
Towards Fine-Grained Control of Visual Data in Mobile Systems

by

Jinhan Hu

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved February 2022 by the
Graduate Supervisory Committee:

Robert LiKamWa, Chair
Carole-Jean Wu

Adam Doupé
Suren Jayasuriya

ARIZONA STATE UNIVERSITY

May 2022

ABSTRACT

With the rapid development of both hardware and software, mobile devices with their

advantages in mobility, interactivity, and privacy have enabled various applications,

including social networking, mixed reality, entertainment, authentication, and etc.

In diverse forms such as smartphones, glasses, and watches, the number of mobile

devices is expected to increase by 1 billion per year in the future. These devices

not only generate and exchange small data such as GPS data, but also large data

including videos and point clouds. Such massive visual data presents many challenges

for processing on mobile devices. First, continuously capturing and processing high

resolution visual data is energy-intensive, which can drain the battery of a mobile

device very quickly. Second, data offloading for edge or cloud computing is helpful,

but users are afraid that their privacy can be exposed to malicious developers. Third,

interactivity and user experience is degraded if mobile devices cannot process large

scale visual data in real-time such as off-device high precision point clouds.

To deal with these challenges, this work presents three solutions towards fine-

grained control of visual data in mobile systems, revolving around two core ideas,

enabling resolution-based tradeoffs and adopting split-process to protect visual data.

In particular, this work introduces: (1) Banner media framework to remove resolu-

tion reconfiguration latency in the operating system for enabling seamless dynamic

resolution-based tradeoffs; (2) LesnCap split-process application development frame-

work to protect user’s visual privacy against malicious data collection in cloud-based

Augmented Reality (AR) applications by isolating the visual processing in a distinct

process; (3) A novel voxel grid schema to enable adaptive sampling at the edge device

that can sample point clouds flexibly for interactive 3D vision use cases across mobile

devices and mobile networks.

The evaluation in several mobile environments demonstrates that, by controlling

i

visual data at a fine granularity, energy efficiency can be improved by 49% switch-

ing between resolutions, visual privacy can be protected through split-process with

negligible overhead, and point clouds can be delivered at a high throughput meet-

ing various requirements. Thus, this work can enable more continuous mobile vision

applications for the future of a new reality.

ii

ACKNOWLEDGMENTS

To my beloved wife, who fills my boring PhD life with joy, peace, and love, who

transforms me into a man, who sacrifices without complaints, and who trusts me

and supports me with everything she has.

This dissertation and my success is all for you, my beloved wife, Xixi He.

Happy 3rd anniversary and the six years we have been together.

Looking forward to the adventure ahead of us.

To my parents, thanks for educating me and giving me a happy family and a

competent platform.

Thanks for bearing with loneliness without me being around you. I hate separation

and I wish we could meet again very soon.

To all my friends, thank you so much for the emotional support.

A special thanks to Hao Lu, from Chongqing to Arizona, from young to middle-age,

our fourteen years friendship is more valuable than infinity gems. You are always a

family member to me.

To my advisor, Robert LiKamWa, thank you so much for the opportunity. It’s been

such a wonderful journey with the Meteor Studio.

I wish you and the lab a prosperous future.

iii

TABLE OF CONTENTS

Page

CHAPTER

1 INTRODUCTION . 1

2 RELATED WORK . 7

2.1 Continuous Mobile Vision . 7

2.1.1 Dynamic Resolution-Based Tradeoffs . 8

2.2 Protecting Data Privacy . 9

2.2.1 Isolation and Compartmentalization . 10

2.3 Streaming Dense Point Clouds . 12

2.3.1 Collaborative System . 14

3 SEAMLESS SENSOR RESOLUTION RECONFIGURATION FRAME-

WORK . 16

3.1 Introduction . 16

3.1.1 Case Study for Resolution-Driven Tradeoffs 21

3.2 Background . 22

3.2.1 Sequential Reconfiguration Process . 24

3.2.2 Resolution Synchronization Creates Latency 25

3.2.3 Reconfiguration Latency Drops Frames . 26

3.2.4 Design Guidelines . 27

3.3 Design of Banner . 28

3.3.1 Parallel Reconfiguration . 30

3.3.2 Format-Oblivious Memory Management 34

3.4 Implementation of Banner . 36

3.4.1 Parallel Reconfiguration . 36

3.4.2 Format-Oblivious Memory Management 37

iv

CHAPTER Page

3.4.3 User Application Library . 38

3.5 Evaluation . 39

3.5.1 Evaluation Methodology . 40

3.5.2 Resolution Reconfiguration Latency Reduction 42

3.5.3 Power Efficiency Improvement . 43

3.5.4 Implications . 46

4 SPLIT-PROCESS APPLICATION DEVELOPMENT FRAMEWORK . . 47

4.1 Introduction . 48

4.2 Background . 52

4.2.1 Mobile AR Development . 52

4.2.2 Permission Control . 53

4.2.3 Security Enforcement . 54

4.3 Threat and Trust Model. 54

4.4 Design of LensCap . 56

4.4.1 Enforced Split-Process Access Control . 57

4.4.2 Secured Communication Channels between Split Processes . . 58

4.4.3 Screen-Based Overlay Composition . 59

4.4.4 Fine-Grained Data Monitoring . 60

4.5 Programming Model . 61

4.6 Implementation of LensCap . 64

4.6.1 LensCap Permission Enforcement . 64

4.6.2 Split-Process for UE Development . 65

4.6.3 Secured Communication Channels . 66

4.6.4 Screen-Based Overlay Composition . 68

v

CHAPTER Page

4.6.5 Fine-Grained Data Monitoring . 68

4.7 Evaluation . 70

4.7.1 Benchmark Applications . 71

4.7.2 Evaluation Metrics . 72

4.7.3 Application Performance . 74

4.7.4 Interactive Latency . 76

4.7.5 User Study . 77

5 EDGE-ASSISTED POINT CLOUD LIVE-CAPTURE AND STREAM-

ING PLATFORM . 82

5.1 Introduction . 83

5.2 Motivation . 87

5.2.1 Point Cloud Data Distribution . 87

5.2.2 Voxel vs. Point vs. Octree . 89

5.2.3 Point Cloud Rendering . 90

5.2.4 Findings . 92

5.3 System Design . 93

5.3.1 Efficient Voxel Grid Schema . 93

5.3.2 Adaptive Sampling for Live-Streaming . 96

5.3.3 Point Cloud Resizing . 98

5.4 Implementation . 99

5.4.1 Multi-Threaded Data Pipeline . 99

5.4.2 Adaptive Point Cloud Sampling . 101

5.4.3 Point Cloud Resizing . 104

5.5 Evaluation . 105

vi

CHAPTER Page

5.5.1 The Performance of Adaptive Sampling . 106

5.5.2 The Visual Quality of Point Cloud Resizing 111

6 CONCLUSION . 112

REFERENCES . 114

vii

Chapter 1

INTRODUCTION

With the rapid development of both hardware and software, mobile devices such

as smartphones are able to provide functionalities beyond simple texting and call-

ing. For example, all smartphones nowadays are equipped with more than one high

resolution image sensors, capable of capturing the world in tens of megapixels. By

uploading those high resolution images to social media networks, people can share

every detail in their life with their family and friends instantaneously, though possibly

separated by a thousand miles physically. Other than static captures, the continu-

ous capture of the physical world through those image sensors enable new realities

such as Augmented Reality (AR). AR provides a unique interactive experience of

virtual objects overlaying on top of the real-word environment. This unique interac-

tive experience sparks new applications in many fields including education, entertain-

ment, medicine, navigation, shopping, etc PAINE (2022). Beyond 2D captures, many

smartphones are equipped with depth sensors that can capture the physical world in

3 dimensions (3D). For example, Apple recently deployed LiDAR sensors on iPhone,

aiming at improving the understanding of the user’s environment to improve its per-

formance in tasks such as night vision, AR experiences, and machine learning Apple

(2021); HUSSAIN (2021); Zhou and Tuzel (2017). The usage of 3D data such as

point clouds portends continuing growth in more immersive applications, e.g., sports

broadcasts Unity (2021). The varying user needs and application scenarios have re-

shaped mobile devices to many forms, including smart watches and smart glasses. As

reported, the number of mobile devices will be increasing by 1 billion per year in the

upcoming 5 years statista (2022).

1

The massive growth of mobile devices certainly eases people’s daily lives and

brings people closer than ever. However, mobile devices are able to generate massive

visual data per second which can create many challenging problems. First of all, mo-

bile devices only have a limited battery life. Continuously capturing, processing, and

rendering high quality visual data incurs high power consumption which will further

drain the battery very quickly. In addition, the visual data may reveal private user

information in a user’s visual environment to third party entities without the user’s

knowledge. These private user information could contain personal belongings such

as credit cards left on the table, business secrets on whiteboards, and a user’s facial

identity. Finally, mobile devices cannot handle massive 3D visual data. Continuously

capturing, transmitting, and rendering 3D visual data requires a high data band-

width and a high processing capability. A delayed data processing will degrade the

interactivity through mobile devices and the associated user experience.

Those challenges motivate the need of controlling visual data at an unprecedented

fine granularity, for energy efficiency, visual privacy, and real-time interactivity. To-

wards fine-grained control of visual data, this work proposes three solutions, revolving

around two key ideas, enabling runtime resolution-based tradeoffs and isolating the

processing of visual data in a distinct process. These solutions include:

1. The Banner media framework, which is a seamless sensor resolution reconfigu-

ration framework enabling mobile vision applications to dynamically adjust the

capture resolution depending on various requirements to utilize the resolution-

based tradeoffs at run-time to operate with an improved energy efficiency. This

solution is described in §3.

2. The LensCap application development framework, which is built on top of split-

process access control, allowing users with fine-grained and proactive control

2

over the app’s potential transmission of camera frames and the information

derived from them. This solution is described in §4.

3. An edge-assisted multi-resolution adaptive point cloud live-capture and stream-

ing framework tailored for interactive 3D use cases running on mobile devices.

This framework revolves around an efficient voxel grid schema that represents

point clouds in a set of voxel grids, each with a set of parameters that can

be tailored to the needs of the users and their applications. This solution is

described in §5.

For enabling runtime resolution-based tradeoffs in continuous mobile vision ap-

plications, this work advocates that mobile vision systems should be able to benefit

from the ability to situationally sacrifice image resolution to save system energy when

imaging detail is unnecessary. However, this work identifies that any change in sensor

resolution leads to a substantial pause in frame delivery, caused by requiring user ap-

plications to frequently invoke a sequence of expensive system calls in order to request

a new sensor resolution. Reconfiguring sensor resolution in the Android OS prevents

the application from receiving frames for about 267 ms, the equivalent of dropping 9

frames (working at 30 FPS) from vision processing pipelines Hu et al. (2018). Con-

sequently, computer vision applications don’t change resolutions at runtime, despite

the significant energy savings at lower resolutions. Banner removes resolution recon-

figuration latency through two techniques. Parallel reconfiguration maintains video

capture streams and schedules sensor reconfiguration in parallel while the application

is processing the frame. Format-oblivious memory management removes repeated

memory allocation from the reconfiguration procedure, avoiding expensive system

calls initiated by the application. Using these techniques, Banner completely elim-

inates frame-to-frame latency, allowing for seamless multi-resolution frame capture.

3

Banner also achieves the minimum possible end-to-end reconfiguration latency, fun-

damentally bounded by the pipeline latency of frame readout (usually larger than two

frames). The reduction in reconfiguration latency results in a 49% power consump-

tion reduction by reconfiguring the resolution from 1080p to 480p compared with

computationally downsampling 1080p↓480p, measured on a Jetson TX2 board.

For protecting visual privacy in cloud-based AR applications, this work identifies

that under the current coarse-grained permission enforcement model, the internet per-

mission, the camera permission, and the storage permission are all managed within

one application process. Once granted, malicious developers of AR apps could silently

collect camera frames and the information derived from them for malicious intent,

including sending visual data to a private server, unbeknownst to the user. To address

the privacy disclosure of continuous camera usage, this work introduces LensCap, an

application development framework built on top of split-process access control, which

allows users with fine-grained and proactive control over the app’s potential trans-

mission of camera frames and the information derived from them. In LensCap, the

split-process paradigm is adopted in the application layer, which is integrated into the

app development flow. An AR application is split into a visual process with full access

to operate on camera frames (but with network permission revoked) and a network

process to maintain Internet communications (but with camera permission revoked),

enforced by extending the legacy Android permission enforcement. LensCap enables

both processes to present user interfaces through screen-based overlay composition.

Then, data related to camera frames that need to be used in the network process can

only be transmitted out of the visual process boundary through our trusted LensCap

communication services, wrapped around trusted AR frameworks, and subject to the

user’s monitoring and approval through LensCap data usage notifications at a fine

granularity. This work prototypes LensCap as an Android library that can work

4

with standalone Android projects, as well as with Unreal Engine (UE) projects as

a plugin. This work evaluates LensCap in five cloud-based AR applications that re-

quire the sharing of different types of image features, including camera pose, light

estimation, point cloud, face region, and the camera frame. This work finds that the

interactive latency between split processes and the overhead in app performance is

negligible, even at 60 frames per second. Our user study further validates the perfor-

mance similarity from the user’s perspective and the improvement in user confidence

while using untrusted AR apps.

For enabling dense point cloud live-capture and streaming, this work identifies:

(i) though raw point clouds are expensive to be streamed and processed, there is still

a resolution-based tradeoff that can be utilized, especially when not all points are

equally important. Capturing less points (subsampling) leads to less processing time

and energy consumption but trades visual quality. (ii) Point representation is simply

a special case of the voxel representation which presents opportunities to utilize the

flexibility provided by the voxel representation to enable fast resolution-based trade-

offs. To this end, this work proposes an edge-assisted multi-resolution adaptive point

cloud live-capture and streaming framework tailored for mobile platforms. The core

idea behind our framework is to utilize the flexibility of the voxel representation to

sample point clouds in different resolutions to exploit the resolution-based tradeoffs

among visual quality, energy efficiency, and performance. Then, by fully utilizing

edge computing, responsive high-quality visualization can be achieved. As a result,

the system empowers users with the capability to visualize high quality point clouds

captured off-device with the on-device level of mobility. This enables a variety of inter-

active apps including AR-based remote coaching, immersive sports viewing, and 3D

model reconstruction, etc. Our framework is prototyped using three off-the-shelf de-

vices, consisting of an Azure Kinect to capture high resolution/precision point clouds,

5

a Jetson TX2 development board to simulate the early data analysis and preparation

for utilizing real-time resolution-based tradeoffs on the mobile camera device, and

a smartphone to run an interactive AR application. Despite being evaluated with

specific hardware, our framework can work on other platforms, including other depth

sensors, edge computing platforms, and mobile devices. Our framework is evaluated

from two aspects. First, this work evaluates the effectiveness of our adaptive sampling

component in terms of the data throughput, the “compression” ratio, and the energy

efficiency. Second, this work evaluates the visual quality of our point cloud resizing

component in terms of SSIM. The evaluation demonstrates that our edge-assisted

framework is able to deliver point clouds at a comparable high throughput meeting

various real-time requirements with an improved performance, compression ratio, and

energy efficiency, while maintaining a reasonable visual quality.

The rest of this paper is organized as follows: §2 introduces related work, §3

presents Banner media framework, §4 presents LensCap application development

framework, §5 describes our point cloud live-capture and streaming platform, and

§6 concludes this work.

6

Chapter 2

RELATED WORK

Fine-grained control of visual data is always desired, but realizing it presents many

challenges. In this chapter, related work is discussed in detail from three aspects,

maintaining continuous mobile vision, protecting data privacy, and streaming dense

point clouds to mobile clients.

2.1 Continuous Mobile Vision

The limited energy (battery life) is always a problem for mobile devices. If vision

applications are kept working at a low energy efficiency, the uniqueness of mobility and

convenience brought by mobile devices will be impaired. Towards continuous mobile

vision applications, there are many different types of solutions. Hegarty et al. (2016)

introduced a flexible multi-rate image processing pipeline to improve vision tasks’

performance with three orders of magnitudes lower energy consumption. Hegarty

et al. (2014) introduced Darkroom to ease developers burden when they want to

utilize specialized image signal processors for higher energy efficiency. Roy et al.

(2011) introduced an energy-efficiency context recognition framework for multi-modal

sensing. Priyantha et al. (2011) proposed a dedicated low-level processing hardware

to reduce sensing power. Ben Abdesslem et al. (2009) presented Abdesslem as the

solution in a multi-sensory environment in which the sensing cost is reduced by using

cheaper sensors more often. Lin et al. (2012) presented Reflex to help developers

leverage low-power processors on mobile devices. Buckler et al. (2017) introduced

a reconfigurable software pipeline to replace image signal processing hardware to

reduce energy consumption. Chen et al. (2016) proposed Glimpse, which is an energy

7

efficient continuous object detection system that is able to balance the accuracy and

energy tradeoff between local and offload computing. LiKamWa and Zhong (2015)

introduced Starfish to enable resource sharing among computer vision applications to

improve energy efficiency. LiKamWa et al. (2016) presented RedEye which aims at

shifting the early vision processing to analog domain to reduce image sensing power

consumption. Similar to those works, this work also aims at improving the runtime

energy efficiency of continuous mobile vision applications by tackling the root cause

of a long latency during resolution change in the operating system.

2.1.1 Dynamic Resolution-Based Tradeoffs

Resolution-based tradeoffs in task accuracy, processing latency, and energy effi-

ciency can be identified not only in 2D visual data, but also 3D point clouds. These

tradeoffs have been utilized in a variety of continuous mobile vision applications for

energy efficiency Likamwa et al. (2021); Priyantha et al. (2011); Chu et al. (2011);

Haris et al. (2018a); LiKamWa et al. (2013a). In 2D visual data, image downsam-

pling has been a long term choice (either by skipping or averaging surrounding pixels)

to reduce the data size for various purposes including more efficient computation.

System-wise, Kodukula et al. (2021) introduced Rhythmic Pixel Regions to encode

pixels coming out of the image sensor into regions represented by different resolutions

before they even reach the memory such that the memory footprint is reduced while

with the task accuracy maintained. In addition, Hu et al. (2018) demonstrated that

reconfiguring the sensor resolution physically is more energy efficient than downsam-

pling. However, unlike computational photography tasks such as HDR imaging which

can blend several frames captured with different sensor settings for improving image

quality, no frame-critical application is able to change resolution at runtime because

resolution change incurs long latency penalties in current operating systems. In 3D

8

visual data, Riegler et al. (2016) proposed OctNet, which utilizes an unbalanced Oc-

tree structure to represent a region of points with different resolutions based on its

importance such that the overall orientation estimation accuracy in the point cloud-

based deep learning application can be improved. Wang et al. (2020) explored the

representation of LiDAR data in the context of object detection in which they al-

low fixed-size voxels to be reconfigured with different resolutions determined by their

neighbors. In this work, we also advocate that the resolution-based tradeoff is the

key enabler not only to improving energy efficiency in traditional AR applications,

but also to interactive use cases in 3D vision applications on mobile devices.

2.2 Protecting Data Privacy

Protecting data privacy on mobile devices is always a research problem. Data pri-

vacy is usually protected by controlling the input, monitoring the usage, and tracking

the output. For example, Arzt et al. (2014) presented FlowDroid, a static taint-

analysis system to address data leakage in malicious applications. FlowDroid can

model the complete lifecycle of an Android application and precisely monitor contexts,

flows, fields, and objects with affordable performance overhead through on-demand

alias analysis. Enck et al. (2010) introduced TaintDroid to taint, analyze, and track

user’s sensitive information at the granularity of variables, messages between applica-

tions, native methods, and files. TaintDroid is able to dynamically track those tainted

data and identify how they are impacting other data that might cause data leakage.

Wang et al. (2019) proposed LeakDoctor, a system that automatically detects privacy

disclosure and determines if those privacy disclosures are necessary for functionalities

of the app. However, these types of solutions discussed above can hardly be applied

to protect visual privacy because of the high cost (in terms of latency) of analyzing

visual data at runtime, which usually incurs a large throughput.

9

Protecting Visual Privacy

Many previous works attempt to protect visual privacy by controlling the input,

i.e., by depriving untrusted vision applications from accessing the whole camera

frame Roesner et al. (2014); Aditya et al. (2016); Olejnik et al. (2017). Jana et al.

(2013) introduced the Darkly system to address the threat of data over-collection and

aggregation in untrusted third-party vision applications. In Darkly, camera frames are

turned into opaque references and untrusted vision applications can only dereference

them through trusted library APIs. Similarly, the Oculus Quest camera system Face-

book (2021) directly prohibits apps from accessing the passthrough camera. Instead,

developers are only able to utilize camera poses, controller poses, and hand poses.

In Raval et al. (2014) and Raval et al. (2016), Raval et al. provided tools to give

AR users finer-granularity control over their camera frames. AR users are able to

define the part of camera frames that can be seen by untrusted vision applications.

These types of works are inflexible and insufficient to protect visual privacy in cloud-

based AR apps. Depriving vision applications from accessing the whole camera frame

might limit some vision apps that do require to work on objects and features of a

camera frame directly and render the results or restrict AR experiences because AR

applications need to provide the whole camera frame for virtual object overlay. Fur-

thermore, visual frames are still stored and managed within one application process,

which remain vulnerable to be collected through network access.

2.2.1 Isolation and Compartmentalization

Isolation and compartmentalization are adopted in both hardware and software

domains to separate the execution of untrusted code from trusted code Shekhar et al.

(2012); Zhang et al. (2013); Huang et al. (2017); Backes et al. (2015); Jensen et al.

10

(2019); Hu et al. (2021a). Herbster et al. (2016) proposed Privacy Capsules which

targets on protecting the leakage of user information through untrusted third-party

applications. Privacy Capsules enforces applications to first execute in the unsealed

phase in which the application has no access to the sensitive input but full access to the

network resource, and then in the sealed phase in which the application gains access to

the sensitive input but losing the capability of network communications. Raval et al.

(2019) proposed to isolate plugins from the application as an individual app. It allows

users to mediate resource requests made by apps which further enables more flexible

authorizations to them. Dawoud and Bugiel (2019) in DroidCap also pointed out the

necessity of application compartmentalization to protect privacy. DroidCap, which

is a system that associates each IPC object with permissions for capability-based

access control, could be integrated with our work for capability-based access control

between split processes. Track and Kilpatrick (2003) introduced Privman as a C

library for partitioning applications in UNIX environment to ease developer’s burden

when developing partitioned applications. In Privman, developers need to separate

their applications into a privilege server process and a main application process, in

which the main application process only has limited privileges. Apart from software

solutions, Intel introduced Software Guard Extensions (SGX) Costan and Devadas

(2016) to allow users to define private regions of memory for secured execution, which

further inspired tons of security and privacy works Sanchez Vicarte et al. (2020);

Shen et al. (2020). The idea of isolation and compartmentalization presented in

those systems can largely be borrowed to protect visual privacy in cloud-based AR

applications. In particular, a solution needs to be developed to isolate potentially

malicious behavior from accessing visual data streams, without affecting the sensitive

user experience.

11

2.3 Streaming Dense Point Clouds

Many previous works tried to stream dense point clouds at real-time. In general,

they can be categorized into two types: compression-based and study-based. Both

types of optimizations capture point clouds first and then perform operations on them

separately in an offline stage.

Compression-Based Optimization

In this category, many works represent the sparse 3D point clouds in tree structures to

enable real-time optimizations and efficient operations. Among them, Draco Google

(2021b) and PCL Rusu and Cousins (2011) are the two most popular libraries for

3D data processing. In Draco, 3D points are compressed using the KD-tree struc-

ture (lossless). Meanwhile, in PCL, points are compressed with the Octree struc-

ture (lossy). Both libraries can compress point clouds to be magnitudes lower for

optimization in storage and transmission. With the help from those libraries, Lee

et al. (2020) further introduced GROOT system to advance the conventional sequen-

tial Octree into a Parallel-Decodable tree. GROOT uses Octree breadth bytes and

depth bytes to independently encode each node in the last three depth layers, through

which the decoding latency can be drastically reduced. In Kammerl et al. (2012), on

top of spatial redundancy removed by utilizing Octree, Kammerl et al. proposed a

double-buffering encoding and decoding scheme to track the correspondence of points

in different point clouds such that temporal redundancy can also be removed for

realizing real-time point cloud compression on a PC.

12

Study-Based Optimization

In this category, researchers perform studies on either the point cloud data itself or the

user’s behavior during point cloud visualization. Then, point clouds are captured and

stored in a local or remote server and then optimized and streamed to mobile users

guided by those study results, e.g., Qian et al. (2019). Qian et al. (2018) proposed

Flare to segment, fetch, and deliver 360°-video in tiles, based on the prediction of

user’s viewport trained on a large dataset. Similarly, Han et al. (2020) presented

ViVo to deliver high quality point cloud data to mobile client devices. ViVo predicts

user’s viewport and optimizes point cloud data based on viewport visibility, occlusion

visibility, and distance visibility such that the bandwidth for streaming point cloud

data is reduced with its visual quality preserved. He et al. (2018) introduced Rubiks

framework, which splits the volumetric video into high-low quality tiles based on

the probability of being viewed by users, such that even 8K video streams can be

streamed at real-time. Feng et al. (2020) proposed a framework to remove both

the temporal and spatial redundancy in streaming LiDAR point clouds, achieving a

higher compression rate and a lower computing complexity.

These two types of optimizations are not sufficient for three reasons. First, the high

latency incurred to compress and study point clouds is not viable for its live-capture,

streaming, and rendering on mobile client devices. The detachment of capture and

streaming degrades the user experience in a variety of interactive use cases. Second,

viewport prediction yields relatively low accuracy dealing with real-time data. The

user experience will again be degraded if wrong portion of the point cloud data is

captured, streamed, and rendered. Third, computing and storing large scale point

clouds is very challenging, especially when we continue to push the computing to the

edge or to the camera device itself. A layered storage solution needs to be developed

13

to distribute computing to different components to increase the overall throughput

for an improved user experience.

2.3.1 Collaborative System

Other than these solutions discussed above, we can rely on edge or collaborative

systems to process heavy point clouds for real-time performance AlDuaij et al. (2019);

Zhu et al. (2020), as edge computing is becoming more popular and available. Qiu

et al. (2018) introduced AVR system for autonomous driving cars to share and work

on point clouds collaboratively at runtime such that the visibility of cars can be

drastically improved. Zhang et al. (2021b) introduced Elf, which is a system that

offloads smaller inference tasks in parallel across multiple edge servers such that the

system can operate on high resolution images. In recent years, the emergence of IoT

devices, as well as technologies such as AR/VR incurs huge data throughput which

further pushes the data and the computing boundary to the edge Liu and Gruteser

(2021); Jiang et al. (2021); Zhang et al. (2019, 2021a,c). Liu et al. (2019) presented a

framework which encodes higher interests RoIs with higher quality and streams and

infers on frame slices in parallel to reduce latency in offloading and improve detection

accuracy in edge assisted object detection use cases. Ben Ali et al. (2020) proposed

an edge-assisted SLAM system which decouples the mapping operation by utilizing

a layered map storage (global map on the edge and local map on the device) to

improve performance. He et al. (2021) introduced VI-Eye, an infrastructure-assisted

framework which efficiently extracts a small sets of saliency points from key semantic

objects to achieve real-time registration of two point clouds in autonomous driving.

We also advocate that edge computing will be the key enabler to future dense

point cloud-based interactive use cases on mobile devices since the uniqueness of edge

computing in providing faster responses, as well as layered storage and computing

14

resources. However, solutions need to be developed to find a balance among streaming

latency, computing latency, throughput expectation, and interaction requirements,

with different types of data combined and distributed to be processed on different

network components.

15

Chapter 3

SEAMLESS SENSOR RESOLUTION RECONFIGURATION FRAMEWORK

Mobile vision systems would benefit from the ability to situationally sacrifice image

resolution to save system energy when imaging detail is unnecessary. Unfortunately,

any change in sensor resolution leads to a substantial pause in frame delivery – as

much as 280 ms. Frame delivery is bottlenecked by a sequence of reconfiguration

procedures and memory management in current operating systems before it resumes

at the new resolution. This latency from reconfiguration impedes the adoption of

otherwise beneficial resolution-energy tradeoff mechanisms.

We propose Banner as a media framework that provides a rapid sensor resolution

reconfiguration service as a modification to common media frameworks, e.g., V4L2.

Banner completely eliminates the frame-to-frame reconfiguration latency (226 ms to

33 ms), i.e., removing the frame drop during sensor resolution reconfiguration. Ban-

ner also halves the end-to-end resolution reconfiguration latency (226 ms to 105 ms).

This enables a more than 49% reduction of system power consumption by allowing

continuous vision applications to reconfigure the sensor resolution to 480p compared

with downsampling 1080p↓480p, as measured in a cloud-based offloading workload

running on a Jetson TX2 board. As a result, Banner unlocks unprecedented capa-

bilities for mobile vision applications to dynamically reconfigure sensor resolutions to

balance the energy efficiency and task accuracy tradeoff.

3.1 Introduction

The high energy consumption of visual sensing continues to impede the future

of mobile vision in which devices will continuously compute visual information from

16

Resolution Request Resolution Request

Frame-to-frame Latency

(a) In legacy systems, any change in

sensor resolution leads to a substantial

pause in frame delivery.

Resolution Request Resolution Request

(b) Banner completely removes frame-

to-frame latency for reconfiguring sen-

sor resolution.

Figure 3.1: Compared with current systems, Banner enables rapid and seamless sensor

resolution reconfiguration.

sensory data, e.g,. for visual personal assistants or for augmented reality (AR). While

vision algorithms continue to improve in task accuracy and speed, mobile and wear-

able vision systems fail to achieve sufficient battery life when vision tasks are contin-

uously running. Continuous video capture drains the battery of Google Glass in 30

minutes Berenbaum (2013).

It is well known that a common culprit is the energy-expensive traffic of image

data Kodukula et al. (2018); LiKamWa et al. (2013b). Transferring high resolutions

at high frame rates draws substantial power consumption from the analog-digital con-

version, the sensor interface transactions, and the memory usage. Simply capturing

1080p frames at 30 frames per second consumes more than 2.4 W of system power

measured on a Moto Z smartphone. However, capturing and displaying 480p frames

only consumes 1.3 W of system power.

Image resolution can create an interesting tradeoff for visual tasks: low resolu-

tion promotes low energy consumption, while high resolution promotes high imag-

ing fidelity for high visual task accuracy. For example, as we explore with our AR

marker-based pose estimation case study (§3.1.1), lower resolutions suffice when an

AR marker is close, but high resolutions are needed when the AR marker is far away

17

or small. This tradeoff has been explored by several visual computing system works

including marker pose estimation, object detection, and face recognition Ha et al.

(2014); Hu et al. (2018); LiKamWa et al. (2013b); Haris et al. (2018b); Redmon and

Farhadi (2018); Lin et al. (2017); Zhang et al. (2018); Ruzicka and Franchetti (2018);

Buckler et al. (2018). We too advocate that mobile vision systems should be able

to benefit from the ability to situationally sacrifice image resolution to save system

energy when imaging detail is unnecessary.

Unfortunately, any change in sensor resolution leads to a substantial

pause in frame delivery. This is illustrated in Figure 3.1a. We measure that

reconfiguring sensor resolution in the Android OS prevents the application from re-

ceiving frames for about 267 ms, the equivalent of dropping 9 frames (working at

30 FPS) from vision processing pipelines Hu et al. (2018). Consequently, computer

vision applications don’t change resolutions at runtime, despite the significant energy

savings at lower resolutions. For example, Augmented Reality applications such as

“Augment” and “UnifiedAR” constantly work at 1080p, drawing 2.7 W of system

power.

Thus, in this paper, we target image sensor resolution reconfiguration latency as

a chief impediment of energy-efficient visual systems. Referring to Hu et al. (2018),

we break the resolution reconfiguration latency into two types of latency. End-to-

end reconfiguration latency is the time between an application’s request to change

resolution and the time the application receives a frame of the new resolution. Frame-

to-frame latency is the interval between two frames provided to the application in

which the latter frame is configured at the new resolution.

The problem of long resolution reconfiguration latency is common across all mo-

bile platforms, as we measured on different devices. In the Android OS, there is a

400 ms end-to-end reconfiguration latency Hu et al. (2018). In the Linux V4L2 media

18

framework, we observe a 260 ms end-to-end reconfiguration latency. End-to-end re-

configuration latency in iOS also takes around 400 ms, as measured by timestamping

a simple video capturing application we built in Xcode Ibrahim (2019). Similarly,

end-to-end reconfiguration latency in Gstreamer with Nvidia Libargus occupies more

than 300 ms.

Almost all of the resolution reconfiguration latency originates from the operating

system; at the sensor level, hardware register values are effective by the next frame

ON Semiconductor (2017a,b); Apple (2018). We proposed several alternatives at

the Android framework and HAL level for discussion in our previous work Hu et al.

(2018). However, from deeper understanding of the Android OS, we find that the

problem stems from the lower level system, i.e., media frameworks in the kernel. The

underlying issue is that the kernel’s media frameworks require user space applications

to frequently invoke a sequence of expensive system calls in order to request a new

sensor resolution.

Our study of the media frameworks exposes several key insights. First, the current

streaming pipeline needs to be preserved during resolution reconfiguration. Frames

already captured at the previous resolution are useful and need to be read out. Second,

resolution change should also be immediately effective in the next capture. This

capture will be available after moving through the pipeline. Third, synchronizing

the resolution of frame buffers across the system stack is expensive and should be

avoided. As it stands, media frameworks require the application to initiate expensive

system calls to repeatedly allocate memory for the frame buffers.

To exploit these key insights, we design Banner: a system solution for rapid

sensor resolution reconfiguration. Banner revolves around two techniques. Parallel

reconfiguration maintains video capture streams and schedules sensor reconfiguration

in parallel while the application is processing the frame. Format-oblivious memory

19

management removes repeated memory allocation from the reconfiguration proce-

dure, avoiding expensive system calls initiated by the application. Using these tech-

niques, Banner completely eliminates frame-to-frame latency, as illustrated in Fig-

ure 3.1b, allowing for seamless multi-resolution frame capture. Banner also achieves

the minimum possible end-to-end reconfiguration latency, fundamentally bounded by

the pipeline latency of frame readout (usually larger than two frames). In extreme

cases, if the application requests only one buffer to be allocated (not allowed for video

streaming) or if the system allows frames already captured to drop, the end-to-end

reconfiguration latency can further be reduced in Banner.

Because of the unavailability of open-source camera drivers and camera host

drivers for Android devices, our Banner prototype is implemented in the Linux ker-

nel. We evaluate Banner’s efficacy within the Linux V4L2 framework by running

three workloads on a Jetson TX2 board with the Ubuntu system, including display-

only, cloud-based offloading, and marker-based pose estimation. Our evaluation con-

firms that Banner completely eliminates frame-to-frame latency, even for workloads

operating at 30 FPS. Furthermore, Banner creates a 54% reduction in end-to-end

reconfiguration latency (from 226 ms to 105 ms).

The reduction in reconfiguration latency results in a 49% power consumption

reduction by reconfiguring the resolution from 1080p to 480p compared with com-

putationally downsampling 1080p↓480p, measured on a Jetson TX2 board. While

we implement and evaluate our design choices based on Linux V4L2, they can be

generalized to other media frameworks, such as Gstreamer (which can capture videos

from V4L2 devices), and Linux-based operating systems, including the Android OS.

Altogether, Banner will unlock new classes of vision algorithms that can balance the

resolution-based energy efficiency and accuracy tradeoffs to maximize performance in

a variety of continuous mobile vision tasks.

20

20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0
Distance between the marker and the camera(cm)

0
2
4
6
8

10
12
14
16

Tr
an

sla
tio

na
l e

rro
r(c

m
)

960p
720p

480p
960p 480p

(a) Low resolution main-

tains a low translation er-

ror when marker is close to

camera.

20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0
Distance between the marker and the camera(cm)

0

20

40

60

80

Ro
ta

tio
na

l e
rro

r(d
eg

re
es

)

960p
720p

480p
960p 480p

(b) Low resolution main-

tains a low rotation error

when marker is close to

camera.

960p 720p 480p 960p 480p0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

En
er

gy
 p

er
 fr

am
e(

J)

(c) System energy consump-

tion at 480p is 70% and 50%

less than 960p and downsam-

pling.

Figure 3.2: In our marker-based pose estimation case study, task accuracy (translation

and rotation error) can be maintained and system energy consumption (energy per

frame) can be reduced by 70% if sensor resolution is reconfigured from 960p to 480p

when the distance between the marker and the camera is reduced from 35 cm to 20 cm.

3.1.1 Case Study for Resolution-Driven Tradeoffs

To motivate our work, we present a case study around a marker-based pose estima-

tion application running on a Moto Z mobile phone. Marker-based pose estimation

forms the foundation for many AR frameworks, including Vuforia Vuforia (2021),

ARCore Google (2021a), and ARKit Apple (2021) for image-based tracking. Our ex-

ploration of marker-based pose estimation allows us to analyze the resolution-based

energy and accuracy tradeoff in mobile vision tasks. The pose estimation application

uses an ORB feature detector, Flann-based matcher, and Perspective-n-Point algo-

rithm to detect keypoints in an image frame, match keypoints with model descriptors,

and estimate the position of the virtual camera against the physical environment re-

spectively on a frame-to-frame basis.

The energy efficiency is characterized by the power traces acquired from the Trepn

Profiler and the number of frames processed per second measured at different reso-

21

lutions. To evaluate task accuracy, we use the MSE rotation and translation vector

errors compared with the “ground truth” acquired from the highest resolution. Prior

work Hu et al. (2018) has already demonstrated that based on the distance and view-

ing angle between the camera and the marker, sensor resolution needs to be actively

reconfigured to balance efficiency and performance. Similarly, results in Figure 3.2

show that, by reconfiguring the sensor from 960p to 480p while the sensor is approach-

ing the marker from 35 cm to 20 cm, the task accuracy can be maintained (Figure 3.2a

and 3.2b) and a 70% energy consumption reduction can be achieved (Figure 3.2c).

As an alternative to changing sensor resolution, the system can computationally

downsample the frames to reduce the computational workload of the vision algorithm.

However, results in Figure 3.2c show that, capturing at 480p costs almost 50% less

energy than computational downsampling 960p↓480p, not to mention the higher task

accuracy.

In conclusion, physically reconfiguring the sensor resolution is the most viable

way to balance the resolution-based energy efficiency and task accuracy tradeoff for

continuous mobile vision tasks. However, sensor resolution reconfiguration is limited

by a substantial latency.

3.2 Background

In this section, we elaborate on how user applications request different sensor

resolutions using the Video4Linux2 (V4L2) framework. The V4L2 framework provides

APIs for applications to manipulate cameras on Linux. V4L2 is commonly used by

almost all Ubuntu desktops and Android devices built upon the Linux system.

In V4L2, image sensor resolution reconfiguration follows a strict sequential pro-

cedure. This sequential procedure leads to a substantial amount of end-to-end and

frame-to-frame reconfiguration latency, which impedes the ability for applications

22

to utilize resolution-based energy tradeoffs. Through this section, we explore the

V4L2 implementation on an NVIDIA Jetson TX2 board with an ON Semiconductor

AR0330 sensor.

V4L2 System Architecture

In the V4L2 framework, there are four main driver modules in the kernel that col-

laborate to provide camera services. The V4L2 driver is responsible for exposing

camera control operations to the user application, such as opening the V4L2 camera

or setting its exposure or brightness. The camera host driver, which implements

the V4L2 driver and V4L2 camera interfaces, is responsible for ensuring the proper

input and output format for frames flowing between the camera and the memory, as

well as starting and stopping the reception of camera frame data. The video buffer

driver, which is a helper to the V4L2 driver, is responsible for allocating and deallo-

cating buffers with proper sizes for corresponding resolution requests. The camera

driver, which communicates with the camera hardware, is responsible for setting up

the camera for the requested output.

Before the application can start streaming with the V4L2 camera devices, it needs

to request at least a pair of buffers to store and process the captured frames. The

buffer ownership transfer is realized by dequeuing buffers ioctl(VIDIOC DQBUF) and

queuing buffers ioctl(VIDIOC QBUF) between the application and the camera host

driver. The application dequeues a buffer when the capture is completed by the image

sensor. The application queues a buffer back for sensor capture after the processing on

it is done – the application relinquishes control of the buffer. Depending on the needs

of the imaging pipeline, the application can require more buffers, such that multiple

pipeline stages can simultaneously address buffers. All buffers ready for applications

to read are stored in the camera host driver. Typically, only one buffer is transferred

23

to the application at a time.

3.2.1 Sequential Reconfiguration Process

Once the video stream has been started, V4L2 requires the application to recon-

figure sensor resolution in a sequence of steps. Notably, each subsequent step in the

sequence invokes a different subsystem, creating synchronization issues. We illustrate

this sequential procedure in Figure 3.4a and detail it here.

1. The application initializes a resolution request while the camera is capturing.

2. The application calls V4L2 ioctl(VIDIOC STREAMOFF), which is implemented

in the camera host driver and the camera driver to turn off current working

streams. This step takes around 75 ms.

3. The application calls munmap(), which is implemented in the video buffer driver

to deallocate the memory. This step takes less than 1 ms.

4. The application calls V4L2 ioctl(VIDIOC S FMT), which is implemented in the

camera host driver and the camera driver to set the sensor’s output format.

5. The application calls V4L2 ioctl(VIDIOC REQBUFS) and mmap(), which are

implemented in the video buffer driver to request, allocate, and map new sets

of buffers. Together with step 4, initializing the device takes around 31 ms.

6. The application finally calls V4L2 ioctl(VIDIOC STREAMON), which is imple-

mented in the camera host driver and the camera driver to set the input and

output format of the channel and then start the video stream. This step takes

around 72 ms.

7. The first frame at new resolution is returned after a pipeline latency, typically

several frame times later, depending on the pipeline depth.

24

Reconfiguration operation Average execution time

Stop streaming 75 ms

Initialize device 31 ms

Start streaming 72 ms

Table 3.1: Expensive operations and their average cost in current sensor resolution

reconfiguration procedure measured on the TX2/AR0330 setup.

Table 3.1 shows the latency costs of several expensive operations in the sensor

resolution reconfiguration procedure measured on the TX2/AR0330 setup.

3.2.2 Resolution Synchronization Creates Latency

Throughout the reconfiguration process, there are several strict resolution syn-

chronizations among the camera host driver, the video buffer driver, and the camera

driver, each of which introduces a substantial reconfiguration latency.

First, resolution synchronization between the video buffer driver and the camera

driver is established by requesting buffer size based on specific sensor format. This

synchronization ensures that there will be enough frame buffer space to hold complete

frames. If the syscall ioctl(VIDIOC S FMT) is called to set the sensor resolution,

ioctl(VIDIOC REQBUFS) and mmap() also need to be called for a new set of buffers.

Second, resolution synchronization between camera host driver and camera driver

is established by updating the camera driver host state based on the camera’s format.

If ioctl(VIDIOC S FMT) is called to set the sensor resolution, the input state of

camera host driver also needs to be reconfigured. This synchronization ensures that

the video input module on board has the proper format to receive frames flowing

from the camera.

Third, the previous two synchronizations force a resolution synchronization be-

tween the camera host driver and video buffer driver. That is, if the system requires a

25

new set of buffers, the output state of camera host driver also needs to be reconfigured.

By synchronizing resolution among these drivers, the camera service ensures cor-

rect capture, delivery, and render of image frames. But this strong resolution cou-

pling among drivers creates bottlenecks; if an application requests a new resolution,

the whole configuration procedure described above in §3.2.1 will be invoked, creating

a substantial latency.

3.2.3 Reconfiguration Latency Drops Frames

As shown in Figure 3.7, the overall end-to-end reconfiguration and the frame-to-

frame latency are both about 230 ms in the legacy V4L2 framework, as we measured

on the TX2/AR0330 system. For a camera running at 30 FPS, a 230 ms frame-to-

frame reconfiguration latency is equivalent to the system dropping 8 camera frames.

In addition, the legacy V4L2 framework abandons all captured frames that are stored

in buffers once the application requests a new sensor resolution. Thus, depending

on how many buffers are requested by the application (N), the number of frames

dropped could be N + 8. The number of requested buffers (N) must be larger than

2 (typically 3 or 4) The kernel development community (2019).

We see resolution reconfiguration latency manifested on all devices we tested.

We measure that end-to-end resolution reconfiguration latency in Android and iOS

devices both consume about 400 ms. A fast sensor resolution reconfiguration solution

needs to be introduced to media frameworks so that frame-critical computer vision

applications on top of them can frequently reconfigure the sensor resolution to improve

energy efficiency.

26

Media framework

Host driver

Image
sensor

Video
buffer

Banner framework

Banner host driver

Image
sensor

Video
buffer

Figure 3.3: Banner helps the application reduce the number of required system

calls to reconfigure sensor resolution to one ioctl(VIDIOC RECONFIGURE) call, in-

stead of multiple systems calls: mmap(), munmap(), ioctl(VIDIOC STREAMON), and

ioctl(VIDIOC STREAMOFF).

3.2.4 Design Guidelines

We declare the following insights for inspiring the design of a rapid and seamless

sensor resolution reconfiguration system:

(i) Preserve the pipeline of existing frames. Frames already captured and stored in

the pipeline are still meaningful. The legacy V4L2 framework abandons those frames

to fulfill the new resolution request immediately. On the contrary, the Android OS

will issue the new resolution request only after pipelined frames are processed and

delivered properly. For some visual tasks – including marker-based pose estimation –

every frame is critical to task performance because of the potential negative influence

on task accuracy and user experience. The sensory data should be continuous, i.e.,

frame drop is unacceptable. The system should find a way to maintain current streams

while reconfiguring the sensor for new resolution.

(ii) Resolution change should be immediately effective in the next capture. Sen-

sor register changes can be effective in the next capture, as is done for setting up

different exposure time for consecutive capture requests in HDR mode Apple (2018).

27

Similarly, the system should reconfigure related sensor registers immediately and

asynchronously once there is a new resolution request. This would allow applications

to expect and utilize the prompt resolution change.

(iii) Minimize synchronization across the video system stack, while ensuring cor-

rect sensory data. Resolution synchronizations among different driver modules lead

to repeated sequential reconfiguration every time there is a new resolution request

which causes huge amount of latency. In addition, resolution synchronizations trigger

some expensive and redundant system calls initiated by the application, including

mmap(). As long as the application knows the resolution of the frames it is processing

and the sensor knows the resolution for each frame it is capturing, the data will be

correctly delivered and interpreted. We argue that buffer size synchronization be-

tween the sensor and the application is unnecessary. Memory management can be

oblivious to format.

3.3 Design of Banner

Built on these derived design guidelines, we design Banner to address the res-

olution reconfiguration latency problem in the legacy V4L2 framework. Banner is

a fast sensor resolution reconfiguration framework that can provide frames contin-

uously, even between two frames at different resolutions. While we design Banner

to inter-operate with the V4L2 framework, the underlying concepts are generic to all

media frameworks. Compared to resolution reconfiguration in today’s system, Banner

halves the end-to-end reconfiguration latency and completely removes the frame-to-

frame reconfiguration latency, i.e., no frame drops. As a result, Banner unlocks a

variety of continuous mobile vision applications to control their image sensors for de-

sired resolutions. This allows new potential to balance energy efficiency and accuracy

tradeoffs.

28

Open device

Set sensor
format

Request/map
buffers

Start
streaming

Process
image

Resolution
request?

Stop
streaming

Release
buffers

No

Yes

(a) Resolution reconfiguration in

legacy V4L2

Open device

Set sensor
format

Request/map
buffers

Start
streaming

Process
image

Resolution
request?

Set sensor
format

No

Yes

Process
image

2

1

(b) Resolution reconfiguration in

Banner

Figure 3.4: In Banner, most of the sequential procedures are avoided for reconfiguring

sensor resolution. (i) Banner avoids repeated memory allocation; (ii) Banner sets

sensor format in parallel with user application.

In particular, Banner employs two key techniques: parallel reconfiguration and

format-oblivious memory management. Parallel reconfiguration aims at reconfigur-

ing the sensor while the application is processing frames for the previous resolution

such that the reconfiguration latency is hidden. Format-oblivious memory manage-

ment aims at maintaining a single set of frame buffers – regardless of resolution – to

eliminate repeated invocation of expensive memory allocation system calls.

29

System Overview

Banner is a media framework that allows applications to request sensor resolution

reconfiguration with seamless frame delivery. It exposes a system call to the applica-

tion and resides in the kernel as a camera host driver to interact with the video buffer

driver and the camera driver, as shown in Figure 3.3. Banner minimizes the required

number of system calls for vision applications to reconfigure the sensor resolution.

Figure 3.4b depicts the rapid sensor resolution reconfiguration procedure in our

proposed Banner framework. When starting the stream, the system sets up the

sensor, the sensor host, and the buffer with the highest supported resolution in a

sequential procedure, as it does with the V4L2 framework. However, after the appli-

cation requests a new resolution, Banner will not go through all steps in the sequential

procedure again. Instead, Banner maintains the stream without reallocating buffers

and then asynchronously reconfigures the sensor in parallel through only one ioctl

call from the application. Frames at new resolution will be returned after reading

out N frames (determined by the number of buffers requested) already captured with

previous resolution. Resolution reconfiguration in Banner is rapid and continuous,

i.e., without any frame drop. The procedure for stopping the capture and closing the

camera follows the same sequential procedure in V4L2 framework.

3.3.1 Parallel Reconfiguration

As we discussed in §3.2, resolution reconfiguration in the current V4L2 frame-

work follows a strict sequential procedure. This sequential reconfiguration procedure

introduces both a substantial end-to-end reconfiguration latency and a substantial

frame-to-frame reconfiguration latency. In Banner, sensor resolution reconfiguration

is completed in parallel while the application is processing frames. By doing so, the

30

Capture Frame

User
Thread

Banner
Reconfiguration

Thread

Capture
Thread

Resolution Request

qbuf

Process Frame

Capture Frame

Execute sensor
reconfiguration

Process Frame

Capture Frame

Process Frame

𝑇"#$%&'() 𝑇"#$%&'()

𝑇*+,-%$𝑇.+,-%$ 𝑇*+,-%$

𝑇/(0$+&% 𝑇/(0$+&% 𝑇/(0$+&%

𝑇"#$%&'()

dqbuf dqbufqbuf qbuf dqbuf

Figure 3.5: Banner reconfigures sensor resolution in parallel with application pro-

cessing frames in the reconfiguration timing budget (a function of frame interval and

capture time) such that reconfiguration latency can be hidden.

frame-to-frame resolution reconfiguration latency is fully hidden.

To achieve this, the parallel reconfiguration module is designed based on three

considerations. First, the sensor is not always busy; there is an idle time between

captures. Second, the reconfiguration thread cannot be interrupted, otherwise the

end-to-end latency will be increased. Dequeuing a buffer signals that a capture is

complete and queuing a buffer signals the next capture. The system should identify

the right time to reconfigure sensor. Third, reconfiguration itself takes time, due to

camera driver implementations and camera hardware limitations.

To resolve these considerations, thread-level concurrency can address the first and

second considerations, while a reconfiguration timing budget can address the second

and third considerations. Altogether, Banner can schedule the right time to reconfig-

ure the sensor and trigger the next capture. The parallel reconfiguration strategy is

illustrated in Figure 3.5.

31

Thread-Level Concurrency

The crux of the parallel reconfiguration is to utilize thread-level concurrency to re-

configure sensor resolution. In the current V4L2 framework, in addition to a main

thread, there is a capture thread responsible for capturing frames. This capture thread

is frozen until it is woken up by the application queuing a buffer for frame capture.

The capture thread and the main application thread process in parallel. Although

the sensor is busy capturing frames when the capture thread is awake, it is free for

reconfiguration while the capture thread is frozen. For Banner, we design a recon-

figuration thread that can work in parallel with the application thread. This thread

processes reconfiguration requests while the application processes frames and the cap-

ture thread is frozen. We choose to create a reconfiguration thread, considering the

latency penalty incurred by waking up the capture thread. Reconfiguration thread

and the main thread are joined before they wake up the capture thread for the next

capture. Banner uses atomic read/write to ensure thread safety.

Reconfiguration Timing Budget

The Banner reconfiguration thread cannot reconfigure the sensor when the capture

thread is active. Therefore, a resolution reconfiguration timing budget needs to be de-

fined for the reconfiguration thread to work with. We define resolution reconfiguration

timing budget Tbudget in Equation 3.1 as a function of frame interval Tinterval and cap-

ture time Tcapture. Tinterval – the interval between consecutive frame captures – is de-

fined by the application as the interval between two consecutive ioctl(VIDIOC QBUF)

calls from the application. Tinterval is typically held stable to ensure good user experi-

ence. Tcapture varies from frame to frame, influenced by the capture parameters such

as the exposure time and resolution. Tbudget is equal to frame interval Tinterval minus

32

the required capture time Tcapture, i.e.,

Tbudget = Tinterval − Tcapture (3.1)

It is important to ensure that sensor resolution reconfiguration is finished in the

reconfiguration timing budget such that the reconfiguration thread is not interrupted

by the wake up of the capture thread. Otherwise, capture at the new resolution will

be delayed by another capture with the old resolution, which causes both end-to-end

and frame-to-frame reconfiguration latency to be unpredictable.

In our implementation, we have observed that the reconfiguration timing budget is

long enough that the reconfiguration latency can be completely hidden by the main

application thread. That is, the frame-to-frame latency is eliminated. Seen from

the application side, the frame rate is stable in Banner even between two frames at

different resolutions. Based on our evaluation, we can maintain more than 30 FPS

for an offloading application with only 10 ms reconfiguration timing budget. We note

that different image sensors may require different amount of time to reconfigure the

resolution.

That being said, theoretically, if an application operates at an unstably fast frame

rate, then Banner could potentially delay the delivery of the frame after the resolution

request. For example, this would be the case if the application performs a memcpy

of the frame to a memory location and immediately queues the buffer for a next

capture. Still, in this case, Banner would improve the reconfiguration latency over

the legacy V4L2 framework, which would delay frame delivery while executing the

full reconfiguration procedure – complete with memory allocation.

33

3.3.2 Format-Oblivious Memory Management

As explained in §3.2, the legacy V4L2 framework synchronizes frame buffer reso-

lutions across all of its modules. Buffers are requested and mapped for a determined

resolution before the camera can even start capturing. If the application requests

another sensor resolution, the legacy V4L2 framework stops current streams, releases

previous frame buffers, and allocates a fresh set of buffers. Thus, synchronizing the

format can be very expensive for the resolution reconfiguration procedure.

We propose a format-oblivious memory management that removes resolution syn-

chronization in the resolution reconfiguration procedure. Format-oblivious memory

management reuses previously allocated buffers to store frames with different for-

mats, as shown in Figure 3.6. This technique reduces the end-to-end reconfiguration

latency and frame-to-frame reconfiguration latency by avoiding unnecessary system

calls.

One-Time Buffer Allocation

Instead of allocating frame buffers every time the application requests a new reso-

lution, format-oblivious memory management only allocates buffers once when ini-

tializing the camera. To support all formats, the system can allocate for the highest

supported resolution by the camera for reuse for any resolution.

Reusing buffers brings several benefits. First, repeated memory deallocation

and allocation (ioctl(VIDIOC REQBUFS) and mmap()) for different sensor resolutions

are now completely avoided. The system call mmap() is very time consuming as

we discussed in §3.2. Second, current video streams are not discarded. The sys-

tem calls for turning on and off the video streams – ioctl(VIDIOC STREAMON) and

ioctl(VIDIOC STREAMOFF) respectively – are avoided. Both of them consume tens

34

of milliseconds. Third, since there is only one format at the receiving end, the system

doesn’t need to set the output state of camera host driver for reconfiguration.

Format-Oblivious Frame Delivery

Format-oblivious memory management delivers the frame to the application not based

on the payload calculated by the sensor format, but based on how many bytes are

used. When the application requests another resolution, Banner passes the format

information to the camera driver and the camera host driver appropriately. As the

system needs to maintain the current pipeline of frames, there will be a resolution

discrepancy among the frames already captured and the frames to be captured in the

new configuration.

Banner solves this problem easily by delivering the frames according to how many

bytes are used. Banner and the frame itself will provide enough format information

for the application to interpret frames. We argue that as long as the application and

sensor know the format at the appropriate times, the frame can be correctly captured,

delivered, and interpreted.

Format-oblivious memory management can be realized without any modification

to the video buffer driver. The only potential limitation of this approach is that

it allocates more memory than needed for low resolution configurations. For exam-

ple, when configured for 480p resolutions, the frame buffer will occupy the memory

footprint of a 1080p frame buffer (6 MB for 3 frames). However, on modern mobile

systems, we do not foresee this as particularly problematic; most modern phones have

at least 1 GB of RAM. More importantly, the additional buffer allocation does not

increase system power, as DDR power consumption is governed by data rate, not

allocation. We confirm this in our evaluation.

35

480p buffer 480p buffer

Format-oblivious
in Banner

Format-aware
in legacy V4L2

Resolution request

1080p buffer

1080p frame

1080p buffer

1080p frame

1080p buffer

1080p frame

1080p buffer

1080p frame

1080p buffer 1080p buffer

1080p frame

480p frame 480p frame

480p frame

Figure 3.6: After a resolution request, format-oblivious memory management in Ban-

ner reuses buffers previously allocated and stores newly configured frames, despite

potential format mismatch.

3.4 Implementation of Banner

Our Banner prototype is built by modifying the V4L2 media framework in the

upstream Nvidia Tegra TX2 Linux kernel 4.4, L4T 28.2.1. In this implementation,

the application reconfigures sensor resolution rapidly through only one

ioctl system call.

3.4.1 Parallel Reconfiguration

The goal of Banner’s reconfiguration policy is to utilize idle time in kernel space

to change the format of an image sensor. After capturing and processing a frame, the

kernel camera host driver returns to an idle state until the next capture. Knowing

that the kernel is idle, Banner can use this time to send commands that change the

sensor’s format and perform any state changing on the camera host driver side. This

sufficiently performs the operations of reconfiguring the sensor resolution. Resolution

reconfiguration is initialized by an ioctl(VIDIOC RECONFIGURE) call, from the ap-

plication which will set a sensor resolution format that is passed from user space to

the camera host driver object. This system call will then immediately spawn a kernel

thread to perform the reconfigure operation. We spawn a single thread to perform

36

our reconfiguration as the overhead of spawning multiple times for more parallelism

made reconfiguration slower overall. Setting camera host driver states is an imme-

diate operation. The only part of the reconfiguration process that takes significant

time is configuring the camera hardware.

Configure Sensor Device

The sensor configuration call changes the state of the camera device. The camera

driver module then controls the image sensor directly by making I2C or other bus

calls. The time that configuring the sensor takes will vary from sensor to sensor as

each sensor will have a different protocol for setting sensor format.

Update Camera Host Driver State

Updating the camera host driver’s state will prepare it to capture frames at a new

resolution. The camera host driver state must be updated immediately after the sen-

sor is reconfigured, as the next captured frame will be at the sensor’s new resolution.

If it is not done, the next frame will be returned with the old resolution and be inter-

preted improperly at the application level. The next ioctl(VIDIOC QBUF) operation

will use the settings set here to capture a frame. This will also set the input for the

frame size of buffers as well as the values required to calculate the size of buffer, so

that the application knows how many bytes to read for the frame.

3.4.2 Format-Oblivious Memory Management

An important optimization in Banner is to reuse memory buffers, as making

mmap() and munmap() calls can take tens of milliseconds based on the frame size.

When initializing the device, after calling ioctl(VIDIOC REQBUFS), the buffers re-

turned should be allocated to the maximum size that will be used by the application.

37

While reusing the buffers does consume extra memory when the frame size is smaller

than maximum, it allows Banner to save reconfiguration latency; the mmap() and

munmap() process does not need to be repeated.

mmap() allocates shared memory between the camera device and the application

level. Shared memory allows the camera device driver to write frames into the buffer

and the application to read from the same address in memory. The shared memory

will contain information about the bytes used inside of the buffer, the state (if the

buffer is ready to be read from the application level), and the raw frame data. The

user application will use the buffer state to know the length of bytes to read out into

its own buffer.

3.4.3 User Application Library

Banner exposes the sensor resolution reconfiguration API to the user application

as a V4L2 system call. User applications can call the Banner API, just as they use

V4L2 to start video streaming. We use the V4L2 capture example provided in The

kernel development community (2021) as a code base for our testing. The example

code opens the camera device and initializes all memory needed for capture per the

V4L2 specification. The example code then starts a capture loop that will run until a

frame count has passed. This capture loop uses the select system call to wait until

the video buffer driver signals that the buffers are ready for reading. The application

takes ownership of the buffer by calling ioctl(VIDIOC DQBUF) and then copies the

shared memory to an application buffer before returning it with ioctl(VIDIOC QBUF).

Our modifications to the example code were minimal.

1. When the application initializes the camera, it counts the number of frame

buffers allocated. This count is saved for future reference, as it is equal to the

number of frames in any given pipeline.

38

2. Immediately after a select, on any frame, the application can reconfigure sen-

sor resolution by calling ioctl(VIDIOC RECONFIGURE).

3. After a reconfiguration call, the application starts counting frames returned in

the main-loop until the captured frames at previous resolution are read out; at

this point, the application’s resolution is reconfigured to the new resolution.

4. From this frame onward the frames returned by the driver will be the new

resolution.

OpenCV Hook

When working with Banner in OpenCV, we take our raw frames from the V4L2

capture. OpenCV requires frames to be in BGR format, but the V4L2 camera returns

UYVY. To convert frames into a format that OpenCV can manipulate, we use a

modified CUDA function from Nvidia. The function originally converted YUYV to

RGB, but we manipulated it to convert UYVY to BGR by reordering the image

input and output planes Once we have our BGR frame, it is a 1 dimensional array

and still not in a form for OpenCV to work with. To fix this we call the constructor

for Mat, OpenCV’s basic object for handling images. We take care to use the correct

parameters for resolution, pixel size, plane count, and our frame data. From there,

we can use any OpenCV function to operate on the image, such as resize, imshow,

and BFMatcher.

3.5 Evaluation

We evaluate Banner within the V4L2 framework on an Nvidia Jetson TX2 board

with an ON Semiconductor AR0330 sensor. This Jetson TX2 board has a Quad ARM

A57 processor. It is one of the most popular embedded computing devices.

39

The evaluation answers three questions: (i) How much reconfiguration latency did

Banner reduce when reconfiguring sensor resolution? (ii) How much power efficiency

can be gained by reconfiguring sensor resolution dynamically and rapidly with Ban-

ner? (iii) What does fast sensor resolution reconfiguration mean to computer vision

applications?

3.5.1 Evaluation Methodology

Workloads

To evaluate and validate the effectiveness of Banner for reconfiguring sensor resolution

in a variety of vision tasks, we choose three applications integrated with OpenCV. The

first application only displays frames at 25 FPS. This application gives us preliminary

results of the effectiveness of Banner. The second application offloads frames to a

desktop server through a direct connection at 15 FPS. This application demonstrates

Banner’s usage in cloud-based vision applications. The third application implements

the same marker-based pose estimation as we described in §3.1.1, running at 15 FPS.

It verifies that Banner is effective for our target application (Augmented Reality).

All three applications cycle through a set of supported resolutions: 1920x1080,

1280x720, and 640x480. To compare Banner reconfiguration against computational

downsampling, we use OpenCV resize() function to downscale 1080p frames to 480p

(represented as 1080p↓480p). The frame rate is set to be constant across different

resolutions in all applications, bounded by the frame rate in the highest resolution,

with the help from dynamic CPU and GPU clock scaling.

We measure latency and power. As we defined in §3.1, resolution reconfiguration

latency includes end-to-end reconfiguration latency which describes how long it takes

for the application to receive the first new frame after a resolution is requested,

40

Display@25FPS Offload@30FPS Offload@15FPS Pose@15FPS0

50

100

150

200

Re
co

nf
ig

ur
at

io
n

la
te

nc
y

in
 m

illi
-s

ec
on

ds

E2E Legacy E2E Banner F2F Legacy F2F Banner

Figure 3.7: Banner reduces end-to-end (E2E) resolution reconfiguration latency and

removes frame-to-frame (F2F) latency in all three workloads comparing with legacy

in V4L2 framework.

and frame-to-frame latency which indicates the interval during which an application

receiving no frames after a resolution is requested. Both latencies are measured by

retrieving system timestamps at the application level. In each application, they are

measured and averaged across 99 samples, i.e., 99 resolution reconfigurations. Power

consumption is monitored by retrieving the power rail system files on the Jetson

TX2 board. These files include SYS SoC which monitors the power consumption

of the main Tegra core, SYS DDR which monitors the power consumption of the

LPDDR4, SYS CPU which monitors the power consumption of the ARM processor,

and SYS GPU which monitors the power consumption of the Pascal GPU. Power rail

system files are written automatically by the system at 400 KHz. In our evaluation, we

measured the power after the application ran at a steady state, in order to minimize

the variance. In each measurement, we acquired and averaged 600 readings for each

power rail system file.

41

3.5.2 Resolution Reconfiguration Latency Reduction

With parallel reconfiguration and format-oblivious memory management, Banner

completely eliminates the frame-to-frame latency in all three workloads

and is able to halve the end-to-end reconfiguration latency, as shown in

Figure 3.7.

In the display workload (at 25 FPS), the average end-to-end reconfiguration la-

tency is reduced by 47% (from 222 ms to 117 ms) and the average frame-to-frame

latency is reduced by 82% (from 222 ms to 41 ms). In the slower offloading work-

load (at 15 FPS), the average end-to-end reconfiguration latency is reduced by 9%

(from 226 ms to 205 ms) and the average frame-to-frame latency is reduced by 70%

(from 226 ms to 67 ms). In the pose estimation workload (at 15 FPS), the average

end-to-end reconfiguration latency is reduced by 10% (from 225 ms to 203 ms) and

the average frame-to-frame latency is reduced by 70% (from 225 ms to 67 ms). In

addition, in the faster offloading sub-workload (at 30 FPS), the average end-to-end

reconfiguration latency is reduced by 54% (from 226 ms to 105 ms) and the average

frame-to-frame latency is reduced by 85% (from 226 ms to 34 ms).

We have several observations from these results. First, end-to-end reconfiguration

latency and frame-to-frame latency are equivalent in the legacy V4L2 framework.

This is because the frames stored in the capture queue are abandoned once there is a

new resolution request. If those frames need to be read out and processed before the

start of resolution reconfiguration – as they are in the Android OS Hu et al. (2018) –

the end-to-end reconfiguration latency can be even larger.

Second, the average end-to-end reconfiguration latency and frame-to-frame the

latency in legacy V4L2 framework are stable across all three workloads because they

all go through the same procedure, though they still have larger standard deviation

42

compared to Banner.

Third, end-to-end reconfiguration latency and frame-to-frame latency are pre-

dictable in Banner because they depend on the frame rate. In Banner, the first frame

at new resolution will be received after N frame intervals, where N is the number of

frames already captured and stored in the buffer queue for the previous resolution.

In our case, there are three buffers (N) requested and thus, three captures are stored

in the buffer queue whenever a new resolution is requested by the application. There-

fore, the end-to-end reconfiguration latency in Banner is around three frame intervals.

These intervals cause the end-to-end reconfiguration latency to be around 120 ms in

Display@25FPS and 200 ms in Pose@15FPS, as shown in Figure 3.7. Frame-to-frame

latency in Banner is equal to the inverse of the processing frame rate. The application

will receive continuous frames at the same frame rate without noticing the resolution

reconfiguration procedure. In other words, Banner eliminates frame drops.

3.5.3 Power Efficiency Improvement

Table 3.2 demonstrates that rapid sensor resolution reconfiguration with

Banner enables a substantial power efficiency improvement. We note the

following observations.

First, the resolution-based power efficiency improvement is generic to vision tasks

and components across the system (e.g., SoC, DDR, CPU, GPU). In all three evalu-

ated workloads, the choice of sensor resolution influences the power consumption of

all stages in the image processing pipeline, including data movement, storage, and

processing. The results in Table 3.2 show that SoC, GPU, DDR, and CPU all benefit

from processing lower resolution frames in terms of power savings.

Second, the power efficiency improvement is substantial as the sensor resolution

drops. In legacy V4L2, the combined power consumption is reduced by 62%, 60%,

43

Workload Resolution@FPS
Legacy V4L2/Banner

SoC GPU DDR CPU Total

Display-only

1920x1080@25 1149/1149 910/918 1869/1836 2460/2190 6388/6096

1280x720@25 1073/1073 611/559 1727/1704 1076/1100 4487/4436

640x480@25 617/669 306/306 826/860 691/681 2440/2516

1080p↓480p@25 1078/N/A 613/N/A 1690/N/A 1035/N/A 4416/N/A

Offloading

1920x1080@15 1073/1146 536/544 1629/1638 1967/2027 5205/5355

1280x720@15 688/700 230/230 863/856 617/630 2398/2416

640x480@15 617/630 230/230 702/687 540/554 2089/2101

1080p↓480p@15 1073/N/A 382/N/A 1606/N/A 1032/N/A 4093/N/A

Pose estimation

1920x1080@15 1281/1149 1701/1448 1940/1875 2524/2527 7446/6999

1280x720@15 1230/1225 1058/987 1814/1795 1271/1203 5373/5210

640x480@15 1210/1150 589/540 1635/1637 928/916 4362/4243

1080p↓480p@15 1227/N/A 850/N/A 1727/N/A 1260/N/A 5064/N/A

Table 3.2: Total system power consumption (mW) is reduced by 62%, 60%, and

42% as sensor resolution is reduced from 1080p (1920x1080 in legacy V4L2) to 480p

(640x480 in legacy V4L2), in each workload accordingly. In addition, physically

reconfiguring sensor resolution to 480p (640x480 in Banner) consumes 43%, 49%,

and 16% less total system power than downsampling 1080p to 480p (1080p↓480p in

legacy V4L2), in each workload accordingly.

and 42% as sensor resolution is reduced from 1080p to 480p in display, offload, and

pose estimation workloads respectively. Thus, the power efficiency of a mobile vision

task can be significantly improved if the system allows dynamic sensor reconfiguration

when it can sacrifice resolution.

Third, reconfiguring sensor resolution physically is much more power efficient than

other alternatives, i.e., computational downsampling. 1080p↓480p@FPS in Table 3.2

shows the power consumption of downsampling 1080p frames to 480p in the legacy

V4L2 framework. Comparing with reconfiguring sensor resolution physically to 480p

in Banner, downsampling consumes 43%, 49%, and 16% more power in display, of-

44

fload, and pose estimation accordingly.

Effectiveness of Dynamic Reconfiguration

To demonstrate the power efficiency improvement brought by Banner for reconfig-

uring sensor resolution dynamically, we conduct a simple experiment in which the

sensor resolution cycles through 1080p, 720p, and 480p every 10 frames (a randomly

chosen number) in a total of 1000 frames. This results in 99 resolution reconfigu-

rations. We run this pattern with our CPU-based cloud-based offloading workload

working at 30 FPS. The results in Table 3.3 show that even in legacy V4L2 frame-

work, reconfiguring sensor resolution dynamically (99x-reconf.-V4L2) can reduce 20%

of the combined system power consumption comparing with constantly working at

1080p – notably, there are substantial frame drops with each reconfiguration in the

legacy V4L2 system.

Meanwhile, reconfiguring sensor resolution with Banner (99x-reconf.-Banner) can

further reduce total power consumption by 9% and without the frame drop penalty,

compared with 99x-reconf.-V4L2. These power savings come from the use of fewer

operations to reconfigure the sensor format and no repeated memory allocation in

Banner. The power consumption of 99x-reconf.-Banner is roughly about the same as

constantly working at 480p.

Power Overhead of Banner

As shown in Table 3.2, comparing between Banner and legacy V4L2 framework, there

is no obvious power overhead. Specifically, Banner does not consume more DDR

power despite its allocation of more memory than the active resolution requires. This

is because DDR power consumption is based on data rate, not buffer size Micron

Technology (2019).

45

Resolution-Framework SoC GPU DDR CPU Total

1920x1080-V4L2 803 230 951 879 2863

1280x720-V4L2 637 230 686 693 2246

640x480-V4L2 612 230 618 613 2073

99x-reconf.-V4L2 659 230 719 691 2299

99x-reconf.-Banner 620 230 644 600 2094

Table 3.3: Reconfiguring sensor resolution dynamically (99x-reconf.-Banner) can re-

duce 27% of the combined system power consumption (mW) comparing with con-

stantly working at 1080p (1920x1080-V4L2), measured with our CPU-based cloud-

based offloading workload working at 30 FPS.

3.5.4 Implications

Banner enables rapid sensor resolution reconfiguration. This unlocks a more

than 49% system power consumption reduction by reconfiguring the image sensor

resolution from 1080p to 480p comparing with computationally downsampling to

1080p↓480p. As we mentioned in our motivation, in a variety of vision tasks, the im-

age resolution needs to be configured dynamically to adapt to environmental changes

in order to maximize the power efficiency. For example, the required sensor resolution

can be determined dynamically based on the continuously changing distance between

the image sensor and the marker in a marker-based pose estimation application. Our

evaluation in the marker-based pose estimation application on the Jetson/AR0330

system reveals that the estimated pose accuracy can be maintained (±0.1 cm MSE

translation vector error) even if the image resolution is reconfigured from 1080p to

720p and then to 480p as the distance between the image sensor and the marker is

reduced from 40 cm to 20 cm. This results in a 28% power consumption reduction

between 1080p and 720p and a 42% power consumption reduction between 1080p and

480p.

46

Chapter 4

SPLIT-PROCESS APPLICATION DEVELOPMENT FRAMEWORK

Augmented Reality (AR) enables smartphone users to interact with virtual content

spatially overlaid on a continuously captured physical world. Under the current per-

mission enforcement model in popular operating systems, AR apps are given Internet

permission at installation time, and request camera permission and external stor-

age write permission at runtime through a user’s approval. With these permissions

granted, any Internet-enabled AR app could silently collect camera frames and de-

rived visual information for malicious intent without a user’s awareness. This raises

serious concerns about the disclosure of private user data in their living environments.

To give users more control over application usage of their camera frames and

the information derived from them, we introduce LensCap, a split-process app de-

sign framework, in which the app is split into a camera-handling visual process and

a connectivity-handling network process. At runtime, LensCap manages secured

communications between split processes, enacting fine-grained data usage monitor-

ing. LensCap also allows both processes to present interactive user interfaces. With

LensCap, users can decide what forms of visual data can be transmitted to the net-

work, while still allowing visual data to be used for AR purposes on device. We

prototype LensCap as an Android library and demonstrate its usability as a plugin in

Unreal Engine. Performance evaluation results on five AR apps confirm that visual

privacy can be preserved with an insignificant latency penalty (< 1.3 ms) at 60 FPS.

47

4.1 Introduction

Augmented Reality (AR) provides a unique interactive experience of virtual ob-

jects overlaying on top of the real-world environment enhanced by continuous captur-

ing, processing, and rendering of visual data through a mobile device. The develop-

ment of mobile devices and AR frameworks have enabled applications of AR in many

fields, including education, entertainment, medicine, navigation, shopping, etc., and

the future of AR market is expected to continue its rapid growth FACEBOOK (2021);

Ashe (2017); Hu et al. (2018); Shaikh et al. (2019); Hu et al. (2019); Paine (2020).

Unfortunately, running AR apps on today’s mobile devices poses serious privacy

concerns, potentially revealing private user information in a user’s visual environment

to third party entities without the user’s knowledge. Under the current permission

enforcement model, an AR app is given Internet permission at installation time and

granted camera permission and external storage write permission at runtime by users.

Developers are required to prompt users with contextual information about why cer-

tain permissions are required, but such permissions are seemingly justified for proper

AR operation; camera frames are necessary to visually integrate virtual content with

a user’s physical environment and Internet connectivity is needed for cloud-powered

services or multiplayer networking. But once enabled, malicious developers of AR

apps could silently collect camera frames and the information derived from them for

malicious intent, including sending visual data to a private server, unbeknownst to

the user. Without granular control over what kind of visual data is accessible for lo-

cal storage or cloud storage, those collected camera frames could contain very private

data at any given time, ranging from credit cards left on the table, text recognized

from business documents on laptop monitors, to critical facial identities. How do we

protect users from surreptitious collection of visual data while maintaining

48

System Process

Legacy Android

App Process

DARKLY System

Camera
Frames

Vision
Library

Developer’s
Code

Network
Access

Visual Process

Camera
Frames

Vision
Library

Developer’s
Visual Code

Network Process

Developer’s
Network Code

Network
Access

Our Solution LensCap (Split-Process Access Control)

App Process

Camera
Frames

Vision
Library

Developer’s
Code

Network
Access App Process

Oculus Quest Camera System

Camera
Frames

Extract Head
& Hand Pose

Developer’s
Code

Network
Access

Figure 4.1: In legacy Android, AR developers could collect any camera frames

and information derived from them without user awareness. Related solutions in

DARKLY Jana et al. (2013) and Oculus Quest system Facebook (2021) only allow

developer access to pre-defined processed visual data, and do not allow rendering of

the camera frame. LensCap adopts split-process access control to allow developer’s

code to freely access frames for AR rendering while managing what visual data is

accessible to the network.

usable visual computing for AR applications?

Related solutions attempt to protect visual privacy by processing camera frames

into privacy-preserving visual features and only give apps access to those features,

or a region of the camera frame defined by the users Jana et al. (2013); Roesner

et al. (2014); Aditya et al. (2016); Olejnik et al. (2017); Raval et al. (2014, 2016), as

shown in Figure 4.1. However, this is too restrictive for AR apps, which need the

ability to visually render the entire frame to provide the camera view as a backdrop

for virtual AR overlays. Information flow control protects sensitive data through

dataflow analysis and taint tracking Enck et al. (2010); Arzt et al. (2014); Fernandes

et al. (2016); Wang et al. (2019). However, most information flow control works are

only effective on data types involving low throughput. TaintDroid introduces 500 ms

latency capturing still pictures. FlowFence consumes 100 ms processing 612x816

49

camera frames for face recognition in security camera apps. This latency overhead

is untenable for AR apps, which must process at 16.6 ms per frame to maintain

60 FPS. Compartmentalization attempts to partition an app to confine private data

in a secured hardware or software environment Herbster et al. (2016); Costan and

Devadas (2016); Raval et al. (2019); Dawoud and Bugiel (2019); Track and Kilpatrick

(2003); Huang (2020), usually against threats from external third-party plugins or

advertisement libraries.

To address the privacy disclosure of continuous camera usage, we introduce LensCap,

an application development framework built on top of split-process access control Jensen

et al. (2019), which allows users with fine-grained and proactive control over the app’s

potential transmission of camera frames and the information derived from them. The

idea of split-process access control is not new; Android OS splits the mediaserver

process into multiple processes to restrict their usage (after v7.0 Android Developer

(2021)). In LensCap, the split-process paradigm is adopted in the application layer,

which is integrated into the app development flow. An AR application is split into a

visual process with full access to operate on camera frames (but with network permis-

sion revoked) and a network process to maintain Internet communications (but with

camera permission revoked), enforced by extending the legacy Android permission

enforcement. We enable both processes to present user interfaces through screen-

based overlay composition. Then, data related to camera frames that need to be

used in the network process can only be transmitted out of the visual process bound-

ary through our trusted LensCap communication services, wrapped around trusted

AR frameworks, and subject to the user’s monitoring and approval through LensCap

data usage notifications at a fine granularity. If users wish to allow network access to

entire camera frames, e.g., for social media sharing or cloud-powered vision Simoens

et al. (2013); Ha et al. (2014), they can enable such permission. On the other hand,

50

if a user wants to limit network access to only the camera pose, e.g., for multiplayer

purposes, the user will be able to do so while still enjoying a full AR overlay on the

device.

Thus, LensCap split-process app development framework enables: (i) AR apps

and vision libraries to have expressive access of camera frames, their processing, and

their rendering; (ii) fine-grained user control of the potential transmission of visual

data; (iii) detailed context provided to users, regarding what data is sent to the cloud

and at what times. We acknowledge that split-process frameworks may still be vul-

nerable to security threats through covert channel and side channel attacks Lampson

(1973); Reardon et al. (2019), which are beyond the scope of this paper. However,

process-based partitioning of resources narrows the attack surface and could enable

protection measures, such as permission plugins Raval et al. (2019). Ultimately,

LensCap relies on the operating system to protect the communication channels and

the app’s internal storage to secure visual privacy across the split-process bound-

ary Android Developers (2021b); Guo (2014).

We prototype LensCap as an Android library that can work with standalone

Android projects, as well as with Unreal Engine (UE) projects. In UE, LensCap serves

as a plugin, through which a UE game compilation process will automatically generate

and compile the split-process Android project structure. The communication channels

between split processes in UE are provided to AR developers as Blueprint-callable

and leverage the Android environment through the Java Native Interface (JNI). The

data usage monitor is implemented as Android notifications, which provides the user

with a rendered status of potential visual data collection.

We evaluate LensCap in five cloud-based AR applications that require the sharing

of different types of image features, including camera pose, light estimation, point

cloud, face region, and the camera frame. We find that the interactive latency between

51

split processes and the overhead in app performance is negligible, even at 60 frames

per second. Our user study further validates the performance similarity from the

user’s perspective and the improvement in user confidence while using untrusted AR

apps.

4.2 Background

In this paper, we study the AR development flow in UE, as well as the permission

control model and security enforcement in Android OS. They are similar across other

game development platforms and operating systems such as Unity for iOS.

4.2.1 Mobile AR Development

Powerful real-time 3D creation tools such as Unreal Engine Epic Games (2021)

have gained popularity in creating cutting-edge content in immersive interactive ex-

periences. The basic building block in UE is the module. Each module exposes itself

to other modules through a public interface. Developers can include a set of mod-

ules to realize desired app functionalities. For example, to develop AR apps relying

on the ARCore library, app developers need to declare the AugmentedReality mod-

ule and the GoogleARCoreBase module in dependencies. Apart from those standard

modules, developers can create plugins to add per-project code and data to extend

runtime gameplay functionality of the app.

UE supports all popular mobile platforms including Android and iOS. To build and

run UE apps in the Android environment, UE creates an intermediate Android project

based on two workflows. First, UE provides all source files that are necessary for the

intermediate Android project to be compiled and run, such as a GameActivity.java

template, on top of which developers can customize logic and functionalities. Second,

all necessary assets for developing the UE project such as the level Blueprint are

52

compiled into a .so library as the native code. The compiled Android application

interacts with UE features through JNI.

4.2.2 Permission Control

Android requires apps to define permissions in a signed manifest file to manage

the security of various operations Android Developers (2021a). Permissions are cate-

gorized into different protection levels as normal, signature, and dangerous, in which

dangerous permissions must be prompt to and further granted by users. Permissions

for Internet (permission.INTERNET), camera (permission.CAMERA), and external

storage write (permission.WRITE EXTERNAL STORAGE) are essential to an AR app.

Screen buffer capture (screen reading/recording) is also governed by Android sig-

nature permissions. Android apps can specifically prompt the user when screen buffer

capture is required. Users can enable this at their own discretion, understanding that

everything on the screen will be accessible by the application, including any visible

camera feeds.

Internet permission is categorized under the normal protection level. It is auto-

matically granted at installation time by the system and users will not be notified that

the permission is granted. Camera permission is essential for protecting user’s visual

privacy, and is therefore categorized under the dangerous protection level. Users will

be notified to grant the camera permission in a prompt dialog. In Android 11, users

are able to grant one-time permission to application’s camera usage called “Only

this time”. However, the app will still have continuous camera access during that

one-time. Write external storage permission is also categorized under the dangerous

protection level which requires the user approval at runtime.

53

4.2.3 Security Enforcement

In Android, security is enforced through app sandboxing. Each app runs in a

separate sandbox with a unique application identity (UID) given during installation.

Sandboxing ensures each app has its own process and data storage associated with

the UID. App sandboxes cannot interact with each other and only have limited access

to system services by default. If a certain permission is granted, it will be reflected in

the context of the application package and UID. Android conducts a permission check

if the app sandbox requests access to specific system services (e.g. camera service) or

resources belonging to other apps.

Sandboxing introduces the need of inter-process communication (IPC). Android

implements Binder IPC as an essential mechanism to perform operations between

processes, such as passing messages and requesting system services. Binder IPC

provides functionalities to bind to functions and data between different execution

environments. The Binder IPC driver is implemented in the kernel. It exposes ba-

sic kernel-understood functions to the application developers through the IBinder

interface at the framework layer defined using the Android Interface Definition Lan-

guage (AIDL).

4.3 Threat and Trust Model

Threat Model

We focus on scenarios involving third-party AR apps that require Internet connec-

tivity. Relying on cloud or edge-based computing platforms empowers mobile AR

apps with additional computing power and dynamic access to networked resources,

e.g., game state, object models/textures, content updates, etc. This model also in-

cludes collaborative multi-user AR games in which different AR users could share

54

information such as camera states, point clouds, and lighting estimations for more

accurate tracking and rendering. However, while they provide useful and engaging

functionality, we assume that all such third-party AR apps cannot be fully

trusted. Privacy leakage through camera frames could happen at any time dur-

ing the AR experience, with apps surreptitiously collecting visual data without user

awareness. The visual data may be full camera frames themselves, derived semantic

information (e.g., text or face identities), or compressed representations. The data

could be immediately transmitted upon capture or stored locally before sending the

data over the network, e.g., bundled with other data upload.

Trust Model

We make three assumptions in our trust model. (i) We assume that operating systems

such as Android and iOS are trusted to perform runtime permission check, hardware

platforms are secured against attacks, and official AR frameworks such as Google

ARCore and Apple ARKit are trusted to operate on camera frames for AR function-

alities. These components are usually secured through a set of operating systems and

hardware security measures Android Developers (2021b); Guo (2014). (ii) We assume

that visual data sharing is valid as long as users are aware of it and specifically grant

it. That is, AR applications could be allowed to share camera frames or information

derived from them with the user’s approval. (iii) We assume that data downloaded

from the Internet or read from the memory is not tampered with. The protection of

AR visual output is actively discussed in other research works Lebeck et al. (2018,

2017); Ringer et al. (2016).

55

Android System Services

Android Application Layer

LensCap Split-Process Access Control

Android Framework Layer

Permission Enforcement

Network Process

Network
Handler

Network Screen

Network
Access

Write External StorageCamera Internet

Visual Process

Visual Screen

Dev
Network

Code

AR
Library

Dev
Visual
Code

Visual
Handler

Secured Visual->Network Channel
Fine-Grained Data Monitoring

Trusted Network->Visual Channel

Figure 4.2: LensCap in Android. AR library output can go to developer’s visual

code to render on visual screen (green), or to network code through secured LensCap

Visual→Network channel (orange). The blue arrow shows Network→Visual dataflow,

defined in §4.4.2.

Challenges

There are many challenges to protect visual privacy in real-life. (i) The AR experience

must be quick to respond to user movement and interaction; the system solution

should not contribute any visible performance overhead. (ii) Visual details need to

be protected without reducing the amount of information that an AR application

requires. (iii) Apps may require Internet connection to utilize more powerful cloud-

and edge-based computing and/or maintain state on networked resources. (iv) There

is a trust gap to be mitigated between users and AR apps in terms of the data claimed

to be collected and the data actually collected.

4.4 Design of LensCap

We propose LensCap, a framework that secures visual privacy in AR apps through

(i) enforced split-process access control, (ii) secured communication channels for pro-

56

Visual Handler
Data Usage Monitor

Cloud
Storage

/Multiplayer

Network
Access

AR Library

Camera Pose

Face Tracking

Light Estimation

Point Cloud

…

Network Handler
Data Usage Switch

Network ProcessVisual Process User’s View

OFF

OFF

1

OFF

ON

OFF

AR User

Car Model
.FBX

2

4 5

6

3

Time-of-Collection

Figure 4.3: 1O A user searches for a car in a search bar presented through the net-

work process screen. 2O The corresponding car model is downloaded from the cloud,

transmitted to the visual process through LensCap Network→Visual channel, and

rendered on the detected AR tracking plane in the visual process. 3O The user can

spatially interact with the virtual 3D car model. Meanwhile, 4O point cloud posi-

tioning data is shared over the network for shared tracking for a multiplayer AR

experience, subject to 5O user’s approval secured by LensCap data usage monitor

and switch in Visual→Network channel. 6O Visual data usage can be reviewed by

the user.

cesses to securely exchange data, (iii) screen-based overlay composition, and (iv)

fine-grained data monitoring. Figure 4.2 shows LensCap in the Android system.

4.4.1 Enforced Split-Process Access Control

LensCap requires applications to be split into a visual process and a network

process. Through this process-based partitioning, the permission enforcement in the

operating system can assure that AR apps isolate visual processing from network

access except via explicit user approval.

The visual process is responsible for processing and rendering camera frames, and

thus is allowed to operate on them directly. Expressive functional use of the frames

57

and visual data allows developers to program computer vision and image processing

operations freely, as long as the features derived from those camera frames do not

leave the visual process boundary, except with explicit user approval.

The network process is not allowed to operate on camera frames or other visual

data, except with explicit user approval. However, the network process is critical to

edge- or cloud-based AR apps for its capability of providing Internet communications,

as well as writing to the external storage. LensCap sequesters the network process

from direct access to the camera frames by revoking camera permissions, but offers

it upload and download access to the network and write access to external storage.

The permission enforcement, residing inside the Android runtime framework, ver-

ifies that when a process attempts to open the camera, it does not have either the

network permission or write external storage permission granted. LensCap also ver-

ifies that when a process attempts to write to the external storage, it does not have

the camera permission granted. Violations will throw exceptions to notify users about

potentially malicious behavior.

4.4.2 Secured Communication Channels between Split Processes

To securely support a range of operations between the visual process and the

network process, LensCap governs communication between the two processes through

two data Handlers, one for each process, which enact two channels: Network→Visual

and Visual→Network.

Network→Visual is implicitly trusted. Thus, the network process could send

data to the visual process freely, as visual privacy would still be confined inside the

visual process. The protection of visual rendering is beyond the scope of this work,

but studied in related works Lebeck et al. (2018, 2017).

58

Visual→Network needs to be explicitly secured. LensCap scrutinizes the

data sent from the visual process to the network process and presents access control

and access logs to users. Users should assume that any data that travels across the

Visual→Network channel are visible to the network. This involves any data that

could possibly be used to invade user’s privacy, ranging from visual details as small

as the camera pose to data as large as the entire camera frame.

To prevent developers from hiding visual information in computed data, LensCap’s

Visual→Network channel can only transmit specific untainted visual data, including

camera frames or direct outputs from the AR library, e.g., camera pose and face track-

ing features. LensCap restricts all other forms of transmission on the Visual→Network

channel. In §4.4.4, we go into further detail into how such visual data access is mon-

itored by the system, presented to the user, and selectively permitted by the user.

4.4.3 Screen-Based Overlay Composition

The screen-based overlay composition allows developers to expressively create

screen-based interactions through the visual process screen and the network process

screen. Both screens include support for the full array of touch-based user interfaces:

buttons, sliders, swipes, or custom-designed screen-based interactions. LensCap com-

poses the visual output by overlaying the network process screen surface over the

visual process screen surface.

Figure 4.3 shows an example in which the tap-hold-rotate behavior to interact

with the virtual object is implemented in the visual process and rendered in the

visual process screen, as it would be in a legacy app. Meanwhile, an interactive

search bar is hosted in the network process screen, through which the user can search

for different 3D models and download them for rendering.

59

4.4.4 Fine-Grained Data Monitoring

LensCap monitors the usage of visual data with a data usage monitor and a data

usage switch, as shown in Figure 4.3.

The Data Usage Monitor

The data usage monitor wraps around the vision library API for three purposes: (i)

it lets app developers utilize the AR library and the Visual→Network communication

channel; (ii) it checks the user permission and then documents when and how often

each monitored function is called; (iii) it ensures data computed from the trusted

vision library and the data sent through the visual data handler are identical, i.e.,

untainted.

For (i), LensCap wraps around the AR library, preserving original usability. The

developer’s app invokes the LensCap AR functions to obtain original AR library func-

tion output. The developer’s app invokes LensCap transmission functions to request

the sending of AR library output or camera frames to the network process. For (ii),

LensCap monitors each wrapper function with a separate permission label, counter,

and timer. LensCap updates the permission label according to the user’s choice in

the data usage switch. Upon visual data transmission across the Visual→Network

channel, LensCap increments the counter and timer, documenting the time of visual

data access from the network process. For (iii), LensCap acquires a copy of the

data when each monitored wrapper function is invoked by the app. The visual data

is checked for identical comparison with the copy before transmitted through the

Visual→Network channel. We have found that memory comparison (e.g., memcmp) is

sufficiently performant and hash comparisons are not needed.

60

The Data Usage Switch

We design the data usage switch to present data usage notifications and logs to users

with two considerations. First, the data usage switch allows users to customize the

visual data they allow to be shared at a fine granularity, i.e., users are able to specif-

ically disable the Visual→Network communication for each monitored function to

prohibit its output from being passed out of the visual process boundary. Second,

the data usage switch collects access timing information from the data usage monitor

and presents access charts to users visually. Through this, users are able to transpar-

ently see what visual features are potentially shared over the network and at what

times.

4.5 Programming Model

As with other operating system privacy changes, LensCap requires developers

to alter their app development patterns. In LensCap, developers must partition

their applications into the visual and network processes and manage communications

between the processes. Here, we describe four template scenarios to illustrate the

programming model with LensCap split-process access control integrated into an AR

development flow, as shown in Figure 4.4.

LensCap allows developers to consider the “principle of least privilege” and specify

only the necessary level of access control for each process. In this light, Scenarios 1

and 2 are supported without any special Visual→Network privilege while still enabling

immersive interactive AR functionality. Meanwhile, Scenario 3 only requires the user

to allow specific visual data, e.g., camera pose, to be shared across the boundary.

Finally, Scenario 4 allows developers to share camera frames and visual data over the

network with the explicit permission of the user. These scenarios serve as examples

61

Scenario 3: Network requests with
visual/spatial information

Scenario 1: AR camera overlays and spatial
interactions

Scenario 2: Network requests without visual
data needs

Visual
Process

Network
Process

Visual
Process

Network
Process

Scenario 4: Cloud-based camera frame
sharing

LensCap Data Monitoring LensCap Data Monitoring

AR Library

Visual
Process

Network
Process

Camera Pose
Light Estimate
Point Cloud

Camera Frame

Visual
Process

Network
Process

Figure 4.4: LensCap protects AR users in apps where outputs from AR libraries or

the entire camera frames are to be sent to the network.

of how applications can be developed in the LensCap environment. Complex applica-

tions can be thought of as combinations of these scenarios; Figure 4.3 shows an app

that has elements of Scenarios 1 (green), 2 (blue), and 3 (orange). Note that it is

developer’s responsibility to take care of the application behavior if the visual data

requested are not permitted by users in scenario 3 and 4.

Scenario 1: AR Camera Overlays and Spatial Interactions.

Developers can program spatial interactions with the AR scene in the visual process,

e.g., allowing users to place, spin, scale, and otherwise interact with virtual 3D object

content. In this scenario, the application does not need to request any LensCap

permissions, as all visual data can be contained in the visual process.

62

Scenario 2: Network Requests Without Visual Data Needs.

Developers can program network requests in the network process. These requests can

be triggered by non-AR on-screen canvas user interface (UI) elements (buttons, slid-

ers, etc.), by time-based events, or by other activities that don’t require visual data.

Notably, in this scenario, LensCap allows network process to influence activities in

the visual process through the unidirectional Network→Visual channel, e.g., speci-

fying what to render based on button UIs that are tapped in the network process.

Downloaded data can also influence the spatial rendering, providing object models,

data to visualize, image textures, synchronized game state, etc. As in Scenario 1, the

application does not need to request any LensCap permissions, as nothing from the

visual process needs to interact with the network process.

Scenario 3: Network Requests With Visual/Spatial Information.

Developers may need to share visual or spatial information among multiple devices for

multiplayer positioning, joint illumination estimation, or other cloud-based activities.

In this case, LensCap allows developers to request user permission to expose specific

AR library outputs over the Visual→Network channel. For example, developers can

explicitly request the camera pose permission in order to use AR positioning data in-

ferred in the visual process for network-based rendering. Similarly, the developer can

explicitly request point cloud permission to enable point cloud sharing for a shared

multiplayer AR rendering experience. This scenario also facilitates AR-based spatial

interactions that trigger network downloads, as spatial interactions may be inextri-

cable from both visual data and network data. Altogether, in this scenario, LensCap

only requires users to enable specific visual data to be shared, without exposing their

entire camera frame and the potential secrets or embarrassments therein.

63

Scenario 4: Cloud-Based Camera Frame Sharing.

In some apps, users may want to send their entire camera frame to the cloud to

enable live-streaming and social media sharing. Other apps may require cloud-based

processing of camera frames for resource intensive and/or collective vision operation.

In these apps, developers can request users to allow camera frames to pass through in

the LensCap Visual→Network channel. For this scenario, users can be made aware

that their visual privacy might be leaked and selectively disable camera frame access

at their discretion. Furthermore, users can review the LensCap data usage monitor

to observe when camera frames are collected to infer malicious intent.

4.6 Implementation of LensCap

In this section, we describe a prototype of LensCap in the Android ecosystem. We

implement developer support in the form of libraries and automated compilation tools

to support both standalone Android development and/or UE development revolving

around the ARCore framework. The implementation is generic to other game design

platforms, e.g., Unity, and other AR frameworks, e.g., Apple ARKit.

4.6.1 LensCap Permission Enforcement

We implement the split-process permission enforcement in the Android frame-

work layer (AOSP v9.0.0 r46). The implementation involves CameraManager in the

Camera2 API, ContextWrapper in the Content API, and the Android namespace

defined in the xmlns:android.

LensCap defines the permission.LENSCAP manifest permission attribute. Once

the app is started, LensCap prompts users to ask if they “allow the app to use LensCap

to monitor and validate visual information uploaded to the Internet”. If users choose

“ALLOW”, LensCap permission system will be enforced. Inside the CameraManager,

64

LensCap verifies if either Internet or write external storage permission is granted when

camera permission is to be granted, relying on the PackageManager and AppGlobals

for retrieving the permission of each app based on its UID. Violations will throw

security exceptions to prevent the app from accessing the camera service. The imple-

mentation in ContextWrapper for protecting the visual privacy from being written

to an external storage is similar. The app calls getExternalFilesDir() to inquire

the absolute path of the directory on the primary shared/external storage device,

prompting users to grant write external storage permission. Here, LensCap verifies

if the app also has camera permission granted. Violations will lead to null returned

as the path to invalidate the writing.

4.6.2 Split-Process for UE Development

Developers can use LensCap to split their app in the standard Android envi-

ronment. However, to facilitate game engine-based development, we implement an

automated tool to generate LensCap-provisioned Android projects from UE projects

as part of the compilation process.

We keep the structure of the UE-generated intermediate Android project and

reuse its main application module as either the visual process or the network pro-

cess. Then (i), for the UE process, we automate the insertion of our LensCap

APIs into the main GameActivity.java file by adding function definitions into the

<gameActivityClassAdditions> inside the plugin’s XML file. These APIs are de-

scribed in §4.6.3 for realizing LensCap-verified interactions between the network pro-

cess and the visual process. In addition, startup permissions related to write external

storage and Internet communication given to the visual process are automatically

removed by modifying the source AndroidManifest.xml file. (ii), for the non-UE

process, we implement it as an individual app package which has its own workspace,

65

from source code to build configurations. To automate the generation of non-UE

processes, we provide the source code of the LensCap app package as a third-party

library for UE, together with the two data handlers. During compilation, the source

code is copied to the build directory of the project and built with the visual process

app together. Developers can implement processing logic inside UE as in the legacy

development flow and/or utilize the Android process scenario templates LensCap

provided to create complex network-visual interactions.

4.6.3 Secured Communication Channels

The visual/network data handlers are implemented in both the Android and the

UE environment.

In Android

The two data handlers are implemented as two libraries written in Java and Kotlin.

The visual data handler is compiled with the visual process, whereas the network data

handler is compiled with the network process. Both data handlers have a transmitter

service and a receiver service, for which the transmitter service of the network data

handler binds to the receiver service of the visual data handler and vice versa. Data

transmitted between the two handlers are shared through Android shared memory

(ashmem). At app level, developers only need to initialize the two handlers in each

process accordingly. Then, they can use the following APIs to send and receive data

securely between split processes.

To receive data, we use Android’s AIDL feature to create an onData() listener for

monitoring and receiving the incoming data. Then, we expose a Receiver<> interface

in the data handler to be registered with the desired string identifier and the data to

be received as ByteArray.

66

fun onReceived(id:String , data:ByteArray) {}

Similarly, we expose a Send() interface to transmit the content through the data

handler service as ByteArray associated with the desired identifier as string.

fun send(id:String , data:ByteArray) {}

In UE

Data handler implementation involves: (i) exposing UE Blueprint callables, (ii) trans-

ferring data between the UE-Android boundary and exposing Android Java APIs.

First, the two data handler plugins are implemented in C++ to expose UE

Blueprint callable functions for transmitting validated AR library outputs. For ex-

ample, the following LensCap function can be called in UE Blueprint to collect the

camera pose acquired from the AR library.

UFUNCTION(BlueprintCallable , meta = (DisplayName = "

LensCap_GoogleARCore_Collect CameraPose", HidePin = "

LastPose "))

static void VDH_Send_Camera_Pose(FTransform& LastPose);

Then, to pass data between the UE-Android boundary, LensCap plugins imple-

ment send and receive APIs through Android JNI. Currently, we provide support for

UE-Android compatible data types, such as int, float, and bool, which are sent

and received in the form of arrays. The send JNI function checks if the caller has

a valid tag (to differentiate LensCap ARCore wrappers), converts UE data to JNI

types, and is exposed to Android to connect data to or from UE.

67

4.6.4 Screen-Based Overlay Composition

We utilize the Android WindowManager to overlay the network process screen on

the visual process screen. Although WindowManager allows the network process to

draw its overlay over the visual process screen, the network process cannot observe the

pixels of the visual process screen, preserving visual privacy. Adding the screen overlay

requires permission.SYSTEM ALERT WINDOW, subject to user’s approval at runtime.

For correct overlay, the layout of the network process screen matches the visual process

screen, such as width and height.

Inside the network screen overlay, we are able to implement on-screen touch in-

terfaces to initiate user interactions with the visual screen. To do so, we override

the onTouch(view: View, motionEvent: MotionEvent) function in the network

process to send touch coordinates to the visual process. If developed in UE, the vi-

sual process translates the received touch coordinates into the UE coordinate system,

which will finally be stacked and processed in UE’s Android input interface. From

the developer’s perspective (and user’s perspective), the app with the screen-based

overlay operates exactly the same as the legacy application.

4.6.5 Fine-Grained Data Monitoring

The data usage monitor is linked to the Android visual data handler and the UE

plugin with the following steps. First, we manually inspect the vision library API to

determine the functions to be monitored. In general, the goal of an AR framework is

to provide functionalities that operate on camera frames to determine trackables and

estimate surroundings. In UE, the GoogleARCoreFunctionLibrary only contains

hundreds lines of code and 50 functions written in C++, among which we focus on

monitoring functions that (i) operate on camera frames, (ii) have a return value,

68

(iii) work on a block of memory. After narrowing it down, only 25 functions need to

be wrapped. Overall, the workload for inspecting the vision library is trivial, even

when the vision library needs to be updated for a newer version iteratively. Note that

not all of these functions may expose user privacy at a serious level. This presents a

future research opportunity to investigate better UI for data usage monitoring that

eases the user’s burden to grant permissions at runtime, e.g., grouping functions

exposing similar types of data and assign each group a risk level Android Developers

(2021a).

Second, we write a wrapper around each function being monitored. The wrap-

per function is statically tagged. Upon invocation, the LensCap user permission is

checked. If the user allows specific visual feature collection, the monitored function is

then called. Next, this wrapper gets each value from the output, concatenates them,

stores them for a data integrity check, and sends them in the format of data array,

together with the function tag, through the Visual→Network channel provided by

the visual data handler.

Third, based on the tag of the function, we add a property into a counter struct

LensCapCounterStruct and a date struct LensCapDateStruct in the visual data

handler accordingly to record how often and when the monitored function is called.

Finally, to check the data integrity before send() in the visual data handler is

called, we directly expose a native function from the UE binary library to our visual

data handler, which sends the data to be transmitted back to UE and compares with

the original data copy stored. Transmission to the network data handler occurs only

if the data match.

The data usage switch notifies users about what visual data is used in the net-

work process and further presents interfaces for users to allow or disallow the trans-

action of each visual feature. The implementation involves a user permission inquiry

69

and verification mechanism, as well as a notification interface. Figure 4.3 shows an

AR app Google AR (2021) with the data usage switch notifications shown in set-

tings (in the middle). In this example, the data usage switch allows users to disable

the Visual→Network transmission of camera pose, lighting estimation, face tracking,

point cloud, and camera frame, which are the five use cases evaluated in §4.7.

For permission inquiry and verification, we implement LensCapPermissionStruct

in the visual data handler to store boolean values for each type of output from AR

library, as well as a function boolean getPermTag(String tag) to respond permis-

sion inquires. Then, we expose a permission inquiry function to UE through JNI

again to help validate the transmission of a specific visual feature.

LensCap visual data handler service leverages the Android notification channels to

present ON/OFF switches for users to selectively allow/disallow the transmission of a

monitored visual feature. An ON indicates that the user approves the corresponding

visual feature to be transmitted to the network process and the transmission will

further be stored in the timer allowing users to analyze in detail about Time-of-

Collection in the form of a bar chart. On the contrary, when a notification channel is

disabled, values in LensCapPermissionStruct will be updated accordingly to prevent

visual data from being transmitted.

4.7 Evaluation

In this section, we demonstrate the performance of our system in various cloud-

based AR apps, comparing legacy single-process app behavior with split-process

LensCap app behavior, along with an interview-based user study, to ensure that vi-

sual privacy can be preserved without sacrificing app performance or user experience

at runtime.

70

4.7.1 Benchmark Applications

To cover popular AR use cases, we build and evaluate five cloud-based AR apps

that share different types of visual AR data across multiple devices, based on examples

from Google AR (2021). These apps are developed in UE (v4.24) and then deployed to

Android devices (Google Pixel 4 XL). A local desktop server serves as a cloud server,

storing and passing data among mobile devices. Uploading and downloading data

uses an OkHttp client implementation Square, Inc. (2021) with a WiFi connection.

The first app shares the camera pose, containing the estimated camera location

and rotation, which is critical to tracking and rendering. Collaborative AR apps

could share camera poses to achieve shared user viewport geometry, improve camera

calibration, or provide runtime user/object tracking Schmalstieg and Hesina (2002).

The second app shares the lighting estimation, encoding environmental illumination

towards rendering virtual objects realistically. Multiple AR users could share radiance

samples from multiple perspectives to achieve more accurate lighting estimation for

more immersive rendering Prakash et al. (2019). The third app shares the AR point

cloud, which contains the 3D visual corner points that are used to track the space. AR

apps can share point clouds among users for shared positioning and/or send it to the

cloud for object detection Chen et al. (2020) and/or image-based localization Speciale

et al. (2019). The fourth app shares the face tracking result. Face tracking detects

and tracks the image regions of faces between camera frames, sharing these over the

network, e.g., for identity verification. The last app relies on sharing the full frame.

In this model, AR apps offload camera frames to the cloud, e.g., for live-streaming,

video chat, social media, or cloud-/cloudlet-based vision processing.

71

Figure 4.5: We evaluate the interactive latency with a combination of

T1 (Touch→Visual), T2 (Visual→Network), T3 (Upload&Download), and

T4 (Network→Visual).

4.7.2 Evaluation Metrics

To explore LensCap’s influence on application performance, we monitor the time

interval between consecutive frames Tf (inverse to the frame rate). Tf is measured

by the deltaTime (app time elapsed between frames) acquired from the Tick() UE

Blueprint function, which is called every frame.

In addition, we measure and compare the interactive latency of four time intervals,

T1 to T4 when running as the legacy single-process benchmark apps and as LensCap-

enabled split-process benchmark apps. Depicted in Figure 4.5, the time intervals are

defined as follows:

1. T1 represents the time elapsed between a user behavior and a visual rendering

event.

2. T2 represents the time elapsed to transfer data from the visual process to the

network process, which includes several actions, i.e., visual process to visual

data handler, visual data handler to network data handler, and network data

handler to network process.

72

10 12 14 16 18 20 22 24
Frame Time in Milliseconds

0.0

0.2

0.4

0.6

0.8

1.0
Camera Pose

LensCap

Benchmark

(a) Tf sharing camera

poses.

10 12 14 16 18 20 22 24
Frame Time in Milliseconds

0.0

0.2

0.4

0.6

0.8

1.0
Light Estimation

LensCap

Benchmark

(b) Tf sharing light esti-

mations.

10 12 14 16 18 20 22 24
Frame Time in Milliseconds

0.0

0.2

0.4

0.6

0.8

1.0
Point Cloud

LensCap

Benchmark

(c) Tf sharing point

clouds.

10 12 14 16 18 20 22 24
Frame Time in Milliseconds

0.0

0.2

0.4

0.6

0.8

1.0
Face Tracking

LensCap

Benchmark

(d) Tf sharing face re-

gions.

10 20 30 40 50 60
Frame Time in Milliseconds

0.2

0.4

0.6

0.8

1.0
Camera Frame

LensCap

Benchmark

(e) Tf sharing camera

frames.

Figure 4.6: CDFs of Tf for collecting fives different types of visual data in every

10 frames demonstrate no performance overhead comparing between the LensCap-

integrated apps and the legacy apps.

3. T3 represents the roundtrip time elapsed to upload and download data between

the network process and the cloud component, e.g., sending face detection re-

sults to the cloud and receiving a response.

4. T4 represents the time elapsed between when the network process acquires data

from the cloud and when it is applied to the visual process, e.g., utilizing light

estimation to improve rendering. (T4 and T2 are similar but reversed.)

All time intervals are measured by calculating the difference between system times-

tamps. We synchronize the system clock between the cloud server, the Android de-

vice, and the UE environment. For each app, we run the experiment for 2 minutes

73

Camera Pose Lighting Estimation Point Cloud Face Tracking Camera Frame

Bench./LensCap Bench./LensCap Bench./LensCap Bench./LensCap Bench./LensCap

T1 8.9/9.1 8.4/8.7 8.7/8.9 8.7/9.0 8.7/9.0

T2 N/A/0.3 N/A/0.3 N/A/0.3 N/A/0.4 N/A/1.2

T3 99/108 117/121 128/111 124/120 1253/1176

T4 N/A/0.3 N/A/0.4 N/A/0.4 N/A/0.4 N/A/1.3

Tf 16.8/16.8 16.7/16.7 16.8/16.8 16.7/16.7 18.4/18.4

Table 4.1: Averaged evaluation results for all time intervals in milliseconds (ms).

Note that the interactive latency between processes (T2 and T4) does not apply to

benchmark applications.

to acquire thousands of data samples, during which the data collection is performed

roughly every 10 frames, an interval very commonly used in many keyframe-based

continuous mobile vision applications Liu et al. (2017).

4.7.3 Application Performance

We use Tf to compare and analyze the application performance in each example

use case. A comparison of Tf between the benchmark and the LensCap-integrated

app is shown in Figure 4.6 and its averaged value can be found in Table 4.1.

We first evaluate the app performance in the context of programming scenario 3

and 4, in which the network process requests visual data to be uploaded and down-

loaded from the cloud. In Figure 4.6a, 4.6b, 4.6c, and 4.6d, results show that most

Tf is within 16 ms to 17 ms in both LensCap-integrated and benchmark apps, which

indicates a very comparable AR performance that could be maintained at as high

as 60 FPS, no matter for collecting camera poses, light estimations, point clouds,

or face tracking results. In Figure 4.6e, the result shows that collecting the entire

camera frames incurs latency overheads in both benchmark and LensCap-integrated

apps. However, the additional latency comes from processing image planes of camera

74

frames in UE in the visual process. Thus, the overall app performance is the same

comparing between the benchmark and the LensCap-integrated apps, i.e., data com-

munication between split processes does not incur noticeable latency overhead. In

particular, in this worst case, the app performance could be maintained at around

55 FPS, if camera frames are collected every 10 frames.

In addition, we use app 4 to evaluate the app performance for programming sce-

nario 1, in which the app just detects faces and draws overlays locally in the visual

process, without network interactions. Results show that the average of Tf is 16.8 ms

in the legacy app and 16.7 ms in the LensCap-integrated app. Furthermore, we com-

bine app 1, 2, and 3 together into one app to evaluate programming scenario 2, in

which the data downloaded from cloud is sent to the visual process repeatedly in a

sequence after clicking an on-network-screen button. Results also show similar app

performance compared between the legacy app and the LensCap-integrated app (both

have an average of 16.7 ms Tf).

Summary

The result demonstrates that the adoption of split-process access control does not

appear to influence app performance, likely due to: (i) the computational ability of

mobile devices to handle the operation of an additional process, and (ii) the non-

blocking data sharing between split processes. Visual privacy can thus be monitored

at the process boundary and preserved on the device subject to user’s decision, with-

out penalizing the app’s performance. From our experiences in the evaluation, the

AR experience is robust, smooth, and comparable (without noticing any differences)

between LensCap-integrated and benchmark apps.

75

4.7.4 Interactive Latency

We use T1, T2, T3, and T4 to compare and analyze the interactive latency in each

example use case. A comparison of their averaged values across all data samples

between the benchmark and the LensCap-integrated app is also shown in Table 4.1.

Camera Pose

Results show that our system introduces an average of 0.2 ms T1 Touch→Visual la-

tency for initiating user interactions, as well as 0.3 ms T2 Visual→Network and 0.3 ms

T4 Network→Visual latency for transmitting tens of bytes of camera pose data be-

tween processes.

Lighting Estimation

Results show that our system introduces an average of 0.3 ms T1 Touch→Visual la-

tency for initiating user interactions, as well as 0.3 ms T2 Visual→Network and 0.4 ms

T4 Network→Visual latency for transmitting tens of bytes of lighting estimation data

between processes.

Point Cloud

Results show that our system introduces an average of 0.2 ms T1 Touch→Visual la-

tency for initiating user interactions, as well as 0.3 ms T2 Visual→Network and 0.4 ms

T4 Network→Visual latency for transmitting hundreds to thousands of bytes of point

cloud data between processes.

76

Face Tracking

Results show that our system introduces an average of 0.3 ms T1 Touch→Visual la-

tency for initiating user interactions, as well as 0.4 ms T2 Visual→Network and 0.4 ms

T4 Network→Visual latency for transmitting hundreds to thousands bytes of face

tracking data between processes.

Full Frame

Results show that LensCap introduces an average of 0.3 ms T1 Touch→Visual la-

tency for initiating user interactions, and 1.2 ms T2 Visual→Network and 1.3 ms T4

Network→Visual latency for transmitting megabytes of camera data between pro-

cesses.

Summary

Split-process access control introduces negligible latency in its inter-process commu-

nications, as (i) the 0.2 ms to 0.3 ms overhead in T1 is all but invisible, compared

with the latency needs for gaming and other interactive touch-based applications;

according to Jota et al. (2013), humans cannot differentiate touch latencies between

1 and 40 ms; and (ii) the 0.3 ms to 1.3 ms latency of T2 and T4 caused by the inter-

process communication is negligible (without impairing the app performance), even

for transmitting the entire camera frame, and even for round-trip operations and in-

teractions across the two processes. On the other hand, cloud communication latency

T3 consumes hundreds of milliseconds (varying based on the network conditions).

4.7.5 User Study

Apart from the previous quantitative evaluation, we perform a user study to ob-

serve users’ hands-on experience of LensCap-integrated AR apps. The user study is

77

approved by our institution’s IRB. We recruit a total number of 8 undergraduate and

graduate students majoring in engineering to participate in this user study. The user

study serves three purposes:

� We would like to find out whether the legacy apps and the LensCap-integrated

apps have similar performance, from the user’s perspective.

� We want users to freely express privacy concerns while using AR apps and

evaluate whether their concerns are mitigated by LensCap.

� We invite users to explore and evaluate the LensCap data usage monitoring UI

and brainstorm together with us for a better UI design.

User Study Procedure

The user study is interview-based, which contains five activity-interview phases, de-

scribed as below:

1. Preparation. In this phase, besides reading the consent form, we asked the

participants several questions to get their background in AR. For example, we

asked them “What AR applications have you used before?”, “Where do you

usually use them?”, and “How often do you use them?”.

2. Application performance study. In this phase, we conducted a blind user study,

in which the legacy app and the LensCap-integrated app were presented to users

in a random order. To make the two versions of apps identical from appearance,

we temporarily disabled the LensCap data monitoring module. Participants

were given enough time to explore both apps freely, e.g., putting a virtual car

model and interact with it. Then, we asked them about their overall experience,

78

including “Do you think both apps perform smoothly? If not, which app do

you prefer?” and “What differences can you identify between these two apps?”.

3. Privacy exposure awareness study. In this phase, we let participants explore

the legacy app again. Then, we asked them several questions to understand

the baseline of user’s trust in AR apps. These questions included “Imagine

that some malicious app developers want to steal your identity, what kind of

information in your AR experience do you think they can exploit?”, “What

makes you trust or not trust an AR app?”, and “Do you think the current

permission model can protect your visual privacy?”.

4. LensCap introduction. In this phase, we educated participants to be familiar

with the LensCap app development framework. We explained to participants

how LensCap splits the app into two process, how least-privileged split-process

access control is managed, how the network screen is overlaid on top of the

visual screen, and how users are able to control and visualize the data transac-

tions between process boundaries at a fine granularity. Then, we answered any

questions they had.

5. LensCap data usage monitoring UI study. In this phase, we let participants

explore the LensCap-integrated app again. We evaluated the current LensCap

data monitoring UI from both the usage aspect and the trust improvement

aspect. We also invited participants to help us envision a better UI to be

design in future that balances the usage and the trust. In particular, we asked

participants several questions, including “Do you think LensCap can help you

trust untrusted AR apps by allowing you to control what can be collected by

the network?”, “With the LensCap functioning logo rendering on the top left,

do you feel confident (protected) while using untrusted AR apps even with no

79

data usage notifications prompted?”, and “What other types of notification or

permission models would you like to be deployed that can further improve your

trust in AR apps?”.

User Study Observations

From the interview responses, we garnered the following observations, validating the

ability of LensCap from the user’s perspective for maintaining app performance while

endowing users with trust in random AR apps:

� All participants are already familiar with AR technology. They have more or

less used AR apps before, in which Pokemon Go and social media apps such as

TikTok and Snapchat are the most popular ones.

� Smartphone is the main AR portal. Other types of AR devices, such as wearable

glasses had been barely used. Users noted that a killer app on those devices

would be needed to boost their usage.

� AR would be used everywhere at anytime. Though currently AR usage is limited

by apps, all participants anticipate to use AR at various places (from home to

outside) and some of them even want to use AR all the time, including walking

in the street.

� Participants cannot differentiate between the legacy app and the LensCap-integrated

app performance-wise. All of them agree that the two versions of apps run

equally smooth.

� Participants want AR to be deployed in a wide range of fields. Apart from

simply putting virtual 3D content on top of the real world, participants want

80

to see AR in “medical settings, to revolutionize surgery”, “education, explain-

ing complicated chemistry concepts by visualizing reactions”, “designing and

decorating”, and “gaming and social interactions”.

� Participants are aware that visual privacy can be exposed in AR apps. In par-

ticular, they are aware that sensitive information such as credit cards, faces,

photos left around, and location captured by the camera could be stolen and

utilized by malicious AR apps. One participant pointed out that “anything my

camera is looking at, can be used for targeted advertisements”.

� Participants can trust an AR app only if they are given control of the visual

stream, e.g., “telling the app not to take my data”, “as long as the visual data

stays within the phone”, and “clarification on what gets sent to the network

and when”. All participants think the legacy Android permission model is far

from satisfying this condition.

� All participants felt that LensCap would improve their confidence while using

untrusted AR apps. They already feel safe when LensCap functioning logo is

displayed and even safer when notification banners prompted for asking their

permissions, with one participant “extremely” liking this setting. Furthermore,

all participants think the Time-of-Collection info provided by LensCap is useful.

81

Chapter 5

EDGE-ASSISTED POINT CLOUD LIVE-CAPTURE AND STREAMING

PLATFORM

Mobile capture of volumetric point clouds enables spatial information in 3 dimen-

sions to be streamed to multiple parties. However, existing solutions for volumetric

point cloud capture are too bandwidth-intensive and/or compute-intensive to support

real-time streaming operation for dense, high-quality volumetric data. To enable the

live-capture and streaming of point clouds on mobile platforms, we propose an edge-

assisted point cloud processing framework that can adapt the spatial resolution of

targeted portions of the volume to meet performance needs. The core idea revolves

around a novel voxel grid schema that represents point clouds as a set of voxel grids,

each with a set of parameters that can be tailored to the needs of the users and

their applications. The schema enables an adaptive sampling component at the edge

device that can sample points flexibly in different voxel sizes and a point cloud re-

sizing component at the client side that can resize and render points captured at

different resolutions in the same user view while sustaining visual quality. A compre-

hensive evaluation demonstrates that our framework maintains a reasonable visual

quality with a stable data throughput and a compression ratio comparable to on-

device benchmarks, while capable of meeting various performance needs and achiev-

ing an improved energy efficiency, ideal for interactive 3D use cases across mobile

client devices and mobile networks.

82

Mobile Client
DeviceMobile Client

Device

Mobile Camera Device Desktop

Mobile Client
DevicePoint Cloud

Capture
Heavy Offline
CompressionLong

Time
Long
Time

Rendering

(a) Traditional methods capture point

clouds and then compress them offline

in two separated stages due to long pro-

cessing time.

Mobile Camera Device

Point Cloud
Capture

Run-time Resolution-based
Tradeoffs via Voxelization

Mobile Client
DeviceMobile Client

DeviceMobile Client
Device

Rendering

Edge Device

High Quality
Point Cloud
Processing

(b) We push light runtime processing to

mobile camera devices and offload high

quality point cloud processing to edge

devices.

Figure 5.1: Our edge-assisted point cloud live-capture and streaming framework uti-

lizes resolution-based tradeoffs on mobile camera devices to enable 3D data visual-

ization on remote mobile client devices in real-time.

5.1 Introduction

A point cloud is simply a set of 3D points, capable of representing volumes of

captured data. With the rapid development of both depth sensor hardware and visual

computing software, point cloud data can be captured at high precision, improving

their utility across a variety of applications. Apple recently deployed LiDAR sensors

on iPhone, aiming at helping the device to better understand the user’s environment

to improve its performance in tasks such as night vision, AR experiences, and machine

learning Apple (2021); HUSSAIN (2021); Zhou and Tuzel (2017). Google presented

DepthLab Du et al. (2020) to ease developers’ burden when using depth data in

AR applications on mobile devices. Unity unveiled the Metacast real-time 3D sports

platform for creating and delivering interactive content for sports broadcasts Unity

(2021). The usage of point clouds portends continuing growth in more immersive

applications Thomson (2021); Qi et al. (2016); Medina and Paffenroth (2021); Guo

et al. (2019); Qiu et al. (2018); Hackel et al. (2017); Xue et al. (2021).

However, point clouds are expensive to stream and process, especially compared

83

to the limited network bandwidth and power of mobile devices. For a typical point

cloud format such as PLY Wikipedia (2021), each point consists of three channels

position data and three channels color data, usually represented in 12 bytes floating

number and 3 bytes byte values accordingly. If the data is captured by a Microsoft

Azure Kinect sensor Microsoft Azure (2021) working at 720p and 30 FPS, with the

number of points to be processed per frame roughly at 600K, the data throughput can

reach 2.2 Gbps, which can hardly be streamed by any types of today’s networks, even

5G. Though some of the most recent mobile devices have equipped with on-board

depth sensors such as ToF and LiDAR sensors, the resolution of those sensors is kept

low due to the power limit Hu et al. (2021b).

To enable the visualization of high resolution point clouds on mobile devices, re-

lated works compress point clouds. For example, Draco Google (2021b) and PCL Point

Cloud Library (2021) are two tree-based point cloud data processing libraries which

convert unorganized raw point clouds into structured tree data to further enable effi-

cient operations such as traversing. GROOT Lee et al. (2020) advances the sequential

tree structure by proposing a parallel-decodable tree, further improving the compu-

tational efficiency. However, as shown in these works, constructing the tree structure

from a large amount of point cloud data consumes hundreds of milliseconds to even

tens of seconds Hu et al. (2021b). Though Kammerl et al. (2012) presented a double-

buffering tree structure to remove temporal redundancy in point cloud sequences, the

task of tracking changes between two trees is still computationally intensive for dense

point clouds. Other than the tree structure, Flare Qian et al. (2018), Rubiks He

et al. (2018), and Vivo Han et al. (2020) are three frameworks that focus on volu-

metric data optimizations. However, these works rely on a comprehensive study of

existing datasets at an offline stage. They then use the study results to guide the

capture of volumetric data in order to reduce the throughput to an amount that is

84

suitable for mobile devices. These offline study results are hard to deploy in live-

capture scenarios, since the prediction accuracy can be low in a live setting and thus

degrade the user experience Dasari et al. (2020). In Dasari et al. (2020), Dasari et

al. proposed a deep learning-based streaming platform which fetches low resolution

360°-video at the server and reconstructs each frame to super-resolution at the client,

working under very limited network bandwidth lower than 30 Mbps.

Comparing with the pre-captured datasets that are used in previous works, point

clouds that are live-captured and streamed present common – but also unique – fea-

tures that we can exploit: (i) Across all point cloud datasets, not all points captured

are useful. Many works optimize the pre-captured point clouds based on a user’s view-

port, such that the hidden points on the back do not have to be streamed. Though

visibility-aware optimizations such as viewport adaptation may not be suitable in

live-capture, we are still able to separate points into focus and peripheral regions and

then treat them with different weights, e.g., environmental points are less important.

(ii) There is a resolution-based tradeoff to be exploited. Similar to 2D image cap-

ture Hu et al. (2019), capturing 3D points also presents resolution-based tradeoffs,

e.g., capturing less points (subsampling) leads to less processing time but trades vi-

sual quality. We can adaptively balance these tradeoffs to maximize the throughput.

(iii) Point clouds can be represented in different formats to fulfill different require-

ments, e.g., voxels and trees. In this work, we advocate that the point representation

is simply a special case of the voxel representation. We expect to utilize the flexi-

bility provided by the voxel representation to enable fast resolution-based tradeoffs.

With this tradeoff distributed across various network components (in particular in a

state-of-the-art 5G topology), we can explore a more robust point cloud delivery and

rendering system using combined point cloud streaming operations. (iv) The user

experience is sensitive to the point density and the frame rate. We should include

85

the user’s preference into the point cloud data processing pipeline, giving users the

control of how well they want to visualize the data.

To this end, we propose an edge-assisted multi-resolution adaptive point cloud

live-capture and streaming framework tailored for mobile platforms, as shown in Fig-

ure 5.1. The core idea behind our framework is to utilize the flexibility of the voxel

representation to sample point clouds in different resolutions to exploit the resolution-

based tradeoffs among visual quality, energy efficiency, and performance. Then, by

fully utilizing edge computing, responsive high-quality visualization can be achieved.

As a result, the system empowers users with the capability to visualize high quality

point clouds captured off-device with the on-device level of mobility. This enables

a variety of interactive apps including AR-based remote coaching, immersive sports

viewing, and 3D model reconstruction, etc.

Our framework consists of three major components. First, point clouds are rep-

resented in a set of voxel grids and each of them is managed efficiently through a

tailored voxel grid schema. Each voxel grid is reconfigurable through a set of param-

eters including the resolution, the pose and bound, and the timing budget. Then,

based on the number of voxels, each voxel grid is encoded with dynamic bit depth

to save bandwidth while streaming. Second, our framework enables programmable

voxelization, which adaptively offloads the voxelization operation and the raw data

between the mobile camera device and the edge device depending on different network

configurations. This enables early processing for interactive activities on the mobile

camera device and intensive computations on the cloud for high quality rendering.

Finally, on the client side, our framework equips a point cloud resizing component to

dynamically adjust particle size based on voxel size and then render points represented

by different resolutions in a single viewport.

We prototype our framework using three off-the-shelf devices, consisting of an

86

Azure Kinect Microsoft Azure (2021) to capture high resolution/precision point clouds,

a Jetson TX2 development board Nvidia developer (2021) to simulate the early data

analysis and preparation for utilizing real-time resolution-based tradeoffs on the mo-

bile camera device, and a smartphone to run an interactive AR application. Despite

being evaluated with specific hardware, our framework can work on other platforms,

including other depth sensors, edge computing platforms, and mobile devices. We

evaluate our framework from two aspects. First, we evaluate the effectiveness of our

adaptive sampling component in terms of the data throughput, the “compression” ra-

tio, and the energy efficiency. Second, we evaluate the visual quality of our point cloud

resizing component in terms of SSIM. The evaluation demonstrates that our edge-

assisted framework is able to deliver point clouds at a comparable high throughput

meeting various real-time requirements with an improved performance, compression

ratio, and energy efficiency, while maintaining a reasonable visual quality.

5.2 Motivation

In this section, we conduct a data study offline to (i) understand the point cloud

data distribution in two datasets, (ii) consider differences among the Voxel, the Point,

and the Octree representation, and (iii) observe the discrepancy in visual quality

of rendering point clouds at different resolutions. Though we target live-capture

scenarios, studying the data statically reveals common applicable findings.

5.2.1 Point Cloud Data Distribution

We study the point cloud data distribution using two datasets. The first one is

a publicly available dataset called the RGB-D Scenes V2 Dataset Lai et al. (2012)

which contains furniture and objects in an indoor environment. We capture the second

dataset by ourselves, using an Azure Kinect sensor in an indoor environment with a

87

0-1 1-2 2-3 3-4 4-5 5-6 6up
Euclidean Distance Interval in m

0
1
2
3
4
5
6
7
8
9

#
 o

f M
 P

oi
nt

s

9%

64%

24%

3% 0% 0% 0%

(a) Distance distribution of

the public RGB-D dataset.

0-1 1-2 2-3 3-4 4-5 5-6 6up
Euclidean Distance Interval in m

0
3
6
9

12
15
18
21

#
 o

f M
 P

oi
nt

s 27%

11%

30%

2% 5% 3%

21%

(b) Distance distribution of

our Kinect dataset.

Figure 5.2: The data distribution of two datasets indicate that most points are within

a specific distance range away from the camera center.

human subject performing various tasks, e.g., waving one or both hands, sitting, and

walking.

We first study the distance distribution of each point relative to the camera center.

The result is shown in Figure 5.2. In the public RGB-D Scenes V2 dataset, as shown

in Figure 5.2a, 64% of the points are within 1 to 2 meters from the camera center,

which is usually the main object in the center of the view. In our Kinect dataset, as

shown in Figure 5.2b, 41% of the points are within 1 to 3 meters from the camera

center, which often indicates the area of the human subject is moving within. Both

results indicate a strong correlation between the main object and its point’s location.

Then, we study how many points are needed to represent and render high quality

point clouds. In an example in the public RGB-D dataset, as shown in Figure 5.3b,

if the user is focusing on viewing the chair, the working space for points compositing

the chair can be reduced to roughly 30% of the total data. Similarly, in our own

dataset, as shown in Figure 5.3a, the main human subject consists of 181381 points

(out of 585170 points) which potentially need to be rendered at a high resolution. If

we represent the scene using voxels, we can use the same quantity of high-resolution

voxels for points compositing the human and 13178 low resolution voxels for peripheral

88

(a) Human in our Kinect

dataset.

(b) Chair in the pub-

lic RGB-D dataset.

Figure 5.3: Points compositing the human subject and the chair object both oc-

cupy roughly 30% of the total point cloud data, which potentially are required to be

represented and rendered at a high resolution.

points (59% of the total data), resulting in a compression ratio more than 3.2. We

can further increase the compression ratio by dividing the human subject into parts

and weighing them differently with different resolutions.

5.2.2 Voxel vs. Point vs. Octree

3D point clouds are generated from raw 2D color and depth map. Though color

maps in a video sequence can be compressed, streamed, and decompressed at real time

in formats such as MJPEG, the compression of depth maps remains inefficient, hardly

meeting the real-time specification. In this section, we study the depth (position)

data representation among three formats, the Voxel, the Point, and the Octree. We

study them using two factors, the memory footprint and the latency it takes to

construct. Here, voxelization is performed using open3D Zhou et al. (2018) and

Octree transformation is performed using Draco Google (2021b).

For memory footprint, the Octree structure is the most efficient data representa-

tion. Both Point and Voxel represent point clouds in XYZ (position) and RGB (color)

format. The XYZ data in Point usually consists of three 4 bytes float to document

89

the real world position of each point. The XYZ data in Voxel usually consists of three

4 bytes int indicating the index of each voxel. Then, both of them add the RGB

color data which usually consists of three 1 byte uint8 t. For example, in our ex-

periment, point clouds captured at 720p-unbinned can consume as much as 14.7 MB

memory if purely stored as Point. Similar memory footprint will be incurred if they

are represented by Voxel with small size. However, if point clouds are encoded with

Octree, the memory consumption can be one magnitude lower (to 1.3 MB). Repre-

senting point clouds by Voxel with large size can also reduce the memory footprint,

but points within the same voxel are averaged and their information is lost.

For latency to construct, the Point takes the least amount of time, since it just

needs a 2D to 3D transformation. Converting points into Voxel and Octree both take

additional time. In our experiment using Open3D Zhou et al. (2018), converting a

point cloud containing 190K points into Voxel takes 24 ms when voxel size is set to 10

(output 5K voxels), 42 ms when voxel size is set to 5 (output 15K voxels), and more

than 2 s when voxel size is set to 1 (output 190K voxels, roughly no optimization).

Meanwhile, converting the same amount of points into Octree takes 241 ms, 354 ms,

and more than 9 s for maximum depth set to 1, 3, and 8 accordingly. Both operations

are CPU-intensive and the proportionality between the amount of points and similar

latency can also be identified using the PCL Point Cloud Library (2021) library.

5.2.3 Point Cloud Rendering

We explore the resolution implication on rendering point clouds on mobile plat-

forms from two experiments: (i) voxelize all points uniformly with one resolution; (ii)

voxelize points separately using a combination of resolutions within the area contain-

ing the human subject. Similar to §5.2.2, we capture static point clouds and convert

the color and depth images to polygon files. To voxelize the data for downsampling,

90

GT 1 16

GT 0.9999 0.6579

1/16

0.9187

Figure 5.4: Uniformly voxelizing point clouds with a bigger voxel size (16) will degrade

visual quality (in terms of SSIM value). However, the visual quality can be maintained

in a multi-resolution setting (1/16), with foreground and background represented

separately.

we use Open3D again. To evaluate the visual quality, we use SSIM Horé and Ziou

(2010); Hu et al. (2020).

First, we downsample the entire point cloud at a voxel size of 4, 8, and 16. As

shown in Figure 5.4, the SSIM drops rapidly as we increase the downsample factor,

demonstrating quality loss. Second, we separate the point cloud into the foreground

and background, with the foreground containing the human subject. The result shown

in Figure 5.4 indicates that rendering in a multi-resolution setting can effectively

maintain a reasonable objective quality metrics while requiring less input data and

consuming less computational resources.

Alternatively, mesh reconstruction can be used to render a cohesive point cloud

with minimal holes. However, reconstructing meshes is prohibitively expensive. The

ball pivoting algorithm introduced by Bernardini et al. (1999) is a popular method

used in Open3D. When reconstructing a point cloud with 240K points, the algorithm

took 6.28 s to render the final image on the CPU, Similar works running on the GPU

have similar rendering speeds; Buchart et al. (2008) takes 10.27 s to reconstruct a

240K point mesh.

91

5.2.4 Findings

From the studies above, we have the following findings.

1. Resolution-based tradeoffs can be the key enabler to live-capture and streaming.

If point clouds are weighted and divided into tiles represented at different res-

olutions, e.g., determining the resolution spatially based on the position of the

main object (high resolution) and the peripherals (low resolution), the efficiency

to process, stream, and further render them can all be improved. Especially for

mobile platforms, a sweat spot of the resolution combination to represent the

point cloud needs to be determined at runtime to maintain a balance among

streaming latency, rendering latency, visual quality, and power efficiency.

2. The Point representation is simply a special case of the Voxel representation,

with a finite range and a high precision. In this special case, the position of

each point is equal to the index of each voxel.

3. The Voxel representation presents a flexible runtime tradeoff that can be uti-

lized in terms of latency, memory footprint, and rendering quality. The Point

representation does not require any additional latency for processing, however

it consumes more memory and takes a long time to be streamed. The Octree

representation is less memory intensive, but it incurs unacceptable latency over-

head to construct. The Octree structure mainly focuses on easing data traverse

for efficient operations such as finding nearest neighbors. It needs to be decoded

before rendering. However, the Voxel representation presents a resolution-based

tradeoff, i.e., larger voxel size leads to more aggressive optimization with less

memory consumption and less computational and streaming latency.

Those findings motivate a voxelization-based point cloud live-capture and stream-

92

ing framework tailored for mobile platforms that can adaptively define focus regions

and select appropriate spatial-temporal resolutions to capture, process, and stream

the least amount of points. According to a previous work Hu et al. (2021b), point

cloud capture and streaming latency, as well as the energy consumption per frame

on mobile client devices is proportional to the number of points, e.g., roughly a 70%

reduction in latency and energy consumption can be achieved if the system is working

on 30% of the total points.

5.3 System Design

Motivated by the case study, our system represents point clouds in voxel grids, a set

of points parameterized by a spatial region workspace and quality resolution (§5.3.1).

We design the voxel grid schema to enable efficient processing through resolution-

based tradeoffs, such that mobile camera devices can flexibly capture and stream

dense point clouds with focused areas of interest for other mobile client devices to

receive and render. The streaming applications can set voxel grid parameters, driven

by the semantic needs of the use case. Based on the voxel grid parameters, mo-

bile camera devices can sample and voxelize point clouds using multiple resolutions

through an adaptive sampling component such that the system can efficiently encode

and stream the information (§5.3.2). The receiving mobile client device resizes and

renders the points of the voxel grids in a unified viewport (§5.3.3). Figure 5.5 shows

an overview of our framework.

5.3.1 Efficient Voxel Grid Schema

Dividing the 3D space into a set of voxel grids enables our framework to indepen-

dently weight and treat groups of points to utilize resolution-based tradeoffs, managed

by an efficient voxel grid schema. The voxel grid operates on a set of parameters,

93

Mobile Camera Device
Voxel Grid 1 Param:
• Bound
• Pose
• Voxel Size
• Timing Budget

Point Cloud
Capture

Adaptive
Sampling For

Live-
Streaming

Mobile Client Device

Point Cloud
Resizing

User
Interface

Voxel Grid
Schema

Voxel Grid 1 Param:
• Bound
• Pose
• Voxel Size
• Timing Budget

Figure 5.5: Our framework represents 3D point clouds in voxel grids, manages each

voxel grid with a set of parameters, and encodes each voxel grid efficiently for live-

streaming through a novel voxel grid schema. On mobile client devices, point clouds

are resized and rendered in one viewport. Finally, the user interface allows users to

customize parameters for each voxel grid.

including the bound and the pose, the resolution, and the timing budget. Then, each

voxel grid is encoded separately for efficient live-streaming.

Bound and Pose

The bound defines the boundary of each voxel grid in the 3D space. Points falling

into a particular bound belong to the same voxel grid and thus are processed with

the voxel grid’s set of parameters. Specifically, after points are included by a voxel

grid, the coordinates are transformed into a local system. This enables voxel grid-

based pose (translation and rotation vector) to be applied to all points within. User

applications can select a voxel grid and move/rotate it separately from other point

clouds.

Resolution

Resolution indicates the density to represent the volumetric data. In our framework,

the context of resolution is inverse to the voxel size. Therefore, a higher resolution

means more points need to be sampled by smaller voxels, vice versa. Our frame-

work tracks the requested resolution of each voxel grid and selects a combination of

94

resolutions to sample points efficiently.

Timing Budget

We monitor the local timing budget for each voxel grid, as well as the global timing

budget to meet frame rate expectations. The system can set the global timing budget

to meet an overall frame rate. A higher frame rate indicates a lower timing budget,

reducing the amount of points that can be sampled in high resolutions. On the other

hand, a lower frame rate gives more room for more points to be sampled in high

resolutions. At runtime, the system can balance the resolutions of voxel grids such

that the combinations of local timing budgets do not exceed the global timing budget.

Dynamic Voxel Grid Encoding

Since a 3D point cloud is represented in voxel grids of varying resolutions, it is impor-

tant to efficiently represent the combination of voxel grids. Rather than simply using

a fixed bit depth for each channel, we introduce a dynamic voxel position encoding

solution to quantize the bit depth (BD) of each voxel grid as necessary, based on its

unique voxel size and bounding box. The idea behind it is simple – for a particular

data type, not all bits are fully used for data representation. The system can remove

unused bits to reduce memory footprint while maintaining the data completeness.

Dynamic voxel position encoding thus decreases the bit depth if fewer voxels are

within a voxel grid. For example, 16 bits (in the Point representation) are not needed

to index 1000 voxels if they are aligned in one axis; 10 bits suffice. The total number

of bits necessary can be described as the sum of the number of bits required to index

in each dimension, as listed in Equation 5.1. To decode the location of each voxel, the

client simply needs to know the bit depth of each channel and then perform proper

95

masking.

Bit DepthXY Z = dlog2NXe+ dlog2NY e+ dlog2NZe (5.1)

5.3.2 Adaptive Sampling for Live-Streaming

The efficient voxel grid schema enables an adaptive point cloud sampling compo-

nent that is optimized for live-streaming. At runtime, we define voxel grids based

on two principles: (i) attempt to only sample points within (or near) the user’s view

frustum, and (ii) allow semantic understanding and viewing camera distance to guide

resolution and timing budget associated with each voxel grid. Fundamentally, adap-

tive sampling saves the bandwidth from the source, leading to more efficient data

processing, memory operations, and streaming.

Adaptivity to User View

To monitor the view frustum, the mobile camera device needs to collect the user’s

viewing pose and field of view, relative to the point cloud. This forms the view

frustum, which determines whether particular points are to be processed or not,

i.e., points falling out of the view frustum will be discarded without processing and

streaming. Note that there exists an obvious correlation between frame rate and

interactive latency because of the frame delivery pipeline (one frame in our case),

especially since our system does not predict the user’s viewport movement.

The spatial-resolution can be determined both actively (locally) and passively

(globally), from the user’s perspective. Actively (locally), the user can assign each

voxel grid with a different resolution by controlling the voxel size. The smallest voxel

size indicates the highest resolution, e.g., creating a one to one matching between each

voxel and each point. As the voxel size increases, the resolution decreases, and more

points are represented by each voxel (with their color information averaged). Passively

96

(globally), sampling points should obey the overall timing budget, e.g., 33.3 ms for

30 FPS, to maintain an uninterrupted user experience. The timing budget may be

large enough for all relevant points to be captured at the highest resolution indicated

by the resolution request. However, if it is not, our framework selects a layered

spatial-resolution and samples points in multiple resolutions, based on the distance

between each point and the user’s camera center. To do so, points far away from

the camera center are sampled at a lower resolution with bigger voxel size. After

spatial sampling, voxel grids represent point clouds with different bounding sizes,

each associated with a unique set of parameters.

Adaptivity to Network Topology

Voxelization is a costly operation that scales with the resolution (voxel size). Perform-

ing voxelization at high resolutions completely on mobile camera devices is infeasible

due to their low computing power. Offloading expensive operations to networked

cloud components may yield high computing power but introducing longer laten-

cies to reach the user. Here, we discuss two policies around the edge and the cloud

components accordingly to utilize their capabilities for different use cases.

On the mobile camera device, light voxelization using larger voxels should be

performed for latency-sensitive use cases. In this scenario, the edge device trades point

cloud resolution for performance and interactivity, subject to the timing budget set by

the user. This scenario is extremely useful when initial scene understanding is needed

such as a quick segmentation for object detection or coarse-grained joint detection,

tracking, and related user interactions through storing and retrieving key frames on

the edge device itself. Light voxelization on the edge device enables: (i) efficient early

processing on point clouds to reduce data traffic, especially if there are multiple edges

and users in the environment; (ii) data processing closer to the user device leading to

97

less round-trip network latency, which will unleash the potential of various interaction-

based use cases including augmented reality; and (iii) an ecosystem around the mobile

camera device for fine-grained visual data control.

On the cloud component, heavy/lossless voxelization with smaller voxels should

be performed for quality-sensitive use cases. In this scenario, the compressed 2D color

and depth data can be transmitted from the edge device to the cloud using a lower

bandwidth. Then, the cloud component can perform heavy processing on those data

such as reconstructing and maintaining the whole point cloud at high resolution in

each frame. When needed, the high resolution point cloud can be transmitted to

the user’s device in different ways, including encoding voxels into a compressed 2D

texture for remote rendering. This scenario can further realize point cloud rendering

on the user’s device in a hybrid mode with collaboration between the edge and the

cloud. This scenario is useful when the user’s need of visual quality is more important

than real-time interactivity, e.g., in an AR-based coaching application when coaches

and athletes use a “replay mode” to observe the accuracy of an activity.

5.3.3 Point Cloud Resizing

On mobile client devices, rendering points sampled at different resolutions using

uniform sized particles will manifest in unbalanced point density in different regions.

In a high resolution voxel grid, denser points are sampled and thus the shape is more

intact and consistent. On the contrary, in a low resolution voxel grid, fewer points

are sampled and rendered which will create visible gaps among them. These gaps will

degrade the visual quality and associated user experience if unbalanced point clouds

are rendered simultaneously in the user’s view. Thus, instead of receiving and ren-

dering points without the knowledge of points being sampled by different resolution

voxel grids, our system dynamically adjusts the point size (resizing particles) at run-

98

time based on the voxel size associated with each voxel grid schema through a point

cloud resizing component. The idea behind this is simple – our system resizes each

particle to be large enough to cover the empty space around it to form and present a

continuous shape, driven by the associated voxel size.

Unfortunately, resizing particles will not fill in lost pixel information that was

averaged into voxels since the system discards raw depth/color sensor data in our

current implementation. The system also discards the position and color info of mul-

tiple points, lost during the voxelization averaging. Instead of resizing particles with

uniformed color, it could be possible to utilize the color texture to interpolate the sur-

rounding pixels (one voxel multiple color) to recover missing information. Compared

with 3D position data, 2D color data is very efficient to be streamed in compressed

format such as MJPEG. We will explore such functionality in future work.

5.4 Implementation

The implementation involves the mobile camera device and the mobile client de-

vice. The mobile camera device is implemented in the C++ environment on a Jetson

TX2 board installed with Ubuntu v18.04 with Linux kernel v4.9, connected with an

Azure Kinect sensor through USB. The mobile camera device implementation involves

a multi-threaded data processing pipeline and an adaptive sampling component. On

the mobile client device, the implementation, including the point cloud resizing com-

ponent, is built with C# in the Unity game engine on a Windows machine, which

creates an application that we deploy to an Android device.

5.4.1 Multi-Threaded Data Pipeline

To maximize the throughput, we implemented our framework as a multi-threaded

pipeline consisting of four stages, raw sensor data processing, point cloud process-

99

MJPEG to YUV
Decompression
𝑇𝐵#$ ≈ 20	𝑚𝑠

Depth View
Transformation
𝑇𝐵+$ ≈ 15	𝑚𝑠

Point Cloud
Generation
𝑇𝐵.$ ≈ 16	𝑚𝑠

Adaptive
Voxelization
𝑇𝐵0$ ≈ 1/𝐹𝑃𝑆

Depth
Thread (dt)

Main
Thread (mt)

PCL
Thread (pt)

Voxel
Thread (vt)

Figure 5.6: Voxelization is pipelined into four stages and the overall throughput of the

mobile camera device is determined by the most expensive thread (example latencies

show processing at 720p-unbinned).

ing, voxelization, and streaming. Each stage is implemented as its own thread: a

color data decompression thread (mt) (performed on the main thread), a depth data

transformation thread (dt), a point cloud generation thread (pt), and an adaptive

voxelization thread (vt), as shown in Figure 5.6. For example, the code below cre-

ates a thread object (vtObj) for vt to voxelize point clouds which operates on three

pointers (high, medium, and low res point clouds) together with the intended voxel

size.

std:: thread vtObj(generateVoxelWrapper , pclH , pclM , pclL ,

voxelSizeH , voxelSizeM , voxelSizeL);

Each stage contains two sets of buffers for exchange. The raw depth and color

data are retrieved from the Kinect sensor and then transformed into the same color

view through the K4A SDK. To decompress MJPEG image to YUV format, we used

NvJpegDecoder Nvidia (2021). To send point cloud data, we used a simple TCP

Socket.

At stage one, the mt thread takes the color data to decompress MJPEG to YUV

and saves the result into Colorbuf1; the depth data is passed to create dt thread to

100

transform XY depth into XYZ point cloud and the result is stored in Depthbuf1.

At stage two, Colorbuf2 and Depthbuf2 are filled by mt and dt, while Colorbuf1 and

Depthbuf1 are passed to the pt thread to generate XYZ-YUV point cloud data which is

then stored in PCLbuf1. At stage three, Colorbuf1, Depthbuf1, and PCLbuf2 are filled,

while PCLbuf1 is passed tovt thread to voxelize point clouds in multiple resolutions

and store the result in V oxelbuf1. At stage four, Colorbuf2, Depthbuf2, PCLbuf1, and

V oxelbuf2 are filled, while mt uses the socket Send() to transmit V oxelbuf1 to mobile

client devices. The pipeline of threads enables the framework to send the voxelized

data to mobile client devices per frame.

Each thread takes some time to complete tasks, defined as Tmt, Tdt, Tpt, and Tvt

accordingly. As these are fully pipelined, the maximum throughput is determined by

the most expensive thread, which in turn produces the frame rate experienced by the

user, as shown in Equation 5.2. Depending on the voxel size, the voxelization thread

usually incurs a wide range of latency. Thus, inside vt, we implemented two sub-

threads such that high, medium, and low resolution voxelization can all be processed

in parallel and their timing cost can be further balanced and subdivided.

max(TBmt, TBdt, TBpt, TBvt) <= 1/FPS (5.2)

5.4.2 Adaptive Point Cloud Sampling

The User Interface

As described in §5.3, our framework allows users to interact with each individual

voxel grid to define a set of desired parameters. This implementation involves four

settings according to our system design, including the interactive pose, the designated

bound, the performance target FPSmin (inverse to timing budget), and the resolution

101

request. For the pose and the bound, we rely on existing interactive functionalities

integrated in the game development engine to let users create bounding boxes through

gestures and touches and further interact with those boxes through rotating or re-

positioning. For the performance target and the resolution request, we expose them

as two sliding bars, indicating the scale between the maximum and the minimum.

The bar of performance target has a scale from 20 to 100, indicating the minimum

acceptable frame per second. The resolution request bar has a scale from 1 to 10,

indicating the maximum and minimum resolution, i.e., voxel size. Note again that a

lower voxel size equals to a higher resolution.

The Spatial Resolution

The spatial resolution is then adaptively determined for live-streaming, according

to the user’s resolution request, FPSmin target, number of points in user-initiated

voxel grids, as well as the current camera center, which are all read from the mobile

client device and updated per frame. As the top priority, the FPSmin target needs

to be met by maintaining a stable throughput. Then, our system samples points

within the user-initiated voxel grids using the requested resolution. During sampling,

the latency cost (Cv) of voxelizing each point in different voxel grid resolutions is

documented and updated per frame, in the unit of nanoseconds per point. The

maximum number of points can be sampled per frame at each resolution is then

determined by 1/FPSmin/Cv. If the number of points to be sampled exceeds the

throughput limit, our system samples points closer to the camera using the requested

resolution, then selects lower resolutions to sample farther points. However, if the

system can handle more points in a higher resolution, more points closer to the camera

will be sampled at the requested resolution. At last, if the user-initiated voxel grids

are made larger or smaller, our system re-evaluates the condition above and then

102

re-sample points.

Voxel Grid Encoder and Decoder

In our implementation, the resolution request directly translates to voxel size, e.g.,

when resolution request is set to 1 (full), it translates to a voxel size equaling to 1,

i.e., 1 voxel to 1 point (the same millimeter precision with the raw data from the

Kinect). To voxelize point clouds, we utilize the VoxelGrid API provided by the

Open3D Zhou et al. (2018) library, a popular library for 3D processing. To encode

each voxel grid for efficient positioning on the server, we use the maximum bound

(maxbound) and the minimum bound (minbound) of a given voxel grid and then use the

differences between maxbound and minbound to determine the minimum number of bits

that is required to number all voxels in the X (BDX), Y (BDY), and Z (BDZ) axis.

We then shift the voxel ID in each channel to the left according to BDX , BDY , and

BDZ to fit the voxel location into one variable using the bit-wise OR operator, with

its total number of bits rounded up to multiples of 8 for byte-alignment. After the

encoding, we attach the voxel size, the data length, the offset and bit depth in each

channel, and the bounds to the buffer containing the voxelized data as the header to

be used for decoding. In our implementation, all of the header information results in

a negligible overhead of less than 100 bytes. On the client, to decode the voxelized

data, we simply need to parse the header and utilize bit masks to reconstruct the

voxel locations by manipulating bits. For example, to decode the voxel ID for a 32

bits input which has 8 bits BDX , 8 bits BDY , and 13 bits BDZ , we first create three

bit masks for each XYZ channel, e.g., maskX = 1 << BDX - 1 for voxel location

in the X channel. Then, the voxel location in the X channel is reconstructed with

right-shift and bit-wise AND, i.e., input >> (32 - BDX) & maskX.

103

5.4.3 Point Cloud Resizing

The implementation of point cloud resizing involves shader programming and

determining the appropriate particle resizing factor for each voxel size. Based on

the header (described in §5.4.2), the client receives and decodes the data buffer,

documents the starting indices for high, medium, and low voxel sizes, and stores the

point cloud in a custom structure consisting of two List<Vector3>; one for color

data and one for vertex data.

Then, we feed the color and vertex data to our custom shader through global

ComputeBuffers. We use Unity’s built-in particle system implementation to render

points, which limits the number of particles rendered per system to 16384. Therefore,

we instantiate the required number of particle systems to render the full number of

points. After that, the starting indices are sent to the shader, as well as the point

indices for that specific particle system. Our custom shader runs on each particle

system, only rendering the assigned points. The global ComputeBuffers are shared

among all the shaders, as each one only accesses the data at its assigned point indices.

The particle is rendered to the scene as an unlit billboard. Unity’s forward rendering

pipeline then renders the scene to the camera.

To determine the optimal particle size for each voxel size, we implement a data-

driven approach to study their relationship. We capture point clouds and voxelize

them with 10 different voxel sizes, according to §5.4.2. For each point cloud sampled

at each voxel size from 2 to 10, we render it with different particle sizes (with a

precision of 0.01). Then, we compute its SSIM against the ground truth point cloud

voxelized at the size of 1. SSIM is used as a quality metric since it computes the

direct pixel difference for the final render. We find that SSIM trends upwards until

the particles were big enough to cover the entire point cloud without showing any

104

Particle Size
SS

IM
0.1

0.3

0.5

0.7

0.9

0.1 0.3 0.5 0.7 0.9 1.1 1.3

VS2

VS3

VS4

VS5

VS6

VS7

VS8

VS9

VS10

Figure 5.7: For each voxel size (VS), SSIM goes upwards until the particles are big

enough and then goes downwards as particles continuously become bigger, i.e., an

optimal resizing factor can be identified.

of the background, at which point they began trending downwards, as shown in

Figure 5.7. We use the particle size with the highest SSIM value for our subsequent

renders. Note that the distance between particles and the camera center has little

effect on this relationship, due to the forward renderer accounting for distance when

rendering the particle systems in the final image.

5.5 Evaluation

We evaluate our framework from two aspects: (i) the performance of adaptive

sampling and (ii) the visual quality of point cloud resizing.

Hardware Platform

To sample point clouds, we used an off-the-shelf depth sensor – an Azure Kinect Mi-

crosoft Azure (2021). The color data is captured at 720p and 1080p, meanwhile

the depth data is captured at binned (512x512) and unbinned (1024x1024) at Wide

Field-of-View (WFOV). The resolution of the point cloud data is then denoted as

color-depth (e.g., 720p-binned) in the rest of the evaluation. To adaptively sample

105

and process point clouds at the mobile camera device, we used an Nvidia Jetson TX2

development board introduced in §5.4. To stream point clouds, we connected the

Jetson TX2 to a TP-Link router tp-link (2021) with a wire. The TP-Link router is

further connected to the mobile client device wirelessly, with a download bandwidth

as high as 450 Mbps. To resize and render point clouds, we used a Google Pixel 5

smartphone to run a Unity application in the Android environment.

5.5.1 The Performance of Adaptive Sampling

Dataset

This evaluation is performed in a live-capture and streaming setting in an indoor

environment. We simply ask a human subject to perform daily tasks in front of

the Azure Kinect sensor, e.g., typing, writing, waving hands, walking, standing up

and sitting down, etc. The number of points captured per frame is roughly 600K at

720p and more than 1.3M at 1080p. Each point originally consists of 12 bytes float

position info and 3 bytes uint8 t color info, the same as the popular polygon file

format Wikipedia (2021).

Metrics

We use three metrics to demonstrate the performance of the adaptive sampling com-

ponent in our framework, including (i) the data throughput, (ii) the compression

ratio, and (iii) the runtime energy efficiency.

Data Throughput

For this metric, we perform two experiments to understand (i) on the mobile camera

device, if our framework can adaptively determine the voxel size to maintain the

throughput; (ii) on the mobile client device, whether our framework can render with

106

1 2 3 4 5 6 7 8 9
Resolution Request in Voxel Size

9
12
15
18
21
24
27

#
 o

f K
 P

oi
nt

s

--Resolution Decreases-->

High
Med
Low

(a) # of points to resolution.

1 2 3 4 5 6 7 8 9
Resolution Request in Voxel Size

32
34
36
38
40
42
44
46

Th
ro

ug
hp

ut
 in

 M
bp

s

--Resolution Decreases-->

(b) Throughput to resolution.

Figure 5.8: On the mobile camera device, our system adjusts the voxel size (high and

medium) to adaptively sample points according to the resolution request. Voxel grids

with lower resolutions cost less bits to encode all voxels, and thus more voxels can be

transmitted under the target throughput stably at 30 FPS.

a high data throughput comparable to state-of-the-art solutions. The data throughput

is measured in the unit of mega bits per second (Mbps).

The result of this experiment is shown in Figure 5.8, which is averaged across

multiple runs each consisting of a 1000-frame period. On the Kinect plus Jetson TX2

mobile camera device, we set the frame rate target to be stable at 30 FPS. Then,

according to the resolution request (high res set by the user), our system adaptively

determines the number of points to be sampled at a low voxel size and selects the

medium voxel size to sample points around the user-initiated voxel grid in a medium

resolution, while maintaining the environmental points to be represented stably in a

high voxel size at a low resolution, as shown in Figure 5.8a. Because the voxel size

increases as the resolution decreases, in the same region, less bit depth is required

to number all voxels. As a result, more voxels can be transmitted under the same

throughput target. Finally, the overall throughput can be maintained, as shown in

Figure 5.8b. On the Pixel 5 mobile client device, we find that receiving, resizing, and

107

720p 1080p0
5

10
15
20
25
30
35

Co
m

pr
es

si
on

 R
at

io

Draco
Ours − Single
Ours − Multi
Ours − Adaptive

Figure 5.9: Compression ratio of Draco and our framework, with our framework

sampling points in one resolution (-Single), multi-resolution (-Multi), and adaptive

multi-resolution (-Adaptive).

rendering point clouds can incur a wide range of stable throughput up to 73 Mbps

depending on the voxel size and target frame rate. These results are comparable to the

wide range shown in Vivo Han et al. (2020), although ours have a lower maximum

throughput. However, our framework provides runtime resolution tradeoffs which

can meet the requirement for a variety of networking conditions. Note that there

is a throughput discrepancy between mobile camera device and mobile client device

(higher at receiver than at transmitter) which further opens opportunities for a multi-

edge environment.

Compression Ratio

Here, we compare our adaptive sampling framework against Draco Google (2021b)

since Draco is demonstrated to have the best compression ratio Han et al. (2020).

In this experiment, Draco is statically parameterized with the compression level set

at 7 and the quantization bit set at 11. On the contrary, our framework is running

in a dynamic setting, in which the resolution is randomly set every 50 frames. Note

that our framework does not “compress” point clouds but voxelizes and samples point

clouds using different voxel sizes.

108

Running with our framework, we first include all points from the capture and

represent the whole point cloud using one voxel grid with one voxel size. In this case,

the average memory footprint is roughly at 2.3 MB. Then, we represent the point cloud

using three voxel grids, each associated with a different voxel size, however, with an

arbitrary number of points set to sample high res (100K), medium res (200K), and low

res (the rest) points. In this case, the average memory footprint is roughly at 1.7 MB.

Finally, we apply adaptivity to each voxel grid such that the number of points to be

sampled at different resolutions is dynamically determined. In this case, the average

memory footprint is reduced to 0.99 MB. A comparison of the compression ratio is

shown in Figure 5.9. The result demonstrates that our adaptive sampling framework

can achieve a comparable or even higher compression ratio than Draco, by sampling

point clouds using a set of resolutions. In addition to those three cases, we apply

focus regions to the scene, in which only points within those regions are sampled and

streamed. In this case, the memory footprint can be as low as hundreds KB, which

leads to a one magnitude higher compression ratio compared with Draco.

Runtime Energy Efficiency

We evaluate the runtime energy efficiency in terms of the energy consumption per

frame in the unit of joule (the product of power and frame time) and the energy

consumption per point in the unit of µJ (the quotient of power divided by the number

of points sampled per second) on both the mobile camera device and the mobile client

device. The evaluation is performed in the same adaptive multi-resolution setting

running with different resolution requests as described in the throughput evaluation,

with a frame rate set stable at 30 FPS and 20 FPS. On the Kinect plus Jetson TX2

mobile camera device, we retrieve the power consumption of VDD IN by reading its

power rail sys file. The power consumption of VDD IN includes all major components

109

1 2 3 4 5 6 7 8 9
Resolution Request in Voxel Size

0.100
0.125
0.150
0.175
0.200
0.225
0.250
0.275
0.300

J p
er

 F
ra

m
e

--Resolution Decreases-->

30FPS 20FPS

(a) J per frame.

1 2 3 4 5 6 7 8 9
Resolution Request in Voxel Size

4.0

4.5

5.0

5.5

6.0

6.5

μJ
 p

er
 P

oi
nt

--Resolution Decreases-->

30FPS
20FPS

(b) µJ per point.

Figure 5.10: A stable data throughput incurs a stable energy consumption/frame and

a reduction in energy consumption/point when more voxels can be transmitted with

larger voxel sizes. A performance-based energy tradeoff can also be identified.

on board including GPU, SoC, CPU, and DDR. On the Pixel 5 client, we measure the

power consumption by reading the voltage (voltage now) and current (current now)

sys files of the battery class using remote adb. Figure 5.10 shows the result measured

on the mobile camera device. We find that (i) a stable data throughput incurs a stable

energy consumption per frame, demonstrating that our framework does not incur

any power overhead, as shown in Figure 5.10a; (ii) more points can be sampled and

transmitted as voxel size increases, presenting a reduction in energy consumption per

point, as shown in Figure 5.10b; (iii) there is a performance-based energy tradeoff, i.e.,

lower frame rate incurs lower energy consumption per frame and per point. Similar

trend in energy consumption per frame and per point can be identified on the Pixel 5,

with one magnitude lower values.

110

5.5.2 The Visual Quality of Point Cloud Resizing

Dataset

In this evaluation, we capture the dataset and perform experiments on it in an offline

setting. The dataset contains point clouds captured and rendered in three different

settings, including single resolution, multi-resolution without point cloud resizing,

and multi-resolution with point cloud resizing. Similar to §5.5.1, single resolution

point clouds are voxelized with a voxel size from 1 to 9 and multi-resolution point

clouds are voxelized using a layered resolution. To resize point clouds, we use the

particle size determined by our study introduced in §5.4.3.

Metrics

To measure the visual quality of the final renders, we use SSIM again to compute

pixel differences between rendered images. In particular, we perform comparisons on

multi-resolution renders with and without point cloud resizing, against ground truth

point clouds sampled using a single resolution.

Visual Quality

When point clouds are rendered without resizing, the average SSIM across all voxel

sizes is only at 0.67. In comparison, after point cloud resizing is applied, the average

SSIM is improved to 0.78, equaling to a 16.4% improvement in visual quality. We

acknowledge that an optimized visual quality metric needs to be developed to take

users’ different resolution needs into the consideration. We will actively explore it

and perform a more comprehensive visual quality study in our future work.

111

Chapter 6

CONCLUSION

In this work, we presented three solutions towards fine-grained control of visual data

in mobile systems for continuous mobile vision applications to operate with energy

efficiency improved, visual privacy protected, and 3D data interactivity enhanced.

First, for resolution-based energy and accuracy tradeoff, we observe a substantial im-

age sensor resolution reconfiguration latency caused by the sequential reconfiguration

procedure in current operating systems. This long reconfiguration latency gives vision

applications a perception of losing frames which impedes the adoption of otherwise

beneficial resolution-energy tradeoff mechanisms. In this paper, we propose Banner

as a system solution for providing rapid and seamless image sensor resolution recon-

figuration. Evaluated in three different OpenCV workloads including display-only,

cloud-based offloading, and marker-based pose estimation running on a Jetson TX2

board, Banner is able to halve the end-to-end reconfiguration latency and completely

remove the frame-to-frame latency, i.e., no frame drop during sensor resolution re-

configuration even for workloads working at 30 FPS. This allows a more than 49%

system power consumption reduction comparing reconfiguring the sensor resolution

from 1080p to 480p with downsampling 1080p↓480p. Banner unlocks a variety of

mobile vision tasks to dynamically reconfigure sensor resolutions to adapt to the en-

vironmental change and then maximize the energy efficiency. Second, for preserving

visual privacy, we introduce LensCap, a split-process app development framework to

protect user’s visual privacy in cloud-based AR apps. LensCap isolates the process-

ing of camera frames into a distinct visual process, meanwhile maintaining the cloud

communication through another network process, with the data transactions between

112

split processes monitored and shown to users for approval at a fine granularity. We

prototype LensCap as an Android library that could be integrated into the AR devel-

opment flow of Unreal Engine as a plugin. We evaluate LensCap in five UE projects

developed for Android platforms. Results collected from the performance evaluation

together with an interview-based user study demonstrate that visual privacy could

be preserved and user confidence could be improved with LensCap split-process ac-

cess control implemented in untrusted AR apps, without any noticeable performance

penalty. Third, for an enhance interactivity through 3D data, we presented an edge-

assisted point cloud live-capture and streaming framework to enable real-time high

precision point clouds visualization on mobile client devices. Our framework is built

around an efficient voxel grid schema that enables the utilization of resolution-based

tradeoffs on point clouds at runtime. Then, based on a set of voxel grid parameters,

our framework adaptively sample points in multiple resolutions efficiently for live-

streaming. On the mobile client device, points represented by different voxel sizes are

resized and rendered in the same viewport. Our prototype using three off-the-shelf

components demonstrates that point clouds can be delivered at a stable throughput

adaptive to various requirements with the visual quality maintained while working

with an improved energy efficiency. With massive visual data controlled by users at a

fine granularity, a bloom of new reality through pervasive computing can be expected.

113

REFERENCES

Facebook, “Mixed Reality Capture”, https://developer.oculus.com/
documentation/native/pc/dg-mrc/ (2021).

Aditya, P., R. Sen, P. Druschel, S. Joon Oh, R. Benenson, M. Fritz, B. Schiele,
B. Bhattacharjee and T. T. Wu, “I-pic: A platform for privacy-compliant image
capture”, in “Proceedings of the 14th Annual International Conference on Mobile
Systems, Applications, and Services”, MobiSys ’16, pp. 235–248 (ACM, New York,
NY, USA, 2016), URL http://doi.acm.org/10.1145/2906388.2906412.

AlDuaij, N., A. Van’t Hof and J. Nieh, “Heterogeneous multi-mobile computing”,
in “Proceedings of the 17th Annual International Conference on Mobile Systems,
Applications, and Services”, MobiSys ’19, p. 494–507 (Association for Comput-
ing Machinery, New York, NY, USA, 2019), URL https://doi.org/10.1145/
3307334.3326096.

Android Developer, “Media Framework Hardening”, https://source.android.com/
devices/media/framework-hardening (2021).

Android Developers, “Permissions overview”, https://developer.android.com/
guide/topics/permissions/overview (2021a).

Android Developers, “Secure an Android Device”, https://source.android.com/
security (2021b).

Apple, “Use hdr on your iphone, ipad, and ipod touch”, URL https://support.
apple.com/en-us/HT207470 (2018).

Apple, “Apple unveils new ipad pro with breakthrough lidar scanner and brings
trackpad support to ipados”, https://www.apple.com/newsroom/2020/03/apple-
unveils-new-ipad-pro-with-lidar-scanner-and-trackpad-support-in-ipados/ (2021).

Apple, “Arkit”, URL https://developer.apple.com/arkit// (2021).

Arzt, S., S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D. Octeau
and P. McDaniel, “Flowdroid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps”, in “Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and Implementation”,
PLDI ’14, p. 259–269 (Association for Computing Machinery, New York, NY, USA,
2014), URL https://doi.org/10.1145/2594291.2594299.

Ashe, G., “What Mary Meeker’s Internet Trends Report Means for the State of In-
Store”, https://blog.thirdchannel.com/mind-the-store (2017).

Backes, M., S. Bugiel, C. Hammer, O. Schranz and P. Von Styp-Rekowsky, “Box-
ify: Full-fledged app sandboxing for stock android”, in “Proceedings of the 24th
USENIX Conference on Security Symposium”, SEC’15, p. 691–706 (USENIX As-
sociation, USA, 2015).

114

Ben Abdesslem, F., A. Phillips and T. Henderson, “Less is more: Energy-efficient
mobile sensing with senseless”, in “Proceedings of the 1st ACM Workshop on Net-
working, Systems, and Applications for Mobile Handhelds”, MobiHeld ’09 (ACM,
2009), URL http://doi.acm.org/10.1145/1592606.1592621.

Ben Ali, A. J., Z. S. Hashemifar and K. Dantu, “Edge-slam: Edge-assisted visual
simultaneous localization and mapping”, in “Proceedings of the 18th Interna-
tional Conference on Mobile Systems, Applications, and Services”, MobiSys ’20,
p. 325–337 (Association for Computing Machinery, New York, NY, USA, 2020),
URL https://doi.org/10.1145/3386901.3389033.

Berenbaum, S., “Google glass explorer edition has a 30-minute battery
life while shooting video”, URL https://www.digitaltrends.com/mobile/
google-glass-30-minute-videobattery/ (2013).

Bernardini, F., J. Mittleman, H. Rushmeier, C. Silva and G. Taubin, “The ball-
pivoting algorithm for surface reconstruction”, IEEE transactions on visualization
and computer graphics 5, 4, 349–359 (1999).

Buchart, C., D. Borro and A. Amundarain, “Gpu local triangulation: an
interpolating surface reconstruction algorithm”, Computer Graphics Forum
27, 3, 807–814, URL https://onlinelibrary.wiley.com/doi/abs/10.1111/j.
1467-8659.2008.01211.x (2008).

Buckler, M., P. Bedoukian, S. Jayasuriya and A. Sampson, “Eva2: Exploiting tem-
poral redundancy in live computer vision”, in “Proceedings of the 45th Annual In-
ternational Symposium on Computer Architecture”, ISCA ’18, pp. 533–546 (IEEE
Press, Piscataway, NJ, USA, 2018), URL https://doi.org/10.1109/ISCA.2018.
00051.

Buckler, M., S. Jayasuriya and A. Sampson, “Reconfiguring the imaging pipeline
for computer vision”, in “The IEEE International Conference on Computer Vision
(ICCV)”, (2017).

Chen, J., B. Lei, Q. Song, H. Ying, D. Z. Chen and J. Wu, “A hierarchical graph
network for 3d object detection on point clouds”, in “Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR)”, (2020).

Chen, T., H. Balakrishnan, L. Ravindranath and P. Bahl, “Glimpse: Continuous,
real-time object recognition on mobile devices”, GetMobile: Mobile Computing
and Communications 20, 26–29 (2016).

Chu, D., N. D. Lane, T. T.-T. Lai, C. Pang, X. Meng, Q. Guo, F. Li and F. Zhao,
“Balancing energy, latency and accuracy for mobile sensor data classification”, in
“Proceedings of the 9th ACM Conference on Embedded Networked Sensor Sys-
tems”, SenSys ’11, p. 54–67 (Association for Computing Machinery, New York,
NY, USA, 2011), URL https://doi.org/10.1145/2070942.2070949.

Costan, V. and S. Devadas, “Intel sgx explained”, IACR Cryptol. ePrint Arch. 2016,
86 (2016).

115

Dasari, M., A. Bhattacharya, S. Vargas, P. Sahu, A. Balasubramanian and S. R. Das,
“Streaming 360-degree videos using super-resolution”, in “IEEE INFOCOM 2020
- IEEE Conference on Computer Communications”, pp. 1977–1986 (2020).

Dawoud, A. and S. Bugiel, “Droidcap: Os support for capability-based permissions
in android”, in “NDSS Symposium 2019”, (2019), URL https://publications.
cispa.saarland/2818/.

Du, R., E. Turner, M. Dzitsiuk, L. Prasso, I. Duarte, J. Dourgarian, J. Afonso, J. Pas-
coal, J. Gladstone, N. Cruces, S. Izadi, A. Kowdle, K. Tsotsos and D. Kim, “Depth-
lab: Real-time 3d interaction with depth maps for mobile augmented reality”, in
“Proceedings of the 33rd Annual ACM Symposium on User Interface Software and
Technology”, UIST ’20, p. 829–843 (Association for Computing Machinery, New
York, NY, USA, 2020), URL https://doi.org/10.1145/3379337.3415881.

Enck, W., P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel and A. N. Sheth,
“Taintdroid: An information-flow tracking system for realtime privacy monitoring
on smartphones”, in “Proceedings of the 9th USENIX Conference on Operating
Systems Design and Implementation”, OSDI’10, pp. 393–407 (USENIX Associ-
ation, Berkeley, CA, USA, 2010), URL http://dl.acm.org/citation.cfm?id=
1924943.1924971.

Epic Games, “Unreal Engine”, https://www.unrealengine.com/en-US/ (2021).

FACEBOOK, “Introducing Project Aria”, https://about.fb.com/realitylabs/
projectaria/ (2021).

Feng, Y., S. Liu and Y. Zhu, “Real-time spatio-temporal lidar point cloud compres-
sion”, (2020).

Fernandes, E., J. Paupore, A. Rahmati, D. Simionato, M. Conti and A. Prakash,
“Flowfence: Practical data protection for emerging iot application frame-
works”, in “25th USENIX Security Symposium (USENIX Security 16)”,
pp. 531–548 (USENIX Association, Austin, TX, 2016), URL https:
//www.usenix.org/conference/usenixsecurity16/technical-sessions/
presentation/fernandes.

Google, “Arcore”, URL https://developers.google.com/ar// (2021a).

Google, “Draco”, https://github.com/google/draco (2021b).

Google AR, “Google ARCore SDK for Unreal”, https://github.com/google-ar/
arcore-unreal-sdk (2021).

Guo, B., “iOS Security”, https://www.cse.wustl.edu/~jain/cse571-14/ftp/
ios_security/index.html (2014).

Guo, Y., H. Wang, Q. Hu, H. Liu, L. Liu and M. Bennamoun, “Deep learning for 3d
point clouds: A survey”, CoRR abs/1912.12033, URL http://arxiv.org/abs/
1912.12033 (2019).

116

Ha, K., Z. Chen, W. Hu, W. Richter, P. Pillai and M. Satyanarayanan, “Towards
wearable cognitive assistance”, in “Proceedings of the 12th Annual International
Conference on Mobile Systems, Applications, and Services”, MobiSys ’14 (ACM,
2014).

Hackel, T., N. Savinov, L. Ladicky, J. D. Wegner, K. Schindler and M. Pollefeys,
“Semantic3d.net: A new large-scale point cloud classification benchmark”, CoRR
abs/1704.03847, URL http://arxiv.org/abs/1704.03847 (2017).

Han, B., Y. Liu and F. Qian, “Vivo: Visibility-aware mobile volumetric video stream-
ing”, in “Proceedings of the 26th Annual International Conference on Mobile Com-
puting and Networking”, MobiCom ’20 (Association for Computing Machinery,
New York, NY, USA, 2020), URL https://doi.org/10.1145/3372224.3380888.

Haris, M., G. Shakhnarovich and N. Ukita, “Task-driven super resolution: Object
detection in low-resolution images”, (2018a).

Haris, M., G. Shakhnarovich and N. Ukita, “Task-driven super resolution: Object
detection in low-resolution images”, CoRR abs/1803.11316, URL http://arxiv.
org/abs/1803.11316 (2018b).

He, J., M. A. Qureshi, L. Qiu, J. Li, F. Li and L. Han, “Rubiks: Practical 360-
degree streaming for smartphones”, in “Proceedings of the 16th Annual Interna-
tional Conference on Mobile Systems, Applications, and Services”, MobiSys ’18, p.
482–494 (Association for Computing Machinery, New York, NY, USA, 2018), URL
https://doi.org/10.1145/3210240.3210323.

He, Y., L. Ma, Z. Jiang, Y. Tang and G. Xing, “Vi-eye: Semantic-based 3d point
cloud registration for infrastructure-assisted autonomous driving”, in “Proceedings
of the 27th Annual International Conference on Mobile Computing and Network-
ing”, MobiCom ’21, p. 573–586 (Association for Computing Machinery, New York,
NY, USA, 2021), URL https://doi.org/10.1145/3447993.3483276.

Hegarty, J., J. Brunhaver, Z. DeVito, J. Ragan-Kelley, N. Cohen, S. Bell, A. Vasilyev,
M. Horowitz and P. Hanrahan, “Darkroom: Compiling high-level image processing
code into hardware pipelines”, ACM Trans. Graph. 33, 4, 144:1–144:11, URL http:
//doi.acm.org/10.1145/2601097.2601174 (2014).

Hegarty, J., R. Daly, Z. DeVito, J. Ragan-Kelley, M. Horowitz and P. Hanrahan,
“Rigel: Flexible multi-rate image processing hardware”, ACM Trans. Graph. 35,
4, 85:1–85:11, URL http://doi.acm.org/10.1145/2897824.2925892 (2016).

Herbster, R., S. DellaTorre, P. Druschel and B. Bhattacharjee, “Privacy capsules:
Preventing information leaks by mobile apps”, in “Proceedings of the 14th Annual
International Conference on Mobile Systems, Applications, and Services”, MobiSys
’16, pp. 399–411 (ACM, New York, NY, USA, 2016), URL http://doi.acm.org/
10.1145/2906388.2906409.

Horé, A. and D. Ziou, “Image quality metrics: Psnr vs. ssim”, in “2010 20th Inter-
national Conference on Pattern Recognition”, pp. 2366–2369 (2010).

117

Hu, J., G. Choe, Z. Nadir, O. Nabil, S.-J. Lee, H. Sheikh, Y. Yoo and M. Polley,
“Sensor-realistic synthetic data engine for multi-frame high dynamic range photog-
raphy”, in “Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops”, (2020).

Hu, J., A. Iosifescu and R. LiKamWa, “Lenscap: Split-process framework for fine-
grained visual privacy control for augmented reality apps”, in “Proceedings of the
19th Annual International Conference on Mobile Systems, Applications, and Ser-
vices”, MobiSys ’21, p. 14–27 (Association for Computing Machinery, New York,
NY, USA, 2021a), URL https://doi.org/10.1145/3458864.3467676.

Hu, J., A. Shaikh, A. Bahremand and R. LiKamWa, “Characterizing real-time dense
point cloud capture and streaming on mobile devices”, in “Proceedings of the 3rd
ACM Workshop on Hot Topics in Video Analytics and Intelligent Edges”, Hot-
EdgeVideo ’21, p. 1–6 (Association for Computing Machinery, New York, NY,
USA, 2021b), URL https://doi.org/10.1145/3477083.3480155.

Hu, J., A. Shearer, S. Rajagopalan and R. LiKamWa, “Banner: An image sensor
reconfiguration framework for seamless resolution-based tradeoffs”, in “Proceedings
of the 17th Annual International Conference on Mobile Systems, Applications, and
Services”, MobiSys ’19, p. 236–248 (Association for Computing Machinery, New
York, NY, USA, 2019), URL https://doi.org/10.1145/3307334.3326092.

Hu, J., J. Yang, V. Delhivala and R. LiKamWa, “Characterizing the reconfiguration
latency of image sensor resolution on android devices”, in “Proceedings of the 19th
International Workshop on Mobile Computing Systems & Applications”, Hot-
Mobile ’18 (ACM, 2018), URL http://doi.acm.org/10.1145/3177102.3177109.

Huang, A. ., “Betrusted: Improving security through physical partitioning”, IEEE
Pervasive Computing 19, 2, 13–20 (2020).

Huang, J., O. Schranz, S. Bugiel and M. Backes, “The art of app compartmental-
ization: Compiler-based library privilege separation on stock android”, CCS ’17,
p. 1037–1049 (Association for Computing Machinery, New York, NY, USA, 2017),
URL https://doi.org/10.1145/3133956.3134064.

HUSSAIN, U., “See in the dark with night vision app for iphone 12 and its lidar
sensor”, https://www.ithinkdiff.com/night-vision-apple-lidar-see-in-dark/ (2021).

Ibrahim, R. M., “Camera”, URL https://github.com/rizwankce/Camera/ (2019).

Jana, S., A. Narayanan and V. Shmatikov, “A scanner darkly: Protecting user privacy
from perceptual applications”, in “Proceedings of the 2013 IEEE Symposium on
Security and Privacy”, SP ’13, pp. 349–363 (IEEE Computer Society, Washington,
DC, USA, 2013), URL https://doi.org/10.1109/SP.2013.31.

Jensen, J., J. Hu, A. Rahmati and R. LiKamWa, “Protecting visual information in
augmented reality from malicious application developers”, WearSys ’19, p. 23–28
(Association for Computing Machinery, New York, NY, USA, 2019), URL https:
//doi.org/10.1145/3325424.3329659.

118

Jiang, S., Z. Lin, Y. Li, Y. Shu and Y. Liu, Flexible High-Resolution Object Detection
on Edge Devices with Tunable Latency, p. 559–572 (Association for Computing Ma-
chinery, New York, NY, USA, 2021), URL https://doi.org/10.1145/3447993.
3483274.

Jota, R., A. Ng, P. Dietz and D. Wigdor, “How fast is fast enough?: A study
of the effects of latency in direct-touch pointing tasks”, in “Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems”, CHI ’13, pp. 2291–
2300 (ACM, New York, NY, USA, 2013), URL http://doi.acm.org/10.1145/
2470654.2481317.

Kammerl, J., N. Blodow, R. B. Rusu, S. Gedikli, M. Beetz and E. Steinbach, “Real-
time compression of point cloud streams”, in “2012 IEEE International Conference
on Robotics and Automation”, pp. 778–785 (2012).

Kodukula, V., S. B. Medapuram, B. Jones and R. LiKamWa, “A case for temperature-
driven task migration to balance energy efficiency and image quality of vision pro-
cessing workloads”, in “Proceedings of the 19th International Workshop on Mo-
bile Computing Systems & Applications”, HotMobile ’18 (ACM, 2018), URL
http://doi.acm.org/10.1145/3177102.3177111.

Kodukula, V., A. Shearer, V. Nguyen, S. Lingutla, Y. Liu and R. LiKamWa, “Rhyth-
mic pixel regions: Multi-resolution visual sensing system towards high-precision
visual computing at low power”, in “Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems”, ASPLOS 2021, p. 573–586 (Association for Computing Machinery, New
York, NY, USA, 2021), URL https://doi.org/10.1145/3445814.3446737.

Lai, K., L. Bo, X. Ren and D. Fox, “Detection-based object labeling in 3d scenes”, in
“2012 IEEE International Conference on Robotics and Automation”, pp. 1330–1337
(2012).

Lampson, B. W., “A note on the confinement problem”, Commun. ACM 16, 10,
613–615, URL https://doi.org/10.1145/362375.362389 (1973).

Lebeck, K., K. Ruth, T. Kohno and F. Roesner, “Securing augmented reality output”,
in “2017 IEEE Symposium on Security and Privacy (SP)”, pp. 320–337 (2017).

Lebeck, K., K. Ruth, T. Kohno and F. Roesner, “Arya: Operating system support
for securely augmenting reality”, IEEE Security Privacy 16, 1, 44–53 (2018).

Lee, K., J. Yi, Y. Lee, S. Choi and Y. M. Kim, “Groot: A real-time streaming
system of high-fidelity volumetric videos”, in “Proceedings of the 26th Annual
International Conference on Mobile Computing and Networking”, MobiCom ’20
(Association for Computing Machinery, New York, NY, USA, 2020), URL https:
//doi.org/10.1145/3372224.3419214.

LiKamWa, R., Y. Hou, J. Gao, M. Polansky and L. Zhong, “Redeye: Analog convnet
image sensor architecture for continuous mobile vision”, in “Proceedings of the
43rd International Symposium on Computer Architecture”, ISCA ’16 (IEEE Press,
2016), URL https://doi.org/10.1109/ISCA.2016.31.

119

Likamwa, R., J. Hu, V. Kodukula and Y. Liu, “Adaptive resolution-based tradeoffs
for energy-efficient visual computing systems”, IEEE Pervasive Computing 20, 2,
18–26 (2021).

LiKamWa, R., B. Priyantha, M. Philipose, L. Zhong and P. Bahl, “Energy characteri-
zation and optimization of image sensing toward continuous mobile vision”, in “Pro-
ceeding of the 11th Annual International Conference on Mobile Systems, Applica-
tions, and Services”, MobiSys ’13, p. 69–82 (Association for Computing Machinery,
New York, NY, USA, 2013a), URL https://doi.org/10.1145/2462456.2464448.

LiKamWa, R., B. Priyantha, M. Philipose, L. Zhong and P. Bahl, “Energy char-
acterization and optimization of image sensing toward continuous mobile vision”,
in “Proceeding of the 11th Annual International Conference on Mobile Systems,
Applications, and Services”, MobiSys ’13 (ACM, 2013b), URL http://doi.acm.
org/10.1145/2462456.2464448.

LiKamWa, R. and L. Zhong, “Starfish: Efficient concurrency support for computer
vision applications”, in “Proceedings of the 13th Annual International Conference
on Mobile Systems, Applications, and Services, MobiSys ’15”, (ACM, 2015), URL
https://doi.org/10.1145/2742647.2742663.

Lin, F. X., Z. Wang, R. LiKamWa and L. Zhong, “Reflex: Using low-power processors
in smartphones without knowing them”, SIGPLAN Not. 47, 4, 13–24, URL http:
//doi.acm.org/10.1145/2248487.2150979 (2012).

Lin, T., P. Goyal, R. B. Girshick, K. He and P. Dollár, “Focal loss for dense object
detection”, CoRR abs/1708.02002, URL http://arxiv.org/abs/1708.02002
(2017).

Liu, H., C. Li, G. Chen, G. Zhang, M. Kaess and H. Bao, “Robust keyframe-based
dense SLAM with an RGB-D camera”, CoRR abs/1711.05166, URL http://
arxiv.org/abs/1711.05166 (2017).

Liu, L. and M. Gruteser, “Edgesharing: Edge assisted real-time localization and
object sharing in urban streets”, IEEE INFOCOM 2021 - IEEE Conference on
Computer Communications pp. 1–10 (2021).

Liu, L., H. Li and M. Gruteser, “Edge assisted real-time object detection for mobile
augmented reality”, in “The 25th Annual International Conference on Mobile Com-
puting and Networking”, MobiCom ’19 (Association for Computing Machinery,
New York, NY, USA, 2019), URL https://doi.org/10.1145/3300061.3300116.

Medina, F. P. and R. C. Paffenroth, “Machine learning in lidar 3d point clouds”,
CoRR abs/2101.09318, URL https://arxiv.org/abs/2101.09318 (2021).

Micron Technology, “Calculating Memory System Power for DDR”, URL
https://www.micron.com/~/media/Documents/Products/Technical\%20Note/
DRAM/TN4603.pdf (2019).

Microsoft Azure, “Azure Kinect DK”, https://azure.microsoft.com/en-us/
services/kinect-dk/ (2021).

120

Nvidia, “nvjpeg library”, https://docs.nvidia.com/cuda/nvjpeg/index.html (2021).

Nvidia developer, “Jetson TX2 Module”, https://developer.nvidia.com/
embedded/jetson-tx2 (2021).

Olejnik, K., I. Dacosta, J. S. Machado, K. Huguenin, M. E. Khan and J. Hubaux,
“Smarper: Context-aware and automatic runtime-permissions for mobile devices”,
in “2017 IEEE Symposium on Security and Privacy (SP)”, pp. 1058–1076 (2017).

ON Semiconductor, AR0330 1/3-inch CMOS Digital Image Sensor, rev. 18 (2017a).

ON Semiconductor, MT9P031 1/2.5-Inch 5 Mp CMOS Digital Image Sensor, rev. 10
(2017b).

Paine, J., “10 Real Use Cases for Augmented Reality: AR is set to
have a big impact on major industries”, https://www.inc.com/james-paine/
10-real-use-cases-for-augmented-reality.html (2020).

PAINE, J., “10 real use cases for augmented reality”, URL https://www.inc.com/
james-paine/10-real-use-cases-for-augmented-reality.html (2022).

Point Cloud Library, “Point cloud library”, https://pointclouds.org/ (2021).

Prakash, S., A. Bahremand, L. D. Nguyen and R. LiKamWa, “Gleam: An illumina-
tion estimation framework for real-time photorealistic augmented reality on mobile
devices”, in “Proceedings of the 17th Annual International Conference on Mobile
Systems, Applications, and Services”, MobiSys ’19, pp. 142–154 (ACM, New York,
NY, USA, 2019), URL http://doi.acm.org/10.1145/3307334.3326098.

Priyantha, B., D. Lymberopoulos and J. Liu, “Littlerock: Enabling energy-efficient
continuous sensing on mobile phones”, IEEE Pervasive Computing 10, 2, 12–15
(2011).

Qi, C. R., H. Su, K. Mo and L. J. Guibas, “Pointnet: Deep learning on point sets
for 3d classification and segmentation”, CoRR abs/1612.00593, URL http://
arxiv.org/abs/1612.00593 (2016).

Qian, F., B. Han, J. Pair and V. Gopalakrishnan, “Toward practical volumetric video
streaming on commodity smartphones”, in “Proceedings of the 20th International
Workshop on Mobile Computing Systems and Applications”, HotMobile ’19, p.
135–140 (Association for Computing Machinery, New York, NY, USA, 2019), URL
https://doi.org/10.1145/3301293.3302358.

Qian, F., B. Han, Q. Xiao and V. Gopalakrishnan, “Flare: Practical viewport-
adaptive 360-degree video streaming for mobile devices”, pp. 99–114 (2018).

Qiu, H., F. Ahmad, F. Bai, M. Gruteser and R. Govindan, “Avr: Augmented
vehicular reality”, in “Proceedings of the 16th Annual International Conference
on Mobile Systems, Applications, and Services”, MobiSys ’18, p. 81–95 (Asso-
ciation for Computing Machinery, New York, NY, USA, 2018), URL https:
//doi.org/10.1145/3210240.3210319.

121

Raval, N., A. Razeen, A. Machanavajjhala, L. P. Cox and A. Warfield, “Permissions
plugins as android apps”, MobiSys ’19, p. 180–192 (Association for Computing Ma-
chinery, New York, NY, USA, 2019), URL https://doi.org/10.1145/3307334.
3326095.

Raval, N., A. Srivastava, K. Lebeck, L. Cox and A. Machanavajjhala, “Markit: Pri-
vacy markers for protecting visual secrets”, in “Proceedings of the 2014 ACM In-
ternational Joint Conference on Pervasive and Ubiquitous Computing: Adjunct
Publication”, UbiComp ’14 Adjunct, pp. 1289–1295 (ACM, New York, NY, USA,
2014), URL http://doi.acm.org/10.1145/2638728.2641707.

Raval, N., A. Srivastava, A. Razeen, K. Lebeck, A. Machanavajjhala and L. P. Cox,
“What you mark is what apps see”, in “Proceedings of the 14th Annual Interna-
tional Conference on Mobile Systems, Applications, and Services”, MobiSys ’16,
pp. 249–261 (ACM, New York, NY, USA, 2016), URL http://doi.acm.org/10.
1145/2906388.2906405.

Reardon, J., Á. Feal, P. Wijesekera, A. E. B. On, N. Vallina-Rodriguez and S. Egel-
man, “50 ways to leak your data: An exploration of apps’ circumvention of the an-
droid permissions system”, in “28th USENIX Security Symposium (USENIX Secu-
rity 19)”, pp. 603–620 (USENIX Association, Santa Clara, CA, 2019), URL https:
//www.usenix.org/conference/usenixsecurity19/presentation/reardon.

Redmon, J. and A. Farhadi, “Yolov3: An incremental improvement”, CoRR
abs/1804.02767, URL http://arxiv.org/abs/1804.02767 (2018).

Riegler, G., A. O. Ulusoy and A. Geiger, “Octnet: Learning deep 3d representations at
high resolutions”, CoRR abs/1611.05009, URL http://arxiv.org/abs/1611.
05009 (2016).

Ringer, T., D. Grossman and F. Roesner, “Audacious: User-driven access control
with unmodified operating systems”, pp. 204–216 (2016).

Roesner, F., D. Molnar, A. Moshchuk, T. Kohno and H. J. Wang, “World-driven ac-
cess control for continuous sensing”, in “Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security”, CCS ’14, pp. 1169–
1181 (ACM, New York, NY, USA, 2014), URL http://doi.acm.org/10.1145/
2660267.2660319.

Roy, N., A. Misra, C. Julien, S. K. Das and J. Biswas, “An energy-efficient quality
adaptive framework for multi-modal sensor context recognition”, in “2011 IEEE In-
ternational Conference on Pervasive Computing and Communications (PerCom)”,
(2011).

Rusu, R. B. and S. Cousins, “3D is here: Point Cloud Library (PCL)”, in “IEEE
International Conference on Robotics and Automation (ICRA)”, (Shanghai, China,
2011).

Ruzicka, V. and F. Franchetti, “Fast and accurate object detection in high resolution
4k and 8k video using gpus”, CoRR abs/1810.10551, URL http://arxiv.org/
abs/1810.10551 (2018).

122

Sanchez Vicarte, J. R., B. Schreiber, R. Paccagnella and C. W. Fletcher, “Game
of threads: Enabling asynchronous poisoning attacks”, in “Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems”, ASPLOS ’20, p. 35–52 (Association for Com-
puting Machinery, New York, NY, USA, 2020), URL https://doi.org/10.1145/
3373376.3378462.

Schmalstieg, D. and G. Hesina, “Distributed applications for collaborative augmented
reality”, in “Proceedings IEEE Virtual Reality 2002”, pp. 59–66 (2002).

Shaikh, A., L. Nguyen, A. Bahremand, H. Bartolomea, F. Liu, V. Nguyen, D. An-
derson and R. LiKamWa, “Coordinate: A spreadsheet-programmable augmented
reality framework for immersive map-based visualizations”, in “2019 IEEE Inter-
national Conference on Artificial Intelligence and Virtual Reality (AIVR)”, pp.
134–1343 (2019).

Shekhar, S., M. Dietz and D. S. Wallach, “Adsplit: Separating smart-
phone advertising from applications”, in “21st USENIX Security Sympo-
sium (USENIX Security 12)”, pp. 553–567 (USENIX Association, Bellevue,
WA, 2012), URL https://www.usenix.org/conference/usenixsecurity12/
technical-sessions/presentation/shekhar.

Shen, Y., H. Tian, Y. Chen, K. Chen, R. Wang, Y. Xu, Y. Xia and S. Yan,
“Occlum: Secure and efficient multitasking inside a single enclave of intel sgx”,
in “Proceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems”, ASPLOS ’20, p.
955–970 (Association for Computing Machinery, New York, NY, USA, 2020), URL
https://doi.org/10.1145/3373376.3378469.

Simoens, P., Y. Xiao, P. Pillai, Z. Chen, K. Ha and M. Satyanarayanan, “Scalable
crowd-sourcing of video from mobile devices”, in “Proceeding of the 11th Annual
International Conference on Mobile Systems, Applications, and Services”, MobiSys
’13, p. 139–152 (Association for Computing Machinery, New York, NY, USA, 2013),
URL https://doi.org/10.1145/2462456.2464440.

Speciale, P., J. L. Schönberger, S. B. Kang, S. N. Sinha and M. Pollefeys, “Privacy
preserving image-based localization”, in “2019 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR)”, pp. 5488–5498 (2019).

Square, Inc., “OkHttp”, https://square.github.io/okhttp/ (2021).

statista, “Forecast number of mobile devices worldwide from 2020 to 2025
(in billions)”, URL https://www.statista.com/statistics/245501/
multiple-mobile-device-ownership-worldwide/ (2022).

The kernel development community, “ioctl vidioc reqbufs”, URL https://linuxtv.
org/downloads/v4l-dvb-apis/uapi/v4l/vidioc-reqbufs.html (2019).

The kernel development community, “11.1. file: media/v4l/capture.c”, URL https:
//www.kernel.org/doc/html/v4.11/media/uapi/v4l/capture.c.html (2021).

123

Thomson, C., “Point clouds and vr: The future of point cloud visu-
alisation”, https://info.vercator.com/blog/point-clouds-and-vr-the-future-of-point-
cloud-visualisation (2021).

tp-link, “TL-WR940N V6”, https://www.tp-link.com/us/home-networking/
wifi-router/tl-wr940n/ (2021).

Track, F. and D. Kilpatrick, “Privman: A library for partitioning applications”,
(2003).

Unity, “Unity Metacast”, https://unity.com/sports (2021).

Vuforia, “Innovate with industrial augmented reality”, URL https://www.ptc.com/
en/products/augmented-reality/ (2021).

Wang, T., X. Zhu and D. Lin, “Reconfigurable voxels: A new representation for
lidar-based point clouds”, CoRR abs/2004.02724, URL https://arxiv.org/
abs/2004.02724 (2020).

Wang, X., A. Continella, Y. Yang, Y. He and S. Zhu, “Leakdoctor: Toward automat-
ically diagnosing privacy leaks in mobile applications”, Proc. ACM Interact. Mob.
Wearable Ubiquitous Technol. 3, 1, URL https://doi.org/10.1145/3314415
(2019).

Wikipedia, “Ply (file format)”, https://en.wikipedia.org/wiki/PLY (file format)
(2021).

Xue, H., Y. Ju, C. Miao, Y. Wang, S. Wang, A. Zhang and L. Su, “Mmmesh: To-
wards 3d real-time dynamic human mesh construction using millimeter-wave”, in
“Proceedings of the 19th Annual International Conference on Mobile Systems, Ap-
plications, and Services”, MobiSys ’21, p. 269–282 (Association for Computing Ma-
chinery, New York, NY, USA, 2021), URL https://doi.org/10.1145/3458864.
3467679.

Zhang, B., A. Davoodi and Y.-H. Hu, “Exploring energy and accuracy tradeoff in
structure simplification of trained deep neural networks”, in “Proceedings of the
23rd Asia and South Pacific Design Automation Conference”, ASPDAC ’18 (IEEE
Press, 2018), URL http://dl.acm.org/citation.cfm?id=3201607.3201693.

Zhang, L. L., S. Han, J. Wei, N. Zheng, T. Cao, Y. Yang and Y. Liu, “Nn-meter:
Towards accurate latency prediction of deep-learning model inference on diverse
edge devices”, MobiSys ’21, p. 81–93 (Association for Computing Machinery, New
York, NY, USA, 2021a), URL https://doi.org/10.1145/3458864.3467882.

Zhang, W., Z. He, L. Liu, Z. Jia, Y. Liu, M. Gruteser, D. Raychaudhuri and
Y. Zhang, “Elf: Accelerate high-resolution mobile deep vision with content-aware
parallel offloading”, in “Proceedings of the 27th Annual International Confer-
ence on Mobile Computing and Networking”, MobiCom ’21, p. 201–214 (Asso-
ciation for Computing Machinery, New York, NY, USA, 2021b), URL https:
//doi.org/10.1145/3447993.3448628.

124

Zhang, W., S. Li, L. Liu, Z. Jia, Y. Zhang and D. Raychaudhuri, “Hetero-edge:
Orchestration of real-time vision applications on heterogeneous edge clouds”, in
“IEEE INFOCOM 2019 - IEEE Conference on Computer Communications”, pp.
1270–1278 (2019).

Zhang, X., A. Ahlawat and W. Du, “Aframe: Isolating advertisements from mobile
applications in android”, in “Proceedings of the 29th Annual Computer Security
Applications Conference”, ACSAC ’13, p. 9–18 (Association for Computing Ma-
chinery, New York, NY, USA, 2013), URL https://doi.org/10.1145/2523649.
2523652.

Zhang, X., A. Zhang, J. Sun, X. Zhu, Y. E. Guo, F. Qian and Z. M. Mao, “Emp:
Edge-assisted multi-vehicle perception”, in “Proceedings of the 27th Annual In-
ternational Conference on Mobile Computing and Networking”, MobiCom ’21, p.
545–558 (Association for Computing Machinery, New York, NY, USA, 2021c), URL
https://doi.org/10.1145/3447993.3483242.

Zhou, Q.-Y., J. Park and V. Koltun, “Open3D: A modern library for 3D data pro-
cessing”, arXiv:1801.09847 (2018).

Zhou, Y. and O. Tuzel, “Voxelnet: End-to-end learning for point cloud based 3d object
detection”, CoRR abs/1711.06396, URL http://arxiv.org/abs/1711.06396
(2017).

Zhu, X., J. Sun, X. Zhang, Y. E. Guo, F. Qian and Z. M. Mao, “Mpbond: Efficient
network-level collaboration among personal mobile devices”, in “Proceedings of
the 18th International Conference on Mobile Systems, Applications, and Services”,
MobiSys ’20, p. 364–376 (Association for Computing Machinery, New York, NY,
USA, 2020), URL https://doi.org/10.1145/3386901.3388943.

125

