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ABSTRACT 

Researchers have observed that the frequencies of leading digits in many man-

made and naturally occurring datasets follow a logarithmic curve, with digits that start 

with the number 1 accounting for 30% of all numbers in the dataset and digits that start 

with the number 9 accounting for 5% of all numbers in the dataset. This phenomenon, 

known as Benford's Law, is highly repeatable and appears in lists of numbers from 

electricity bills, stock prices, tax returns, house prices, death rates, lengths of rivers, and 

naturally occurring images. This paper will demonstrate that human speech spectra also 

follow Benford's Law. This observation is used to motivate a new set of features that can 

be efficiently extracted from speech and demonstrate that these features can be used to 

classify between human speech and synthetic speech. 
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INTRODUCTION 

Researchers have observed that the frequencies of leading digits in many man-

made and naturally occurring datasets follow a logarithmic curve, with digits that start 

with the number 1 accounting for 30% of numbers and digits that start with the number 9 

accounting for 5% of all numbers. This phenomenon is known as Benford's Law; for lists 

that follow Benford's Law, the probability that the first digit in a list of numbers is d, 

P(d), is 

  ���� = ���	
 �1 + 	
�� (1) 

Empirical validation of the law, given a dataset, is straightforward. The first step 

is to observe the leading digit (i.e., the leftmost digit) for each value in the dataset. The 

next step is to generate a histogram of the leading digits and to divide each count of 

leading digits by the total number of values in the dataset. The resulting distribution is the 

observed empirical Benford distribution, this can be compared with the ideal Benford 

distribution to see if a dataset follows Benford’s Law. While intuitively this is 

unexpected, this phenomenon has been empirically observed in datasets such as stock 

prices, tax returns, house prices, death rates, naturally occurring images, etc. Common 

across these datasets is that they span multiple orders of magnitude; when the data 

generating process can be modeled as the product of multiple, independent factors, 

datasets tend to follow Benford's Law [1, 2].  

Benford’s law is highly repeatable across many datasets that span multiple orders 

of magnitude. As a result, one of its principal applications is in detection of fraud. For 

example, accounting auditors analyze tax returns by reviewing the frequency of leading 
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digits to ensure statistical adherence to the distribution in Eqn. (1). If an abnormal 

deviation from Benford’s law is detected, the implication is that the numbers have been 

artificially modified [3]. 

 Another example of Benford’s law used in fraud detection is detection multiple 

compression of images. In images compressed using JPEG, the Discrete Cosine 

Transform (DCT) coefficients follow Benford’s law [4]. It has been observed that 

multiple compression of an image changes the DCT coefficients such that they deviate 

more from Benford’s law. If this is observed, the implication is that the image may have 

been tampered with (e.g., saved multiple times, modified artificially, etc.). Other 

applications of Benford's Law include detection of scientific fraud [5], e-commerce price 

distributions [6], macroeconomics [7], etc. 

While scientists have shown empirically that many naturally occurring data sets 

follow Benford’s law, to the best of our knowledge, none have analyzed whether human 

speech follows this phenomenon. The source-filter paradigm models speech as the output 

of a series of linear time-invariant filters [8]. In the frequency domain, this corresponds to 

the product of multiple spectra, the same conditions that tend to produce datasets that 

adhere to Benford's Law [1]; therefore, this observation leads to the hypothesis that 

speech spectra also follow Benford's Law. In this paper, we evaluate the speech spectra of 

the several hundred speakers from a phonemically balanced database to determine 

whether the leading digit follows the distribution in Eqn. (1); we use the results of this 

analysis to propose a new representation for speech.  The principal contributions of this 

work are as follows: 



 
 

3 
 

• We demonstrate empirically that human speech spectra follow Benford’s Law 

• We propose a new set of speech features based on Benford’s Law which can be 

easily extracted from speech and provide empirical evidence that these features 

can reliably classify between human speech and synthetic speech 

The remainder of this paper is organized as follows. First, we discuss the current 

applications of Benford’s Law, then discuss on what makes a dataset more likely to 

conform to Benford’s Law. Then, we discuss the computational model used to determine 

whether human speech follows Benford's Law. Next, we propose a new set of features, 

dubbed the Benford similarity (BenS) features, that can be extracted with little 

computational burden to characterize the Benfordness of speech. In the results section, we 

confirm that speech follows Benford's Law and empirically demonstrate the utility of 

BenS features for classifying between human speech and synthetic speech. We end the 

paper with a discussion of why speech follows Benford's Law and other potential 

applications of the BenS features. 
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LITERATURE REVIEW 

 In this section, we will first discuss the current applications of Benford’s Law 

(Section 2.1), then explain the two explanations for when Benford’s Law arises (Section 

2.2). 

Section 2.1 Current Applications of Benford’s Law 

 As mentioned before, principal uses of Benford’s Law is in fraud detection. Two 

representative examples include auditing account reports and checking for multiple 

compressions of an image. For the first example, Benford’s Law is first modified to find 

the frequency distribution for the first two digits (rather than just the leading digit). The 

purpose of utilizing the first two digits is to have a more sensitive test for detection of 

abnormalities in the dataset [3]. The idealized modified Benford Distribution for the first 

two digits is: 

���	��� = ���	
 �1 + 	
����

�  (2) 

where d1d2 represents the first two digits that range between 11-99, and P(d1d2) is the 

probability the first two digits appear in the dataset. An empirical evaluation of the fit to 

Eqn. 2 being used can be seen in Figure 1 below. 
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Figure 1: Expense Reports: This plot shows the frequency distribution for the first two 

digits from an expense report. It is compared to the ideal Distribution for the first two 

digits. From [3]. 

 

According to the figure, there is an unexpectedly large count at around 50, indicating that 

whoever made the expense report likely artificially modified several numbers starting 

with 50. This raises a red flag and triggers further investigation to explain the large 

deviation.  

 Benford’s Law has also been used in image forensics. It has been observed that 

when an image is compressed into JPEG format, the DCT coefficients that are calculated 

follow Benford’s Law. However, when an image that already went through compression 

is compressed again, the new DCT coefficients begin to deviate away from Benford’s 

Law, which can be seen in figure 2 below,  
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Figure 2: Multiple JPEG Compression: As the numbers of compressions start to 

increase, the more the DCT coefficients at (0,0) start to deviate from Benford’s Law. 

From [4]. 

 

For forensic scientists, noticing any deviation from Benford’s Law in DCT coefficients 

triggers the possibility that someone may have tampered with the image and requires 

further investigation. 

Section 2.2 When does Benford’s Law hold? 

 There are two reasons that give rise to Benford’s Law. If a dataset was generated 

from a product of independent variables, the dataset is more likely to conform to 

Benford’s Law [1]. This can be seen in Table 1.  
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Table 1 Product of Independent Variables: Shows the Chi-Square test between the 

observed Benford distribution from a dataset generated from a product of independent 

variables and the ideal Benford distribution. From [1]. 

 

 The table above shows 3 different experiments to determine whether datasets generated 

from a product of multiple independent variables are more likely to conform to Benford’s 

law. The first experiment was to generate a dataset where we first draw 10 numbers from 

a random distribution, then multiply all 10 numbers together. The author repeats this 

process 10,000 times to generate a new dataset, then the Benford distribution is 

calculated using the steps mentioned earlier. Once the observed Benford distribution is 

calculated, a Chi-Square Test is measured between the observed and ideal Benford 

distribution. As seen in Table 1, there are multiple instances where the p-values are 

greater than the 5% significance level, meaning the null hypothesis can be accepted, 

which states that there are no differences between the observed and ideal distribution. 

The second and third experiment are very similar to the first experiment, the only 

difference is rather than multiplying 10 numbers together, 20 numbers are multiplied 

together for the second experiment, and 50 numbers for the third experiment. This 

provides evidence that when the data generation process consists of products of multiple 
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independent random variables, the resulting dataset follows Benford’s Law. This product 

of multiple values can also lead to datasets that span across multiple orders in magnitude. 

This can be observed in expense reports and tax returns, where the values can range from 

$100-$100,000.  
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METHODS 

 In this section we provide an overview of the methodology to evaluate whether 

speech follows Benford’s Law (Section 3.1) and propose a new set of speech features 

based on Benford’s Law (Section 3.2). 

Section 3.1 Evaluating Whether Speech Follows Benford’s Law 

Compare Benford with Speech Block Diagram 

Figure 3: A block diagram of the approach used to evaluate whether speech follow’s 

Benford’s Law. 

 In Fig.3 we provide a block diagram of the computational methodology used to 

determine whether speech follows Benford's Law. The TIMIT database is used for 

analysis [9]. The TIMIT train set contains audio recordings from 326 male and 136 

female speakers; in this corpus, each speaker produced 10 sentences - 2 sentences 

common to all speakers and 8 non-overlapping sentences. This dataset was used to 

demonstrate whether the speech spectrum follows Benford's Law by comparing the 

probabilities in Eqn. (1) with estimates derived from the frequency of leading digits in the 

speech spectrum. Prior to analyzing the audio, dithering was used to randomize 

quantization errors that appear in the audio. That is, we intentionally add a small amount 

of noise to remove trails of zeros that were the result of quantization in the data. The 

noise was Gaussian distribution with mean 0 and variance determined by dividing the 
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maximum value of the speech signal by 1000. This ensured that the additive noise had no 

perceptual impact on speech quality. 

Our working hypothesis was that Benford's Law would be apparent in the 

spectrum of speech signals. To evaluate the hypothesis, we use frame-based processing to 

form the short-time Fourier transform of the signal. Each speech sample was split into 

25ms frames with 10ms overlap. For each frame, the DC component of the speech signal 

was removed by subtracting the mean from the speech signal frame. Next, we calculate 

the FFT magnitude of the resulting vector to acquire the amplitude of the speech 

frequencies for each frame in a signal. We remove the first element from consideration 

since it is zero (after de-meaning) and the resulting vector is normalized by the smallest 

value so that all values are greater than 1. It is also to make the values in the FFT 

magnitude to span across multiple orders of magnitude since it is known datasets are 

more likely to conform to Benford’s Law as mentioned before. The leading digits of the 

resulting vector are extracted to estimate their respective probabilities via a frequency 

histogram. This process is repeated for all frames in a speech signal, then across all audio 

samples from all speakers in the TIMIT database. We calculate the probability 

distribution for each speaker by normalizing the frequency histogram by the total number 

of frames for that speaker, then find the average across all speakers. We compare the 

resulting average with the ideal Benford distribution using a linear regression model. 

Section 3.2 Benford Similarity (BenS) Features 

As we will present in Section 4, when averaged over multiple frames, multiple 

speech samples, and multiple speakers, speech follows Benford's Law. This finding 
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motivates a new feature set for characterizing the Benfordness of a given speech sample 

on frame-by-frame basis. Briefly, this feature set estimates the leading digits' 

probabilities for a single speech frame, compares the distribution for a frame to the ideal 

Benford distribution, then repeats the process for all frames in a sample and characterizes 

the similarity across the sample using several statistics. A high-level block diagram of the 

feature extraction steps is shown in Fig. 4. 

 

Figure 4: KL Block Diagram – This block diagram shows the approach used to extract 

the BenS Features. 

 
To extract the speech features, a speech sample is analyzed using frame-based 

approach with 25ms frames and 10ms overlap. Next, we find the FFT magnitude of each 

frame and extract the leading digits from the amplitude at each frequency component. 

The leading digits are used to estimate the empirical Benford distribution, �����,which is 

compared against the ideal Benford Distribution, P(d), using the Kullback-Leibler (KL) 

Divergence, 

 ��� ������� = ∑ �������	
 �����
������

�
��	 � (3) 

The KL divergence evaluates the similarity between the two probability mass 

functions; a small KL Divergence implies that the distributions are similar, whereas a 
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large KL divergence implies that the distributions are very different. Lastly, if the KL 

divergence equals to 1, the two distributions are identical. 

For each frame, we obtain a single feature, the KL divergence between the true 

and the empirical distributions. This process is then repeated across all frames in a 

sample. For some frames, the empirical estimate of the less frequent numbers in the 

Benford distribution are 0, which makes it impossible to estimate the KL Divergence 

(since it goes to infinity). As a result, we remove all frames which have 0 estimates for 

any of the empirical probabilities. The distribution of the remaining KL divergence 

values is characterized using 11 statistics; these form the final feature set extracted at the 

sample level. These statistics include: (1) mean of the KL, (2) standard deviation of the 

KL, (3)-(11) the 10th-90th percentiles of the KL. We name this feature set the Benford 

Similarity (BenS) Features. The purpose of these statistics is to demonstrate the average 

and the spread of the KL values across all the frames in the speech signal. As frequencies 

change over time in the signal, so will the KL values and it is important to see how KL 

values change as frequencies in the signal change.  
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RESULTS  

 In this section, we present the results of our analysis. In section 4.1, we provide 

evidence that speech follows Benford’s Law. In section 4.2, we empirically evaluate the 

utility of the BenS Features to distinguish between human speech and synthetic speech. 

Section 4.1 Does Human Speech Follow Benford’s Law? 

 

Figure 5 Benford Speech Linear Plot: This figure shows the agreement between the 

empirical and ideal Benford distribution. 

 In Fig. 5, we show a scatterplot comparing the probabilities from the ideal 

Benford distribution with the empirical probabilities estimated by average across all 

speakers in the TIMIT corpus, per section 3.1. It’s obvious from visual inspection of this 

figure that there is strong agreement between the empirical and the ideal distributions. A 

linear regression between empirical (E) and ideal (I) Benford probabilities yields the 

equation:  

 E = 1.046 I - 0.005 (4) 
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 A slope near 1 and an intercept near 0 provides further evidence that speech 

spectra follow Benford’s Law. The association is confirmed statistically as the model has 

R2 = 0.99.  

Section 4.2 Using BenS Features to Detect Synthetic Speech 

 Dataset generation: Now that there is empirical evidence that human speech 

follows Benford’s Law on average, and with deepfake technology becoming increasingly 

more sophisticated, new techniques are required to distinguish human speech from 

synthetic speech. To that end, we evaluate whether BenS features can be used to classify 

between real speech samples and synthetic samples. 

We consider 20 different US-English voices from male speakers and female 

speakers from Google’s text-to-speech API. The Google API includes 10 TTS voices 

based on a pre-trained Wavenet model with a high mean opinion score (MOS) and 10 

standard voices based on other models [10]. We compare speech from these synthetic 

voices to 20 speakers from TIMIT. We match the gender and the content of the spoken 

text across the two groups by selecting 20 TIMIT speakers from the TIMIT DR2 test set. 

We used the 10 sentences spoken by each of the 20 human TIMIT speakers to generate 

matched samples from the 20 TTS voices. We extracted the BenS Features from each of 

the 10 sentences spoken by 20 human speakers and 20 synthetic speakers. This results in 

two data sets, each consisting of 200 samples (20 speakers * 10 samples/speaker); from 

each sample we extract the 11 BenS features. 

Classification experiment: The two datasets were used to train a classifier to 

distinguish between human speech and synthetic speech. We evaluate the model using 

leave-one-speaker-out (LOSO) cross-validation. That is, we remove one speaker from the 
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training set and train the model using the data from the remaining speakers. After training 

the model, the data from the removed speaker is used to evaluate the accuracy of the 

model. This is repeated across all speakers, one by one, and the resulting estimate of 

accuracy is considered the out-of-sample estimate of the model’s accuracy. We 

considered a linear support vector machine (SVM), a decision tree, and several higher-

order polynomials-kernel SVMs. While all models performed reasonably well, the best 

performing model was the quadratic SVM (QSVM) with an accuracy of 91.5 percent and 

a misclassification rate of 8.5 percent. Table 2 shows the confusion matrix of the QSVM 

model.  

Confusion Matrix 

 Predicted Classes 

True classes Human Synthetic 

Human 181 19 

Synthetic 15 185 

Table 2: The confusion matrix for the classifier that uses the BenS Features to 

distinguish between synthetic speech and human speech. 

 
It’s clear from the results that the BenS features separate human speech from 

synthetic speech. That is, there is a difference in the distribution of BenS features 

between human speech and speech generated by existing TTS systems. We can visualize 

this difference in distributions between human speech and synthetic speech via a 

scatterplot of the first two BenS features, the mean and standard deviation of the KL 

divergence values estimated for a given sample. In Fig. 6, we plot these two features for 
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the 200 samples from the 20 human speakers (blue) and the 200 samples from the 20 

synthetic speakers (red). The figure clearly shows separability between the two groups. 

 BenS feature normalization: We use the TIMIT training data used to confirm that 

speech follows Benford’s law to normalize the features extracted from the 20-test human  

 

Figure 6 Scatter Plot for KL Divergence: A scatter plot of two BenS Features, the mean 

of the KL Divergences, and the standard deviation of the KL Divergence. 

 

speakers and the 20 synthetic speakers. That is, the mean and standard deviation for each 

of the 11 BenS features from the TIMIT training set was used to z-score the features from 

the data used in the classification experiment,  

      � = !"#$"
%"

,  (5) 

where xi is the ith BenS feature, μi and σi are the mean and standard deviation of that 

feature (estimated from the TIMIT training set), and zi is the normalized version of that 

feature. Figure 4 also shows that the average KL values for the human speech samples are 

closer to zero than the KL values from the synthetic speech, indicating that human speech 
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is more likely to follow Benford’s law than synthetic speech. The plot also shows the 

difference in variability between the two speech samples. The synthetic speech samples 

have a higher variability compared to human speech which can be seen by observing the 

Standard Deviation feature between human speech and synthetic speech.  

Z-scores 

Feature Human Speech Synthetic Speech 

Mean 0.859 1.861 

Standard Deviation 0.814 1.812 

10th Percentile 0.784 1.409 

20th Percentile 0.814 1.379 

30th Percentile 0.814 1.401 

40th Percentile 0.847 1.423 

50th Percentile 0.850 1.579 

60th Percentile 0.856 1.915 

70th Percentile 0.874 2.320 

80th Percentile 0.892 2.358 

90th Percentile 0.874 1.966 

Table 3: z-scores for the BenS Features for human and synthetic speech. The 

means and standard deviations for the normalization were obtained from the TIMIT train 

set. 

 

Table 3 shows the z-scores for each feature extracted from human and synthetic 

speakers. It is clear there are differences between the features for human and synthetic 

speech. The human speech samples extracted from the 20 human speakers have z-scores 
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within approximately 1 standard deviation of the feature distributions estimated from the 

larger TIMIT training set. In contrast, the synthetic speech has z-scores that exceed 1 

standard deviation from the mean. On the one hand, this finding makes sense as we 

would expect that synthetic speech samples are distinct from human speech given the 

results of the classification analysis. On the other hand, the z-scores for the 20 human 

speakers are not zero; rather, they are positively biased to approximately ~0.8 standard 

deviations from the mean. We posit that this bias is a result of a mismatch in the data 

distributions between the complete TIMIT training set and the small subset of speakers 

we used from the TIMIT test set. Our TIMIT test set contained speakers from only one 

dialect region (DR2), whereas the TIMIT training set contains data from all dialect 

regions. We controlled for the dialect region in our test set to reduce variability for our 

classification analysis given the small sample size. The sample size was limited given the 

small number of synthetic voices we had available. 
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DISCUSSION 

The evidence in Fig. 3 and the results of the linear regression analysis suggest that 

speech spectra follow Benford's Law on average. However, variability was not accounted 

for when comparing the human speech spectra with the Benford distribution. Meaning if 

each speaker’s Benford distribution were compared with the ideal distribution, there 

would be some instances where the linear regression would display the differences 

between the human speech Benford distribution and the ideal distribution. The R2 value 

would also decrease as well. Even though variability was not accounted for when 

comparing human speech with Benford’s Law, the variability between human speech 

spectra and synthetic speech spectra is different as shown in Figure 4. Indicating that the 

variability is a good feature to use to help classify between human and synthetic speech.  

The result of the average human speech Benford distribution following Benford’s 

law is not surprising when we consider existing models of the human speech production 

mechanism. Benford’s Law is apparent in datasets where the data generating process is 

the product of multiple independent factors [1]. Source-filter theory models speech as the 

output of a sequence linear time-invariant systems at the frame level [8]. That is, in the 

frequency domain, we model the speech spectrum S(ω) as, 

 S(ω) = Ε(ω) V(ω) R(ω), (6) 

where Ε(ω)is the glottal excitation signal in the frequency domain, V(ω) is the spectrum 

of the impulse response of the vocal tract filter, and R(ω), is the spectrum of the impulse 

response of a filter that models the radiation characteristics at the mouth. The equation 

above clearly models speech as the product of multiple factors. While Ε(ω), V(ω) and 

R(ω), are not completely independent, most instantiations of the source-filter model make 
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the simplifying assumption that they are. Adherence to Benford’s law provides additional 

evidence that this independence assumption is reasonable as Benford’s Law holds for 

datasets generated via a product of multiple independent factors [1].  

We further demonstrated that the BenS features are useful to classify between 

human and synthetic speech. The distribution of KL divergence values over a sample – as 

measured by the BenS features – were markedly different for human speech and synthetic 

speech. The differences in the BenS features are perhaps not surprising when we consider 

differences in the data generating process between human speech and synthetic speech. 

Human speech is modeled as the output of Eqn. (5); however, the most sophisticated 

synthetic voices used in our database were produced by neural networks with complex 

non-linear structures. It’s possible that the BenS features capture these fundamental 

differences in the underlying mechanism of production; however, evaluating this 

hypothesis requires a deeper study of synthetically generated speech. 

While in this paper we demonstrated that the features are useful for detection of 

synthetic speech, other applications of BenS features may be possible. For example, for 

speech produced by patients with certain clinical conditions, the independence 

assumption between E(ω) and S(ω) is more difficult to justify. In neurological conditions 

where velopharyngeal control is impacted (e.g., amyotrophic lateral sclerosis [11]), air 

escapes through the nasal cavity during speech (changing V(ω)), therefore the speaker 

may actively attempt to increase the loudness of their speech (thereby changing E(ω)). 

This clearly makes E(ω) and V(ω) dependent on each other. We conjecture that this 

would lead to changes in the BenS representation. As a result, follow-on work should 
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evaluate the utility of this representation for detecting early changes in clinical conditions 

via speech. If validated, the computational simplicity of the feature set would make it 

ideal for persistent on-device tracking.  

Another possible future application for BenS Features is to classify between 

different musical instruments. Each instrument has their own sound, just like how every 

human have their own voice. Since each instrument has their own unique spectra, future 

work would be to experiment whether the BenS features for each instrument are different 

and if it is possible to classify between different instruments using BenS Features rather 

using current methods involving neural networks which has more computations than the 

computations required for BenS Features. 
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CONCLUSION 

We evaluated the distribution of leading digits in the speech spectrum (extracted 

at the frame level) and showed that it follows Benford’s law on average. Variability of 

human speech Benford distribution was not accounted for, but its variability compared to 

the synthetic speech Benford distribution shows a significance difference where a 

classifier was able to differentiate the two 91.5 % of the time. One possible explanation 

for adherence to Benford’s law comes from existing models of the speech production 

mechanism. Human speech can be modeled as the product of multiple independent 

signals in the frequency domain, and it’s known that datasets that can be modeled in this 

way will tend to follow Benford's Law. Based on this observation we proposed a new 

feature set, dubbed the Benford similarity (BenS) features, for characterizing the 

Benfordness of speech at the level of an utterance using the KL divergence between the 

empirically estimated Benford distribution and the ideal Benford distribution. 

Classification results showed that this feature set can distinguish between human speech 

and synthetic speech with accuracy exceeding 90%. It’s important to note that the 

classification experiment was limited as the dataset consisted of only 20 speakers from 

the TIMIT test set. This was done to match the human data to the unique synthetic voices, 

of which we only had 20. Future work would involve utilizing different APIs that have 

more different synthetic voices available so the dataset would increase and be able to 

train the classifier and determine whether the performance increases or decreases. Future 

work will focus on analyzing the utility of BenS Features in other contexts such as for 

musical instruments and for patients with clinical conditions. As mentioned before, 

patients with ALS would have less control of their velopharyngeal valve, which lets some 
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air escape through their nose as they speak, which implicates the vocal tract and the 

patient would have to speaker louder to be heard, which would affect the glottal signal as 

mentioned. Those patients would have a lower frequency range in their speech , 

indicating it should not follow Benford’s Law since a dataset should have values that 

span across multiple orders of magnitude as mentioned before. Future work would 

involve observing the speech spectra and compare it with the ideal Benford distribution 

and determine whether the spectra follows or deviates from Benford’s law.  

Future work will also involve utilizing BenS Features on musical instruments. 

There are currently multiple different methods on instrument recognition, so future work 

would see if BenS Features could be a new method that require less computations and 

less features and still be able to accurately classify between different instruments.  
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