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ABSTRACT

With demand for increased efficiency and smaller carbon footprint, power system operators

are striving to improve their modeling, down to the individual consumer device, paving the

way for higher production and consumption efficiencies and increased renewable generation

without sacrificing system reliability. This dissertation explores two lines of research. The

first part looks at stochastic continuous-time power system scheduling, where the goal is to

better capture system ramping characteristics to address increased variability and uncertainty.

The second part of the dissertation starts by developing aggregate population models for

residential Demand Response (DR), focusing on storage devices, Electric Vehicles (EVs),

Deferrable Appliances (DAs) and Thermostatically Controlled Loads (TCLs). Further, the

characteristics of such a population aggregate are explored, such as the resemblance to

energy storage devices, and particular attentions is given to how such aggregate models can

be considered approximately convex even if the individual resource model is not. Armed

with an approximately convex aggregate model for DR, how to interface it with present

day energy markets is explored, looking at directions the market could go towards to better

accommodate such devices for the benefit of not only the prosumer itself but the system as a

whole.
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CHAPTER 1

INTRODUCTION

Under the threat of global warming, the energy sector must move to decrease emissions

through reduced consumption of fossil fuels. In this vein, many avenues are being pursued,

the most prominent being increased efficiency and the growing share of renewable (emission

free) sources of energy, of which solar and wind energy are growing rapidly. In this context,

efficiency does not only mean a more efficient way to consume energy (such as switching out

an incandescent light bulb for Light Emitting Diode (LED)), but also a more efficient way to

generate energy, which is primarily achieved through improved modeling of generation and

transmission to decrease losses as well as operating generators closer to their peak efficiency

and turning-off unnecessary high emission generation. Conventional power plants, such

thermal plants based on gas, coal or nuclear fission, along with reservoir-based hydro, tend

to have a stable supply and/or a large storage of fuel (or water) nearby, meaning that in

the short term (days or weeks) plant operators can increase or decrease their output power

as they see fit. Here, renewable generation, primarily solar and wind but also run-of-river

hydro, are fundamentally different in that the source of energy is exogenous to the control of

the operator in its generation, it can only be curtailed. A related issue seen by some power

system operators with high penetration of solar power is the significant ramps required from

conventional generation in the morning and evening hours, often leading to negative prices

of electricity and ramping shortages. All of this highlights that a much larger portfolio for

storage and fast ramping resources is needed, well beyond the hydro-power resources that

are used today. In the future this portfolio is likely to include a significant amount of demand

response programs and distributed storage. Modeling these resources and capturing their

value in balancing the grid is of paramount importance for their future integration.
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The responsibility of managing the overall power system lies with the Independent

System Operator (ISO) (or Transmission System Operator (TSO), but ISO will be used

throughout this dissertation) that centrally coordinates generation (and to some extent con-

sumption) through energy and ancillary service markets using various power system models

such as Unit Commitment (UC) or Economic Dispatch (ED), with the primary objective

of maintaining a reliable and economic system. Power system models such as UC/ED

approximate the true physical characteristics and constraints of the power system, in order

to make the models solvable in a matter of seconds or minutes, even for large scale systems.

This dissertation explores two threads of addressing the aforementioned issues, intro-

duced in the following sections.

1.1 Handling Variability and Uncertainty

Presently, uncertainty in power systems is managed by scheduling reserve capacity in

advance to compensate for errors in (net-)load forecasts. The vast literature dealing with

Stochastic Unit Commitment (SUC) and of the Security Constrained Unit Commitment

(SCUC) problems suggests an alternative approach that captures the exogenous uncertainties

directly into the decision process. In fact, SUC ensures that a feasible solution exists for

all considered scenarios, and that the expected associated costs are minimized. The most

common SUC formulations are two-stage SUC problems, pioneered by [Wiebking(1977)]

(see e.g. [Zheng et al.(2015)] for an overview of the considerable literature in this area).

Compared to the two-stage SUC, the Multi-Stage Stochastic Unit Commitment (MSUC)

takes a sequence of decisions, helping to achieve smoother boundary conditions on the

commitment variables, with the downside that the complexity is often prohibitive. First in

[Takriti et al.(1996)], and then in a series of follow up work (see e.g. [Carpentier et al.(1996),

Nowak and Römisch(2000),Shiina and Birge(2004),Papavasiliou et al.(2011),Analui and

Scaglione(2017)] and the references therein), many authors worked on curbing the Multi-

2



Stage Unit Commitment (MSUC) computational complexity. It is natural to use the more

accurate representation of the uncertainties in SUC to optimally oversee a more economic

commitment of reserves. While the literature above shows that improved handling of

uncertainty leads to greater reliability, it ignores the fact that load and generation mostly

changes continually and smoothly, and instead models it through step-wise discrete-time

functions. The coarse representation of inter-hourly ramping events also affects the system

reliability and urges for the perusal of a continuous-time approach.

In this dissertation, more specifically Chapter 2 and published papers [Hreinsson et al.(2018),

Hreinsson et al.(2019)], leveraging existing work [Parvania and Scaglione(2016)] focused

on the deterministic Continuous-Time Unit Commitment (CTUC), the Continuous-Time

Multi-Stage Unit Commitment (CT-MSUC) formulation is introduced, in which an under-

lying load scenario tree is used to decide the baseline day-ahead dispatch, commitment

and reserve capacity, considering continuous-time generation trajectories as part of the

decision variables. In a nutshell, the continuous-time representation increases the number of

variables per branch, capturing the trajectory as a polynomial spline. This change allows

to schedule the reserve capacity and power, accounting for the future expected real-time

cost in dispatching them, providing a more accurate representation of the future inter-hourly

ramping needs and capturing large scale-storage bids as well. Compared to [Parvania and

Scaglione(2016)], both the diurnal variability as well as the stochastic nature of the net-load

are captured and the simulations show that this does help scheduling the right set of units

to perform reliably in real time. In a separate line of research, a number studies have been

carried out that address sub-hourly scheduling problem as a solution to increase system

flexibility and more efficient reserve allocation in presence of net-load variability. In [Lopez

et al.(2018)] the authors have assessed the conditions that drive sub-hourly scheduling in

UC models. In addition, [Deane et al.(2014)] examined modeling of power system with

significant levels of wind generation at varying temporal resolutions and captured the asso-
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ciated costs that are not accounted for in hourly models. Evidently, there are trade-offs such

as problem size, data procurement and computational times in higher resolution scheduling.

In past work [Parvania and Scaglione(2016)], preserving the same number of continuous

variables as the proposed methods via third order splines, the authors already showed that the

sub-hourly UC performed better than the hourly UC but still worse than the continuous-time

formulation. Another tangential line of follow up work leveraging splines in operational

decisions are [Parvania and Khatami(2017), Scaglione(2016)] which address continuous

time pricing for deterministic economic dispatch (without commitment decisions) problems.

The proposed method further improves on existing literature with the following exten-

sions:

(a) With the inclusion of models and bids for energy storage,

(b) By allowing quadratic cost curves for ramping, power and energy,

(c) By modeling a multi-bus system with continuous-time flows across transmission lines,

and

(d) With a more generic formulation not only limited to third order polynomials.

The inclusion of storage in conventional UC models has been explored in e.g. [Khatami

et al.(2017),Lorca and Sun(2017),Bakirtzis et al.(2018),Taylor(2015)] and the references

within, but none combines the continuous time and multi-stage stochastic formulations

presented here. Storage devices are modeled by constraining the range of the integral of

their power, as such they are approximated to have zero losses, and dispatch and cost curves

are modeled in a continuous range from negative to positive power dispatch.
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1.2 Demand Response Modeling

The consumption side of power systems has traditionally been considered inelastic or

incontrollable, and to maintain a balance between production and consumption, ISO have

instead focused on controlling generation. With significant improvements in communication

infrastructure, computational power and the electrification of transportation, there are now

large residential and commercial loads that can communicate cheaply in real-time, opening

up new opportunities.

Controllable DR is often composed of large numbers of small participants whose behavior

is described through non-convex models, making it intractable for direct inclusion in ISO

models (e.g. UC/ED). It is broadly accepted that separate entities, called aggregators, would

provide an intermediary interface. As there are no practical bidding formats to include the

true description of load flexibility in the market, aggregators often present themselves as

price-sensitive demand or virtual generators, inventing offer/bid curves in traditional market

formats to capture their flexibility as close as possible.

1.2.1 Exploring Demand Response Flexibility

Focusing on direct load control, the integration of small individual loads or an aggregates

of such loads into present days scheduling and market models is not clear. There are little

obstacles to integrating loads that can be translated into conventional energy bids/offers,

possibly with constraints resembling a generator. However, most loads that fall under the

residential/commercial DR classification are unlike generators or industrial loads, in that

they consume more or less a constant amount of energy, but are flexible in the precise

consumption pattern. Several papers formulate optimization programs for system operators

or aggregators [Parvania et al.(2014)], some consider individual EV constraints (see e.g.

[Sortomme and El-Sharkawi(2012),Sanchez-Martin et al.(2012),Sojoudi and Low(2011),
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Yao et al.(2013)]), while others focus solely on an aggregate of TCLs [Callaway(2009),Koch

et al.(2011),Hao et al.(2013),Alizadeh and Scaglione(2013),Kalsi et al.(2012),Mathieu

et al.(2013b),Ramanathan and Vittal(2008)].

In [Subramanian et al.(2012),Nayyar et al.(2013)] the authors consider the scheduling

of an aggregate of simple flexible loads, the former explores various scheduling strategies

while the latter looks at how such an aggregate can be considered as storage offering

flexibility to absorb stochastic variations of renewable power and reduce need of or offer

reserves. In [Barot and Taylor(2014)], [Trangbæk et al.(2011)] the authors take a more

general approach and explore how the feasible region for an aggregate load model can

be described by convex polytopes, by computing the Minkowski sums of their individual

feasible regions. Specifically, [Barot and Taylor(2014)] finds an outer approximation

of the feasible region while [Trangbæk et al.(2011)] calculates the exact sum for simple

loads. These approaches are strictly limited to devices described by convex constraints,

with the different options presenting a tradeoff between computational complexity and the

precision of the represented feasible region. Chapters 3 and published paper [Hreinsson

et al.(2016)] explore the approximation to the Minkowski sums approach in [Foster and

Caramanis(2013)] obtained by clustering EVs and DAs [Alizadeh et al.(2015)]. The goal is

to aid the interpretation of this mathematical constructs in the context of energy reserves.

The novel contribution lies in the characterization of the equivalent aggregate DR resource

in terms of:

(1) potential load curtailment, stored negative energy and,

(2) flexibility and in the formulation of a statistical model for the aggregate resource that

allows to predict future equivalent storage potential within a certain confidence level.

Monetary objectives are ignored, such as cost of switching, utility or inconvenience, leaving

that for future work.
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1.2.2 Thermostatically Controlled Load Modeling

TCLs are among the most promising candidate appliances for DR programs [Callaway

and Hiskens(2011)], as they can offer considerable flexibility and have virtually no ramping

limits unlike conventional spinning generation. The first simplified dynamical model for

a TCL population was introduced in [Chong and Malhamé(1984)]. Its aim was to capture

the rebound peak observed after TCLs were interrupted during an emergency. While some

of the recent work is concerned with the response of TCLs to real-time pricing (e.g. [Lu

and Chassin(2004), Zhong et al.(2013), Zhao et al.(2013), Yoon et al.(2014), Behboodi

et al.(2018)]), here the focus is on direct load control models that are decoupled from the

economic signals that entice consumer participation. Instead of considering load curtailment,

most of the recent work on DR of TCLs is based on changing thermostat set-points in order

to adjust the load profile [Kundu et al.(2011),Callaway(2009),Bashash and Fathy(2011),

Mathieu et al.(2012),Mahdavi et al.(2017)] and realize a certain collective response for

load following, regulation and frequency control. Most population dynamics models in the

literature are reminiscent of the model in [Chong and Malhamé(1984)]. In such models,

TCLs are assumed to have a certain dead-band; the control consists of switching fractions of

the TCLs population between the ON and OFF states prematurely, relative to the time they hit

the corresponding temperature threshold, in order to create the intended deviation from the

otherwise-uncontrolled load profile. Work refining this basic idea is in e.g. [Callaway(2009),

Bashash and Fathy(2011), Koch et al.(2011), Alizadeh et al.(2015), Zhang et al.(2013)].

Another relevant line of work has used battery models to capture the TCL population.

Variants of this idea have been equivalent thermal battery models that are controlled to follow

the least costly control trajectory [Mathieu et al.(2013a)], and generalized battery model [Hao

et al.(2015)] with lower and upper bounds for electric power consumption. For the latter,

the control is achieved by aggregating and looping through individual TCLs in a priority-
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stack, switching units early until the desired load profile is obtained. Similar reference-

signal control techniques are described by [Meyn et al.(2013),Totu et al.(2016),Tindemans

et al.(2015)]. The authors of [Elghitani and Zhuang(2017)] consider generic DR blocks

of certain power, duration and slack, prioritizing and optimizing the service of blocks to

minimize costs. In [Ming et al.(2017)] the authors describe a robust economic dispatch

market clearing process, subject to a generic DR uncertainty bounded by a certain confidence

through the scenario approach [Campi et al.(2009)].

The literature cited above assumes ambient temperatures to be constant, however, know-

ing that temperature can both change quickly and randomly, a new method proposed in

Chapter 3 and associated papers [Hreinsson and Scaglione(2017),Hreinsson et al.(2020a)]

attempt to capture the relationship between temperature and the range of load attainable

by controlling a large number of TCLs. Most of the literature on TCL control focuses

on scalable control solutions, but because of the constant ambient temperature limitation,

does not offer a direct method to include TCL-DR in (stochastic) power system planning

models such as ED. Only recently work has emerged that allows for variations in tem-

perature [Mathieu et al.(2015),Mahdavi et al.(2016),Mahdavi et al.(2017),Vrakopoulou

et al.(2017),Li et al.(2017)]. The authors of [Mahdavi et al.(2016)] introduce a model that

tracks electric load of TCLs subject to changing ambient temperature, and later in [Mahdavi

et al.(2017)] apply that model to implement a Model Predictive Control (MPC) model that

reacts to a reference load signal by changing thermostat reference temperatures. A recent

contribution in a similar vein to the formulation in Chapter 3 is [Vrakopoulou et al.(2017),Li

et al.(2017)], where the authors use a time-varying equivalent battery model for an ag-

gregate of space heaters from [Mathieu et al.(2015)], and solve a robust Optimal Power

Flow (OPF) given the uncertainty of ambient temperature and of transmission-level wind

infeed. Uncertainty is managed by ensuring feasibility against a certain number of scenar-

ios [Vrakopoulou et al.(2017)] or by making the assumption that the uncertainty can be
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described by a jointly-Gaussian distribution [Li et al.(2017)]. In contrast to [Vrakopoulou

et al.(2017),Li et al.(2017)], the proposed method does not formulate a robust problem, but

a stochastic optimization, where the joint uncertainty of net-load and temperature is captured

through a scenario tree, and unlike the thermal battery model of [Mathieu et al.(2015)], it is

based around a state-space population model which allows to more accurately capture the

complex inter-temporal relationships between temperature and constraints on power and

energy. The novelty of the proposed work can be summarized as follows:

(a) It derives equivalent operational decisions/constraints of DR aggregates directly as a

function of varying ambient temperature,

(b) it shows how to utilize thismapping in a decision problem that incorporates temperature

forecasts or temperature scenario trees, capturing the uncertainty on the TCL model.

Numerical results showcase the accuracy of the proposed representation and the benefits of

using this optimization framework for DR.

1.2.3 Non-convex Loads and the Shapley-Folkman Lemma

Chapter 4 (and paper submission [Hreinsson et al.(2020b)]) looks at non-convex loads,

how the Shapley-Folkman (SF) lemma can be mobalized to achieve a deeper understanding

on how DR aggregators can come closer to presenting their actual constraints and costs to

the ISO.

Vast research has been devoted to the interface between aggregators and conventional

energy markets, trying to maximize the aggregators profit (see e.g. [Parvania et al.(2013),

Di Somma et al.(2018),Kohansal and Mohsenian-Rad(2015),Chen et al.(2016a),Henríquez

et al.(2017),Kowli and Meyn(2011),Samadi et al.(2015),Ottesen et al.(2016)]), some with

focus on specific DR resources [Ruiz et al.(2009),Lu(2012),Mathieu et al.(2013c),Coffman

et al.(2019), Contreras-Ocana et al.(2017)], or on their synergy with renewables [Call-
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away(2009),Ortega-Vazquez et al.(2013),Subramanian et al.(2013)], while others discuss

more generic bidding strategies [Li et al.(2011a), Pandžić et al.(2013)]. Several authors

proposed an interface between aggregators and individual DR resources based on distributed

pricing [Chen et al.(2010), Li et al.(2011b), Li et al.(2015b), Li et al.(2015a), Jiang and

Low(2011), Chang et al.(2013)], usually employing distributed primal dual decomposi-

tions. A similar approach is employed between aggregators and ISOs in [Gatsis and Gian-

nakis(2013)], describing an iterative distributed economic dispatch formulation. Closer to

this dissertation, is the body of research on low order models of DR aggregates, i.e. how to

package DR aggregates to be handed off to the ISO, where [Ruiz et al.(2009)] considers

this as a virtual generator, while [Hao et al.(2014), Nayyar et al.(2013)] consider those

as virtual storage devices, or a polytope in a joint decision and load space, e.g. [Alizadeh

et al.(2014a)]. In [Barot and Taylor(2017)] and earlier work, the authors aggregate a col-

lection of individuals by finding the outer approximation of the Minkowski sum from the

individual constraints, while [Zhao et al.(2017)] uses a geometric approach to find the largest

inner and smallest outer approximations of the actual feasible load set as a homothetic

transformation of a prototype polytope, allowing for efficient bounding of the Minkowski

sum of individual resources. Later in [Nazir et al.(2018)] an algorithm is proposed that

improves on [Zhao et al.(2017)] by decomposing the feasible set into sub-sets before fitting

the largest homothet inside the sub-sets. In [Müller et al.(2017)] and derived work the

authors describe aggregation and disaggregation of flexible resources based on zonotopes

and utilize those to maximize profits for an aggregator that is a price-taker.

This dissertation revisits the problem of designing efficient DR market models in light

of the SF lemma. Specifically, it starts from individual load models that can be non-convex

in both cost and constraints, and shows how aggregates of such models can be considered

approximately convex both in the set of feasible aggregate power profiles and total cost,

and strictly convex under certain conditions. This relationship between the non-convex
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individual DR models and corresponding aggregate convex load models and its implications

has not previously been explored in the literature. This dissertation expands on the theory

and provides sufficient conditions for exact convexity and guidelines on how to come close

to strict convexity.

With the understanding that the aggregate models are approximately convex, the problem

of delivering these aggregate models to the ISO remains, as the they may be quite complex

even though they are convex, both in terms of constraints and cost. To this end, this

dissertation attempts to close the loop from the individual to the ISO by exploring several

approaches to construct low-order aggregate bids that both describe the capabilities of the

population in terms of aggregate power consumption but also aggregate cost, with the

aggregate cost derivation not previously found in the literature. Similar to some of the

existing literature, a polytopic inner approximation is suggested to describe the aggregate

power capabilities, but unlike existing methods, the proposed approach has a configurable

complexity, even when aggregating large numbers of dissimilar resources, and is not confined

to a particular shape of polytopes as in [Zhao et al.(2017),Müller et al.(2017)] which may

lead to considerable losses when aggregating diverse resources. Inspired by the Central

Limit Theorem (CLT) from probability theory, this dissertation further suggest a novel

ellipsoidal model for describing DR aggregates that are derived in a distributed fashion, and

extend this notion to suggest what the true aggregate cost function of DR aggregates is.

1.3 Organization

The remainder of the dissertation is split into three main chapters.

Chapter 2 proposes the Continuous-Time Multi-Stage Unit Commitment (CT-MSUC) and

its implications for system operators.
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Chapter 3 shifts to Demand Response (DR) modeling, and introduces aggregate models

for storage, EVs DAs and TCLs based on convex or convexified individual resources.

It explores several metrics of flexibility for such aggregates and looks at integration

into an Economic Dispatch (ED) formulation before showing some numerical results.

Chapter 4 starts from a generic flexible load description and revisits the individual load

models to consider non-convex ignored in Chapter 3. It considers how an aggregate of

such loads can be considered approximately convex and how to pass such models on

to the ISO market models as a computationally simple yet flexible model, considering

the economic aspects of pricing and costs.

1.4 Notation

Slanted lower case variables (x) denote scalars, bold lower or upper case variables (i.e. x

orX) indicate vectors and matrices (or tensors). Boldface calligraphic letters (A) represent

sets and |A| their cardinality. A ≤ 1a, A ≥ 1a or A = a with vectors on both sides

are element-wise operations with 1 denoting a vector of ones of the appropriate size. The

notationAv whereA is a tensor and v a set of indexes, is the element ofA corresponding

to the tuple of indexes v, examples are xi orX i,j which refer to the corresponding elements.

The notation vec(A) is an abbreviation for the vectorize operator that stacks all the entries

of tensorA into a vector. Transpose is denoted by > whileAT is simplyA to the power of

T .
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CHAPTER 2

MULTI-STAGE STOCHASTIC CONTINUOUS-TIME UNIT COMMITMENT

2.1 Continuous Time Modeling

This section lays out the most significant modeling changes between a conventional

UC formulation and the proposed stochastic polynomial continuous-time representation

of load and generation. Some aspects are similar to existing literature [Parvania and

Scaglione(2016)], but are also summarized here to make the dissertation self-contained.

2.1.1 Polynomial Representation Synopsis

Polynomial splines (piece-wise polynomials) are chosen as a way to describe continuous

load and generation trajectories with a relatively small number of coefficients. Figure 2.1.1

(c) shows a continuous (cubic spline) load trajectory, and contrasts it with how load is

conventionally modeled as a discontinuous zero order piecewise polynomial in Figure 2.1.1

(a). Rather than approximating the trajectories with a constant value over each interval,

in the proposed model, the trajectories are linear combinations of a set of polynomials.

These polynomials are vectors in the Hilbert space of functions and the coefficients are the

coordinates of the analog function with respect to the basis. A collection of polynomials

of degree n can form a basis that spans a vector space of dimension at most n + 1 and

all signals in the sub-space have n + 1 coordinates (i.e. the coefficients that multiply the

polynomials in the linear combination). Because of Weierstrass approximation theorem,

one can approximate any analog trajectory on a finite interval onto this subspace with error

that vanishes as the order n goes to infinity. In this chapter, extensive use is made of the

Bernstein polynomials basis functions, which for degree n are:

bi,n(t) =

(
n

i

)
ti(1− t)n−i, t ∈ [0, 1], i ∈ [0, n] (2.1.1)
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Further, defining a vector of these basis functions bn(t) = (b0,n(t), . . . , bn,n(t))
ᵀ; any n-th

order polynomial function in t ∈ [0, 1] can be expressed as

x(t) =
n∑
i=0

x(i)bi,n(t) ≡ xᵀbn(t) (2.1.2)

wherex = [x(0) x(1) . . . x(n)]ᵀ ∈ Rn+1 is the corresponding transposed vector of coefficients.

Bernstein polynomials have several useful properties that facilitate the representation of

derivatives and integrals in one common basis and allow to bound the analog functions in the

space. Firstly, due to the linearity of the operation of derivative and integral of a function:

ẋ(t) =
n∑
i=0

x(i)ḃi,n(t),

∫ t

a

x(u)du =
n∑
i=0

x(i)
∫ t

a

bi,n(u)du (2.1.3)

Thus, the derivative of a basis function can be written as the finite difference of lower order

basis functions,

ḃi,n(t) = n(bi−1,n−1(t)− bi,n−1(t)),

and x, the coefficients of x(t), and those of ẋ(t), denoted by ẋ are interchangeable:

ẋ = Mnx ∈ Rn (2.1.4)

where Mn ∈ {−n, 0, n}n×n+1 is a bi-diagonal matrix that corresponds to the change of

coordinates from ḃi,n(t) to bi,n(t). Both derivatives and integrals of the basis are polyno-

mials of degrees n − 1 and n + 1 respectively. Secondly, as was noted in [Parvania and

Scaglione(2016)], the so called convex hull property implies that mini x
(i) ≤ xᵀbn(t) ≤

maxi x
(i) for t ∈ [0, 1] (see also Figure 2.2.1). Thirdly, the function x(t) = xᵀbn(t) passes

through (0, x(0)) and (1, x(n)), at the edges of the interval 0 ≤ t ≤ 1. This is particularly

useful when defining continuous splines; to enforce C0 continuity across splines covering

the kth and k + 1th intervals, whose coefficient vectors are xk and xk+1 respectively, by

simply enforcing the equality x
(n)
k = x

(0)
k+1. Denote by [x]

(i) the ith entry of the vector x in

the brackets, to enforce C1 continuity, it suffices to enforce [Mnxk]
(n) = [Mnxk+1]

(0), and

by adding further mappingsM one can enforce continuity of higher order derivatives.
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Formally, having a piece-wise function x(t) with t ∈ [0, Kh], divided into n intervals of

unit length (h = 1), defining each segment xk(t) on t ∈ [0, 1] and denoting by rect(t) the

rectangular pulse with unit length, the relationship between the function and the segments is:

x(t) =
K−1∑
k=0

xk(t− k)rect(t− k). t ∈ [0, K] (2.1.5)

Hence, polynomial expansion can be used for each segment, in lieu of a single constant xk

used in discrete time, i.e. xk(t) = xᵀ
kbn(t) with the Bernstein basis of order n. The above

properties will be leveraged in both spline representations of net-load trajectories and further

in net-load scenario tree generation.

2.1.2 Stochastic Formulation

As discussed in the introduction, modern electricity portfolio management models are

best represented by multi-stage stochastic programs. The input of such programs consists of a

scenario tree that models the probabilistic information of the underlying uncertainty (net-load,

spot prices, etc.). The scenario tree is a directed graph and shows the stage-wise evolution

of information structure (filtration). The tree structure clusters the realizations of underlying

stochastic process into a set of branches with associated probabilities of occurrence. A key

feature in multi-stage stochastic programs is known in the literature as non-anticipativity,

meaning that the actions or optimal decisions are taken only based on the information up

to the present time, independent of the future. Scenario trees are often constructed to meet

a minimum approximation error relative to some distance metric. There is a fair amount

of literature on how to generate a scenario tree which optimally and accurately represents

the probability model of the underlying stochastic process in discrete time (see e.g. [Pflug

and Pichler(2015)]). Here, a straightforward scenario reduction algorithm is adopted, with

additional continuity constraints to derive the desired continuous-time net-load scenario

tree as the baseline model for proposed CT-MSUC. Algorithm 1 describes the proposed

15



D
is
c
r
e
te

C
o
n
ti
n
u
o
u
s

Deterministic Stochastic

N
et
-L
o
ad

[M
W
]

N
et
-L
o
ad

[M
W
]

Time [hours] Time [hours]

(c)

(a)

(d)

(b)

Figure 2.1.1: Highlight are the different ways of estimating load in UC; (a) conventional
load as deterministic discrete-time, (b) a stochastic discrete-time load, (c) a continuous-time
deterministic load and (d) a stochastic continuous-time load.

approach using k-means clustering to reduce a set of S input scenarios Ξ ∈ RS×K×|B|×(n+1),

where it is assumed that the original net-load trajectories are mapped to their nearest n+ 1

Bernstein coefficients, into a desired tree structure with fixed the number of nodes per time

step through vector c.

2.1.2.1 Net-Load Scenario Tree Construction

Asmentioned above, existing scenario construction algorithms do not represent the continuous-

time nature of load/demand stochastic process and therefore the corresponding generation

decisions. By employing the spline representations of the net-load stochastic process, this

aspect can be represented up to the desired level of precision. In the other words, the pro-
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posed solution can numerically approximate the variational solutions asymptotically, when

the order of the spline representation grows.

A continuous time scenario tree T is built, with set of nodes V , where associated with

each tree node v ∈ V a vector of control points contains the Bernstein coefficients of net-load:

ξbv = [ξ
b(0)
v ξ

b(1)
v . . . ξ

b(n)
v ]. The continuous-time net-load functions at bus b ∈ B leading

to node v ∈ V is thus ξbv(t) = (ξbv)
ᵀbn(t) with πv representing the joint probability of the

free parameters in the polynomial trajectory. To navigate the tree, the following notions are

used:

• the children of node v are contained in the set C(v),

• the parent (immediate ancestor) of node v is given by the function α1(v),

• the grand-parent by α2(v) and so on, with α0(v) = v,

• the shorthand v− = α1(v) for brevity,

• ξ ∼ T refers to the complete construction.

• the nodes pertaining the possible outcomes at a certain hour k are contained in the set

V(k) and the hour a node v corresponds to is denoted by τ(v).

The proposed scenario tree construction approach is based on a recursive scenario

reduction. This strategy consists of modifying a given fan of trajectories by bundling them

according to the k-means clustering algorithm. An assumption is made, that the original input

trajectories have already been mapped to their nearest Bernstein coefficients. It is evident

that constructed trees are much smaller than the given fan of trajectories and nevertheless,

they represent a viable approximation with respect to the appropriate norm. More elaborate

description on the load data and distribution of the load across the system topology is

incorporated in Section 2.4.1. Figure 2.1.1 shows how a scenario tree for net-load may look
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like, both in discrete time (b) and continuous time (d). Time is quantized into one hour

intervals, such that each node reflects actions taken over a single hour, thus simplifying

the notation (the extension to arbitrary time intervals is straight-forward, and skipped for

brevity).

2.1.2.2 Continuous-time Cost

For a stochastic continuous time formulation, the continuous time expected cost is expressed;

that is, given a continuous time dispatch function for a particular interval (the subscript k is

omitted for clarity), x(t) = xᵀb(t), a cost function C(x) and t ∈ [0, 1]:∫ 1

0

E[C(x(t))] dt =
∫ 1

0

E [C(xᵀb(t))] dt (2.1.6)

For a linear cost function C(x) = c1x+ c0 this becomes:∫ 1

0

E[C(x(t))] dt = c1

∫ 1

0

E[xᵀ]b(t) dt+ c0 = c1
1ᵀ · E[x]
n+ 1

+ c0 (2.1.7)

since Bernstein basis functions of the same order have the same definite integral 1
n+1

over

interval [0, 1].

Various power system costs are considered quadratic, with cost of generation often

approximated with a function C(x) = c2x
2+c1x+c0. In practice, for a convex cost function,

it is often implemented as a piece-wise linear function C(x) = ci1x + ci0 if xi−1 < x ≤ xi

(with appropriate boundary conditions), which in a linear optimization program is achieved

through a set of constraints C ≥ ci1x + ci0 for all i. Unfortunately, for piece-wise linear

cost functions, it is not possible to express the continuous cost in terms of the polynomial

coefficients1. Instead, considering a generic power profile x(t) = xᵀb(t) expressed in terms

of the Bernstein basis, as well as a generic quadratic cost function C(x) = c2x
2 + c1x+ c0

1This would require splitting the integral on crossings between function pieces at instants in time that are

not linearly determined from the coefficients, and integrating arbitrary ranges of the basis functions.
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Algorithm 1 Constructing scenario trees in continuous time from empirical net-load trajec-

tories
1: K ← 24 (time horizon length)

2: c← RK (number of nodes per stage)

3: m← 0 (index of root node)

4: ξm (root node value)

5: sm (indices of all input scenarios)

6: εm (Root Mean Squared Error (RMSE) between root node value and the set of input

scenario)

7: V = {0} (initialize the node set)

8: for k ∈ {1, 2, . . . , K} do (loop over all time/stages)

9: for v ∈ V [k − 1] do (loop through all nodes of past stage)

10: m← m+ 1 (increment node counter)

11: ξm, εm ← k-means(Ξ[sv], 1) (apply kmeans to obtain a single centroid – func-

tion returns the centroid and corresponding error)

12: V ← V ∪ {m} (add m to the set V)

13: end for

14: (now the algorithm has moved forward one stage with no splitting)

15: while |V [k]| < ck (cardinality of nodes in stage k is smaller than desired number of

nodes)

16: m← m+ 1 (increment node counter) do

17: v ← argmaxjεj, j ∈ V [k] (which ff has the largest RMSE)

18: [ξv, ξm], [εv, εm]← k-means(Ξ[sv], 2) (apply kmeans to obtain two centroids –

replace existing node and create a new node atm, also track corresponding error)

19: V ← V ∪ {m} (add m to the set V)

20: end while

21: end for
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the following expression is obtained for the continuous cost:∫ 1

0

E[C(x(t))] dt = c2

∫ 1

0

E
[
(xᵀbn(t))

2
]
dt+ c1

∫ 1

0

E[xᵀbn(t)]dt+ c0

=
c2
2
E[xᵀUβx] + c1u

ᵀ
βE[x] + c0 (2.1.8)

Using the Bernstein basis, a dense matrix Uβ is obtained resulting in bi-linear coefficient

cross terms. However, if an orthogonal basis (e.g. Legendre polynomials) is chosen, the

corresponding matrix U δ is diagonal (the cross terms fall out) allowing one to circle back

to the aforementioned linear approximation of the quadratic term. Defining a new basis

δᵀdn(t) = xᵀbn(t) = x(t) where dn(t) are orthogonal basis functions in the range [0, 1],

δ = Dx and ∆i ≈ δ2i , the quadratic objective can be approximated within a minimizing

optimization program as:

min

∫ 1

0

E[C(x(t))] dt ≈ c2
2

n∑
i=0

E[∆i][Uδ]i,i + c1u
ᵀ
δE[δ] + c0

s.t. ∆i ≥ aj1δi + aj0 ∀i ∈ {0, . . . , n}, j ∈ Ji (2.1.9)

where Ji reflects a set of constraints used for the approximation ∆i ≈ δ2i . This allows one

to apply a piece-wise linear approximation to the continuous quadratic costs, introducing

a trade-off between number of constraints (problem complexity) and accuracy. For the

remainder of the chapter the Bernstein basis is used, but for simulations this mapping is

utilized to approximate the quadratic cost terms just described. This approach resolves one

of the limitations of past work in [Parvania and Scaglione(2016)].

2.1.3 Energy Storage Model

The conventional power system model is expanded to track energy output of dispatchable

resources, allowing one to include constraints on energy, particularly suited for storage

or storage-like resources such as dispatchable demand. This is presently done to varying
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degrees by some ISOs to accommodate storage resources [California ISO(2018)]. In discrete

time, tracking the energy output eg of generator g producing xgk of average power in period

k becomes a simple sum egk =
∑k

p=0 x
g
p, approximating the corresponding continuous time

formulation eg(t) =
∫ t

0
xg(τ) dτ .

In continuous-time, it is possible to continually track the energy and constrain it to honor

capacity limits. Recalling the relationship between a continuous function defined in terms of

Bernstein coefficients and its derivative, the relationship between generators g coefficients

of power xgk and energy e
g
k for interval k are:

xgk = Mn+1e
g
k (2.1.10)

The energy, being an integral, has an additional degree of freedom. However, as the sum

energy output of generators is inherently continuous (a discontinuous jump in the energy

profile would require infinite power), the coefficient e
g(0)
k can be assumed to be known,

leading to the reverse the relationship (2.1.10). SplittingMn+1 intomn+1 denoting the first

column, andM ′
n+1, a square matrix containing the remaining columns, and derive:(

e
g(1)
k , . . . , e

g(n+1)
k

)
=
(
M ′

n+1

)−1
(
xgk −mn+1e

g(0)
k

)
(2.1.11)

Given an initial value eg(0) and a piece-wise power profile xgk for all k, one can thus

iteratively calculate all coefficients egk and the corresponding continuous energy profile e
g(t),

which will be CC+1 continuous given a CC continuity of the power profile. To honor energy

storage devices minimum and maximum energy, the convex hull property is used:

eg ≤ eg(t) ≤ eg ⇐⇒ eg ≤ e
g(i)
k ≤ eg ∀i, k (2.1.12)

2.2 The Continuous-Time Multi-State Stochastic Unit Commitment

The underlying methods used to improve upon a conventional SUC to formulate the

CT-MSUC are explained in Section 2.1; to summarize, the options are:
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(a) The continuous time formulation of power (load and generation),

(b) the multi stage scenario tree used to characterize the underlying uncertainty (both (a)

and (b) are visualized in Figure 2.1.1,

(c) tracking and constraining of energy to ease modeling of storage-like resources.

As the formulation is no longer a deterministic plan in time, it takes on the nodal form of the

scenario tree, with most variables being indexed w.r.t. a certain path on the tree, instead of

time.

2.2.1 Considerations Regarding Optimizing in Continuous-Time

In continuous time, similar to the continuous load ξb(t) at bus b, generator power, ramping

and energy are defined as continuous-time functions xg(t), ẋg(t), eg(t) for all generators

g ∈ G = {1, . . . , G}, further specifying G(b) as the set of generators at bus b. By ensuring

that both the polynomial of load (power) and generation power are of order n and have

the same continuity, Consumption and generation is continually balanced by ensuring

that, at every time instant, the sum coefficients of consumption and generation are equal.

Introducing:

egv = (eg(0)v , eg(1)v , . . . , eg(n)v , eg(n+1)
v )ᵀ (2.2.1)

xgv = (xg(0)v , xg(1)v , . . . , xg(n−1)
v , xg(n)v )ᵀ (2.2.2)

ẋgv = (ẋg(0)v , ẋg(1)v , . . . , ẋg(n−2)
v , ẋg(n−1)

v )ᵀ (2.2.3)

denoting the Bernstein coefficients of the corresponding continuous functions of generator

energy, power and ramp, for the interval corresponding to the scenario tree node v ∈ V .

Utilizing (2.1.4) to find the derivative coefficients, the generator continuous-time energy,

22



power and ramp functions for node v ∈ V are:

egv(t) = (egv)
ᵀbn+1(t) (2.2.4)

xgv(t) = (xgv)
ᵀbn(t) = (Mn+1e

g
v)

ᵀbn(t) (2.2.5)

ẋgv(t) = (ẋgv)
ᵀbn−1(t) = (Mnx

g
v)

ᵀbn−1(t) (2.2.6)

where ramp is the derivative of power, and power the derivative of energy. Generator

commitment yg, start-up sg and shut-down sg indicators are hourly as in conventional

models, but indexed using the tree nodal notation, allowing different commitment schedules

depending on the tree path traveled. A particular realization corresponds to a certain path in

the scenario tree2 H ⊆ V and the corresponding trajectory can be reconstructed as:

xgH(t) =
∑
v∈H

(xgv)
ᵀb(t− τ(v))rect(t− τ(v)), (2.2.7)

and similarly for the energy and ramp trajectories.

2.2.2 Stochastic Unit Commitment Modeling Changes

As the input to the problem is a scenario tree of future load, the output will be a tree

of generation dispatch and commitment profiles. As discussed in Section 2.1.2, load is

considered to be a continuous-space random process, but approximate by a tree structure. As

in traditional power system operation, where a difference between actual and forecasted load

is observed, the load will not follow any path of the tree precisely, the tree is constructed to

capture the various major load trends. This mismatch is compensated for in a traditional

fashion, by allocating certain reserve power capacity around each path of the tree, reflecting

certain units that can change their dispatch to meet the load realization. Nodal reserve

functions are defined along with their corresponding coefficients r̂gv(t), ř
g
v(t), r̂

g
v and ř

g
v, such

2The only case in which the path is equal to the set of nodes is when the problem is deterministic, i.e. there

is a single future forecast.
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that a unit g produces between [xgv(t) + řgv(t), x
g
v(t) + r̂gv(t)] if the realization passes through

node v.

2.2.3 Optimization Objective

The stochastic and continuous-time aspects of the formulation add some complications

to the objective of the UC formulation. Conventionally, the goal is to minimize cost of

generation; to this end there exists a vast literature, e.g. [Zhou and Botterud(2014), Liu

et al.(2017),Hreinsson et al.(2015)] in including the reserve power allocation in the UC

problem, in order to increase feasibility and lower cost compared to solving the two problems

separately. In the proposed formulation, cost functions are added to the energy and ramp

dimensions. The rationale is that for energy, storage devices can show their lean towards

buying or selling depending on their storage level, and for ramping, units can try to incor-

porate the long term cost of wear and tear by penalizing ramps. The cost of commitment,

startup and shutdown is defined as Y g, S
g
, Sg. The power, energy and ramping and reserves

costs are:

Xg(x) = Xg
2x

2(t) +Xg
1x(t) (2.2.8)

Eg(e) = Eg
2e

2(t) + Eg
1e(t) + Eg

0 (2.2.9)

Ẋg(ẋ) = Ẋg
2 ẋ

2(t) + Ẋg
1 ẋ(t) (2.2.10)

Rg(r) = Rg
2r

2(t) +Rg
1r(t) (2.2.11)

Note that the cost terms could vary depending on the interval k, but for simplicity the same

cost curves are used throughout the time horizon. The cost of node v ∈ V is formulated as:

Jv =
∑
g∈G

[
S
g
sgv + Sgsgv +

∫ 1

0

(
Rg
(̂
rgv(τ)

)
+Rg

(̌
rgv(τ)

)
+ Eg

(
egv(τ)

)
+Xg

(
xgv(τ)

)
+ Ẋg

(
ẋgv(τ)

))
dτ

] (2.2.12)
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where the integrals are mapped into functions of coefficients as explained in Section 2.1.2.2.

The objective becomes the total expected real-time cost becomes:

min
∑
v∈V

πvJv (2.2.13)

where πv is the probability of node v.

2.2.4 Program Formulation

This section describe the constraints of the SUC formulation, some being previously

discussed in [Parvania and Scaglione(2016)] and [Hreinsson et al.(2018)].

2.2.4.1 Continuity and Derivative Constraints

Energy is mapped to power and to ramp through the following constraints:

xgv = Mn+1e
g
v ∀g ∈ G, v ∈ V (2.2.14)

ẋgv = Mnx
g
v ∀g ∈ G, v ∈ V (2.2.15)

CC continuity is enforced for the continuous-time power polynomials (CC+1 for energy,

CC−1 for ramp).[
Mn+1−c · · ·Mn+1e

g
v−

](n+1−c)
= [Mn+1−c · · ·Mn+1e

g
v]

(0)

∀c ∈ {−1, . . . , C}, g ∈ G, v ∈ V (2.2.16)

where [·](i) denotes vector element i. Note that for the discontinuous case, c = −1,

Mn+2 · · ·Mn+1 = I (identity) and the constraints reduce to e
g(n+2)

v− = e
g(0)
v ; for c = 0,

x
g(n+1)

v− = x
g(0)
v is added, and so on.

Reserve capacity must also be continuous, to ensure it is deliverable in real-time. For

c ∈ {0 . . . , C}, g ∈ G, v ∈ V:[
Mn−c+1 · · ·Mnr̂

g
v−

](n−c)
= [Mn−c+1 · · ·Mnr̂

g
v]

(0)
(2.2.17)[

Mn−c+1 · · ·Mnř
g
v−

](n−c)
= [Mn−c+1 · · ·Mnř

g
v]

(0)
(2.2.18)
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Remark 1 (Implementation Note). Of the coefficients egv, x
g
v and ẋgv, ignoring boundary

conditions, only n− C are free variables, with all other having a direct dependence through

the derivative constraints or from preceding or following nodes. The presentation is simpler

to follow if (as done throughout the chapter) constraints are defined in terms of the appropriate

variable e, x or ẋ. However, by defining the dependent variables as expressions of the free

variables, the numerical optimization complexity can change. Experience indicates that

defining n− C of the x coefficients as free (decision) variables, instead of egv reduces the

computational cost.

2.2.4.2 Balance Constraints

To balance generation x and load ξ the sum of the vectors of coefficients of generation and

those of the load must be equal. Defining the vector of the coefficients of power injection at

bus b, node v as hbv =
∑

g∈G(b)(x
g
v)− ξbv; then the balance constraint is:∑
b∈B

hbv = 0 ∀v ∈ V (2.2.19)

Denoting by εbv(t) = [εbv]
ᵀbn(t) the root mean square error between a scenario tree segment

ξbv(t) and the bundle of scenarios it approximates, a nodal reserve proportional (by ρ) to this

error is required for all nodes v ∈ V:

∑
g∈G(b)

(xgv + r̂gv)− ĥ
b

v ≥ (ξbv + ρ εbv) (2.2.20)

∑
g∈G(b)

(xgv − řgv)− ȟ
b

v ≤ (ξbv − ρ εbv) (2.2.21)

∑
b∈B

ĥ
b

v = 0 ,
∑
b∈B

ȟ
b

v = 0 (2.2.22)

If ξbv(t) is unbiased, then εv(t) is the standard deviation of the sample paths. As such, the

solution is feasible for ρ times the conditional standard deviation, which can use as a bound

for the deviation from ξbv(t) to a likely interval.
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2.2.4.3 Energy Limits

To limit the continuous value of energy, power and ramping, the convex hull property is

used (as explored in detail in [Parvania and Scaglione(2016)]), stating that a function lies

in between the convex hull of its coefficients. In the case of energy, to ensure lower (e)

and upper (e) energy limits are continuously honored, it is sufficient to ensure that the

coefficients never go outside these limits:

eg ≤ egv ≤ eg ∀g ∈ G, v ∈ V (2.2.23)

Remark 2. Any deviations in energy levels that are a result of reserve power activation

are not included in this constraint. This follows a common practice of UC formulations,

where e.g. only ramping constraints between expected power dispatch levels are included,

with nothing preventing excessive ramps during reserve events. One could include such

constraints; in this case it would suffice to track the upper energy bound with respect to

x(t) + r̂(t) and the lower w.r.t. x(t)− ř(t). To unburden the presentation this is omitted.

2.2.4.4 Generation Limits

Similar to energy, ensuring that generator coefficients sit between the minimum and max-

imum generation xg, xg is sufficient to ensure that the generator limits are honored. The

handling of commitment variables for continuous trajectories is more involved. As an exam-

ple, for a unit that is online during a particular hour τ(v), but offline during the previous

hour τ(v−), stating that xgv− = 0 and xgv ≥ xg is a violation of the continuity constraints

if C > −1. To allow for smooth on/off transitions that do not violate continuity the en-

forcement of these constraints is shifted in time. The power plot of Figure 2.2.1 attempts to

visualize this, where the effective min/max constraints are shown with dotted lines. Mathe-

matically, these constraints are expressed as follows. For the first i ∈ {0, . . . , C}, they are
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Figure 2.2.1: The relationship between continuous energy, power and ramping (continuous
paths), alongwith the Bernstein coefficients (stars). Additionally the figure shows generator’s
commitment (on/off) status, power and ramping limits and how those limits change on
startup/shutdown.

bounded by the preceding commitment variable:

xg(i)v + r̂g(i)v ≤ xgygv− ∀g ∈ G, v ∈ V \ V(1) (2.2.24)

xg(i)v − řg(i)v ≥ xgygv− ∀g ∈ G, v ∈ V \ V(1) (2.2.25)

However, for the remaining coefficients i ∈ {C + 1, . . . , n}:

xg(i)v + r̂g(i)v ≤ xgygv ∀g ∈ G, v ∈ V (2.2.26)

xg(i)v − řg(i)v ≥ xgygv ∀g ∈ G, v ∈ V (2.2.27)
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Further discussion of these constraints, as well as the following ramping constraints can be

found in [Parvania and Scaglione(2016)].

2.2.4.5 Ramping Limits

To enable changes in commitment for units that have slow ramp rates, the ramping limits

are relaxed on coefficients during on-off transitions, With generator g ramp limit ẋ
g
, for

v ∈ V \ V(1):

ẋg(C)
v ≤ ẋ

g
+ nxgsgv , ẋ

g(C)
v ≥ −ẋg − nxgsgv (2.2.28)

For the first ramping coefficients the preceding interval commitment is considered. For

i ∈ {0, . . . , C − 1}, v ∈ V:

ẋg(i)v ≤ ẋ
g
ygv− , ẋ

g(i)
v ≥ −ẋgygv− (2.2.29)

For the last ramping coefficients the present interval commitment is considered. For i ∈

{C + 1, . . . , n− 1}, v ∈ V:

ẋg(i)v ≤ ẋ
g
ygv , ẋ

g(i)
v ≥ −ẋgygv (2.2.30)

Figure 2.2.1 provides insights into these constraints, where the ramping constraints are

visualized with a dotted line.

2.2.4.6 Minimum On/Off Constrains

Denoting by T gon and T
g
off the minimum on- and off-time respectively, the minimum on and off

constraints are conventional [Hedman et al.(2009)]; recalling that αi(v) is the i-th ancestor
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of node v:

sgv − sgv = ygv − ygv− ∀g ∈ G, v ∈ V (2.2.31)

ygv ≥
min(T g

on ,τ(v))−1∑
u=0

sgαu(v) ∀g ∈ G, v ∈ V (2.2.32)

1− ygv ≥
min(T g

off
,τ(v))−1∑

u=0

sgαu(v) ∀g ∈ G, v ∈ V (2.2.33)

2.2.4.7 Transmission Line Flow Constraints

Following continuous load and generation, transmission line flows will certainly change in

continuous fashion. Assuming all operations are element-wise, for all transmission lines

l ∈ L, buses v ∈ V and coefficients i ∈ {0, . . . , n}:

−F l ≤
∑
b∈B

Fb,lh
b(i)
v ≤ F l (2.2.34)

−F l ≤
∑
b∈B

Fb,lĥ
b(i)

v ≤ F l (2.2.35)

−F l ≤
∑
b∈B

Fb,lȟ
b(i)

v ≤ F l (2.2.36)

where Fb,l is the Power Transmission Distribution Factor (PTDF) of bus b to line l, and F
l

is the maximum power the line can transfer.

2.3 Formulation Complexity and Solution Techniques

A few observations regarding the solution complexity are in order. First, compared to the

MSUC the CT-MSUC formulation roughly doubles the number of continuous variables and

adds continuity constrains. Even though the number of integer variables remains identical,

the large number of binary variables due to the multi-stage formulation, along with the

increase in continuous variables and constraints, one quickly suffers from the curse of

dimensionality, where hours or days become necessary to obtain a solution for cases that can
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be viewed as being relatively small for a conventional UC solver. For stochastic formulations,

scalability is an issue in general, and in practice, decomposition and other advanced solving

methods are necessary for reasonable solving times. Here two prominent decomposition

techniques are discussed along with how to apply them to the proposed formulation.

2.3.1 Progressive Hedging

Progressive Hedging (PH) [Watson and Woodruff(2011)] falls into the category of Dual

Ascent methods, more specifically those that employ an Augmented Lagrangian function

with an augmented penalty term which tries to force a sub-set of decision variables across

sub-problems to be equal. There are different ways to approach a SUC problem with PH,

but a straightforward way would be to consider each pathH along the scenario tree as an

independent (think deterministic) sub-problem, and then through the augmented Lagrangian,

introduce penalties for any difference in those nodal decision variables that should be

identical because two or more sub-problems share a node of the scenario tree.

PH has been shown to be successful for mixed-integer programs such as SUC [Ordoudis

et al.(2015),Ryan et al.(2013)]. However, the problem with PH, as well as other methods

involving augmented Lagrangians, is that even though they have impressive convergence

results for convex problems, there are no guarantees of convergence for mixed-integer

problems, and obtaining convergence involves heuristics and precise tuning, for which

different approaches may not translate well across different types of problems.

2.3.2 Stochastic Dual Dynamic Integer Programming

Stochastic Dual Dynamic Integer Programming (SDDiP) [Zou et al.(2017)] builds on

Stochastic Dual Dynamic Programming (SDDP) [Pereira and Pinto(1991)], a well known

decomposition algorithm commonly employed for hydro-scheduling. SDDP utilizes the

duality of linear programs and the recursive problem structure of multi-stage decision
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problems, allowing Benders cuts [Benders(1962)] to “flow” up the decision tree such that the

root formulation captures the most interesting vertices of the sub-problems. SDDP further

describes how this approach can be performed using Monte Carlo sampling of the scenario

tree paths, allowing arbitrarily large scenario trees, while converging to the optimal value

with certain confidence guarantees.

SDDiP extends the fundamental idea of SDDP, but introduces other types of cuts, that

for binary state variables guarantees convergence. This has previously been shown to be

successful for the application of SUC [Zou et al.(2018)].

First, denoting certain variables as local variables:

φv = [ev,xv, ẋv,hv, ĥv, ȟv, r̂v, řv] (2.3.1)

while also defining a set of binary state variables, in this case, a vector derived from the

local and binary variables:

χv = [χy
v,χ

s
v,χ

s
v,χ

e
v,χ

x
v ,χ

r̂
v,χ

ř
v] ∈ {0, 1}|χv | (2.3.2)

The first three components of χv are related to the binary variables. First, χ
y
v = [y1v , . . . , y

G
v ]

is the commitment of all generators, defining Ig(v) = min(T gon, τ(v))− 1:

χs
v =

[[
s1α0(v), . . . , s

1
αI1(v)(v)

]
, . . . ,

[
sGα0(v), . . . , s

G
αIG(v)(v)

]]
is a vector of all generators start-up indicators as far back as is relevant for the minimum on

constraints, and similarly for turn-off:

χs
v =

[[
s1α0(v), . . . , s

1
αI1(v)(v)

]
, . . . ,

[
sGα0(v), . . . , s

G
αIG(v)(v)

]]
where Ig(v) = min(T goff, τ(v)) − 1. The remaining four components of χv relate to the

continuous problem variables.

To maintain a CC continuity of x(t), r̂(t) and ř(t) between nodes v− and v, the last

C + 1 coefficients of the respective vectors of node v− need to be available when defining
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the constraints of node v. Additionally, to track the state of energy across nodes e(t),

last coefficient of e must be provided as an initial condition for child nodes. SDDiP only

guarantees convergence when the state variables are binary. Defining a quantization step-size

qMW, the variables x
g(i)
v = xg+q

[
xg(i)v

]ᵀb, where b is a vector [20, 21, . . . , 2B
g−1]ᵀ and x ∈

{0, 1}Bg
is a binary vector of lengthBg, whereBg is sufficiently large to cover the operating

range of the generator: Bg =
⌈
log2

(
(xg−xg)/q+1

)⌉
. The same quantization is performed

for the coefficients r̂, ř and e, though the necessary length of the corresponding binary vector

varies between generators and type of variable. The quantization step-size should be identical

across variables of power and energy, due to the finite difference relationship between the

two. The implications of the quantization only affect the balance constraint (2.2.19), where

a deviation of up to q/2 must be permitted (but penalized). Now, the remaining parts of χv

are:

χe
v =

[
e1(n+1)
v , . . . , eG(n+1)

v

]
χe
v =

[[
x1(n−C)
v , . . . , x1(n)

v

]
, . . . ,

[
xG(n−C)
v , . . . , xG(n)

v

]]
χr̂
v =

[[̂
r1(n−C)
v , . . . , r̂1(n)v

]
, . . . ,

[̂
rG(n−C)
v , . . . , r̂G(n)

v

]]
χř
v =

[[̌
r1(n−C)
v , . . . , ř1(n)v

]
, . . . ,

[̌
rG(n−C)
v , . . . , řG(n)

v

]]

where the sans-serif font indicates the quantized binary representation of the corresponding

slanted variables.

Define C as the constraints (2.2.14)-(2.2.36), and Cv to denote the constraints relevant

for a particular node v (possibly depending on a previous node v−). Assigning the root node

33



v = 0, a recursive problem can be formulated using the objective function J from (2.2.12):

Qv (χv−) = min
χv ,φv ,zv

Jv (χv,φv, zv) + ϕv(χv) (2.3.3a)

s.t. (χv,φv, zv) ∈ Cv (2.3.3b)

zv = χv− (2.3.3c)

χv ∈ {0, 1}|χv | (2.3.3d)

where, in a dynamic programming fashion, ϕv(χv) represents the cost to go, whose exact

value is:

ϕv(χv) =
∑

v′∈C(v)

πv′

πv
Qv′ (χv) (2.3.4)

SDDiP is an iterative algorithm that approximates the cost to go function with a number of

cuts, such that:

ϕv (χv) ≈ ψiv (χv) = min
{
θv : θv ≥ θv, θv ≥

∑
v′∈C(v)

πvv′
[
υlv′ + (λlv′)

ᵀχv

]
, l = 1, . . . , i

}
(2.3.5)

where πvv′ = πv′/πv is the marginal probability of the nodal transition v → v′.

2.3.2.1 Benders Cuts

By relaxing the binary constraints of problem (2.3.3), the conventional Benders cuts can

be computed. Assigning λv to be the dual of constraint (2.3.3c), (2.3.3) can be solved for a

given χi
v, adding to the parent problem the cut:

θv ≥
∑

v′∈C(v)

πvv′
[
Qi
v′ + (λiv′)

ᵀ(χv − χi
v)
]

(2.3.6)
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2.3.2.2 Lagrangian Cuts

Defining the Lagrangian of (2.3.3) with constraint (2.3.3c) relaxed:

Liv
(
λ
i

v

)
= min

χv ,φv ,zv

Jv (χv,φv, zv) + ϕv(χv) + λ
i

v(χ
i
v− − zv) (2.3.7a)

s.t. (χv,φv, zv) ∈ Cv (2.3.7b)

χv ∈ {0, 1}|χv | (2.3.7c)

The Lagrangian dual problem thus becomes:

λ
i

v = arg,max
λ
i
v

Liv (2.3.8)

which can then solve with e.g. subgradient methods [Held et al.(1974)], obtaining a cut:

θv ≥
∑

v′∈C(v)

πvv′
[
Liv′(λ

i

v′) + (λ
i

v′)
ᵀ(χv − χi

v)
]

(2.3.9)

The subgradient method works as follows:

(a) Start by initializing λ = 0.

(b) Solve the inner problem, obtaining the argument z(λ).

(c) Move λ
+
= λ+ α(χv− − z(λ)).

(d) Assign λ← λ
+
and go to step (b), unless λ has sufficiently converged.

2.3.2.3 Strengthened Benders Cuts

This cut family is essentially a combination of the prior two. Starting by solving the relaxed

problem (as for a Benders Cut) and obtaining the dual variableλiv corresponding to constraint

(2.3.3c), then using that dual vector to solve Liv(λiv) the cut becomes:

θv ≥
∑

v′∈C(v)

πvv′
[
Liv′(λiv′) + (λiv′)

ᵀ(χv − χi
v)
]

(2.3.10)
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Table 2.1: Generator operational properties, cost coefficients, minimum and maximum energy, power and ramp speeds, as well as
minimum on and off times. Note that e(0) = e(K) for the storage devices S1000. Omitted cost coefficients are zero.

Unit [x, x]MW ẋMW/h [e, e], e(0)MWh (Ton, Toff) h Y Ỹ S E1 E0 X2 X1 Ẋ2 R1

U12 [2, 12] 12 [0,∞], 0 (4, 2) 86 22 100 0.00 0 0.328 56.56 0.10 7.07

U20 [16, 20] 20 [0,∞], 0 (1, 1) 400 100 100 0.00 0 0.000 130.00 0.05 16.25

U50 [10, 50] 50 [0,∞], 0 (1, 1) 1 0 0 0.00 0 0.000 0.10 0.03 0.01

U76 [15, 76] 76 [0,∞], 0 (8, 4) 212 53 200 0.00 0 0.014 16.08 0.10 2.01

U100 [25, 100] 100 [0,∞], 0 (8, 8) 781 195 200 0.00 0 0.053 43.66 0.07 5.46

U155 [54, 155] 155 [0,∞], 0 (8, 8) 382 96 250 0.00 0 0.008 12.39 0.07 1.55

U197 [69, 197] 180 [0,∞], 0 (12, 10) 832 208 400 0.00 0 0.007 48.58 0.07 6.07

U350 [140, 350] 240 [0,∞], 0 (24, 24) 665 166 700 0.00 0 0.005 11.85 0.30 1.48

U400 [100, 400] 60 [0,∞], 0 (24, 24) 395 99 1500 0.00 0 0.000 4.42 0.90 0.55

S1000 [−90, 90] 90 [0, 1000], 500 (1, 1) 10 0 0 0.06 −30 0.009 1.80 0.01 0.50

3
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2.4 Numerical Simulations

For numerical simulations the single area (24 buses) of the Institute of Electrical and

Electronics Engineers (IEEE) IEEE Reliability Test System (RTS) [Grigg et al.(1999)]. The

RTS system was used as a starting point for topology, generator placement and properties,

but as the test case data does not provide the full set of parameters needed for the proposed

model, certain missing parameters were derived from existing parameters; the readers

should refer to Table 2.1 for all relevant generator properties and cost coefficients used

in the simulations. Units prefixed with U are the conventional RTS generators, while

S1000 describes a 1000 MWh storage unit. For simulations including storage, two S1000

devices were placed on buses 109 and 110. The rationale here was to place the storage

devices on the boundary between the well-connected and the weakly-connected parts of

the system (in terms of transmission capacity). In the test setup, storage devices offer load-

shifting and additional flexibility to compensate for variability and stochasticity of loads, by

participating as conventional units with an energy component to their bids in the UC cost

minimization. Faced with the curse of dimensionality, both 12 and 24 hour commitment

horizons were considered, allowing experimentation with more complicated scenario trees

in the 12 hour case. The continuous-time simulations use cubic splines (n = 3) that are C1

continuous (ramp is continuous), whereas the discrete-time formulations provide trajectories

that are piece-wise constant (n = 0) and discontinuous (C−1). Programming the proposed

algorithm, plotting and solving was done with Python [Van Der Walt et al.(2011), Jones

et al.(2014),Hunter(2007)] and Gurobi 8 [Gurobi Optimization(2015)] using a 60 core Intel

Xeon processor running at 2.30 GHz. Decomposition algorithms such as aforementioned

SDDiP and/or PH were not used for this numerical results, but are under development as

part of future work.
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2.4.1 Load Data

Electric load and generation data comes from California ISO (CAISO) [California

ISO(2017)]: they include ten time series, five for different utility company load profiles,

and five showing the solar and wind infeed from different California regions, all with a 5

minute resolution. To capture the temporal trends observed, and to map them onto the RTS

grid topology, time series were linearly combined and scaled such that the total net-load

(load minus renewable infeed) is a fixed ratio of the aggregate CAISO net-load, scaled by a

factor of 1/15, such that the load is within the generating capacity of the RTS system.

The processing pipeline from the original CAISO data to the eventual net-load trees used

in simulations is visualized in Figure 2.4.1, along with one output tree aggregated over all

the buses. To reduce the dimensionality during the tree generation, principal component

analysis were applied and extracted F = 20 features to capture the most significant trends

across all buses for each hour. The tree size was predetermined to have a certain number of

nodes per hour, and recursive k-means was used in such a way as to prioritize branching on

those nodes where the error between the centroid and the corresponding bundle of sample

paths was high. After constructing the tree, features were mapped back to per-bus load

trajectories, before mapping those to the desired polynomial; the coefficients were computed

solving a least squares regression problem.

Remark 3. The tree construction algorithm is sub-optimal; it was chosen as an heuristic to

obtain a multi-bus tree that was a suitable input to the proposed formulation. While these

details are useful for reproducibility of the results, with the exception for the continuous-time

load tree representation, how the data are curated and compressed is not the main focus of

this chapter.
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Figure 2.4.1: The steps taken from CAISO net-load data to a multivariate scenario tree with
the load per bus as a piece-wise continuous polynomial. D is number of input sample days,
H the number of hours, T the samples per hour, |B| number of buses, F number of extracted
Principle Component Analysis (PCA)/Singular Value Decomposition (SVD) features, n
is the polynomial degree and T (·) denotes the entire tree structure, with each nodes value
dimension ·.
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2.4.2 Comparison

Comparing all combinations of formulations that are (i) continuous/discontinuous, (ii)

deterministic/stochastic (iii) including/excluding storage devices and (iv) several different

values of ρ. To capture what happens in real time, results were validated against a set

of 109 test load trajectories that were not used as part of the tree construction as follows.

Optimization was performed as described in Section 2.2 with a deterministic cost, but

fix the commitment variables to the values found in the day-ahead solution, such that the

model effectively is solving an OPF. While for the deterministic solutions there is only

one set of commitment decisions, for the multi-stage formulations, to choose these integer

variables the day-ahead tree was traversed one hour at a time, choosing the branch that

is closest (in the L1 norm) to the test load. The real load trajectory was assumed to be

continuous cubic spline, which is a good approximation of the 5 minute resolution sample

data [Hreinsson et al.(2018)] and certain constraints violations were allowed, prioritizing

them through penalties. Specifically, to account for deviations from the precise forecast/tree

paths, violations of min/max power and ramp constraints were allowed with the following

penalties:

1) A unit that is asked to deviate from its day-ahead schedule is compensated with an

additional 30% of its marginal cost, calculated at the day-ahead schedule set-point.

2) A unit that is asked to produce outside the day-ahead determined operation range

(reserve range) gets an additional 100 per MWh. This is implemented with slack

variables on (2.2.26)-(2.2.27) where P /P reflects the reserve region.

3) A unit that is asked to produce outside of its min/max generation gets 200 per

MWh compensation. This is implemented with slack variables on another set of

(2.2.26)-(2.2.27), where P /P retain their original meaning.

40



Figure 2.4.2: A sample scenario, showing test load with red line, the active tree branch
with a green line, the corresponding reserve allocation with cross hatch, the inactive tree
branches as dashed lines and the entire tree’s reserve range in gray.

4) A unit that is asked to violate its ramping constraints gets compensated with additional

100% of the marginal ramp cost at the upper ramp limit. This is implemented through

slack variables on (2.2.28)-(2.2.30).

Remark 4. The penalty terms can be additive, and the unit is always getting paid the

underlying cost (the objective). Also, given the somewhat arbitrary choice of penalties, in

comparing the results real-time penalties incurred are not shown but only the number of

violations.

2.4.3 Results

To get a sense for what a solution to the CT-MSUC formulation looks like, Figure 2.4.2

shows a sample test profile (red), along with the underlying day-ahead solution tree (dotted

gray lines), the scheduled reserve range (shaded gray area), the active reserve range (green

hatch), which is similar to the scheduled reserve range but takes into account what units

are committed on the closest path on the tree (green line). Figure 2.4.3 compares a sample
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Figure 2.4.3: Unit Commitment for the CT-MSUC simulation. Purple indicates that unit is
off for all tree paths of that hour, yellow is on for all tree paths, and the color in-between
indicates some paths have the unit committed while others have it offline.

CT-MSUC commitment profile against a standard UC commitment solution, where yellow

indicates units that are on, purple units that are off and for the continuous stochastic case the

in-between shade indicates units that are online during some tree paths but not others.

For a more meaningful quantitative comparison, Figure 2.4.4 shows the total cost plotted

against the number of constraint violations in real-time, for various solutions. The violations

are further detailed in Figure 2.4.5 where the split between the various constraints can be seen,

and as is expected, one can observe that the least penalized constraints are the ones more

frequently violated. Figure 2.4.6 compares the number of hours committed for each solution,

showcasing the flexibility of the generators chosen. There are no notable differences in the

flexibility of units that can be attributed to the solution being continuous or not, but there is

a clear tendency toward fewer committed hours for the solutions that are stochastic and/or

include storage. This is interesting, as it points out that the modeling of uncertainty has more

significant impact than modeling the inter-hourly variability associated to the trajectories.
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A clear separation can be seen between solutions with and without storage, as the added

storage allows for load shifting and better use of inexpensive generation, thus reducing costs.

Testing the storage solutions reveals that, even though adding storage reduces the number of

pmin/pmax violations as well as the time spent outside generator reserve range, there is a

sharp increase in ramp limit violations not seen in the solutions without storage. This is a

side-effect of the lower number of hours committed (as evident in Figure 2.4.6), requiring

the remaining generators to move around more, particularly in conjunction with the charging

and discharging of the storage units.

The stochastic formulations outperform the deterministic solutions, as it is clear from

Figure 2.4.4. In fact, for a particular cost there is always a stochastic solution not far away

that violates significantly fewer constraints than its deterministic counterpart. For the 12

hour case larger trees were modeled (in that they have more branching). Clearly, moving

to a larger tree did not yield much benefit and, everything else being equal, the difference

between the various stochastic solutions is small. It is useful to recognize, however, that the

tree construction a heuristic was used and, thus, this test may not necessarily provide a good

benchmark for the effect of the tree size on performance. These simulations are more useful

to understand how complexity scales with the size of the tree (see Figure 2.4.7).

As for the continuous vs discrete formulations, Figure 2.4.5 suggests strongly that the

continuous time solutions lead to fewer constraint violations in real-time, compared with

their discrete counterparts. However, they also seem to be slightly more expensive in that

they commit more units and demand more reserves. This is partially due to the complexity

of the problem formulation; in the tests the Mixed-Integer Linear Program (MILP) solver

in general left a larger MIP-gap for the continuous time formulations than the discrete

ones, meaning that there is some room for improvement in the day-ahead solution for the

continuous cases. In practice, depending on how constraint violations are penalized, the cost

benefit of the continuous time formulation can range from small to significant. Irrespective
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of the cost, the benefit of less ambiguity in the continuous solution remains an advantage of

the continuous formulation.

Figure 2.4.7 shows the time required by the MILP solver (Gurobi) to obtain a solution

for each of the problems. The most significant take-away message from this figure is that

solving a multi-stage stochastic formulations, including moderately sized scenario trees that

embed binary variables does not scale well, without utilizing some form of advanced solving

techniques and the additional variables in the continuous formulation only exacerbate the

situation. A continuous-time formulation with ca. 6000 binary variables could be solved,

but beyond that the solver took more than the maximum of a few days to solve.
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Figure 2.4.4: Average total cost (day-ahead and real-time costs without any penalties)
plotted against the number of constraint violations on a log scale for the 24 hour (a) and 12
hour (b) case. Note that here off-schedule is not considered as a constraint violation, though
in practice that would incur operational costs.
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Figure 2.4.5: A sorted chart showing the number of constraint violations each solution
incurs for the 24 hour (a) and 12 hour (b) case, categorized by violation type.
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Figure 2.4.6: The number of hours committed for the different solutions of the 24 hour (a)
and 12 hour (b) cases, with the colors indicating the flexibility of units through the length of
their on/off cycle (Ton + Toff).
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Figure 2.4.7: The required solving time plotted for the various tested solutions. Note that
the vertical axis is plotted on a logarithmic scale.

48



CHAPTER 3

AGGREGATION AND DISAGGREGATION FOR DIRECT LOAD CONTROL

ALGORITHMS

3.1 Aggregate Modeling Background

Lets start with some background definitions:

Definition 1 (Prosumer). A prosumer is a generalization of a consumer or a producer, that

is someone that either consumes or produces or energy, or is capable of both e.g. batteries or

homes with solar generation.

Throughout the remaining chapters the word prosumer will be used when discussing

generic entities that could either be producers or consumers. Let K = {0, . . . , K} be the

set containing the K + 1 discrete time indexes of equally spaced intervals of duration h

in the decision horizon including the times k0 + kh with k ∈ K, where k = 0 indicates

initial conditions. The devices and appliances considered in the context of DR are naturally

flexible (responsive), having a variety of different possible profiles of energy consumption.

Definition 2 (Feasible Region for a flexible prosumer). Let pi = (p[1], . . . , p[K]) ∈ RK be

the samples of the ith generation trajectory (positive for production, negative for consump-

tion) and P i ⊆ RK its feasible region, that is the set of power profiles that can be chosen

from for that particular prosumer.

Definition 3 (Convexity). A set is convex if a line drawn between any two points in the set

lies entirely within the set. Similarly, a convex function is a function whose epigraph is a

convex set. Further, the convex hull of a set X , Conv(X ), is the smallest minimal set that

contains all the points from X .
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Figure 3.1.1: Convex polytopes showing the vertices and half-space cuts.

A Polytope, visualized in Figure 3.1.1 can be seen as a set with a particular geometric

structure:

Definition 4 (Polytope [Boyd and Vandenberghe(2004)]). A polytope is a geographic shape

(a set) with flat edges (facets) in an n dimensional space. A convex polytope has the additional

property that a line between any two points within the polytope resides entirely within the

polytope itself.

The feasible set of all sum load profiles of two or more feasible regions is described by

the Minkowski sum of sets.

Definition 5 (Minkowski Sum). AMinkowski sum, denoted by ⊕, is the set X containing

all possible sums of elements from sets P i, i ∈ I. More precisely:

X =⊕
i∈I

P i = P1 ⊕ · · · ⊕ PN (3.1.1)

=
{
x = p1 + · · ·+ pN

∣∣p1 ∈ P1, . . . ,pN ∈ PN
}

(3.1.2)

A Minkowski sum of two sets is visualized in Figure 3.1.
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Figure 3.1.2: Minkowski sum of two sets X = P1 ⊕ P2.

Finding the exactMinkowski sum of a large number of sets is hard [Trangbæk et al.(2011)],

and even though it can be approximated for convex sets [Barot and Taylor(2014)], in this

chapter an alternate approach is proposed. Starting from a simple example, one can think of

an ideal battery i of capacity Zi with an initial charge of I i at time k0. Its state of energy

at evenly spaced discrete time instants k0 + kh with k ∈ K can be described by the vector

ζi ∈ RK+1 and the set of possible load profiles is:

P i =
{
pi |pi = −ζ̇i, ζ i0 = I i, 0 ≤ ζ i[k] ≤ Zi ∀k ∈ K

}
⊂ RK (3.1.3)

where p is the feasible load profile, expressed as the amount of energy [J] consumed in the

interval between two consecutive time instants h seconds apart, which can be mapped into

the piece wise constant average power profile p/h [W], finally ζ̇ ∈ RK is the vector of
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finite differences between consecutive energy states for load i,

ζ̇
i
=
[
ζ i[1], . . . , ζ i[K]

]
−
[
ζ i[0], . . . , ζ i[K − 1]

]
(3.1.4)

3.2 State-Space Model

Building on existing literature [Alizadeh et al.(2015)], a state space quantized into Nu

states is considered, while introducing the two mappings:

U(ζ) : R→ U , Z(u) : U → R (3.2.1)

where U = {0, . . . , Nu − 1} ⊂ N, so that Z(U(ζ)) is the quantized value corresponding

to ζ and U(ζ) is the integer index of the corresponding quantization interval. For batteries

that can be charged and discharged at constant rate ±ρ [W], considering that their state of

charge in each unit of time h [s] can remain the same or change by ±ρh [J], the quantized

values are Z(u) = ρ · h · u [J]. Applying the mapping on an entry by entry basis, the

vector ui = U(ζi) ∈ UK+1 is introduced, whose entries are the indexes of the quantization

intervals of the ith battery state vector ζi. Note that Z(ui) is the quantized version of ζi.

Now, (3.1.3) can be expressed in terms of the quantized state space:

P i =
{
pi | pi[k] = Z(ui[k−1])−Z(ui[k]), ui0 = U(I i), ui[k] ∈ U ∀k ∈ K\{0}

}
(3.2.2)

Going from (3.2.2) to the Minkowski sum for an aggregate of batteries X with homogeneous

capacity Zi can be done directly, as in [Alizadeh et al.(2015)]:

Xstorage = {p |p =
Nu∑
u=1

Nu∑
v=1

(Z(u)−Z(v))Ḋu,v,Du,u = 0∀u,D ∈ NN2
u×K ,

Nu∑
v=1

Ḋu,v ≤ nu ∀u
}

(3.2.3)

where D is a tensor whose element Du,v[k] is the number of batteries that have moved

from state u to state v up to time k, Ḋ[k] = D[k]−D[k − 1], and n ∈ NNu×K is a matrix

denoting the population in each of the states over time. The dynamics of nu are as follows:

nu =
∑
i∈I

δ(U(I i)− u) +
Nu∑
v=1

Dv,u −
Nu∑
v=1

Du,v (3.2.4)
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Here, I denotes the set of all participating batteries and the first sum in (3.2.4) represents the

initial state of nu at k0
1, while the second and third terms are vectors over time indicating

the movement of devices to (second term) and from (third term) state u for time instants

0 < k ≤ K. It is important to note here thatD is a decision variable describing the schedule

for future consumption.

3.3 Service/Slack Load Models for Electric Vehicles and Deferrable Appliances

In this section, a unified model for EVs and DAs is built. Electric power is assumed to

be normalized with the length of each time step h, so effectively all variables are in terms

of energy: ρ [J ] =
ρactual power [W ]

h [s]
. Both EVs and DAs have in common that, not only do they

need to receive energy from the grid for a certain service time, but incentivized customers

may be willing to have devices available to the system for longer than this minimum service

time, offering flexibility. Examples of this would be to turn on dishwashers or plug in EVs

before going to bed, leaving plenty of slack time between the service time required to charge

the vehicle or run the dishwasher and the deadline, at which the dishwasher will be emptied

or the EV unplugged. To be precise, define:

Definition 6 (Service Time). The service time for a device is the minimum time the device

needs to receive the required energy.

Definition 7 (Slack Time). The slack time of a device is the difference between the time a

device is available in the system, ready to be serviced, and the required service time.

This shared property is used to define a unified model, in which a load state is character-

ized at each time instant k ∈ K by the pair (ur, us) ∈ Urs = {0, . . . , Nr−1}×{0, . . . , Ns−

1} ⊂ N2, where ur denotes the remaining required service time, while us accounts for the

1Using the Kronecker delta notation, δ(U(Ii)− u) = 1 only if a battery came with initial state of charge

Ii such that U(Ii) = u and zero otherwise.
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remaining slack time. The reader is cautioned that in the following u = (ur, us) ∈ Urs but

also ui is a vector with entries uik ∈ Urs, k ∈ K representing the evolution of the state of

the load in the decision horizon.

In (3.2.4) the first sum, as mentioned, initializes the vector nu. While storage batteries

would always be available online, in general flexible devices come and go. To describe the

term for EVs, an arrival process is introduced, that captures the fact that vehicles are only

available for charge after they plug in. More specifically, assume that there are |I| vehicles

arriving in the decision horizon; the ith EV is plugged in (arrives) at a random discrete

time kai and is unplugged (departs) at discrete time kdi > kai . Naturally, EV i requires a

certain charge Ci = Zi − I i [J] while it is plugged in, and is assumed to be chargeable at

discrete evenly spaced power levels2 P = [0, . . . , ρ̂] ∈ Rm+1. Recalling the meaning of the

adimensional state value u introduced before, the ith EV arriving in the system will have

initial state coordinates pair (ur, us) equal to:

ui[k < kai ] = 0, ui[kai ] =

(
bmC i/ρ̂c

m
, kdi − kai −

bmC i/ρ̂c
m

)
. (3.3.1)

Observe that the ith EV starts at a distance ‖ui[kai ]‖1 = kdi − kai from the origin (ur, us) =

(0, 0), and at every discrete time step k > kai (i.e. in an interval of duration h) reaches a new

state ui[k + 1] such that ‖ui[k + 1]− ui[k]‖1 = 1, that is it moves by exactly one position

closer to the origin. This means that form = 1 either the service time has decreased, since

the EV was charged, or the slack time has decreased, since the EV did not charge. Form > 1

a combination can be seen of the two that adds up to one, which can be interpreted as either

charging at ρ < ρ̂ throughout the period, or charging at full capacity but only for a fraction

of the interval length h.

2This either assumes a smart charger that supports different power levels (similar to how Tesla allows

single or dual chargers), or allows the model to support full power for a fraction of h, giving more resolution

and less quantization errors.
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To compute the Minkowski sum of P i for EVs, define the dynamics of the population

state matrix n. For this, the matrix a for the arrival process must be introduced. Specifically,

in each possible state pair u = (ur, us) the arrival vector in NK is:

au[k] =
∑
i∈I

δ(ui[kai ]− u) · u(k − kai ) (3.3.2)

where u is the unit step function and again I denotes the set of all possible participating

devices. Formulating the unified model with a state space of dimension Nr ×Ns, with all

possible coordinates as members of U :

X =
{
p |p = −

∑
u∈U

∑
v∈V(u)

R(u,v)Ḋu,v, Du,u = 0 ∀u ∈ U ,

D ∈ N(Nr×Ns)2×K ,
∑
v∈U

Ḋu,v = nu ∀u ∈ U
} (3.3.3)

where the state population tensor n ∈ NNr×Ns×K dynamics are:

nu = au +
∑
v∈U

Dv,u −
∑
v∈U

Du,v. (3.3.4)

For EVs, the states energy values are uniformly spaced, thus:

R(u,v) = ρ̂ · h(ur − vr)/m. (3.3.5)

The set V(u) of indexes in the summation over v denotes the possible moves from u, again

for EVs:

VEV(u) =
{
v | ‖v−u‖1 = min(‖u‖1, 1), (u−v)r ≥ 0, (u−v)s ≥ 0, vr, vs ≥ 0

}
(3.3.6)

where the equality constraint only considers movements to states at distance 1 unless it

is close to the origin, and the inequality constraints ensure that it stays in the upper right

quadrant of the state space and can only move towards either of the two axis.

A sample initial state space for EVs is depicted in Figure 3.3.1 where the diameter of

the circles indicates a states population. Note that the model can incorporate arbitrary EV
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Figure 3.3.1: Sample state space for EVs. The state-space is dimensionless, with coordinate
u corresponding to ρ̂ · h · ur [J] of energy requirement and h · us [s] of slack time.

loads that are interruptible with any initial state of charge or capacity for the EV battery in a

single aggregate space, unlike [Alizadeh et al.(2015)]. Only EVs with different charging

levels need to be separated in a different state space.

Deferrable appliances such as washers, dryers and dishwashers have similar charac-

teristics of being turned on (not started) at kai with a requirement of being finished by k
d
i .

Further they have a fixed power profile that can not be paused and is described by the

vector p = [p1, . . . , pL], giving a slack time of k
d
i − kai − L and a service time L. As only

devices with similar p can be aggregated, they all arrive requiring exactly L of service time,

providing the initial coordinates for the two dimensional state:

ui[k < ka] = 0, ui[ka] = (L , kdi − kai − L) (3.3.7)

For DAs the Minkowski sum aggregate is the same as for EVs (3.3.3) except that R(·)

depends on p, seeing as once a device has been started (ur < L) it can not be interrupted
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and this behavior must be captured by VDA(u):

R(u,v) =
ur−1∑
w=vr

pL−w+1 (3.3.8)

VDA(u) = VEV(u) ∩
{
v |(v − u)r = min(ur, 1) ∀u : ur < L

}
3.3.1 Reserve Capacity

Besides the set of possible power profiles X , there are other metrics to evaluate the

state-space. The future energy requirement of an aggregate is:

E = −
∑
u∈U

R(u,0)nu. (3.3.9)

Another noteworthy quantity is the aggregated slack that is stored in the system. This is

analogous to (3.3.9):

S =
∑
u∈U

usnu. (3.3.10)

As for other metrics, it may be important to know how fast one can ramp down or up for a

single period given a scheduleD:

p+ =
∑

(u,v)∈W+

R
(
u,v)nu (3.3.11)

W+ = {(u,v) |u ∈ U , vr = max(ur − 1, 0), vs = max(us + ur − vr − 1, 0)} (3.3.12)

p− =
∑

(u,v)∈W−

R(u,v)nu (3.3.13)

W− = {(u,v) |u ∈ U , vs = max(us − 1, 0), vr = max(ur + us − vs − 1, 0)} (3.3.14)

The setsW denote the most favorable moves from any point u ∈ U with respect to either

of the objectives.

3.4 Control Strategies

With the state-space model in place, how does one schedule consumption and come up

with aD? The answer is tightly coupled with the aggregators goal, whether it is to counteract
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stochasticity of other loads or generation, provide ancillary services or to get cheaper energy

on the market. To start off, looking closer at Figure 3.3.1 two extreme strategies (or policies)

can be described:

Policy 1 (energy first): Moving all the dots along the r axis (down on the figure) until they

reach the s axis and are forced to move along the s dimension. Here, the devices

consume energy as fast as they can, similar to inflexible loads.

Policy 2 (slack first): The complementary strategy is to first move all devices along the s

axis, consuming slack time and delaying service as long as possible.

Policy 3 (prioritize reserves): A strategy with the goal of maximizing short-term reserve

power potential, positive or negative. More precisely, it aims to find the load curve p

that maximizes the minimum p+ − p and p− p−.

Figure 3.4.1 shows for a certain initial state, the resulting load, stored energy and slack

for the three policies. It is clear that policies 1 and 2 bound policy 3 w.r.t. stored energy and

slack, and in fact, by design, they bound any other feasible policy. The edge strategies (1

and 2) are simple and can be expressed as a linear transform:

n[k] = ξ(n[k − 1]) = A0n[k − 1]A1 +A2n[k − 1]A3 +A4n[k − 1]A5 (3.4.1)

whereAi are simple shifting matrices (all zeros except for ones on upper or lower diagonal)

and picking matrices (all zeros except for {Ai}1,1 = 1). A property of the vec operator

applied to the product of three matrices, vec(ABC) = (C> ⊗B) vec(A), allows defining

A = (A>
2 ⊗ A1 + A>

4 ⊗ A3 + A>
6 ⊗ A5) where ⊗ is the Kronecker product. Thus,

one can express (3.4.1) as a single linear dynamical model vec(n[k − 1]) = A vec(n[k −

1]). Policy 3 is formulated as a mixed-integer linear program and solved with Gurobi

[Gurobi Optimization(2015)].
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Figure 3.4.1: Sample strategy outcomes from the initial state in Fig. 3.3.1.
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The take away message from Figure 3.4.1 is that a DR population is similar to storage;

depending on the strategy that is chosen, different amounts of energy are “chosen” for future

consumption. Thus, by planning to follow a certain schedule that leads down a certain

trajectory with regard to the storage level, the schedule can be altered to reduce or increase

consumption momentarily, as long as the trajectory remains within the bounds of the edge

strategies.

While previously analyzing the possibilities based on a deterministic initial state, the

arrivals captured by a are randomly replenishing the DR resources, keeping E and S

from converging to zero. Predictions regarding the future arrivals allow for estimating the

future storage potential less conservatively than assuming no future arrivals. In [Alizadeh

et al.(2014b)] (Sec. V-E) it was found that the arrivals of cars that plug in at home fit the

statistics of a non-stationary Poisson arrival process, which is consistent with the intuition that

events of cars plugging in are independent. Denoting by λ the vector of expected number of

arrivals, the random number of arrivals at quantized time t is ȧ[k] =
∑

u∈U (au[k]−au[k−

1]) ∼ Pois(λ[k]). A well known result in probability theory [Papoulis and Pillai(2002)]

is that sampling randomly a Poisson process gives a Poisson process, therefore it can be

stated that ȧu[k] ∼ Pois(λ[k]fU (u, k)). Thus, if ȧ[k] ∈ NNr×Ns denotes the matrix of state

arrivals at time k, it follows that:

n[k] = ȧ[k] + ξk(n[k − 1]) (3.4.2)

but the two extreme policies 1-2 both correspond to linear dynamics vec(n[k]) = vec(ȧ[k])+

A vec(n[k − 1]) and the state occupancy at time k is:

vec(n[k]) = vec(ȧ[k]) +A vec(ȧ[k− 1]) + · · ·+AT vec(ȧ[0]) +AT vec(n[0]) (3.4.3)

whereAK isA to the power of K.

To determine the DR Reserve Capacity storage potential, (3.3.9) can be rewritten:

E[k] = eᵀ · n[k] · 1Ns×1 = vec(e · 11×Ns)
ᵀ · vec(n[k]) (3.4.4)
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where e = R([0, . . . , Nr − 1], 0) is a column vector mapping the state coordinates r to

energy, and 1 is a vector of ones. By plugging (3.4.3) into (3.4.4) one obtains:

E[k] =
k∑
i=0

υi vec(ȧ[k − i]) + υk vec(n[0]) (3.4.5)

where υi = vec (e · 11×Ns)
ᵀ ·Ai ∈ R1×NrNs . From this the expected value and variance

can be derived:

E
[
E[k]

]
=

k∑
i=0

υiE
[
vec(ȧ[k − i])

]
+ υk vec(n[0]) (3.4.6)

var
(
E[k]

)
=

k∑
i=0

υiC(vec(ȧ[k − i]))υᵀ
i (3.4.7)

where C(vec(ȧ[k − i])) is the covariance matrix of vec(ȧ[k − i]), which is only non-

zero on the diagonal as the arrivals are independent. Knowing the mean and the vari-

ance, the central limit theorem can be applied to approximate the distribution of E[k] ∼

N
(
E[E[k]], var(E[k])

)
. Based on this approximation and the assumption that the arrival

rate λ is known, given a certain confidence parameter γ, the energy level of both edge

strategies can be predicted, thus estimating the feasible future energy “storage” region, as

shown in Figure 3.4.2.

This forecast can then be useful for several applications, such as estimating the amount

of stochastic variability that can absorb by a pool of DR devices, attempting to sell this

storage capacity for regulating services or simply use it to reduce the amount of energy

purchases at peak prices by shifting them to off-peak hours.

3.5 Thermostatically Controlled Load Modeling

Modeling TCLs is a bit more intricate than e.g. EVs as TCLs are subject to the additional

uncertainty of the ambient temperature. In this section a state-space TCL model is presented

attempting to simultaneously allow accurate mapping onto electric load without sacrificing
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Figure 3.4.2: The (negative) energy stored in the system, with the area being bounded above
and below by Policy 1 and 2 respectively. The crosshatched area (60 ≤ k ≤ 100) denotes
a realization of an arrival process, while the solid region (k > 100) is the estimated future
behavior of these bounds. The darkest area is bounded by 99% of the probability mass of
the two policies, based on the normal distribution approximation with mean and variance
(3.4.6)-(3.4.7). The lighter areas in succession denote the 90% and 50% regions.
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what makes state-space models useful, e.g. predictability w.r.t. computational complexity

and ease of inclusion in optimization problems.

Following most of the literature, this derivation starts from the assumption that the

temperature dynamics of a heat-pump based TCL can be modeled as a first-order differential

equation:

Cθ̇(t) =
θo(t)− θ(t)

R
+m(t)ηP − ε̂(t)

R
(3.5.1)

with R being thermal resistance, C thermal capacitance, θ the inside temperature, θo the

outside temperature, η the efficiency of the heat-pump,m(t) ∈ {−1, 0,+1} the operational

mode of the heat pump, P its continuous electrical power rating3 and ε denoting any noise.

The authors of [Mathieu et al.(2012)] have surveyed common values for such models. Exten-

sions to this model include thermal mass temperatures (see e.g. [Zhang et al.(2013)]), adding

an additional state dimension. Even though the proposed formulation could incorporate

thermal mass, in order to streamline the presentation, the formulation will be based off of

the simpler first order model (3.5.1).

3.5.1 Discrete-Time Model

Given a continuous time signal s(t) and a sampling period h, in this chapter the con-

vention is to denote samples as s[k] , s(kh), and their finite difference and mid-point

respectively, as:

ṡ[k] , s[k]− s[k − 1] , s[k] ,
s[k] + s[k − 1]

2
. (3.5.2)

3Water-heaters can be described using the same principles, with an additional energy loss component

describing the hot water being replaced by cold water. However, in this dissertation, focus will remain on

heat-pump based TCLs, primarily because they are more dependent on external temperatures than water-boilers,

which means that handling their response requires more care.
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From (3.5.1) two main observations are made. First, the energy stored in the thermal

capacitance can be written w.r.t. the reference temperature θr(t) as:

e(t) =
(θ(t)− θr(t))C

η
. (3.5.3)

The second observation made is from (3.5.1); the rate at which energy is gained (or lost) from

the outside environment by a TCL circuit at any given time is
θo(t)−θ(t)−ε̂(t)

ηR
. Unlike most of

the literature which uses θ to describe the individual state, and track the operational mode

(on/off) of the heat-pumpm(t) defined in (3.5.1), the joint energy and reference temperature

(e[k], θr[k]) will be used as the individual TCL state. Contrary to previous models, this

approach, as seen shortly, yields an explicit relationship between the electric load associated

to changing state and the future random ambient temperature θo[k]. The energy Λ[k] required

by a TCL for a transition θ[k − 1]→ θ[k] (θ̇[k]) during the k-th interval (k − 1)h ≤ t < kh

can, using (3.5.3), be mapped into a change in state ė[k] and reference temperature θ̇r[k]:

Λ[k] =
C(θ[k]− θ[k − 1])

η
+

1

Rη

∫ kh

(k−1)h

[θ(t)− θo(t) + ε̂(t)] dt

= ė[k] +
Cθ̇r[k]

η
+

1

Rη

∫ kh

(k−1)h

[θ(t)− θo(t) + ε̂(t)] dt. (3.5.4)

The first half of (3.5.4) captures the energy spent transitioning between different energy

states, while the second half describes the energy gain over the thermal resistance due to the

temperature difference. Note that since the integration is over an interval of length h, Λ is

defined in terms of energy, like the stored energy e. Also, while Λ[k] can be either positive

or negative, indicating the direction of pumping (heating or cooling), the electric energy

consumption is equal to |Λ[k]| and it is always positive. From (3.5.4), define:

Proposition 1. Assume that, during the k-th interval:

1. the outside temperature is a non-stationary discrete time random process, i.e. θo((k −

1)h) ≈ θo[k];
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2. the reference temperature can only change between intervals, i.e. θr(t) = θr[k] for

(k − 1)h ≤ t < kh,

3. the leakage can be approximated using the average temperature, θ(t) ≈ θ[k] =

(θ[k] + θ[k − 1])/2, for (k − 1)h ≤ t < kh

4. the random error: ε[k] ≈ (Rη)−1
∫ kh
(k−1)h

ε̂(t) dt

then, the estimated energy cost is |Λ[k]| where:

Approximate TCL energy expenditure |Λ[k]|:

Λ[k] ≈ ė[k] +
h

RC
e[k] +

C

η
θ̇r[k] +

h

Rη

(
θr[k]− θo[k]

)
+ ε[k]. (3.5.5)

Proof: Using (3.5.3) in (3.5.4) the derivation is straightforward:

Λ[k] = ė[k] +
C

η
θ̇r[k] +

1

Rη

∫ kh

(k−1)h

[θ(t)− θo(t) + ε̂(t)] dt

≈ ė[k] +
C

η
θ̇r[k] +

h

Rη

(
θ[k]− θo[k]

)
+ ε[k]

≈ ė[k] +
C

η
θ̇r[k] +

h

Rη

( η
C
e[k] + θr[k]− θo[k]

)
+ ε[k]

which, grouping the terms, leads to (3.5.5). �

3.5.2 Responsive State-Space Model

In the model it is assumed that an Aggregator provides the users participating in the

direct load control program with a choice of:

1. A limited set of reference temperatures Sθr and of possible transitions Eθr ⊆ Sθr × Sθr .

For simplicity, it is assumed that the set contains contiguous values and allow only

transitions between consecutive values, i.e.

Sθr = {θr|θr = i∆θ, i = Imin, Imin + 1, . . . , Imax} (3.5.6)

Eθr = {θ̇r|θ̇r = (i− j)∆θ, |i− j| ≤ 1, (i, j) ∈ Sθr} (3.5.7)
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Note that the sequence θr[k] is assumed to be user controlled, and that a smart thermo-

stat can translate the individual wish for a sharp reference temperature change to a

gradual one, honoring Eθr .

2. A temperature dead-band B, such that |θ(t)− θr(t)| ≤ B; correspondingly the energy

states are bounded by:

|e(t)| ≤ E , BCη−1. (3.5.8)

In controlling energy transitions, the energy state-space is discretized with a step-size of

∆e = E/(2U+1), whereU is the number of steps the energy can make upward or downward,

as the state-space is assumed to be symmetric (extending equally far below and above the

reference temperature that corresponds to e = 0). In addition, the transitions are assumed

to only cover a certain number of contiguous energy states. The sets of states and state

transitions are, respectively:

Se = {e|e = ∆eu, u = 0,±1, . . . ,±U} (3.5.9)

Ee = {(ė, e)| |Λ[k]| ≤ hP} (3.5.10)

where Ee is limited by the electrical power rating P .

Note that some choices of θ̇r 6= 0may not be compatible with Ee since, clearly, the possible

transitions for energy and reference temperature are both constrained by |Λ[k]| ≤ hP , and

the desired change θ̇r may be impossible to achieve in one interval duration h, i.e. the set

Ee as-is may be empty. To circumvent this limitation and allowing individuals to freely

choose their reference temperature, an Aggregator is tracks the target values for reference

temperature and stored energy, and correct the load response model to account for the delay

required to meet the reference temperature change. As the reference temperature changes

are considered to be relatively rare, the assumption is that eventually the actual temperature

will catch up with the target value. This implies that a more general expression to (3.5.5) is
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required, where the restriction Ee only applies when θ̇r[k] = 0 and is relaxed for θ̇r[k] 6= 0,

while still capturing the effect of such transitions through an energy cost term that lasts

multiple periods. This point will be re-visited after a few useful definitions.

3.5.2.1 Energy Cost Model

The following vectors of normalized target energy and reference temperatures are defined:

e[k] =
1

∆e

(e[k − 1], e[k])ᵀ,θr[k] =
1

∆θ

(θr[k − 1], θr[k])
ᵀ (3.5.11)

where the true stored energy e[k] ≈ e[k]. Clearly: ė[k]

e[k]

 = ∆e

 −1 1

1
2

1
2

 e[k] , (3.5.12)

and similarly for (θ̇r[k], θr[k])
ᵀ. Further define:

T [k] = (e[k],θr[k]), (3.5.13)

refer to T [k] as the TCL state transition. To rewrite compactly (3.5.5), the following matrix

is introduced:

Γ =

 −1 1/2

1 1/2


 1 C

η

h
RC

h
Rη


 ∆e 0

0 ∆θ

 (3.5.14)

and also use the following notation:

Γ = (γe,γθr) , a =
h

Rη
. (3.5.15)

Now consider the case of a TCL having θ̇r[k] = 0. Simple algebra shows that (3.5.5) can be

rearranged as:

Λ[k] = γᵀ
ee[k] + γᵀ

θr
θr[k]− aθo[k] + ε[k] (3.5.16)

= Tr(ΓᵀT [k])− aθo[k] + ε[k]. (3.5.17)

The expression (3.5.16) breaks the energy spent in four terms:
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1. the first term depends on e[k] and is subject to the control action of the Aggregator;

2. the second term, function of θr[k], is the operating mode chosen by the user;

3. the third term depends on the random θo[k], and is due to Mother Nature;

4. the fourth is the random error ε[k].

For θ̇r[k] 6= 0, the formulation assumes that TCLs changing their reference temperature

can spread the energy expenditure for the transition over Qk periods, as necessary to fulfill

the total energy requirement, with each step not exceeding the power rating of P times h.

Hence, the energy cost at time k for a TCL can, in general, be expressed as follows4:

Energy spent for transition T [k] at temperature θo[k]:

|Λ[k]| =

∣∣∣∣∣
Qk∑
q=0

H[k − q, q] + ε[k]

∣∣∣∣∣ (3.5.18)

H[k, q] =


Ph 0 ≤ q < Qk

|Tr(ΓᵀT [k])− aθo[k]| − qPh q = Qk

0 otherwise

,

Qk =

⌊
|Tr(ΓᵀT [k])− aθo[k]|

Ph

⌋
.

Clearly, when Qk = 0 this reduces to the expression in (3.5.17). It is important to notice

the explicit dependency of the energy spent (load response) from the random ambient

temperature.

4Naturally, all the steps that correspond to a certain reference temperature transition will have the same

sign.
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3.5.2.2 Aggregate Quantized Population Model

For the remainder of this chapter the effect of the random noise ε[k] will be ignored. The

population model is built with two standard steps. The first consists of clustering of the

parameters (R,C, η), so that the matrix Γ and coefficient a in (3.5.16) are chosen from

a restricted set that approximates well the most common TCL characteristics, i.e. Γ 7→

Q(Γ) ∈ SΓ, a 7→ Q(a) ∈ Sa:

Q(Γ) = arg min
Γ̂s∈SΓ

‖Γ̂s − Γ‖ , (3.5.19)

and similarly for Q(a). Further, enumerate all pairs (Γ̂s, âs) ∈ SΓ × Sa with an index

s = 1, . . . , S. Note that this step yields errors in the load representation, which is assumed

to be bounded. The second consists in quantizing the action space:

q(e) 7→ (u, v)ᵀ , q(θr) 7→ (i, j)ᵀ , q(T ) 7→
(
u i
v j

)
. (3.5.20)

In this way, the cost of the pth TCL in the population I is approximated as follows:

Λ̂(p)[k] = Tr
(
Q(Γp)ᵀq(T p[k])

)
−Q(ap)θo[k], (3.5.21)

and similarly for Ĥ(p)[k, q].

3.5.2.3 Population Model

To describe the expected load from the approximate aggregate model, it is convenient to

break the population into the groups Is, s = 1, . . . , S that belong to the different clusters for

the TCL parameters:

p[k] =
S∑
s=1

p(s)[k] = −
S∑
s=1

∑
ι∈Is

E
[
|Λ̂(ι)[k]|

]
(3.5.22)

For simplicity, momentarily ignore transitions in reference temperature. In this case:

p(s)[k] = −
∑

(u,v,i,j)

∣∣∣∣Tr((Γ̂s)ᵀ(u i
v j

))
− âsθo[k]

∣∣∣∣E [X(s)ij
uv [k]

]
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where X
(s)ij
uv [k] denotes the random variable equal to the population in cluster s that at time

k has q(T p[k]) ≡
(
u i
v j

)
; using the δ(x) as an indicator function that is one only if the

array x = 0 and zero else, X
(s)ij
uv [k] can be defined as the follows:

X(s)ij
uv [k] =

∑
ι∈Is

δ

(
q(T ι[k])−

(
u i
v j

))
. (3.5.23)

In a nutshell, the expression for p(s)[k] clarifies that the Aggregator can control the expected

load profile by controlling the expected transitions of the population, but that the response is

a function of the ambient temperature realization θo[k].

To consider the general case in which customers can change their reference temperatures,

the response has to be coded in terms of energy cost that corresponds to a particular array(
u i
v j

)
. That corresponds to:

Quantized profile for energy spent for transition

(
u i
v j

)
:

H(s)ij
uv [k, q] =


P (s)h 0 ≤ q < Q

(s)
k

λ
(s)ij
uv (θo[k])− qP (s)h q = Q

(s)
k

0 otherwise

(3.5.24a)

where the total energy spent for the transition is:

λ(s)ijuv (θo) =

∣∣∣∣Tr((Γ̂s)ᵀ(u i
v j

))
− âsθo

∣∣∣∣ (3.5.24b)

and the duration of the load response is:

Q
(s)
k =

⌊
|λ(s)ijuv (θo[k])|

P (s)h

⌋
. (3.5.24c)

leading to the general expression:

p(s)[k] = −
∑

(u,v,i,j)

+∞∑
q=0

H(s)ij
uv [k − q, q]E

[
X(s)ij
uv [q]

]
, (3.5.25)
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indicating that the model has memory.

3.5.3 Control Model

The key to scalability of the control lies in assuming that the Aggregator can broadcast

commands that are cluster specific, but not customer specific, by controlling only the

expected population trajectory as opposed to its exact values. Hence, the decision variable

for the Aggregator are:

D(s)ij
uv [k] , E

[
X(s)ij
uv [k]

]
, (3.5.26)

and the aggregator objective is to shape the expected load, which is a linear function of

(3.5.26) (c.f. (3.5.25)):

Forecast of flexible TCL load response:

p[k] =
S∑
s=1

p(s)[k] (3.5.27a)

p(s)[k] = −
∑

(u,v,i,j)

+∞∑
q=0

H(s)ij
uv [k − q, q]D(s)ij

uv [q] (3.5.27b)

In plain English, each D
(s)ij
uv [k] is the expected number5 of TCLs in cluster s transitioning

from state u to state v and reference temperature i to j over period k.

3.5.3.1 Randomized Control Policy

The expectation in (3.5.26) can be made an explicit function of the transition probabilities

π
(s)ij
k (v|u) that are specified as commands by the Aggregator for a randomized policy. In

fact, the instructions are the probabilities for changing normalized energy from value u to

value v. This presumes that the execution of the commands consists of choosing at random to

5While not explicitly stated, since the policy is randomized, the case where the population participants vary

can be handled with no change in the optimization formulation, by a scaling factor equal to the probability that

nodes exit the control.
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switch normalized energy u to v and reference temperatures i to j with probability π
(s)ij
k (v|u).

Let Π
(s)i
k (u) denote the state probability, i.e. the probability that a TCL is in normalized

energy state u and normalized reference temperature i. Under the randomized control policy

δ

(
q(T p[k])−

(
u i
v j

))
is a Bernoulli random variable with probability π

(s)ij
k (v|u)Π(s)i

k−1(u)

of being equal to 1. This implies that:

D(s)ij
uv [k] = |Is|π(s)ij

k (v|u)Π(s)i
k−1(u). (3.5.28)

From Chapman-Kolmogorov theorem for Markov chains:

Π
(s)j
k (v) =

∑
(u,i)

π
(s)ij
k (v|u)Π(s)i

k−1(u), (3.5.29)

which, in turn, implies that:

|Is|Π(s)j
k (v) =

∑
(u,i)

D(s)ij
uv [k] (3.5.30)

Combined with (3.5.26), this last equation (3.5.30) means that the Aggregator can evaluate

the randomized policy values based on the optimum values of Dij
uv[k] as follows:

π
(s)ij
k (v|u) = D

(s)ij
uv [k]∑

(u′,i′)D
(s)i′i
u′u [k − 1]

. (3.5.31)

The values of π
(s)ij
k (v|u) are the instructions that are broadcast to the TCLs to plan their

switching.

3.5.3.2 Feasible Action Space and its Representation

By deciding the values forD
(s)ij
uv [k] over the horizon, the Aggregator can shape the expected

aggregate load of (3.5.27a) within a feasible region determined by the constraints that exist

onD
(s)ij
uv [k]. The following are known to the Aggregator before solving forD over a horizon

Kh:

1. A temperature forecast or scenario, θo[k] for the horizon.
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2. The initial population of each cluster, and |Is|Π(s)i
0 (u), representing the initial spread

of individuals across reference temperatures (i) and states (u), for all s, i, u.

3. The thermostat program of all individuals for the entire horizon; more specifically,

the number of TCLs going from one reference temperature to another at time k:

ρ(s)ij[k] =
∑
(u,v)

X(s)ij[k] =
∑
ι∈Is

∑
(u,v)

δ

(
q(T ι[k])−

(
u i
v j

))
(3.5.32)

The feasible action space is described, in order, by the following constraints onD
(s)ij
uv [k]:

(3.5.33a) indicates that population transitions are non-negative; (3.5.33b) comes from the fact∑
(v,j) Π

(s)j
k (v) = 1 and (3.5.29), and can be interpreted as the conservation of population

mass; (3.5.33c) comes considering (3.5.31) and because
∑

(v,j) π
(s)ij
k (v|u) = 1; (3.5.33d)

comes from accounting for the thermostat plans of the TCL population; (3.5.33e) forces the

model to spread evenly the population transitioning from i to j throughout the departing

reference temperatures state-space; finally, (3.5.33f) expresses the Aggregator restrictions

on the reference temperature state transitions, as discussed in Section 3.5.2. Note that the

set (3.5.33g) improves on (3.5.10) by forcing those individual changing θr[k− 1]→ θr[k] to

arrive in the top/bottom of the dead-band, depending on the reference temperature change.
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Feasible action space for TCL population:

D(s)ij
uv [k] ≥ 0 ∀s, i, j, u, v (3.5.33a)∑

(v,j)

∑
(u,i)

D(s)ij
uv [k] = |Is|; ∀s (3.5.33b)

∑
(v,j)

D(s)ij
uv [k] =

∑
(u′,i′)

D
(s)i′i
u′u [k − 1] ∀s, i, u (3.5.33c)

ρ(s)ij[k] =
∑
(u,v)

D(s)ij
uv [k] ∀k, i, j. (3.5.33d)

∀k ∈ K, and ∀s, u, i, j such that i 6= j and ρ(s)ij[k] > 0:

∑
(v)

D(s)ij
uv [k] =

ρ(s)ij[k]∑
(j′) ρ

(s)ij′ [k]

∑
(j′,v)

D(s)ij′

uv [k] (3.5.33e)

D(s)ij
uv [k] = 0 ∀

(
u i
v j

)
6∈ E (s)(θo[k]), (3.5.33f)

where:

E (s)(θo) =

{(
u i
v j

) ∣∣∣∣∣
(∣∣∣∣Tr(Γ̂s(u i

v j

))
− âs

∣∣∣∣ ≤ Ph and i = j

)

∪ (v = (i− j)U and |i− j| = 1)

} (3.5.33g)

Alternatively, in vector form, the TCL load is referred to as p ∈ RK , and useD for the

tensor of the decision variables, i.e. all values D
(s)ij
uv [k],∀s, u, v, i, j, k in their respective

sets. The constrained problem that includes (3.5.27) and (3.5.33) can be described generally

as p ∈ P , where:

P(θo) = {p | p = −M (θo)D , A(θo)D ≤ b , D ≥ 0} (3.5.34)

where p ∈ RK , (A(θo), b) represent (3.5.33), while the decision space ofD is high dimen-

sional, with dim(D) = S ·
∑

k

∣∣E (s)(θo[k])∣∣.
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Figure 3.6.1: An example of a scenario tree that only branches at the 2nd stage.

3.6 A Stochastic Security-Constrained Economic Dispatch with Responsive Loads

A straightforward way to incorporate uncertainty in power system models is to apply

standard stochastic programming techniques, where one optimizes a collection of plans for

different scenarios that reflect the underlying uncertainty on the future. More specifically,

this section describes a rolling horizon two stage Security-Constrained Economic Dispatch

(SCED) optimization, where the joint uncertainty of net-load and TCL outdoor temperature

is considered, while being secure against the loss of a any single generator (G− 1). In the

first stage, decisions based on the realized uncertainty are made; these decisions account

for a second stage consisting of several possible future trajectories. A time horizon of K

intervals is considered, each of length h seconds such that it looks Kh seconds into the

future. The formulation is described in nodal form, that is, instead of indexing variables and

parameters by time k and scenario s they are simply indexed by the node number n, where

each node has the parent node n−. The set of nodes V = {0, . . . , N} can thus be laid out on a

graph as in Figure 3.6.1 where three future scenario trajectories are considered, that share the

first stage parameters and decisions, with each node n ∈ V having an associated probability

π{n}. Denoting the set of generators by G, the set of generator outages by Gout, and the set
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of TCL aggregates asM, the vector of decision variables is χ = [x, x̂,x,p, p̂,p], and the

expected cost is optimized by solving:

min
χ

∑
g∈G

∑
n∈V

π{n}
(
C
g
X(x

g{n}) + C
g

X(x
g{n})

)
(3.6.1a)

∑
g∈G

xg{n}+
∑
m∈M

pm{n} = L{n} ∀n ∈ V (3.6.1b)

P g ≤ xg{n} ≤ P
g − xg{n} ∀n ∈ V , g ∈ G (3.6.1c)∣∣xg{n} − xg{n−}
∣∣ ≤ P

g

ramp ∀n ∈ V , g ∈ G (3.6.1d)

pm ∈ Pm(θo) ∀m ∈M (3.6.1e)

pm + pm ∈ Pm(θo) ∀m ∈M (3.6.1f)∑
g∈G

x̂gg′{n} = xg{n} −
∑
m∈M

p̂mg′{n} ∀n ∈ V , g′ ∈ Gout (3.6.1g)

0 ≤ p̂mg′{n} ≤ pm{n} ∀n ∈ V ,m ∈M, g′ ∈ Gout (3.6.1h)

0 ≤ x̂gg′{n} ≤ xg{n} ≤ P
g

resv ∀n ∈ V , g ∈ G, g′ ∈ Gout (3.6.1i)

xgg{n} = 0 ∀n ∈ V , g ∈ Gout (3.6.1j)

The objective (3.6.1a) is to minimize the cost of generation xg{n} and reserves xg{n} subject

to the cost functions C
g
X and C

g

X . Constraint (3.6.1b) describes the base-case (non-outage)

balance between generation xg{n}, TCL load pm{n} and the remaining net-load L{n}.

Further, (3.6.1c) and (3.6.1d) describe conventional min/max power and ramp constraints,

where xg{n} is the reserve allocation of unit g at node n, with n− indicating the parent of

node n. Constraints (3.6.1e) and (3.6.1f) ensure that the base-case TCL load and its upper

reserve allocation of TCL aggregatem are contained within the feasible set Pm. Constraint

(3.6.1g) ensures that enough reserves are available to replace any single generator outage,

while (3.6.1h) and (3.6.1i) ensure that the maximum reserve allocation xg and pm is greater
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or equal to the individual outage responses x̂g and p̂m. Finally (3.6.1j) ensures an outaged

unit can not contribute to its own replacement reserves.

Remark 5. Note that with a convex Pm, constraints (3.6.1e) and (3.6.1f) are not sufficient

to guarantee that any combination of the individual reserve responses p̂mg′{n} are feasible.

However, due to the nature of the TCL model lacking inherent ramping constraints while

having prominent energy constraints, (3.6.1f) and (3.6.1e) can be interpreted as bounds on

not only power but also energy, and any power profile contained within these limits thus also

respects this energy bound. This assumptions means that the probability of falling outside

the feasible region Pm during some sequence of reserve events is small, but non-zero. This

approximation is also apparent for generators; the standard SCED model does not properly

bound generator ramps between any possible sequence of reserve events. The message here

is that (a) these reserve bounds are approximations and (b) many N − 1 events captured by

conventional SCED/SCUC models are rare.

3.7 Numerical Results

3.7.1 Electric Vehicle Reserve Capacity Modeling

The 2009 National Household Travel Survey [Federal Highway Administration(2009)]

is used as a source of data about personal travel during a “sample day”’ in 2009. The dataset

describes 223, 000 trips in cars, the time of departure, arrival and distance driven. This

information is used to establish the energy consumption of each trip, the time cars get parked

at home and how long they spend sitting before next usage. An EV with 35 kWh/100 miles

efficiency and 10 kW charging capacity is chosen as a sample car, representative for an

average Tesla Model S, whereas EV efficiency can range from 25-50 kWh/100 miles for

different EV models. Figure 3.7.1 gives an overview of the dataset, showing the arrival rate

throughout the day, the number of available (plugged in) EVs as well as the service and
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Figure 3.7.1: The top graph shows the arrival rate histogram for the survey data, the middle
graph shows the distribution of service and slack time at any time of day, while the bottom
graph shows the number of EVs plugged in and not fully charged
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Figure 3.7.2: Reserve Capacity vs Base Load Capacity for two different consumption
strategies.

slack time combinations, where service time denotes the time required for charging, and

slack time is the leftover time before next usage.

Two default strategies to serve the EV load are considered:

Energy First serves electric vehicles as soon as possible, maximizing the curtailment

potential at any time, while

Slack First waits as long as possible before serving the vehicles, thus allowing for sudden

increase in consumption if necessary.

The reserve potential of these policies is visualized in Figure 3.7.2. Considering these

223, 000 arrivals on a typical week day, the “energy first” policy has a min/max load of
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3/146 MW respectively, with the maximum 3 hour reserve capacity ranging from 2.6MW

to 100 MW at best. Between 5am and 9pm it provides more than 50% curtailment for 3

hours, while late evening/early night it drops down to 1-2 hours. The slack first policy has a

min/max power of 4/173 MW but a much greater (down-spinning) reserve capacity in the

range of 59-278 MW over the course of the day, easily offering consumption above 150%

schedule for more than 3 hours. The power numbers grow proportionally with the number

of arrivals, assuming similar service/slack requirements.

3.7.2 Distributed Storage Reserve Power

For Distributed Storage, the Tesla Powerwall battery was used as a reference, with a

capacity of 13.5 kWh and maximum continuous power of 5 kW. To maximize the use of

batteries for reserve power purposes, the mathematics become trivial, as the entire battery’s

capacity is dedicated to this purpose. If there are conflicting goals, such as minimizing

distribution network energy transfer for households with renewable energy resources (con-

suming locally if possible), or if the battery is intended for load-shifting (buying cheaper),

this naturally reduces the reserve capabilities.

Assuming the battery is pre-positioned at a charge level most suitable for the reserve

capacity desired (full for curtailment, empty for “down-spinning”), Figure 3.7.3 shows

the simple relationship between the number of batteries, the reserve capacity and duration

(capped at 4 hours). The reserve target of supplying 100 MW of reserves for 4 hours is

reached at roughly 30, 000 batteries.

3.7.3 Thermostatically Controlled Loads

Numerical simulations were performed using Python and a collection of scientific pro-

gramming libraries [Van Der Walt et al.(2011), Jones et al.(2014),Hunter(2007),Pedregosa
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Figure 3.7.3: Reserve capacity/duration vs number of batteries.

et al.(2011)]. All optimization problems were solved with Gurobi 7.5 [Gurobi Optimiza-

tion(2015)].

3.7.3.1 Thermostatically Controlled Load Cluster Population Estimation

In this section the model from Section 3.5 is applied in “reverse” to electric load data

from CAISO and temperature data from National Oceanic & Atmospheric Administration

(NOAA) to get an estimate for the contribution of TCLs to the overall CAISO load, as well

as the distribution of the TCL population between S pre-defined clusters. Three years of 5

minute resolution data were gathered, where aggregate load consumption and forecasted

wind and solar infeed came from CAISO, while from NOAA the temperature profiles for

the seven California locations that are part of the NOAA Climate Reference Network [Dia-
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mond et al.(2013)] were gathered. The U.S. Energy Information Administration’s (EIA)

Residential Energy Survey (RES) [Energy Information Administration, U.S. Department of

Energy(2009)] states that California has an estimate of 7, 000, 000 households with air condi-

tioners, most of them falling into the “non-reversible” category, that is they are only capable

of cooling but not heating, with households resorting to other energy sources for heating

during the winter. The survey states that most households vary their reference temperature

during the day, either manually or through programmable thermostats. Furthermore, the

survey estimates that over the course of a year, a combined ≈ 3.2× 1016 Joules of energy

are consumed by air conditioning loads. Incorporating data from [Mathieu et al.(2012)], a

number of clusters are created for every combination of:

(a) the seven NOAA temperature observation locations,

(b) R ∈ {1.5, 2, 2.5} [◦C/kW],

(c) C = {1.5, 2, 2.5} [kWh/◦C] and

(d) θr ∈ {69, 73, 77, 81} [◦F].

Then the following least-squares problem is solved:

min
δ,φ,υ

∑
ψ∈Ψε

∑
k∈K

δ2[ψ, k] (3.7.1a)

s.t. δ[ψ, k] = ω[k]− p[ψ, k]− β[ψ, k] (3.7.1b)

S∑
s=1

|Is| ≤ 7, 000, 000 (3.7.1c)

(3.5.34), (3.5.33) (3.7.1d)

where [ψ, k] refers to a particular time k of sample day ψ of day-type Ψε, with each day

type ε capturing the season and weekday/weekend. The historical aggregate load is in β

and p[ψ, k] depends on historical records of temperature. The output of this least squares
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Figure 3.7.4: Disaggregated CAISO load for July 13th 2016: (a) the black mass is the
base net-load signal β[k], (b) the gray bottom layer is the renewable infeed, (c) the colored
layers are the TCL consumption of different regions and (d) the red-line denotes the actual
measured net-load of that day.

problem is the error δ and the number of individuals in each clusters and their transitions

over the course of a day. Figure 3.7.4 shows the disaggregated CAISO load for July 13th

2016 (Wednesday), where the gray bottom layer shows renewable infeed, the black mass

shows the estimated non-TCL base-net-load (β), the colored layers show the TCL baseline

load of different regions, while the red line shows the actual net-load of that day. One can

observe that the total net-load estimate is close to measured values, though the evening peak

is slightly underestimated. Only five colored layers are visible, as two of the temperature

regions are coastal and induced little cooling consumption on that day. The infamous CAISO

“duck curve” is also clearly visible in the base-load, due to the significant renewable infeed

during the middle of the day.

To get an indication of the quality of the results, this mechanism is used to calculate the

annual energy consumption for the years 2010-2017, in order to compare it with the survey

estimated value of 3.2 × 1016 J. For those years, the min, mean and max consumption is

5.6 ·1016, 7.3 ·1016 and 8.1 ·1016 J respectively, indicating that the residential cooling energy

is overestimated by a factor of approximately 2. Given the simplicity of the regression model,
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this error is small, and the model gives a decent estimate of the order of magnitude and

division of the TCL population between clusters across California. It is likely that the source

of the error is that other large cooling loads are captured with this model, such as commercial

and industrial buildings. It would be possible to further constrain (3.7.1) given the annual

energy estimates, though certain variability between years should be expected. In any case,

further numerical results are calculated using these population estimates, acknowledging

these shortcomings.

3.7.3.2 Thermostatically Controlled Loads Reserve Power Estimation

Using the population profiles and the load control model, the reserve power capacity of Cal-

ifornia’s air conditioners can be estimated for different days of the year. For this simulation,

households are assumed to start at reference temperature, and the mean dead-band is fixed to

1◦ C. Given historical temperature recordings one can look at the potential both to increase

and decrease (curtail) load. The results are depicted by Figure 3.7.5, showing over the course

of a day, how much deviation from the base-line TCL consumption is possible and for how

long (as the two are closely inter-dependent), with the base-line shown in red. If the yellow

region touches the upper red line, one could double the TCL consumption for up to 3 hours,

while if it touches the lower red-line, it could decrease the TCL consumption to zero for 3

hours. Looking at the numbers, one can see that on this summer day the aggregator could

decrease the consumption by >1 GW for up to 3 hours, and reach a maximum consump-

tion well above 20 GW for a brief time during the warmest part of the day, while keeping

California customer comfortable. During the night the TCL load is smaller, so there is less

energy to curtail (in the hundreds of MW), but if there are requirements for increased load

(for example during loss of another load) consumption of TCLs can be doubled (additional

5 GW) for up to 15-30 minutes, or maintain close to a 1 GW increase for over an hour.

This shows that during summer months, when cooling loads are a significant contributor to
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Figure 3.7.5: An example of summer day TCL reserve potential in the CAISO system. The
red lines denote the base-TCL load, while the heatmap shows the duration and magnitude of
available load increase and curtailment during the course of the day.

California’s overall energy consumption, they can also play an important reserve capacity

role, and are particularly well suited to take on fast unexpected ramps caused by renewable

power sources.
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CHAPTER 4

INSIGHTS ON CONVEXITY FROM THE SHAPLEY-FOLKMAN LEMMA AND

MARKET INTEGRATION

4.1 Generic Individual Prosumer Models

As in [Alizadeh et al.(2014a),Barot and Taylor(2017),Zhao et al.(2017),Nazir et al.(2018),

Müller et al.(2017)], this dissertation assumes that if the set of feasible power profiles P is

convex, then it is a polytope. Such a set can be visualized over two intervals, something

leveraged extensively throughout this chapter. Recall that convex polytopes are primarily

described with (a) a set of half-spaces whose intersection is a polytope (H-rep) or (b) a

set of vertices whose convex hull (the tightest convex region containing all the points) is

a polytope (V-rep). As an example, Figure 3.1.1 visualizes a two-dimensional polytope,

where the V-rep. is reflected by a set of vertices V = {(2, 1), (1, 3), (3, 4), (5, 3)}, while the

H-rep. is described by the constraint set for p ∈ R2:

−2 −1

−1 2

1 2

2 −3


p ≤

[
−5 5 11 1

]ᵀ
. (4.1.1)

Looking back at Figure 3.1.1 it can be seen as a description of a flexible resource that for two

consecutive hours (K = 2) can deliver any combination of power [p1, p2]
ᵀ that meets (4.1.1).

In the figure, the horizontal axis indicate the power of period (e.g. hour) 1, and the vertical

axis power of period 2, and the highlighted region visualizes all the (infinite) feasible power

profiles available by the resource, i.e. each point [p1, p2] on the figure denotes a particular

power profile over the two intervals.

86



The set of feasible power profiles for individual resources is, in practice, often non-

convex. In this chapter it is assumed that such a behavior can be modeled by introducing

additional (binary) variables into the H-rep. for common flexible loads such as storage

devices, EVs and TCLs. Adding binary variables means that the region P is composed of

the union of several (possibly disjoint) polytopes. The following definition introduces a

generic resource model for (possibly non-convex) resources.

Definition 8 (Individual Resource Model). With a vector p ∈ RK denoting the power

profile throughout the modeling horizon, and ρ a vector of auxiliary variables of lengthM ,

the set of all possible combinations of power and auxiliary variable values is defined as:

P = {(p,ρ)|A
[
pᵀ ρᵀ

]ᵀ
≤ b} ⊂ RK+M (4.1.2)

where A ∈ RJ×(K+M) and b ∈ RJ define both the constraints on, and the relationship

between p and ρ, where elements of ρ are continuous or discrete. Correspondingly, one can

define P from P , removing the auxiliary variable dimensions as follows:

P = {p | (p,ρ) ∈ P} ⊂ RK . (4.1.3)

For each feasible power profile and set of auxiliary variables in P there is a corresponding

cost function C(p,ρ) : RK+M → R (roman font). Correspondingly, the cost function w.r.t.

p alone, is the (roman font):

C(p) = inf{C(p,ρ)|(p,ρ) ∈ P} : RK → R (4.1.4)

that is, the lowest possible cost to procure p. For negative values of pk, −C indicates the

utility (value of energy), while for positive pk, +C indicates cost of generation.

In addition to the load models introduced in Chapter 3, the following sections will explore

briefly several non-convex individual load models.
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4.1.1 Storage Devices

Expanding on the ideal storage model introduced in (3.1.3), the relationship between

stored energy uk and charging/discharging power pk in discrete time for a non-ideal battery

is:

uk = u0 +
k∑

κ=0

[
ηc(−pκ)+ − η−1

d (pκ)+
]

(4.1.5)

where ηc ∈ [0, 1] and ηd ∈ [0, 1] denote the known charging and discharging efficiencies,

(·)+ = max{0, ·} and negative values of pk indicate charging. This section assumes a con-

verter/inverter that can charge/discharge continuously in the ranges [−p−,−p−] (charging)

and [+p
+
,+p+] (discharging), where p−, p+, p− and p+ are all positive. Storage is also

energy constrained; uk ∈ [0, u]. Two integer variables are necessary to indicate off, charging

(y− ∈ {0, 1}K) or discharging (y+ ∈ {0, 1}K) at each time k, whereas only one integer

variable is needed to distinguish between charging/discharging if minimum constraints are

omitted. With auxiliary variables ρ = [pᵀ
+,p

ᵀ
−,y

ᵀ
+,y

ᵀ
−]

ᵀ where the first two indicate the

positive and negative part of p, is defined as:

PNIS = {(p,ρ) | 0 ≤ y− + y+ ≤ 1, p = p+ + p−, (4.1.5),

0 ≤ u ≤ u,y+p+ ≤ p+ ≤ y+p+,−y−p− ≥ p− ≥ −y−p−}

= {(p,ρ) |ANIS[p
ᵀ,ρᵀ]ᵀ ≤ bNIS} (4.1.6)

This region is visualized in Figure 4.1.1c, where clear non-convexities can be observed due

to the binary states. Using the same model an ideal storage device can be described (cf.

Figure 4.1.1a), only p− = p
+
= 0 and nc = nd = 1. The cost/reward function suggested for

storage is assumed:

C(p) =
∑
k

(αk|pk|+ βkp
2
k) (4.1.7)

However, the storage owner could also be a price-taker in which case the market will leverage

it for load-shifting.
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4.1.2 Electric Vehicles

As shown in Chapter 3, EVs have some of the characteristics of energy storage. Here

the approach to EVs is different in that it does not discretize the state (of charge), and the

model can only charge at discrete power levels p (pk ∈ {0,−p}), and there is limited time

κ to provide a pre-determined amount of energy u. The state of charge is defined as uk,

which at plug in time ta is u(ta) = 0 and at plug-out time td should be u(td) = u, also

td − ta = κ = κc + κs where κc denotes the time required for charging, and κs the leftover

slack. Due to the discrete charging levels this model is non-convex. Integer values are

assumed for κc and κs, i.e. the energy requirement is an integer multiple of the charge rate,

and define ρ ∈ {0, 1}K . The feasible set (cf. Figure 4.1.1b) is:

PEV =
{
(p,ρ)

∣∣∣p = −p · ρ,1ρ = κc,
ta∑
k=1

ρk = 0,
K∑
k=td

ρk = 0
}

= {(p,ρ) |AEV[p
ᵀ,ρᵀ]ᵀ ≤ bEV} (4.1.8)

In general consumers perceive more utility from earlier charging. For simulations the cost

function used was:

Ci(p) =
∑
k

(α− kβ)pk (4.1.9)

4.1.3 Thermostatically Controlled Loads

As in Section 3.5, TCL models start from a first order thermal circuit,

θ̇ =
θo − θ
RC

+
ρηp̃

C
+ ε (4.1.10)

where θ and θo are the indoor and outdoor temperatures, R and C denote the buildings

thermal resistance and capacitance, η, p̃ and ρ the heat-pump efficiency, power and state

(heating, cooling, off) and ε noise. Again, power is assumed to be a continuous value in

the range [0, p̃]. Instead of moving towards a state-space model, the model proposed in
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this chapter considers the non-convexities that can arise from the binary heat-pump state

of cool/heat. The progression of θ can be modeled with ω = (RC)−1, ζ = (1− Tω) and

power terms substitute with vectors for direction ρ ∈ {−1, 1}K and power p ∈ [0, p̃]K :

θk = T

k∑
τ=1

ζk−τ
(
ωθo,τ + ηC−1ρτpτ

)
+ θ0ζ

k (4.1.11)

This relationship between heat-pump power and inside temperature θ = [θ(1), . . . , θ(K)] is a

linear mapping θ = Aθ(ρ◦p)where ◦ denotes element-wise multiplication andAθ contains

the coefficients found in (4.1.11). For a TCL that can seamlessly transition between heating

and cooling, ρ ∈ {−1, 1}K , the mapping mapping between thermal and electric power is

non-convex, but for a single pumping direction, e.g. ρ = 1, it becomes a convex affine

mapping of electric power. The state transitions, limits on p and the maximum deviation

from a reference temperature |θ(k)− θr(k)| ≤ θ∆ can be modeled as linear mappings (cf.

Figure 4.1.1d):

PTCL = {(p,ρ)|ATCL[p
ᵀ,ρᵀ]ᵀ ≤ bTCL} (4.1.12)

Though not included here, lockout constraints can be incorporated into this model via

additional constraints on the power profile (which relate back to min/max heat-pump on/off

times), indicating that there is an additional inter-temporal relationship between the values

of power between consecutive intervals. See relevant literature such as [Ziras et al.(2018)]

for further details. The cost function of a TCL penalizes (pays consumers for) any deviation

θδ = θ − θr from the reference temperature. For simulations the cost was modeled as a

quadratic function with additional cost term related to p:

CTCL(p,ρ) =
∑
k

αθdk + β(θdk)
2 + ζpk + γ (4.1.13)

4.2 Aggregate Prosumer Modeling

This section establishes the conditions under which an aggregate of individual models

can be considered convex.
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Figure 4.1.1: Feasible regions for individual resources, (a) ideal storage, (b) EVs, (c) non-
ideal storage and (d) TCLs. The horizontal axis denotes power for period 1, while the vertical
axis denote power for period 2. The set of possible profiles [p1, p2] ∈ P is the blue region
whose edges are painted in red. The blue region is absent in (b) since the EV load considered
can be only ON or OFF so that the feasible set contains four isolated points (red dots).
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Let I denote the set of responsive loads (including storage) and N their number. Con-

sidering the finite decision horizon k = 1, . . . , K, denote by pik the average power of an

individual load i ∈ I over the kth time interval. The entire profile corresponds to a vector in

RK denoted by pi = [pi1, . . . , p
i
K ]

ᵀ. A flexible load can deliver more than one power profile

pi over the given time horizon, and the notation P i ⊂ RK is used to describe the set of

all feasible power profiles pi for a given load over a horizon of length K. In practice, P i

captures all inter-temporal dependencies of possible power profiles throughout the modeling

horizon.

Given feasible sets P i and cost functions Ci(p) the goal is to study the feasible set X

for the aggregate load x = pi + · · ·+ pN and aggregate cost C(x). The aggregate load set

is defined by the Minkowski sum (Definition 5) of the individual loads feasible sets P i:

X =⊕
i∈I

P i = P1 ⊕ · · · ⊕ PN (4.2.1)

If all the individual models P i are convex, then so is X , facilitating its insertion into dispatch

optimization problems. But what can be said about X composed of P i which are in part (or

all) non-convex, a common scenario in most real-world cases? The following section sheds

light on this problem.

4.2.1 The Minkowski Sum of Non-convex Sets

For the upcoming derivation it is important to provide a clear definition of non-convexity:

Definition 9 (Non-Convexity). The non-convexity of a set P , denoted by the function

ncvx(P) or symbol δ describes the maximum distance between a point r ∈ Conv(P) and

the closest point s ∈ P . More precisely:

ncvx(P) = max
r∈Conv(P)

min
s∈P
‖r − s‖2 (4.2.2)
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Further define a set of vectors of non-convexity as the vectors −→rs where r and s are all

possible pairs that meet (4.2.2):

N (P) =
{−→rs ∣∣r ∈ Conv(P), s ∈ P , ‖r − s‖2 = ncvx(P),

‖r − s‖2 = min
s′∈P
‖r − s′‖2

}
(4.2.3)

The problem of the convexity of aggregates (i.e., Minkowski sums) of non-convex sets

was studied by Shapley (who later won the Nobel prize in Economics), Folkman and Starr,

with initial findings published in [Starr(1969)]. The main result is as follows:

Lemma 1 (Shapley-Folkman Lemma [Starr(1969)]). Considering all possible subsetsJ of I

with cardinality at mostK, the union of the Minkowski sums⊕i∈J Conv(P i)⊕⊕i∈I\J P i

is a superset to the convex hull of the Minkowski sum⊕i∈I P i:

Conv
(⊕

i∈I

P i
)
⊆

⋃
J⊆I,|J |≤K

(⊕
i∈J

Conv(P i)⊕⊕
i∈I\J

P i
)

(4.2.4)

What the lemma means is that, by convexifying at mostK sub-sets from the Minkowski

sum at a time and overlaying (finding the union of) the feasible points of all such combinations

on top of each other, the resulting union is a superset to the convex hull of the original

Minkowski sum. The Shapley-Folkman Theorem that follows [Starr(1969)] provides more

useful results, as it defines a bound on the non-convexity of X , where they key message

is that the bound only depends on the dimension K and not on the number of sets N (as

long as N ≥ K). Note that for the problems considered in this dissertation, the number of

individual flexible loads N = |I| is much greater (in the thousands) than the dimension

of the problem K (representing time periods, typically in the range 4-48), i.e. N � K.

Starr’s Corollary [Starr(1969)] tightens the bound provided by the SF theorem, expressing

it in terms of the K largest non-convexities found among the sets P i; it concludes that the

93



relative distance between Conv(X ) and X is inversely proportional to N , meaning that as

N →∞, X → Conv(X ).

Starr [Starr(1969)] used the results to show that a competitive market economy could

reach an equilibria using the convex hull of individual preferences, as long as the number

of agents is larger than the dimension of the economy. Over the years vast literature

of derived work has emerged in a variety of fields, including suggesting tighter bounds

expressed in other metrics of non-convexity, see e.g. [Fradelizi et al.(2017)]. Looking at the

Shapley-Folkman lemma from a market optimization viewpoint, recall that a prosumer has

a total cost/utility function C which is a function of the quantity x produced/consumed. In

conventional markets, the relationship between the optimal production quantity x∗, the price

λ, and the cost function C is λ = dC
dx
(x∗). This can be extended to higher dimensions with

λ = (∇C)(x∗), (4.2.5)

where x∗ ∈ RK and λ ∈ RK . With a population of prosumers, each having a feasible

dispatch/load space P i and corresponding cost/utility function Ci(pi), assume that these

prosumers are not controlled, and instead that they behave independently of each other

only considering their own constraints/cost functions given a price prediction λ ∈ RK . If

they behave rationally then, given a price λ the corresponding dispatch point pi can be

determined by solving:

pi = arg,min
pi

Ci(pi)− [λ]ᵀpi s.t. pi ∈ P i (4.2.6)

For a given λ one can view this as a subproblem of a separable optimization problem, or

alternately one can consider λ as the dual variable of a balance constraint and (4.2.6) to be a

subproblem of dual decomposition, which alternates between a distributed (4.2.6) and an

aggregate price update:

λj+1 = λj + α

(∑
i∈I

pi + y

)
(4.2.7)
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Figure 4.2.1: Visualizing Starr’s Corollary [Starr(1969)] for an aggregation of identical
loads. As N grows, the absolute error stays the same, but the relative error (distance to the
closest feasible point relative to the area/volume of the entire region) decreases.

where j indicates the iteration number and y the generation/consumption of other system

participants. The authors of [Aubin and Ekeland(1976),Udell and Boyd(2016)] and related

work show in a vein related to the SF lemma, that for separable problems with complicating

constraints, the duality gap between the non-convex primal problem and its dual (which

reflects the convexified problem) is bounded and proportional to the product of K and the

largest non-convexity found in the resource set. Hence, as the population size increases,

the relative duality gap goes to zero and the solution of the non-convex problem and its

convexified counterpart converge. In [Bertsekas et al.(1983)] a similar argument is used

to show that a UC problem has a vanishing duality gap as the number of generating units

increases. In Section 4.3.2 a distributed method is proposed to aggregate individual loads

based on sampling the population response from a price forecast, something only possible

with the knowledge that the impact of non-convex individual behavior vanishes for aggregates

of large populations.
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4.2.2 The Shapley-Folkman Lemma and Demand Response

Coming back to the geometric interpretation of Lemma 1, how can it be applied to

reason about the convexity of aggregates of DR resources? Starr’s corollary [Starr(1969)]

says that as N →∞, X → Conv(X ). To visually interpret this, imagine an aggregate of

loads such as the one depicted in Figure 4.2.1(a), where pk ∈ {0, 1} kW. The aggregate

set X composed of such loads, as seen in Figure 4.2.1, will be a lattice, with the maximum

aggregate consumption max(xk) = N kW, while the maximum non-convexity remains a

constant ncvx(X ) =
√
K · 0.52 = 0.707. As N increases, the relative error (in the order

of 0.707/N ) becomes insignificant relative to the aggregate load; in fact, only a single

individual load needs to have its constraints violated for an aggregator to be able to dispatch

continuously in the range xk ∈ [0, N ] kW. What happens if in the aggregate there are loads

that behave continuously (e.g. are convex)? If convex loads are absent, how many individual

loads binary constraints need to be violated to treat the aggregate as convex? To answer these

questions one needs to take a closer at what the approximation X ≈ Conv(X ) means. Start

by defining a bound on the aggregate non-convexity in terms of individual non-convexity:

Lemma 2. The non-convexity of the aggregate set is less than or equal to square root of

sum squared of the K largest non-convexities from its composite members.

ncvx(X ) ≤ max
J⊆I,|J |≤K

√∑
i∈J

(ncvx(P i))2 (4.2.8)

Proof. Start by sorting the setsP i in order of non-convexity, such thatP1 has the largest non-

convexity and Pn the smallest. For an aggregate of two sets (N = 2) in a one dimensional

space (K = 1), the aggregate convexity must be less than or equal to ncvx(P1) as P2 simply

adds points around the feasible points of P1 which only serve as to decrease the distance

between any two points along the line (K = 1). Increasing the dimension to K = 2 the

vectors of maximum non-convexity for the two sets could be orthogonal, in which case
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the aggregate non-convexity is at most
√

(ncvx(P1))2 + (ncvx(P2))2. Adding another set

P3 (with a smaller non-convexity) into the K = 2 dimensional space can only decrease

the maximum non-convexity, as the vectors of maximum non-convexity N (P3) must be a

linear combination of the vectors from N (P1) ∪N (P2). By induction, one thus arrives at

(4.2.8), that is, the maximum non-convexity is bounded by theK largest non-convexities

(as Starr concluded), and (4.2.8) is an equality if all the firstK sets have orthogonal vectors

of maximum non-convexity.

This non-convexity is visualized in Figure 4.2.2(e) and (f) where the maximum non-

convexity (δ) is drawn with dashed lines. From the definition (4.2.1) of X , several sets can

be combined such that all that remains is the Minkowski sum of two sets, Y and Z:

X =

Z︷ ︸︸ ︷
P1 ⊕ · · · ⊕ PZ ⊕

Y︷ ︸︸ ︷
PZ+1 ⊕ · · · ⊕ PN = Z ⊕ Y (4.2.9)

where Z is either the empty set or composed of Z convex members P i (in which case

ncvx(Z) = 0), while Y contains the sum of the remaining N − Z members not in Z .

Further define the inner (innerr(Z)) and outer (outerr(Z)) radius of Z as the radius of

the largest ball that can fit inside Z and the radius of the smallest ball that Z fits inside, as

depicted in Figure 4.2.2(d). These are building blocks for the following lemma:

Lemma 3. For a Minkowski sum (4.2.9) whose members Z and Y satisfy:

innerr(Z) ≥ ncvx(Y), ncvx(Z) = 0 (4.2.10)

the interior of X is strictly convex (has no holes). Here, the interior means any point at

least 2 · outerr(Z)− innerr(Z) distance away (inside) from the surface of the object.

Proof. Given that the convex set Z (meeting the above conditions) super-imposed on every

feasible point of Y fills up a surrounding spherical region of radius at least innerr(Z), it fills
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Figure 4.2.2: Two dimensional plots of the Minkowski sums of various loads. Figures (a)
through (c) visualize non-convex loads Pa,Pb and Pc with their measure of non-convexity
ρ, while (d) shows a convex load Pd with its inner (innerr) and outer (outerr) radius. Figures
(e) and (f) shows Minkowski sums of the non-convex sets, (g) adds Pd to the sum. Figure
(h) adds another load with shape Pd to the aggregate, making the interior convex, while
finally (i) adds yet another Pd making the Minkowski sum strictly convex.
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in any non-convexities that are at most ncvx(Y) ≤ innerr(Z) away from the feasible points

(it fills up all the holes of the lattice), i.e. Conv(Y) ⊆ X . However, at the boundary of the

region, depending on the specific shape of Z one may get a (non-convex) sawtooth-like

behavior (see e.g. Figure 4.2.2(h)), meaning thatX is not convex at the exterior. Considering

a point x on the convex hull Conv(Y), for a Z that lies mostly orthogonal to the surface of

Conv(Y) and is centered at x (the center of the maximum inner radius ball is at x), it may

point outwards (from Conv(Y)) at most 2 · outerr(Z)− innerr(Z). With this, at a distance

2 · outerr(Z)− innerr(Z) from the exterior of the region, the remaining interior region is

convex.

Remark 6. Note that this is a sufficient condition and often the interior becomes convex

long before innerr(Z) ≥ ncvx(Y). Further, when arguing about the convexity, one would

normally define Z as the smallest set satisfying innerr(Z) ≥ ncvx(Y) to minimize the depth

of non-convexities 2 · outerr(Z)− innerr(Z).

What this means for DR aggregates is that with sufficient number of convex resources

in the mix (devices that can operate continuously, e.g. storage devices) then any point in

the interior of X is feasible without violating any individual constraints. This is visualized

in Figures 4.2.2(g) and (h) where in the former case innerr(Z) = 0.28 ≤ 0.53 = ncvx(Y)

whereas in the latter case another convex member has been added to Z , meaning that

innerr(Z) = 0.56 ≥ 0.53 = ncvx(Y) and the interior is convex. While in practice the

non-convexities at the exterior are a non-issue as a largeN means they are relatively shallow,

is it possible to be more specific about what is happening at the exterior?

Define the operator F(P) as returning the facets of P ⊂ RN . If P is a convex polytope,

then F ∈ F(P) is a polytope of dimension n − 1 describing all points that lie on that

hyperplane (facet). If P is non-convex, then F ∈ F(P) contains the points (usually vertices)

that are members of P and lie on that particular facet of Conv(P). As such, F ∈ F(P)
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is simply a set of points on a hyperplane in Rn and associated normal vector (to know

the “outward” direction), where the set has an associated non-convexity ncvx(F) defined

exactly as in (4.2.2). Further define the operator P(F) as returning only the normal of the

hyperplane, ignoring any shift in space or concept of size.

Lemma 4. Consider an aggregate set X . In order for X to be strictly convex (X =

Conv(X )), there must exist sets Z and Y such that X = Z ⊕Y (see (4.2.9)) that satisfy: (a)

Lemma 3 and (b) for any facet G ∈ F(Y) there must exist a corresponding facet F ∈ F(Z)

such that:

P(F) = P(G), innerr(F) ≥ ncvx(G) (4.2.11)

This means that for any facet G of Y there must exist a facet F of Z that faces in

the exact same direction and whose inner radius exceeds that of the non-convexity of G

(innerr(F) ≥ ncvx(G)). This effect is visualized in Figure 4.2.2(i) where three sets of the

shape Pd are needed to obtain sufficiently large facets in Z to cover the non-convexities of

the facets of Y = Pa ⊕ Pb ⊕ Pc. For DR aggregates this means that for X to be strictly

convex, a sufficient number of resources of each type (having the same facets, but possibly

scaled or stretched) need to be convex for the entire region to be convex. Actually, only the

single largest resource of each type needs to be convex to make the entire aggregate convex,

irrespective of the dimension K or number of devices N . Here largest means having facets

whose surface covers any non-convexities found in other sets from the same type, as defined

in Lemma 4. In Section 4.4.1 a small experiment is devised to showcase these results.
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4.2.3 Convexity of Aggregate Cost

Prior sub-sections only looked at the convexity of the feasible region X , but what can be

said about the convexity of the aggregate cost? The cost corresponding to each x is:

C(x) = inf

{
N∑
i=1

Ci(pi)

∣∣∣∣∣x =
N∑
i=1

pi,pi ∈ P i
}

(4.2.12)

Here, the infimum ensures that the cheapest combination of individual loads is chosen to

deliver a particular aggregate load x. To argue about the aggregate cost convexity, one can

build on the same theory as earlier sections:

Lemma 5. By considering cost as an additional dimension to the set P , the same logic

applies as is done for the power profiles in Lemmas 1-4 to establish, under the same

conditions, when the aggregate cost can be considered approximately or strictly convex, or

not.

Proof. Recall that Ci(pi) denotes the smallest cost of procuring pi ∈ P i for individual i.

Define epi f as the epigraph of a function f , (i.e. the set of points above the function). The

following set adds the cost value as a dimension to P i:

P̂ i =
{
[pi1, . . . , p

i
K , c]

ᵀ
∣∣pi ∈ P i, c ∈ epi Ci(pi)

}
. (4.2.13)

Now the Minkowski sum can be applied to the set including the cost:

X̂ =⊕
i∈I

P̂ i. (4.2.14)

The conditions under which X̂ is approximately convex are the same as for X following

Lemmas 1-4. The aggregate cost function chooses the least expensive way to procure a

particular x and is thus a surface of an approximately convex set X̂ :

C(x) ≈ inf
{
c
∣∣[x1, . . . , xK , c] ∈ Conv(X̂ )

}
(4.2.15)

and therefore C(x) is an approximately convex function.
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This means that without any assumptions on the individual cost functions or feasibility

regions, both the aggregate region and cost function are approximately convex, and the

number of resources that need to be convex or convexified is only a fraction of all the

aggregated resources, assuming the dimension K is small compared to the number of

resources N .

4.3 Interfacing with the System Operator

The previous section establishes the conditions under which the aggregate X and C(x)

can in practice be considered convex, showing that a competitive market with many com-

plicated but “small” participants can be efficient. Nonetheless, passing the description of

thousands or tens of thousand resources served by a single transmission system bus, one

can still wind up with a very complex X /C(x), because of the curse of dimensionality. To

include the aggregate DR in energy market models (where individual participants must have

a capacity in the order of MW) a low-order approximation of X /C must be found that allows

the ISO to leverage the DR flexibility without incurring excessive computational burden.

Here, the results of the previous section are leveraged, and the fact that the Minkowski

sum and convex hull operators are commutative, to construct an approximation of X as if

there is no residual non-convexity, i.e.:

X = Conv
(⊕

i∈I

P i
)
=⊕

i∈I

Conv(P i). (4.3.1)

Note that the calculation of the Minkowski sum is intractable for very heterogeneous pop-

ulations and, therefore, trying to compute it and then simplify it is not a viable approach.

Instead, all the individual (relaxed) constraints can be included in a large Linear Program

(LP). The following sub-sections look at how such an LP can be used to find low-order

models. Even though this LP can be quite large for thousands of devices, it still solves

reasonably fast with modern solvers and hardware.

102



0 1 2 3 4 5
0

1

2

3

4

5

x1

x
2

x2

x1 x1

x2

x̃1

x̃1

X

(a) Generator constraints

-2 -1 0 1 2

-2

-1

0

1

2

x1

x2

x−
2

x−
2

x+
2

x+
2

x−
1x−

1 x+
1 x+

1

x̂

x̌

x̃

x̃

(b) Storage constraints

-5 -4 -3 -2 -1

-5

-4

-3

-2

-1

x1

x2

X

(c) Custom constraints

-5 -4 -3 -2 -1

-5

-4

-3

-2

-1

x1

x2 X

(d) Elliptical constraints

Figure 4.3.1: Constraints (red) and corresponding feasible region (blue) of several proposed
aggregate resource descriptions for two consecutive periods.
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4.3.1 Reduced Order Polytopal Constraints

ISO optimization models are usually either linear programs (LPs) or mixed-integer LPs

(MILPs), solvable with modern solvers in a reasonable amount of time (from seconds to

tens of minutes depending on the application). The feasible region of a LP is a polytope

which means that our polytopal model X from Section 4.2 can be placed directly in existing

ISO models, either using H-rep.Ax ≤ b, or alternatively, through a convex combination of

vertices v ∈ V = Vert(X ):

x =

|V|∑
i=1

viwi ,

|V|∑
i=1

wi = 1 , 0 ≤ wi ≤ 1 ∀i. (4.3.2)

If the complexity of including the full feasible regionX directly in to the ISO optimization

programs is prohibitive [Chen et al.(2016b)], the following sub-sections propose a few

special cases of polytopes with a lower and more predictable complexity, of which the

virtual generator and storage model can be found in existing literature, and are included here

for comparison.

4.3.1.1 Virtual Generator

Market participation by aggregators may be limited to existing ISOs bid constructs designed

for conventional generators. Generator models have constraints on (i) min and (ii) max power,

(iii) max ramping, and min (iv) on and (v) off times. In this approximation of DR aggregates

as virtual-generators, constraints minimum on/off times and maximum ramping are ignored.

The reason is that individual DR devices are not large machines with considerable inertia

(unlike conventional generators) which means that they can quickly (in a matter of seconds)

go from minimum to maximum power; thus, such constraints are not useful. This leaves

the min/max power constraints to work with. Figure 4.3.1a visualizes the constraints of a

generator. By ignoring the ramping constraints, a generator in “power space” is a hyper-

rectangle, a special case of a polytope. Equipped with an LP of stacked relaxed individual
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constraints X , the following optimization is one way to find the min/max power constraints:

max
x,x
‖x− x‖ s.t. x ∈ X ,x ∈ X (4.3.3)

where x and x are vectors containing the min/max constraints the aggregator provides to the

ISO and ‖ · ‖ is an appropriate metric. The simulations performed for this dissertation used

|x| = minx so that (4.3.3) is an LP, meaning that the solver finds the largest hyper-cube

within X . Other reasonable norms include the L1 norm for the largest sum flexibility or

the geometric mean for the maximal volume. If the shape of X is unlike a hyper-rectangle,

large parts of the flexibility available to the aggregator are lost in translation; the ISO will

not know about it or have the possibility of leveraging it.

4.3.1.2 Storage Model

Another low-order polytopic model is that of a storage device. This has been gaining traction

as Federal Energy Regulatory Commission (FERC) Order 841 mandates ISOs to include

such models in energy markets (see Figure 4.3.1b for a visualization of the constraints

mandated by FERC Order 841). For DR aggregates, the most significant improvement is

the inclusion of a minimum/maximum constraint on energy (the sum of power).

In the literature there are several approaches to calculate the bounds of a virtual battery

such as [Hao et al.(2014)] where virtual battery parameters are calculated directly for a

particular DR population, or more general approaches such as [Zhao et al.(2017)] or [Müller

et al.(2017)], though they may leave significant amount of feasible volume on the table if

some individual resources are not well aligned with the storage constraints. Determining the

min/max energy values from an optimization model such as (4.3.3) is not straight-forward

and thus omitted here, and the reader is instead referred to existing models cited here. In

Section 4.4 the from Hao et al. [Hao et al.(2014)] is used for comparison. In the following
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sub-section a generic polytopal model is proposed instead, which has additional degrees of

freedom compared to those limited to the constraints of storage devices.

4.3.1.3 Custom Constraints

The models discussed in Sections 4.3.1.1 and 4.3.1.2 have constraints with physical interpre-

tations, but a bundle of DR resources may not conform well to these constraints [Barot and

Taylor(2017),Zhao et al.(2017),Nazir et al.(2018),Müller et al.(2017)]. As an improvement,

this section proposes a polytopic model that is of reduced complexity compared with the full

X . Again the polytope could be passed on to the ISO in H-form (Ax ≤ b) or V-form (4.3.2).

The latter form addsK constraints and |V| continuous variables to the ISO model, while the

former adds zero variables but as many constraints as there are rows (facets) inA. In [Barot

and Taylor(2017)], the authors, through an outer approximation that can grow in complexity

given a diverse resource set (dissimilar rows ofA), build an aggregate polytope from the

“ground up”. Similarly [Zhao et al.(2017),Müller et al.(2017)] approximate the individual

through prototype polytopes whose Minkowski sum can be calculated efficiently. Here, it

is instead assumed that the complexity of the (convexified) aggregate X is manageable on

its own, a reasonable assumption for some tens of thousands of convexified load models,

but that the complexity prevents it from direct inclusion in other ISO models, particularly

if many aggregates (for many buses or areas) need to be included. For that purpose, the

complexity of X needs to be reduced, and in what follows two heuristics are proposed.

I: Cost Scenario Based Reduction: If one has a good mechanism to generate market

price scenarios, the approximation can be tailored to capture the parts of the feasible region

that are most significant given these predictions. Given a list of price scenarios λs ∈ RK ,

s ∈ S, start with an empty set V = ∅ and solve for the optimal power profile given each

price scenario:

xs = arg,min
x

xᵀλs, s.t. x ∈ X (4.3.4)
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Adding the result xs to V and determine whether desired complexity has been reached, in

which case the algorithm stops. X ′ is then passed to the ISO in H- or V-form.

Remark 7. Unlike many algorithms that make predictions about future prices to build

offer/bids to submit to the market (see Section 1.2.3) in an attempt to maximize some

expected gain/minimize cost, the set X ′ will contain the optimal aggregate load/dispatch

for any of the price scenarios considered; If the set of price predictions contains the correct

future price, the approximation X → X ′ will contain the corresponding optimal load profile.

II: Geometric Elimination: The following heuristic is proposed to reduce the complexity

of the aggregate region by removing vertices that are very close to others, thus decreasing the

number of facets in the polytope. This algorithm is only feasible if one can do the translation

from H to V-representation [Barot and Taylor(2017)] required for step 1). As such it is

intractable for very complex X but can be used in conjunction with the Cost Scenario Based

Reduction, where a low order representation of X has been obtained with a small number of

vertices, to further eliminate vertices that are close to each other. The step-by-step algorithm

is:

1) Assign V ← Vertices(X ).

2) Terminate if desired complexity of Conv(V) is reached.

3) Calculate the distance between each pair of vertices xu,xv ∈ V . Set U = |V|.

4) For any (u, v) ∈ {(u, v)|u ∈ {1, . . . , U}, v ∈ {u+1, . . . , U}}, calculate the distance

∆u,v = ‖xu − xv‖ ∀xu ∈ V ,xv ∈ V

5) Find the (u, v) pair that has the smallest distance ∆u,v.

6) Remove vertex xv from V , and go to step 2).
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4.3.2 Low Order Elliptical Constraint

This section argues that a concise geometric shape to capture a large part of the feasible

region is a K-dimensional ellipsoid. The insight leading to this consideration ties back to

the SF lemma and the Central Limit Theorem (CLT). Left uncontrolled, individuals would

base their economic decisions on operating their flexible resource independently. As stated

in Section 4.2.3, the SF lemma and derived work [Aubin and Ekeland(1976), Udell and

Boyd(2016)], show that the aggregate response to price has a vanishing duality gap relative

to the primal problem in the limit, since the relative error between the primal problem and its

convex counterpart converge as the population grows. A related basic fact is that the sample

space of the sum of random variables is the Minkowski sum of the summands respective

sample spaces, connecting the phenomenon tied to SF lemma with the CLT, stating that sum

of a large number of loads can be approximated with a multi-variate normal distribution.

The confidence (or level) surface around the mean of aK-dimensional multi-variate normal

distribution is a hyper-ellipsoid, and its interior can be used as an approximation of such

Minkowski sums. Two common descriptions for an ellipsoid are (whereB = QΣΣQ−1

andB′ = QΣ−1):

{x|(x− d)ᵀB(x− d) ≤ 1} ⇔ {x|x = B′u+ d|‖u‖2 ≤ 1} (4.3.5)

where d denotes the center of the ellipsoid andB/B′ describe its rotation and stretch. Finding

the largest hyper-ellipsoid (by volume) that can be inscribed into a polytope described by a

(linear) aggregate is a convex problem [Boyd and Vandenberghe(2004),Lin et al.(2018)]:

max
B′,d

log det (B′)−1 s.t. ‖B′[A]i‖2 + [A]ᵀid ≤ bi ∀i (4.3.6)

where [A]i is the i-th row of the polytopeAx ≤ b. Note that (4.3.6), though convex, is in

general an intractable problem for a complex X with a very largeA.
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Taking this reasoning further, the ellipsoid can be found directly without first mapping

out a polytope and solving (4.3.6), by using price scenarios λs, s ∈ S to sample the

region X and cost C(x). Corresponding to each price scenario a set of individual dispatch

profiles pi,s and cost Ci(pi,s) is obtained by solving (4.2.6) in parallel (and privately by the

prosumers); the aggregate load profile and cost of each scenario xs =
∑

i∈I p
i,s and cost

C(xs) =
∑

i∈I C
i(pi,s), are samples for the aggregate dispatch profiles region X and cost

C(x). Assuming that:

(a) the number of realistic price scenarios is sufficiently large, and

(b) individual prosumer cost/utility function coefficients are distributed in a continuous

range (i.e. not many individuals have the exact same cost parameters),

then, due to the CLT the density of aggregate load vectors x observed in different regions of

RK should match the density of a multi-variate distribution. Given the set of price scenarios

S and corresponding load profiles X , µ and Σ can be estimated and the feasible region

directly defined as:

(x− µ)ᵀΣ−1(x− µ) ≤ Q(φ) (4.3.7)

where Q(φ) is the quantile function (inverse Cumulative Distribution Function (CDF)) of

the Chi-squared distribution with K degrees of freedom, which reflects the (symmetric)

probability mass (φ ∈ [0, 1]) contained within the ellipsoid, a smaller φ makes the solution

more robust against any uncertainty. It is clear that µ and Σ depend on the set of price

scenarios S. If the aggregate cost surface C is convex, the price function ϕ(x) = C ′(x)

is monotonically increasing. If one thinks of the price scenarios being sampled from a

distribution Λ, there will be a corresponding distributionX of points in power space, which

is obtained through the mapping ϕ−1(Λ) assuming ϕ is strictly increasing (a one-to-one

function). Given ϕ, prices λ can be to obtain any distribution X (e.g. uniform) which is

useful to e.g. fill the power space uniformly and build µ and Σ from that. However, as C
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and ϕ are not known, obtaining a predictable distributionX calls for studying a sampling

algorithm. Leaving that for future work, in the simulations provided here, samples λ are

taken from a distribution describing anticipated market prices, and thus fill the power space

and build the statistics using points reflecting those prices. As a DR aggregate could impact

market prices, choosing the price scenarios becomes a circular problem. However, since the

volume of the ellipsoid gives a margin of error in the price estimation, and the impact of the

DR aggregate on market prices can be learned over time, this approximation is promising.

4.3.3 Aggregate Cost Approximation

Having discussed the various approximations for X , now the attention is turned towards

finding an aggregate bid that best reflects the sum cost of each responsive load. Continuing

the reasoning of Section 4.3.2, this section argues that the true aggregate cost function C

describes a part of the surface (boundary) of an ellipsoid. As such, the relationship between

power x and cost c is, with x̂ = [xᵀ, c]ᵀ:

(x̂− µ̂)ᵀΣ̂
−1
(x̂− µ̂) = Q̂ (4.3.8)

where the hat indicates augmented vectors/matrices with added entries for the cost term,

µ̂ ∈ RK+1, σ̂ ∈ R(K+1)×(K+1) and Q̂ ∈ R. By re-arranging (4.3.8) to a function c = C(x)

it is clear that C contains the square root of various quadratic and cross-terms of x. However,

as the function describes the surface of an ellipsoid, it is certainly convex.

Since passing such a function to the market is not current practice, this section looks

at Piece-Wise Linear (PWL) cost functions, where independent PWL functions are used

to describe the cost for each time interval k, that is, the total cost is decomposable as

C(x) = C1(x1) + · · · + CK(xK). This is the format used in present day markets for

generator costs. What follows is a simple heuristic using a predetermined number of knots

(function joints) along each dimension k ∈ K and finding the optimal PWL parameters
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to describe the PWL bid. Figure 4.3.2 shows a two-dimensional case where the sum of

the individual cost functions make up a cost surface. Point pairs (xs, C(xs)), s ∈ S are

sampled from Conv(X ) and then the following optimization program is suggested to find

the PWL parameters that best approximate the surface. For a resolution of ν pieces per

dimension, creating a grid of νK hyper-rectangles, evenly spaced cost function knots are

at κk,i = xk +
i
ν
(xk − xk), i ∈ {0, 1, . . . , ν} ∈ U where xk and xk denote the largest

and smallest value of xk, x ∈ X . The corresponding line segments are αk,ixk + βk,i for

κk,i−1 ≤ xk ≤ κk,i, i ∈ {1, 2, . . . , ν}, meaning that Ck(xk) ≥ αk,ixk + βk,i for all segments

i ∈ U . Denote the samples as xs with s ∈ S, the approximated cost at xs as Es, and

the mapping from xs to the appropriate PWL segment i at time k as ψ(xsk, k). Solve for

(Es, αk,i, βk,i) with input parameters (x
s, C(xs), κk,i, ψ):

min
E,α,β

max
s∈S

(Es − C(xs)) (4.3.9a)

s.t. Es =
K∑
k=1

αk,ψ(xsk,k)x
s
k + βk,ψ(xsk,k) ∀s ∈ S (4.3.9b)

Es ≥ C(xs) ∀s ∈ S (4.3.9c)

αk,i ≥ αk,i−1 ∀k ∈ K, i ∈ {2, 3, . . . , ν} (4.3.9d)

αk,iκk,i + βk,i = αk,i+1κk,i + βk,i+1∀k ∈ K,

i ∈ {1, 2, . . . , ν − 1} (4.3.9e)

where the objective attempts to minimize the maximum error, (4.3.9b) calculates the sum

cost from the PWL functions for each dimension, (4.3.9c) ensures that the approximation

does not under-estimate the cost anywhere, (4.3.9d) ensures the convexity of the PWL

functions (each segment has greater slope than the previous one), while (4.3.9e) ensure the

functions are continuous across knots.

Remark 8. Even if C is convex, the approximation above is not likely to accurately capture

its complexity, except when limited to a small subset of X . Maximizing the size of the
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Figure 4.3.2: The PWL cost approximation visualized with ν = 5, with C1 and C2 denoting
the independent cost function for the first and second period, C(x) = C1(x1) + C2(x2)
denoting the joint cost function and the stars indicating the knots κ in the surface, here
spaced out on the major ticks.
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feasible region and obtaining a good cost approximation may therefore often be opposing

goals.

4.3.4 Disaggregation and Aggregator Revenue Models

In this dissertation it is assumed that the, similar to an ISO, is a neutral third party

that simply works to aggregate the individual bids. For a cost surface approximation that

accurately captures the aggregate cost, the aggregator only needs to pass on the market price

to the individuals for them to dispatch themselves correctly. If the cost surface is not a good

approximation of the actual aggregate cost, there are several ways to obtain the target dispatch.

For the distributed elliptical model, one can solve a distributed iterative dual decomposition

problem (4.2.6)-(4.2.7) to arrive at the target dispatch, similar to [Chang et al.(2013), Li

et al.(2011b)]. For the other models one can for example solve the relaxed optimization

problem given a fixed dispatch, and issue instructions to individuals based on that solution.

For those decisions that are infeasible due to binary constraints, the individual can randomize

their binary parameters weighted in accordance with the relaxed value. Alternately, the

aggregator can employ randomized broadcast instructions to clusters of similar individuals

to disaggregate the dispatch, as in [Alizadeh et al.(2014a),Hreinsson et al.(2020a)].

As far as the bid construction is concerned, it is assumed that the aggregator is a non-profit

and its goal is to minimize the sum cost of the participating prosumers, which individually

do not have market power. As for monetary settlement, the design of the aggregate cost

curve is such that the what needs to be paid to the market (or comes from the market if

net-producers) is less than what the individual loads are willing to pay, meaning there will

be some left-over money at the aggregator. A possible service model is that the left-over

money is used to operate the aggregator, or distributed back to the participants through a

mechanism similar to the make-whole payments of the energy market. The design of an
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(a) NCVX = 0 (b) NCVX = 3 (c) NCVX = 10

Figure 4.4.1: Uniformly drawing sample points (blue) from conv(X ) and finding their
closest corresponding point (red) in X .

optimum bid that leverages the market position of the aggregator in the market goes beyond

the scope of this paper.

4.4 Numerical Results

Numerical simulations were performed using Python and a collection of scientific pro-

gramming libraries [Van Der Walt et al.(2011), Jones et al.(2014),Hunter(2007)], as well

as utilizing Gurobi for solving optimization models [Gurobi Optimization(2015)]. For

simulations a server with Intel Xeon E5-2680 v3 Central Processing Unit (CPU) was used.

4.4.1 Validation of the Shapley-Folkman Lemma

To validate results related to the SF lemma a simple case ofK = 2 is considered with

aggregates of two types of prosumers,

(a) non-convex loads where pk ∈ {−10, 0} kW, and

(b) storage like convex loads where p ∈ [−1, 1] kW, −1 ≤ 1 · p ≤ 1 kWh.
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Figure 4.4.2: The gap between the full (binary) model X and the relaxed (continuous) one
for vs the number of convex storage units.

Different combinations of non-convex loads NNCVX ∈ {2, 100} and convex loads NCVX ∈

{0, 1, . . . , 15} are modeled. Figure 4.4.1 shows the feasible region X in the range xk ∈

[−20, 0] kW. In the NCVX = 0 case, the non-convex loads form a lattice of feasible points

(red dots), with the blue points showing 10, 000 random samples from Conv(X ) and the

black lines indicating the closest feasible point. The maximum non-convexity here is

√
2 · 52 = 7.07 kW. As storage is added to the aggregate, a growing contiguous feasible

region is observed around the lattice points, and at NCVX = 10 it has filled in all the gaps.

This is explained by Lemma 3, the inner radius of each storage device (r =
√
2 · 0.52) is

1/10th of the observed non-convexity, meaning that an aggregate of 10 such devices has an

aggregate inner-radius greater than the non-convexity of the non-convex loads. Figure 4.4.2

shows the maximum non-convexity as a function the number of continuous (ideal storage)

devices.

4.4.2 Capacity Market Simulation

First model comparison is that of a capacity market, where payment is assumed to be

proportional to offered capacity. The focus is on four models:

(a) The virtual generator model (Section 4.3.1.1).
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(b) A set of custom constraints (Section 4.3.1.3).

(c) The storage model from Hao et al. [Hao et al.(2014)], where the three proposed

variants (Table III, [Hao et al.(2014)]) of the sufficient (the inner approximation)

model are included.

(d) The full model including all individual constraints.

The elliptical model is not included here as it builds on market price scenarios and is a better

fit for energy market formulations. As [Hao et al.(2014)] is developed around an aggregate of

TCLs this simulation is limited to include only TCLs for a more direct comparison. Starting

withK = 2, Figure 4.4.3 visually compares the feasible regions of the three models for a

population of 1, 000 TCLs. The custom constraints fill out the feasible region completely,

and only five vertices are required to describe the entire region. The virtual generator

rectangle sits on the bottom left where it can occupy the largest area and the three variants of

the storage model from [Hao et al.(2014)] somewhat overlap with each other but emphasize

different features.

Moving on to the K = 24 simulation, it includes a population of 15, 000 heterogeneous

TCLs. As it is impossible to visualize such a high-dimensional region, the comparison is

flattened in Figure 4.4.4 to two metrics averaged over 100 capacity market runs offering

randomized price signals. Figure 4.4.4(a) shows the fraction of the capacity available by

the different models, compared with the full region, essentially a comparison of the feasible

region hyper-volume. Here, one can observe that the custom constraint set polytope performs

well capturing about 75% of the region, the virtual generator coming in second at about 45%

but the models from Hao et al. [Hao et al.(2014)] exposing between 10%-30% of the full

feasible region. This is likely due to the fact that the parameters for the model from [Hao

et al.(2014)] are partly a function of the TCLs with the smallest capacity, meaning that its

volume suffers if the population it aggregates is diverse.
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Figure 4.4.3: Visual comparison with K = 2 of the three models simulated in Section
4.4.2. Note that the models from Hao et al. [Hao et al.(2014)] suggest three different
objectives when calculating the virtual battery parameters, with all of them included here
for comparison.

Figure 4.4.4: Capacity market comparison of the models listed in Section 4.4.2. Figure
(a) shows the capabilities of the different models to provide reserve power, compared with
the full model and can be interpreted as the difference in hyper-volume between the full
region and the approximations (higher is better). Figure (b) shows the time required by the
aggregator to build the model, with the darker shade indicating time that is not parallelizable,
and light the time that can be reduced by solving across multiple CPUs.
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Computationally the models from [Hao et al.(2014)] are extremely simple and fast,

taking less than a second for the aggregator to compute, whereas the virtual generator takes

tens of minutes and the custom constraints takes at least 20 minutes or possibly much longer

depending on the number of CPUs available.

4.4.3 Energy Market Simulation

This comparison includes four models:

(a) The virtual generator model (Section 4.3.1.1).

(b) A set of custom constraints (Section 4.3.1.3).

(c) The approximate elliptical model (Section 4.3.2).

(d) The full model including all individual constraints.

A comparison with [Hao et al.(2014)] is not included as the paper does not include computa-

tions of aggregate costs. For K = 2, Figure 4.4.5 visually compares the feasible region of

these models. This simulation also aggregated 1, 000 resources, of which 600 were TCLs,

260 EVs, and 120 and 20 non-ideal and ideal storage devices respectively. Here, one ob-

serves quite a different feasible region shapes compared with the population consisting of

TCLs only, with the energy storage constraints being more evident given the added energy

storage capacity. As a result of this changed region, the virtual generator captures less of

the area, and the custom constraints also leave out the costlier parts of the region. The stars

indicate for a sample market run the optimal dispatch point of the different models, which are

heavily influenced by the cost function approximation quality. The approximate ellipsoids

will be centered around the mean of the sampled dispatch points, where higher φ translates

to a larger diameter.
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Figure 4.4.5: Visual comparison with K = 2 of the four models simulated in Section 4.4.3.
The stars indicate the optimal dispatch points for a particular market solution.

Figure 4.4.6: Energy market simulation of the models as described in Section 4.4.3. Figure
(a) shows how close to the optimal solution (cost wise) the different models perform (higher
is better), while (b) shows the aggregator solving time.
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For the K = 24 simulation the population size is increased to 10, 000 TCLs, 4, 450

EVs, and 500 and 50 non-ideal and ideal storage devices, for a total of 15, 000 devices.

Price scenarios spanning all the K intervals, both for model construction and for market

experiments, were sampled from a multi-variate normal distribution with no cross correlation

and a mean moving linearly from µ1 = 9 to µK = 5 with standard deviation of σ = 3. For

the approximate elliptical model 8, 000 samples were used to construct the model statistics,

a trade-off between the accuracy of the statistics and the computational burden during model

construction. Individual cost functions were structured as described in Section 4.1 and

Figure 4.4.6 shows a comparison of methods modeled averaged over 100 price samples.

Here the ellipsoidal model is a clear winner, both in terms of computational complexity and

for how close it is to the optimal solution. Second best w.r.t. finding the optimal solution is

the virtual generator and this can be explained by the poor cost approximation over the large

region offered by the custom constraint model. Computationally however, assuming there is

some parallel processing capabilities, the virtual generator performs the worst.

To summarize, different models have different strengths, the constraint set shines for

capacity markets while the approximate elliptical shines for the energy market. In both cases

the virtual generator performs poorly compared to the better candidate for each respective

market.

4.4.4 Stochastic Security-Constrained Economic Dispatch with Thermostatically

Controlled Loads

Like the simulations in Section 3.7.3.1, the load and renewable infeed data are from

CAISO; the corresponding temperature data for seven California locations from NOAA [Di-

amond et al.(2013)]. From [Mathieu et al.(2012)] the population is assumed to be clus-

tered with R ∈ {1.5, 2, 2.5} ◦C/kW and C ∈ {1.5, 2, 2.5} kWh/◦C, allowing Sθr =

{69, 72, 75, 78, 81} ◦F. From [Energy Information Administration, U.S. Department of En-
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ergy(2009)] a fixed number of 7, 000, 000 households are assumed to use heat-pump air-

conditioning. In order to obtain realistic parameters for the simulations, the model in (3.5.33)

is reversed, using a simple linear regression to estimate how the population is spread between

R/C clusters as well as how reference temperature changes over the course of the day. In

practice, an Aggregator would know the individual R/C/θr parameters of its population,

and would cluster based on that knowledge. The way the scenario trees were generated is

illustrated in Figure 4.4.7.

Simulations solve a rolling-horizon SCED with a two hour look-ahead window and a

resolution of 15 minutes (h = 900s, K = 8). For 7 sample days scenario trees of net-load

and temperature are built for each starting interval, using the closest (in terms of aggregate

load) 50 sample days (excluding the target day) from the original data-set of 293 summer

week-days (see Figure 4.4.7). Two variants of (3.6.1) are tested, in both cases considering

any single generator outage Gout ← G:

(i) A stochastic SCED (S-SCED) with 3 future scenarios.

(ii) A deterministic SCED (D-SCED) with a single forecast.

For the SCED↔ TCL interface, the following is simulated:

(a) An inflexible TCL aggregate, that simply consumes pb.

(b) A virtual/negative generator model.

(c) A set of arbitrary constraints.

(d) The full set of constraints (3.5.34) included in the SCED.

All TCLs start at midnight in an energy neutral state (u = 0) and have the boundary condition

(at the end of each rolling horizon window) to end in an energy neutral state. The RTS
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Figure 4.4.7: The process from input data to multi-variate scenario tree.

Table 4.1: Costs for the RTS case generators.

Unit Type CX CX

Oil/Steam ( U12) [55.15, 57.98] [27.57, 28.99]

Oil/CT ( U20) [127.40, 132.60] [63.70, 66.30]

Hydro ( U50) [0.00, 0.00] [0.00, 0.00]

Coal/Steam ( U76) [15.76, 16.40] [7.88, 8.20]

Oil/Steam (U100) [43.01, 44.32] [21.50, 22.16]

Coal/Steam (U155) [12.14, 12.64] [6.07, 6.32]

Oil/Steam (U197) [47.85, 49.31] [23.93, 24.65]

Coal/Steam (U350) [11.79, 11.79] [5.90, 5.90]

Nuclear (U400) [4.38, 4.47] [2.19, 2.23]

122



Figure 4.4.8: Using scaled CAISO data from July 20th 2017, the top figure shows the TCL
load of the different models, the middle shows the energy stored or borrowed from the TCL
aggregates, while the bottom figure shows the amount of reserves bought by generators.
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Table 4.2: Summary of average costs for different solutions, and the percentage savings
compared with the no DR solution.

Interface (i) Stochastic SCED (ii) Deterministic SCED

(a) No DR 3, 407, 291 (0.0%) 3, 407, 028 (0.0%)

(b) Virtual Gen 3, 300, 076 (3.1%) 3, 293, 324 (3.3%)

(c) Constr. Set 3, 101, 865 (9.0%) 3, 103, 868 (8.9%)

(d) Full Model 3, 004, 401 (11.8%) 3, 024, 382 (11.2%)

system is used as a starting-point for the simulations, but model it as a single bus system,

with linear generator cost functions whose parameters are shown in Table 4.1.

Table 4.2 shows the average cost over the 7 sample days for different model combinations.

Unsurprisingly, there is a clear trend where increased flexibility reduces costs, with the full

model saving over 11% compared with no DR, and the constraint set tripling the savings

from the virtual generator, from approximately 3% to 9%. Comparing the deterministic with

the stochastic a 0.6% improvement is seen in the stochastic results, but this improvement

is largely lost when using the constraint set approximation, and slightly negative for the

virtual generator. The small improvement can be explained by the small uncertainty over

the two-hour look-ahead horizon, along with the high flexibility of the TCLs allowing the

operator to react quickly and cheaply to forecast deviations.

Figure 4.4.8 shows how the different models react for the sample day of July 20th 2017.

First, one can observe that all the solutions incorporating DR consume less power throughout

the day compared with the non-controllable (no DR) counterpart. Although this can be

explained, in part, by the full model decreasing the indoor temperature (during cooling)

to reduce losses, this is not the case for the approximate approaches, which seem to keep

the population at, or even slightly above, the reference temperature. Clearly having some

foresight about future temperatures allows moderate energy savings with little to no impacts
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on the population. As for the reduction in generator reserve requirements, the TCLs at times

covers between 75% and 90% of the required reserve power. The generator reserve reduction

varies considerably throughout the day, but interestingly, the stochastic full model seems to

be able to save substantially more reserves compared with its deterministic counterpart.
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CHAPTER 5

CONCLUSIONS

It is clear that the challenges presently facing power systems need to be approached from

multiple angles, to enable a greener future that accommodates increased renewable gen-

eration, growing electrification of the transport sector and an overall boost in efficiency,

without making sacrifices in reliability.

In this vein, the Continuous-Time Multi-Stage Unit Commitment (CT-MSUC) presented

in Chapter 2 incorporates energy storage and allows system operators to better serve net-

load with increasing inter-hour variability and uncertainty. Simulations show how such a

formulation offers advantages over conventional deterministic Unit Commitment approaches,

allowing for variations in commitment and dispatch depending on the specific realization

of net-load. When analyzing various cost components, it is observed that less expensive

solutions belong to those including storage, as expected.

On the Demand Response front, aggregate state-space models for EVs, DAs and TCLs

were developed in Chapter 3. These models have certain characteristics of energy storage

devices, particularly in the case of EVs and DAs, but less so for the temperature dependent

TCL model. Several properties of these models were explored, control policies and the

models were incorporated in a stochastic Economic Dispatch formulation to showcase their

synergy with conventional power system models.

Furthermore, Chapter 4 showed how even aggregates of individual resources that have

non-convex properties can, in aggregate be considered approximately convex. This is a key

finding to allow aggregators to hide the inherent individual complexity when presenting the

flexibility of large populations to system operators and energy markets. The chapter further

explores different reduced order aggregate models for a concise but descriptive characteri-
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zation of these resources, and weighs the trade-off between complexity and computational

tractability.

This dissertation may provide answers to several questions, but it opens up even more

new questions needing answers. There are plenty of research directions one can take from

here, and the author hopes this dissertation and related work will provide a stepping stone

for further research and development towards more efficient and flexible power systems.
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