller Design ............................................................... 83 

4.3.2.2 Simulation - Constant Cornering Maneuver ...................... 88 

4.3.2.3 Simulation - Double Lane Change Maneuver ................... 92 



CHAPTER                                                                                                                      Page 

  ii 

4.4 Non-Overshooting Model Predictive Control ............................................ 94 

4.4.1 Non-overshooting Constraints ........................................................ 95 

4.4.2 Numerical Examples and Discussions ........................................... 98 

4.4.3 Non-overshooting MPC for Vehicle Stability Control ................ 103 

4.4.4 Simulation Results and Discussions ............................................. 104 

4.5 Conclusions ............................................................................................... 108 

5 STABILITY-GUARANTEED VEHICLE CONTROL METHODS ...............  110 

5.1 Overview ................................................................................................... 110 

5.2 Control Barrier Functions ......................................................................... 113 

5.3 Control-Dependent Barrier Functions ...................................................... 115 

5.3.1 Problem Statement and Definitions .............................................. 115 

5.3.2 Vehicle Stability Control using CDBF......................................... 122 

5.3.3 Simulation and Discussions .......................................................... 132 

5.3.3.1 High-speed J-turn maneuver ............................................ 133 

5.3.3.2 Double lane change maneuver ......................................... 140 

5.4 Switched Control Barrier Functions ......................................................... 143 

5.4.1 Problem Statement and Definitions .............................................. 147 

5.4.1.1 Switched Controlled Invariant Set ................................... 147 

5.4.1.2 Switched Control Barrier Function .................................. 148 

5.4.1.3 Relaxation Function.......................................................... 149 

5.4.1.4 Relaxation Function Chain ............................................... 157 

5.4.2 Simulations and Discussions ........................................................ 158 



CHAPTER                                                                                                                      Page 

  iii 

5.4.2.1 A Numerical Example ...................................................... 158 

5.4.2.2 Vehicle Safety Control using SCBF ................................ 162 

5.5 Conclusions ............................................................................................... 166 

6 CONCLUSIONS .................................................................................................  168  

6.1 Conclusions ............................................................................................... 168 

6.2 Future Work ............................................................................................... 169 

6.2.1 Multi-Dimensional Stability Region ............................................ 170 

6.2.2 Integrating CDBF with CLF and Actuator Dynamics ................. 170 

6.2.3 Switched CDBF in General Form ................................................ 170 

 

BIBLIOGRAPHY ................................................................................................................. 172 

APPENDIX 

A      STATEMENT OF COPYRIGHT PERMISSIONS ..........................................  182 



       

  iv 

LIST OF TABLES 

Table Page 

1.       Parameters of the Over-actuated Vehicle Testbed .................................................. 19 

2.       Vehicle and Tire Parameters for Simulations .......................................................... 40 

3.       Simulation Results Analysis ..................................................................................... 53 

4.       Statistical Analysis of the Slip Angle Difference .................................................... 59 

5.       Determination of Vehicle Stability Status ............................................................... 65 

6.       Parameters of Vehicle and MPC  ...........................................................................104 

7.       Parameters of Quadratic Programming Controller ................................................130 

8.       Parameters of Noise in Simulations .......................................................................141 

9.       Cornering Stiffness of Tires ...................................................................................163 



       

  v 

LIST OF FIGURES 

Figure Page 

1. Diagram of a Four-wheel Vehicle Lateral Dynamic Model. .................................. 13 

2. (a) Tire Lateral Friction Forces with Different   for a Fixed 3000nF N= ; (b) Tire 

Lateral Friction Forces with Different 
nF  for a Fixed 1 = . ................................. 16 

3. The Developed Over-actuated AGV Prototype. ...................................................... 19 

4. Control Configuration of the Over-actuated AGV. ................................................. 20 

5. Sensing Systems of the OA-AGV............................................................................ 22 

6. Diagram of the Stability Region Estimation Process in Matlab-Simulink. ............ 37 

7. Vehicle Lateral Stability Region Estimated by the Phase Portrait Method. ........... 41 

8. Comparison of Stability Regions Estimated by the Phase Portrait and the Local 

Linearization Method. .............................................................................................. 42 

9. Variations of Vehicle States and Tire Slip Angles Initiated in Different 

Conditions. ................................................................................................................ 44 

10. Comparisons of the Estimated Stability Regions Using a Bicycle Model and a 

Four-wheel Vehicle Model. ..................................................................................... 46 

11. Impact of the Longitudinal Velocity on the Estimated Lateral Stability Regions.. 47 

12. Impact of the Tire-road Friction Coefficient on the Estimated Lateral Stability 

Regions. .................................................................................................................... 48 

13. Impact of the Steering Angle on the Estimated Lateral Stability Regions. ............ 49 

14. Front Wheel Steer Angle Input for a High-speed Double J-turn Maneuver. ......... 50 



Figure                                                                                                                              Page       

  vi 

15. Vehicle State Trajectory and the Estimated Stability Regions on the yV r−  Phase 

Plane. ......................................................................................................................... 51 

16. The Shifting Feature of Vehicle Lateral Stability Regions. .................................... 57 

17. A Vehicle Lateral Stability Region Estimated in [94]. ........................................... 61 

18. Projection Method and the Closest Point on the Boundary. ................................... 62 

19. A Comparison Between Controlled Vehicle State Trajectories Based on ① 

Stability Region, ② Stability Region with a Margin. ............................................. 66 

20. Simulation Structure Diagram.................................................................................. 73 

21. Front Steering Angle Input in a High-speed Cornering Maneuver. ........................ 74 

22. Comparison of Vehicle State Trajectories Between the Controlled and 

Uncontrolled Cases. .................................................................................................. 75 

23. Comparison of y ysV V−  and 
sr r−  Between the Controlled and Uncontrolled 

Cases. ........................................................................................................................ 76 

24. Control Efforts of AFS and DYC for the High-speed Cornering Maneuver. ......... 78 

25. Comparison of Vehicle Global Trajectories Between the Controlled and 

Uncontrolled Cases for the High-speed Cornering Maneuver. ............................... 78 

26. Front Steering Angle Input in DLC Maneuver. ....................................................... 79 

27. Comparison of Vehicle Global Trajectories on a Low µ Road in DLC Maneuver.80 

28. Comparison of Vehicle State Trajectory on a Low µ Road in DLC Maneuver. .... 80 

29. Comparison of Vehicle Stability Status. .................................................................. 81 

30. Control Efforts of AFS and DYC in DLC Maneuver. ............................................ 81 



Figure                                                                                                                              Page 

  vii 

31. Comparison of Vehicle Global Trajectories on a High µ Road in Double Lane 

Change Maneuver. .................................................................................................... 83 

32. Comparison of Vehicle State Trajectories on a High µ Road in Double Lane 

Change Maneuver. .................................................................................................... 83 

33. Simulation Control Structure ................................................................................... 88 

34. Steering Angle Input of Front Wheels. .................................................................... 88 

35. Vehicle Stability Status Comparisons on the Phase Plane. ..................................... 89 

36. Vehicle Status Comparison, a)AFS; b)AFS+ARS w.r.t. Stability Region With 

Margin; c) AFS+ARS w.r.t. Original Stability Region. .......................................... 90 

37. Actual Front and Rear Steering Angles. .................................................................. 91 

38. Tire Slip Angles. ....................................................................................................... 91 

39. Vehicle Trajectory Comparison. .............................................................................. 91 

40. Vehicle Double Lane Change Trajectory Comparisons. ......................................... 92 

41. Actual Front and Rear Steering Angles for a Double Lane Change. ...................... 93 

42. Tire Slip Angle Comparisons for a Double Lane Change. ..................................... 93 

43. Comparisons on Step Responses of a Linear System for Different Non-

overshooting MPC Constraints. ............................................................................. 100 

44. Comparisons on Step Responses of a Nonlinear System for Different Non-

overshooting MPC Constraints. ............................................................................. 102 

45. Steering Angle Input............................................................................................... 104 

46. Comparisons of State Trajectories Between Case 1 and Case 3. .......................... 105 

47. Vehicle States and the Closest Point on the Boundary for Case 3. ....................... 106 



Figure                                                                                                                              Page 

  viii 

48. Comparisons of State Trajectories Between Case 2 and Case 3. .......................... 107 

49. Vehicle Status and the Closest Boundary Segment Number for Case 2. ............. 107 

50. Vehicle States and the Closest Point on the Boundary for Case 2. ....................... 108 

51. Variations of the Vehicle Lateral Stability Region with Respect to Control Inputs (

f  and/or 
r ) and Time-varying Parameters (

xV ). ............................................... 116 

52. Framework of Vehicle Lateral Stability Control. .................................................. 131 

53. Time-varying Profiles (the Front Wheel Steering Angle and the Longitudinal 

Velocity) in the J-turn Maneuver. .......................................................................... 134 

54. Feedforward Case Simulation Results in the J-turn Maneuver, a) CDBFs Values, 

b) Vehicle Stability Status. ..................................................................................... 134 

55. Vehicle States in the J-turn Maneuver: Feedforward Control. ............................. 135 

56. Feedback Case Simulation Results in the J-turn Maneuver, a) CDBFs Values, b) 

Vehicle Stability Status, c) Control Inputs. ........................................................... 136 

57. Vehicle States in the J-turn Maneuver: Feedback Control. ................................... 136 

58. Vehicle Trajectories Comparison in the J-turn Maneuver. ................................... 138 

59. Vehicle State Trajectory with Regard to the Fixed “Stability Region” in the J-turn 

Maneuver. ............................................................................................................... 138 

60. Feedback Case Simulation Results in the J-turn Maneuver Based on the Fixed 

Stability Region, a) BFs Values, b) Vehicle Stability Status, c) Control Inputs. . 139 

61. Time-varying Profiles (the Front Wheel Steering Angle and the Longitudinal 

Velocity) in the DLC Maneuver. ........................................................................... 141 



Figure                                                                                                                              Page 

  ix 

62. Feedforward Case Simulation Results in the DLC Maneuver, a) CDBFs Values, b) 

Vehicle Stability Status. ......................................................................................... 142 

63. Feedback Case Simulation Results in the DLC Maneuver, a) CDBFs Values, b) 

Vehicle Stability Status, c) Control Inputs. ........................................................... 142 

64. Vehicle Trajectories Comparison in the DLC Maneuver. .................................... 143 

65. Safety Distances in a Lane-changing Scenario. ..................................................... 151 

66. Hyperbolic Tangent Functions with Different Parameters. .................................. 156 

67. State Variable (Y) in the Cases with (w/) and without (w/o) the Relaxation 

Function. ................................................................................................................. 161 

68. Comparison of SCBF Values in the Cases with (w/) and without (w/o) the 

Relaxation Function................................................................................................ 162 

69. Continuous Lane-changing and Lane-keeping Scenario and the Continuously 

Switched Lane Boundary Constraints. ................................................................... 164 

70. X-Y Displacement of the Vehicle and the Switched Boundaries of Safety Set in 

Case 1. ..................................................................................................................... 166



 

  x 

LIST OF SYMBOLS / NOMENCLATURE 

  Tire slip angle 

  Vehicle sideslip angle 

  Tire slip ratio 

f  Front wheel steering angle 

r  Rear wheel steering angle 

fc  Front corrective active steering angle 

rc  Rear corrective active steering angle 

  Tire-road friction coefficient 

xF  Longitudinal tire friction force 

yF  Lateral tire friction force 

yAFSF  Tire lateral forces generated by AFS 

yARSF  Tire lateral forces generated by ARS 

nF  Tire vertical load 

zI  Yaw moment of inertia 

usK  Understeer coefficient 

L  Wheelbase 

DYCM  Yaw moment generated by DYC 

motorP  Power of in-wheel motor 

steerP  Power of steering motor 

Ts Sampling instant 



 

  xi 

xV  Vehicle longitudinal velocity 

yV  Vehicle lateral velocity 

ya  Vehicle lateral acceleration 

CGh  Height of vehicle center of gravity 

fl  Front wheelbase 

rl  Rear wheelbase 

sl  Wheel track 

vm  Vehicle mass 

r  Vehicle yaw rate 

  

  

  

  

  



 

  1 

CHAPTER 1 

INTRODUCTION 

1.1. Background  

In the past decades, with the development of passive/active safety equipment and 

advanced driver-assistance systems (ADAS), vehicle transportations become more 

convenient and safer [1]. To the great extent of improving the driving experience and 

enhancing driving safety, autonomous vehicles (AVs), as a revolution of the transportation 

system, were proposed and have obtained rapid development and great achievements in 

recent years [1]-[6]. However, to further enhance vehicle safety and promote the public 

adoption of AVs, many critical issues still need to be properly addressed [1][2]. 

Generally, vehicle safety does not only refer to the safety of drivers and passengers, 

but also the surrounding vehicles, pedestrians, bicycles, and infrastructures [7]. To enhance 

the driving safety of AVs, in addition to the advanced sensing, data fusion, and artificial 

intelligence (AI), the controls of fundamental vehicle dynamics are also critical [7]. In most 

of the driving scenarios, the advanced AI algorithms embedded in the high-level vehicle 

control systems may help to safely decide and control the vehicle’s motion. However, in 

some emergent scenarios, the vehicle safety may not be well-controlled due to the 

imperfection in the recognition and cognition of AI, or the reaction time delay caused by 

the high computational burden [8]. To tackle such vehicle safety-related challenges, a 

robust and computation-feasible low-level vehicle dynamics control system would be an 

effective and promising approach. Cooperating with the high-level autonomous driving 
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strategies, such a low-level vehicle dynamic control system plays an important role to 

guarantee the driving safety of the vehicles, especially in emergent situations. 

To develop a vehicle safety-guaranteed control system, the essential factors that affect 

safety should be first clarified. Normally, vehicle safety requires the vehicle 

dynamic/handling stability, road/lane boundaries, traffic rules, pedestrians, and some other 

uncertainties all need to be thoughtfully considered and handled. Among all these factors, 

the vehicle dynamic/handling stability is the most fundamental one because it directly 

determines the vehicle motion with respect to other on-road objects (e.g., collision 

avoidance). Moreover, as the level of driving automation (SAE J3016 [5]) increases, the 

control responsibilities of drivers gradually shift to the autonomous driving systems (ADS) 

[1]. Thus, from the liability and responsibility point of view, how the ADS can guarantee 

the vehicle dynamic/handling stability becomes a critical topic. Therefore, a well-

developed real-time vehicle stability analysis and control system that guarantees vehicle 

stability becomes necessary for AGVs and has huge potentials for a variety of automotive 

applications. 

1.2. Literature Review 1  

In the studies of vehicle stability analysis and control, vehicle lateral dynamics, due to 

its complexity and nonlinear behaviors caused by the nonlinear and coupled tire forces, is 

one of the most challenging topics. To design a proper vehicle lateral stability control, a 

 
1 Part of the reviews in this section are with permission of Copyright © 2019, 2021 IEEE and Copyright 

© 2021 ASME, to be reprinted from [Huang and Chen, IEEE Transactions on Vehicular Technology, 2021], 

[Huang, Liang, and Chen, ASME Journal of Dynamic System, Measurement, and control, 2021], [Huang and 

Chen, in Proceedings of American Control Conference, 2019], and [Huang, Yong, and Chen, IEEE 

Transactions on Intelligent Vehicles, 2021]. 
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comprehensive understanding of vehicle lateral stability is essential and should be first 

conducted. Among a variety of vehicle dynamic stability analysis methods, the estimation 

of vehicle lateral stability region provides an effective and intuitive illustration of the 

vehicle lateral dynamic characteristics and can be particularly informative in vehicle 

stability control designs. The vehicle lateral stability regions are typically defined on a 

phase plane that may consist of different vehicle state combinations, such as vehicle lateral 

velocity (or sideslip angle) and yaw rate. In the past decades, a great number of vehicle 

lateral stability region estimation methods have been proposed. Depending on the adopted 

methods, the estimated vehicle lateral stability regions can be categorized into the 

following three groups.  

First, the phase portrait method, as the most straightforward approach [9]-[12], was 

widely applied. Inagaki et al. [9] analyzed the vehicle lateral stability and defined a stable 

region by geometrically checking if the state trajectory returned to the system equilibria.  

Ono et al. [10] studied the bifurcation phenomena of the vehicle lateral dynamics for robust 

front wheel steering control. Shen et al. [11] introduced a novel joint-point locus approach 

to analyze the bifurcation phenomena for the stability of a four-wheel steering vehicle and 

discussed the critical impacts of the front and rear wheel steering angles. Based on the 

phase portrait trajectory reversing technique, Ko et al. [12] proposed a topology algorithm 

to estimate the vehicle lateral stability region. Rossa et al. [13] studied the bifurcation of a 

car with and without a driver model using the phase portrait method. Vehicle stability 

regions were also estimated by combining the phase portrait method with the handling 

diagram to generate new stability regions and the corresponding control laws [14]-[17].  
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Second, Lyapunov theory was also a popular method to explore the nonlinear vehicle 

lateral stability problem [18]-[21]. Johnson and Huston [18] first used the Lyapunov second 

method to study the vehicle lateral stability problem and obtained an estimated stability 

region on yV r−  plane. Samsundar and Huston [19] estimated the vehicle lateral stability 

regions using three different methods, namely the Lyapunov second method, the tangency 

points method, and the trajectory reversal. The obtained stability regions showed certain 

consistency and similarity with each other. Yin et al. [20] estimated vehicle lateral stability 

regions by applying the same Lyapunov second method with discussions on the influence 

of steering angle, tire-road friction coefficient, and vehicle longitudinal velocity. Sadri and 

Wu [21] proposed a novel lateral stability region estimation method based on the 

calculation of Lyapunov exponents.  

Third, other methods, except the phase portrait and Lyapunov theory, can be generally 

grouped as one category [22].  Hashemi et al. [23] proposed a general lateral dynamic 

model to investigate vehicle lateral stability, which considered linear and nonlinear tire 

behaviors by applying pure and combined-slip assumptions. Yi et al. [24] used the rear tire 

slip angle, instead of vehicle sideslip angle, with vehicle yaw rate to study the stability and 

agility of the vehicle and obtained the estimated vehicle stability region. Hoffman et al. 

[25] applied the Milliken Moment Method (MMM) and dynamic simulation to evaluate 

vehicle stability and controllability. Inspired by the “g-g” diagram [26], Daher et al. [27] 

defined a vehicle stability region on the “g-g” plane and designed the corresponding 

stability control algorithm.  
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From the theoretical perspective, the aforementioned studies provided insights into the 

vehicle lateral dynamic stability analysis. However, the theoretical vehicle lateral stability 

analysis does not always effectively reflect the actual factors related to vehicle stability due 

to the lack of analysis from practical perspectives, such as the handling characteristic. 

Therefore, to get a more accurate description of vehicle safety with a particular focus on 

vehicle dynamic/handling stability analysis, a novel estimation method is needed. 

Based on the estimated vehicle lateral stability regions, the corresponding vehicle 

lateral dynamics controls were also designed and presented in the literature. Inagaki et al. 

[9] proposed a method to control the vehicle lateral motion based on the stability region 

defined on the phase plane of vehicle sideslip angle and its derivative (  − & ). Bobier and 

Gerdes [17] introduced an envelope control strategy using a sliding mode stability 

controller to assist a driver to keep vehicle states within a safe region in planar state space. 

Based on the same stability region in [9], Mousavinejad et al. [30] developed a terminal 

sliding mode control algorithm, which integrated both active front steering (AFS) and 

direct yaw moment control (DYC) to improve vehicle handling and stability under critical 

lateral motions. He et al. [31] proposed an integrated control for vehicle active steering, 

driveline, and braking.  Jin et al. [32] proposed a gain-scheduled vehicle handling stability 

control via an integration of AFS and active suspension systems. 

In addition to the control method using AFS and DYC, the advances of steer-by-wire 

and distributed driving technologies also make the application of active rear wheel steering 

(ARS) technology more feasible and affordable [37]. The main research topics about ARS 

include decreasing phase lag in vehicle lateral and yaw motion responses, developing 
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robust or adaptive control structure, achieving better vehicle maneuverability and lateral 

stability, and improving reference tracking performance on vehicle states [38]-[47]. 

Among all these topics in the past few decades, the most two compelling research 

objectives are to pursue better vehicle tracking performance and improve vehicle stability. 

To achieve better tracking performance, Horiuchi et al. [40] proposed an active front and 

rear wheel steering control system, which achieved accurate tracking performance of 

desired lateral acceleration and yaw rate. Hiraoka et al. [41] proposed an automatic path-

tracking controller, which allowed front and rear wheel steering angle to be decoupled. 

Yoon et al. [42] presented a model predictive approach of unmanned ground vehicles using 

ARS to solve an optimal tracking problem while avoiding collision with obstacles. To 

improve vehicle stability using ARS, many studies have also been presented. Mammar and 

Koenig [43] discussed the vehicle lateral stability problem through the phase portrait 

method and designed an active steering method based on the combination of feedforward 

and feedback controllers to enhance the overall vehicle stability. Yu and Moskwa [44] 

introduced both 4WS and independent wheel torque control to enhance vehicle stability. 

Abe [45] pointed out that when nonlinear tire and vehicle system dynamics were involved, 

DYC would inevitably improve the handling and stability performance compared with 

ARS control. Aiming at the same objective, Nagai et al. [46] presented an integrated 

control of ARS and DYC using braking force to compensate for the lack of capability when 

the tire was working in the saturated region.  Instead of applying a constant or continuous 

control signal, Zhang et al. [47] applied a pulsed active steering system to improve the 

effectiveness of vehicle yaw stability control.   



 

  7 

Although various stability region-based control methods were studied and evaluated, 

many issues remain and need to be properly addressed. One critical issue is that the vehicle 

stability controllers were activated only when vehicle states were out of the defined 

stability boundaries [9][10][14][17][27]-[36]. Thus, even the designed control could 

successfully take vehicle states back to the defined regions, the vehicle has already 

experienced an unstable or undesired period before reentering the stability regions. 

Therefore, to ensure that a vehicle always operates stably, a control method that guarantees 

the vehicle states are always within the stability region is needed. To achieve guaranteed 

vehicle stability control, various methods were applied, where, two of them, namely the 

non-overshooting control designs and the control barrier function (CBF), are reviewed in 

the following two paragraphs respectively. 

 Theoretically, non-overshooting control designs can be categorized into two groups 

depending on the linearity of the system. For linear systems, Phillips and Seborg [48] 

presented a necessary and sufficient condition in state-space form, which guaranteed no 

overshoot of states or outputs. If the system matrix A was essentially positive, no system 

overshoot for a specified input was also proved. Moore and Bhattacharyya [49] presented 

an approach to select the best possible zero locations to minimize overshoot. Considering 

both real and complex poles, Lin and Fang [50] described the necessary and sufficient 

conditions of the non-overshooting step response for a third-order single-input and single-

output (SISO) linear system. Bement and Jayasuriya [51] proposed two methods to obtain 

continuous time, non-overshooting tracking controllers for linear SISO systems. Schmid 

and Ntogramatzidis [52] proposed a method to design a linear time-invariant state feedback 
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controller, which could achieve non-overshooting and arbitrarily small rise time for a step 

response. For nonlinear systems, Krstic and Bement [53] presented a non-overshooting 

control design for SISO strict-feedback nonlinear systems using a modified backstepping 

method. The overshooting amount could be made arbitrarily small by appropriately 

selecting control gains. Zhu and Zhao [54] proposed a controller design using the feedback 

linearization and global coordinate transformation to achieve non-overshooting output 

tracking of feedback linearizable SISO systems. This method complemented the work in 

[53] since the strict feedback form of the system was not required. Gonzalez et al. [55] 

proposed a chattering free sliding mode control combined with high accuracy and fast non-

overshooting response at a steady state. 

In addition to the non-overshooting method, the guaranteed vehicle stability problem 

can also be described by the concept of controlled invariant sets [58] and CBF [62][63]. 

For vehicle dynamics with only feedforward or driver control, the vehicle states may not 

always stay in the stability region. Therefore, to make the stability region an invariant set, 

a proper control design is needed. Inspired by control Lyapunov functions (CLF) in [59], 

the control barrier functions (CBF) based on controlled invariant sets were proposed to 

define the admissible initial conditions and derive feedback control laws that ensure system 

safety [62][63]. CBFs can be categorized into two groups, the reciprocal control barrier 

function (RCBF) and the zeroing control barrier function (ZCBF) [63]. For RCBF [64]-

[68], a commonly used function is in a logarithm form. One noteworthy feature of RCBF 

is that the function value goes to infinity as the states approach the set boundary. Such 

unboundedness may introduce two issues: 1) the unbounded function value may lead to 
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unbounded control efforts, which are not desired or feasible; 2) the infinity function value 

at the boundary results in the discontinuity of the function, which makes boundary-crossing 

not possible and thus the initial condition cannot be selected from outside of the set. 

However, for ZCBF [63][69]-[75], since the function value becomes zero (bounded) as the 

states approach the set boundary, the issues of RCBF do not exist. Generally, system safety 

can be guaranteed when the designed control satisfies the derived conditions from either 

RCBF or ZCBF. CBFs were also applied with CLFs to achieve the system output tracking 

requirements with guaranteed safety [63][69]. For a safety control problem with multiple 

constraints, multiple CBFs could be combined or shared by a control Lyapunov-barrier 

function (CLBF) [69] or a quadratic programming (QP) method [74]. Moreover, other 

aspects of CBF have also been studied, such as the robustness of CBFs [75] and time-

varying CBFs for time-varying invariant sets [76]. 

However, it is notable that the aforementioned control methods are not applicable to 

solve the region-based guaranteed vehicle stability control problem. First, the non-

overshooting control methods are only designed for linear or feedback linearizable systems, 

thus do not apply to the nonlinear vehicle dynamics. Second, the CBF methods in the 

literature are also not applicable since the estimated vehicle stability regions are control-

dependent. 

1.3. Contributions and Outlines 

While many studies and achievements have been made in the field of vehicle stability 

analysis and control, the aforementioned concerns and issues remain and need to be further 

investigated. Focusing on the estimation of vehicle lateral stability regions and the vehicle 
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dynamic/handling stability-guaranteed control, this dissertation presents three main 

contributions. 

First, a local linearization method is applied to evaluate the stability of every 

operational point on the yV r−  phase plane, where the derived stability conditions 

fundamentally imply the vehicle’s handling stability. By depicting the outline of all the 

stable operation points, the estimated vehicle lateral stability region guarantees both 

vehicle stability (locally in the sense of Lyapunov) and tire stability (based on the nonlinear 

LuGre tire models). Besides, the stability region is analyzed with respect to various impacts, 

such as the vehicle lateral load transfer, longitudinal velocity, tire-road friction coefficient, 

and steering angle, providing the potential of the estimated stability region for vehicle 

stability controls. 

Second, based on the estimated stability region, an effective and robust region-based 

stability analysis method is proposed with the adoption of a projection method, where an 

explicit shifting vector and the dynamic margin of the stability region are integrated. Based 

on the stability analysis results, two dynamic sliding mode controllers and a non-

overshooting model predictive controller are proposed to guarantee that the vehicle 

trajectories are always controlled in the estimated stability regions, demonstrated by 

different simulation and experiment cases. 

Third, to fill the theoretical blank when the estimated stability regions are considered 

as time-varying and control-dependent invariant sets, a novel definition of time-varying 

control-dependent barrier function (CDBF) is proposed. In the application to the 

guaranteed vehicle stability control problem, a novel integral control strategy is proposed 
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and a corresponding new framework of time-varying CDBF is presented with rigorous 

proofs. Moreover, to address the discontinuity and differentiability of CBF when safety 

sets are switching, the switched CBF is proposed. Both simulations and experiments are 

conducted to verify the correctness and effectiveness of the proposed theories and control 

methods. 

The remainder of the dissertation is organized as follows. In Chapter 2, this dissertation 

first introduces the vehicle model, tire model, and an over-actuated vehicle testbed used 

for experimental validations. In Chapter 3, targeted at addressing the issues revealed in the 

existing stability region estimation methods, the details of the proposed local linearization 

method, together with the corresponding analyses and simulation verifications are 

introduced. In Chapter 4, important features of the stability regions are first formulated as 

preliminaries to the controller designs. Then, based on the estimated vehicle lateral stability 

regions, multiple control methods, including two sliding mode controllers and a non-

overshooting model predictive controller, are presented. All controller designs are verified 

by high-fidelity Carsim-Simulink co-simulations. With the same control objective, in 

Chapter 5, the novel stability-guaranteed vehicle control methods are introduced. 

Particularly, new concepts, time-varying control-dependent barrier functions (CDBF) and 

switched CBF are proposed to address the region-based stability-guaranteed vehicle 

control problems with high efficiency. The corresponding co-simulations and experimental 

verifications are presented. Finally, in Chapter 6, the conclusions of the overall dissertation 

are summarized, and some targeted future works are suggested. 

  



 

  12 

CHAPTER 2 

VEHICLE MODEL AND EXPERIMENTAL PLATFORM 

In this chapter, as the preliminaries of the overall study, a double-track four-wheel 

steering vehicle model and a LuGre tire model are first presented. Then, the experimental 

platform, an over-actuated autonomous ground vehicle (OA-AGV) prototype (designed 

and manufactured by DSCL), is introduced. The main contents in sections 2.1 and 2.2 

follow the same configurations in [94]. The introduction of OA-AGV is part of the author’s 

previous published paper [95] 2. 

2.1. Vehicle Model 

A two degree of freedom (DOF) four-wheel steering (4WS) vehicle model considering 

the lateral load transfer is adopted in this dissertation. In Fig. 1, the 
xV , yV , and r  are the 

vehicle longitudinal velocity, lateral velocity, and yaw rate about the center of gravity (CG), 

respectively.  

 
2 All the cited contents in sections 2.1 and 2.2 are with permission of Copyright © 2021 ASME, to be 

reprinted from [Huang, Liang, and Chen, ASME Journal of Dynamic System, Measurement, and control, 

2021]. The cited contents in section 2.3 are with permission of Copyright © 2021 IEEE, to be reprinted from 

[Huang, Wang, Li, Shi, and Chen, IEEE Transactions on Mechatronics, 2021]. 
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Fig. 1. Diagram of a Four-wheel Vehicle Lateral Dynamic Model. 

The vehicle lateral dynamics, with the state variables yV  and r  are modelled in (1) 

and (2), 
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wheelbase, respectively. yjF  with the subscript  , , ,j fl fr rl rr=  denote the tire lateral 

friction force on the front left, front right, rear left, and rear right tires, respectively. yAFSF  

and yARSF  are the lateral forces generated by the active front and rear wheel steering angles 

respectively. 
DYCM  is the yaw moment generated by the direct yaw moment controller. 

Under small angle assumptions, tire slip angles were typically represented in an 

approximately linear relationship with respect to vehicle states to reduce model 

complexities in literature [9]-[20]. However, when the vehicle lateral stability in extreme 

conditions is explored, especially when the tire lateral forces are saturated at large slip 

angles, the linear approximations may not be accurate. Thus, in this paper, the tire slip 

angles are calculated without small angle approximations, as shown in (3)-(6).  Note that 

although the left and right wheels are steered differently in a four-wheel vehicle model 

based on the Ackerman steering geometry, such a difference is not found to have significant 

impacts on the estimation results of stability regions. Therefore, the steering angles of the 

front two wheels are kept the same in (3) and (4). 
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2.2. Tire Model 

A tire model plays a critical role in vehicle stability analysis. Various tire models were 

developed and discussed in the past few decades, see [79] and references therein. Based on 

different criteria, tire models have various classifications, such as linear and nonlinear 

models, physical and empirical models, and static and dynamic models. As an example, 

the well-known Magic Formula tire model [80] is a nonlinear, empirical, and static tire 

model, which provides a good fit with the steady-state experimental data. However, the 

heavy model parameter calibrations for various conditions are challenging for real 

applications. Compared with the Magic Formula tire model, a modified 2D LuGre tire 

model [79], which is a nonlinear, physical, and dynamic tire model, does not only describe 

tire force characteristics well but also provides a relatively easy procedure for model 

calibrations. Therefore, a 2D LuGre tire model, as expressed in (7), is adopted in this paper. 

( )

( )

( )

( )

2

2

2

, , ,

     1
,

1
, ,

i i Lii i

i i Ri

iss n

a La L

i ri i
n

r i Li

a L

i ri

i Ri

F f F

g v e e
F

v a

e
v i x y

L





  



  




− −−

− −

=

  −
= − −  

  

− 
+ = −   

 
(7) 

In (7), the tire friction force 
issF  is a function of four main parameters ( ), , ,nF   , where 

  is the tire slip ratio,   is the tire slip angle, 
nF  is the tire vertical load, and   is the tire-

road friction coefficient. Three terms in the brace of (7), namely  
( )

2

,

i ri

r

g v

v 
 , expression in 

the square bracket, and 
2i riv , describe the Stribeck effect, the trapezoidal load distribution, 
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and the viscous damping property of tire materials, respectively. More details of parameters 

(such as the formulation of 
ig , 

ia , and ( ),rv  ) and features of the adopted 2D LuGre 

model are referred to [79] and references therein. Note that one main feature of the adopted 

LuGre tire model is that the effect of vertical loads is embedded into the bristle dynamics. 

Thus, the bristle deflection distribution predicted by the derived model matches better with 

the experimental data [79]. 

 

 

Fig. 2. (a) Tire Lateral Friction Forces with Different   for a Fixed 3000nF N= ; (b) 

Tire Lateral Friction Forces with Different 
nF  for a Fixed 1 = . 

Based on the 2D LuGre tire model in (7), the lateral friction forces for different   and 

nF  are plotted in Fig. 2. As shown in Fig. 2 (a), the slopes of different curves with different 

  are approximately the same when the slip angles are small (mainly in the red box area), 

which displays a linear similarity relationship between yF  and   [82]. Fig. 2 (b) shows 

the lateral force curves with different vertical loads, which are mainly determined by both 

static load distributions and dynamic load transfers. Particularly, the dynamic load transfer 
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has significant impacts on vehicle stability, which is thoroughly discussed in section 3.2.4, 

Chapter 3. The tire vertical forces considering both static load distributions and dynamic 

load transfers (with respect to ya ) are calculated in (8)-(11) [80][85]. 
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where 
CGh  is the height of the vehicle CG and ya  is the vehicle lateral acceleration. 

Moreover, when the slip angles exceed certain values (marked by grey dash lines), it is 

observed from Fig. 2 that the lateral friction forces start to saturate and even decrease. For 

different   in Fig. 2 (a), the saturated tire slip angles are different. While for different 
nF

in Fig. 2 (b), the saturated tire slip angles are almost the same. These observations show 

that the friction force saturation (peak points) is more sensitive to   than 
nF . In fact, the 

tires start to operate in an unstable manner when the friction forces start to saturate or 

decrease with the increase of tire slip angles. Consequently, the vehicle will likely lose 

stability when tire lateral forces become unstable. 

Remark 1. The analytical and physical LuGre model is applied in this paper to represent 

a complex and realistic tire model. Since the local linearization method introduced in the 
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next section, which can be numerically implemented, does not require an explicit 

integration of a tire model with a vehicle model, any other high-fidelity tire models could 

be also applied for the stability region estimation through the same proposed method. On 

the other hand, if other methods, like Lyapunov-based methods, were applied, a complex 

tire model may have to be avoided since an explicit integration of the tire model with 

vehicle dynamics may be difficult to construct suitable Lyapunov functions. 

2.3. Over-Actuated Electric Vehicle Platform 

AGVs are currently seen to have significant improvement in the areas of perceptional 

and artificial intelligence technology, yet their actuation and control capabilities, critical 

for improving system safety, are still lagging behind.  Current AGVs still operate on the 

basis of the traditional centralized powertrain used in human-driven cars, which is 

considered a major limitation for further improving vehicle safety, energy efficiency, and 

riding comfort. The recent explosion of vehicle electrification technologies, such as in-

wheel motor (IWM) actuation and steering-by-wire (SbW) technology, has fostered an 

increased pace towards a distributed electric powertrain architecture for vehicle systems. 

Despite some limitations (e.g., increased un-sprung mass by IWMs), such an over-actuated 

(OA) feature, enabled by the number of actuators more than the control degrees of freedom, 

provides great potentials to further enhance AGV safety, efficiency, and riding comfort. As 

part of this dissertation, an OA-GV prototype was developed as the testbed for the vehicle 

lateral stability controller verifications. The configuration and hardware development of 

the OA-AGV are presented in Fig. 3. Some major vehicle parameters of the developed OA-

AGV are listed in Table 1. 
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Fig. 3. The Developed Over-actuated AGV Prototype. 

Table 1. Parameters of the Over-actuated Vehicle Testbed 

Symbol Parameter Value 

m   vehicle mass 732.5 kg 

L   wheelbase 2.08 m 

fl   front wheelbase 1.12 m 

rl  rear wheelbase 0.96 m 

sl  wheel track 1.26 m 

zI   yaw moment of inertia 352 kgm2 

CGh   CG height 0.65 m 

motorP    power of IWM 8 kW 

steerP    power of steering motor 400 W 

 

2.3.1. Power System Configuration 

The power supply of the OA-AGV is a package of the 72V, 125Ah LiFePO4 battery 

equipped with a battery management system (BMS). The actuators of the OA-AGV include 

High-end INS and differential GPS  with dual antennas

dSPACE 

MicroAutoBox II

2 independent front & rear  steering motors 4 independent in-wheel motors

HD Camera

Delphi ESR Radar

Ultrasonic Sensors
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four in-wheel motors (IWMs) and two servo steering motors. The IWM, which is the 

permanent-magnet brushless DC (BLDC) motor, is directly powered and controlled by the 

Mobipus® 72300 motor controller. Similarly, the steering motors also have two servo 

motor controllers, which require 220V AC power. To invert the DC power from the battery 

to the AC power, two inverters are equipped. All other on-board devices (e.g. dSPACE® 

MicroAutoBox and RT3003 GPS) and sensors are powered by a 12V DC, which is 

obtained using a DC-DC voltage regulator. 

2.3.2. Control System Configuration 

 

Fig. 4. Control Configuration of the Over-actuated AGV. 

The control system configuration of the developed OA-AGV is constructed in a 

hierarchical architecture, namely a high-level vehicle control and low-level actuator 

controls. As shown in Fig. 4, the dSPACE® MicroAutoBox II (MAB-II) is the main high-

level control module. A high-end laptop, which is connected with the MAB-II via Ethernet, 
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is used for real-time state monitoring and data acquisition. All the signals (analog, digital, 

and CAN signals) can directly communicate with the MAB-II through a central terminal 

board. 

At the low level, each IWM is individually controlled by a Mobipus® 72300 series 

controller. Analog signals from the MAB-II are given to the motor controller as the throttle 

and regenerative braking signals. Digital signals are also provided for the motor mode 

selections. At each wheel, a wheel speed sensor and a current sensor are equipped for wheel 

speed and current measurement, respectively. Each steering motor is controlled by a Delta® 

ASDA-A2 series high-resolution AC servo drive, where the required steering angles from 

the high level are transferred to PWM signals in servo drives. Using the steering angle 

measured by the steering angle encoder, a calibrated PID control is designed to achieve the 

desired steering actuation. 

2.3.3. Redundant Actuation Systems 

The over-actuation of the developed OA-AGV is realized by multiple electric motors.  

Compared with the centralized engine or motor powertrain, four independently actuated 

IWMs are equipped in a distributed manner, which introduces two main advantages. First, 

from the energy consumption point of view, the IWM normally has higher energy 

operational efficiency than that of the engine. Second, the four IWMs without the 

transmissions and differentials can provide faster torque responses and more control 

degrees of freedom. Moreover, two steering motors for the front and rear wheel 

independent steering or four-wheel steering (4WS) of the OA-AGV are also applied. The 

additional active rear wheel steering system (ARS) can help to improve the stability and 
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energy efficiency of the OA-AGV, which will be discussed in detail in the following 

sections. 

2.3.4. Sensing Systems 

 

Fig. 5. Sensing Systems of the OA-AGV. 

As shown in Fig. 5, three different sensing systems, namely, a camera-based vision 

system, a radar-based perception system, and an ultrasonic sensor-based detection system, 

are equipped on the developed OA-AGV. The usage and application of the sensors are 

briefly described as follows. 

In the camera-based vision system, a 1080p HD camera with a 78° diagonal field of 

view (FOV) is mounted at the top of the front windshield, see Fig. 3. Every 30 ms, the 

camera collects the image information to identify desired environmental objects, such as 

the lane boundaries, through the lane detection algorithm in Python. Based on the detected 

lane information, the vehicle lateral offset with respect to the lane centerline can be 

determined and utilized for the lane-keeping control. 
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In the radar-based perception system, a Delphi® ESR 2.5 radar is mounted in the front 

of the vehicle, see Fig. 3. The radar detects up to 64 objects in the mid-range (1-60 m) or 

the long-range (1-175 m) within ±45° FOV or ±10° FOV, respectively. The detected object 

information, such as radial distances, azimuth angles, and relative speeds with respect to 

the radar, can be obtained and sent to the MAB-II through a CAN bus with a Kvaser® CAN 

adapter. 

In the ultrasonic sensor-based detection system, as shown in Fig. 5, fourteen I2CXL-

MaxSonar ultrasonic sensors are arranged to cover 360 degrees FOV around the vehicle. 

The effective detection range of the ultrasonic sensor is 0.2-5 m. The reading of the sensors 

refreshes every 20 ms, which allows a fast response for applications, like automatic parking. 

In addition, the vehicle kinematic and dynamic states are measured by the RT 3003 

differential GPS and INS system, which are fed to the MAB-II for real-time control 

purposes.  
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CHAPTER 3 

VEHICLE LATERAL DRIVING STABILITY REGION 

As discussed in Chapter 1, the estimation of vehicle lateral driving stability regions is 

fundamental to the stability analysis and controller designs. Based on the vehicle model 

and tire model introduced in Chapter 2, a novel vehicle lateral driving stability estimation 

method was proposed. As a summary of the author’s previously published paper [94], the 

details of the proposed estimation method are presented in this chapter 3.  

3.1. Overview 

Among various vehicle lateral stability analyses, the vehicle lateral stability regions are 

regarded as the most intuitive and efficient ones by depicting a region on a phase plane that 

can consist of different vehicle state combinations (e.g. vehicle lateral velocity (or sideslip 

angle) and yaw rate). Although the existing studies have estimated and revealed different 

features of vehicle lateral stability regions, some issues still need to be further investigated, 

especially in the context of AGVs.  For instance, some unstable (even temporarily) driving 

maneuvers that are predictable or acceptable for human-driven vehicles (through human 

commands), such as understeering or oversteering, may cause serious safety issues for 

AGVs. Therefore, it is necessary to develop a more comprehensive and safer vehicle lateral 

driving stability region. However, the existing vehicle lateral stability regions do not 

always effectively reflect the actual factors related to vehicle stability due to the lack of 

analysis from practical perspectives, such as the handling characteristic. To get a more 

 
3 The main contents in this chapter are with permission of Copyright © 2021 ASME, to be reprinted from 

[Huang, Liang, and Chen, ASME Journal of Dynamic System, Measurement, and control, 2021]. 
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accurate description of vehicle safety with a particular focus on vehicle dynamic/handling 

stability analysis, a novel estimation method is proposed and introduced in this chapter.  

3.2. Stability Region Estimation 

3.2.1. Local Linearization Method 

 The process of the local linearization method is described as follows. First, the vehicle 

model in (1) and (2) is symbolized into (12). 
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 Defining an operation point with a subscript o , and applying the Taylor expansion to 

the general dynamic function f  in (12) with respect to the system variables ( yV  and r ) 

and the system input ( f ), (12) is approximately rewritten as 
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 On the right side of (13), the high-order terms of the Taylor expansion are ignored for 

linearization. Note that ( )( ), ,
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dynamic systems. In a specific situation that the operation point is an equilibrium, we will 
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of (13), the linearized system at the operation point for a given input fo  is obtained as, 
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


=


. 

 To further derive the expressions of matrices 
oA  and 

oB , the partial derivatives of 

lateral friction forces are derived as (15)-(17). 

y y

y y

F F

V V





  
=

  
, (15) 

y yF F

r r





  
=

  
, (16) 

y y

f f

F F 

  

  
=

  
, (17) 

where  ( )yF
C 




=


 is the linearized lateral friction force function (not a constant but a 

slope function of the lateral force curve) at a slip angle  .  As shown in Fig. 2, the stable 

lateral friction forces (before reaching the saturation points) always have positive slopes 

( ) 0C   . Based on (3)-(6), the partial derivatives of tire slip angles with respect to yV , 

r , and f  are expressed as follows.  

1

1

fl rl

y y x o s

fr rr

y y x o s

V V V r l

V V V r l

 

 

 
= = −

  −

  = = −

   +

, (18) 
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( )

( )

( )

( )

2

2

2

2

fl f x yo s

x o s

fr f x yo s

x o s

r x yo srl

x o s

r x yo srr

x o s

l V V l

r V r l

l V V l

r V r l

l V V l

r V r l

l V V l

r V r l









 +
= −

 −
  −
 = −

 +


− + = −
  −

 − −

= −
 +

, (19) 

1
fl fr

f f

 

 

 
= =

 
, 0rl rr

f f

 

 

 
= =

 
. (20) 

Note that the high-order items in the derivation of (18)-(20) are small enough to be 

negligible. Thus, by substituting (1), (2) and (15)-(20) into (14), 
oA  and 

oB  with respect 

to the operation point ( ),yo oV r  can be obtained and expressed as follows,  

11 12

21 22

o o

o

o o

A A
A

A A

 
=  
 

, (21) 

( ) ( )
.

fl fr

o

fl fr f yfl yfr s

z

C C

m
B

C C l F F l

I

 

 

+ 
 
 =
 + + −
 
  

 (22) 

where, 

( ) ( )11 ,
fl rl fr rr

o

x o s x o s

C C C C
A

m V r l m V r l

   
 + +

= − +  − + 

 (23) 
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( ) ( )
( )

( ) ( )
( )

12 2

2

1

                          ,

f x yo s fl r x yo s rl

o x

v x o s

f x yo s fr r x yo s rr

x o s

l V V l C l V V l C
A V

m V r l

l V V l C l V V l C

V r l

 

 

 + + − +
= − −
 −

− + − −
+
+ 

 

21

1
,

f fl rl r f fr rr r

o

z x o s x o s

l C C l l C C l
A

I V r l V r l

   − + − + 
= + 

− + 
 

( ) ( )
( )

( ) ( )
( )

22 2

2

1

                 .

f x yo s f fl r x yo s r rl

o

z x o s

f x yo s f fr r x yo s r rr

x o s

l V V l l C l V V l l C
A

I V r l

l V V l l C l V V l l C

V r l

 

 

 − + + − +
=
 −

− − + − −
+
+ 

 

Proposition 1. The linearized system in (14) is asymptotic stable with respect to the 

operation point ( ),yo oV r  if and only if the inequality in (24) holds. 

 
( ) ( ) ( )

( )( )

2 2 2

0,
v x s o fl fr f rl rr r

fl fr rl rr

m V l r C C l C C l
L

L C C C C

   

   

 − + − +
 − 
+ +

 (24) 

where f rL l l= +  is the vehicle wheelbase.  

Proof. The characteristics of eigenvalues of 
oA  is utilized to prove the system stability.  

Let 

11 12 2

1 0

21 22

0
o o

o

o o

A A
I A p p

A A


  



− − 
− = = + + = 

− − 
, (25) 

where 

1 11 22o op A A= − − , (26) 

0 11 22 12 21o o o op A A A A= − . (27) 
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 Instead of directly calculating the two eigenvalues of
oA , the coefficients of the 

characteristic equation (25) are utilized to prove Hurwitz stability. Based on the Routh–

Hurwitz criterion [83] for second-order polynomials, if and only if 
1p  and 

0p  are both 

positive, the eigenvalues of (25) have negative real parts. Therefore, as long as inequality 

(24) is equal to positive 
1p  and 

0p , the stability of the linearized system is proved. First, 

for 
1p , substituting 

11oA  and 
22oA  from (23) into (26), 

1p  is given as, 

( ) ( )

( )
( )

( )
( )

( )
( )

( )
( )

1 2

2 2 2

1

        

f x yo s f flfl rl fr rr

v x o s v x o s z x o s

r x yo s r rr r x yo s r rl f x yo s f fr

x o s x o s x o s

l V V l l CC C C C
p

m V r l m V r l I V r l

l V V l l C l V V l l C l V V l l C

V r l V r l V r l

   

  

 + + +
= + + 

− + −   

+ − −
+ + +

+ − + 

. (28) 

 Since the linearized cornering stiffness ( ), , ,jC j fl fr rl rr =  are always positive if the 

friction forces are stable (not reach and beyond the saturation points) and ( )x o sV r l−  is 

positive for general vehicle driving conditions, the sum in the first square bracket of (28) 

is positive. Moreover, the first two terms in the second square bracket of (28) are always 

positive and the sign of the last two terms are determined by the numerators. Since yV  is 

much smaller than 
xV  for general driving conditions and 

sl , fl , and 
rl  are comparable 

vehicle dimensions, the ( )r x yo sl V V l−  and ( )f x yo sl V V l−  in the two numerators are also 

positive. Thus, 
1p  is positive based on the analyses of vehicle driving conditions.  

Second, by substituting (23) into (27), it is proved that the inequality in (24) is equivalent 

to a positive 
0p . The positive condition of  

0p  can be written in (29) as 
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0 11 22 12 21 0o o o op A A A A= −  . (29) 

Substituting the elements of 
oA  matrix from (23) to (29),  

( ) ( )

( ) ( )
( )

( ) ( )
( )

( ) ( )

0

2

2

1
       

1
       

fl rl fr rr

v x o s v x o s

f x yo s f fl r x yo s r rl

x o s

z f x yo s f fr r x yo s r rr

x o s

f x yo s fl r x yo s

x

v

C C C C
p

m V r l m V r l

l V V l l C l V V l l C

V r l

I l V V l l C l V V l l C

V r l

l V V l C l V V l C

V
m

   

 

 



 + +
= +  − + 

 + − − +
 +
 −
 

− − − − 
 
 + 

+ + − +

+ +
( )

( ) ( )
( )

2

2

1
        0

rl

x o s

f x yo s fr r x yo s rr

x o s

f fl rl r f fr rr r

z x o s x o s

V r l

l V V l C l V V l C

V r l

l C C l l C C l

I V r l V r l



 

   

  
  +
  −
  

− + − −  
  

 +   

− + − + 
+  

− + 

. (30) 

Since 
1 1

z vI m

 
 
 

 is always positive, which can be eliminated from both sides of (30), the 

items in the brackets are expanded and rearranged as, 
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( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( )( )

( ) ( )
( )

3 3

3 3

1

f x yo s f fl fl rl r x yo s r rl fl rl

x o s x o s

f x yo s f fr fr rr r x yo s r rr fr rr

x o s x o s

f x yo s f fl fl rl

x o s x o s x o s

r x yo

l V V l l C C C l V V l l C C C

V r l V r l

l V V l l C C C l V V l l C C C

V r l V r l

l V V l l C C C

V r l V r l V r l

l V V l

     

     

  

+ + − + +
−

− −

− + − − +
+ −

+ +

 + +
+

− + −

− +
−
( ) ( )

( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

3

s r rl fl rl f x yo s f fr fr rr

x o s x o s

r x yo s r rr fr rr

x o s

f fl rl r f fr rr r

v x

x o s x o s

f x yo s f fl f fl rl r

x o s

r x

l C C C l V V l l C C C

V r l V r l

l V V l l C C C

V r l

l C C l l C C l
m V

V r l V r l

l V V l l C l C C l

V r l

l V V

     

  

   

  

+ − +
+

− +

− − +
−

+ 

 − + − + 
 − +  

− +  

+ − +
+

−

− +
−
( ) ( )

( )

( ) ( )
( )

( ) ( )
( )

( )( )

( ) ( )
( )

( ) ( )

3

3

3

1

yo s r rl f fl rl r

x o s

f x yo s f fr f fr rr r

x o s

r x yo s r rr f fr rr r

x o s

f x yo s f fl f fl rl r

x o s x o s x o s

r x yo s r rl f fl rl r

l l C l C C l

V r l

l V V l l C l C C l

V r l

l V V l l C l C C l

V r l

l V V l l C l C C l

V r l V r l V r l

l V V l l C l C C l

  

  

  

  

  

− +

−

− − +
+

+

− − − +
−

+

 + − +
+
− + −


− + − +
−

( )

( ) ( )
( )

( ) ( )
( )

x o s

f x yo s f fr f fr rr r

x o s

r x yo s r rr f fr rr r

x o s

V r l

l V V l l C l C C l

V r l

l V V l l C l C C l

V r l

  

  

−

− − +
+

+

− − − +
−
+ 


. 

(31) 
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Combine and eliminate the same items on both sides of (31), 

( ) ( )( )

( )

( )( ) ( )

( )

( ) ( )( )

( ) ( )( )

( )
( )

2
2 2

2 2 2

22 2

2 2 2

2 22 2

2 2 2 2

2

fl fr f fl fr rl rr r

x

x s o

fl fr rl rr f rl rr r

x s o

v x fl fr f rl rr r

fl fr f fl fr rl rr f r rl rr r

x

x s o x

C C l C C C C l
V

V l r

C C C C l C C l

V l r

m V C C l C C l

C C l C C C C l l C C l
V

V l r V

     

     

   

       

 + + + +

 −


+ + + +
+
−


 + − +

 + − + + +
+ +
 −


( )2 2

s ol r




− 

. (32) 

In (32), move the second item on the right side of the inequality to the left, 

( ) ( )( )

( )

( )( ) ( )

( )

( ) ( )( )

( )

( )

( )
( ) ( )

2
2 2

2 2 2

22 2

2 2 2

2
2

2 2 2

2 2

2 2 2

2

fl fr f fl fr rl rr r

x

x s o

fl fr rl rr f rl rr r

x s o

fl fr f fl fr rl rr f r

x s o

rl rr r

v x fl fr f rl rr

x s o

C C l C C C C l
V

V l r

C C C C l C C l

V l r

C C l C C C C l l

V l r

C C l
m V C C l C C

V l r

     

     

     

 

   

 + + + +

 −


+ + + +
+

−

+ − + +
−

−

+
−  + − +

− 

( )rl

. (33) 

The same items on the left of (33) can be combined and eliminated. Thus, (33) is 

simplified as, 

( )
( )( )

( ) ( )( )

2

2 2 2
( )x

fl fr rl rr f r

x s o

v x fl fr f rl rr r

V
C C C C l l

V l r

m V C C l C C l

   

   

+ + +
−

 + − +

. (34) 

Finally, (34) is organized as, 
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( ) ( ) ( )

( )( )

2 2 2

( ) 0
( )

v x s o fl fr f rl rr r

f r

f r fl fr rl rr

m V l r C C l C C l
l l

l l C C C C

   

   

 − + − +
 + − 

+ + +
.  (35) 

Therefore, the stability condition in (29) is proved to be the same as the condition in  (35), 

which finally gives the condition in (24).                                                                          ∎ 

Remark 2. The inequality in (24) illustrates the relationship between the front and rear tire 

stabilities. Note that the ( )j jC  , which denotes the varying slopes of lateral friction 

forces at the slip angle j  , describes the tire stability information at the operation point.  

 In addition to the stability analysis, the controllability of the linearized system (14) is 

determined by checking the rank of the controllability matrix  o o oP B A B= . Since 
oA  

is full rank, as long as 
0

0
oB

 
  
 

, the controllability matrix P is full rank. Thus, from (22), 

the controllability conditions are, 

0,fl frC C +   (36) 

( ) ( ) 0fl fr f yfl yfr sC C l F F l + + −  . (37) 

Since ( ), , ,jC j fl fr rl rr =  are required to be positive to ensure tire stability, the inequality 

(36) holds. Moreover, since the lateral force difference between the front two wheels is 

typically small, if (36) holds, then (37) also holds. Namely, if the front tires are stable, the 

controllability of the linearized system is guaranteed. 

 To summarize, only when the linearized system at the operation point ( ),yo oV r  satisfies 

both the stability and controllability criteria, the vehicle state at the operation point on the 
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yV - r  phase plane is defined as (directional) stable. By checking the stability of the 

linearized system at each (discrete) point in the phase plane, the final estimated vehicle 

lateral stability region consists of all of the stable operation points, which include but are 

not limited to the stable equilibrium points [10]. For the linearized system, the local 

stability describes the system's capability of returning to the operation point under 

disturbances. Such a concept applied to vehicle stability analysis refers to certain physical 

and driving properties, which are discussed in the following subsection. 

3.2.2. Analyses and Discussions of Stability Criteria 

 The vehicle lateral stability examined at each operation point physically corresponds 

to the vehicle handling stability at the same operation point. In the concept of vehicle 

handling stability, three vehicle status, namely neutral steering, understeering, and 

oversteering [13][14][81][84] are typically classified by the vehicle yaw rate gain in (38), 

which is defined as the response of the vehicle yaw rate with respect to the steering input 

[81]. 

( )

( ) ( ) ( )
( )( )

2 2 2

2 2 2 0 0 0 0

0 0 0 0

        

x

f us x sss

x

v x s fl fr f rl rr r

fl fr rl rr

Vr

K V l r
L

g

V

m V l r C C l C C l
L

gL C C C C

   

   


=

−
+

=
 − + − +
 −

+ +

, (38) 
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where 
( ) ( )
( )( )

0 0 0 0

0 0 0 0

v fl fr f rl rr r

us

fl fr rl rr

m C C l C C l
K

L C C C C

   

   

 + − +
 = −

+ +
 is the understeer coefficient. Based on 

the definition in [81], when the cornering stiffness ( )0 , , ,jC j fl fr rl rr =  (the superscript 

‘0’ refers to the slope of the tire lateral force curve at 0 slip angle) in (38) are constant, a 

negative 
usK  denotes the vehicle oversteer condition and a positive 

usK  denotes the 

vehicle understeer condition [81]. In this paper, instead of using a constant slope to 

represent the lateral force characteristics, the cornering stiffness 
0

jC  is redefined and 

replaced by a function of a varying tire slip angle ( )j jC   during the linearization process. 

Thus, the coefficient 
usK  is extended as a function of tire slip angles ( )usK  , which 

denotes the vehicle handling stability with respect to different operation points. Note that 

in [84], similar concepts of local stability and varying stiffness were introduced where the 

gain response of a steering angle rate with a path curvature was required to be positive. 

However, the stability criterion in [84] was based on a bicycle model and used to present a 

handling diagram for one steady state. Compared with the handling diagram, the stability 

region in this paper contains all the stable vehicle states by analyzing every operation point 

on the phase plane. Such a stability region representation makes the stability analysis of 

any given vehicle states a straightforward and intuitive process.  Specifically, by directly 

checking whether the vehicle states are in the defined stability region, the real-time vehicle 

stability can be determined and applied for control design [85]. Moreover, the stability 

condition in (36) and (37) are sufficient conditions of (28) in [84].  
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 By replacing the constant 0

jC  with the varying ( )( ), , ,j jC j fl fr rl rr  =  in (38), the 

denominator of (38) is the same as the left side of (24). If (24) is equivalently written as 

( )2 2 2

0
us x sK V l r

L
g

 −
+  , the unstable vehicle lateral dynamics can be defined as 

( )2 2 2

0
us x sK V l r

L
g

 −
+  . This inequality condition gives ( )

( )2 2 2
0,us

x s

gL
K

V l r

   − 
−

( 
x sV l r  as claimed before), which shows that the derived (unstable) condition is a 

sufficient condition of a common oversteering definition 0usK   [81]. Therefore, once the 

vehicle is identified as unstable through (24), the vehicle is already oversteered. 

 Although a vehicle is typically designed to be a little understeered since oversteering 

is typically riskier than understeering, a severe understeering will still cause vehicle 

stability and safety issues [81]. Therefore, inspired by the relationship between the derived 

stability condition (24) and the oversteering condition (38), an additional understeering 

condition is proposed to completely describe the vehicle lateral stability region proposed 

in this paper. One practical criterion applies when 

( )0,01o

f fss

rr

a 
 , (39) 

the vehicle is understeered but still considered stable, where a  is a constant gain. o

f ss

r


 

denotes the steady-state yaw rate gain at one operation point ( yoV ,
or ), and  

( )0,0

f

r


 denotes 

the steady-state yaw rate gain at the origin (0,0), which corresponds to the yaw rate gain at 
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neutral steering. In other words, for an understeering vehicle, to achieve the same yaw rate 

response as the neutral steering and still be considered as stable, the steering angle is 

required to be no larger than a  times of that in the neutral steering condition. Otherwise, 

the vehicle is considered to be operated in a relatively severe understeering condition, 

which is also defined as unstable in this paper.  

Although the vehicle handling stability was also studied in some research for lateral 

stability region estimation [16][17], it was normally applied as complementary criteria to 

further limit and reshape the stability regions estimated by the existing methods (e.g. the 

phase portrait method). However, the local linearization method applied in this paper, by 

fully considering the vehicle and tire stability and the (stability) relationship between front 

and rear tires, presents more comprehensive analyses and descriptions of the vehicle 

stability in terms of the handling properties. 

3.2.3. Comparisons with the Phase Portrait Method 

  

Fig. 6. Diagram of the Stability Region Estimation Process in Matlab-Simulink. 
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The diagram of the stability region estimation process in Matlab/Simulink is shown in 

Fig. 6. The system inputs include the vehicle speed, tire-road friction coefficient, and 

steering angle. First, the system inputs are preliminarily processed based on the basic 

vehicle parameters and vehicle states to calculate the necessary variables as the inputs of 

the LuGre tire model and vehicle dynamic model. Specifically, the slip angle   (based on 

(3)-(6)) and the vertical load 
nF  (based on (8)-(11)) of each tire are calculated. Tire slip 

ratios ( ) are set to small numbers (0.001) to describe the pure lateral tire model. Then, 

based on the tire forces calculated by the tire model, the vehicle states are simulated through 

the vehicle dynamic model in (1) and (2). In the simulation process, the linearization is 

executed by implementing the Matlab function “linearize” between the input ( f ) and the 

outputs ( yV  and r ) of the vehicle dynamic system. The linearization process computes the 

linearized model by numerically perturbing the input and outputs at the selected and 

discretized operating points. The linearized model is then transferred into a state-space 

realization, which can be analyzed by the proposed stability criteria in (24). For every 

discretized operation point on the yV r−  phase plane, the stability of the linearized systems 

is analyzed. Thus, based on the analysis results, a complete stability region that consists of 

all the stable operation points can be finally obtained. The following five steps summarize 

a complete estimation process. 

Step 1. A phase plane is discretized (with an interval of 0.1 for both yV  and r ), which 

generates a matrix of evenly distributed operation points.  

Step 2. For each operation point, the stability condition (24) is applied, and the stability of 

this point can be determined.  



 

  39 

Step 3. After the stability statuses of all the points on the phase plane are checked, an area 

that contains all the stable operation points can be depicted. By connecting the outer points 

of this stable area, the stability region boundaries (blue dot lines in Fig. 8) can be created.  

Step 4. Repeat steps 2 and 3 but simply replacing the stability condition (24) with the 

understeering condition (39) in Section 3.3, the stability region boundaries (black lines in 

Fig. 8) can be created.  

Step 5. Overlay all the boundaries created in steps 3 and 4, a closed stability region is 

estimated. 

Note that the discrete interval can be smaller depending on the required estimation accuracy.   

The vehicle parameters specified in Table 2 are taken from a C-Class hatchback model 

in CarSim database, which is a front wheel drive car with four independent suspensions. 

Some main parameters of the adopted LuGre tire model ( i y=  in (7)) are also listed in 

Table 2. 
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Table 2.  Vehicle and Tire Parameters for Simulations 

Symbols Parameters Values 

 
vm  Vehicle mass 1270 kg 

 g  Gravity constant 9.8 m/s2 

 
zI  Yaw moment of inertia 1536.7 kg∙m2 

 L  Wheelbase 2.91 m 

 fl  Front wheelbase 1.02 m 

 
rl  Rear wheelbase 1.89 m 

 
sl  Half of the vehicle track 0.96 m 

 
CGh  Center of gravity height 0.54 m 

 yL  Tire model parameter 0.182 

 Ly  Tire model parameter 0.064 

 Ry  Tire model parameter 0.091 

 2 y  Tire model parameter 0.0069 

The phase portrait is a fundamental and direct method to analyze the stability of 

dynamic systems. In this paper, the vehicle lateral stability region estimated by the phase 

portrait method is compared with the region estimated by the proposed local linearization 

method.     
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Fig. 7. Vehicle Lateral Stability Region Estimated by the Phase Portrait Method. 

The stability region estimated by the phase portrait on the yV r−  phase plane is shown 

in Fig. 7, where the origin is one equilibrium point and also a stable focus. The estimation 

condition is set as: the input steering angle is 0 degree, the longitudinal velocity is 25 m/s, 

and the tire-road friction coefficient   is 1. Other trajectories, which are not converging 

to the focus, compose the unstable areas. Thus, the two dash red curves in Fig. 7 define the 

lower and upper stability boundaries of the vehicle lateral stability region. Note that the 

phase portrait cannot define the system controllable boundaries since no control effort is 

applied. The vehicle lateral stability region shown in Fig. 7 is consistent with the results in 

[9][10]. 
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Fig. 8. Comparison of Stability Regions Estimated by the Phase Portrait and the Local 

Linearization Method. 

In Fig. 8, under the same condition, the vehicle lateral stability region estimated by the 

proposed local linearization method is plotted together with the region estimated by the 

phase portrait method. As shown in Fig. 8, the red dash lines depict the upper and lower 

boundaries defined by the phase portrait method.  The upper-left and lower-right blue dot 

curves are the stability boundaries by connecting stable points defined by the criterion (24). 

The upper-right and lower-left black dash-dot curves are obtained by connecting stable 

points defined by the understeering criterion discussed in Section 3.3. These four 

boundaries define the stability region as a closed area. The physical meaning of the 

obtained stability region is: within the defined stable region, no matter where the vehicle 

states (operation point) are located, given a disturbance, the vehicle states will return to the 

operation point that is locally stable. Such a characteristic with respect to the operation 
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point also describes the vehicle handling stability, which gives the practical meaning of the 

estimated stability region as, within the stability region, the vehicle trajectories/responses 

with respect to an input (steering angle) are neither oversteering nor severe understeering.  

As observed in Fig. 8, the estimated stability region is much smaller than that obtained 

from the phase portrait method.  Some insights are explained as follows based on the 

analyses of vehicle state trajectories initiated at four selected conditions: point (A) 

( 0.1 / , 0.1 /yV m s r rad s= − = ) is within the estimated stability region;  point (B) 

( 1 / , 1 /yV m s r rad s= − = ) is out of the oversteering boundary but inside the stability region 

defined by the phase portrait method; point (C) ( 1 / , 1 /yV m s r rad s= − = − ) is out of the 

understeering boundary but inside the stability region defined by the phase portrait method; 

point (D) ( 2 / , 2 /yV m s r rad s= − = ) is out of the stability region defined by both methods. 

Initiated at the four different points on the phase plane, the variations of the vehicle 

lateral velocity, yaw rate, and slip angle on four tires are shown in Fig. 9. The two subplots 

for point (A) in the first row of Fig. 9 show that both the vehicle states and tire slip angles 

quickly converge to zero. Since the tire slip angles are small, both the vehicle and tires are 

stable during the converging process, which shows that both the phase portrait and the local 

linearization method characterize the consistent stability properties. However, for points 

(B) and (C), although the vehicle states eventually converge to zero (stable defined by the 

phase portrait method), the status of some tires (rear tires for (B) and front tires for (C)) are 

not always stable, especially at the beginning of the converging process. As shown in the 

second row of Fig. 9 for point (B), in the beginning, the slip angles of rear tires are larger 

than those of front tires and are also beyond the saturated slip angle (around 10 degrees in 
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Fig. 2), which indicates that the rear tires are unstable and the vehicle is oversteering. 

Similarly, as shown in the third row of Fig. 9 for point (C), the slip angles of front tires are 

larger than those of rear tires and are also beyond the saturated slip angle (around 10 

degrees in Fig. 2), which indicates that the front tires are unstable and the vehicle is severely 

understeering. For point (D), as shown in the last row of Fig. 9, starting in an unstable 

condition defined by both the phase portrait and the local linearization method, both the 

vehicle states and tire slip angles become diverging, indicating that the vehicle is unstable. 

 

Fig. 9. Variations of Vehicle States and Tire Slip Angles Initiated in Different 

Conditions. 
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In summary, the comparisons illustrate that the vehicle lateral stability region estimated 

by the local linearization method considers both stricter vehicle and tire stability and gives 

a more conservative estimation, which could be applicable for the control design of AGVs 

to avoid motion sickness [28][29]. 

3.2.4. Impact of the Lateral Load Transfer 

Different from the applied bicycle model in the literature [14][18][19][83], a four-

wheel vehicle model with independently calculated tire slip angles can evaluate the impact 

of the vehicle lateral load transfer. The tire vertical loads (e.g. (8)-(11)) influence the tire 

friction forces through the 2D LuGre tire model in (7), and then consequently influence the 

accuracy of the estimated stability regions. Fig. 10 for the first time quantitatively 

demonstrates the necessity and improvement to use a four-wheel vehicle model for the 

lateral stability region estimation, compared with the bicycle model widely used in the 

literature [14][18][19]. As observed, the estimated stability region using the four-wheel 

model is bigger (mainly in the yaw rate direction) than that using the bicycle model. Such 

an observation is explained via two aspects. First, compared with the bicycle model, the 

calculations of tire slip angles (e.g. (3)-(6)) in the four-wheel vehicle model involve an 

additional yaw rate term ( r ) in the denominator, which causes a significant difference 

between the slip angles of the left and right wheels. Second, when the vehicle is 

experiencing a certain level of lateral acceleration (even when the steering angle is zero) 

in a corner, the lateral load transfer distributes more vertical loads to the outer wheels, 

which consequently generate more friction forces than the inner wheels. The unevenly 

distributed tire lateral friction forces help the vehicle turns by generating a moment, which 
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enhances the vehicle yaw stability. 

   

Fig. 10. Comparisons of the Estimated Stability Regions Using a Bicycle Model and a 

Four-wheel Vehicle Model. 

3.2.5. Impact of the Vehicle Longitudinal Velocity 

The vehicle longitudinal velocity also has impacts on the estimated lateral stability 

region.  For the demonstration, three longitudinal velocities
xV , namely 10, 20, and 30 

/m s , are selected to represent the low, medium, and high speeds driving scenarios, 

respectively. As shown in Fig. 11, the larger longitudinal velocity, the larger vehicle lateral 

stability region for the same steering angle f  at 0 degree and the tire-road friction 

coefficient   at 1.  Such an observation can be explained in two aspects. First, based on 

(3)-(6), for the same yV  and r  values, the tire slip angles become smaller when 
xV  

increases. Normally, smaller tire slip angle infers better tire stability, which further 
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enhances the vehicle lateral stability and results in the graphically enlarged stability regions. 

Second, let the ymaxV  and yminV  be the maximum and minimum lateral velocity (actually the 

extreme velocities in opposite directions) of the estimated stability regions. When 
xV  

increases (10, 20, 30 /m s ), the maximum/minimum vehicle side slip angle, 

( )1

/ /tan /max min ymax min xV V −= , decreases (  9.9  ,  6.27  ,  5.33  ). Therefore, although 

the stability region becomes larger at a higher longitudinal velocity, the permissible 

maximum/minimum   decreases, which infers a lower vehicle lateral stability limitation. 

Moreover, different vehicle longitudinal velocities do not significantly affect the shapes of 

the stability regions. 

 

Fig. 11. Impact of the Longitudinal Velocity on the Estimated Lateral Stability Regions. 

3.2.6. Impact of the Tire-Road Friction Coefficient 

The tire-road friction coefficient directly affects the tire lateral friction forces, thus 

consequently influencing the estimated stability regions. To demonstrate the impact of tire-
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road friction coefficient, three different   values ( 1,0.7,0.3 = ) which represent the high, 

medium, and low friction roads are selected, respectively. In Fig. 12, the stability region 

becomes smaller as   decreases for the same vehicle longitudinal velocity 
xV  at 25 m/s 

and the steering angle f  at 0 degree. This trend is reasonable because the vehicle lateral 

motion can be hardly controlled and stabilized due to the lack of friction forces on low   

roads. Moreover, the shape of the stability regions under different   values are similar. In 

addition to tire-road friction coefficient, other tire parameters can change and introduce tire 

characteristic differences among four tires, which can also influence vehicle handling 

characteristics. 

  

Fig. 12. Impact of the Tire-road Friction Coefficient on the Estimated Lateral Stability 

Regions. 

3.2.7. Impact of the Front Wheel Steering Angle 

To demonstrate the impact of the front wheel steering angle on the estimated lateral 
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stability region, three front wheel steering angles ( 4,0,4f = −  degrees) are applied to the 

vehicle model. As observed in Fig. 13, the lateral stability region shifts from the lower left 

to the upper right as the steering angle changes from -4 to 4 degrees for the same 
xV  at 

25m/s and the same   at 1. Moreover, the shape and size of the stability region do not 

change much in the shifting process. Note that if the steering angle exceeds a certain value, 

the “bifurcation” phenomenon could happen [10], which infers that the system equilibrium 

point is located out of the estimated stability region on the phase plane. As observed in Fig. 

13, the system equilibrium points (*) (calculated by setting both yV&  and r&  in (1) and (2) 

to zero) has the trend of becoming unstable (move towards the stability region boundary) 

when the steering angle (either -4 or 4 degrees) is applied, which is consistent with the 

observations in literature [10].   

 

Fig. 13. Impact of the Steering Angle on the Estimated Lateral Stability Regions. 

In sum, four different impacts are discussed and analyzed in Section 3.2.7.  These 
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analyses and observations on the variation of the estimated stability region are either 

consistent with the discussions of other lateral stability regions, such as with respect to   

and f  [12][18]-[21], or newly discovered and explained, such as with respect to the four 

wheel vehicle model and 
xV  [19]-[21]. These impact analyses show the correctness and 

contributions of the estimated stability regions.  

3.2.8. A Case Study by Matlab/Simulink and CarSim® Co-Simulation 

To further validate the estimated stability regions and above discussions, a case study 

of a high-speed double J-turn maneuver is conducted in the Matlab/Simulink and CarSim 

co-simulation environment. The vehicle longitudinal velocity is set constant at 90 km/h (25 

m/s) and the tire-road friction coefficient   is set to 0.85. The steering angle input during 

the maneuver for 20 seconds is shown in Fig. 14. Based on the discussions in Section 3.2.7, 

the stability region shifts when the steering angle changes. Therefore, without loss of 

generality, the vehicle state trajectory between 2.5-7.5s and 12.5-17.5s (when the steering 

angle reaches steady-state values) are used for analysis. 

 

Fig. 14. Front Wheel Steer Angle Input for a High-speed Double J-turn Maneuver. 
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Fig. 15. Vehicle State Trajectory and the Estimated Stability Regions on the yV r−  Phase 

Plane. 

In Fig. 15, the vehicle state trajectory is overlaid with the estimated stability regions. 

The black dash region represents the estimated stability region when the steering angle is 

0 degrees. The areas bounded by the solid red line and dash-dot blue line represent the 

newly estimated stability regions when the steering angle is 0.065 rad and -0.065 rad, 

respectively. The solid green curve represents the vehicle state trajectory of the double J-

turn maneuver from CarSim®, where the right half part (with respect to the origin) is mainly 

the vehicle state trajectory during the first 10 seconds and the left half part is mainly the 

trajectory during the second 10 seconds. As shown in Fig. 15, the vehicle state trajectory 

is partially outside the estimated stability boundary during the maneuver, especially on the 

farther right/left end of the trajectory no matter how the region shifts for such a high-speed 

J-turn maneuver. 
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Considering the symmetric property of the stability regions and vehicle state trajectory 

with respect to the origin in Fig. 15, three data points on the right half trajectory between 

2.5 to 7.5 seconds are selected as examples to analyze vehicle stability. Since the steering 

angle is constant during this period, the stability region defined by the red solid line should 

be applied for analysis. As observed in Fig. 15, point 1 is in the region while point 2 and 3 

are out of the region. The stabilities of these vehicle states points are verified by checking 

the signs of eigenvalues of the corresponding 
oA  matrix. As shown in Table 3, the 

eigenvalues (
1λ  and 

2λ ) of 
oA  at point 2 and 3 both have positive real values (unstable) 

while the eigenvalues of 
oA  at point 1 are both negative (stable). Therefore, only the 

oA  

at point 1 is Hurwitz and the vehicle states on point 1 is stable. 

By checking the steady-state yaw rate response /o f ss
r  , the stabilities of these three 

state points are further analyzed. In Table 3, the /o f ss
r   at point 1 is greater than one third 

(select 1/ 3a =  based on an empirical value of the yaw rate gain response for understeering 

[81]) of the neutral steering response (
( )0,01 2.739

0.913, when 0.065rad
3 3

f

f

r



= = = ) but is 

still smaller than 
( )0,0

2.739
f

r


= . Namely, the vehicle status at point 1 is a little understeering 

but still in the stable range. However, the /o f ss
r   at point 2 and 3 are both larger than 

( )0,0

f

r


, which imply oversteering based on the yaw rate response curve in [81]. The 
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oversteering characteristics at point 2 and 3 can also be verified by the negative sign of  

usK
. 

Table 3. Simulation Results Analysis 

No. time 
yV  

(m/s) 

r
(rad/s) 

Stability 1λ  
2λ  /o f ss

r   
usK

 status 

1 3 1.0 0.23 stable -1.68 -5.98 2.42 0.01 Understeer 

2 5 2.3 0.18 unstable 4.46 -11.67 6.73 -0.43 Oversteer 

3 7.5 1.6 0.07 unstable 3.08 -14.21 3.8 -0.13 Oversteer 

 

3.3. Conclusions 

A new vehicle lateral stability region estimation method, which utilizes a local 

linearization method based on a four-wheel vehicle model and a nonlinear 2D LuGre tire 

model, is presented in this chapter. The estimated vehicle lateral stability regions are more 

conservative compared with the regions estimated by the phase portrait and Lyapunov 

method in the previous studies. The conservation is mainly featured from the stricter and 

simultaneously applied vehicle and tire stability criteria, which are mathematically derived 

by using the applied local linearization method. Moreover, simulation results show that the 

lateral load transfer, vehicle longitudinal velocity, tire-road friction coefficient, and 

steering angle all have impacts on the estimated vehicle lateral stability regions. The 

estimated stability regions are validated through a high-speed double J-turn maneuver in 

the co-simulation environment of Matlab/Simulink and high-fidelity CarSim. The 

estimated conservative lateral stability region has the potential to be used for vehicle lateral 

stability control of automated vehicles. 
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CHAPTER 4 

REGION-BASED VEHICLE LATERAL STABILITY CONTROL 

Based on the estimated vehicle lateral driving stability regions in Chapter 3, a series of 

vehicle lateral stability controllers were designed. In this chapter, two sliding mode control 

methods and one non-overshooting model predictive control are introduced. The main 

contents in sections 4.2 and 4.3 were presented in the author’s previous publication [96], 

while the main contents in section 4.4 were presented in the author’s previous publication 

[90] 4. 

4.1. Overview 

Among various vehicle stability control methods, such as reference tracking [98]-[100], 

traction control [101], and electronic stability control [102], the stability region-based 

control is regarded as an intuitive and efficient approach [17] and thus was widely studied 

in the past decades. Generally, the region-based stability control typically intervenes when 

a vehicle is about to lose stability, which is indicated by vehicle states approaching the 

region boundaries. Therefore, the region-based control is feasible to be either applied 

individually or integrated with additional (performance) control purposes. To achieve 

region-based control, different vehicle lateral stability regions were defined or estimated 

and various vehicle lateral stability control methods were proposed correspondingly [9]-

[21][30]-[37]. 

 
4 The cited contents in section 4.2 and 4.3 are with permission of Copyright © 2021 IEEE, to be reprinted 

from [Huang and Chen, IEEE Transactions on Vehicular Technology, 2021]. The cited contents in section 

4.4 are with permission of Copyright © 2019 IEEE, to be reprinted from [Huang and Chen, in Proceedings 

of American Control Conference, 2019]. 
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Although different region-based stability control methods based on related stability 

regions were discussed, three main issues still need to be further investigated and resolved 

in terms of effective and robust control. First, the stability regions were typically simplified 

in regular shapes with straight-line boundaries for vehicle stability analysis and the 

corresponding control design. Consequently, the stability analysis and control results may 

not be accurate and effective, especially in the applications of AGVs. Second, the position 

of applied stability regions in the literature were all fixed, which did not correctly describe 

features of stability regions for control design. The locations of (different) stability regions 

on (the corresponding) phase planes were found to be shiftable with respect to a steering 

angle significantly. Hence, the stability regions used for control should be described as 

varying or shifting areas with respect to a steering angle. In the literature, one possible 

reason for using the fixed regions is that the quantitative or explicit relationship between 

the shifting stability regions and the steering angle was not determined, although the trend 

was identified through simulation results. Third, the vehicle state trajectories were not 

guaranteed to be controlled in the stability regions. Namely, although the vehicle state 

trajectories were controlled back to the stability regions, the control signals or actions were 

only triggered after the vehicle states left the regions, which have already introduced 

(slightly or temporarily) unstable vehicle statuses. For AGVs, even slightly or temporarily 

unstable vehicle statuses can significantly affect vehicle safety, which makes the problem 

of stability-guaranteed control necessary and important. 

The aforementioned issues were addressed in the author’s previous studies [87]-[90], 

whose major contributions are introduced in this chapter. Specifically, in section 4.2, based 
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on the estimated stability region, a novel analysis method of vehicle stability statuses by 

using the projection method is proposed. The shifting vector and dynamic margin of the 

stability region are integrated into the projection method. As the result, an effective and 

robust region-based stability analysis is developed. In section 4.3, based on the stability 

analysis, dynamic SMC designs using the dynamic margin as the sliding surface are 

presented. The dynamic SMC designs are separately applied to two control configurations, 

namely active front wheel steering (AFS) + direct yaw moment control (DYC) and active 

front wheel steering (AFS) + active rear wheel steering (ARS). In section 4.4, without the 

chattering issues in SMCs, a non-overshooting model predictive control algorithm is 

presented.  

4.2. Shifting Function and Dynamic Margin 

4.2.1. Shiftable Stability Regions  

Since a varying steering angle is common in vehicle lateral motions and closely related 

to lateral stability regions, the explicit relationship between the stability region variation 

and the steering angle needs to be developed. In literature, the varying trend of (various) 

stability regions with respect to the steering angle was usually discussed based on the 

baseline region when 0f =  through simulation results [9][10]. However, the quantitative 

relationship between the movement of stability regions and the steering angle is not 

developed yet. 
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Fig. 16.  The Shifting Feature of Vehicle Lateral Stability Regions.  

The estimation process of stability regions for continuously varying steering angles is 

complex and may not be real-time implementable. Even if lookup tables could be created 

offline for different (discrete) steering angles, the calibrations and storage memories could 

also face other challenges. Thus, an explicit and simple relationship between the baseline 

stability region ( 0f = ) and the varying steering angle will benefit practical applications. 

To achieve this goal, the shifting feature of the stability region is described in Fig. 16. 

When the steering angle changes, the stability region shifts along a specific direction with 

a similar size and shape [94]. Therefore, as long as a proper shifting vector is formulated, 

without re-estimation, the varying stability region at any steering angle can be obtained by 

applying the shifting vector to the boundary functions of the baseline region at 0f = . The 

shifting vector is derived as follows. 
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Since the stability region adopted in this paper is related to vehicle handling stability, 

it is applicable to discuss the shifting feature based on tire statuses. In Fig. 16, the tire status 

at 
0

P  and 
1P  are analyzed as a typical example because 

0
P  (

1P ) is the lowest point of the 

corresponding stability region for 0f =  (  radf a = ). At ( )0 0 0,yP V r , the corresponding 

calculations of the front and rear tire slip angles with 0f =  are shown in (40) and (41). 

Similarly, the front and rear slip angles at ( )1 1 1,yP V r  with f a =  are calculated in (42) 

and (43). 
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(42) 

 

(43) 

Based on the calculations in (40)-(43), the tire slip angles at 
0

P  and 
1P  are found to satisfy 

the following relationship: 0 1f f  , 
0 1r r  , and the slip angle differences (in absolute 

values) are less than 0.1%  of the initial slip angles ( 0f  and 
0r ) (as shown in Table 4). 

Therefore, the slip angles at 
0

P  and 1P  can be assumed to be the same. By checking the 

whole stability region, the discovered relationship between 
0

P  and 1P  is not unique. 

Specifically, for all the points on the stability region boundaries for the case of 0f = , the 

corresponding points that have the same relative location on the shifted boundary for the 

case of f a =  can be found. Then, the same slip angle calculations in (40)-(43) are applied 
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to these pairs of points. The statistical analyses about the slip angle difference for all the 

pairs of points are shown in Table 4, where 0 1f f f   = −  and 
0 1r r r   = − . 

Table 4. Statistical Analysis of the Slip Angle Difference 

Slip angle difference (rad) 

& percentage to / 0f r  f  ( )0
0

0

f

f






 

r  ( )0
0

0

r

r






 

Maximum value 38.3 10−  
29 10−  

161.1 10−  
106.9 10−  

Minimum value 
58.3 10−  

37 10−  0  0 

Mean value 
31.4 10−  

21 10−  
187.6 10−  

126.2 10−  

Variance value
 

123 10−  
65.1 10−  

698.2 10−  
361.8 10−  

 

The results shown in Table 4 are able to prove that 0 1f f =  and 
0 1r r =  are valid 

for each pair of points since f  and 
r  are both small enough. Thus, by applying such 

a relationship to (40)-(43), for any point ( )0 0,yV r  on the stability region boundary for 

0f = , the corresponding point ( )1 1,yV r  on the shifted stability region boundary can be 

determined as   

1 0

1 0

x r f

y y

f r

x f

f r

V l
V V

l l

V
r r

l l





= +
+

= +
+








. 

(44) 

 

 

(45) 

The relationships in (44) and (45) define a shifting vector in the 
T

yV r    direction as 

a function of the steering angle f , where the 0yV  and 
0r  are any point on the stability 

region boundary for 0f = . Such a shifting vector can be easily applied to calculate the 

explicit functions of shifting stability boundaries. In [86], the shifting analysis was 



 

  60 

extended with the consideration of rear wheel steering angles. Based on the four boundary 

functions shown in Fig. 18 ( 0f = , 0r = ), with any steering angle f  and r , the four 

new boundary functions are expressed as 

1 1

2 2

3 3

4 4

( , )

( , )

( , )

( , )

y

y

y

y

y V r

y V r

y V r

y V r

b S S

b S S

b S S

b S S

f V r

f V r

f V r

f V r

= − −


= − −


= − −
 = − −

, 
(46) 

where 
( )

y

x r f f r

V

f r

V l l
S

l l

 +
=

+
 and 

( )x f r

r

f r

V
S

l l

 −
=

+
 are the length of the shifting vector in 

the yV  and r  directions, respectively. 

Remark 3. The lateral load transfer, which causes asymmetric vertical loads on left and 

right tires, has been considered in the shiftable stability regions by adopting the double-

track vehicle model in section 2.  The shifting properties for other asymmetric conditions, 

such as split   for left and right tires, need to be discussed based on re-estimated stability 

regions from the authors’ previous work [94], which will be discussed in future work. 
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Fig. 17.  A Vehicle Lateral Stability Region Estimated in [94]. 

In the authors’ previous work [94], a novel vehicle lateral stability region was estimated, 

which is used to analyze vehicle lateral stability and design the corresponding stability 

control. Note that other stability regions could be also applied without influencing the 

following process and contributions on the stability analysis and control design in this 

paper. 

The lateral stability region shown in Fig. 17 is estimated by a local linearization method, 

where the stability criteria are formulated with a comprehensive and practical 

understanding of vehicle handling stability and tire stability. Due to this reason, the 

estimated stability regions are more conservative than other stability regions. However, 

this does not necessarily limit the vehicle driving performance. As shown in Fig. 17, under 

the conditions of 25 /xV m s= , 0.75 = , and 0 degf = , a vehicle lateral stability region 

is shown by a closed irregular shape on the yV r−  phase plane. The stability region in Fig. 
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17 typically consists of four boundaries, where two are defined as oversteering boundaries 

and the other two are defined as understeering boundaries.  

Given the stability region in Fig. 17, the vehicle lateral stability status can be analyzed 

by checking the relative distance between the vehicle state point ( , )yV r and the region 

boundaries. If the stability boundaries were simplified, (e.g., as straight lines [14][36]), the 

relative location could be easily determined. However, since the stability boundaries of the 

region in Fig. 17 are irregular, the existing analysis methods are not applicable. To address 

this issue, a projection method is proposed to achieve two main purposes for stability 

analysis. 

 

Fig. 18.  Projection Method and the Closest Point on the Boundary. 

The first purpose of the projection method is to determine the closest point on the stability 

boundaries that has the minimum distance to the vehicle state point. As shown in Fig. 18, 

the stability region boundaries can be formulated as four polynomial functions 

( ) ,  1,2,3,4j yr f V j= = . For one vehicle state point ( ),yA V r  located inside or outside of 

( ),ys sB V r

( ),yA V r

yV

r
sk

d

( )1 yr f V= ( )2 yr f V=

( )3 yr f V=( )4 yr f V=

( )0,yV r
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the stability region, there exists a point ( ),ys sB V r  on the boundaries, which has the 

minimum distance to point A. Point B can be determined by the projection method, which 

indicates that if ( ),ys sB V r  is the projection of ( ),yA V r  on the boundary, the connection 

between A and B is orthogonal to the tangent (
sk ) of the function ( )j yf V  at B. The slope 

of AB, 
ABk , therefore has the following relationship with the tangent 

sk . 

1AB sk k = − , 
(47) 

where 
y ys

AB

s

V V
k

r r

−
=

−
and ( )s j ysk f V= . Then, (47) can be further written in (48) by 

substituting 
ABk , 

sk , and the boundary function ( )j yr f V= . 

( )
( ) 1

y ys

j ys

ys

V V
f V

r f V

−
 = −

−
 . 

(48) 

By numerically calculating the roots of (48) in the searching range, defined by the 

boundary length, the ysV  and the corresponding 
sr  can be obtained. Finally, with all the 

required values, the distance between point A and B is given by 

( ) ( )
2 2

y ys sd V V r r= − + −  . 
(49) 

For any vehicle state point, the above calculation (47)-(49) regarding all the four boundary 

functions are applied. By comparison, the shortest distance and the closest point on the 

stability region boundaries can be determined. 

Remark 4. Theoretically, for each boundary function ( ) ,  1,2,3,4j yr f V j= = , a unique 

solution (point) can be ensured since the boundary functions are convex (with respect to 
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the inside area). Practically, if multiple points (solutions) on one boundary are found due 

to insufficient calculation accuracy, the point that has the minimum distance to the center 

of the region is selected as the unique point. From the region-based control point of view, 

a shorter distance to the region center normally infers a more stable status, which is better 

to be maintained. If multiple solutions are obtained for the four boundaries (multiple points 

from different boundaries have the same minimum distance), the same idea used for the 

single boundary is applied again to select the unique point. 

The second purpose is to determine the vehicle stability status (whether the vehicle 

state is in the stability region or not). As shown in Fig. 18, based on the analysis results 

from the projection method, the number of the closest boundary ( )j  to point A can be 

obtained. Then, by substituting yV  at the current vehicle state point A into the 

corresponding boundary function, the yaw rate value 
0r  is calculated as ( )0 j yr f V= . Note 

that the point ( )0,yV r  is on the boundary. For example, as shown in Fig. 18, the second 

boundary ( )2j =  is detected as the closest boundary to point A, ( )0 2 yr f V= . Therefore, if 

0r r , A is out of the region; if 
0r r , A is within the region; if 

0r r= , A is on the region 

boundary. The determination algorithm of vehicle stability status for each boundary is 

summarized in Table 5. If the vehicle status is unstable (out), the state differences (as yV  

and r in Fig. 18) are fed back to the controller as the control error signals. 
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Table 5. Determination of Vehicle Stability Status 

Boundary No. 

1&2 

If 
0r r  Unstable (out) 

If 
0r r  Stable (in) 

Boundary No. 

3&4 

If 
0r r  Unstable (out) 

If 
0r r  Stable (in) 

Note: (in/out) = (vehicle state point is in/out of the region). 

Remark 5. To handle estimation errors of vehicle states, a worst-case 

measurement/observation scenario is assumed and involved in the vehicle stability 

analyzing process, which largely increases the robustness of analysis [89]. To tackle the 

uncertainties in tire-road friction coefficient estimation, a robust scale coefficient (normally 

≤ 1), which makes the region smaller and more conservative, is applied [89]. Meanwhile, 

the size of the estimated stability region is adaptive to the change of friction coefficient. 

4.2.2. Dynamic Margin of the Stability Region  

In the literature, the region-based vehicle stability control was only activated after the 

vehicle state trajectory penetrates the boundary [17][30]. Therefore, the vehicle state 

trajectories were inevitably out of stability regions for a short time and then controlled back 

to the regions. To avoid the undesired vehicle control phenomena, a dynamic margin of the 

stability region, which aims at activating the controller before the vehicle state trajectory 

across the stability region boundary, is designed.  
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Fig. 19.  A Comparison Between Controlled Vehicle State Trajectories Based on ① 

Stability Region, ② Stability Region with a Margin. 

As shown in Fig. 19, as the vehicle state trajectory approaches the stability region 

boundary, if the stability controller is activated based on the actual stability boundaries 

(case ①), the vehicle state trajectory will be partially out of the region. On the other hand, 

if the controller is actuated based on the stability boundaries with a margin (case ②), the 

vehicle state trajectory could be completely contained in the stability region without any 

unstable risks. The essential difference between case ① and case ② is the different control 

activation timings, which are determined by the relative locations between the vehicle state 

trajectory and the stability boundaries. Although a margin design inward of the stability 

boundaries can guarantee that the state trajectory will never cross the boundary, a 

conservative margin, which activates the stability control too early, may cause conservative 

vehicle dynamic performance. Thus, neither unstable vehicle status nor conservative 

1

2
mard( ),yV r

( ),yV r 
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vehicle performance is desired. Therefore, a proper margin that can balance the two 

requirements is necessary. To address this issue, a dynamic margin of the stability region 

is designed as follows. 

The dynamic margin is defined as a vector, which is pointing inward and perpendicular 

to the stability region boundaries. The length of the margin vector is calculated dynamically 

as the distance that the vehicle state trajectory travels on the phase plane over at least one 

sampling time. The calculation of the length of the margin 
mard  is shown in (50).  

( ) ( )
2 22 2 , 1

ymar y Vd V r n t n tr n=  +  =  +  & & , (50) 

where n  is the number of sampling time. By substituting the vehicle dynamics in (1) and 

(2) with zero control inputs into (50), the stability margin is then formulated as a nonlinear 

function of the vehicle lateral velocity, yaw rate, longitudinal velocity, and tire-road 

friction coefficient as 

( ), , ,mar y xd f V r V = , (51) 

where   in (51) is can be explicitly expressed after substituting (7) into (1) and (2). Note 

that the values of yV  and r  in the stability margin (51) are selected at the points on the 

stability region boundaries. In the vehicle stability analysis, for any measured ( , )yV r , the 

closest point ( , )ys sV r  to ( , )yV r  can be found on the boundaries. By substituting ( , )ys sV r  to 

(51), the corresponding margin d  is calculated, which dynamically changes as the values 

of ( , )ys sV r  change. As shown in Fig. 19, with the proposed dynamic margin, the dashed 

curves depict a smaller stability region. For each point on the original boundaries, a 
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corresponding new point ( , )yV r  can be determined by applying the margin 
mard  inwards. 

All the new points compose the boundaries of the stability region with margin.  

Using the dynamic margin as a new reference, which can be understood as a shrank 

stability region, the projection method and the formulated shifting vector can be 

correspondingly applied to develop a complete stability analysis tool, with the procedure 

described in the following Algorithm 1.   

Algorithm 1. Region-based Vehicle Lateral Stability Analysis 

Specify boundary functions and shifting vector (S) for the originally estimated vehicle 

lateral stability region.  

for each ( ,yV r ) and f  measured in real-time do 

apply the dynamic margin (dmar) and S to the boundary functions and calculate ( ),ys sV r  

by the projection method; 

 if status = ‘unstable’ by Table 5  then 

  return , , ,ys s ys sV r V r& & to the controller; 

 end if status = ‘stable’ by Table 5 

end for 

return status and , , ,ys s ys sV r V r& & . 

 

4.3. Dynamic Sliding Mode Control 

Based on the stability analysis results from Algorithm 1, dynamic SMCs are designed 

to keep the vehicle state trajectory always stay in the stability region. Although SMC is an 

effective method to handle robust control problems, the chattering (discontinuity) issue in 
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control signals always prevents its applications [105]. To address this issue, dynamic SMC 

was proposed, where the chattering only happens in the control derivative [106]. In this 

dissertation, instead of using a standard SMC, dynamic SMCs are adopted to reduce 

chattering in control signals. In this section, two different dynamic SMCs are designed for 

AFS + DYC and AFS +ARS respectively.  

4.3.1. AFS and DYC 

4.3.1.1.Controller Design 

The proposed stability control is realized via an integrated AFS and DYC design, which 

overcomes some limitations of separate AFS and DYC methods. Specifically, when the 

only AFS is applied, due to the sensitivity of the estimated stability region with respect to 

the steering angle, bifurcation phenomena could happen for a large steering angle (mainly 

caused by nonlinear tire forces). Therefore, the control effects of the AFS method could be 

significantly limited. To overcome such a limitation, the DYC method is integrated since 

the DYC (compared with AFS) does not have direct impacts on tire steering and slip angles 

by only applying longitudinal driving/braking forces. With the integrated AFS and DYC 

method, the requirements of the control efforts on both methods can be largely reduced, 

which makes the proposed dynamic SMC control design more feasible for practical 

applications. Note that if not specified, all the stability regions in the following contents 

are the stability regions with the proposed margin. The details of the proposed sliding mode 

control are described as follows. 

First, if the vehicle state trajectory is within the stability region, no control will be 

applied. Second, when the state trajectory approaches the stability margin, the stability 
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control will be activated. In this case, the vehicle state trajectory will be controlled to slide 

on the stability margin boundaries until the trajectory moves inward from the boundaries. 

Thus, the sliding surfaces are selected as 

( )
( )

11

2 2

y ys y ys

s s

V V V Vs
S

s r r r r





 − + − 
= =   

− + −    

& &

& &
, 

(52) 

where 
1s  and 

2s  are the dynamic sliding surfaces with respect to the errors of the states 

( y y ysV V V = − and 
sr r r = − ) given by the projection method. 

1  and 
2  are positive 

constants. The reaching condition of the sliding surface is ( )1 20 0, 0S s s= = =
v

.  

Proposition 1. The control law in (53) ensures that the reaching condition of the sliding 

surface is satisfied. 

( )

( )

( )

( )
( ) ( ) 

1 1 1

2 2 2

cos

( )

            

( )

           cos

           sin

yfl yfr f yrl yrr

yfl yfr

yrl yrr yfl yfr

yAFS ys y ys x v

DYC s s z

f f yAFS

r s f

F F F F

F F

F F F F

F V V V K sign s dt V r m

M r r r K sign s dt I

l F

l l











  = − − − +
 

 − + + + 

 = − − −  

 − + + 

− + + −





&

&











, 
(53) 

where yAFSF  and 
DYCM  are the lateral force and yaw moment generated by AFS and DYC 

respectively. 

The proof of Proposition 1 is given as follows. 

Proof. Defining a Lyapunov function as / 2TV S S= . Then, the derivative of V  is written 

as 
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( )

( )

1 1 2 2 1 1

2 2                         

y ys y ys

s s

V s s s s s V V V V

s r r r r





 = + = − + −
 

 + − + − 

& && && & && &

&& && & &
. 

(54) 

Substituting (53) into (1) and (2),  

( )

( )

1 1 1 1

2 2 2 2

( )

( )

y v ys y ys

v s s

V K sign s dt d m V V V

r K sign s dt d m r r r





 = − + + − −


= − + + − −





& &

& &
. 

(55) 

Differentiating both sides of (55) and then substitute the results into (54), V&  becomes 

( ) ( )

( ) ( )

( )

1 1 1 1 1 1

2 2 2 2 2 2

1 1 1 1 2 2 2 2

1 1 1 1 2

( )

      ( )

  ( ) ( )

  ( ) (

v ys y ys ys y ys

v s s s s

v v

v

V s K sign s d m V V V V V V

s K sign s d m r r r r r r

s K sign s d m s K sign s d m

K sign s d m s K sign s

 

 

 = − + + − − − + −
 

 + − + + − − − + − 

   = − + + − +   

= − − − −

&& && & & && & &

& && & & && & &

& &

& ( )2 2 2) 0vd m s &

. 
(56) 

By selecting the positive control 1 1 vK d m &  and 2 2 vK d m & , V&  will be negative and 

the Lyapunov function V  converges to zero, which infers the reaching condition of the 

sliding surface is robustly satisfied.                                                                                                ■ 

Remark 6. In vehicle control, the desired control efforts in (53) need to be realized by 

vehicle actuation systems. Specifically, for AFS, the additional active front wheel steering 

angle can be determined using yAFSF  and 
yfl yfr

F F+ . First, based on the total desired lateral 

force (
yfl yfryAFS F FF + + ), a desired tire slip angle 

c  can be obtained by a reverse tire model. 

Then, the required additional front wheel steering angle 
AFS  can be calculated as 

-1tan
y f

AFS c f

x

V l r

V
  

+ 
= − +  

 
, 

(57) 
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where f  is the steering angle given by the driver, yV  and r  are the real-time vehicle 

states measurements. The actual steering angle applied on the front wheels is f AFS + . 

For DYC, the desired yaw moment is realized by evenly distributing differential 

braking/driving forces between left and right tires. Depending on the yaw moment direction, 

the braking or driving force on each wheel can be calculated as 

( ) ( )
; ;

4 cos 4 cos

;
4 4

DYC DYC
xfl xfr

s f AFS s f AFS

DYC DYC
xrl xrr

s s

M M
F F

l l

M M
F F

l l

   
= − =

+ +

= − =

, 
(58) 

where the negative sign denotes the braking force and the positive sign denotes the driving 

force. Through adjusting the positive weighting constants 
1 , 

2 , 
1K , and 

2K  in (18), the 

efforts of AFS and DYC can be adjusted. 

To validate the proposed vehicle lateral stability analysis and control design, two 

Matlab-Simulink and CarSim® co-simulation scenarios, namely a high-speed cornering 

and a high-speed double lane change (DLC) maneuvers, are conducted and discussed. In 

the author’s previous study [89], the superior of the proposed dynamic margin was 

specifically discussed and verified by comparing the cases of using the regions with and 

without the margin. In the authors’ previous study [95], the effectiveness of the shiftable 

stability region has been experimentally validated. In this section, for conciseness, all the 

stability regions adopted in the controller design and simulation, if not specified, are 

constructed with the proposed dynamic margin. A C-class hatchback vehicle in CarSim® 

database is selected as the test vehicle, where the main vehicle parameters are listed in 

Table 2. 
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Fig. 20.  Simulation Structure Diagram. 

Based on the proposed stability analysis and control design, the simulation is structured 

as shown in Fig. 20, where the driver’s steering input ( )f , active front steering angle 

( )AFS , and yaw moment ( )DYCM  are the three inputs to the CarSim® vehicle model. The 

longitudinal velocity ( )xV , lateral velocity ( )yV , yaw rate ( )r , and total steering angle 

( )f AFS +  are the four exported signals from the CarSim® vehicle model. These four 

signals can be either directly measured or estimated to fulfill the requirements for the 

application to a real vehicle [107]. The stability analysis module, which consists of the 

projection method, shifting vector, and the dynamic margin, determines the vehicle 

stability status and outputs the necessary feedback errors to the SMC controller if the 

vehicle status is unstable (refer to Table 5). Based on the vehicle stability status and 

feedback errors, the control efforts are calculated and finally imported into the CarSim® 

vehicle model. Considering practical applications, the total steering angle, AFS angle, and 

steering rate of AFS are limited to [-30°, +30°], [-10°, +10°], and [-10°/s, +10°/s], 

respectively [108]. The yaw moment by DYC is limited to [-2000Nm, +2000Nm] [109].  

4.3.1.2.Simulation - High-speed Cornering Maneuver 

Steering 

Input

SMC 

Controller

Stability 

Analysis

f AFS +

, ,y xV r V

,yV r 

,ys sV r& &

AFS
DYCM

f

CarSim S-Function

+
+
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A high-speed cornering maneuver is selected to represent the scenarios that demand 

vehicle lateral stability at high speeds (e.g., cornering on the highway). In this case, with a 

constant high speed (90 km/h) and tire-road friction coefficient 0.8 = , a feedforward 

front steering angle is applied to the vehicle as shown in Fig. 21. The vehicle is expected 

to reach a steady-state after a certain time of constant steering. If the vehicle is unstable, 

the vehicle may likely have oversteering or severe understeering and thus operate unsafely. 

 
Fig. 21.  Front Steering Angle Input in a High-speed Cornering Maneuver. 
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Fig. 22.  Comparison of Vehicle State Trajectories Between the Controlled and 

Uncontrolled Cases. 

In Fig. 22, the vehicle state trajectories of the uncontrolled and controlled cases are 

plotted and compared on a yV r−  phase plane. The shifted stability region (solid curves) 

at the constant steering period (2-9s) and the corresponding margin (dashed curves) are 

also overlaid in the figure. As observed, without control, a part of the trajectory is out of 
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the upper-right boundary, which indicates that the vehicle is operating in an unstable 

(understeering) mode and may depart from the lane for a potential collision with other 

vehicles or road facilities. On the other hand, with the proposed control algorithm, the 

trajectory is always controlled in the region. Zooming into the portion that is close to the 

boundary, it can be observed that the undesired trajectory penetration is successfully 

avoided by the proposed dynamic margin. 

 

Fig. 23.  Comparison of y ysV V−  and 
sr r−  Between the Controlled and Uncontrolled 

Cases. 

In Fig. 23, the vehicle state errors ( y ysV V−  and 
sr r− ) with respect to the closest point 

on the boundary for the uncontrolled and controlled cases are presented and compared. As 

observed, without control, both y ysV V−  and 
sr r−  (dashed) are relatively large, which is 

consistent with the observation in Fig. 22 that the vehicle trajectory is out of and far away 

from the stability region. On the other hand, with the proposed control for the same 
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maneuver, both y ysV V−  and 
sr r−  (solid) are reduced to small values. Note that in Fig. 23, 

the small oscillation of y ysV V−  and 
sr r−  in the controlled case is due to the intermittent 

controller activation (the controller is not activated until the vehicle state is approaching 

the boundary) but not the SMC chattering. For the uncontrolled case, the small oscillation 

is caused by the comparison of ( ),ys sV r  in the projection method, which can be eliminated 

by increasing the accuracy of distance calculation. Based on the demonstration in Fig. 18, 

graphically, the small y ysV V− ( yV ) and 
sr r−  ( r ) infer that the vehicle state point A is 

close to the point B on the stability boundaries (with margin), meaning that the vehicle 

state point is “sliding” on the stability boundaries (with margin). In the calculation of 

dynamic stability region margin (d in (50)), based on a commonly adopted vehicle 

minimum reaction time as 0.01s, n=10 (10 times of the sampling time (0.001s)) is selected. 

The total steering angle and the moment of DYC applied to the vehicle are presented 

in Fig. 24. As observed, both the total steering angle ([-30°, +30°]) and yaw moment values 

(<1000Nm) are within a reasonable range and practically implementable. Fig. 25 compares 

the vehicle global trajectories of the controlled and uncontrolled cases with an ideal 

trajectory, which is obtained by applying the same steering signal to the CarSim® racecar 

model and keeping other parameters the same. It is observed that the cornering radius of 

the controlled case is smaller than that of the uncontrolled case. For the given steering input 

at a high speed, when the uncontrolled case is determined as unstable and has the 

understeering characteristic based on the analysis in Fig. 22, the proposed control helps the 

vehicle to avoid the understeering and reduce the cornering radius, which makes the vehicle 

trajectory closer to the ideal case. 



 

  78 

 

Fig. 24.  Control Efforts of AFS and DYC for the High-speed Cornering Maneuver. 

 

Fig. 25.  Comparison of Vehicle Global Trajectories Between the Controlled and 

Uncontrolled Cases for the High-speed Cornering Maneuver. 

4.3.1.3.Simulation - Double Lane Change Maneuver 

In some emergencies, such as obstacle avoidance, vehicles are likely to lose stability, 

especially on low friction surfaces. In this subsection, the high-speed DLC maneuver is 
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conducted on both low and high friction surfaces to verify the effectiveness of the proposed 

stability control. In both low-µ and high-µ situations, a controlled case and an uncontrolled 

case are compared. Based on the driver model in the CarSim® database, the manually 

controlled front steering angle is given in Fig. 26. As observed, since the steering angle 

changes so rapidly during the double lane change, the proposed shifting vector becomes a 

critical feature in such a situation. 

 

Fig. 26.  Front Steering Angle Input in DLC Maneuver. 

In the low-µ case, the vehicle speed is set to 90 km/h and 0.5 = . The comparison 

between the vehicle global trajectories of the uncontrolled, controlled, and ideal cases are 

shown in Fig. 27, where the trajectory in the ideal case is defined as the center of the lanes 

in DLC. As observed, the vehicle trajectory with the proposed control algorithm is closer 

to the ideal trajectory. Besides the vehicle trajectory improvement, more importantly, the 

vehicle states are also well-stabilized, which infers a better vehicle handling performance 

and lateral stability during the double lane change. To further illustrate this point, the 

results presented in Fig. 28 are discussed as follows.   
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Fig. 27.  Comparison of Vehicle Global Trajectories on a Low µ Road in DLC Maneuver. 

 

Fig. 28.  Comparison of Vehicle State Trajectory on a Low µ Road in DLC Maneuver. 

In Fig. 28, the comparison of vehicle state trajectories and the shifted stability regions 

at two extreme positions (when 14degAFS f + =  ) are presented. According to the 

shifting feature, as the steering angle changes between the maximum positive and negative 

values, the stability region shifts within the area bounded by the dotted lines between the 

two regions at the extreme positions. As observed, with the proposed control design, the 

vehicle state trajectory is well covered by the bounded area (depicted by the envelope 

plotted in dotted brown lines that consists of all the shiftable stability region boundaries) 
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as the stability region shifts. On the other hand, without control, no matter how the stability 

region shifts inside the bounded area, the vehicle state trajectory cannot be fully covered 

since the unstable vehicle state trajectory can be observed even when the stability region is 

shifted to the extreme position. Such an observation can also be verified by the stability 

status check results shown in Fig. 29. When the vehicle state trajectory is out of the stability 

region, the projection method determines the vehicle stability status as ‘out’. During the 

whole process, the vehicle shows an unstable status twice, where the second one can be 

clearly observed (pointed by the arrow) in Fig. 28. 

 

Fig. 29.  Comparison of Vehicle Stability Status. 

 

Fig. 30.  Control Efforts of AFS and DYC in DLC Maneuver. 
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The applied control efforts of AFS and DYC during the double lane change are shown 

in Fig. 30. As observed, the maximum active steering angle is 6 degrees, the maximum 

total steering angle is 14 degrees, and the maximum yaw moment is 1200 Nm, which are 

all reasonable values and can be realized in practice [108][109]. 

In the high-µ case ( 0.8 = ), the same DLC simulation as in the low-µ situation was 

conducted. The comparison between the vehicle global trajectories of the uncontrolled, 

controlled, and ideal cases are shown in Fig. 31. As observed, the trajectory of the 

controlled vehicle is closer to the ideal trajectory compared with that of the uncontrolled 

vehicle. Similar to the low-µ case, the vehicle states are also well-stabilized. In Fig. 32, the 

vehicle state trajectory comparison and the shiftable stability regions at the positions of the 

maximum positive (11.4 deg) and negative (-9.16 deg) steering angles are presented. For 

the same DLC maneuver, since the higher   allows larger tire lateral force, the required 

extreme steering angles are smaller than those on the low friction surface. As the steering 

angle changes, the stability region also shifts inside a bounded area between the regions at 

the extreme positions. As shown in Fig. 32, the controlled vehicle states trajectory (dash-

dotted), which is covered by the bounded area, is within the stability regions all the time 

compared with that (dotted) in the uncontrolled case, indicating better vehicle stability and 

handling in the lateral direction. Based on the above analyses, it can be concluded that the 

proposed control algorithm can successfully ensure the vehicle’s lateral stability. 
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Fig. 31.  Comparison of Vehicle Global Trajectories on a High µ Road in Double Lane 

Change Maneuver. 

 

Fig. 32.  Comparison of Vehicle State Trajectories on a High µ Road in Double Lane 

Change Maneuver. 

4.3.2. AFS and ARS 

4.3.2.1.Controller Design 

To keep the vehicle always operate stably, an integrated AFS and ARS controller is 

designed. Comparing with the AFS plus DYC configuration, the integrated AFS plus ARS 

enables the stability region to shift along any combined direction (refer to (46)), which 
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enlarges the possible coverage of the stability region. The general control goal is also to 

keep the vehicle state trajectory always in the estimated stability region. With the 

mathematical representation of stability boundary function as ( )yr f V= , the sliding 

surface is selected as ( )s yS r f V= − . If 0sS =  is maintained, vehicle states ( ),yV r  will 

move along the stability region boundaries if the vehicle has a trend of being unstable. 

Suppose vehicle state errors yV  and r  are defined as,    

y y ys

s

V V V

r r r

 = −

 = −

, (59) 

where ysV  and 
sr  are the coordinates of the closest point on the boundary to the current 

vehicle state ( ),yV r . Since ( ),ys sV r  is always on the sliding surface, therefore, if yV  and 

r  are both converging to zero, which refers to y ysV V=  and 
sr r= , the reaching 

conditions of the sliding surface will also be satisfied.  

Proposition: Desired corrective lateral forces yAFSF  and yARSF , which are generated by 

AFS and ARS,  are shown in Eq. (60) and (61) respectively.  
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, (61) 

where 
1k  and 

2k  are positive control gains.  

Proof: A Lyapunov function candidateV , which consists of the defined sliding surface 

and its transpose, is constructed as, 

1
0

2

T

s sV S S=  . (62) 

To satisfy the reaching condition of the sliding surface
sS , it is required that the derivation 

of Lyapunov function V&  to be negative definite as shown in (63), 

  0

T y

s s y

y y
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V S S V r

r

V V r r

 
 = =       
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&&
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& &

 . (63) 

Thus, the derivatives of the sliding surface are selected to satisfy condition (63),  

( )
( )

1

2

yy
k sat VV

r k sat r

 −  
=   

 −     

&

&
, (64) 

where 
1k  and 

2k  are positive values and sat  is the saturation function as shown in (65): 

1        

( )       

1      

if x t

sat x x if t x t

if x t




= −  
−  −

 , (65) 

where t  is the saturation threshold. Substitute (59) into (64), it gives, 
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( )
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Then, Eq. (66) can be rewritten as, 

( )
( )

1
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y ysy

s

k sat V VV
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 −   + 
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&&

& &
. (67) 

Substitute vehicle dynamic equations (1) and (2) into (67), the expressions of desired 

corrective lateral forces yAFSF  and yARSF , as shown in (60) and (61), can be derived.        ■ 

The next step is to convert the desired force into corrective active steering angles, which 

are fc  and 
rc . The calculation of tire slip angle with active steering systems are: 

1

1
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tan

y f

f f fc

x

y r

r r rc

x

V l r

V

V l r

V

  

  

−

−

+  
= + −  

 

−  
= + −  

 

, (68) 

where f and
r can be calculated by the reverse of tire model function based on the sum 

of required corrective lateral force and current tire forces. Normally, rear wheel steering 

angle 
r   is initialized as 0, and front wheel steering angle f can be easily measured. 

Therefore, the final representation of corrective steering angles is: 
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, (69) 

where yAFSF  and yARSF are obtained by (60) and (61). 

Remark: As presented in (60) and (61), both yAFSF  and yARSF  are determined by the error 

dynamics of yV  and r  with two separate control gains. The AFS and ARS are 

integrated in such a manner so that the direction and the magnitude of active steering 

systems are determined automatically without any coupling relationships and relying on 

longitudinal velocity thresholds. 

To validate the effectiveness of the estimated stability region and proposed integrated 

AFS and ARS control algorithm, Matlab/Simulink® and CarSim® co-simulation about a 

high-speed constant cornering maneuver and double lane change are carried out and 

corresponding results are presented and discussed. A 2012 C-class hatchback vehicle 

model from the CarSim® database, of which the parameters are shown in Table 2, is 

adopted for simulation. The general control structure of the system is shown in Fig. 33. 

Steering signal f  from the driver is firstly inputted into the system, fc  and 
rc are active 

front and rear wheel steering angle in addition to f . Vehicle yaw rate and lateral velocity 

are assumed to be observable. Then, based on observed vehicle states, a series of stability 

analyses introduced in section 4.2 is applied with real-time updated stability regions. 
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Thereafter, SMC controller calculates control efforts, which will be finally inputted to the 

system as active steering angles.   

 

Fig. 33. Simulation Control Structure 

4.3.2.2.Simulation - Constant Cornering Maneuver  

To show the effectiveness of the proposed control algorithm, especially for steady-state 

vehicle stability, a high-speed constant cornering maneuver, with a constant 
xV  at 90km/h, 

is utilized as an example. The tire-road friction coefficient   is set to be 0.8. Front wheel 

steering input from the driver is shown in Fig. 34. The steering angle starts from 0 degrees 

and then ramps up to 8.6 degrees (0.15rad) in five seconds. After keeping at constant at 8.6 

degrees for 4 seconds, it ramps down to 0 degrees again.  

 

Fig. 34. Steering Angle Input of Front Wheels.   
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Vehicle state trajectory overlaid with steady stability region and stability status over 

the whole simulation process time, with AFS only and with the integrated AFS and ARS 

control, are shown and compared in Fig. 35 and Fig. 36 respectively. In Fig. 35, it can be 

observed that with only AFS control, even the stability region shifts along the arrow 

direction as the steering angle is changing, there is still a portion of the vehicle state 

trajectory located out of the region. However, with the proposed AFS and ARS integrated 

control algorithm, the vehicle state trajectory is always located within the stability region.  

 

Fig. 35. Vehicle Stability Status Comparisons on the Phase Plane. 

Note that both vehicle state trajectory and stability region move during the whole 

simulation period, thus, to check vehicle stability status during the whole procedure, 

vehicle status plot, as shown in Fig. 36, is presented for analysis. As observed in subplot 

a), with AFS controller, vehicle status is partially detected as out of the region (unstable). 

However, with proposed integrated control as shown in subplot b), vehicle status chatters 

between stable and unstable for most of the simulation period with regard to the stability 

boundary with margin. This alternative stability status change refers to the case that vehicle 
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states are controlled to move along the sliding surface, which helps the vehicle to maintain 

stable status in a critical way. In subplot c), vehicle status is determined according to the 

actual stability region. Benefit from the application of stability region margin, vehicle state 

is controlled always within stability region and shows the stable status (In). 

 

Fig. 36. Vehicle Status Comparison, a)AFS; b)AFS+ARS w.r.t. Stability Region With 

Margin; c) AFS+ARS w.r.t. Original Stability Region. 

The actual front and rear wheel steering angles are shown in Fig. 37. As observed, the 

direction of the rear wheel steering angle, which is determined automatically based on the 

proposed control algorithm, is the same as that of front wheels at high speed to make the 

vehicle stable.  
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Fig. 37. Actual Front and Rear Steering Angles. 

 

Fig. 38. Tire Slip Angles.  

 

Fig. 39. Vehicle Trajectory Comparison. 
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Fig. 38 shows the slip angle of each tire. As observed, even front two tires show larger 

slip angle than the rear wheels, they are relatively small values, which refer to stable tire 

conditions without saturation based on the tire model. Moreover, the effectiveness of the 

proposed controller can be also reflected by the vehicle displacement trajectory. As shown 

in Fig. 39, the cornering radius of the case with integrated AFS and ARS control is larger 

than that of the case without control, which implies that the unstable (oversteering) 

condition for the uncontrolled case is corrected by the proposed control algorithm. 

4.3.2.3.Simulation - Double Lane Change Maneuver  

To further demonstrate the effectiveness of the proposed control algorithm, a more 

challenging double lane change maneuver is applied. Vehicle longitudinal velocity 
xV  is 

initially set to 90km/h and the road friction coefficient   is set to 0.5 as a low friction 

condition. As observed in Fig. 40, the trajectory of the vehicle with integrated AFS and 

ARS control is closer to the road reference compared with that of the vehicle with only 

AFS control. This observation indicates that vehicle lateral tracking behavior can also be 

improved while vehicle stability is controlled. 

 

Fig. 40. Vehicle Double Lane Change Trajectory Comparisons. 
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The actual front and rear steering angles during double lane change are shown in Fig. 

41. As observed, the rear wheels are steered in the same direction as the front wheels for 

most of the time to stable the vehicle’s lateral motion. However, front and rear steering 

directions do not necessarily need to be the same. The direction and magnitude of the 

integrated active steering system are automatically determined by (69). For example, 

around 7 seconds, front and rear wheels are steered oppositely to generate a large yaw 

moment to keep the vehicle in the right direction.  

 

Fig. 41. Actual Front and Rear Steering Angles for a Double Lane Change. 

 

Fig. 42. Tire Slip Angle Comparisons for a Double Lane Change. 
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Slip angles of each wheel under the case with only AFS control and with integrated 

AFS and ARS control are shown and compared in Fig. 42. As observed, with only AFS 

control, tire slip angles of the front two wheels both exceed 20 degrees, which typically 

lead to unstable tire status and ineffective control results. However, for the case with 

integrated AFS and ARS control, slip angles of all the tires are significantly reduced to 

small values, which indicates that all the tires are working stably.  

4.4. Non-Overshooting Model Predictive Control 

Although the dynamic SMC controllers in section 4.3 show their effectiveness in 

guaranteeing vehicle stability, the signal chattering issues, although was reduced compared 

with normal SMC, can still be observed in the simulations. To address this issue, if the 

boundaries are considered as references, a non-overshooting control design with respect to 

the references can satisfy the vehicle stability control requirements. Theoretically, non-

overshooting control design in the literature can be generally categorized into two groups 

for linear and nonlinear systems, respectively. Although the non-overshooting control 

designs for some specific systems (especially for nonlinear systems in certain forms) were 

studied, a uniformed non-overshooting control design for general dynamic systems has not 

been discussed in the literature. In this section, through the advantages of handling 

constraints, model predictive control (MPC) is utilized as an appropriate approach to 

develop a uniformed non-overshooting control design for general dynamic systems. 

Specifically, during the entire prediction horizon, non-overshooting inequality constraints 

are applied at each sampling time to avoid the overshooting of system outputs. Four 
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different non-overshooting constraints in terms of different system output responses are 

proposed and discussed. 

To apply the proposed non-overshooting MPC to the region-based vehicle stability 

control problem, the descriptions of non-overshooting constraints with respect to the 

stability boundaries are essential. Thus, a set of reformed inequality constraints, which are 

derived based on the characteristics of the estimated stability regions, are proposed and 

implemented in the non-overshooting MPC design. The proposed non-overshooting MPC 

control is applied to resolve a region-based vehicle lateral stability control problem. 

4.4.1. Non-overshooting Constraints  

Consider a general nonlinear system in the discrete-time form, 

( ) ( ) ( )( )

( ) ( )( )

1 , ,

,

x k f x k u k

y k h x k

+ =

=
 (70) 

where ( ) nx k R  is the state vector at the time step k , ( ) mu k R  is the control input 

vector, and ( ) py k R is the output vector. The objective of the MPC design is to find a 

control input that minimizes the following cost function, 
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where Q  and R  are the weighting matrices. refx  is the reference at each sampling instant. 

N  and P  are the prediction and control horizon, respectively. X  and U are the compact 

subset of nR  and mR , respectively.  u  is defined as 

( ) ( ) ( )1u k j k u k j k u k j k + = + − + − . The final control sequence is 

( ) ( ) ( ), , 1
T

u k u k k u k P k  = + − K , where only the first element is applied to the system 

(70). 

To achieve the non-overshooting MPC design of system outputs with respect to the 

references, four different inequality constraints (C1-C4) are proposed as follows, 

C1: ( )1i i refy k k y −+  ; 

C2: ( )i i refy k j k y −+  , where 1 j N  ; 

C3: ( )i i refy k N k y −+   & ( ) ( )i iy k j k y k N k+  + , where 1 1j N  − ; 

C4: ( )i i refy k N k y −+   & ( ) ( )1i iy k j k y k j k+  + + , where 1 1j N  − , 

where ( )iy k j k+  is the predicted value of the ith system output at the jth prediction 

horizon step and the i refy −  is the ith reference variable. In these four constraints, C1 

requires the value of the first prediction horizon step is less than or equal to the reference. 

C2 requires the system output at each predicted time step to be constrained. C3 contains 

two inequalities, where the first requires the last step in the prediction horizon is less or 

equal than the reference, and the other limits the output at each step to be less or equal than 

the value at the last step. C4 also contains two inequalities, in which the first is the same 

as the first one in C3, and the second one forms a constraint chain between each time step, 
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which infers a monotonic characteristic. The intrinsic differences among C1-C4 are 

illustrated by the following proposition.   

Proposition 1. Assume the prediction and control horizons in MPC have the same length 

N , the non-overshooting constraints of system outputs with respect to the reference at the 

jth step in the prediction horizon ( ( )iy k j k+ , 1 j N  ) cannot guarantee the system 

outputs are non-overshooting at other predicted time steps ( ( )iy k n k+ , n j , 1 n N  ). 

Proof. To demonstrate if the constraints applied to the jth step ( )iy k j k+  have impacts 

on other ( ) ,iy k n k n j+   in the prediction horizon, two different cases should be 

considered: 1) impacts on the previous steps ( ) ,0iy k n k n j+   ; 2) impacts on the 

following steps ( ) ,iy k n k j n N+   .  

Case 1: To evaluate if the constraints at the jth step have impacts on the previous steps, a 

constraint chain can be formed by only analyzing if the constraints on the jth step have 

impacts on the j-1th step.  

( ) ( ) ( )( )1 , 1 refx k j k f x k j k u k j k x+ = + − + −  , (73) 

( ) ( ) ( ) ( )( )1 1 , 1x k j k x k j k f x k j k u k j k+ −  + = + − + − . (74) 

Assume that the inequality (73) is the constraint on the system state vector (selected as 

the system output) at the jth step in the prediction horizon. Only when the inequality (74) 

is satisfied, ( )1 refx k j k x+ −   at the j-1th step holds. However, since ( )1u k j k+ −  in 

(74) is independently determined by the optimization problem without any non-

overshooting constraints yet, the inequality in (74) could not be guaranteed. Therefore, the 
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constraint chain may not be formed and the constraints on ( )iy k j k+ at the jth step cannot 

sufficiently imply any constraints on ( )iy k n k+ , 0 n j  . 

Case 2: Similar to the constraint chain analysis in Case 1, assume ( ) refx k j k x+   is the 

constraint on the system state vector (selected as the system output) at the jth step in the 

prediction horizon. Only when the inequality (75) is satisfied, ( )1 refx k j k x+ +   holds. 

( ) ( ) ( )( ) ( )1 ,x k j k f x k j k u k j k x k j k+ + = + +  +  (75) 

However, due to a similar reason for the control as explained in Case 1, the constraint 

(75) cannot be guaranteed. Therefore, the constraints on ( )iy k j k+  cannot sufficiently 

imply any constraints on ( ) ,iy k n k j n N+   .                                                                         ■ 

Remark 7. From Proposition 1, the constraints on one time step do not necessarily have 

impacts on other time steps before or after in the prediction horizon. Thus, by adding more 

restrictions on each time step for the four non-overshooting constraints from C1 to C4, the 

constraints become stricter and consequently result in different system output responses. 

4.4.2. Numerical Examples and Discussions 

In this section, a linear system and a nonlinear system are taken as examples to briefly 

illustrate and compare the impacts of the proposed constraints in section 4.4.1. 

Linear system:  

Consider a simple mass-spring-damper system in the state space form [110], 
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&
, (76) 

where
z

x
v

 
=  
 

, 

0 1

A k b

m m

 
 =
 − −
 

, 

0

1B

m

 
 =
 
 

,  1 0C = , and 
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 

. The parameter 

values are 5m kg= , 0.1 k N m=  , and 0.1 b N s m=  . The initial condition is 

 (0) 0 0  Tx =  and the reference is  4 0  T

refx = . Weighting matrices in the MPC 

design are 
10 1

1 10
Q

 
=  
 

 and  1R = . The prediction and control horizons are set to 10. 

The sampling instant is 0.05sT s= .  

In Fig. 43, the step responses for different constraints are compared. For an MPC design 

without any non-overshooting constraints, an obvious output overshoot (the green 

triangular dash line) with respect to the reference is observed. 

For the same MPC design with different non-overshooting constraints C1-C4, the step 

responses are shown in Fig. 43 as well. All four constraints successfully eliminate the 

overshoot. However, the system responses are quite different. As mentioned in Remark 1, 

although only the first step in the control sequence is applied to the system, the additional 

constraints applied to other time steps (in C2-C4) still have impacts on the optimized 

control sequence, which causes different system output responses. 

The first difference is about convergence. For C1, the system output oscillates after 

reaching the reference at 1.5s. For C2 and C3, similar oscillations with smaller amplitudes 

are observed. Based on Proposition 1, the output variation cannot be guaranteed for C1-C3 

even if the control goal is achieved by minimizing the cost function. However, for C4, the 
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system output reaches the reference monotonically without any oscillation. The second 

difference of the system responses for different constraints is the settling time (w.r.t. 98% 

reference). For four non-overshooting constraints, C1 gives the shortest settling time. C2 

and C3 cause similar but longer settling time compared with C1. C4 generates the longest 

settling time among the four constraints. From C1 to C4, since the constraints become 

stricter, the optimized control input sequence becomes more conservative, which may 

cause a longer settling time. 

 

Fig. 43. Comparisons on Step Responses of a Linear System for Different Non-

overshooting MPC Constraints. 
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Nonlinear system: Consider a cart-pendulum system with the following dynamics [110], 
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, (77) 

where z ,  , and u  are the cart position, pendulum angle, and input force applied on the 

cart. The parameter values are 1p cm m kg= = , 0.5L m= , and 10 dK N s m=  . The initial 

condition is  (0) 0 0 0  Tx = −  and reference is  4 0 0 0  T

refx = . Weighting 

matrices are 
3

10 0

0
Q

I

 
=  
 

 and  1R = . The prediction and control horizons are 10 time 

steps with the sampling step at 0.05sT s= . 

As observed in Fig. 44, the overshoots of the nonlinear system responses are similar to 

those of the linear system example for the MPC design without and with the non-

overshooting constraints C1-C4. For other characteristics of system responses, the 

oscillations are still observed for C1-C3, but the amplitudes become smaller as the 

constraints become stricter. For C4, since the system response is required to be monotonic, 

the system output reaches the reference without oscillation although settling down slower 

than those for C1-C3. 
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Fig. 44. Comparisons on Step Responses of a Nonlinear System for Different Non-

overshooting MPC Constraints. 

By decreasing the sampling time of a discrete-time system, both the overshoot 

percentage and the response oscillation will be reduced. By decreasing the R  weighting 

for control in the cost function, the overshoot percentage and the response oscillation will 

also be reduced.  These well-known facts are also true for the non-overshooting MPC 

design. 

However, as the sampling time becomes small, the computational effort increases 

dramatically. Moreover, as R  decreases, the control input becomes more aggressive, 

which usually causes impractical control efforts and may violate the system capability. 

Therefore, to reduce the overshoot percentage and oscillation, small sampling time periods 

and R  values are probably not practical and effective. Thus, the four non-overshooting 

constraints C1-C4 provide different options. 
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4.4.3. Non-overshooting MPC for Vehicle Stability Control 

The control objective is to minimize the following cost function when the vehicle states 

are going to pass the stability boundary, 

( ) ( ) ( )

( ) ( )
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where ,
T

yx V r =   , ,
T

s ys sx V r =   , 
10 1

1 10
Q

 
=  
 

,  0.001R =   and 

( ) ( ) ( )1y AFS y AFSu k j k F k j k F k j k− − + = + − + − .  

The minimization is subject to the non-overshooting constraints, which guarantee that 

vehicle states are always within the stability region. Using the mathematical expressions 

of each stability region boundary, the non-overshooting constraints are reformed as follows, 

( )

( )

( )

( )
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 =   

 (79) 

Among the four constraints in (79), the most applicable one is selected depending on 

the No.seg, which is obtained from the preliminary stability analysis. Note that in (79), if 

the No.seg is 1 or 2, the constraints represent a non-overshooting problem; if the No.seg is 

3 or 4, the constraints represent a non-overshooting problem in an opposite direction. In 

this MPC design, among the four non-overshooting constraints presented in Section 4.4.1, 

C4 is adopted to achieve the control objective while avoiding any undesired oscillations. 
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The control input is a sequence of y AFSF − , where only the first element is applied at each 

sampling instant. 

4.4.4. Simulation Results and Discussions 

In this section, the proposed non-overshooting MPC design for the region-based 

vehicle stability control is evaluated through a high-speed cornering maneuver in the co-

simulation of CarSim® and Matlab/Simulink. The stability region is estimated using the 

parameters of a 2012 C-class hatchback from the CarSim® database. Some vehicle and 

MPC parameters are listed in Table 6. 

Table 6. Parameters of Vehicle and MPC  

Symbol Parameter Value 

mv Vehicle mass 1270 kg 

Iz Yaw inertia 1536.7 kg∙m2 

L Wheelbase 2.91 m 

lf Front wheelbase 1.11 m 

lr Rear wheelbase 1.8 m 

ls Half of the vehicle track 0.835 m 

N Prediction horizon 10 

P Control horizon 10 
Ts Sampling instant 0.05s 

 

Fig. 45. Steering Angle Input. 



 

  105 

The vehicle speed is fixed at 90 km/h. The steering angle is shown in Fig. 45, in which 

the front wheel steering angle starts at zero and ramps up to 0.18 rad in 1.5 seconds and 

then keeps constant. 

The effectiveness of the proposed method is evaluated through the comparisons among 

three cases: 1) without MPC control; 2) a normal MPC without using the proposed non-

overshooting constraints; 3) the non-overshooting MPC using the proposed constraints. 

Case 1 and 3 are first compared. In Fig. 46, although the stability region shifts as f  

changes, a portion of the state trajectory of case 1 (the right end blue dash-dot lines) is still 

observed out of the stability region. However, the state trajectory of case 3 (green dot) is 

kept in the moving stability region. Note that although only the initial and end stability 

regions are plotted in Fig. 46, the continuous variations were monitored and verified in the 

simulation. This observation can be further verified by comparing the actual vehicle state 

with the closest point on the boundary for case 3. 

 

Fig. 46. Comparisons of State Trajectories Between Case 1 and Case 3. 
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Fig. 47. Vehicle States and the Closest Point on the Boundary for Case 3. 

In Fig. 47, both yV  and r  are larger than ysV  and 
sr  at the steady-state. The stability 

analysis shows that the 4th boundary is the closest one to the vehicle state point. Therefore, 

the No.seg = 4 constraint in (79) is satisfied. Note that during the period when the steering 

angle (0-2s) and the vehicle states (0-2.7s) change, due to the simultaneous changes of the 

vehicle states and the stability region, the No.seg may change frequently and is not always 

4. This causes the fluctuation of ysV  and 
sr  in Fig. 47. However, this observation does not 

mean the vehicle states are out of the stability region. 

To further demonstrate the effectiveness of the proposed non-overshooting MPC 

design, case 2 and 3 are compared. As shown in Fig. 48, in case 2, the vehicle state 

trajectory without using the non-overshooting constraints (blue) are partially controlled 

within the region. However, in case 3, the whole vehicle state trajectory (green) are 

controlled within the stability region. This observation can be verified by checking the 

vehicle status of case 2. As shown in Fig. 49, from 1.5 to 4.2 seconds, the vehicle stability 

status is Out (of the stability region) for three times, which infers that the vehicle state 
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trajectory penetrated the stability region boundary and caused the overshooting trajectory 

(blue) as observed in Fig. 48.  

 

Fig. 48. Comparisons of State Trajectories Between Case 2 and Case 3. 

 

Fig. 49. Vehicle Status and the Closest Boundary Segment Number for Case 2. 
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Fig. 50. Vehicle States and the Closest Point on the Boundary for Case 2. 

Specifically, the vehicle states and the closest point on the boundary are compared for 

case 2 in Fig. 50.  Corresponding to the unstable vehicle status shown in Fig. 49, yV  is 

larger than ysV  and r  is smaller than 
sr  for some time periods between 1.5 and 4.2 seconds. 

Since boundary No.3 is the closest one to the vehicle state point for most of the time (Fig. 

49), the vehicle states in case 2 are partially located out of the stability region according to 

the 3rd constraint in (79). On the contrary, as shown in Fig. 47, the vehicle states in case 3 

well satisfied the 4th constraints in (79). Similar explanations for Fig. 47 about the 

fluctuation also apply for Fig. 50. 

4.5. Conclusions  

In this chapter, based on the shiftable vehicle lateral stability region, a novel vehicle 

lateral stability control method is proposed. First, to accurately analyze the vehicle stability 

status based on an irregular and shiftable stability region, a projection method, the shifting 

vector, and the dynamic margin are proposed and integrated as one complete stability 

analysis method. The proposed analysis method is real-time applicable for vehicle lateral 

stability control. Second, based on the stability analysis results, a dynamic sliding mode 
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control based on the integrated AFS + DYC and AFS + ARS are designed separately. By 

selecting the boundaries of the stability region with the proposed dynamic margin as the 

sliding surfaces, the proposed vehicle lateral stability control guarantees that the vehicle 

trajectory is always controlled in the adopted stability region. When applying the proposed 

method to practical automotive applications, the tire model needs to be accurately 

calibrated to ensure control robustness. In addition to the dynamic SMC, the non-

overshooting MPC based on four different constraints is also introduced. The 

characteristics of each constraint are presented and analyzed based on the simulation results 

of step responses for a linear and a nonlinear system. A region-based vehicle lateral 

stability control is designed using the proposed non-overshooting MPC. Based on the 

CarSim®/Simulink co-simulation results, the proposed non-overshooting MPC design is 

verified to successfully keep vehicle states within the stability region. 
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CHAPTER 5 

STABILITY-GUARANTEED VEHICLE CONTROL METHODS 

In this chapter, to design a more efficient stability-guaranteed vehicle controller 

without the chattering issues (in SMCs) and high computational demands (in MPC), the 

time-varying control-dependent barrier functions (CDBFs) are proposed and applied. First, 

some basic definitions related to CDBF and their applications to a stability-guaranteed 

vehicle control problem are introduced in sections 5.2 and 5.3. Then, in section 5.4, to 

address the discontinuous issues when the controlled invariant sets switch, the switched 

control barrier functions are studied and introduced. The main contents in sections 5.2 and 

5.3 were published in [91], while the main contents in section 5.4 were published in [93] 5.  

5.1. Overview 

Vehicle stability region, or in general, the safety sets of a dynamical system, can often 

be described by one or multiple stability constraints. Thus, the goal of the stability-

guaranteed vehicle control is to ensure all the stability constraints are satisfied at all times 

under any conditions 6. To achieve such a control goal, various methods, such as model 

predictive control [56] and dynamic window approach [57] were proposed and evaluated. 

Inspired by the barrier certificate [60][61] and invariant set [58], the control barrier 

function (CBF) [62], is another effective method to guarantee system stability in a simpler 

 
5 The cited contents in section 5.2 and 5.3 are with permission of Copyright © 2021 IEEE, to be reprinted 

from [Huang, Yong, and Chen, IEEE Transactions on Intelligent Vehicles, 2021]. The cited contents in 

section 5.4 are with permission of Copyright © 2020 ASME, to be reprinted from [Huang and Chen, in 

Proceedings of Dynamic Systems and Control Conference, 2020]. 
6 Rigorously, vehicle stability does not equal to vehicle safety. As this dissertation studies a specific 

stability region-based vehicle control problem, if not specified, the descriptions of “stability-guaranteed” in 

this dissertation can be generally understood as or extended to the meaning of “safety-guaranteed” in other 

related papers, e.g., [63]. 
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and more computationally-efficient manner. Generally, the conventional CBF can be 

divided into two categories, namely the reciprocal CBF (RCBF) [63]-[68] and the zeroing 

CBF (ZCBF) [63],[74],[75]. The RCBF has an infinite value when the system states are on 

the set boundary, which may cause unbounded control efforts. On the other hand, the ZCBF 

becomes zero when the states are on the set boundary. Using CBF (either RCBF or ZCBF), 

control laws can be designed to ensure the system states always stay within a defined 

stability/safety set. Thus, the invariance of the stability/safety set, more precisely, a 

controlled invariant set, can be guaranteed. CBF has been utilized to solve safety control 

problems for autonomous ground vehicles (AGVs) and other mobile systems, such as lane-

keeping [63][71], adaptive cruise control [63][71], obstacle avoidance [72], and collision-

free multi-robot systems [73]. To simultaneously achieve tracking (or stabilizing) and 

safety control, CBF can also be integrated with control Lyapunov functions (CLF) as well 

as other tracking control methods [69]-[71]. 

To the author’s best knowledge, CBF has never been used to guarantee the controlled 

invariance of a stability region. More importantly, since the stability region in vehicle 

control problems is defined by constraints that are control-dependent, the existing 

conventional controlled invariant set concept is not directly suitable to describe such a 

stability region/set, and the corresponding CBFs cannot properly resolve the associated 

control problems. For example, in a region-based stability control problem for AGVs, the 

vehicle stability set is typically defined with respect to both time-varying variables (e.g., a 

desired longitudinal speed and/or a reference path) and control inputs (e.g., a feedback 

steering angle). Based on the authors’ previous study [86] and a similar observation in [10], 
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as the vehicle longitudinal speed and steering angle (front and/or rear) change, the size and 

location of the vehicle lateral stability region also change. Namely, the vehicle lateral 

stability region, which is selected as a controlled invariant set, is actually both time-varying 

and control-dependent. In this chapter, to handle the region-based stability control problem 

for AGVs, where the vehicle states are required to be always inside a stability region (see 

an example of vehicle dynamics in [94]), a novel time-varying control-dependent (TVCD) 

invariant set and the corresponding time-varying control-dependent barrier function 

(CDBF) are proposed and studied. 

Notation: A continuous function :[0, ) [0, )a →   is said to belong to class K if it is 

strictly increasing and (0) 0 = . A continuous function : ( , ) ( , )a b − → −  is said to 

belong to extended class K for positive a and b if it is strictly increasing and (0) 0 = [77]. 

A continuous function :[0, ) [0, ) [0, )a   →   is said to belong to class KL if, for each 

fixed s, the mapping ( , )r s  belongs to class K with respect to r and, for each fixed r, the 

mapping ( , )r s  is decreasing with respect to s and ( , ) 0r s →  as s →  [77].  

In this paper, the first-order Lie derivative of a scalar function ( ) : nh x R R→  in the 

direction of ( ) ( ) ( )1 , ,
T

nf x f x f x =  L  is, as in [78], given by 

( ) ( )
( )

1

n

f k

k k

h x
L h x f x

x=


=


 . (80) 
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5.2. Control Barrier Functions 

In this section, the concepts of invariant set and controlled invariant set are first 

reviewed in Definition 1 and Definition 2, respectively. Then, the definition of barrier 

function and control barrier function are reviewed in Definition 3 and Definition 4. 

Definition 1. [58] A set nR   is said to be positively invariant with respect to a nonlinear 

system 

( )x f x=& , (81) 

where 
nx R  is the system state vector, if for any 

0 0t   and all ( )0x t  , the solution 

( )x t   for 
0t t .   

Remark 8: The positive invariance of a set implies that the system states always remain in 

the set for all times. A positively invariant set is also commonly called a forward invariant 

set. Unless otherwise specified, we will simply refer to positively/forward invariant sets as 

invariant sets in the remainder of this paper as a shorthand. 

Definition 2. [58] Consider a nonlinear control system of the form 

( ),x f x u=& ,  (82) 

where 
nx R  and 

mu R are the system state and control input, respectively. The set 

nR   is said to be controlled invariant with respect to (82), if, for any 
0 0t   and all  

( )0x t  , there exists a feedback control law ( )u x= , which assures the existence and 

uniqueness of the solution ( )x t   for 
0t t .   
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Remark 9: In Definition 2, although the set,  , is controlled to be invariant with a 

properly designed control u , the set itself is independent of u . 

Based on the definitions of the invariant set and controlled invariant set, the 

corresponding BF and CBF were proposed to describe the conditions of an invariant set 

and a controlled invariant set, respectively [58][63]. Generally, the BF corresponding to an 

invariant set is defined as follows. 

Definition 3. [63] Considering a nonlinear system in (81), a set   is defined by a 

continuously differentiable function ( ) : nh x R R→  as,  

( ) 0,h x x   ,  (83) 

( ) 0,h x x =  , (84) 

( ) ( )0,h x x Int   , (85) 

where   and ( )Int   denote the boundary and the interior of  , respectively. If exists 

an extended class K function  [77], such that for all x  , 

( ) ( )( )fL h x h x − ,  (86) 

then the set   is an invariant set. ( )h x  is called a zeroing barrier function (ZBF) [63]. The 

existence of ZBF is a sufficient and necessary condition for the invariance of   [63]. 

Inspired by the definition of the CBF for an affine control system in [63], the CBF for 

a general nonlinear control system is defined as follows. 
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Definition 4. (Extended from Definition 4 in [63])  Consider a nonlinear control system in 

(82) and a set   defined by (83)-(85) in Definition 3, if there exist a control u  and an 

extended class K function   such that for all x  , 

( ) ( )( ) 0fL h x h x+  ,  (87) 

then the   is a controlled invariant set and ( )h x  is a ZCBF.  

Note that although (86) have the same form as (87), the system function f  in (87) is 

depicted by (82), which contains control input and thus makes (87) different from (86) 

when Lie derivatives are calculated. 

If ( )h x  is a CBF, any Lipschitz continuous control u  that satisfies (87) will make the 

set  controlled invariant. Hence, the existence of CBF is sufficient for a set to be 

controlled invariant. Similar to the relationship between a BF and an invariant set, the 

existence of a control u  and a ZCBF is both sufficient and necessary for   to be controlled 

invariant [63]. 

5.3. Control-Dependent Barrier Functions 

5.3.1. Problem Statement and Definitions 
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Fig. 51. Variations of the Vehicle Lateral Stability Region with Respect to Control Inputs 

( f  and/or 
r ) and Time-varying Parameters (

xV ). 

The (controlled) invariant set concept was usually applied to guarantee the safety of 

dynamic systems [63][74][76]. For control problems with safety sets defined only by 

system states, the controlled invariant set in Definition 2 is useful for control design. 

However, for control problems with safety sets defined by time-varying and control-

dependent variables, the above definitions may not be applicable. 

For example, in the vehicle lateral stability control problem, the control objective is to 

always keep vehicle states (e.g., yaw rate and lateral velocity) within an estimated or a 

defined stability region [17][35]. Such a stability region depicts the vehicle directional 

stability (e.g., neither oversteering nor too understeering) by analyzing both vehicle and 

tire stability [94]. In the authors’ previous study [86], as shown in Fig. 51, the vehicle 

lateral stability region was found to shift with respect to the front ( f ) and/or rear (
r ) 
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wheel steering angles. In addition, when the longitudinal velocity (
xV ) changes, the size of 

the stability region also changes although the shape almost remains the same. For lateral 

dynamics control of AGVs, the vehicle longitudinal velocity and/or the front wheel steering 

angle are often given by a high-level path planner as reference or feedforward signals (but 

not system states) that are time-varying. Meanwhile, additional front and/or rear wheel 

steering angles, actuated by active steering systems, are typically added as feedback control 

inputs. Therefore, the vehicle lateral stability region in Fig. 51, if defined or selected as an 

invariant set, is both time-varying and control dependent. 

Remark 10: Although the specific shapes and areas of vehicle lateral stability regions in 

Fig. 51 were originally estimated in the author’s previous work by considering both vehicle 

and tire stabilities [86][94], the general shrinking/expanding and shifting features of lateral 

stability regions with respect to steering angles and the vehicle longitudinal speed were 

also observed and well-documented. 

Moreover, the (ground) front and rear wheel steering angles are assumed, without loss 

of generality, to have limits  0.35 rad,0.35 radf  −  and  0.2 rad,0.2 radr  − , 

respectively, and the maximum vehicle longitudinal speed is 25xV =  m/s (these parameters 

can be easily changed to get different stability regions). Thus, an extended envelope of 

stability regions can be defined by the area outlined by pink dashed lines in Fig. 51 based 

on the stability region shifting and shrinking/expanding feature, no matter how the steering 

angles and longitudinal speed change within the limits. This enveloped area, as a set 

consisting of all the possible stability regions, is a time-invariant and control-independent 

set, which could be described by the existing concept of the controlled invariant set in 
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Definition 2. However, the invariance of the whole enveloped area does not necessarily 

imply the invariance of the shifted and shrunk/expanded stability regions as the subsets, 

which are discussed more in Remark 4. Therefore, to describe such an invariance set that 

is time-varying and control-dependent, a new concept is introduced as follows. 

Definition 5. Consider a nonlinear control system in (82), a set ( ), nu t R   is said to be 

time-varying and control-dependent (TVCD) invariant if there exist a control u U  and a 

0u U  such that for any 
0 0t   and all ( ) ( )0 0 0,x t u t , ( ) ( ),x t u t  for all 

 )0 , endt T t t = , where 
mU R  is the vector space of all the feasible set of u . 

Remark 11: In Definition 5,  )0 , endT t t=  is the maximum time interval that the set can be 

guaranteed to be TVCD invariant. Note that for any time intervals in T , if the controlled 

invariant set does not change with time, a TVCD invariant set becomes a control-dependent 

invariant set. For the set ( ),u t  in Definition 5, a set ( )
, 

,
u U t T

u t 
 

= U , which is a union 

of all the possible ( ),u t  for any u U  and t T , could be a controlled invariant set with 

a properly designed control u [74][76]. However, since the ( ),u t  is a subset of  , a 

control u , which makes   controlled invariant, does not necessarily make the subset 

( ),u t  TVCD invariant. On the contrary, a control u , which makes each subset ( ),u t  

TVCD invariant, can sufficiently make the set   controlled invariant since ( ),u t  . 

Therefore, the determination of the control u  that makes the set ( ),u t  TVCD invariant 

is different from the determination of u  in Definition 2. 
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Following the definition of BF and CBF, the corresponding definition of a time-varying 

CDBF for the newly defined TVCD invariant set in Definition 5 is presented as follows. 

Definition 6. Consider a nonlinear control system in (82), where u  is differentiable with a 

Lipschitz continuous u& , e.g. u =&  and ( )u , mR .  Let u  be a new system state, 

then the system is augmented as 

( ),x f x u
x

u 

  
=   

   

&& @
&

 ( ),f x = , (88) 

where 
T

T Tx x u =   . For a TVCD set ( ),u t , ,u U t T   (in Definition 5) defined by a 

continuous and differentiable function ( ),h x t  as 

( ) ( ), 0, ,h x t x u t   ,  (89) 

( ) ( ), 0, ,h x t x u t=   , (90) 

( ) ( )( ), 0, ,h x t x Int u t   , 
(91) 

if there exist a control u U , where u& , and an extended class K function   such that 

for all ( ),x u t ,  

( ),
f

L h x t + ( )( ), 0h x t  ,  (92) 

where  

( ),
f

L h x t ( )
( ),

,

h x t
f x

x t


=


  

( ),
T

h x t
x

x


=


&  

( ),
T

h x t
u

u


+


&  

( ),h x t

t


+


, (93) 

then the set ( ),u t  is a TVCD invariant set. ( ),h x t  is a time-varying zeroing control-

dependent barrier function (ZCDBF). Moreover, the solution ( )x t , ( )u t  exists and is 

unique by Peano’s Theorem [111]. 
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Remark 12: When the invariance conditions in (93) are applied in the optimization 

problem, u&  is suggested to be the auxiliary control variable and u  can be obtained by 

integrating u& , i.e., we are introducing integral control action. The reasons are two-fold. 

First, by selecting u&  as the control variable, the continuity and differentiability of the 

formal control u  can be guaranteed. Second, if u is selected as the control variable in 

optimization, u&  should be determined in advance or bounded to avoid extreme values, 

which may violate the invariance conditions in (92). In addition, by comparing with the 

author’s previous study [91] that selects u  as the control variable, it was found that its 

control performance is limited and conservative because the variable u&  in (93) was simply 

replaced by their upper and lower limits in [91]. Therefore, u&  is suggested to be the control 

variable in CDBF. ( )u  is defined as control-dependent to ensure u U . Equations (127) 

and (128) are illustrative examples to further clarify the selection of ( )u . 

Proposition 1. Given a nonlinear control system in (88) and a TVCD set defined by (89)-

(91), if there exists a time-varying ZCDBF ( ),h x t  defined on the set ( ),u t  in Definition 

6, then ( ),u t  is a TVCD invariant set. 

Proof. Based on the definition of the tangent cone [126] and Nagumo’s theorem [58], the 

invariance condition in (92) indicates that when x   , the derivative x&  points inside or  

is tangent to   [58], then the trajectory ( )x t  remains in  . Thus, if the system state is 

initially in the set, it then follows that the system state is always kept inside the set and 

( ), 0h x t  . According to (89), if ( ), 0h x t  , ( ),x x t  for all u U and t T  is proved, 

which indicates that the ( ),x t  is a TVCD invariant set.                                                    ■ 
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Remark 13: The condition in (92) to make ( ),u t  TVCD invariant is more general than 

the condition in (87), which only makes   controlled invariant. The definition of the time-

varying CDBF is different from the concept of time-varying CBF (TCBF) in the literature 

since the control input determined by the time-varying CDBF also has impacts on the safety 

constraints. Differently, in TCBF, the safety constraints could be time-varying but remain 

unchanged with respect to different control inputs.  One can easily verify that if ( ),h x t  is 

independent of u  and time-invariant, the term 
( ),

T
h x t

u




 and 

( ),h x t

t




 in (93) are 

eliminated. Thus, (92) are reduced to the same forms as those in (87). To make the control-

dependent feature valid, 
( ),

T
h x t

u




 in Definition 6 is assumed to be non-zero.  

For a TVCD set described by (89)-(91), any control that satisfies the constraints (92) 

in Definition 6 will make the TVCD set invariant. Thus, a quadratic programming (QP) 

problem can be formulated to find a control derivative u&  (and the corresponding control 

u  by integration) that satisfy one or multiple invariance constraints [74]. Since the QP is 

linear with respect to u& , the algorithm is real-time implementable without additional 

computational effort. 

Note that although the proposed new concepts on the TVCD invariant set and time-

varying CDBF are inspired from AGVs, these new concepts and theoretical work, 

including Proposition 1, are generally applicable to any other dynamic systems ((82) or 

(88)), whose safety or stability regions (constraints) are varying with respect to control and 

time. On that note, the vehicle dynamics and application are introduced in the next section. 
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5.3.2. Vehicle Stability Control using CDBF 

For a four-wheel steering (4WS) vehicle equipped with two steer-by-wire systems, the 

steering angles of the front and rear wheels can be separately controlled by two steering 

motors. In this study, an AGV with a 4WS system is considered, in which both the front 

and rear wheel steering systems are adopted as the actuators (control inputs) to guarantee 

vehicle lateral stability (analogous to a safety specification). Selecting the lateral velocity 

and yaw rate as two system states, the single-track model of vehicle lateral dynamics, as 

shown in (94), is written as 

( )( )

( )( )

cos

cos

cos

cos

y x yf f yr

yf f yr

AFS r v

f AFS r r z

V V r F F

F F

m

r l l I





 

 

=+ + +

= + −

&

&
, (94) 

where 
vm , 

zI , f , 
AFS , and

r are the vehicle mass, yaw moment inertia, feedforward 

front steering angle, and feedback front and rear steering angle, respectively. 
xV , yV , and 

r  are the vehicle longitudinal velocity, lateral velocity, and yaw rate, respectively. fl  and 

rl  are the front and rear wheelbase, respectively. yfF  and yrF  are the lateral forces of front 

and rear tires, which are calculated based on a nonlinear LuGre tire model in section 2.2. 

To calculate the lateral tire forces by the tire model, the tire slip angles are calculated in 

(95) and (96): 

( ) ( ) ( )( )-1tanf f AFS y f xt V l r V t   = + − +   , (95) 

( ) ( )( )-1tanr r y r xV l r V t = − −  , (96) 
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where ( )f t  and ( )xV t  are time-varying, given by either a driver or an upper-level 

feedforward control. The two feedback control inputs are selected as 
1 AFSu =  and 

2 ru = . 

To describe the region-based vehicle lateral stability control problem using the 

proposed time-varying CDBF, the boundaries of the stability region are first formulated. 

In Fig. 51, taking the region depicted by the solid red curves as the stability set, which is 

estimated at a zero steering angle and a constant longitudinal velocity, the corresponding 

four boundaries are described by four independent functions as 

( ) ( )1 1 yh x b V r= − , (97) 

( ) ( )2 2 yh x b V r= − , (98) 

( ) ( )3 3 yh x r b V= − , (99) 

( ) ( )4 4 yh x r b V= − , (100) 

where 
1 2 3 4, , ,b b b b  are the polynomial functions to describe the boundaries as 

( ) , 1,2,3,4j yr b V j= = . However, the safety set defined by (97)-(100) is not enough to 

describe dynamic characteristics of the vehicle lateral stability region. Based on the authors’ 

previous work [86], the region-based vehicle lateral stability control problem involves 

time-varying and control-dependent features, which are from the following two sources. 

First, when the front and rear steering angles are applied, the vehicle lateral stability region 

shifts along with specific directions [86], which is formulated in a shifting vector as 

( ) ( )( ) ( ) ( )( )1 1 2 2 1 2, , , , , ,
T

f x f xS s t V t u u s t V t u u  =
 

r
,  (101) 

where 
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( ) ( )( )
( ) ( )( )1 2

1 1 2, , ,
x r f f

f x

f r

V t l t u l u
s t V t u u

l l




 + +
 =

+
,  (102) 

( ) ( )( )
( ) ( )( )1 2

2 1 2, , ,
x f

f x

f r

V t t u u
s t V t u u

l l




 + −
 =

+
. (103) 

Second, when the vehicle longitudinal velocity decreases or increases, the size of the 

stability region shrinks or expands correspondingly. Using the stability region estimated at 

25xV = m/s as a reference, a scaling function is derived to describe the size variation when 

xV  changes. Based on the characteristics of the stability region boundaries, the scaling 

functions are formulated separately for the different boundary pairs as shown in (104).  

  ( )( )
( )( )
( )( )

1

2

25 1,3

25 2,4

x

i x

x

k V t i
a V t

k V t i

 − =
= 

− =

, (104) 

where 
1k  and 

2k  are the scaling factors. If 25xV   m/s, the stability region shrinks to be 

smaller (e.g. the region depicted by the black dot curves in Fig. 51) than the reference 

region, and if 25xV   m/s, the stability region expands to be larger than the reference 

region. Note that the above time-varying feature is realized by setting the system 

parameters as time-varying variables. In more general cases, the stability/safety set can be 

explicitly dependent on time-varying variables. 

Based on both the shifting vector and the scaling function, the four boundaries in (97)-

(100) are reformulated as four time-varying and control-dependent functions in (105)-(108). 

( ) ( )( ) ( ) ( )( )1 1 1 2 1, , y xh x u t b V s r s a V t= − − − + , (105) 

( ) ( )( ) ( ) ( )( )2 2 1 2 2, , y xh x u t b V s r s a V t= − − − + , (106) 
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( ) ( ) ( )( ) ( )( )3 2 3 1 3, , y xh x u t r s b V s a V t= − − − + , (107) 

( ) ( ) ( )( ) ( )( )4 2 4 1 4, , y xh x u t r s b V s a V t= − − − + . (108) 

To sum up the problem description, since the shifting vector in (101) consists of two 

time-varying variables ( f  and 
xV ) and two control inputs (

1u  and 
2u ), and the scaling 

function in (104) contains one time-varying variable (
xV ), the guaranteed vehicle stability 

control problem using the stability region depicted in (105)-(108) is based on a typical 

TVCD invariant set as described in Definition 5. To resolve this control problem, the 

vehicle dynamic model in (94) is first augmented with the state vector as 

1 2

T

yx V r u u =   , 

1 2

T

yx V r u u =  
& & & & &  ( )1f x=   ( )2 1 2

T

f x     , (109) 

where 
1f  and 

2f  are the vehicle dynamics in (94), 
1  and  

2  are the control input 

dynamics that will be determined and discussed later. 

Based on Definition 6, the vehicle stability region is defined as a TVCD invariant set 

C  as follows 

( ) 2 , 0,  1, 2,3,4jC x R h x t j=   = , (110) 

( ) 2 , 0,  1, 2,3,4jC x R h x t j =  = = , (111) 

( ) ( ) 2 , 0,  1, 2,3, 4jInt C x R h x t j=   = . (112) 



 

  126 

Then, the set invariance conditions using the time-varying ZCDBF in (92) with respect to 

the stability region boundary functions in (105)-(108) are given by the following four 

constraints: 

( ),f jL h x t + ( )( ), 0,  1,2,3,4j jh x t j  = , (113) 

where 

( )
( ),

,
j

f j y

y

h x t
L h x t V

V


=


&  

( ),jh x t
r

r


+


&  

( )
1

1

,jh x t

u



+



( )
2

2

,jh x t

u



+


 

( ),jh x t

t


+


 

1,2,3,4j = . 

(114) 

Without loss of generality, assume the boundary functions ( ) , 1,2,3,4j yr b V j= =  are 

depicted by four linear functions as , 1,2,3,4j y jr b V c j= + = , where jc  are constants. Then, 

by substituting the shifting function in (101) and the scaling function in (104) into (105)-

(108), the complete forms of the four time-varying and control-dependent boundary 

functions are rewritten as  

( )
( )

( )
( )

( )

( )
( ) ( ) ( )( )

11

1 1 1 2

1

1

11
,

1
              

fr

y x x

f r f r

r

f x x

f r

b lb l
h x t bV r V t u V t u

l l l l

b l
t V t a V t

l l


 − − −
 = − + + 

+ +     

−
+ +

+

, (115) 

( )
( )

( )
( )

( )

( )
( ) ( ) ( )( )

22

2 2 1 2

2

2

11
,

1
              

fr

y x x

f r f r

r

f x x

f r

b lb l
h x t b V r V t u V t u

l l l l

b l
t V t a V t

l l


 − − −
 = − + + 

+ +     

−
+ +

+

, (116) 
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( )
( )

( )
( )

( )

( )
( ) ( ) ( )( )

33

3 3 1 2

3

3

11
,

1
              

fr

y x x

f r f r

r

f x x

f r

b lb l
h x t b V r V t u V t u

l l l l

b l
t V t a V t

l l


 − − −
 = − + + + 

+ +     

−
+ +

+

, (117) 

( )
( )

( )
( )

( )

( )
( ) ( ) ( )( )

44

4 4 1 2

4

4

11
,

1
              

fr

y x x

f r f r

r

f x x

f r

b lb l
h x t b V r V t u V t u

l l l l

b l
t V t a V t

l l


 − − −
 = − + + + 

+ +     

−
+ +

+

. (118) 

Taking the first boundary function ( )1 ,h x t  in (115) as an example, the partial 

derivatives of ( )1 ,h x t  in (114) are 

( )1

1

,

y

h x t
b

V


=


,  (119) 

( )1 ,
1

h x t

r


= −


, (120) 

( ) ( )
( )1 1

1

, 1 r

x

f r

h x t b l
V t

u l l

 −
=

 +
, (121) 

( ) ( )
( )

11

2

1, f

x

f r

b lh x t
V t

u l l

− −
=

 +
, (122) 

( ) ( )
( )

( )
( )

( )
( ) ( ) ( ) ( )( ) ( )( )

1 21 1 1

1

1

11

1
               

fr

x x

f r f r

r

x f x f x

f r

b l uh x b l u
V t V t

t l l l l

b l
V t t V t t a V t

l l
 

− − −
= +

 + +

−
+ + +

+

& &

&& &

. (123) 

Substituting (119)-(123) into (114) gives, 
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( )1 ,fL h x t =  ( )1 1b f x +  ( ) ( )
( )( )1

2 1

1
1

x r

f r

V t b l
f x

l l


 −
− +  

 + 

 

( )( )
( )( )

( )
( ) ( ) ( ) ( )( )

( )
( )

( )
( )

1

2 1

1

1 21 1

1
                 

1
                 

11
                 

x f

x

f r

r

x f x f

f r

fr

x x

f r f r

V t b l
a V t

l l

b l
V t t V t t

l l

b l ub l u
V t V t

l l l l



 

 − −
 + +
 +
 

−
+ +

+

− −−
+ +

+ +

&

&&

& &

. 

(124) 

The final constraint for ( )1 ,h x t  is obtained by substituting (124) into (113). For the 

other three boundary functions ( ), , 2,3,4jh x t j = , the same procedure can be applied. 

As described in Proposition 1, the control design, which ensures that the inequalities in 

(113) are always satisfied, can guarantee system stability/safety. The key issue of solving 

this guaranteed stability control problem is the determination 
1  and 

2  in (124). Instead 

of directly applying 
1u  and 

2u  as the control inputs, we consider 
1  and  

2  as the virtual 

control inputs, which, by integration, will give 
1u  and 

2u  as the real control inputs of the 

vehicle lateral dynamics in (94). Note that in addition to the constraint derived for the first 

boundary function as an example, the determination of 
1  and 

2   should also satisfy the 

constraints derived with respect to the other three boundary functions in (116)-(118). 

Based on the complete constraints that guarantee the vehicle lateral stability, a QP 

problem is formulated to calculate the optimal virtual control inputs. Specifically, for a 

given stability region as a TVCD set, the four time-varying CDBFs and the corresponding 

constraints can be integrated with a QP problem as follows. 
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( )
2

1
, argmin

2

T T

u R

u x t u Hu F u


= +
&

& & & & , (125) 

s.t. 

( )
( )

,jh x t
f x

x




 

( )4

1

,j

j

h x t
u

u=


+


 &  

( )
( )( )

,
, 0,  1,2,3,4

j

j j

h x t
h x t j

t



+ +  =


, (126) 

( ) ( )1 1 1 1,min 1,max 2 2 2 2,min 2,max[ , ],  [ , ],u u u u u u u u =  =& & & & & &  (127) 

1,max 1 1,max

1,min 1 1,min

2,max 2 2,max

2,min 2 2,min

0,   ,  

0,   ,  

0,   ,  

0,   ,  

u if u u

u if u u

u if u u

u if u u

= =

= =

= =

= =

&

&

&

&

 (128) 

where    1 2 1 2

T T
u u u  = =& & &  denotes the virtual control inputs, max

1,max 2,max

S

T
u u

I
= =& &  

and 1,min 2,min 1,maxu u u= = −& & &  in (127), 2 2H R  is positive definite, and 2F R . Note that in 

(126), the constraints are written with respect to the virtual control inputs, where the real 

control 
1u  and 

2u  are treated as the state variables. j  are appropriately selected class K 

functions based on the sharing property among multiple CBFs [74]. The sharing property 

ensures the feasibility of the QP problem when multiple invariance conditions are applied. 

Note that, the constraints in (127) and (128) are not considered in the sharing property but 

simply considered as the upper and lower bounds of the control input. Specifically, the 

constraints in (127) denote the upper and lower limits of u& , which, in practice, are the 

steering rate bounds determined by the maximum torque of the steering motor 
maxT  and the 

moment of inertia of the steering system
SI . The constraints in (128) ensure 

1 1u U  and

2 2u U , where 
1 1,min 1,max,U u u =    and 

2 2,min 2,max,U u u =    denote the feasible control 



 

  130 

input sets. For vehicle systems, such feasible sets can be determined by the mechanical 

structures of steering systems.  

Remark 14. (Proof of feasibility): Following the feasibility discussions in [75], the 

optimization in (125)-(128) is feasible if the vector field of system dynamics in (94) and 

the TVCDBF in (115)-(118) are locally Lipschitz with the assumption of non-zero 
xV . The 

feasibility can also be guaranteed based on the sharing property among multiple invariant 

constraints [74]. As shown in Table 7, the Class K functions for 
1h  and 

3h  are selected as 

the same and the Class K functions for 
2h  and 

4h  are selected as the same. For the 

boundaries that have an intersection (e.g., 
2h  and 

3h ), different class K functions are 

selected. The system dynamics, barrier functions, and Class K functions adopted in this 

paper satisfy the required conditions. Therefore, the feasibility of QP in (125)-(128) can be 

guaranteed. 

After the optimal virtual control u&  are obtained, the real control inputs u  are then 

determined by integration. It is also worth noting that by integrating 
1u&  and 

2u& , we have 

1u  and 
2u  at the current time, which gives us a priori information to decide whether or not 

to include any of the constraints in (128). Hence, the problem is still a QP at run-time. 

Finally, for vehicle systems, 
1u  is typically combined with f  as the total front wheel 

steering angle. A framework of the proposed guaranteed vehicle lateral stability control 

using time-varying CDBF is shown in Fig. 52.  
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Table 7. Parameters of Quadratic Programming Controller 

Symbol Parameters Values 

mv Vehicle mass 1270 kg 

Iz Yaw inertia 1500 kg∙m2 

lf Front wheelbase 1.11 m 

lr Rear wheelbase 1.8 m 

α1(x) & α3(x) Class K function 20x 

α2(x) & α4(x) Class K function 100x 

k1 Scaling factor 0.024 

k2 Scaling factor 0.028 

H Weighting matrix 
50 0

0 50

 
 
 

  

F Weighting matrix  0 0   
Tmax Maximum steering torque 24 Nm 

u1,min/max Min/Max front wheel steering angle ±0.6rad(34°) 

u2,min/max Min/Max rear wheel steering angle ±0.1rad(5.7°) 

Is 
Moment of inertia of the steering 

system 
3 kgm2 

ε Slack number 0.01 

k Bounds on disturbances 0.1 

 

 

Fig. 52. Framework of Vehicle Lateral Stability Control.  

Note that during the QP implementation for the sampled system, signal delays due to 

the sampling may occur. Such delays could cause a short period of CDBF violation, 

especially when the system states are controlled close to the boundaries of the stability set. 

To solve this issue, in (92), a small positive slack number   could be added to the time-

varying CDBF in the extended class K function as ( )( ),h x t − . The slack number  can 
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r

+
f

xV

2( )r u


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(time-varying 

CDBF)

xV



 

  132 

be also applied to overcome possible robustness issues in practical applications. In [75], it 

was found that if the disturbance is vanishing or sufficiently small, the control barrier 

function can still guarantee the set invariance. For any bounded disturbance (e.g., g k

 ), 

by adding k  to the slack number  , set invariance can be robustly guaranteed. Although 

the value of k  could be difficult to find a priori for a general disturbance, it can be 

estimated for specific systems and operation conditions, such as vehicle systems [112]. 

5.3.3. Simulation and Discussions 

In this section, the proposed new definitions and the corresponding vehicle stability control 

design are verified through simulation results of high-speed J-turn and double lane change 

(DLC) maneuvers. The vehicle parameters shown in Table 7 are selected based on the 

database of a C-class hatchback vehicle model in CarSim. To ensure the feasibility of the 

QP problem (125)-(128), the selected Class K functions in Table 7 were verified by the 

sharing property in [15]. Specifically, as shown in Table 7, the Class K functions for 
1h  

and 
3h  are selected as the same and the Class K functions for 

2h  and 
4h  are selected as the 

same. The reason for this selection is, for 
1h  and 

3h , the corresponding stability region 

boundaries do not have intersections (the upper left and lower right boundaries of any of 

the three regions in Fig. 51), which reduces the possibility of conflicts. For the boundaries 

that have an intersection (e.g., 
2h  and 

3h ), different Class K functions are selected. The 

real-time feasibility of the proposed control method for both scenarios below was verified 

by implementing the proposed control algorithm on a real vehicle test platform equipped 

with a dSPACE MicroAutobox II, where we observed that the computations can be 
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completed in real-time without delays when the main processor runs at a 900MHz clock 

frequency.  

5.3.3.1.High-speed J-turn maneuver 

Two simulation cases are conducted and compared to demonstrate the effectiveness of 

the control design based on the proposed time-varying CDBF. Given the same steering and 

longitudinal velocity profile, the first case simulates the vehicle driving behavior based on 

the feedforward steering angle f . The second case simulates the feedback vehicle control 

with the guaranteed vehicle stability control design. The feedforward front wheel steering 

angle f  and the longitudinal velocity 
xV  are given in Fig. 53 as the time-varying variables. 

Specifically, the time-varying functions of ( )f t  and ( )xV t  are given as 

( ) ( )

0.2 0.1 -10 +30 / 0.5 1.5

0.2 ,    15 / 1.5 8.5

-0.2 1.9 10 70 / 8.5 9.5

f x

t rad t m s t

t rad V t m s t

t rad t m s t



−   
 

= =   
 + −   

. 
(129) 

Note that when the vehicle inputs are zeros, the proposed control design will not be applied 

since there will be no vehicle movements, e.g., ( ) 0xV t = . In this simulation, the tire-road 

friction coefficient is set to 0.85 for road conditions to ensure sufficient friction forces. 
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Fig. 53. Time-varying Profiles (the Front Wheel Steering Angle and the Longitudinal 

Velocity) in the J-turn Maneuver.  

 

Fig. 54. Feedforward Case Simulation Results in the J-turn Maneuver, a) CDBFs 

Values, b) Vehicle Stability Status. 
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Fig. 55. Vehicle States in the J-turn Maneuver: Feedforward Control. 

In the first case, the feedback control inputs are all zeros, namely, 
1 2 0u u= = . Thus, 

the stability region is time-varying with respect to the feedforward steering angle and 

vehicle longitudinal speed. As shown in Fig. 54 a), the negative time-varying CDBF values 

are clearly observed for 
1h  and 

4h , which indicate that the system states are not kept in the 

defined TVCD invariant (stability) set, as described in Definition 6. The corresponding 

unstable statuses are also verified by the vehicle status check results, shown in Fig. 54 b).  

The vehicle status “in” or “out” the TVCD stability set in Fig. 54 b) is checked by whether 

the instantaneous vehicle states are located in the TVCD stability region, which is an 

independent evaluation process based on the instantaneous check of state and region 

locations in the phase plane [86]. Moreover, the vehicle states ( yV  and r ) are shown in 

Fig. 55 for the J-turn maneuver, with relatively large values.  
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Fig. 56. Feedback Case Simulation Results in the J-turn Maneuver, a) CDBFs Values, 

b) Vehicle Stability Status, c) Control Inputs.  

 

Fig. 57. Vehicle States in the J-turn Maneuver: Feedback Control. 

In the second case, the feedback front and rear wheel steering angles are calculated in 

the QP problem with respect to the constraints derived from the proposed time-varying 

CDBFs. As shown in Fig. 56 a), all the four time-varying CDBFs are well controlled to be 

positive during the whole maneuver, which indicates that the vehicle states are always in 
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the TVCD stability region. Since the vehicle stability region is both time-varying and 

control-dependent, the control design based on the proposed time-varying CDBF is verified. 

In Fig. 56  b), the vehicle status check always shows ‘in’ status for the whole maneuver, 

which is consistent with the meaning of positive time-varying CDBF values. In Fig. 56 c), 

the rear wheels are slightly steered to the same direction of the front wheels to keep the 

vehicle stable, which demonstrates the same idea that the rear wheels should turn to the 

same direction of the front wheels to keep a 4WS vehicle stable at high speeds [113]. In 

addition, by comparing the vehicle states in Fig. 57 with those in Fig. 55, yV  and r  for the 

feedback control case are both smaller than those in the feedforward case, which indicates 

a more stable and safer vehicle status. Such a stability improvement can also be 

demonstrated by comparing the vehicle planar trajectories between these two cases. As 

shown in Fig. 58, the vehicle trajectory in the feedback case is much less extreme than that 

of the feedforward case, which could easily cause the vehicle to spin or collide with other 

vehicles. In Fig. 58, the desired trajectory is the path of a vehicle with an ideal tire model 

when the same feedforward traces in Fig. 58 are given. The tire cornering stiffness 

coefficients in a linear tire model are calibrated based on the nonlinear tire model in section 

2.2. From the comparison shown in Fig. 58, the vehicle trajectory of feedback case with 

CDBF is much closer to the desired trajectory, also indicating a better vehicle driving 

performance. 
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Fig. 58. Vehicle Trajectories Comparison in the J-turn Maneuver.  

 

Fig. 59. Vehicle State Trajectory with Regard to the Fixed “Stability Region” in the J-

turn Maneuver. 
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Fig. 60. Feedback Case Simulation Results in the J-turn Maneuver Based on the Fixed 

Stability Region, a) BFs Values, b) Vehicle Stability Status, c) Control Inputs. 

 

To further verify the proposed time-varying CDBF method, another simulation is 

conducted by using a fixed stability region (common in literature) as the invariant set, 

bounded by the pink dotted lines in Fig. 59 (similar to that in Fig. 51). The four straight 

lines are represented by four time-invariant and control-independent barrier functions in 

linear forms. As observed in Fig. 59, the vehicle state trajectory is well covered by the fixed 

region. The four BFs, as shown in Fig. 60 a), are also positive during the whole maneuver 

since the trajectory is always in the fixed region. Moreover, since the vehicle state 

trajectory is far away from the boundaries, the feedback control inputs, as shown in Fig. 60 

c), are pretty small and negligible. Such small feedback control inputs barely influence the 

vehicle dynamics, and thus the vehicle states are very similar to those shown in Fig. 55 in 

the feedforward simulation. However, as mentioned in Remark 11, the fixed region is too 
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large to precisely describe the vehicle stability. By checking the vehicle status with respect 

to the TVCD stability region, as shown in Fig. 60 b), it is revealed that the vehicle is not 

always “in” the stability region. This observation demonstrates that using the fixed stability 

region as the invariant set cannot guarantee vehicle stability. 

Note that since the fixed stability region is not control-dependent, the stability 

constraints do not contain u& . In such a case, the control input u  is selected as the control 

variable in the QP, where the constraints in (127) and (128) are not applied.  

5.3.3.2.Double lane change maneuver 

A double lane change maneuver is a commonly adopted scenario for the test of vehicle 

stability in extreme conditions. From a practical point of view, to verify the robustness of 

the proposed control method, measurement and estimation noises on vehicle states are 

added in the simulation. The parameters of the added noise signals (listed in Table 8) are 

determined based on experiment data[114][115]. All noise signals are assumed to follow a 

Gaussian probability distribution with a frequency of 200 Hz. In this simulation, the tire-

road friction coefficient is set to 0.5 to simulate wet road conditions. Similar to the J-turn 

maneuver, two simulation cases (feedforward and feedback cases) are conducted and 

compared. As shown in Fig. 61, the profiles of the front wheel steering angle and the 

longitudinal velocity are given as two time-varying variables. Note that the longitudinal 

velocity is intentionally selected larger than 25 m/s to illustrate the generality of the 

proposed method. 

In the feedforward case, the stability region is varying with respect to the feedforward 

steering angle and vehicle longitudinal speed. As shown in Fig. 62 a), negative CDBF 
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values are clearly observed, indicating that the system states are out of the TVCD stability 

region. Such unstable statuses are also verified by the vehicle status check shown in Fig. 

62 b). 

Table 8. Parameters of Noise in Simulations 

Noise 
Noise level 

(in percent of nominal values) 
Frequency 

Vy 5% 200 Hz 

r 5% 200 Hz 

Vx 3% 200 Hz 
f  3% 200 Hz 

  

Fig. 61. Time-varying Profiles (the Front Wheel Steering Angle and the Longitudinal 

Velocity) in the DLC Maneuver. 
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Fig. 62. Feedforward Case Simulation Results in the DLC Maneuver, a) CDBFs 

Values, b) Vehicle Stability Status. 

 

Fig. 63. Feedback Case Simulation Results in the DLC Maneuver, a) CDBFs Values, b) 

Vehicle Stability Status, c) Control Inputs. 
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Fig. 64. Vehicle Trajectories Comparison in the DLC Maneuver. 

In the feedback case, the vehicle is controlled by the proposed stability controller. All 

four time-varying CDBFs, as shown in Fig. 63 a), are positive, indicating that the vehicle 

states are always controlled to stay within the TVCD stability region. Since the vehicle 

stability region is both time-varying and control-dependent, the control design based on the 

proposed time-varying CDBF is verified. In Fig. 63 b), the vehicle statuses are always ‘in’ 

the stability region during the whole maneuver, which is consistent with the meaning of all 

four positive CDBF values. In Fig. 63 c), the real control inputs u  after the integration of 

the virtual control u&  are presented. The stability improvement is also demonstrated by 

comparing the vehicle planar trajectories. As shown in Fig. 64, with only feedforward 

control, the vehicle cannot complete a DLC maneuver due to the loss of stability on a 

slippery road. However, with the proposed stability control design, the vehicle is able to 

successfully realize the DLC maneuver. 

5.4. Switched Control Barrier Functions 

Although the proposed time-varying CDBFs successfully ensure region-based vehicle 

driving stability, many vehicle safety-related challenges still need to be further investigated. 
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One of the challenges is that the safety constraints are not always fixed or activated due to 

the system's dynamic characteristics or uncertain environment. To ensure system safety in 

such challenging situations, control methods that can handle multiple switched constraints, 

especially the discontinuous ones, become necessary. The major difficulty in designing 

such a controller lies in how to define a switching problem between multiple safety sets 

and multiple control algorithms. To describe and solve these problems, various methods 

have been proposed, mainly including invariant multi-set [116][117], switch-robust control 

invariant (switch-RCI) sets [118], (spatial) temporal-logic specification [119]-[120], and 

non-smooth barrier function (NBF) [122]-[125].  

First, the invariant multi-set was proposed in [116][117], where the definition of the 

invariant sets was extended with constrained switching signals. Namely, an invariant multi-

set is defined as a collection of sets that follows a constrained switching signal. If the 

system states started in the first set in sequence, the system states would stay in the sets 

that follow the switching signal [116][117]. The second method is the switch-RCI sets 

[118], in which the constraints are mode-dependent and a switching sequence is also 

involved in the problem statement. The control objective is to find a robust controller that 

guarantees the invariance of each switched set in the switching sequence. Especially, if the 

initial state, mode, and remaining dwell time were contained in an initial condition set, 

there existed a control law that guaranteed the invariance of the switched sets for all future 

time and all admissible switching sequences [118]. However, in [116]-[118], any 

instructions to find such a safety-guaranteed control law were not introduced. The third 

method was called (spatial) temporal-logic specification [119][120], in which the 
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switching signals are mainly in spatial or temporal logic. Such a characteristic requires the 

switching sets to be connected, which makes it not suitable to resolve the problem when 

the switched sets are not connected.  

Different from the above three methods, to compose multiple invariant sets that do not 

follow specific switching sequences, compositional barrier functions [121] was proposed 

with the usage of AND or OR logic operator. However, adding logic operators causes 

robustness issues to the composed barrier functions. To retain robustness, Boolean logic 

(MAX and MIN operator) was used in [122]. Nevertheless, the MAX and MIN operator 

introduces undifferentiability issue to barrier functions. To solve this issue, a non-smooth 

barrier function (NBF) was proposed in [122]. Inspired by the concept of non-smooth 

Lyapunov function (due to the discontinuous right-hand side of the differential equation) 

in [123], NBF is not necessarily required to be differentiable. The NBF was then further 

extended for controller design as a non-smooth control barrier function (NCBF) [124]. By 

considering the time-varying NCBF with jumps, the hybrid NBFs (HNBFs) and controlled 

HNBFs were proposed in [125]. However, NBFs do not explicitly address the 

undifferentiability issue of different invariant sets. Besides, NBFs are also not suitable to 

solve the problems where no intersections or unions exist between invariant sets. 

Based on the aforementioned review on switching invariant sets and barrier functions, 

two potential issues can be revealed. First, when the switching signal or mode is not 

restricted by certain mappings, especially when they are determined by the system states 

or external inputs, how to describe the invariance between multiple sets becomes 

challenging. For example, in the vehicle lane-keeping problem, the lane boundaries are 
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normally regarded as safety constraints. If a lane changing signal is demanded (e.g. by the 

driver’s command or an automated driving decision), the original lane boundaries need to 

switch to new lane boundaries. Different from the existing pre-defined switching mode, 

such a lane changing signal is normally determined based on the factors that cannot be pre-

defined, such as vehicle states or surrounding environment. Therefore, in this example or 

other similar scenarios, how to ensure system safety without predefined switching signals 

is worthy to be studied.  

Second, although the switched invariant sets and related concepts were studied and 

defined [116]-[120], the corresponding control problems have not been particularly 

discussed. Since CBFs are determined for the specific controlled invariant set (CIS), the 

switching between CISs could also affect the corresponding formulation and design of 

CBFs. Normally, CBFs are defined as continuously differentiable functions to depict the 

boundaries of CIS. Due to the discontinuity in switching action, the CBF may lose 

differentiability.  

In this section, to address the aforementioned two issues, a novel concept of switched 

CIS (SCIS) and the corresponding switched CBF (SCBF) are first proposed. Then, 

regarding the undifferentiability issue in SCBF, the switched safety sets are relaxed by the 

proposed relaxation functions, where the switching is eliminated since the relaxed 

boundary functions are continuous and differentiable. Sufficient conditions for selecting a 

relaxation function are proposed. It is shown that the selection of such a function could be, 

but not limited to, time-dependent, state-dependent, or control-dependent. Moreover, the 
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proposed method is applied to a vehicle lane-keeping problem and verified by simulation 

results. 

5.4.1. Problem Statement and Definitions 

In this section, the problem statement and definitions of SCIS and SCBF are first 

introduced. Then, to solve the problems in SCIS and SCBF, the relaxation functions are 

defined, where the corresponding selection algorithms are also introduced. To deal with 

the switching problem among multiple CIS, the relaxation function chain is proposed. 

5.4.1.1.Switched Controlled Invariant Set 

The CIS in Definition 2 is not suitable to describe the invariance control problem for 

switched safety sets. To address this issue, the CIS in Definition 2 is extended to the SCIS 

as follows.  

Definition 7. Consider a nonlinear control system in (82), a collection of the sets 
i

n

p R 

, where 
ip  0 {0,1,2,...}i N =  denotes the switching mode, is said to be switched 

controlled invariant with respect to (82), if for all ( )
0

0 px  and 
0p  , there exists a 

feedback control law ( ), iu x p= , which assures the existence and uniqueness of the 

solution ( )
ipx t  for all 0t  .   denotes the set of all feasible switching modes. 

Remark 15: Every single set in the collection of 
i

n

p R   should be controlled invariant 

within the mode 
ip . The switching modes in Definition 7 are connected by the switching 

signals 0, , ,i jp p i j i j N
s

→  
 that can depend on, but are not limited to, system states, time 
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variables, and control inputs. The switching signals are discrete functions that depend on 

continuous variables.  

5.4.1.2.Switched Control Barrier Function 

Based on the defined SCIS, a problem statement to define SCBF is given as follows. 

Definition 8. Consider a nonlinear control system in (82) and a SCIS in Definition 7, for 

every single set in SCIS, 
ip  is defined by a continuous and differentiable function 

( ) :
i

n

ph x R R→ ,  

( ) 0,
i ip ph x x   ,  (130) 

( ) 0,
i ip ph x x =  , (131) 

( ) ( )0,
i ip ph x x Int   , 

(132) 

where 
ip  and ( )

ipInt   denote the boundary and the interior of 
ip , respectively. If 

there exist a control u  and class K functions 
1 , 

2 , 
3 , such that for all ( )

ipx Int  ,  

( )( ) ( ) ( )( )1 21 1
i i ip p ph x B x h x   , (133) 

( ) ( )( )3 0
i if p pL B x h x−  , 

(134) 

or if there exist a control u  and an extended class K function   such that for all 
ipx  , 

( ) ( )( ) 0
i if p pL h x h x+  ,  (135) 

( )
ipB x  is a reciprocal switched control barrier function (RSCBF) and ( )

iph x  is a zeroing 

switched control barrier function (ZSCBF) at the switching mode
ip . 
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Remark 16: In a general definition of a switching action, the switching modes 
ip  are 

discrete, which could introduce discontinuity and differentiability to ( )
iph x  and ( )

ipB x  

in Definition 8. Therefore, to retain the invariance of SCIS, the switching signals ,i jp p i js →   

need to be continuous and differentiable. 

The issues mentioned in Remark 16 can be addressed by replacing the switching signal 

by a continuous and differentiable relaxation function. With relaxation, the switching 

signal becomes continuous and differentiable while still having the switching property. To 

avoid any unsafe system states in the switching transient, a proper selection of the 

relaxation function needs to be studied. The related definition and selection of a relaxation 

function are described in detail in the following two subsections. 

5.4.1.3.Relaxation Function 

To address the discontinuity and undifferentiability issue of SCBF during the switching 

action 
i jp ps → , an effective method is to connect the switched invariant sets by a relaxation 

function, which smooths the switching action and thus eliminates the discontinuous 

switching signal. With a smoothed switching signal, two CISs can be merged as one, of 

which the boundaries are smooth and still change with respect to the original switching 

signal. By combining the boundary functions, the original CISs are “relaxed”. Such a 

relaxation function connects two switched sets and forms one connected set where 

continuous and differentiable boundary functions can be formulated. In particular, if the 

two CISs do not have an intersection or their intersection only contains one element, it is 

impossible to always cover the system states within the CISs (safety sets) during the switch. 
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The proposed relaxation function becomes particularly effective in avoiding the unsafe 

system states by connecting “the blank” between the two disconnected switched sets. With 

the above basic ideas of the relaxation function, how to properly select a relaxation function 

without losing the switching property and invariance conditions becomes a problem. To 

address these issues, some requirements for the selection of relaxation functions are 

identified as follows.  

Requirement 1. The selected relaxation functions are required to properly fit the behavior 

of the switching signal while still connect the boundary functions before and after the 

switch. Namely, the formulation of the relaxation function should be determined based on 

the properties of the events that trigger the switch.  

To better illustrate this idea, a switching problem in a vehicle lane changing scenario 

is taken as an example. From the safety control perspective, the lane-changing commands 

(switch signals) in autonomous ground vehicles (AGVs) are normally made based on the 

distance (d) to the preceding vehicle. By comparing the actual distance (d) with a safe 

distance (dsafe), which is determined by the speeds of the front vehicle and the controlled 

vehicle, the lane-changing (switching) signal can be determined. 



 

  151 

 

Fig. 65. Safety Distances in a Lane-changing Scenario.  

Taking the lane changing scenario in Fig. 65 as an example, three safe distances (dsafe) 

are designed to deliver a smooth lane changing motion. First, 
1d  in Fig. 65 is the minimum 

safety distance that a collision can only be avoided by changing lane or changing lane + 

braking.  
2d  is the distance that a collision can be avoided by either changing lane or 

braking. 
3d  is the distance that no additional steering or braking action is needed to keep 

the vehicle safe. As shown in Fig. 65, when 
3d d , the vehicle safety constraints are 

defined as the current lane boundaries for lane keeping. When 
3 2d d d  , the left lane 

constraint is changed to a curvy lane boundary (the green dot line) that crosses the actual 

lane boundary while the right lane constraint keeps the same. When 
2 1d d d  , both lane 

boundary constraints are relaxed and changed as curvy lane boundaries. Since the changes 

of left and right lane boundary constraints do not occur simultaneously, the lane-changing 
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control effort could be smoothened with gradually changing boundaries. As observed, the 

constraints switch depends on the varying distances, where an aforementioned relaxation 

function (with respect to the safety distance dsafe) between invariant sets will be utilized.   

Based on the required properties of the relaxation function, the selection of a relaxation 

function is not unique. Depending on various vehicle driving scenarios or other working 

conditions of autonomous systems, a relaxation function may be state-dependent, time-

varying, control-dependent, and/or (multiple) parameter-dependent. The problem 

statement to define a relaxation function and an example of one relaxation function 

formulation are introduced as follows. 

Definition 9. Consider a nonlinear control system in (82) and two CISs linked by a 

switching signal from mode 
1 2p p→  as  

( ) 
1 1

0p px h x =  ,  (136) 

( ) 
2 2

0p px h x =  , (137) 

where ( )
1ph x  and ( )

2ph x  are two CBFs. Without losing the switching property from 

1 2p p→ , if 
1p  and 

2p  can be integrated by a bounded continuous and differentiable 

function ( , , , ) [0, ]R x t u kK to a new CIS   as 

( ) ( ) ( )

( )( ) ( )

1

2

3 , , , , , ,

                          , , , 0

p

p

x h x t u R x t u h x

k R x t u h x


 = + 
=  

−   

K K

K
, (138) 

( , , , )R x t u K is called a relaxation function of the switching from 
1p  to 

2p .  

Remark 3: As mentioned in Requirement 1, the relaxation function should properly 

describe the switching properties in 
1 2p p→ , so that the new set   can ensure the 
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switching action between the original CISs. The relaxation function can be independent of 

the corresponding switching signal, and the variables therein can be system states, time 

variable, and/or control inputs. 

The purpose of defining a relaxation function and a new CIS is to ensure the system 

states can be safely transferred during the switch. To achieve this purpose, the connecting 

set   should also be a CIS, where the system states are controlled inside the set while 

being guided with the switching signal simultaneously. Although the safety constraints of 

the original sets are relaxed and can be violated during the switching, as long as the 

invariance of   can be guaranteed, the aforementioned control objective can be achieved. 

Namely, in the control of retaining the invariance from one CIS to another, how to 

guarantee the invariance of the connected set   is critical. The second requirement for 

relaxation function is given as follows.   

Requirement 2. For the safety sets in Definition 9, no matter 
1 2p p  =  or not, the 

selected relaxation function should guarantee the invariance conditions of the new connect 

set   are satisfied.  

To address this requirement, the following lemma is proposed to provide a sufficient 

condition for selecting such a relaxation function. Specifically, the relaxation function and 

the connected control barrier function in (138) are assumed only state-dependent. Thus, the 

first order Lie derivative of the combined CBF ( )3h x  is  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

1 1

2 2

3

              

f f p f p

f p f p

L h x L R x h x R x L h x

L R x h x k R x L h x

= +

− + −
. (139) 
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Depending on the variables that R  is composed of (e.g., time variable), ( )fL R x  is 

calculated by the partial derivative of the corresponding variables. 

Lemma 1. Assume there exist a common control u and two class K functions that make 

the sets in (136) and (137) two independent CISs. If R  and ( )fL R x R  are both positive 

and there exists a linear class K function 
3 , such that for all ( )x Int     

( ) ( )( )3 3 3 0fL h x h x+  . (140) 

the set connected by a positive relaxation function R  in (138) is also a CIS. 

Proof: Since the sets in (136) and (137) are two CISs, then the following conditions hold. 

( ) ( )( )
1 11 0f p pL h x h x+  ,  (141) 

( ) ( )( )
2 22 0f p pL h x h x+  . (142) 

If the common control u that satisfies both the invariance conditions in (141) and (142) 

also satisfies the invariance condition in (140), the invariance of the connected set, which 

transfers the invariance of 
1p  to that of 

2p , can be guaranteed. Assume the invariance 

condition in (140) can be satisfied by the common control u. Substitute (139) into (140)  

( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )( )

1 1

2 2

1 23 0

f p f p

f p f p

p p

L R x h x R x L h x

L R x h x k R x L h x

R x h x k R x h x

+ −

+ −

+ + − 

. (143) 

Since 
3  is a class K function in linear form, reorganize (143), we have 
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( ) ( )( ) ( ) ( )

( ) ( ) ( )( )

( ) ( )( )( )

1 2

1 2

2 2

3

3 0

f p p

f p f p

p p

L R x R x h x h x

R x L h x L h x

k h x x h x





   + −  

+ −

+ + & &

. (144) 

In (144), ( ) ( )( )( )
2 23p pk h x x h x+& &  is positive if 

2  in (142) is selected as the same as 
3 . 

Thus, if (145) holds, (144) holds.    

( ) ( )( ) ( ) ( )

( ) ( ) ( )( )
1 2

1 2

3

0

f p p

f p f p

L R x R x h x h x

R x L h x L h x

   + −  

+ − 
. (145) 

Divide both sides of (145) by R  (positive), we have 

( ) ( )( )

( ) ( ) ( ) ( ) ( )( )
1 2

1 23 1 0

f p f p

f p p

L h x L h x

L R x R x h x h x

−

 + + −  

. (146) 

Note that for a linear 
3 , ( ) ( )3 3 1R R =  is always positive. In (146), take 

( ) ( )
1 2p ph x h x−  as a variable, if ( ) ( )

1 2p ph x h x−  is positive and ( ) ( )fL R x R x  is also 

positive, then ( ) ( ) ( )3 1fL R x R x +  is positive and can be treated as the linear coefficient 

of a new linear class K function. Therefore, the same control u that makes (141) and (142) 

hold, ensures the invariance of the two original CISs and the connected set can be 

guaranteed. If ( ) ( )
1 2p ph x h x−  is negative, one can multiply both sides of (146) by -1 and 

( ) ( )
1 2p ph x h x−  can be guaranteed as negative with the same control u, which infers (146) 

still holds. In both cases, if ( ) ( )fL R x R x  is positive, (146) holds and (140) can be 

satisfied. The proof is complete.                                                                                                                      ■ 
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Based on the aforementioned two requirements, one selection of a relaxation function 

(as an example) is a hyperbolic tangent function. Assuming the relaxation function is only 

dependent on system states, the hyperbolic tangent relaxation function is formulated as  

( ) ( )( )tanhR x a b x c d= + − . (147) 

The hyperbolic tangent function in (147) returns values between a-b and a+b. The 

parameters c and d can be used to define the switching point and the smoothing level, 

respectively. The first time derivative of ( )R x  is ( ) ( )2sech ( )R x b x c d d= −& , where 

( ) ( ) ( )sech 1 cosh 2 z zz z e e−= = + . With 0.5a = , 0.5b = , 0c =  and 1d = , ( )R x  is 

plotted as the blue dot-dash curve in Fig. 66. With a larger d=3, ( )R x  (the red solid curve 

in Fig. 66) becomes smoother. With a smaller d=0.1, ( )R x  (the green dash curve in Fig. 

66) looks more like a step function. Thus, to describe a rapid switch action with repect to 

related system states, a small d is preferred.  

 

Fig. 66. Hyperbolic Tangent Functions with Different Parameters. 

To determine a suitable parameter set of the relaxation function, the physical 

constraints need to be considered. For example, in the lane changing scenario, the switch 
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point and smoothing level should be properly selected to make sure the lane boundary 

constraints change at the right time (e.g. for safety purposes) and are smooth enough (e.g. 

for riding comfort purposes).  

5.4.1.4.Relaxation Function Chain 

When multiple (more than two) CISs are switched in a sequence, a scheme that 

describes consecutive switching actions becomes necessary. In this subsection, to solve the 

consecutive switching problem between multiple CISs, a relaxation function chain is 

introduced. 

Lemma 2. For two independent CISs in (136) and (137) (in the general forms as 
ip  and 

jp , i j ), if the system states finish the switching from 
ip  to 

jp  and keep staying 

within the switched set 
jp , the relaxation function 

iR  can be released. Based on a newly 

observed switching signal, a new relaxation function jR  between the current set 
jp  and 

the next CIS , kp k j   can be determined following the structure shown in (138). For all the 

future set , lp l k  , a relaxation function chain , l l kR  can be constructed until the switches 

among CISs stop. 

Proof: If the system states are within the switched set 
jp , then a control u  and a class K 

function  , which make (140) satisfied, guarantee the invariance of 
jp . For 

jp , a new 

relaxation function jR  in Lemma 2, which connects 
jp to a new switched set , kp k j  , can 

be constructed. If the new relaxation function jR  satisfies the sufficient conditions in 
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Lemma 1, the invariance of 
kp  can also be guaranteed. Similarly, a chain of relaxation 

functions , l l kR   can be constructed and is able to guarantee the invariance of the switched 

sets until the switching signal stops.                                                                                    ■  

The principle of relaxation function chain in SCIS is summarized in Algorithm 2.  

Algorithm 2. Principle of Relaxation Function Chain in SCIS 

Specify the original (current, ith) CIS and CBF.  

for the starting switching signal 
i jp ps →  from the safety sets 

ip  to 
jp , do 

select a relaxation function 
iR  that properly describes the switching function and 

satisfies the condition in Lemma 1. 

   if the system states 
jpx   then 

update 
iR  to jR  based on the switching from  

jp  to 
kp ;             

   end if s  stops 

end for 

return. 

 

5.4.2. Simulations and Discussions 

In this section, a numerical example is first presented to demonstrate the effectiveness 

of the proposed relaxation function when connecting two CISs. Then, multiple CISs and a 

relaxation function chain are applied to a vehicle safety control problem, which aims at 

ensuring vehicle safety in a continuous obstacle avoidance (lane changing) scenario. 

5.4.2.1.A Numerical Example 
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Consider a typical control affine system  

( ) ( )Y f Y g Y u= +& , (148) 

where Y  is the state variable and u  is the system input. ( ) 0.02f Y Y= −  and ( ) 0.2g Y = . 

A safety set with respect to Y  is defined as 

( ) ( )1 2,safeY Y t Y t =   , (149) 

where ( )1

2.5 5

2.5 5

t
Y t

t

− 
= 


 and ( )2

2.5 5
Y

7.5 5

t
t

t


= 


 are the upper and lower bounds of the 

safety set. The switching action is assumed to be detectable as a time-varying function, 

where at 5 s, the safety set switches to a new set by positively shifting 5 units. The safety 

sets before and after the switch only have one intersection set or point as  2.5Y = . 

Since the system safety constraints are time-varying, the relaxation function is also 

designed as a time-varying function in a hyperbolic tangent form as 

( ) ( )( )tanhR t a b t c d= + − , (150) 

where 0.5a = , 0.5b = , 5c = , 1d =  are the parameters selected to properly fit the switch 

of safety sets in (149). Using the relaxation function in (150), two new connected CISs, 

which correspondingly depict the upper and lower bounds of the CIS in (149), are 

constructed as 

( ) ( ) ( ) ( )( ) ( ) 1 1 11 12 0x h x R t h x K R t h x = = + −  , (151) 

( ) ( ) ( ) ( )( ) ( ) 2 2 21 22 0x h x R t h x K R t h x = = + −   (152) 

where ( )11 ( 2.5)h x Y= − − , ( )12 2.5h x Y= − , ( )21 2.5h x Y= − , ( )22 7.5h x Y= −  are the four 

original barrier functions (positive), and 1K = .  
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Substituting ( )1h x  in (151) and ( )2h x  in (152) into (86), the invariance conditions of 

set 
1  and 

2  are 

( ) ( )( )1 1 1 0fL h x h x+  , (153) 

( ) ( )( )2 2 2 0fL h x h x+  , (154) 

where 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

1 11 11

12 12                 

fL h x R t h x R x h x

R t h x k R x h x

= +

− + −

&&

&&
, (155) 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

2 21 21

22 22                 

fL h x R x h x R x h x

R x h x k R x h x

= +

− + −

&&

&&
. (156) 

With the derived two invariant constraints in (153) and (154), the control input can be 

determined by a quadratic programming (QP) problem described as follows. 

argmin   0.5
u

u uHu Fu


= + , (157) 

s.t. 

CBF CBFA u b , (158) 

where [1]H = ,  1F = ,  
T

CBFA k k= −  and 
( ) ( )( )
( ) ( )( )

1 1 1

2 2 2

5

5
CBF

R t aY Y h x
b

R t Y aY h x





 − − +
=  

− + + +  

& &

& & . 
1  

and 
2  are class K functions, which are properly selected based on the sharing property 

among multiple CBFs [74] as 
1 2( ) ( ) 100x x x = = . Specifically, the parameters in 

1  and 

2  are selected as large values to keep the state as close to the center of the safety set as 

possible.   

To illustrate the effectiveness of the proposed relaxation function between two CISs, a 

quantitative comparison between a case using a typical CBF (without relaxation function) 

and a case using the proposed SCBF (with proposed relaxation function) is presented. In 

the typical CBF case, the relaxation function is not involved and two CISs are switched by 
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a signal at 5 s. For each CIS, the set invariance is controlled by a ZCBF in (86). Since the 

two CIS only have one intersection point at 5 s, the system states are very likely to be 

outside of the second CIS right after 5 s. Therefore, a ZCBF is applied because a RCBF 

does not allow the system states to penetrate the set boundaries.  

 

Fig. 67. State Variable (Y) in the Cases with (w/) and without (w/o) the Relaxation 

Function. 

In Fig. 67, the system state, namely Y, in both cases (with and without the relaxation 

function) are presented and compared. The original safety set boundaries and the relaxed 

safety set boundaries are both plotted in Fig. 67 for comparison. As shown, in the case 

without the relaxation function, after the safety constraints switch at 5 s, the system state 

Y violates the constraints (
1Y Y  as pointed by the red arrow) for a short period. On the 

other hand, in the case with the relaxation function ( )R t , the safety set boundaries before 

and after the switch are relaxed and connected (relaxed 
1Y  and 

2Y ), which form a new 

safety set with smooth boundaries. With the control input determined by (157), Y starts to 

change in advance before the switching signal, which makes it possible for Y to be strictly 
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controlled in the safety set. To verify this point, as shown in Fig. 68, the relaxed CBF values 

(
1h  and 

2h  in (151) and (152)) keep steadily positive at 2.5. Meanwhile, the CBF values in 

the case without the relaxation function have obvious undesired negative values as pointed 

by the red arrow. Note that, during the switch, the system state is not necessarily required 

to always stay in the original safety sets. 

 

Fig. 68. Comparison of SCBF Values in the Cases with (w/) and without (w/o) the 

Relaxation Function. 

5.4.2.2.Vehicle Safety Control using SCBF 

One of the most common driving scenarios for AGVs is highway cruising. A safety 

highway cruising can be simply achieved by two main functions, namely the lane-keeping 

and lane-changing at the cruise speed. In this subsection, a vehicle safety control problem 

in continuous lane-changing and lane-keeping scenario is solved by the proposed SCIS and 

relaxation function chain. With the small-angle and constant longitudinal velocity 

approximation, a single-track vehicle lateral dynamic model is written in a state-space form 

as 
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yy

f

VV
A B

rr


   
= +   

  

&

&
, 

(159) 

where 

( ) ( )

( ) ( )2 2

f r r f f r

x

x x

f f r rr f f r

z x z x

C C l C l C
V

mV mV
A

l C l Cl C l C

I V I V

 + −
 − −
 

=  
−− 

− 
 

 , 

f

f f

z

C

m
B

l C

I

 
 
 =
 
 
 

. yV  and r  are the vehicle 

lateral velocity and yaw rate, respectively. The front wheel steering angle f  is the only 

control input. A linear tire model is adopted since the lane changing maneuvers in this 

application are moderate without rapid longitudinal acceleration and deceleration. The 

vehicle kinematic model is formulated as 

cos( )

sin( )

x

x

X V

Y V

 

 

= +

= +

&

&
, 

(160) 

where X  and Y  are the vehicle longitudinal and lateral displacement. r =   is the 

vehicle heading angle (assuming zero initial heading), y xV V =  is the vehicle slip angle. 

The vehicle and tire parameters in (94) are listed in Table 9.  

Table 9. Cornering Stiffness of Tires 

Symbol Parameters Values 

Cf Front tire cornering stiffness 25000 N/rad 

Cr Rear tire cornering stiffness 25000 N/rad 
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Fig. 69. Continuous Lane-changing and Lane-keeping Scenario and the Continuously 

Switched Lane Boundary Constraints. 

As shown in Fig. 69, three standard-wide (3.7 meters) lanes are depicted by four dotted 

horizontal lines (Y=0, 3.7, 7.4, 11.1 m). In addition, five obstacles, depicted by the red 

boxes, are set in the middle of the lanes. To avoid the obstacles, the vehicle should first 

detect them and then change lane correspondingly. In this paper, a 50 meters (25 m/s2 s) 

forward detection range is selected based on the constant vehicle cruise speed (25 m/s) and 

a 2 seconds preview time window. If the real-time distance from the vehicle to the obstacle 

is less than 50 meters, a lane changing (switching) signal is generated. As shown in Fig. 

69, the active left and right lane boundary constraints, which are depicted by the red solid 

and blue dash lines (
1Y  and 

2Y ), switches at the position where the vehicle detects the 

obstacle is within 50 meters. In Fig. 69, driving from the left to the right, the active lane 

boundaries switch four times during the whole procedure. To handle such a continuous 

SCIS problem, the proposed relaxation function chain is effective. 

To solve this vehicle safety control problem, the safety sets composed by the switched 

lane boundaries are first formulated in a consequent manner as 
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   

   

 

1 2

3 4

5

3.7 7.4 ;      7.4 11.1 ;

3.7 7.4 ;      0 3.7 ;

3.7 7.4

Y Y Y Y

Y Y Y Y

Y Y

 

 



=   =  

=   =  

=  

. 
(161) 

The safety sets switch from 
1  to 

5  as the vehicle changes lanes to avoid the 

obstacles. The relaxation function chain is applied as follows. Starting at the switch from 

1  to 
2 , a relaxation function is selected similar to that in (150) by replacing the time 

variable with the state variable Y . Correspondingly, the safety sets before and after the 

switching are connected in similar forms as those shown in (151) and (152). Then, 

following the procedure in (153)-(158) with the vehicle dynamics in (94) and (160), the 

steering angle, as the control input, is obtained. After the switch from 
1  to 

2  is finished, 

the vehicle is already in the safety set 
2 . Next, to avoid the approaching obstacle, the 

safety set needs to switch from 
2  to 

3 . Following the same control design procedure of 

the switching from 
1  to 

2 , the vehicle safety can also be guaranteed when switching 

from 
2  to 

3 . To finish the whole process, the procedure in Algorithm 2 should be 

followed until the safety set 
5  stops lane changing.  
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Fig. 70. X-Y Displacement of the Vehicle and the Switched Boundaries of Safety Set in 

Case 1. 

In Fig. 70, the lane boundary constraints, which contains the relaxation functions for 

all four switches, are depicted by the dashed green and pink curves. As shown, the vehicle 

trajectory, depicted by the red solid curve, is well-controlled between the switched lane 

boundaries with the proposed relaxation function chain, which verifies the effectiveness of 

the proposed SCBF and relaxation function. Note that the “sharp” lane-changing of Y in 

Fig. 70 is caused by the compressed scale of X-axis. The actual turns of the vehicle path in 

Fig. 70 are smooth enough for normal vehicle driving. 

5.5. Conclusions 

A new concept of a TVCD invariant set and a novel control algorithm to guarantee the 

invariance of a TVCD set. By involving the TVCD properties, the proposed time-varying 

CDBF is more general than the (time-varying) CBFs studied in the literature. The newly 

developed theory and control methods are applied to solve a guaranteed region-based 

vehicle lateral stability control problem, where the vehicle lateral stability region, as the 



 

  167 

controlled invariant set, is both time-varying and control-dependent. By showing the 

simulation results of high-speed J-turn and DLC maneuvers, the proposed new concepts 

and control design are verified. To deal with the undifferentiability issue of SCBFs during 

the switch, a relaxation function is proposed. Sufficient conditions for the selection of a 

relaxation function are provided. The concept of the relaxation function chain is introduced 

to handle the problem with multiple switches. The simulation results of a numerical 

problem and a vehicle safety control problem are presented to verify the proposed SCIS, 

SCBF, and relaxation function. 
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CHAPTER 6 

CONCLUSIONS 

6.1. Conclusions 

The guaranteed vehicle stability control algorithms greatly enhance the safety of 

autonomous ground vehicles. In this dissertation, targeting at keeping the vehicle in the 

estimated lateral stability regions, a series of region-based vehicle lateral stability analyses 

and control algorithms are presented.  

As the most fundamental step in the control algorithm, a new vehicle lateral stability 

region estimation method, which utilizes a local linearization method based on a four-

wheel vehicle model and a nonlinear 2D LuGre tire model, is first proposed. The estimated 

vehicle lateral stability regions are more conservative compared with the regions estimated 

by the phase portrait and Lyapunov method in the previous studies. The conservation is 

mainly featured from the stricter and simultaneously applied vehicle and tire stability 

criteria, which are mathematically derived by using the applied local linearization method. 

Moreover, simulation results show that the lateral load transfer, vehicle longitudinal 

velocity, tire-road friction coefficient, and steering angle all have impacts on the estimated 

vehicle lateral stability regions. Serving as the basis for automated driving control systems, 

the vehicle lateral stability region has the potential for numerous vehicle control 

applications. 

Based on the shiftable vehicle lateral stability region, novel vehicle lateral stability 

control methods are proposed. To accurately analyze the vehicle stability status based on 

an irregular and shiftable stability region, a projection method, the shifting vector, and the 
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dynamic margin are proposed and integrated as one complete stability analysis method. 

The proposed analysis method is real-time applicable for vehicle lateral stability control. 

Then, based on the stability analysis results, dynamic sliding mode controllers are designed. 

By selecting the boundaries of the stability region with the proposed dynamic margin as 

the sliding surfaces, the proposed vehicle lateral stability control guarantees that the vehicle 

trajectory is always controlled in the adopted stability region. With higher computational 

demand and less chattering, the proposed non-overshooting model predictive control also 

ensures the same control performance. 

To achieve the guaranteed stability control with higher efficiency and less 

computational demands, a new concept of time-varying control-dependent (TVCD) 

invariant set and a novel control algorithm to guarantee the invariance of a TVCD set are 

proposed. By involving the TVCD properties, the proposed time-varying control-

dependent barrier function is more general than the time-varying control barrier function 

studied in the literature. The newly developed theory and control methods are applied to a 

guaranteed region-based vehicle lateral stability control problem, where the vehicle lateral 

stability region, as the controlled invariant set, is both time-varying and control-dependent. 

The vehicle is successfully kept within the stability region, verifying the vehicle’s lateral 

stability is guaranteed.  

6.2. Future Work 

The effectiveness of the region-based stability control algorithm enables itself for an 

extended and variety of applications. Additional suggestions for further development and 

studies are explained as follows.  
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6.2.1. Multi-Dimensional Stability Regions 

The vehicle stability region can be extended in multiple directions, which makes itself 

practical and applicable to more applications. Considering the coupling effect between the 

tire longitudinal and lateral forces, the vehicle’s longitudinal and lateral stability can be 

integrated, where a 3-dimensional stability region would be estimated. Moreover, other 

vehicle indexes, such as the rollover index, can also be integrated with the lateral stability 

region to solve the vehicle motion control problems with multi-dimensional evaluations.   

6.2.2. Integrating CDBF with CLF and Actuator Dynamics  

As an extension of the integrated CLF-CBF studies, when CDBF and CLFs need to be 

integrated, how to address the compatibility problem of different forms of constraints must 

be resolved. Moreover, when applying CBF and CDBF, the dynamics and control of 

actuators or subsystems are often ignored. Although the low-level actuation errors could 

be modeled as uncertainties and resolved by robust CBF methods, the commonly adopted 

solutions of adding a slack number to barrier functions can conservatively degrade control 

performance. Therefore, how to effectively integrate the actuator dynamics with the CDBF 

becomes an interesting and worth-studying topic.   

6.2.3. Switched CDBF in General Form 

In autonomous vehicle safety control problems, the switched CDBF can be applied to 

various scenarios. Therefore, the definition of switched CDBF, especially the selection of 

relaxation functions, needs to be extended to a more general form. The practical issues in 
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the selection of relaxation function should also be studied to better describe the switching 

between different scenarios.  
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