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ABSTRACT  
   

Viruses are the most abundant biological entities on Earth, infecting all types of 

cellular organisms. Yet less than 1% of the virosphere on our planet has been 

characterized to date. Viruses are both an important driver of bacterial evolution and 

have significant implications for human health, therefore understanding the relative 

contributions of various evolutionary forces in shaping their genomic landscapes is of 

critical importance both mechanistically as well as clinically. In my thesis I use 

computational genomic approaches to gain novel insights into bacteriophage and human 

cytomegalovirus evolution. In my first two chapters and associated appendices I 

characterized the complete genomes of the Cluster P bacteriophage Phegasus and 

Cluster DR bacteriophage BiggityBass, whose isolation hosts were Mycobacterium 

smegmatis mc²155 and Gordonia terrae CAG3, respectively. I also determined the 

bacteriophages' phylogenetic placement and computationally inferred their putative host 

ranges. For my fourth chapter I assessed the performance of several of these 

computational host range prediction tools using a dataset of bacteriophages whose host 

ranges have been experimentally validated. Finally, in my fifth chapter I reviewed the key 

parameters for developing an evolutionary baseline model of another virus, human 

cytomegalovirus.  
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CHAPTER 1 

INTRODUCTION 

Viral evolution is shaped by a myriad of factors, from the immune response and 

co-evolution of their hosts to their own genomic architecture and infection strategies; as 

well as basic evolutionary forces of drift, admixture, and demography (Spielman et. al 

2019; Szpara 2021). These selective forces are particularly strong in viruses due to their 

short, coding dense genomes and large populations sizes. Viral evolution occurs on both 

short (a single round of infection) and longer evolutionary timeframes (Simmonds et. al 

2019). Life history strategy can also influence evolutionary trajectories, i.e. lytic (lysis of 

the host after replication) or temperate lifecycles (periods of lysogeny in which the viral 

genome is integrated into the host genome followed by a transition into the lytic cycle). 

Molecular mechanisms of viral evolution include a spectrum of mutations (single 

nucleotide changes, tandem repeat fluctuations, insertions, deletions, and duplication), 

recombination, and horizontal gene transfer. Higher polymerase fidelity, error correction, 

and lysogeny are additional factors primarily associated with, but not exclusive to, DNA 

viruses, that can also influence their evolution (Szpara 2021). The switch to a temperate 

lifecycle in viruses is predicted to be evolutionarily advantageous under conditions of 

oscillating population dynamics and periodic environmental collapse, so that when host 

cells are limited the viral strain that can maintain growth in the lowest number of cells 

outcompetes those with the higher growth rate (Wahl et. al 2019).  

Bacteriophages, viruses that infect bacteria, are an important part of the 

virosphere, and may perhaps be the most abundant organisms on Earth (Comeau et. al 

2008). Phages have been used as a model organism in pioneering genetics research 

since the 1930’s, from the Luria-Delbruck mutation rate experiments to the Hershey-

Chase experiments establishing DNA as the hereditary material of life (Keen 2015). 
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Additionally, phages are important drivers of bacterial evolution through selective 

pressures and gene transfer through transduction (Chevallereau et. al 2022). The 

community context of bacterial hosts has also been shown to have important ecological 

and evolutionary effects on phage-hosts systems, with many questions still outstanding 

(Blazanin and Turner 2021). Interest in mycobacteriophages, viruses that infect 

mycobacterial hosts, emerged from the work of Jacobs et al.(1987) and Jacobs (2000), 

where they used mycobacteriophages to deliver foreign DNA into bacteria. 

Mycobacteriophages can be utilized as genomic tools to further our understanding of 

their pathogenic hosts, including Mycobacterium tuberculosis and Mycobacterium 

leprae, the causative agents of human tuberculosis and leprosy. Mycobacteriophages 

that infect close relatives of these pathogenic bacteria, e.g., Phegasus and its isolation 

host Mycobacterium smegmatis, may be possible candidates for phage therapy 

applications to combat antibiotic resistance. Additionally, BiggityBass and other phages 

that infect bacteria of the genus Gordonia can potentially be used as biocontrol agents 

for wastewater treatment (Goodfellow et. al 1998). To effectively guide the use of 

bacteriophages for biocontrol and phage therapy, the host range of these phages must 

be determined either experimentally or computationally. While experimental validation is 

the gold standard in elucidating phage-host interactions, these methodologies are 

laborious, time-intensive, costly, and limited by the number of microbial hosts able to be 

cultivated in the lab (Wade 2002; Edwards and Rohwer 2005). In response, various tools 

to computationally predict host ranges have been developed that utilize alignment-based 

or machine learning-based models (see review of Versoza and Pfeifer 2022).  

Previously, mycobacteriophages were organized by morphology and host range, 

however these groupings were inconsistent with genomic sequence similarity (Lima-

Mendez et. al 2008). Mycobacteriophage genomes have been described as mosaic 
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(Hendrix, 2002; Hendrix et al., 1999, 2000; Pedulla et al., 2003), where large sections of 

the genome have been exchanged horizontally through homologous recombination, site 

specific recombination, transposon-mediated gene transfer, or non-homologous 

illegitimate recombination. This mosaicism makes the construction of whole genome 

phylogenies of mycobacteriophages difficult, as their evolution is fundamentally 

reticulate (Lawrence et al., 2002; Lima-Mendez et al., 2008). In light of this, a cluster 

classification approach for mycobacteriophages has arisen, which assigns phages to a 

given cluster based on a nucleotide sequence similarity that spans more than 50% of the 

genome length with one or more other genomes (Hatfull 2010). Clusters therefore do not 

represent hierarchical lineages but reflect recent evolutionary events within a subcluster. 

To identify homologues that diverged longer ago, individual genes are grouped into 

"phamilies" based on pairwise comparisons using Clustal and BlastP searches (Cresawn 

2011; Hatfull et al., 2006; Pope et al., 2011). Through comparative analysis of closely 

related mycobacteriophages, we can elucidate individual mutational steps of phage 

evolution that lead to phenotypic changes in phages.  

Other DNA viruses have their own distinct evolutionary mechanisms, selective 

pressures, and evolutionary constraints. Human Cytomegalovirus (HCMV) is a -

herpesvirus in the Herpesviridae family with a relatively large double-stranded (ds) DNA 

genome of ~235 kb in size, including between 164-167 open reading frames (ORFs) 

(Dolan et al. 2004). HCMV is the leading cause of infection-related birth defects and 

contributes significantly to solid organ transplant failure and opportunistic infections in 

immunocompromised individuals (Balfour 1979; Suárez et al. 2019, 2020). HCMV and 

other Herpesviruses are characterized by lifelong persistence in their hosts through 

latency, in which the virus remains episomal in the host nucleus, a process distinct from 

lysogeny in that the viral genome does not integrate into the host genome. Latency is 
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achieved through HCMV’s ability to evade the host immune system, which includes 

strategies such as strain polymorphism, epitope competition to mislead humoral 

responses, endocytosis, and glycan shielding (Hu et. al 2022). Previous studies have 

demonstrated that over 50% of HCMV’s open reading frames can be deleted without 

impairing replication in fibroblasts, indicating that a majority of gene function is dedicated 

to immune modulating functions (Dunn et. al 2003; Yu et. al 2003). This repertoire of 

immunomodulatory functions is likely the result of HCMV’s extended co-evolution 

alongside the human innate and adaptive immune system (McGeoch et al. 2008). This is 

further supported by evidence in the herpesviruses and mammalian host phylogenies 

that the diversification of hosts drives diversification of the virus (McGeoch, Rixon, and 

Davison 2006). In contrast, antiviral medications represent a recent selective pressure 

on HCMV (Hakki and Chou 2011).  

In order to accurately detect recent responses to selective pressure, such as 

antiviral resistance mutations, genomic scans for positive selection should be evaluated 

within the context of demography, which can confound signals of adaption (Johri et al. 

2020, 2021). Different approaches for inferring selection (outlier, two-step, and 

simultaneous inference approaches) deal with demography in increasingly sophisticated 

manners. In an outlier approach, loci under selection are identified through an increase 

in population differentiation, which is assumed to be distinguishable from differentiation 

that arises through neutral processes. However, studies have shown that certain 

patterns of migration and mutation within subpopulations can create false positives (Nei 

and Maruyama 1975). In a two-step approach the demographic history is inferred from 

putatively neutral sites (intergenic regions, synonymous mutations, the third base in 

codons) and then these parameters are fixed when inferring selection. The caveat of this 

approach is that it assumes all sites are independent and unliked, which is particularly 
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problematic in coding-dense viral genomes (Ewing and Jensen 2016; Johri et al. 2021). 

The final approach of simultaneous inference aims to develop new statistics and 

analytical expressions that encapsulate the effects of both neutral and selective 

processes on a site. These new statistics include a method to describe the SFS at 

neutral sites experiencing linked BGS (Cvijovic et al. 2018), a method of describing the 

SFS under linkage disequilibrium (LD) through a system of ordinary differential 

equations Friedlander and Steinrücken (2022), and an Approximate Bayesian 

Computation approach that utilizes a new statistic describing decay of BGS effects away 

from the targets of selection (Johri 2020). It is evident that understanding the relative 

contributions of various evolutionary forces (mutation rate, recombination, the 

distribution of fitness effects, admixture, and genetic drift) in shaping observed levels 

and patterns of variation is important for improving statistical power and reducing false-

positive rates when scanning for adaptive mutations. For HCMV in particular, special 

consideration should be given to the level of progeny skew, bottleneck severity during 

infection and re-infection, and the degree of compartmental admixture.  

 

Overview of Dissertation Chapters 

This thesis represents a contribution to a larger, ongoing effort to characterize 

newly discovered bacteriophages through the phylogenetic placement of new strains 

and investigation of novel gene functions. In my first two chapters and associated 

appendices we annotated the genomes of bacteriophages Phegasus and BiggityBass 

using GLIMMER (Delcher et. al 1999) and GeneMark (Lukashin and Borodovsky 1998) 

to determine gene location and number, predicted gene function with NCBI BLAST 

(Altschul et. al 1990) and HHpred (Söding et. al 2005), and identified tRNAs using 

tRNAscan-SE (Lowe and Eddy 1997). For each phage genome, we investigated a 
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unique gene system through comparative analysis. In Phegasus, we identified an 

integration-dependent immunity system, which regulates the switch between lytic and 

lysogenic life cycles, as well as the integration attachments sites in the Cluster P 

bacteriophages and three putative host genomes. This indicates that these hosts are at 

risk of incorporating virulence factors from bacteriophages and therefore are not suitable 

candidate for antibacterial therapeutics. In BiggityBass, we identified a toxin/antitoxin 

(TA) system that allows it to inactivate bacteria-encoded toxins (Otsuka and Yonesaki 

2012; Wei et. al 2016), which was homolgous to the hicA TA system present in 

Burkholderia pseudomallei, E. coli, and Pseudomonas aeruginosa (Yamaguchi and 

Inouye 2011; Butt et. al 2014; Shen et. al 2016). Much like the CRISPR-Cas9 system, 

the toxin/antitoxin system points towards a shared evolutionary history between phage 

and host through the development of a viral defense system that potentially can also be 

exploited as a genomic tool. In addition to characterizing the genomes of these phages, 

we also computationally predicted their host ranges using the tool WIsH. The host range 

prediction results of my second and third chapter inspired the work of chapter 4, in which 

we investigate 11 host range prediction tools using 4 experimentally validated polyvalent 

(broad-range) phage datasets. This work introduces a new classification scheme for host 

range prediction tools as either confirmatory or exploratory and provides tool 

recommendations based on user availability of host strains and desire for sensitivity vs 

specificity. This chapter also highlights a significant issue that many bacterial strain-

specific genomes are not publicly available and the implications of this for 

computationally predicting host ranges. Finally, in my fifth chapter we reviewed the key 

parameters for developing an evolutionary baseline model of another virus, human 

cytomegalovirus. In this review we identify special considerations for HCMV when 

developing an evolutionary baseline model, including the ability to detect low frequency 
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variants, as well as the level of progeny skew, bottleneck severity during infection and 

re-infection, and the degree of compartmental admixture. This work lays the foundation 

for the development of an evolutionary baseline model of HCMV, which is critical to 

understanding how and when diversity in the HCMV genome is generated and has 

important implications for vaccine development as well as antiviral therapy. Taken 

together this thesis represents a collection of novel insights into several DNA viruses 

using computational genomics approaches.  
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CHAPTER 2 

PHYLOGENOMIC ANALYSES AND HOST RANGE PREDICTION OF CLUSTER P 

MYCOBACTERIOPHAGES 

 

(Previously published as A.A. Howell*, C.J. Versoza*, G. Cerna, T. Johnston, S. Kakde, 

K. Karuku, M. Kowal, J. Monahan, J. Murray, T. Nguyen, A. Sanchez Carreon, A. Streiff, 

B. Su, F. Youkhana, S. Munig, Z. Patel, M. So, M. Sy, S. Weiss, S.P. Pfeifer. 2022. 

Phylogenomic analyses and host range prediction of cluster P mycobacteriophages. G3 

(Bethesda), 12(11).)  

 

(Associated appendix previously published as A.A. Howell*, C.J. Versoza*, G. Cerna, T. 

Johnston, S. Kakde, K. Karuku, M. Kowal, J. Monahan, J. Murray, T. Nguyen, A. 

Sanchez Carreon, E. Song, A. Streiff, B. Su, F. Youkhana, S. Munig, Z. Patel, M. So, M. 

Sy, S. Weiss, Y. Zhou, S.P. Pfeifer. 2022. Complete genome sequence of the cluster P 

mycobacteriophage Phegasus. Microbiol. Resour. Announc. e00540-22.) 

 

* contributed equally 
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Abstract 

Bacteriophages, infecting bacterial hosts in every environment on our planet, are 

a driver of adaptive evolution in bacterial communities. At the same time, the host range 

of many bacteriophages—and thus one of the selective pressures acting on complex 

microbial systems in nature—remains poorly characterized. Here, we computationally 

inferred the putative host ranges of 40 cluster P mycobacteriophages, including 

members from 6 subclusters (P1–P6). A series of comparative genomic analyses 

revealed that mycobacteriophages of subcluster P1 are restricted to the Mycobacterium 

genus, whereas mycobacteriophages of subclusters P2–P6 are likely also able to infect 

other genera, several of which are commonly associated with human disease. Further 

genomic analysis highlighted that the majority of cluster P mycobacteriophages harbor a 

conserved integration-dependent immunity system, hypothesized to be the ancestral 

state of a genetic switch that controls the shift between lytic and lysogenic life cycles—a 

temperate characteristic that impedes their usage in antibacterial applications. 
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Introduction 

Less than 1% of the virosphere on our planet has been characterized to date 

(Geoghegan and Holmes 2017). An important part of this virosphere is bacteriophages 

(i.e. bacteria-infecting viruses), which are impacting bacterial genome evolution and 

community dynamics in every environment (Howard-Varona et al. 2017). 

Bacteriophages can establish lytic or lysogenic infections—the former leading to 

cell destruction while the latter being “dormant,” with bacteriophages replicating as 

prophages within the host without the production of virions (Howard-Varona et al. 2017). 

Temperate bacteriophages can switch between lytic and lysogenic life cycles, for 

example through the usage of integration-dependent immunity systems that establish 

lysogeny by suppressing lytic growth through an interplay between 3 proteins: integrase 

(Int), repressor (Rep), and Cro [for an in-depth discussion on these and other genetic 

switches, see the commentary by Broussard and Hatfull (2013)]. In integration-

dependent immunity systems, the decision on whether lytic or lysogenic growth will take 

place depends by and large on the activity of Int as modulated by targeted proteolysis 

(Broussard et al. 2013). Under conditions where integrases are broken down (i.e. in the 

presence of a C-terminal ssrA-like protease degradation tag in Int), integration fails to 

occur. Instead, the viral form of Rep is generated and subsequently degraded due to the 

presence of its own C-terminal ssrA-like tag. The lytic protein Cro is freely expressed 

and stops repressor function (Hochschild et al. 1986). Conversely, when integrases 

escape proteolysis due to either decreased levels of proteases (such as ClpXP) or high 

multiplicity of infection (i.e. a high ratio of bacteriophages to infection targets), integration 

of bacteriophage genetic material will occur. This leads to the expression of an active 

(truncated) form of Rep that lacks the ssrA-like tag, causing a downregulation of Cro 

expression, which ultimately leads to lysogenic establishment and prophage induction. 
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Thereby, the integration into the host genome is mediated by recombination between the 

bacteriophage attachment site (attP) and the bacterial attachment site (attB) in the host 

genome. Attachment sites are recognized by Int—an integral part of the attP–Int 

cassette required for integrase-mediated site-specific recombination (Singh et al. 2013). 

Thereby, Int is either a tyrosine recombinase (which requires additional host cofactors 

such as the one present in Mycobacterium smegmatis; Pedulla et al. 1996; Peña et al. 

1999; Lewis and Hatfull 2003; Chen et al. 2019) or a serine recombinase (which 

functions without any cofactors but recognizes shorter attP sequences than the tyrosine 

recombinase; Groth and Calos 2004). 

Mycobacteriophages are a group of both lytic and temperate bacteriophages that 

infect mycobacterial hosts—including the causative agents for several human diseases 

such as tuberculosis (M. tuberculosis) or leprosy (M. leprae), separated into 31 clusters 

(A–Z and AA–AE) based on their nucleotide similarity and genomic architecture (Pope et 

al. 2011). Out of these, temperate cluster P bacteriophages are of particular interest to 

the scientific community to, for example study the evolution of genetic switches as 

several members of this cluster have been shown to harbor an unusual switch in which 

the bacteriophage attachment site is located within the repressor gene (e.g. Broussard 

et al. 2013; Doyle et al. 2017). 

Interestingly, many mycobacteriophages have the ability to broaden their host 

range to infect either different strains or completely new mycobacterial species (Jacobs-

Sera et al. 2012). In contrast to lytic bacteriophages, which are frequently exploited as 

antimicrobial agents (Sharma et al. 2017), the life cycle of temperate bacteriophages 

often impedes their usage, particularly with regard to bacteriophage therapy, due to the 

risk of transferring virulence factors through genomic pathogenicity islands (Malachowa 

and Deleo 2010; Xia and Wolz 2014). Thus, host ranges of many temperate 
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bacteriophages remain poorly characterized, despite their important impact on bacterial 

evolution. To advance our knowledge on the topic, and as part of a course-based 

undergraduate research experience at Arizona State University, we analyzed the 

genomes and computationally inferred the host ranges of 40 cluster P 

mycobacteriophages. 

Materials and methods 

Comparative genomic analyses 

A multiple sequence alignment of 40 cluster P mycobacteriophages previously 

isolated in M. smegmatis mc2155 (Supplementary Table 1) was generated via MAFFT 

v.7.407 (Katoh and Standley 2013) and subsequently used to construct a neighbor-

joining tree in MEGA X (Kumar et al. 2018) using a bootstrap test of phylogeny with 

10,000 replicates. Additional whole-genome and gene-specific trees were generated, 

including 16 bacteriophages from clusters G1, I1, and N for which integration-dependent 

immunity systems had previously been identified (either experimentally or through the 

computational identification of an attP site within the repressor gene; Supplementary 

Table 2). Trees were visualized using FigTree v.1.4.4 

(http://tree.bio.ed.ac.uk/software/figtree/; last accessed 2022 April 24) and the Interactive 

Tree Of Life (Letunic and Bork 2019). Sequence relatedness was determined using 

pairwise average nucleotide identity scores calculated using the DNA Master “Genome 

Comparison” tool v.5.23.6 and plotted using the ggplot2 function (Wickham 2016) in R 

v.4.0.2. All software were executed using default settings. 

Identification of attP and attB sites 

Following Pham et al. (2007), NCBI BLASTn (Altschul et al. 1990) was used to 

compare the 300-bp region surrounding the 5′-end of the immunity repressor gene in 

each cluster P mycobacteriophage (Supplementary Table 1) against the genomes of 14 
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putative mycobacterial host species (Supplementary Table 3) to determine the 

plausibility of attP/attB sites. In addition, Tandem Repeats Finder v.4.09 (Benson 1999) 

was used to search for integrase binding sites near the attP common core. 

Host prediction 

Following the best practices suggested by Versoza and Pfeifer (2022), both 

exploratory and confirmatory methods were used to computationally predict host ranges 

for 40 closely related cluster P mycobacteriophages (Supplementary Table 1). First, the 

exploratory tool PHERI v.0.2 (Baláž et al. 2020) was used to predict bacterial host 

genera. Among the currently available exploratory host range prediction tools, PHERI 

was the most user-friendly and well-documented, making it ideally suited for course-

based undergraduate research experiences. Next, WIsH v.1.1 (Galiez et al. 2017)—a 

bacterial host range predictor that compares virus and host sequence composition—was 

used to estimate the likelihood of these 40 cluster P bacteriophages to infect 14 putative 

mycobacterial host species with particular relevance to human health and disease 

(Supplementary Table 3). WIsH was selected as the representative for confirmatory host 

range prediction tools as it was an easily applicable alternative to alignment-based tools 

which frequently underpredict phage–host interactions (Zielezinski et al. 2021). Lastly, 

following Crane et al. (2021), PHASTER (Arndt et al. 2016) was used to search the 

genome of these putative host species for prophages to determine whether cluster P 

mycobacteriophages might be able to integrate into the host. 

Results and Discussion 

Comparative genomic analyses between 40 cluster P mycobacteriophages (32 

subcluster P1, 1 subcluster P2, 1 subcluster P3, 2 subcluster P4, 2 subcluster P5, and 1 

subcluster P6; Supplementary Table 1) demonstrated a close relatedness at the 

sequence level (Fig. 1a), with cluster assignments supported by pairwise average 
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nucleotide identities between the bacteriophages (Supplementary Fig. 1). With the 

exception of Tortellini (P2), Xavia (P3), and ThulaThula (P5), cluster P bacteriophage 

genomes harbor a conserved integration-dependent immunity system, comprised of an 

immunity repressor flanked by a tyrosine integrase, an excise gene, and an 

antirepressor (Supplementary Fig. 2) that governs the transition from the lytic to 

lysogenic state by binding and inactivating the lysogenic repressor (Lemire et al. 2011; 

Kim and Ryu 2013). It has previously been hypothesized that conserved integration-

dependent immunity systems form the ancestral state of more complex genetic switches 

(Broussard and Hatfull 2013), such as those present in λ bacteriophages (Oppenheim et 

al. 2005). Interestingly, a neighbor-joining tree generated from whole-genome 

sequences of 16 cluster G1, I1, and N bacteriophages containing an integration-

dependent immunity system (Supplementary Table 2) places cluster P4–P6 

bacteriophages as sister taxa to the G1, I1, and N subclusters (Fig. 1b)—a tree topology 

supported by the gene-specific tree based on the immunity repressor sequences (Fig. 

1c). 
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Fig. 1. Neighbor-joining trees. Neighbor-joining trees generated in MAFFT (Katoh and 
Standley 2013) using the multiple-sequence alignment of (a) 40 cluster P 
mycobacteriophages (Supplementary Table 1) and (b) 16 cluster G1, I1, and N 
bacteriophages with a previously identified integration-dependent immunity system 
(Supplementary Table 2), with 10,000 bootstrap replicates. c) Gene-specific tree based 
on the immunity repressor sequences of the bacteriophages included in (b). Colors 
highlight membership in subclusters P1–P6. 
 

To explore the impact of cluster P mycobacteriophages on bacterial 

communities, their host ranges were computationally predicted using a combination of 

exploratory and confirmatory tools, together with 14 putative mycobacterial host species 

relevant to human health and disease. Using the exploratory method, all but 1 P1 

bacteriophages (Donovan) appear restricted to the Mycobacterium genus (Table 1). In 

contrast, bacteriophages of subclusters P2–P6 are likely also able to infect the 

nonpathogenic microbes Gordonia and Rhizobium as well as hosts of the genera 

Clostridiodes, Clostridium, and Corynebacterium, frequently associated with human 

disease, including diphtheria (Corynebacterium diphtheriae) as well as several hospital-

acquired infections (see reviews by Bernard 2012 and Mangutov et al. 2021). As the 

ability to bind to new receptors is a key step in host-range evolution (Meyer et al. 2012), 

mutations within tail protein genes might explain the predicted expanded host range of 

subclusters P2–P6. At the species level, confirmatory results (Fig. 2) suggest that, in 

addition to M. smegmatis mc2155 used to isolate the bacteriophages, subcluster P1 

mycobacteriophages are likely able to infect Mycobacterium fortuitum—which can cause 

infections in the skin, lymph nodes, and joints of immunocompromised individuals (Sethi 

et al. 2014), as well as Mycobacterium gilvum, and Mycobacterium intracellulare—which 

can cause pulmonary infections and lymphadenitis in immunocompromised individuals 

(Han et al. 2005). In contrast, bacteriophages of subclusters P2–P6 displayed low 

likelihoods of infection for all tested hosts. 
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Fig. 2. Confirmatory host range prediction. Putative bacteriophage–host interactions as 
predicted by WIsH (Galiez et al. 2017), using 40 cluster P mycobacteriophages 
(Supplementary Table 1), together with 14 potential bacterial hosts and Escherichia coli 
as a negative control (Supplementary Table 2). The higher the reported value, the more 
likely a bacteriophage is able to infect a putative host. 
 

 

Table 1. Exploratory host range prediction. Putative host genera of the 40 cluster P 
bacteriophages included in this study (Supplementary Table 1) as predicted by PHERI 
(Baláž et al. 2020). 
 

To investigate the temperate nature of cluster P mycobacteriophages, prophage 

sequences were computationally predicted within the putative host genomes. Three 

putative hosts (Mycobacterium abscessus, Mycobacterium marinum, and M. smegmatis) 

contain intact prophages—however, none of them correspond to prophages that stem 

from the integration of cluster P mycobacteriophages. In addition, incomplete prophages 

from the integration of cluster P mycobacteriophages were detected in both M. 
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abscessus and M. marinum (Fig. 3)—2 opportunistic pathogens known to inflict 

pulmonary (Winthrop and Roy 2020) and cutaneous (Aubry et al. 2000) infections in 

humans—indicating that these hosts are at risk of incorporating virulence factors from 

these bacteriophages. Interestingly, the 2 partial prophages within M. abscessus and M. 

marinum were predicted to stem from the integration of 2 (out of only 3) cluster P 

bacteriophages that lack an integration-dependent immunity system (ThulaThula and 

Xavia, respectively). 

 

 

Fig. 3. Prophage prediction. Complete (green) and incomplete (red) prophages from the 
integration of bacteriophages were detected in both M. abscessus (left) and M. marinum 
(right). Incomplete prophages from the integration of cluster P mycobacteriophages are 
displayed at the bottom (region 2 in M. abscessus and region 1 in M. marinum), together 
with the protein-coding genes contained in these regions. Phage-like proteins on forward 
and reverse strands (indicated by orange arrows) are displayed above and below the 
ruler for each region, respectively. 
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For temperate bacteriophages, the risk of transfer of virulence factors depends 

(at least in part) on the presence of an attP region in the bacteriophage as well as a 

corresponding attB attachment site in the host genome (Pham et al. 2007). Putative attP 

sites in cluster P bacteriophages are similar in length to those previously reported in 

other mycobacteriophages (Pham et al. 2007; Morris et al. 2008) and the lack of arm-

type integrase binding sites flanking the attP common core—known to be present in 

nonintegration-dependent immunity system bacteriophages such as λ (Landy 1989) and 

L5 (Peña et al. 1997) but notably absent in integration-dependent immunity system 

bacteriophages (Broussard et al. 2013)—is further evidence of a functional integration-

dependent immunity system in these bacteriophages. To identify putative attachment 

sites, attP sites were compared against the genomes of 14 mycobacteria. Out of the 14 

mycobacterium species tested, only 3 (M. smegmatis, Mycobacterium chelonae, and 

Mycobacterium leprae) contained a homologous attB bacterial attachment site, 

overlapping with the 3′-end of a tRNAThr gene (Supplementary Table 4), indicating that 

these hosts are at risk of incorporating virulence factors from bacteriophages that utilize 

tyrosine integrases in their integration-dependent immunity systems. Yet, despite the 

presence of an attB attachment site, 2 out of these 3 species (M. chelonae and M. 

leprae) were not predicted as potential hosts for any cluster P bacteriophage. However, 

it is important to note that WIsH evaluates host likelihood on the basis of oligonucleotide 

frequency similarity between the virus and host genomes. Consequently, more 

sophisticated approaches that rely on several distinct genomic features to predict the 

success of phage infection (such as advanced machine learning-based methods) may 

be able to provide a more complete picture of the putative host ranges. 

Taken together, our computational predictions indicate that cluster P 

bacteriophages harboring a conserved integration-dependent immunity system likely 
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exhibit similar host ranges. An important future endeavor will be the experimental 

validation of the presented computational results by phenotypic studies in order to lend 

further credence to the hypothesis that the type of genetic switch used to induce 

lysogeny plays an important role in host range evolution. 

Data Availability 

Genomic data for all 40 cluster P mycobacteriophages, 16 cluster G1, I1, and N 

bacteriophages with a previously identified integration-dependent immunity system, and 

14 putative bacterial host species can be downloaded from the NCBI Sequence Read 

Archive using the accession numbers provided in Supplementary Tables 1–3, 

respectively. Supplementary Table 4 lists the mycobacteriophage integration systems 

and putative integration sites of cluster P mycobacteriophages in M. chelonae, M. 

leprae, and M. smegmatis. Supplementary Fig. 1 displays the pairwise average 

nucleotide identities of the 40 cluster P bacteriophages. Supplementary Fig. 2 displays 

the Phamerator map of the regions encoding the tyrosine integrase, immunity repressor, 

and excise genes in cluster P mycobacteriophages. 
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Supplementary Materials 

 

Table S1. Mycobacterium cluster P bacteriophages included in the comparative 
analyses. Bacteriophages for which integration-dependent immunity systems had 
previously been identified through the computational identification of an attP site within 
the repressor gene are highlighted in blue. 
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Table S2. Bacteriophages included in the comparative analyses for which integration-
dependent immunity systems had previously been identified (green: experimentally 
validated; blue: computationally predicted). 
 

 

Table S3. Mycobacteria included in the comparative analyses. 
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Table S4. Mycobacteriophage integration systems and putative integration sites of 
Mycobacterium cluster P bacteriophages in M. chelonae Myco3a (attB location: tRNAThr 
; 447,412–447,737 bp), M. leprae TN (attB location: tRNAThr ; 271,936–271,975 bp), 
and M. smegmatis mc2 (attB location: tRNAThr ; 6,222,599–6,222,637 bp). 
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Abstract 

Bacteriophages infecting bacteria of the genus Gordonia have increasingly 

gained interest in the scientific community for their diverse applications in agriculture, 

biotechnology, and medicine, ranging from biocontrol agents in wastewater management 

to the treatment of opportunistic pathogens in pulmonary disease patients. However, due 

to the time and costs associated with experimental isolation and cultivation, host ranges 

for many bacteriophages remain poorly characterized, hindering a more efficient usage 

of bacteriophages in these areas. Here, we perform a series of computational genomic 

inferences to predict the putative host ranges of all Gordonia cluster DR bacteriophages 

known to date. Our analyses suggest that BiggityBass (as well as several of its close 

relatives) is likely able to infect host bacteria from a wide range of genera—

from Gordonia to Nocardia to Rhodococcus, making it a suitable candidate for future 

phage therapy and wastewater treatment strategies. 
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Introduction 

Bacteriophages are one of the most abundant organisms on Earth, infecting a 

wide range of host bacteria present in almost any environment from common garden soil 

to volcanic substrates and from freshwater streams to oceans (Rohwer 2003). Among 

these hosts, members of the order Corynebacteriales—

including Gordonia, Mycobacterium, Nocardia, and Rhodococcus—are of particular 

importance to agriculture, biotechnology, and medicine as the outer membrane of their 

bacterial cells, which consists of long-chain hydroxylated mycolic acids, frequently leads 

to complications during the prevention, treatment, and cure of opportunistic pathogens 

(Dyson et. al 2015). Moreover, due to the hydrophobic nature of this 

“mycomembrane”, Corynebacteriales often cause severe problems during wastewater 

treatment as they can stabilize foams on the surface of aeration tanks during the 

activated sludge phase (Petrovski et. al 2011), which not only complicates sludge 

management and increases maintenance costs but also poses a health hazard to 

wastewater treatment plant workers in their aerosolized form (Pal and Kumar 2014). 

Owing to the growing scarcity of clean water across the globe, treated 

wastewater serves as an important alternative to freshwater for many nations with more 

than 35% of agricultural irrigation, 17% of landscape irrigation, and 12% of groundwater 

recharge in the United States stemming from treated wastewater (Kesari et. al 2021). 

However, microbial hazards, such as multi-drug resistant bacterial pathogens, are 

frequently discharged into sewage systems due to the common usage of antibiotics in 

animal farms and on crop fields. Consequently, effective wastewater treatment 

strategies are indispensable to combat environmental and health concerns for farmers 

and consumers alike (Dang et. al 2019). 
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Due to their host specificity, lytic bacteriophages have been proposed as 

promising and environmentally-friendly bacterial treatment and control agents to remove 

harmful (or otherwise problematic) bacteria—such as gram-positive Gordonia which are 

associated with both systemic infections in immunocompromised and local infections in 

immunocompetent individuals (Arenskötter et. al 2004; Grisold et. al 2007) as well as 

sludge foaming (De los Reyes et. al 1998; Kragelund et. al 2007)—while maintaining 

desirable microorganisms in the wastewater. To effectively guide these biological control 

strategies, bacteriophages and their host ranges (i.e., the bacterial genera and species a 

bacteriophage is able to infect) must be well-characterized—yet, the diversity 

of Gordonia bacteriophages remains largely unexplored. 

As part of a course-based undergraduate research experience at Arizona State 

University, we computationally inferred putative host ranges of all Gordonia cluster DR 

bacteriophages known to date to aid the design and improvement of future wastewater 

treatment strategies. 

Materials and Methods 

Genomic data for Gordonia cluster DR bacteriophages (Supplementary Table 

S1) were explored using Phamerator (Cresawn et. al 2011) and phylogenetic 

relationships characterized together with representative Microbacterium, Mycobacterium, 

and Streptomyces bacteriophages as outgroups (Supplementary Table S2). Specifically, 

MAFFT v.7 (Katoh and Standley 2013) embedded within the EMBL-EBI Bioinformatics 

Toolkit (Zimmerman et. al 2018; Gabler et. al 2020) was used to generate a multiple-

sequence alignment between the bacteriophages. The resulting alignment was then 

used to generate a neighbor-joining tree in MEGA X (Kumar et. al 2018) using a 

phylogeny test with 10,000 bootstrap replicates. Nucleotide sequence relatedness was 

assessed using Gepard v.2.1.0 (Krumsiek et. al 2007). Pairwise average nucleotide 
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identities (ANIs) were calculated using the “Genome Comparison” tool embedded within 

DNA Master v.5.23.6 and plotted using the ggplot2 package (Wickham 2009) in R 

v.4.1.0. 

Following suggested best practices by Versoza and Pfeifer (2022), a combination 

of exploratory and confirmatory methods was utilized to computationally predict host 

ranges of the closely-related Gordonia cluster DR bacteriophages. Specifically, putative 

host ranges were predicted using two machine-learning based prediction tools—

CHERRY (Shang and Sun 2022) and PHERI v.0.2 (Baláž et. al 2020)—as well as the 

alignment-free prediction tool WIsH v.1.1 (Galiez et. al 2017) together with genomic data 

from ten putative bacterial host species spanning three genera—

Gordonia, Nocardia, Rhodococcus, and, as a negative 

control, Escherichia (Supplementary Table S3). All software was executed using default 

settings. 

Results 

To confirm cluster membership, the genomes of Gordonia cluster DR 

bacteriophages were investigated. They show a high level of sequence similarity with the 

left arm of the genomes mostly encoding well-conserved structural and assembly 

proteins (including a terminase, portal protein, capsid maturation protein as well as major 

capsid hexamer and pentamer proteins, a head-to-tail adaptor, tail assembly protein, 

tape measure protein, minor tail protein subunits, lysin A, lysin B, and several genes 

responsible for integration into the host). Thereby, the RuvC-like resolvase 

(Supplementary Figure S1), a Holliday junction resolving enzyme that is a distant relative 

of the RuvC proteins present in gram-negative bacteria such as Escherichia coli (Lilley 

and White 2001) is of particular interest. It closely resembles the RuvC-like 

endonucleases found in select Siphoviridae and Myoviridae bacteriophages 
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infecting Streptococcus and Lactococcus hosts (Bidnenko 2002; Curtis et. al 2004), 

which may hint at a shared evolutionary history. The right arm of the genomes contains 

non-structural genes (including an exonuclease, DNA helicase, DNA polymerase, and 

HNH endonuclease). Notably, several cluster DR bacteriophages exhibit a partial 

toxin/antitoxin (TA) system (Supplementary Figure S2). Prevalent in many archaea and 

bacteria, TA systems encode a toxin protein and a corresponding antitoxin in the form of 

a protein or non-coding RNA that serves as a defense mechanism against invading 

bacteriophages (Unterholzner et. al 2013; Song and Wood 2020). As bacteriophages co-

evolve with their bacterial hosts (Stern and Sorek 2011), adaptations to such defense 

mechanisms are common (Rauch et. al 2017) to allow bacteriophages to inactivate 

bacteria-encoded toxins (Otsuka and Yonesaki 2012; Wei et. al 2016). Indeed, the TA 

system of the cluster DR bacteriophages is homologous to the hicA TA system 

frequently present in Burkholderia pseudomallei, E. coli, and Pseudomonas 

aeruginosa (Yamaguchi and Inouye 2011; Butt et. al 2014; Shen et. al 2016). 

To elucidate phylogenetic relationships, comparative analyses were performed 

between all Gordonia cluster DR bacteriophages known to date (Supplementary Table 

S1). Following Pope and colleagues (Pope et. al 2017), clustering was based on 

nucleotide similarity and shared gene content, with bacteriophages sharing at least 35% 

of genes being grouped into clusters. A neighbor-joining tree confirmed membership in 

the DR cluster (Supplementary Figure S3a)—an assignment that was further supported 

by both the dot plot analyses (Supplementary Figure S4) as well as the pairwise average 

nucleotide identities (Supplementary Figure S5). Interestingly, gene trees of the RuvC-

like resolvase (Supplementary Figure S3b) and the hicA-like toxin (Supplementary 

Figure S3c) do not recapitulate the whole genome phylogeny—however, it is unclear 

whether this is due to inconsistent resampling during bootstrapping caused by the short 
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sequence length (Lawrence et. al 2002) or the mosaic architecture of the genome 

caused by horizontal gene transfer by illegitimate recombination (Ford et. al 1998; Hatfull 

et. al 2006; Pedulla et. al 2003). Compared to temperate bacteriophages, both gene 

acquisition and gene loss, in lytic bacteriophages is less well understood (Moura de 

Sousa et. al 2021). However, there have been previous reports of gene transfers in T4-

like and T7-like bacteriophages (Filée et. al 2006; Dekel-Bird et. al 2013) and lytic 

bacteriophages with large genomes have been suggested to have acquired genes from 

donor genomes (Mesyanzhinov et. al 2002). 

Due to their bactericidal nature, bacteriophages are frequently used for a variety 

of agricultural, biotechnological, and medical applications (Sharma et. al 2017). To 

effectively guide the usage of bacteriophages in these areas, their host ranges have to 

first be determined (see discussion in Versoza and Pfeifer 2022). To investigate the host 

ranges of the closely related cluster DR bacteriophages, a combination of exploratory 

and confirmatory prediction tools was utilized together with a dataset of ten putative 

bacterial host species and E. coli as a negative control (Supplementary Table S3). 

Specifically, the tested host dataset spans the three genera of 

the Corynebacteriales order—Gordonia, Nocardia, and Rhodococcus—that have been 

implicated in activated sludge foaming in wastewater treatment plants (Goodfellow et. al 

1998). 

Using the exploratory method PHERI (Baláž et. al 2020), seven out of nine 

cluster DR bacteriophages were predicted to infect hosts under the Gordonia genus 

(Table 1), with the exception of bacteriophages AnClar and Yago84. To make host range 

predictions for newly encountered bacteriophages, PHERI utilizes a decision tree 

classifier of annotated protein clusters of bacteriophages with known hosts. 

Consequently, bacteriophages will only be predicted to infect a particular host if their 
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protein profile closely matches that of another bacteriophage known to infect that host. 

As minor tail proteins play an essential role in bacteriophage infection (Jacobs-Sera et. 

al 2012), the lack of similarity in the minor tail protein profiles of AnClar and Yago84 

compared to those bacteriophages known to infect Gordonia hosts might explain why 

neither were predicted to infect the Gordonia genus, despite having been isolated in G. 

terrae (Supplementary Table S1). In fact, the clades observed within the gene tree of the 

minor tail protein shared across all cluster DR bacteriophages (Supplementary Figure 

S3d) reflects the clustering of the bacteriophages with respect to host range, reiterating 

the importance of tail proteins for host infection. Using the exploratory method CHERRY 

(Shang and Sun 2022) —a graph convolutional encoder and decoder that relies on a 

broader range of features including protein organization, sequence similarity, and k-mer 

frequency to predict host ranges—highlights M. smegmatis, G. terrae, and R. hoagie as 

the three most likely host candidates for all cluster DR bacteriophages (though the latter 

two scoring predictions fell below the recommended confidence threshold of 0.9). 

Conversely, the confirmatory method WIsH (Galiez et. al 2017)—based on a Markov 

model that determines the k-mer similarity between bacteriophage and host genomes—

predicted G. hydrophobica, G. malaquae, G. rubripertincta, and G. terrae as potential 

hosts for all nine cluster DR bacteriophages relative to the negative control, E. 

coli (Figure 1). Moreover, log likelihood values for 

putative Nocardia and Rhodococcus hosts were comparable to those of Gordonia, 

suggesting the potential for a much broader host range. Interestingly, BiggityBass 

exhibits the broadest predicted host range among all cluster DR bacteriophages, spread 

across five different phyla (Table 1), making it an appealing agent to explore for future 

wastewater treatment strategies (Ross et. al, 2016). 

 

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=9413003_viruses-14-01647-g001.jpg
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Fig. 1. Putative host ranges as predicted by WIsH. Heatmap of log-likelihoods of 
bacteriophage-host pairs—including nine Gordonia cluster DR bacteriophages 
(Supplementary Table S1) as well as ten potential bacterial hosts and E. coli as a 
negative control (Supplementary Table S3)—generated by the host prediction tool WIsH 
(Galiez et. al 2017). Higher values correspond to more likely interactions. 
 
 
 
 

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=9413003_viruses-14-01647-g001.jpg
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Table 1. Putative host ranges as predicted by PHERI. Putative hosts of the nine 
Gordonia cluster DR bacteriophages included in this study (Supplementary Table S1) 
predicted by PHERI (Baláž et. al 2020). 
 

In conclusion, computational methods can offer a first glimpse into the putative 

host ranges of newly discovered bacteriophages—yet, it is important to remember that 

these methods are predictive by their very nature. Thereby, each computational method 

exhibits their own advantages and limitations. For example, tools that rely solely on k-

mer-based models can lead to an overprediction of host ranges if convergent evolution 

resulted in similar nucleotide frequency patterns (Ahlgren et. al 2016), whereas tools that 

rely on machine-learning are inherently limited in their predictions by the bacteriophage-

host datasets available for training (Versoza and Pfeifer 2022). Experimental validation 

through bacteriophage isolation and cultivation still remains the “gold standard” in 

determining bacteriophage host ranges—however, it certainly is not without its own 

limitations as not all microbial hosts are amendable to cultivation in the laboratory and, 

even if they are, results may depend on the conditions under which the experiments 

were performed (Versoza and Pfeifer 2022). Given the ever growing knowledge of 

bacteriophage diversity across the globe, it is our hope that future computational and 

experimental research will go hand in hand to further explore polyvalent bacteriophages 
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as an interesting study system to gain a better understanding of the molecular and 

genetic determinants underlying host range. 

Supplementary Materials 

The following supporting information can be downloaded at: 

https://www.mdpi.com/article/10.3390/v14081647/s1, Figure S1: Phamerator map of the 

RuvC-like resolvase gene; Figure S2: Phamerator map of the hicA-like toxin gene; 

Figure S3: Neighbor-joining trees; Figure S4: Dot plots; Figure S5: Average nucleotide 

identities; Table S1: Gordonia cluster DR bacteriophages included in the comparative 

analyses; Table S2: Bacteriophages included as outgroups in the comparative analyses; 

Table S3: Host bacteria included in the comparative analyses  
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Supplementary Figure S1. Phamerator map of the RuvC-like resolvase gene of closely 
related Gordonia cluster DR bacteriophages (Supplementary Table S1). In this 
Phamerator map, protein-coding genes with their putative functional assignments (if 
available) are displayed above or below a ruler, signifying genes on forward or reverse 
strands, respectively. The numbers shown above each gene indicate the protein family 
(pham) and, in parenthesis, the number of members in the pham family. Coloring 
between genomes represents nucleotide similarity with areas of highest similarity shown 
in purple (BLAST e-value = 0), followed by red (BLAST e-value of ~10-4) and white (no 
significant similarity). 
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Supplementary Figure S2. Phamerator map of the hicA-like toxin gene of closely related 
Gordonia cluster DR bacteriophages (Supplementary Table S1). In this Phamerator 
map, protein-coding genes with their putative functional assignments (if available) are 
displayed above or below a ruler, signifying genes on forward or reverse strands, 
respectively. The numbers shown above each gene indicate the protein family (pham) 
and, in parenthesis, the number of members in the pham family. Coloring between 
genomes represents nucleotide similarity with areas of highest similarity shown in purple 
(BLAST e-value = 0), followed by red (BLAST e-value of ~10-4) and white (no significant 
similarity). 
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Supplementary Figure S3. Neighbor-joining trees generated in MAFFT using the 
multiple-sequence alignment of (a) nine Gordonia cluster DR bacteriophage genomes 
(Supplementary Table S1) and their corresponding (b) RuvC-like resolvase, (c) hicA-like 
toxin gene, and (d) minor tail protein with 10,000 bootstrap replicates. Representative 
Microbacterium, Mycobacterium, and Streptomyces bacteriophages were included as 
outgroups (Supplementary Table S2). 
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Supplementary Figure S4. Dot plots of closely-related Gordonia cluster DR 
bacteriophages (Supplementary Table S1). 
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Supplementary Figure S5. Average nucleotide identities (ANIs) of closely-related 
Gordonia cluster DR bacteriophages (Supplementary Table S1).  
 

 

Supplementary Table S1. Gordonia cluster DR bacteriophages included in the 
comparative analyses. For detailed information on each bacteriophage, please visit the 
Howard Hughes Medical Institute (HHMI) – Science Education Alliance (SEA) Phage 
Hunters Advancing Genomics and Evolutionary Science (PHAGES) website at 
http://phagesdb.org.  

http://phagesdb.org/
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Supplementary Table S2. Bacteriophages included as outgroups in the comparative 
analyses. Abt2graduatex2 contains a hicA-like toxin (pham 34446) whereas Fizzles and 
Suffolk contain a RuvC-like resolvase (pham 34304). For detailed information on each 
bacteriophage, please visit the Howard Hughes Medical Institute (HHMI) – Science 
Education Alliance (SEA) Phage Hunters Advancing Genomics and Evolutionary 
Science (PHAGES) website at http://phagesdb.org. 
 

Supplementary Table S3. Host bacteria included in the comparative analyses.  

 

 

 

 

 

 

http://phagesdb.org/
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CHAPTER 4 

EVALUATING THE PERFORMANCE OF HOST RANGE PREDICTION TOOLS FOR 

POLYVALENT BACTERIOPHAGES 

(Currently in review as A.A. Howell*, C.J. Versoza*, S.P. Pfeifer. Computational host 

range prediction – the good, the bad and the ugly.)  

* contributed equally 

Abstract 

The rapid emergence and spread of antimicrobial resistance across the globe 

has prompted the usage of bacteriophages (i.e., viruses that infect bacteria) in a variety 

of applications ranging from agriculture to biotechnology and medicine. In order to 

effectively guide the application of bacteriophages in these multifaceted areas, 

information about their host ranges – that is the bacterial strains or species that a 

bacteriophage can successfully infect and kill – is essential. Utilizing 16 broad-spectrum 

(polyvalent) bacteriophages with experimentally validated host ranges, we here 

benchmark the performance of 11 recently developed computational host range 

prediction tools that provide a promising and highly scalable supplement to traditional, 

but laborious, experimental procedures. We show that machine- and deep-learning 

approaches offer the highest levels of accuracy and precision – however, their 

predominant predictions at the species- or genus-level render them ill-suited for 

applications outside of an ecosystems metagenomics framework. In contrast, only 

moderate sensitivity (<80%) could be reached at the strain-level, albeit at low levels of 

precision (<40%). Taken together, these limitations demonstrate that there remains room 

for improvement in the active scientific field of in silico host prediction to combat the 

challenge of guiding experimental designs to identify the most promising bacteriophage 

candidates for any given application.     
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INTRODUCTION 

Due to the rise of antimicrobial resistance – projected to lead to an estimated 10 

million deaths per year (Furfaro et al. 2018) and an economic loss of US$100 trillion by 

2050 across the globe (Manesh et al. 2021) – bacteriophages (i.e., viruses that infect, 

and replicate within, bacteria) are now being routinely used in a wide variety of fields as 

alternative to antibiotics for combating bacterial infections. Specifically, their applications 

range from agriculture (e.g., as biopesticides to combat plant pathogens in crops or 

biocontrol agents to manage bacterial infections in aquaculture or livestock on organic 

farms; Kuek et al. 2022), to food safety, production, and processing (e.g., to prevent or 

eliminate bacterial contaminations responsible for foodborne illnesses such as those 

caused by Escherichia coli, Listeria, and Salmonella bacteria; Oh and Park 2017; Moye 

et al. 2018; López-Cuevas et al. 2021), to biotechnology (e.g., as biosensing devices to 

detect specific bacterial strains; Harada et al. 2018), and to wastewater treatment (e.g., 

to regulate bacteria that negatively impact water quality, cause environmental problems, 

or affect industrial processes; Petrovski et al. 2011a,b). More recently, bacteriophages 

have also been rediscovered as agents in medical applications, including diagnostics to 

detect pathogenic bacteria (Monk et al. 2010), bacteriophage therapy to treat multi-drug-

resistant bacterial infections (Sulakvelidze et al. 2011; Nobrega et al. 2015), 

bacteriophage display to discover antibodies, peptides, or proteins that bind to, for 

example, cancer cells (Pande et al. 2010), as well as gene therapy, drug design, and 

delivery (Vaks and Benhar 2011; Omidfar and Daneshpour 2015). In addition, 

bacteriophages are an important tool in scientific research, in particular for the study of 

bacterial evolution, antibiotic resistance, as well as the genetic and evolutionary 

mechanisms underlying viral infectious diseases (Koskella and Brockhurst 2014). In 

order to effectively guide the usage of bacteriophages in these multifaceted areas, a firm 
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understanding of their host specificity as well as their efficacy in combating bacterial 

pathogens must first be established – knowledge which remains largely elusive. 

As natural predators of bacteria, identifying the most suitable bacteriophage for 

any given application requires an understanding of its host range, i.e., the bacterial 

strains or species that a bacteriophage can successfully hijack and kill (lyse). For 

example, a collection of bacteriophages with different, often overlapping, host ranges 

(so-called “bacteriophage cocktails”) is frequently harnessed to treat antibiotic-resistant 

bacterial pathogens without impacting the microorganisms beneficial to a patient 

(Dedrick et al. 2021; Little et al. 2022; Nick et al. 2022; Dedrick et al. 2023; and see 

review of Hatfull et al. 2022) or to target and control the spread of bacterial pathogens in 

food production without impacting consumer safety (Soffer et al. 2017; Zhang et al. 

2019). To identify host-specific bacteriophages, traditional experimental procedures 

remain the gold standard; these techniques comprise of bacteriophage display libraries 

or assays that rely on plaque formation on agar plates (spot and plaque assays), optical 

density fluctuations in liquid cultures (liquid assays), and fluorescent labeling (viral 

tagging and bacteriophage fluorescence in situ hybridization) (for detailed information, 

see Box 1 of Edwards et al. 2016). However, experimental host-range determinations 

are, by their very nature, restricted to bacteriophages and microbial hosts that can be 

successfully cultivated in the laboratory under simplified growth conditions – in particular 

with regards to growth media, temperature, pH, and UV light – which may not fully 

capture the complexity of natural environments. Moreover, culturing bacteriophages and 

performing host assays remains a laborious, time-consuming, and expensive process, 

thus limiting its potential for scalable high-throughput screening (Wade 2002; Edwards 

and Rohwer 2005; Coutinho et al. 2019). As a consequence, several bioinformatic 

software packages have recently been developed to predict bacteriophage-host ranges 
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in silico, aiding the prioritization of experimental efforts by identifying the most promising 

bacteriophage candidates suitable for lysing a specific bacterial strain that may then be 

further studied in the laboratory. 

Many such bacteriophage host range prediction tools have been developed in 

recent years (see review of Versoza and Pfeifer 2022). They can broadly be grouped 

into three categories: (a) alignment-based methods relying on sequence homology 

and/or sequence similarity between bacteriophages and their bacterial hosts originating 

from integrated prophages, short viral DNA sequences incorporated into the clustered 

regularly interspaced short palindromic repeat (CRISPR) loci of the host genome, tRNA 

genes, and/or genomic segments shared by horizontal gene transfer (with frequently 

used tools including Phirbo [Zielezinski et al. 2021], PHIST [Zielezinski et al. 2022], and 

VPF-Class [Pons et al. 2021]), (b) alignment-free methods based on sequence 

composition such as oligonucleotide or k-mer (i.e., nucleotide sequences of length k) 

frequencies that may result, for example, from shared patterns of codon usage as 

bacteriophages corrupt the host's replication machinery for protein synthesis (Carbone 

2008) or protein clustering associated with host recognition and binding (e.g., 

VirHostMatcher [Ahlgren et al. 2017], and WIsH [Galiez et al. 2017]), and (c) machine- / 

deep-learning-based methods trained on experimentally validated datasets of 

bacteriophage-host interactions to develop predictive statistical models that often 

incorporate multiple features (e.g., nucleotide and amino acid sequence and properties, 

protein interactions, and/or structural characteristics such as capsid proteins or tail fibers 

that can contribute to host specificity) to predict bacteriophage host ranges (e.g., 

CHERRY [Shang and Sun 2022], HostG [Shang and Sun 2021], Prokaryotic virus Host 

Predictor [Lu et al. 2021], RaFAH [Coutinho et al. 2021], VirHostMatcher-Net [Wang et 

al. 2020], and vHULK [Amgarten et al. 2022]).  
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Due to the complexity and diversity of bacteriophage-host interactions, the 

computational prediction of host ranges based on genomic data is a challenging task 

and the power of recently developed methodologies is often not well-established. Further 

complicating this issue, a lack of standardized evaluation criteria is hindering systematic 

assessments as well as consistent performance benchmarking across different 

approaches. The limited comparisons currently available (e.g., Edwards et al. 2016; 

Ahlgren et al. 2017; Baláž et al. 2023) have taken advantage of bacteriophage-host pairs 

available to the research community through public databases such as the genomic 

resources maintained by the National Center for Biotechnology Information (NCBI; 

https://www.ncbi.nlm.nih.gov/), the European Bioinformatics Institute (EMBL-EBI; 

https://www.ebi.ac.uk/), and the Actinobacteriophage database (phagesdb; 

https://phagesdb.org/) – not all entries of which have been experimentally validated. In 

addition, while these databases allow developers to assess both "true positives" (that is 

a bacteriophage-host interaction was computationally predicted and the available data 

suggested that the bacteriophage can infect the host) and "false negatives" (that is no 

bacteriophage-host interaction was predicted although the data suggested that the 

bacteriophage can infect the host), the almost complete absence of experimentally 

validated data that can attest to a bacteriophage not being able to infect a specific 

bacterial strain makes it impossible to assess "false positives" and "true negatives". 

Making matters worse, without experimental validation, the absence of a bacteriophage-

host pair from these databases is usually taken as evidence that a bacteriophage is not 

able to infect a bacterial strain, thus confounding previously reported levels of precision 

and specificity. Lastly, these comparisons often implicitly assume that a bacteriophage 

can only infect a single bacterial host, despite some bacteriophages showing much 

broader natural host ranges (see discussion in Edwards et al. 2016). 

https://www.ncbi.nlm.nih.gov/
https://www.ebi.ac.uk/
https://phagesdb.org/
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Polyvalent (or broad-spectrum) bacteriophages are a particularly interesting 

study system in this regard as they are able to recognize common cell-surface receptors, 

allowing them to infect and lyse several different bacterial strains or species – 

sometimes from across multiple genera – that share these receptor characteristics. Due 

to their broad host range, they provide a unique opportunity for testing the sensitivity and 

specificity of host range prediction tools. Utilizing three polyvalent E. coli bacteriophages 

and 13 polyvalent Gordonia bacteriophages with experimentally validated host ranges, 

we here assess the performance of 11 computational host range prediction tools and 

discuss important factors to consider when implementing these computational methods. 

Materials and Methods 

Experimental Data 

Computational host range prediction tools were evaluated using three polyvalent 

E. coli bacteriophages – HY01 (Lee et al. 2016), KFS-EC3 (Kim et al. 2021), and SFP10 

(Park et al. 2012) – as well as 13 polyvalent Gordonia bacteriophages – GTE2 

(Petrovski et al. 2011a), GTE7 (Petrovski et al. 2011b), GTE5 and GRU1 (Petrovski et 

al. 2012), as well as GMA2–GMA7, GRU3, GTE6, and GTE8 (Dyson et al. 2015) – 

whose host ranges were previously determined experimentally (for details, see 

Supplementary Tables S1 and S2, respectively). In brief, genome assemblies for all 

bacteriophages were downloaded from NCBI (using the accession numbers provided in 

Supplementary Tables S1 and S2). Genome assemblies of experimentally validated E. 

coli bacteriophage host and non-host strains were downloaded from the American Type 

Culture Collection (ATCC; https://www.atcc.org/) and NCBI (Supplementary Table S1) 

whereas genomes of experimentally validated Gordonia bacteriophage host and non-

host strains were newly sequenced and de novo assembled as described below. 
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DNA Isolation, Library Preparation, and Long-Read Sequencing. High molecular-weight 

genomic DNA from five Gordonia strains – Gordonia hydrophobica DSM 44015, 

Gordonia malaquae DSM 44454, Gordonia malaquae DSM 44464, Gordonia 

rubripertincta DSM 43197, and Gordonia terrae DSM 43249 – was isolated using the 

QIAGEN Genomic-tip 100 / G Kit (Qiagen, Hilden, Germany) according to the 

manufacturer's instructions. A barcoded sequencing library was prepared using the 

Oxford Nanopore Ligation Sequencing Kit (SQK-LSK109) together with the PCR-free 

Native Barcoding Expansion Kit (EXP-NBD114; Oxford Nanopore Technologies, Oxford, 

UK) and sequenced on an R9.4.1 FLO-MIN106 flow cell on the GridION X5 Mk1 

platform for 72 hours. Reads were base-called in high-accuracy mode, validated using 

fastQValidator v.0.1.1a (https://github.com/statgen/fastQValidator), and quality controlled 

using pycoQC v.2.5.2 (Leger and Leonardi 2019).  

De Novo Genome Assembly. High quality bacterial genome assemblies were 

generated for the five sequenced Gordonia strains. Prior to the assembly, genome size, 

repeat content, and coverage were estimated based on k-mer frequencies observed in 

the long read data using GenomeScope2.0 (Vurture et al. 2017; Ranallo-Benavidez et 

al. 2020) together with Jellyfish v.2.3.0 (Marçais and Kingsford 2011) (Supplementary 

Table S3). Reads were then de novo assembled using Flye v.2.9.2-b1786 (Kolmogorov 

et al. 2019) and one round of polishing was performed using Medaka v.1.7.2 

(https://github.com/nanoporetech/medaka) to improve accuracy. To assess the 

completeness of the genome assemblies, BUSCO v.5.4.7 (Manni et al. 2021) was used, 

together with the actinobacteria database "actinobacteria_class_odb10" (for additional 

details, see Supplementary Table S4). All software was executed using default settings. 

Computational Host Range Prediction 

https://github.com/statgen/fastQValidator
https://github.com/nanoporetech/medaka
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Computational host range prediction tools can be divided into two groups: (i) 

confirmatory methods that utilize a set of bacterial genomes provided by the user to infer 

the likelihood of a bacteriophage-host interaction and (ii) exploratory methods that 

predict bacteriophage-host interactions based on a set of bacteriophage genomes 

provided by the user and an internal database of putative host genomes. Bacteriophage 

host ranges were computationally predicted using the confirmatory tools Phirbo v.1.0 

(Zielezinski et al. 2021), PHIST v.1.1 (Zielezinski et al. 2022), Prokaryotic virus Host 

Predictor (PHP) v.1.0 (Lu et al. 2021), VirHostMatcher v.1.0 (Ahlgren et al. 2017), and 

WIsH v.1.1 (Galiez et al. 2017), as well as the exploratory tools CHERRY v.1.0 (Shang 

and Sun 2022), HostG v.1.0 (Shang and Sun 2021), Random Forest Assignment of 

Hosts (RaFAH) v.1.0 (Coutinho et al. 2021), viral Host UnveiLing Kit (vHULK) v.2.0 

(Amgarten et al. 2022), VirHostMatcher-Net v.1.0 (Wang et al. 2020), and VPF-Class 

v.1.0 (Pons et al. 2021). For the confirmatory tools (Phirbo, PHIST, PHP, 

VirHostMatcher, and WIsH), performance was evaluated based on the experimentally 

validated host and non-host bacterial strains (Supplementary Tables S5 and S6). Out of 

the five confirmatory tools, WIsH required the construction of a null model consisting of 

bacteriophage genomes known not to infect the bacterial strain(s) to compute the 

likelihood for a particular bacteriophage-host pair under a trained homogeneous Markov 

chain model for the host genome. To test the potential impact of null model construction 

on predictions, four different null models were tested based on bacteriophage genomes 

available in the Actinobacteriophage database (Supplementary Table S7). The first two 

models consisted of bacteriophage genomes expected not to infect any of the tested 

host strains: (1) a null model based on a large, diverse set of Alteromonas, 

Cellulophage, Cyanophage, Lactobacillus, Mycobacterium, Oenococcus, Pelagibacter, 

Prochlorococcus, Rhizobium, Synechococcus, and Thermus bacteriophage genomes 
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and (2) a null model based on a small set of Synechococcus bacteriophage genomes 

only (i.e., genomes of bacteriophages known to infect an unrelated bacterial genus). In 

addition, two model misspecifications were tested by including bacteriophage genomes 

known to infect host strains included in this study: (3) a null model based on a large, 

diverse set of Alteromonas, Cellulophage, Cyanophage, Escherichia coli, Lactobacillus, 

Mycobacterium, Oenococcus, Pelagibacter, Prochlorococcus, Rhizobium, 

Synechococcus, and Thermus bacteriophage genomes and (4) a null model based on a 

small set of Escherichia coli bacteriophages only. In contrast, exploratory tools predict 

bacteriophage-host interactions based on inbuilt databases either at the species-level 

(CHERRY and VirHostMatcher-Net) or genus-level (HostG, RaFAH, vHULK, and VPF-

Class) and their performance was evaluated based on these databases (Supplementary 

Tables S5 and S8). All software was executed using default settings with recommended 

tool-specific thresholds (as indicated in Supplementary Table S5).  

Comparative Genomic Analyses 

Pairwise average nucleotide identities (ANIs) between (i) the three E. coli 

bacteriophages HY01, KFS-EC3, and SFP10, as well as the 13 Gordonia 

bacteriophages GMA2-7, GRU1, GRU3, GTE2, and GTE5-8 (Supplementary Figure S1) 

and (ii) the experimentally validated host and non-host genomes as well as genomes of 

closely-related bacterial strains included in the exploratory tool databases 

(Supplementary Figures S2 and S3 for E. coli and Gordonia, respectively) were 

calculated using anvi'o v.7.1 (Eren et al. 2015). Additionally, to gain information about 

the putative causes of exploratory tool mis-predictions, PHASTER (Arndt et al. 2016) 

was used to search the genome of mis-predicted hosts for integrated prophages 

(Supplementary Figure S4).   
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Results and Discussion  

The performance of 11 computational host prediction tools was evaluated using 

three polyvalent E. coli bacteriophages and 13 polyvalent Gordonia bacteriophages for 

which host ranges were previously experimentally validated (for details, see 

Supplementary Tables S1 and S2). Out of the 11 computational prediction methods, 

three were alignment-based (Phirbo [Zielezinski et al. 2021], PHIST [Zielezinski et al. 

2022], and VPF-Class [Pons et al. 2021]), two alignment-free (VirHostMatcher [Ahlgren 

et al. 2017] and WIsH [Galiez et al. 2017]), and six machine- or deep-learning-based 

(CHERRY [Shang and Sun 2022], PHP [Lu et al. 2021], HostG [Shang and Sun 2021], 

RaFAH [Coutinho et al. 2021], vHULK [Amgarten et al. 2022], and VirHostMatcher-Net 

[Wang et al. 2020]).  

Confirmatory Tools 

The five confirmatory tools – Phirbo (Zielezinski et al. 2021), PHIST (Zielezinski 

et al. 2022), PHP (Lu et al. 2021), VirHostMatcher (Ahlgren et al. 2017), and WIsH 

(Galiez et al. 2017) – require a set of candidate bacterial genomes provided by the user 

to infer the likelihood of a bacteriophage-host interaction. Thus, in order to predict 

putative host ranges for the 16 bacteriophages included in this study, datasets consisting 

of genome assemblies of all experimentally tested bacterial strains (that is infected and 

non-infected) were provided to the confirmatory tools. As well-studied model organism, 

such genomic datasets were readily available for experimentally validated E. coli 

bacteriophage host and non-host strains from the public ATCC and NCBI databases 

(using accession numbers provided in Supplementary Table S1). In contrast, genomes 

of five experimentally tested Gordonia strains –  Gordonia hydrophobica DSM 44015, 
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Gordonia malaquae DSM 44454, Gordonia malaquae DSM 44464, Gordonia 

rubripertincta DSM 43197, and Gordonia terrae DSM 43249 (Supplementary Table S2) – 

were newly sequenced to approximately 160-fold to 360-fold coverage per strain 

(Supplementary Table S3) using long-read nanopore sequencing. Following the Oxford 

Nanopore Technologies Best Practices 

(https://nanoporetech.com/sites/default/files/s3/literature/microbial-genome-assembly-

workflow.pdf), reads were de novo assembled using Flye (Kolmogorov et al. 2019) and 

polished using Medaka (https://github.com/nanoporetech/medaka) to improve accuracy. 

The resulting single-scaffold genome assemblies ranged from 4,468,569 bp (Gordonia 

malaquae DSM 44454) to 5,701,739 bp (Gordonia terrae DSM 43249) in size, with a 

GC-content of 66.2%–67.8% (Supplementary Table S4). Highly conserved single-copy 

orthologous actinobacteria genes (BUSCOs) demonstrated that these Gordonia 

assemblies are nearly complete, containing between 98.0% (Gordonia rubripertincta 

DSM 43197) and 99.4% (Gordonia malaquae DSM 44454) of BUSCOs (Supplementary 

Table S4). 

Out of the confirmatory tools, PHP – which uses a Gaussian mixture model of 

differences in 4-mer sequence composition between bacteriophage and bacterial 

genomic sequences to predict putative hosts (i.e., bacterial strains with the lowest 

oligonucleotide dissimilarity) – exhibited the highest sensitivity (77.4%) (Table 1, and see 

Supplementary Tables S5 and S6 for additional details regarding the predicted 

bacteriophage-host interactions that passed recommended tool-specific thresholds). 

Based on a more specific 6-mer approach, VirHostMatcher's background-subtracting 𝑑2
∗ 

similarity measure yielded a much lower sensitivity (12.9%); only WIsH's stringent 8-mer 

approach exhibited a lower recall (0.0%), identifying none of the genuine host strains of 

the 16 polyvalent bacteriophages. At the same time, the usage of longer k-mers also 

https://nanoporetech.com/sites/default/files/s3/literature/microbial-genome-assembly-workflow.pdf
https://nanoporetech.com/sites/default/files/s3/literature/microbial-genome-assembly-workflow.pdf
https://github.com/nanoporetech/medaka


  57 

increased specificity, from 55.3% in PHP to 83.5% and 90.6% in WIsH and 

VirHostMatcher, respectively. Notably, none of the predictions of VirHostMatcher and 

WIsH passed the recommended tool-specific thresholds for any of the E. coli and 

Gordonia bacteriophages, respectively (Figure 1). More generally, fewer results were 

observed for Gordonia bacteriophages, with PHP and VirHostMatcher only yielding 

predictions for GMA4, GMA7 and the closely-related GTE7 (PHP only), as well as GRU1 

and the closely-related GTE5 and GTE8 (for pairwise average nucleotide identities 

between the bacteriophages, see Supplementary Figure S1), likely due to the fact that E. 

coli is a more widely studied model organism than Gordonia. 

 
Table 1. Performance of computational host range prediction tools. Performance of the 
confirmatory tools Phirbo, Prokaryotic virus Host Predictor (PHP), VirHostMatcher, and 
WIsH as well as the species-level exploratory tools CHERRY and VirHostMatcher-Net 
[VHMN] and the genus-level exploratory tools HostG, Random Forest Assignment of 
Hosts [RaFAH], viral Host UnveiLing Kit [vHULK], and VPF-Class. All tools were 
executed using default settings with recommended tool-specific thresholds (shown in 
brackets). The sensitivity / recall, specificity, precision, and accuracy of each tool was 
evaluated based on experimentally validated bacteriophage-host interactions (see 
Supplementary Tables S1 and S2 as well as Tables 1 in Park et al. 2012, Dyson et al. 
2015, Lee et al. 2016, and Kim et al. 2021). Additional details about predicted 
bacteriophage-host interactions that passed recommended tool-specific thresholds is 
provided in Supplementary Tables S5, S6, and S8). 
 

1 log(P(host) = log probability of being a viral host under a Gaussian k-mer frequency model 
2 under a Markov random field framework 
3 under a multi-class random forest model 
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Figure 1. Computational host predictions for three E. coli bacteriophages – (a) HY01, (b) 
KFS-EC3, and (c) SFP10 – and (d) 13 Gordonia bacteriophages – GMA2-7, GRU1, 
GRU3, GTE2, and GTE5-8 – for a set of experimentally validated host and non-host 
strains (Supplementary Tables S1 and S2) obtained using the confirmatory tools Phirbo, 
Prokaryotic Host Predictor (PHP), VirHostMatcher (VHM), and WIsH. Predicted 
bacteriophage-host interactions passing recommended tool-specific thresholds are 
indicated by a star (for additional details, see Supplementary Table S6). 
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In contrast to PHP and VirHostMatcher, WIsH requires a null model based on 

bacteriophage genomes known not to infect the bacterial strain(s) to train a 

homogeneous Markov model and compute the likelihood (in form of a p-value based on 

the Gaussian null-distribution of the Markov model) for a particular bacteriophage-host 

pair. However, such data attesting to bacteriophages not being able to infect specific 

bacterial strains is often not readily available to researchers (i.e., this information is 

generally not reported in public databases). To test the potential impact of null model 

construction on predictions, four different null models were tested, including two models 

consisting of (1) a large, diverse and (2) a small set of bacteriophage genomes expected 

not to infect any of the tested host strains as well as two model misspecifications 

consisting of (3) a large, diverse and (4) a small set of bacteriophage genomes 

containing some known to infect host strains included in this study (for details, see 

Materials and Methods). Only the null model consisting of a small set of dissimilar 

bacteriophages (model #2) identified any (all) of the genuine host strains 

(Supplementary Table S7) – however, this sensitivity came at the expense of the lowest 

specificity (18.8%) and accuracy (31.6%) out of any tested model. Perhaps 

counterintuitively, the null model consisting of the much larger set of diverse 

bacteriophages (model #1) performed amongst the worst in all categories (sensitivity: 

0.0%, specificity: 43.8%, precision: 0.0%, and accuracy: 36.8%), likely due to null 

bacteriophages being more dissimilar to a true negative than a true positive in the 

dataset, thus biasing the results towards the most dissimilar candidate hosts from 

among the included null bacteriophages. 

The taxonomy-aware BLAST-extension Phirbo ranked in-between these k-mer 

based approaches, with 19.4% sensitivity and 88.2% specificity. As an alignment-based 

method that relies on sequence homology via a rank-based overlap scoring system of 
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sequence matches between bacteriophage and bacterial genomes, Phirbo's large 

number of false negatives likely results from its limited predictive power for 

bacteriophages that do not share any sequence homology or similarity with their host(s). 

Specifically, alignment-based methods tend to exhibit a bias towards predicting hosts 

that carry a genetic mark of a bacteriophage; for example in form of an existing CRISPR 

spacer or an integrated prophage. However, only ~42% of bacteria encode CRISPR viral 

defense systems (Makarova et al. 2020) and even fewer will contain spacers for the 

bacteriophage in question (or a close relative). Furthermore, only two bacteriophages 

included in this study, GMA5 and GRU3, were temperate; the remaining 14 

bacteriophages were obligatorily lytic, thus leaving no genetic trace in the host as they 

do not integrate into the host genome. Despite this, Phirbo always returned a host 

prediction, independent of whether a genuine host was included in the provided 

candidates (e.g., see GMA3 in Figure 1d).   

Rather than exploring potential host ranges, the alignment-based tool PHIST only 

returns a single, highest-scoring host prediction (or, in case of a tie, predictions) based 

on the number of exact k-mer matches between the bacteriophage and the host – a 

limitation that makes this method less well-suited for broad-spectrum bacteriophages 

such as the ones tested here. For eight bacteriophages, PHIST predicted one or more 

hosts (correctly predicted bacteriophage / host pairs: (1) GMA2 / G. malaquae 44464, (2) 

HY01 / S. flexneri 12022, (3) KFS-EC3 / E. coli 10536, (4) KFS-EC3 / S. sonnei 9290; 

incorrectly predicted bacteriophage/host pairs: (1) GMA4 / G. malaquae 44464, (2) 

GMA5 / G. malaquae 44464, (3) GRU3 / G. malaquae 44464, (4) GTE6 / G. 

hydrophobica 44015, (5) GTE8 / G. malaquae 44454,  (6) GTE8 / G. malaquae 44464, 

(7) KFS-EC3 / E. coli 15144, (8) KFS-EC3 / E. coli BAA-2196, (9) SFP10 / Y. 
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enterocolitica 23715); for the remaining eight bacteriophages (GMA3, GMA6-7, GRU1, 

GTE2, GTE5-7), PHIST returned no prediction.  

The performance of confirmatory host range prediction tools observed in this 

study is in agreement with earlier work by Edwards and colleagues (2016) who utilized a 

set of bacteriophages with known isolation hosts to demonstrate that alignment-free 

methods (such as PHP, VirHostMatcher, and WIsH) exhibit higher recall rates than 

alignment-based methods (such as Phirbo and PHIST) as their k-mer approaches do not 

rely on the availability of closely-related bacteriophage or host genomes. Overall 

accuracy in this study ranged from 61.2% (PHP and WIsH) to 69.8% (Phirbo and 

VirHostMatcher) – similar to the level of accuracy previously observed for these tools 

(~20%-60% prediction accuracy at the genus-level for alignment-based methods 

[Edwards et al. 2016; Ahlgren et al. 2017; Zielezinski et al. 2021] and ~30%-70% for 

alignment-free methods [Ahlgren et al. 2017; Galiez et al. 2017]; and see review of 

Coclet and Roux 2021). In contrast, the precision of all confirmatory tools was relatively 

low, ranging from 0% for WIsH (which did not identify any true positives) to 33.3%, 

37.5%, and 38.7% for VirHostMatcher, Phirbo, and PHP, respectively (Table 1 and 

Supplementary Table S5). Thereby, the large number of false positives in the k-mer 

based methods is likely driven by the convergent evolution of oligonucleotide similarity 

profiles between distantly related bacteriophages and hosts (see Supplementary Figures 

S1–S3). Notably, most genuine hosts were only identified by a single tool – the machine-

learning based PHP trained on a large set of virus-host interactions – with a limited 

number identified by multiple tools (Figure 2).  
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Figure 2. Performance of 11 computational host range prediction tools based on 
experimentally validated bacteriophage-host interactions. (a) The confirmatory tools 
Phirbo, Prokaryotic virus Host Predictor (PHP), VirHostMatcher, and WIsH utilize a set of 
provided bacterial genomes to infer the likelihood of strain-specific bacteriophage-host 
interactions. Exploratory tools predict bacteriophage-host interactions based on an 
internal database of putative host genomes either at the (b) species-level (CHERRY and 
VirHostMatcher-Net [VHMN]) or (c) genus-level (HostG, Random Forest Assignment of 
Hosts [RaFAH], viral Host UnveiLing Kit [vHULK], and VPF-Class). True positives (TP) 
are shown in green, true negatives (TN) in olive, false positives (FP) in pink, and false 
negatives (FN) in rose color.  
 
Exploratory Tools 

In contrast to confirmatory tools which are generally based on a single type of 

information (such as exact sequence matches or k-mer profiles), the exploratory tools 

included in this study – CHERRY (Shang and Sun 2022), HostG (Shang and Sun 2021), 

RaFAH (Coutinho et al. 2021), vHULK (Amgarten et al. 2022), VirHostMatcher-Net 

(Wang et al. 2020), and VPF-Class (Pons et al. 2021) – utilize multiple bacteriophage-

bacteriophage, bacteriophage-host, and/or host-host features to predict interactions 

based on comparisons of bacteriophage genomes to an internal database of genetic 

markers of putative host genomes.  

Out of the six exploratory tools, two predict hosts at the species-level: (i) 

CHERRY – a semi-supervised learning model with an underlying multimodal graph that 

integrates several DNA and protein sequence features (such as information on 

alignment-based and alignment-free sequence similarity between bacteriophages and 

bacteria as well as shared protein organization and CRISPR spacers) – and (ii) 

VirHostMatcher-Net – a network-based support vector machine and random forest 

framework that integrates both alignment-based information (such as sequence matches 

between bacteriophage and putative bacterial host genomes or the presence of shared 

virus-host CRISPR spacers) as well as alignment-free similarity measures (such as 

WIsH's prediction score and the similarity measure 𝑠2
∗  =  1 −  2𝑑2

∗, where 𝑑2
∗ is 
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VirHostMatcher's background-subtracting 𝑑2
∗ dissimilarity score) with information about 

virus–host co-abundance across environments to predict bacteriophage-host 

interactions. Due to its usage of protein sequence information in addition to sequence 

similarity, CHERRY outperformed VirHostMatcher-Net in terms of specificity (47.6% vs 

10.0%), precision (60.6% vs 28.6%), and accuracy (93.6% vs 91.7%) at a similar level of 

specificity (97.4% vs 98.1%) (Table 1, and see Supplementary Tables S5 and S8).  

The remaining four exploratory tools predict hosts at the genus-level: (i) HostG 

– a semi-supervised learning method based on a graph convolutional network that 

utilizes information about bacteriophage-host as well as host-host similarities (such as 

gene sharing and local sequence similarity) to predict the host genus, (ii) RaFAH – a 

random forest algorithm that classifies bacteriophages according to their putative host 

genus by comparing protein content in the bacteriophage of interest to protein clusters in 

a custom-built database of hidden Markov model profiles of other bacteriophages, (iii) 

vHULK – a deep neutral network that utilizes alignment significance scores between 

predicted bacteriophage protein sequences and protein families contained within the 

Prokaryotic Virus Orthologous Group (pVOGs) database (Grazziotin et al. 2017) to infer 

the host genus, and (iv) VPF-Class – an approach that utilizes predicted protein 

sequences in the bacteriophage to infer the putative host genus based on a set of 

previously classified Viral Protein Families (VPFs) from the IMG/VR database (Paez-

Espino et al. 2016). At the genus-level, RaFAH exhibited the highest recall (88.9%) and 

accuracy (95.1%) (Table 1) – higher than the ~60% genus-level accuracy previously 

reported (see Figure 1 in Coutinho et al. 2021) – correctly predicting Escherichia as a 

host genus for two out of the three E. coli bacteriophages and Gordonia as a host genus 

for all 13 Gordonia bacteriophages (Figure 3). In comparison, HostG, vHULK, and VPF-

Class showed a sensitivity ranging from 31.3% (HostG) to 52.2% (vHULK) and an 
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accuracy ranging from 87.6% (VPF-Class) – similar to the 86.4% genus-level accuracy 

reported by the developers (see Table 5 in Pons et al. 2021) – to 91.7% (vHULK). 

However, RaFAH's sensitivity came at a cost of a slightly worse specificity (RaFAH: 

96.9%; VPF-Class: 97.7%; HostG: 100.0%; vHULK: 100.0%). Moreover, both HostG and 

vHULK were more precise (100% each) than RaFAH (88.9%) and VPF-Class (75.0%). 

Similar to the confirmatory tools, few genuine hosts were identified by multiple species-

level exploratory tools (Figure 2). 
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Figure 3. Computational host predictions for three E. coli bacteriophages – (a) HY01, (b) 
KFS-EC3, and (c) SFP10 – and (d) 13 Gordonia bacteriophages – GMA2-7, GRU1, 
GRU3, GTE2, and GTE5-8 – for a set of experimentally validated host and non-host 
strains (Supplementary Tables S1 and S2 as well as Tables 1 in Park et al. 2012, Dyson 
et al. 2015, Lee et al. 2016, and Kim et al. 2021) obtained using the species-level 
exploratory tools CHERRY and VirHostMatcher-Net [VHMN] as well as the genus-level 
exploratory tools HostG, Random Forest Assignment of Hosts [RaFAH], viral Host 
UnveiLing Kit [vHULK], and VPF-Class. Predicted bacteriophage-host interactions 
passing recommended tool-specific thresholds are indicated by a star (for additional 
details, see Supplementary Table S8). Experimentally validated non-host strains that 
were correctly predicted as such by all tools were excluded from this figure. 

 

A general pattern that emerged was that all exploratory tools underpredicted 

genuine bacteriophage host ranges. For instance, genus-level exploratory tools failed to 

predict Shigella as a host genus for HY01, Shigella and Salmonella for KFS-EC3, and 

Escherichia for SFP10 (Figure 3), suggesting that Escherichia might be the primary host 

genus for HY01 and KFS-EC3 and Salmonella for SFP10. Similarly, Nocardia was 

missed as an additional host genus for the Gordonia bacteriophages GRU1, GTE2, 

GTE7, and GTE8. At the same time, the genus-level predictions of HostG, RaFAH, 

vHULK, and VPF-Class contained few false positives, with only Mycobacterium being 

mis-predicted as a host genus for the Gordonia bacteriophages GMA4 and GRU3 (VPF-

Class) as well as GRU1 and GTE 5 (RaFAH). In fact, Mycobacterium smegmatis was 

also frequently mis-predicted as a host for the Gordonia bacteriophages at the species-

level, likely due to the fact that the M. smegmatis genome contains remnants of a 

prophage originating from the closely-related temperate Gordonia bacteriophage 

Curcubita (Supplementary Figure S4). Such mis-predictions are likely further elevated by 

dissimilarities between the genomes of the experimentally validated host strains and 

those available in the tools' pre-built databases (see Supplementary Figures S2 and S3). 

In general, the performance of machine- or deep-learning based methods depends 

strongly on the datasets available for training, in particular the information available on 

bacteriophages with similar sequence features that infect the same bacterial host 
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species or genuses. Limited knowledge and sparse representation of the full spectrum of 

the global viral and bacterial diversity remains a major challenge in this regard as many 

public databases are biased towards well-studied model organisms (though note that 

metagenomic studies recently started to address this issue; see review of Inglis and 

Edwards 2022). Relatedly, the robustness of predictions also depend on the accuracy of 

viral and bacterial genomes as well as the experimental validation of bacteriophage-host 

interactions reported in the databases (in our study, one out of 22 Gordonia and 24 out 

of 300 E. coli database entries were suspended due to misreported information; for an 

example, see Supplementary Figure S3). Complicating this issue further is the almost 

entire absence of information about negative bacteriophage-host pairs, preventing the 

construction of well-balanced training datasets for machine- and deep-learning based 

methods.     

Lastly, although many authors have evaluated their developed methodology 

against a set of previously published approaches, no genuinely independent benchmark 

yet exists for exploratory tools and their reported performances are likely an 

overestimation due to an overfitting caused by the similarity of the test data with the 

training data (see also the discussion in Coclet and Roux 2021). Moreover, these studies 

did not include experimentally validated negative bacteriophage-host pairs (true 

negatives), hampering the reliable assessment of specificity and accuracy. For example, 

based on a dataset of known virus-host interactions, the developers of HostG reported 

prediction accuracies between ~35% (for the confirmatory tools WIsH and PHP) and 

~60% (for the exploratory tools HostG; RaFAH, vHULK, and VirHostMatcher-Net; see 

Figure 6 in Shang and Sun 2021). In a follow-up study, the same authors developed 

CHERRY and demonstrated prediction accuracies ranging from less than 20% (for the 

alignment-based PHIST) to ~40% (vHULK and VirHostMatcher-Net) to almost 80% 
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(CHERRY) at the species-level and from ~35%-40% (PHIST, PHP, VPF-Class, and 

WIsH) to ~60%-70% (HostG, RaFAH, VirHostMatcher-Net, and vHULK) to more than 

80% (CHERRY) at the genus-level (see Figure 4B in Shang and Sun 2022). The authors 

of vHULK self-reported accuracies of 95.2% and 99.1% for E. coli and G. terrae at the 

genus-level, with 81.9% and 90.1% sensitivity and 97.1% and 99.8% specificity, 

respectively (see Table 3 in Amgarten et al. 2022) – much higher than the sensitivity 

observed in our study (52.2%). In contrast, their reported genus-level accuracies for 

VirHostMatcher-Net (31.1%) and RaFAH (71.3%) (see Figure 6 in Amgarten et al. 2022) 

were much lower than those observed here (91.7% and 95.1%, respectively) – a 

difference that may be caused by the low diversity of taxa investigated.  

Conclusion  

Gaining a better understanding of bacteriophage host ranges is vitally important 

to improve their usage as antimicrobial agents. Highly scalable computational host range 

prediction tools are a valuable supplement to gold standard (but laborious) experimental 

procedures in this regard. Our benchmarking study of 11 computational host range 

prediction tools demonstrated that machine- and deep-learning based methods generally 

outperform more traditional alignment-based and alignment-free methods due to their 

combined usage of multiple types of information. However, although important to gain a 

better understanding of the viral ecology in different environments, many of these 

recently developed approaches are ill-suited for real-world applications (such as phage 

therapy) as predictions are provided at the species- or genus-level rather than at the 

strain-level. An additional limitation in adopting these tools is the lack of genomic 

resources for many bacterial strains of interest (confirmatory tools) as well as the 

disparity between those strains and the ones included in the tools' internal databases 
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(exploratory tools) which, given our limited knowledge of viral and bacterial communities 

in different ecosystems, remain biased towards well-studied, easily culturable model 

organisms. Moreover, many factors important for successful bacteriophage infection and 

lysis – such as the recognition of specific host receptors, the ability to overcome 

bacterial restriction-modification and abortive systems, as well as the compatibility of 

transcription and translational machinery – remain neglected in computational 

frameworks. Hence, whenever possible, we recommend incorporating the model 

sophistication of exploratory tools with the flexibility of strain-specific confirmatory tools 

in order to aid in the prioritization of experimental efforts to identify the most suitable 

bacteriophage(s) for any given application. 

Data Availability  

The data underlying this article are available in ATCC at https://www.atcc.org/ and NCBI 

at https://www.ncbi.nlm.nih.gov/, and can be accessed under BioProject X (de novo 

assemblies of Gordonia strains) and with the accession numbers provided in 

Supplementary Tables S1 and S2 (bacteriophage and E. coli assemblies). Analysis 

scripts are available at https://github.com/PfeiferLab/host_range_prediction. 

 

 

 

 

 

 

https://www.atcc.org/
https://www.ncbi.nlm.nih.gov/
https://github.com/PfeiferLab/host_range_prediction
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Supplementary Material 

Supplementary Table S1. Experimentally validated host ranges of three E. coli 
bacteriophages, HY01 (Lee et al. 2016), SFP10 (Park et al. 2012), and KFS-EC3 (Kim et 
al. 2021). ATCC and NCBI accession numbers are shown in brackets. 
 

 
experimentally validated host ranges 

bacteriophage 

(accession number)  

bacterial strains infected  

(accession number) 

bacterial strains not infected  

(accession number) 

HY01 

(KF925357.1) 

Escherichia coli (ATCC 35150) 

Escherichia coli (ATCC 43888) 

Escherichia coli (ATCC 43890) 

Escherichia coli (ATCC 43894) 

Escherichia coli (ATCC 43895) 

Shigella flexneri (2457T) 

Shigella flexneri (ATCC 12022) 

Shigella flexneri (ATCC 29903) 

Bacilius cereus (ATCC 13061) 

Bacilius subtilis (ATCC 23857) 

Cronobacter sakazakii (ATCC 29544) 

Enterococcus faecalis (ATCC 29212)  

Escherichia coli (K12MG1655) 

Salmonella enterica (ATCC 13076)  

Salmonella typhimurium (LT2)  

Salmonella typhimurium (SL1344) 

Staphylococcus aureus (ATCC 29213) 

KFS-EC3 

(MZ065353.1) 

Escherichia coli (ATCC 10536) 

Salmonella enterica (ATCC 13076) 

Shigella sonnei (ATCC 9290)  

Aeromonas hydrophila (ATCC 7699) 

Bacilius cereus (ATCC 13061) 

Bacilius cereus (ATCC 14579) 

Bacilius spizizenii (ATCC 6633) 

Escherichia coli (ATCC 15144) 

Escherichia coli (ATCC BAA-2192) 

Escherichia coli (ATCC BAA-2196) 

Klebsiella pneumoniae (ATCC 13883) 

Listeria monocytogenes (ATCC 7644) 

Listeria monocytogenes (ATCC 19111) 

Pseudomonas aeruginosa (ATCC 10145)  

Salmonella enterica (ATCC 13311) 

Staphylococcus aureus (ATCC 25923) 

Vibrio parahaemolyticus (ATCC 17802) 

Yersenia enterocolitica (ATCC 9610) 

Yersenia enterocolitica (ATCC 23715) 

  

SFP10 

(HQ259103.1) 

Escherichia coli (ATCC 35150) 

Escherichia coli (ATCC 43890) 

Salmonella enterica (ATCC 13076) 

Salmonella enterica (ATCC 14028) 

Salmonella typhimurium (LT2) 

Salmonella typhimurium (SL1344) 

Bacilius subtilis (ATCC 23857) 

Cronobacter sakazakii (ATCC 29544) 

Escherichia coli (ATCC 25922) 

Escherichia coli (K12MG1655) 

Enterococcus faecalis (ATCC 29212) 

Pseudomonas aeruginosa (ATCC 27853) 

Shigella flexneri (2457T) 

Staphylococcus aureus (ATCC 29213) 

Yersenia enterocolitica (ATCC 23715) 
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Supplementary Table S2. Experimentally validated host ranges of 13 Gordonia 
bacteriophages, GTE2 (Petrovski et al. 2011a), GTE7 (Petrovski et al. 2011b), GTE5 
and GRU1 (Petrovski et al. 2012), as well as GMA2–GMA7, GRU3, GTE6, and GTE8 
(Dyson et al. 2015). DSMZ and NCBI accession numbers are shown in brackets. 
 

 
experimentally validated host ranges 

bacteriophage 

(accession number)  

bacterial strains infected  

(accession number) 

bacterial strains not infected  

(accession number) 

GMA2  

(KR063281.1) 

 

GMA6 

(KR063280.1) 

 

GMA7 

(KR063278.1) 

 

GTE6 

(KR053200.1) 

Gordonia malaquae (DSM 44454) 

Gordonia malaquae (DSM 44464) 

Gordonia hydrophobica (DSM 44015) 

Gordonia rubripertincta (DSM 43197) 

Gordonia terrae (DSM 43249) 

GMA3 

(KR063279.1) 

 

GMA4 

(KR063199.1) 

 

GMA5 

(KR063198.1) 

 

GRU3 

(KR053197.1) 

 

GTE8 

(KR053201.1) 

– Gordonia hydrophobica (DSM 44015) 

Gordonia malaquae (DSM 44454) 

Gordonia malaquae (DSM 44464)  

Gordonia rubripertincta (DSM 43197) 

Gordonia terrae (DSM 43249) 

GRU1 

(JF923797.1) 

 

GTE5 

(JF923796.1) 

Gordonia rubripertincta (DSM 43197) 

Gordonia terrae (DSM 43249) 

Gordonia hydrophobica (DSM 44015) 

Gordonia malaquae (DSM 44454) 

Gordonia malaquae (DSM 44464)  

GTE2 

(HQ403646.1) 

 

GTE7 

(JN035618.1) 

Gordonia terrae (DSM 43249) Gordonia malaquae (DSM 44454) 

Gordonia malaquae (DSM 44464)  

Gordonia hydrophobica (DSM 44015) 

Gordonia rubripertincta (DSM 43197) 
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Supplementary Table S3. Estimates of genome size, repeat content, and coverage 
based on k-mer frequencies observed in the long read data. Estimates were obtained 
using GenomeScope2.0 (Vurture et al. 2017; Ranallo-Benavidez et al. 2020) together 
with Jellyfish v.2.3.0 (Marçais and Kingsford 2011). DSMZ accession numbers are 
shown in brackets. 
 

bacterial strain 

(accession number) 

haploid length (bp) repeat content (bp) coverage 

 minimum maximum minimum maximum  

Gordonia hydrophobica  

(DSM 44015) 

4,419,546 4,428,462 138,580 

 

138,860 

 

313 X 

Gordonia malaquae 

(DSM 44454) 

4,244,128 4,251,149 

 

  4,485 

 

  4,493 

 

164 X 

Gordonia malaquae 

(DSM 44464) 

4,339,177 4,348,911 197,518 

 

197,961 

 

161 X 

Gordonia rubripertincta 

(DSM 43197) 

4,916,596 4,927,204  71,066 

 

 71,219 

 

275 X 

Gordonia terrae  

(DSM 43249) 

5,354,377 5,365,402  24,311 

 

 24,361 

 

359 X 

 

Supplementary Table S4. Summary statistics of the five Gordonia de novo genome 

assemblies. DSMZ accession numbers are shown in brackets. To assess the completeness 

of the genome assemblies, BUSCO v.5.4.7 (Manni et al. 2021) was used, together with the 

actinobacteria database "actinobacteria_class_odb10" (for additional details, see 

Supplementary Table S4). 

 
bacterial strain 

(accession number) 

sequence length (bp) GC-content complete BUSCOs1 

Gordonia hydrophobica  

(DSM 44015) 

4,632,241 

 

67.45% 353 (99.2%) 

Gordonia malaquae 

(DSM 44454) 

4,468,569 

 

66.37% 354 (99.4%) 

Gordonia malaquae 

(DSM 44464) 

4,523,876 66.23% 352 (99.2%) 

Gordonia rubripertincta 

(DSM 43197) 

5,174,650 

 

67.31% 349 (98.0%) 

Gordonia terrae  

(DSM 43249) 

5,701,739 

 

67.81% 353 (99.2%) 

 
1 based on the actinobacteria_class_odb10 dataset (containing 356 BUSCOs) 
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Supplementary Table S5. Performance of computational host range prediction tools. 

The confirmatory tools Phirbo, Prokaryotic virus Host Predictor (PHP), VirHostMatcher, 

and WIsH utilize a set of provided bacterial genomes to infer the likelihood of strain-

specific bacteriophage-host interactions. Exploratory tools predict bacteriophage-host 

interactions based on an internal database of putative host genomes either at the 

species-level (CHERRY and VirHostMatcher-Net [VHMN]) or at the genus-level (HostG, 

Random Forest Assignment of Hosts [RaFAH], viral Host UnveiLing Kit [vHULK], and VPF-

Class). True positives (TP), false positives (FP), true negatives (TN), and false negatives 

(FN) were determined based on experimentally validated bacteriophage-host 

interactions (see Supplementary Tables S1 and S2 for details). High confidence results 

passed the recommended tool-specific thresholds (shown in brackets); low confidence 

results were below the recommended threshold. 

 

 

  tool (threshold) TP  

(high / 

low) 

FP  

(high / 

low) 

TN FN unvalidated 

predictions 

c
o

n
fi

rm
a
to

ry
 

st
ra

in
-l

e
ve

l 

Phirbo (highest rank-based 

overlap) 

6 10 75 25 – 

PHP (log(P(host))1: 1442) 24 38 47 7 – 

VirHostMatcher (distance / 

dissimilarity: 0.175) 

4 8 77 27 – 

WIsH (p-value < 0.06) 0 14 71 31 – 

e
x
p

lo
ra

to
ry

 

sp
e
ci

e
s-

le
ve

l 

 

CHERRY (P(graph convolutional 

encoder): 0.9) 

 

20 / 5 

 

13 / 19 

 

491 

 

22 

 

33 

VHMN (prediction score2: 0.95) 4 / 7 10 / 8 505 36 139 

g
e
n

u
s-

le
ve

l 

HostG (SoftMax value: 0.94) 5 / 9 0 / 2 109 11 0 

RaFAH (prediction score3: 0.14) 16 / 7 2 / 47 62 2 90 

vHULK (alignment significance 

score: 0.8) 

12 / 2 0 / 2 109 11 0 

VPF-Class (membership: 0.3, 

confidence: 0.5) 

6 / 8 2 / 23 86 11 121 

 
1 log(P(host) = log probability of being a viral host under a Gaussian k-mer frequency model 
2 under a Markov random field framework 
3 under a multi-class random forest model 
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Supplementary Table S6. Bacteriophage-host interactions predicted by confirmatory 

tools. Predicted bacteriophage-host interactions that passed recommended confirmatory 

tool-specific thresholds (see Supplementary Table S5 for details). True positives (TP) and 

false positives (FP) were determined based on experimentally validated bacteriophage-

host interactions (see Supplementary Tables S1 and S2 for details). 

 
grou

p 

bacteriophage tool predicted host prediction score (p-

value1) 

categor

y 

E
. 
co

li
 

 

HY01  Phirb

o 

S. flexneri 12022 0.347545549 TP 

PHP E. coli 43894 1458.509432 TP 

E. coli 43888 1458.402294 TP 

E. coli 43890 1458.400863 TP 

E. coli 35150 1458.360591 TP 

E. coli 43895 1458.333301 TP 

E. coli K12MG1655 1458.130161 FP 

S. flexneri 12022 1458.121672 TP 

S. flexneri 29903 1458.121332 TP 

S. flexneri 2457T 1458.080758 TP 

S. typhimurium SL1344 1457.638538 FP 

S. typhimurium LT2 1457.379504 FP 

S. enterica 13076 1457.245979 FP 

C. sakazakii 29544 1451.410058 FP 

S. aureus 29213 1445.921933 FP 

E. faecalis 29212 1443.424835 FP 

WIsH B. subtilis 23857  -1.36966 (0.00449395) FP 

S. aureus 29213  -1.34754 (0.01361500) FP 

E. faecalis 29212  -1.35551 (0.01410700) FP 

B. cereus 13061  -1.34737 (0.01756230) FP 

KFS-EC3  Phirb

o 

V. parahaemolyticus 17802 3.97E-05 FP 

PHP S. sonnei 9290 1452.045298 TP 

E. coli BAA-2196 1451.979889 FP 

E. coli BAA-2192 1451.776139 FP 

E. coli 15144 1451.678476 FP 

E. coli 10536 1451.657987 TP 

S. enterica 13311 1451.498755 FP 

S. enterica 13076 1451.490817 TP 

K. pneumoniae 13883 1447.668585 FP 

Y. enterocolitica 23715 1445.688084 FP 
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Y. enterocolitica 9610 1445.546051 FP 

L. monocytogenes 7644 1444.480204 FP 

L. monocytogenes 19111 1443.383630 FP 

S. aureus 25923 1442.291869 FP 

V. parahaemolyticus 17802 1442.206717 FP 

WIsH B. spizizenii 6633  -1.37294 (0.00351026) FP 

Y. enterocolitica 23715 -1.38138 (0.00645586) FP 

Y. enterocolitica 9610  -1.38178 (0.00697053) FP 

L. monocytogenes 7644  -1.35207 (0.01111870) FP 

L. monocytogenes 19111  -1.35378 (0.01143930) FP 

S. aureus 25923  -1.34755 (0.01351530) FP 

B. cereus 13061  -1.34890 (0.01887000) FP 

B. cereus 14579  -1.34830 (0.01889940) FP 

V. parahaemolyticus 17802  -1.37788 (0.02473530) FP 

SFP10 Phirb

o 

Y. enterocolitica 23715 0.011554849 FP 

PHP S. typhimurium SL1344 1456.655394 TP 

S. typhimurium LT2 1456.468581 TP 

S. enterica 13076 1456.373383 TP 

S. enterica 14028 1456.150993 TP 

E. coli K12MG1655 1455.288787 FP 

E. coli 25922 1455.209664 FP 

E. coli 35150 1454.988970 TP 

S. flexneri 2457T 1454.951719 FP 

E. coli 43890 1454.782297 TP 

Y. enterocolitica 23715 1449.898739 FP 

C. sakazakii 29544 1449.721021 FP 

P. aeruginosa 27853 1444.714408 FP 

WIsH Y. enterocolitica 23715  -1.39075 (0.03924090) FP 

G
o

rd
o

n
ia

 

GMA2 Phirb

o 

G. malaquae 44454 0.549356099 TP 

GMA3 Phirb

o 

G. hydrophobica 44015 0.001598421 FP 

GMA4 Phirb

o 

G. malaquae 44454 0.675331453 FP 

PHP G. hydrophobica 44015 1454.488830 FP 

G. malaquae 44464 1453.730246 FP 

G. malaquae 44454 1453.546489 FP 

G. rubripertincta 43197 1449.411706 FP 

G. terrae 43249 1448.018764 FP 
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VHM G. malaquae 44464 0.145640 FP 

G. malaquae 44454 0.147630 FP 

G. hydrophobica 44015 0.156868 FP 

G. rubripertincta 43197 0.163904 FP 

G. terrae 43249 0.172697 FP 

GMA5 Phirb

o 

G. rubripertincta 43197 0.218286850 FP 

GMA6 Phirb

o 

G. hydrophobica 44015 0.057686227 FP 

GMA7 Phirb

o 

G. malaquae 44464 0.028573288 TP 

PHP G. malaquae 44464 1445.884769 TP 

G. rubripertincta 43197 1445.396714 FP 

G. malaquae 44454 1445.169766 TP 

G. terrae 43249 1444.389261 FP 

G. hydrophobica 44015 1443.481661 FP 

GRU1 Phirb

o 

G. rubripertincta 43197 0.148506734 TP 

PHP G. terrae 43249 1452.958304 TP 

G. rubripertincta 43197 1451.781375 TP 

VHM G. rubripertincta 43197 0.161947 TP 

G. terrae 43249 0.163551 TP 

GRU3 Phirb

o 

G. rubripertincta 43197 0.216302610 FP 

GTE2 Phirb

o 

G. rubripertincta 43197 0.059869213 FP 

GTE5 Phirb

o 

G. rubripertincta 43197 0.233969180 TP 

PHP G. terrae 43249 1453.441435 TP 

G. rubripertincta 43197 1452.366588 TP 

VHM G. rubripertincta 43197 0.158620 TP 

G. terrae 43249 0.160427 TP 

G. hydrophobica 44015 0.174834 FP 

GTE6 Phirb

o 

G. malaquae 44454 0.034698823 TP 

GTE7 Phirb

o 

G. malaquae 44464 0.004342390 FP 

PHP G. rubripertincta 43197 1445.190106 FP 

G. malaquae 44464 1444.552530 FP 

G. terrae 43249 1444.205542 TP 

G. malaquae 44454 1443.803905 FP 

G. hydrophobica 44015 1442.369440 FP 
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GTE8  Phirb

o 

G. rubripertincta 43197 0.248009283 FP 

PHP G. terrae 43249 1449.772436 FP 

G. rubripertincta 43197 1447.896144 FP 

VHM G. rubripertincta 43197 0.169169 FP 

G. terrae 43249 0.170116 FP 

1 only reported by WIsH  
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Supplementary Table S7. The impact of WIsH null model choice on bacteriophage KFS-

EC3 host predictions. Null models #1 and #2 consist of bacteriophage genomes 

expected not to infect any of the tested host strains. Model misspecifications (null 

models #3 and #4) were tested by including Escherichia coli bacteriophage genomes 

known to infect host strains included in this study. True positives (TP), false positives (FP), 

true negatives (TN), and false negatives (FN) were determined based on experimentally 

validated bacteriophage-host interactions (see Supplementary Table S1 for details). 

 

null 

model 
bacteriophages  TP FP TN FN sensitivity specificity precision accuracy 

#1 Alteromonas 

Cellulophage 

Cyanophage 

Lactobacillus 

Mycobacterium 

Oenococcus 

Pelagibacter 

Prochlorococcus 

Rhizobium 

Synechococcus 

Thermus 

0 9 7 3 0.0% 43.8% 0.0% 36.8% 

#2 Synechococcus 3 13 3 0 100.0% 18.8% 18.8% 31.6% 

#3 Alteromonas 

Cellulophage 

Cyanophage 

Escherichia coli* 

Lactobacillus 

Mycobacterium 

Oenococcus 

Pelagibacter 

Prochlorococcus 

Rhizobium 

Synechococcus 

Thermus 

0 6 10 3 0.0% 62.5% 0.0% 52.6% 

#4 Escherichia coli* 0 7 9 3 0.0% 56.3% 0.0% 47.4% 
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Supplementary Table S8. Bacteriophage-host interactions predicted by exploratory 

tools. Exploratory tools predict bacteriophage-host interactions based on an internal 

database of putative host genomes either at the species-level (CHERRY and 

VirHostMatcher-Net [VHMN]) or genus-level (HostG, Random Forest Assignment of 

Hosts [RaFAH], viral Host UnveiLing Kit [vHULK], and VPF-Class). Predictions were limited 

to the top 10 results per tool, with bacteriophage-host interactions that passed 

recommended exploratory tool-specific confidence thresholds shown with an asterisk 

(see Supplementary Table S5 for details). True positives (TP) and false positives (FP) were 

determined based on experimentally validated bacteriophage-host interactions (for 

details, see Supplementary Tables S1 and S2 as well as Tables 1 in Park et al. 2012, Dyson 

et al. 2015, Lee et al. 2016, and Kim et al. 2021); predictions for which no experimentally 

data was available are shown in gray. 
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group bacteriophage tool predicted host  
prediction score (membership 

ratio1) 
category 

E
. 
co

li
 

HY01 CHERRY Escherichia coli 1.00* TP 

Salmonella enterica 0.91* FP 

Shigella flexneri 0.87 TP 

Shigella boydii 0.51 – 

Aeromonas salmonicida 0.32 – 

Edwardsiella ictaluri 0.25 – 

Citrobacter rodentium 0.17 – 

Cronobacter sakazakii 0.13 FP 

Klebsiella oxytoca 0.02 – 

Enterobacter cloacae 0.01 – 

VHMN Staphylococcus aureus 0.9774* FP 

Lactococcus lactis subsp. lactis  0.9737* – 

Staphylococcus epidermidis 0.9725* – 

Clostridium tetani 0.9687* – 

Lactobacillus sp. 0.9679* – 

Clostridium tetani 0.9665* – 

Clostridium tetani 0.9663* – 

Lactococcus lactis subsp. 

cremoris 

0.9651* – 

Megamonas rupellensis 0.9628* – 

Megamonas rupellensis 0.9622* – 

HostG Escherichia 0.5282155 TP 

RaFAH Escherichia 0.823* TP 

Shigella 0.100 TP 

Yersinia 0.026 – 

Citrobacter 0.009 – 

Serratia 0.006 – 

Edwardsiella 0.005 – 

Enterobacter 0.005 – 

Klebsiella 0.004 – 

Salmonella 0.003 FP 

Stenotrophomonas 0.003 – 

VPF-

Class 

Mycobacterium 0.8306640672 (2.35E-01) – 

Escherichia 0.8306640672 (2.23E-01) TP 

Ralstonia 0.8306640672 (1.19E-01) – 
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Bacillus 0.8306640672 (1.03E-01) FP 

Oenococcus 0.8306640672 (9.37E-02) – 

Pseudomonas 0.8306640672 (2.60E-02) FP 

Mannheimia 0.8306640672 (2.43E-02) – 

Streptococcus 0.8306640672 (1.68E-02) – 

Acinetobacter 0.8306640672 (1.49E-02) – 

Streptomyces 0.8306640672 (1.47E-02) – 

vHULK Escherichia 0.9665705* TP 

KFS-EC3 CHERRY Escherichia coli 1.00* TP 

Aeromonas salmonicida 1.00* – 

Edwardsiella ictaluri 0.96* – 

Shigella flexneri 0.94* FP 

Salmonella enterica 0.91* TP 

Klebsiella pneumoniae 0.89 FP 

Cronobacter sakazakii 0.76 – 

Aeromonas hydrophila 0.61 FP 

Acinetobacter baumannii 0.46 – 

Klebsiella oxytoca 0.39 – 

VHMN Staphylococcus aureus 0.9823* FP 

Clostridium tetani 0.9783* – 

Clostridium tetani 0.9773* – 

Clostridium tetani 0.9768* – 

Staphylococcus epidermidis 0.9760* – 

Lactococcus lactis subsp. lactis 0.9744* – 

Lactobacillus sp. 0.9688* – 

Megamonas rupellensis 0.9679* – 

Lactococcus lactis subsp. 

cremoris 

0.9679* – 

Megamonas rupellensis 0.9671* – 

HostG Escherichia 0.5276613 TP 

RaFAH Escherichia 0.766* TP 

Shigella 0.118 TP 

Yersinia 0.035 FP 
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Salmonella 0.016 TP 

Citrobacter 0.009 – 

Acinetobacter 0.008 – 

Klebsiella 0.008 FP 

Serratia 0.005 – 

Vibrio 0.005 FP 

Stenotrophomonas 0.004 – 

VPF-

Class 

Escherichia 0.9416975882 (5.84E-01)* TP 

Mycobacterium 0.9416975882 (1.17E-01) – 

Bacillus 0.9416975882 (1.07E-01) FP 

Oenococcus 0.9416975882 (4.87E-02) – 

Ralstonia 0.9416975882 (2.55E-02) – 

Shigella 0.9416975882 (2.28E-02) TP 

Rhodothermus 0.9416975882 (1.66E-02) – 

Pseudomonas 0.9416975882 (9.42E-03) FP 

Streptomyces 0.9416975882 (7.30E-03) – 

Bombyx 0.9416975882 (7.26E-03) – 

vHULK Escherichia 0.92034554* TP 

SFP10 CHERRY Salmonella enterica 0.99* TP 

Escherichia coli 0.99* TP 

Cronobacter sakazakii 0.54 FP 

Shigella flexneri 0.13 FP 

Burkholderia cenocepacia 0.12 – 

Aeromonas media 0.07 – 

Burkholderia thailandensis 0.07 – 

Aggregatibacter 

actinomycetemcomitans 

0.06 – 

Aeromonas hydrophila 0.06 – 

Shigella boydii 0.05 FP 

VHMN Pectobacterium atrosepticum 0.9409 – 

Pectobacterium versatile 0.9320 – 

Pectobacterium atrosepticum 0.9218 – 

Escherichia coli 0.8719 – 
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Escherichia coli 0.8644 – 

Escherichia coli 0.8520 – 

Escherichia coli 0.8493 TP 

Serratia sp. 0.8448 – 

Escherichia coli 0.8411 – 

Shigella sonnei 0.8347 TP 

HostG Salmonella 0.50561905 TP 

RaFAH Salmonella 0.991* TP 

Escherichia 0.008 TP 

Serratia 0.001 – 

VPF-

Class 

Salmonella 0.992381477 (5.92E-01)* TP 

Escherichia 0.992381477 (1.18E-01) TP 

Bacillus 0.992381477 (5.44E-02) FP 

Cellulophaga 0.992381477 (4.52E-02) – 

Cronobacter 0.992381477 (2.96E-02) FP 

Ralstonia 0.992381477 (2.17E-02) – 

Synechococcus 0.992381477 (2.05E-02) – 

Streptococcus 0.992381477 (1.40E-02) – 

Sulfolobus 0.992381477 (9.52E-03) – 

Mycobacterium 0.992381477 (8.38E-03) – 

vHULK Salmonella 0.93978465* TP 

G
o

rd
o

n
ia

 

GMA2 CHERRY Gordonia terrae 0.97* TP 

Rhodococcus hoagii 0.04 – 

Mycolicibacterium smegmatis 0.02 FP 

Rhodococcus rhodochrous 0.01 FP 

VHMN Spiribacter salinus 0.3583 – 

Acidithiobacillus caldus 0.3287 – 

Cutibacterium acnes 0.3102 – 

Cutibacterium acnes 0.3058 – 

Micrococcales bacterium 0.300 – 

Demequina sediminicola 0.2954 – 

Gamma proteobacterium 0.2944 – 
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Halomonas utahensis 0.2929 – 

Mycolicibacterium smegmatis 0.2908 – 

Halovibrio sp. 0.2904 – 

HostG Mycolicibacterium 0.78684735 FP 

RaFAH Gordonia 0.740* TP 

Mycolicibacterium 0.065 FP 

Rhodococcus 0.056 FP 

Mycobacterium 0.041 FP 

Tsukamurella 0.023 FP 

Corynebacterium 0.011 – 

Nocardia 0.010 FP 

Escherichia 0.006 – 

Salmonella 0.006 – 

Rhodopseudomonas 0.005 – 

VPF-

Class 

Bacillus 0.9567264423 (1.54E-01) – 

Mycobacterium 0.9567264423 (1.44E-01) FP 

Vibrio 0.9567264423 (1.44E-01) – 

Nitrincola 0.9567264423 (7.61E-02) – 

Pantoea 0.9567264423 (3.94E-02) – 

Staphylococcus 0.9567264423 (3.44E-02) – 

Pseudomonas 0.9567264423 (3.38E-02) – 

Lactobacillus 0.9567264423 (3.28E-02) – 

Lactococcus 0.9567264423 (3.24E-02) – 

Clostridium 0.9567264423 (2.13E-02) – 

vHULK Gordonia 0.996979* TP 

GMA3 CHERRY Gordonia malaquae 1.00* TP 

Gordonia terrae 0.98* TP 

Rhodococcus hoagii 0.86 – 

Mycolicibacterium phlei 0.09 – 

VHMN Agrobacterium sp. 0.4966 – 

Rhizobium sp. 0.4627 – 

Agrobacterium fabrum 0.4300 – 
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Brucella inopinata 0.4142 – 

Sodalis glossinidius str. 

morsitans 

0.3576 – 

Pseudomonas syringae pv. 

actinidiae 

0.3560 – 

Brucella abortus 0.3498 – 

Pseudomonas syringae pv. 

avii 

0.3465 – 

Nitrosospira sp. 0.3446 – 

Cronobacter sakazakii 0.3400 – 

HostG Gordonia 0.6929956 TP 

RaFAH Gordonia 0.892* TP 

Mycolicibacterium 0.032 TP 

Rhodococcus 0.014 FP 

Escherichia 0.012 – 

Mycobacterium 0.008 FP 

Tsukamurella 0.006 FP 

Rhodopseudomonas 0.004 – 

Lactobacillus 0.003 – 

Salmonella 0.003 – 

Candidatus Ruthia 0.002 – 

Dorea 0.002 – 

Faecalibacterium 0.002 – 

Yersinia 0.002 – 

VPF-

Class 

Bacillus 0.9451088996 (1.42E-01) – 

Gordonia 0.9451088996 (9.83E-02) TP 

Mycobacterium 0.9451088996 (8.87E-02) FP 

Pseudomonas 0.9451088996 (5.98E-02) – 

Aeromonas 0.9451088996 (5.62E-02) – 

Acinetobacter 0.9451088996 (5.38E-02) – 

Lactococcus 0.9451088996 (4.71E-02) – 

Streptococcus 0.9451088996 (3.80E-02) – 

Clostridium 0.9451088996 (3.67E-02) – 

Staphylococcus 0.9451088996 (3.54E-02) – 
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vHULK Gordonia 0.9991523* TP 

GMA4 CHERRY Gordonia terrae 1.00* FP 

Rhodococcus hoagii 1.00* – 

Gordonia rubripertincta 0.99* FP 

Gordonia alkanivorans 0.99* FP 

Gordonia malaquae 0.98* TP 

Mycolicibacterium smegmatis 0.97* FP 

Gordonia sputi 0.96* FP 

Rhodococcus rhodochrous 0.96* FP 

Gordonia neofelifaecis 0.94* – 

Tsukamurella paurometabola 0.94* FP 

VHMN Mycolicibacterium smegmatis 0.9963* – 

Gordonia terrae 0.9539* FP 

Gordonia terrae 0.9394 FP 

Mycolicibacterium smegmatis 0.9369 – 

Gordonia malaquae 0.8464 TP 

Gordonia malaquae 0.8416 – 

Gordonia shandongensis 0.7964 – 

Gordonia phthalatica 0.7957 – 

Gordonia westfalica 0.7927 – 

Gordonia hydrophobica 0.7801 – 

HostG Gordonia 0.49579906 TP 

RaFAH Gordonia 0.570* TP 

Corynebacterium 0.117 – 

Mycobacterium 0.053 FP 

Streptomyces 0.041 FP 

Rhodococcus 0.033 FP 

Actinomyces 0.021 – 

Cutibacterium 0.019 – 

Bifidobacterium 0.017 – 

Rothia 0.014 – 

Thermomonospora 0.014 – 
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VPF-

Class 

Mycobacterium 0.825986255 (3.64E-01)* FP 

Homo 0.825986255 (1.43E-01) – 

Gordonia 0.825986255 (8.88E-02) TP 

Aeromonas 0.825986255 (8.38E-02) – 

Bacillus 0.825986255 (6.49E-02) – 

Clostridium 0.825986255 (6.32E-02) – 

Pseudomonas 0.825986255 (3.83E-02) – 

Flavobacterium 0.825986255 (2.27E-02) – 

Synechococcus 0.825986255 (2.06E-02) – 

Nitrincola 0.825986255 (1.52E-02) – 

vHULK Gordonia 0.9263134* TP 

GMA5 CHERRY Gordonia terrae 1.00* TP 

Gordonia neofelifaecis 0.98* – 

Gordonia rubripertincta 0.96* TP 

Gordonia alkanivorans 0.94* FP 

Rhodococcus hoagii 0.93* – 

Gordonia malaquae 0.84 TP 

Mycolicibacterium smegmatis 0.83 FP 

Tsukamurella paurometabola 0.82 FP 

Gordonia sputi 0.66 FP 

Rhodococcus rhodochrous 0.52 FP 

VHMN Mycolicibacterium smegmatis 0.9091 – 

Gordonia terrae 0.6024 TP 

Gordonia terrae 0.5754 TP 

Streptomyces coelicolor 0.4854 – 

Mycolicibacterium smegmatis 0.4697 – 

Microbacterium foliorum 0.4258 – 

Streptomyces venezuelae 0.4094 – 

Pseudomonas aeruginosa 0.3758 – 

Glycomyces paridis 0.3675 – 

Gordonia malaquae 0.3601 – 

HostG Gordonia 0.33900467 TP 
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RaFAH Gordonia 0.686* TP 

Rhodococcus 0.066 FP 

Mycolicibacterium 0.059 FP 

Mycobacterium 0.034 FP 

Microbacterium 0.033 – 

Pseudopropionibacterium 0.010 – 

Bifidobacterium 0.009 – 

Arthrobacter 0.008 – 

Stigmatella 0.007 – 

Faecalibacterium 0.004 – 

Streptomyces 0.004 FP 

VPF-

Class 

Mycobacterium 0.7123720216 (2.93E-01) FP 

Bacillus 0.7123720216 (1.75E-01) – 

Mus 0.7123720216 (1.33E-01) – 

Achromobacter 0.7123720216 (5.63E-02) – 

Pseudomonas 0.7123720216 (4.93E-02) – 

Cellulophaga 0.7123720216 (4.13E-02) – 

Polaribacter 0.7123720216 (2.40E-02) – 

Salmonella 0.7123720216 (2.30E-02) – 

Burkholderia 0.7123720216 (1.59E-02) – 

Riemerella 0.7123720216 (1.32E-02) – 

vHULK Gordonia 0.72836643 TP 

GMA6 CHERRY Gordonia malaquae 1.00* TP 

Mycolicibacterium smegmatis 1.00* FP 

VHMN Mycolicibacterium smegmatis 0.5131 – 

Rhizobium leguminosarum 

bv. viciae 

0.2497 – 

Rhizobium sp. 0.2149 – 

Agrobacterium sp. 0.2071 – 

Gordonia terrae 0.2048 TP 

Azospirillum brasilense 0.2007 – 

Streptomyces coelicolor 0.1971 – 

Pseudomonas aeruginosa 0.1833 – 
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Prochlorococcus marinus str. 0.1800 – 

Spongiibacter tropicus 0.1774 – 

HostG Gordonia 1.0000000* TP 

RaFAH Gordonia 0.640* TP 

Mycolicibacterium 0.138 FP 

Rhodococcus 0.096 FP 

Mycobacterium 0.061 FP 

Tsukamurella 0.023 FP 

Actinomyces 0.004 – 

Corynebacterium 0.004 – 

Haemophilus 0.003 – 

Blautia 0.002 – 

Porphyrobacter 0.002 – 

Pseudopropionibacterium 0.002 – 

Ruminococcus 0.002 – 

Streptococcus 0.002 – 

Streptomyces 0.002 FP 

Yersinia 0.002 – 

VPF-

Class 

Bacillus 0.9245044056 (1.16E-01) – 

Mycobacterium 0.9245044056 (1.07E-01) FP 

Clostridium 0.9245044056 (8.17E-02) – 

Ralstonia 0.9245044056 (6.88E-02) – 

Escherichia 0.9245044056 (6.73E-02) – 

Cronobacter 0.9245044056 (6.21E-02) – 

Gordonia 0.9245044056 (5.36E-02) TP 

Corynebacterium 0.9245044056 (4.26E-02) – 

Vibrio 0.9245044056 (3.90E-02) – 

Pseudomonas 0.9245044056 (3.60E-02) – 

vHULK Gordonia 0.99143773* TP 

GMA7 CHERRY Gordonia malaquae 1.00* TP 

Gordonia terrae 0.98* TP 

Rhodococcus hoagii 0.86 – 
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Mycolicibacterium phlei 0.09 – 

VHMN Mycolicibacterium smegmatis 0.6141 – 

Olsenella umbonata 0.5738 – 

Olsenella sp. 0.5668 – 

Olsenella umbonata 0.5660 – 

Streptomyces coelicolor 0.4864 – 

Olsenella sp. 0.4854 – 

Olsenella sp. 0.4755 – 

Olsenella sp. 0.4754 – 

Bacterium 0.4745 – 

Bacterium 0.4745 – 

HostG Gordonia 0.6929956 TP 

RaFAH Gordonia 0.816* TP 

Tsukamurella 0.076 FP 

Mycolicibacterium 0.061 FP 

Mycobacterium 0.030 FP 

Rhodococcus 0.004 FP 

Corynebacterium 0.002 – 

Cutibacterium 0.002 – 

Bacillus 0.001 – 

Blautia 0.001 – 

Clostridium 0.001 – 

Coprococcus 0.001 – 

Frankia 0.001 – 

Lactobacillus 0.001 – 

Prevotella 0.001 – 

Pseudopropionibacterium 0.001 – 

Rothia 0.001 – 

VPF-

Class 

Mycobacterium 0.93894772 (2.46E-01) FP 

Gordonia 0.93894772 (1.53E-01) TP 

Cellulophaga 0.93894772 (1.36E-01) – 

Synechococcus 0.93894772 (6.63E-02) – 
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Bacillus 0.93894772 (6.22E-02) – 

Pseudomonas 0.93894772 (5.27E-02) – 

Clostridium 0.93894772 (2.60E-02) – 

Sinorhizobium 0.93894772 (2.49E-02) – 

Apis 0.93894772 (2.06E-02) – 

Prochlorococcus 0.93894772 (1.96E-02) – 

vHULK Tsukamurella 0.5079881 FP 

GRU1 CHERRY Gordonia terrae 0.22 TP 

Rhodococcus hoagii 0.01 – 

VHMN Mycolicibacterium smegmatis 0.9990* – 

Mycolicibacterium smegmatis 0.9806* – 

Gordonia terrae 0.9674* TP 

Gordonia terrae 0.9669* TP 

Streptomyces coelicolor 0.9438 – 

Pseudomonas aeruginosa 0.8705 – 

Pseudomonas aeruginosa 0.8623 – 

Mycobacterium sp. 0.8521 – 

Pseudomonas aeruginosa 0.8508 – 

Mycobacterium sp. 0.8504 – 

HostG Gordonia 1.0000000* TP 

RaFAH Gordonia 0.721* TP 

Mycolicibacterium 0.197* FP 

Mycobacterium 0.052 FP 

Corynebacterium 0.013 – 

Tsukamurella 0.013 FP 

Rhodococcus 0.003 FP 

Nocardia 0.001 TP 

VPF-

Class 

Gordonia 0.9993212076 (8.12E-01)* TP 

Mycobacterium 0.9993212076 (5.23E-02) FP 

Tsukamurella 0.9993212076 (3.85E-02) FP 

Bacillus 0.9993212076 (1.86E-02) – 

Pseudomonas 0.9993212076 (1.18E-02) – 
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Streptomyces 0.9993212076 (8.61E-03) FP 

Synechococcus 0.9993212076 (7.56E-03) – 

Vibrio 0.9993212076 (6.95E-03) – 

Cellulophaga 0.9993212076 (5.00E-03) – 

Corynebacterium 0.9993212076 (4.21E-03) – 

vHULK Gordonia 0.9989813* TP 

GRU3 CHERRY Gordonia rubripertincta 1.00* TP 

Gordonia terrae 1.00* TP 

Gordonia neofelifaecis 0.98* – 

Gordonia alkanivorans 0.94* FP 

Rhodococcus hoagii 0.93* – 

Gordonia malaquae 0.84 FP 

Mycolicibacterium smegmatis 0.83 FP 

Tsukamurella paurometabola 0.82 FP 

Gordonia sputi 0.66 FP 

Rhodococcus rhodochrous 0.52 FP 

VHMN Mycolicibacterium smegmatis 0.9647* – 

Gordonia terrae 0.6517 TP 

Mycolicibacterium smegmatis 0.6392 – 

Gordonia terrae 0.6342 TP 

Streptomyces coelicolor 0.5669 – 

Streptomyces venezuelae 0.3843 – 

Streptomyces avermitilis 0.3799 – 

Nocardia ignorata 0.3766 – 

Nocardia ignorata 0.3765 – 

Nocardia coubleae 0.3630 – 

HostG Gordonia 0.33900467 TP 

RaFAH Gordonia 0.744* TP 

Mycolicibacterium 0.058 FP 

Rhodococcus 0.031 FP 

Mycobacterium 0.013 FP 

Microbacterium 0.011 FP 
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Pseudopropionibacterium 0.009 – 

Arthrobacter 0.008 – 

Bifidobacterium 0.007 – 

Actinomyces 0.006 – 

Nitrolancea 0.006 – 

Streptococcus 0.006 – 

VPF-

Class 

Mycobacterium 0.5454845125 (4.02E-01)* FP 

Mus 0.5454845125 (2.32E-01) – 

Sulfolobus 0.5454845125 (1.27E-01) – 

Ralstonia 0.5454845125 (6.24E-02) – 

Aureococcus 0.5454845125 (5.29E-02) – 

Homo 0.5454845125 (4.21E-02) – 

Mannheimia 0.5454845125 (2.81E-02) – 

Vibrio 0.5454845125 (1.79E-02) – 

Acinetobacter 0.5454845125 (1.62E-02) – 

Bacillus 0.5454845125 (1.22E-02) – 

vHULK Gordonia 0.5453266 TP 

GTE2 CHERRY Gordonia terrae 1.00* TP 

Mycolicibacterium smegmatis 0.94* FP 

Clavibacter michiganensis 0.03 – 

VHMN Mycolicibacterium smegmatis 0.7345 – 

Gordonia terrae 0.4333 TP 

Gordonia terrae 0.3420 TP 

Mycolicibacterium smegmatis 0.2973 – 

Smaragdicoccus niigatensis 0.2701 – 

Smaragdicoccus niigatensis 0.2695 – 

Timonella senegalensis 0.2536 – 

Rhodococcus kunmingensis 0.2511 – 

Coriobacteriaceae bacterium 0.2474 – 

Coriobacteriaceae bacterium 0.2443 – 

HostG Mycolicibacterium 0.38070312 FP 

RaFAH Gordonia 0.768* TP 
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Mycobacterium 0.135 FP 

Mycolicibacterium 0.065 FP 

Rhodococcus 0.010 TP 

Tsukamurella 0.006 FP 

Actinomyces 0.004 – 

Nocardia 0.002 TP 

Rothia 0.002 – 

Arthrobacter 0.001 – 

Bifidobacterium 0.001 – 

Corynebacterium 0.001 – 

Methylocaldum 0.001 – 

Microbacterium 0.001 – 

Ruminococcus 0.001 – 

Selenomonas 0.001 – 

Vibrio 0.001 – 

VPF-

Class 

Gordonia 0.9975927809 (7.32E-01)* TP 

Mycobacterium 0.9975927809 (1.37E-01) FP 

Streptomyces 0.9975927809 (2.75E-02) FP 

Sinorhizobium 0.9975927809 (2.29E-02) – 

Homo 0.9975927809 (1.28E-02) – 

Arthrobacter 0.9975927809 (1.24E-02) – 

Bacillus 0.9975927809 (9.89E-03) – 

Pseudomonas 0.9975927809 (5.45E-03) – 

Burkholderia 0.9975927809 (5.18E-03) – 

Vibrio 0.9975927809 (4.49E-03) – 

vHULK Gordonia 0.98930323* TP 

GTE5 CHERRY Gordonia terrae 0.22 TP 

Rhodococcus hoagii 0.01 – 

VHMN Mycolicibacterium smegmatis 0.9988* – 

Mycolicibacterium smegmatis 0.9757* – 

Gordonia terrae 0.9626* TP 

Gordonia terrae 0.9625* TP 
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Streptomyces coelicolor 0.9469 – 

Pseudomonas aeruginosa 0.8571 – 

Microbacterium foliorum 0.8545 – 

Streptomyces avermitilis 0.8495 – 

Pseudomonas aeruginosa 0.8454 – 

Pseudomonas aeruginosa 0.839 – 

HostG Gordonia 1.0000000* TP 

RaFAH Gordonia 0.720* TP 

Mycolicibacterium 0.194* FP 

Mycobacterium 0.055 FP 

Corynebacterium 0.014 – 

Tsukamurella 0.010 FP 

Rhodococcus 0.005 FP 

Nocardia 0.001 FP 

Streptomyces 0.001 FP 

VPF-

Class 

Gordonia 0.9992930149 (8.14E-01)* TP 

Mycobacterium 0.9992930149 (5.74E-02) FP 

Tsukamurella 0.9992930149 (4.01E-02) FP 

Streptomyces 0.9992930149 (1.71E-02) FP 

Bacillus 0.9992930149 (1.41E-02) – 

Nitrincola 0.9992930149 (5.41E-03) – 

Corynebacterium 0.9992930149 (4.42E-03) – 

Acinetobacter 0.9992930149 (4.19E-03) – 

Campylobacter 0.9992930149 (4.05E-03) – 

Cellulophaga 0.9992930149 (3.81E-03) – 

vHULK Gordonia 0.9981748* TP 

GTE6 CHERRY Gordonia terrae 1.00* TP 

Mycolicibacterium smegmatis 0.01 FP 

Rhodococcus rhodochrous 0.01 FP 

VHMN Mycolicibacterium smegmatis 0.9971* – 

Gordonia terrae 0.9516* TP 

Gordonia terrae 0.9337 TP 
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Mycolicibacterium smegmatis 0.9335 – 

Burkholderia cenocepacia 0.8845 – 

Burkholderia cenocepacia 0.8427 – 

Rhodococcus rhodnii 0.8111 FP 

Rhodococcus rhodnii 0.8049 – 

Rhodococcus rhodnii 0.8041 – 

Rhodococcus zopfii 0.8008 – 

HostG Gordonia 1.0000000* TP 

RaFAH Gordonia 0.914* TP 

Rhodococcus 0.037 FP 

Mycolicibacterium 0.019 FP 

Nocardia 0.009 FP 

Mycobacterium 0.007 FP 

Tsukamurella 0.007 FP 

Corynebacterium 0.002 – 

Streptomyces 0.002 FP 

Arthrobacter 0.001 – 

Frankia 0.001 – 

Ruminiclostridium 0.001 – 

VPF-

Class 

Gordonia 0.9621979862 (2.96E-01) TP 

Mycobacterium 0.9621979862 (2.49E-01) FP 

Bacillus 0.9621979862 (9.27E-02) – 

Haloarcula 0.9621979862 (7.79E-02) – 

Microcystis 0.9621979862 (3.38E-02) – 

Ralstonia 0.9621979862 (2.98E-02) – 

Aureococcus 0.9621979862 (2.16E-02) – 

Homo 0.9621979862 (1.87E-02) – 

Synechococcus 0.9621979862 (1.64E-02) – 

Acidianus 0.9621979862 (1.61E-02) – 

vHULK Gordonia 0.9995683* TP 

GTE7 CHERRY Gordonia terrae 1.00* TP 

Rhodococcus hoagii 0.86 – 
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Gordonia malaquae 0.64 TP 

Mycolicibacterium phlei 0.09 – 

VHMN Mycolicibacterium smegmatis 0.6180 – 

Olsenella umbonata 0.5581 – 

Olsenella sp. 0.5511 – 

Olsenella umbonata 0.5500 – 

Streptomyces coelicolor 0.4940 – 

Olsenella sp. 0.4673 – 

Olsenella sp. 0.4645 – 

Olsenella sp. 0.4549 – 

Olsenella sp. 0.4548 – 

Bacterium 0.4530 – 

Bacterium 0.4530 – 

HostG Gordonia 0.6929956 TP 

RaFAH Gordonia 0.821* TP 

Tsukamurella 0.072 FP 

Mycolicibacterium 0.059 FP 

Mycobacterium 0.034 FP 

Rhodococcus 0.004 FP 

Butyricicoccus 0.001 – 

Coprococcus 0.001 – 

Corynebacterium 0.001 – 

Frankia 0.001 – 

Lactobacillus 0.001 – 

Oenococcus 0.001 – 

Prevotella 0.001 – 

Pseudomonas 0.001 – 

Pseudopropionibacterium 0.001 – 

Rothia 0.001 – 

VPF-

Class 

Escherichia 0.9427797525 (2.68E-01) – 

Mycobacterium 0.9427797525 (1.80E-01) FP 

Synechococcus 0.9427797525 (1.62E-01) – 
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Bacillus 0.9427797525 (5.23E-02) – 

Clostridium 0.9427797525 (4.99E-02) – 

Lactobacillus 0.9427797525 (3.31E-02) – 

Vibrio 0.9427797525 (2.99E-02) – 

Pseudomonas 0.9427797525 (2.65E-02) – 

Sinorhizobium 0.9427797525 (2.30E-02) – 

Halorubrum 0.9427797525 (1.57E-02) – 

vHULK Tsukamurella 0.7927325 TP 

GTE8 CHERRY Gordonia terrae 1.00* TP 

Rhodococcus hoagii 0.01 – 

VHMN Mycolicibacterium smegmatis 0.9986* – 

Mycolicibacterium smegmatis 0.9723* – 

Gordonia terrae 0.9704* TP 

Gordonia terrae 0.9687* TP 

Streptomyces coelicolor 0.9637* – 

Streptomyces venezuelae 0.9072 – 

Microbacterium foliorum 0.9023 – 

Streptomyces avermitilis 0.8984 – 

Mycobacterium sp. 0.8942 – 

Mycobacterium sp. 0.8942 – 

HostG Gordonia 1.0000000* TP 

RaFAH Gordonia 0.815* TP 

Mycolicibacterium 0.121 FP 

Mycobacterium 0.042 FP 

Tsukamurella 0.013 FP 

Corynebacterium 0.004 – 

Rhodococcus 0.003 FP 

Streptomyces 0.001 FP 

Thermomonospora 0.001 – 

VPF-

Class 

Gordonia 0.997462661 (8.95E-01)* TP 

Mycobacterium 0.997462661 (1.92E-02) FP 

Streptomyces 0.997462661 (1.10E-02) FP 
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1only reported by VPF-Class 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Corynebacterium 0.997462661 (1.01E-02) – 

Escherichia 0.997462661 (9.18E-03) – 

Bacillus 0.997462661 (9.00E-03) – 

Propionibacterium 0.997462661 (8.61E-03) – 

Lactococcus 0.997462661 (7.19E-03) – 

Riemerella 0.997462661 (6.17E-03) – 

Cellulophaga 0.997462661 (4.98E-03) – 

vHULK Gordonia 0.999315* TP 
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Supplementary Figure S1. Average nucleotide identity (ANI) of a) Escherichia coli and 
b) Gordonia bacteriophage genomes included in the analysis. Accession numbers are 
provided in Supplementary Tables S1 and S2, respectively. 
 

 
 

 

Supplementary Figure S2. Average nucleotide identity (ANI) between experimentally-
validated host (shown in pink) and a) non-host (black) genomes of the three Escherichia 
coli bacteriophages HY01, KFS-EC3, and SFP10 as well as b) genomes of E. coli, 
Salmonella, and Shigella strains included in the exploratory tool databases. ATCC and 
NCBI accession numbers are shown in brackets.  
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Supplementary Figure S3. Average nucleotide identity (ANI) between experimentally-

validated host (shown in pink) and non-host (black) genomes of the 13 Gordonia 

bacteriophages GMA2-7, GRU1, GRU3, GTE2, and GTE5-8 as well as genomes of closely-

related Gordonia strains included in the exploratory tool databases. DSMZ and NCBI 

accession numbers are shown in brackets. * Note that, as of August 2023, the NCBI 

record for Gordonia terrae strain K (accession number: SCOR01000001) was suspended 

due to being from an unverified source organism.  
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Supplementary Figure S4. PHASTER prediction of prophages detected in 
Mycobacterium smegmatis mc2 155. 
Region 1 (shown in green) contains a BLAST hit against bacteriophage Cucurbita (e-
value 2.71e-15) at position 1,822,790 bp to 1,823,125 bp, indicating the integration of a 
prophage. 
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CHAPTER 5 

DEVELOPING AN APPROPRIATE EVOLUTIONARY BASELINE MODEL FOR THE 

STUDY OF HUMAN CYTOMEGALOVIRUS 

(Previously published as A.A. Howell, J. Terbot II, V. Soni, P. Johri, J.D. Jensen*, and 

S.P. Pfeifer*. 2023. Developing an appropriate evolutionary baseline model for the study 

of human cytomegalovirus. GBE 15: evad059.)  

Abstract 

Human cytomegalovirus (HCMV) represents a major threat to human health, 

contributing to both birth defects in neonates as well as organ transplant failure and 

opportunistic infections in immunocompromised individuals. HCMV exhibits considerable 

interhost and intrahost diversity, which likely influences the pathogenicity of the virus. 

Therefore, understanding the relative contributions of various evolutionary forces in 

shaping patterns of variation is of critical importance both mechanistically and clinically. 

Herein, we present the individual components of an evolutionary baseline model for 

HCMV, with a particular focus on congenital infections for the sake of illustration—

including mutation and recombination rates, the distribution of fitness effects, infection 

dynamics, and compartmentalization—and describe the current state of knowledge of 

each. By building this baseline model, researchers will be able to better describe the 

range of possible evolutionary scenarios contributing to observed variation as well as 

improve power and reduce false-positive rates when scanning for adaptive mutations in 

the HCMV genome. 

Significance 

Human cytomegalovirus (HCMV) infection is a major cause of birth defects and 

can lead to severe effects in immunosuppressed and immunonaïve individuals. 

Pathogenicity is likely driven by multiple factors, including the genetic diversity of the 
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virus itself. Furthermore, the accurate identification of genomic loci underlying viral 

adaptation relies on an appropriate baseline model that accounts for constantly 

operating evolutionary processes shaping this genetic diversity. With this overview of the 

current understanding of these processes in HCMV, we provide the necessary details for 

researchers to implement such a baseline model for their own genomic analysis of 

patient samples. 

Introduction 

As the leading cause of infection-related birth defects—including cognitive and 

hearing impairments—human cytomegalovirus (HCMV) remains a major threat to global 

health, with a seroprevalence of more than 90% outside of the developed world 

(e.g., Boppana et al. 2013; Swanson and Schleiss 2013; Dreher et al. 2014). HCMV is 

also a primary cause of solid organ transplant failure (Balfour 1979) and often results in 

opportunistic infections in immunocompromised individuals or those with immature 

immune systems (e.g., Suárez et al. 2019, 2020). Additionally, primary infection or 

reactivation is implicated in a wide variety of health complications (Griffiths et al. 2015), 

and recent studies suggest that HCMV may play an active role in glioma pathogenesis in 

individuals with glioblastoma (Cobbs et al. 2002; Abdelaziz et al. 2019). Moreover, along 

with human immunodeficiency virus type 1 (HIV-1), HCMV is the most common viral 

agent transmitted from mother to offspring and may itself contribute to the vertical 

transmission of HIV-1 (Johnson et al. 2015; Girsch et al. 2022). 

HCMV is a β-herpesvirus in the Herpesviridae family with a relatively large 

double-stranded (ds) DNA genome of ∼235 kb in size, including between 164 and 167 

open reading frames (ORFs) (Dolan et al. 2004). Lytic infection is initiated by the 

expression of genes in a flow cascade, and DNA replication initiates 1–3 days 

postinfection (Weekes et al. 2014). The genome contains two unique regions—the 
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unique long (UL) and unique short (US) region—that are internally and externally flanked 

by repeats. The UL region contains ORFs encoding gene products associated with 

latency and reactivation (Revello and Gerna 2010; Li et al. 2014); in laboratory passaged 

strains, cultures have been shown to accumulate large deletions in this region compared 

with clinically isolated viruses, likely owing to the relaxed selection in laboratory 

environments (Cha et al. 1996). In contrast, ORFs within the UL region that encode 

envelope glycoproteins thought to be important for pathogenesis have been found to 

evolve under considerable constraint (He et al. 2006; Ji et al. 2006; Heo et al. 2008). 

Multiple studies have suggested a link between pathogenesis and genomic 

variability (Meyer-König, Vogelberg, et al. 1998; Renzette et al. 2014; Wang et al. 2021), 

with high levels of diversity and multiple-strain infection found to be associated with 

higher viral loads (Pang et al. 2008; Sowmya and Madhavan 2009; Puchhammer-Stöckl 

and Görzer 2011). Furthermore, variation in the glycoproteins gO and gB, potentially 

generated through recombination (Meyer-König, Vogelberg, et al. 1998), has been 

proposed to influence cell tropism and dissemination (Hahn et al. 2004). Gaining a better 

understanding of the evolutionary forces that shape viral diversity is thus of critical 

importance both mechanistically and clinically. During the last decade, many efforts have 

been made to understand the relative contributions of admixture, positive and purifying 

selection, and infection-related bottlenecks in shaping HCMV interhost and intrahost 

variation (Renzette et al. 2013, 2015, 2017; Pokalyuk et al. 2017). Relatedly, numerous 

efforts have focused on elucidating key evolutionary parameters including the underlying 

mutation and recombination rates, as well as the selective effects of newly arising 

mutations (the distribution of fitness effects [DFE]; Renzette et al. 2015, 2017; Morales-

Arce et al. 2022). 
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Importantly, recent studies focused upon evolutionary inference procedures have 

simultaneously demonstrated the value of jointly estimating parameters of natural 

selection with population history, as a neglect of one to infer the other will often result in 

serious misinference (Johri et al. 2020, 2021). Moreover, only by first accounting for the 

constantly acting evolutionary processes of genetic drift (as shaped by the infection 

bottleneck and subsequent viral population growth, as well as the genetic structure 

associated with compartmentalization) and purifying and background selection (owing to 

the pervasive input of deleterious mutations) may one develop a meaningful baseline 

model of expected levels and patterns of genomic variation. This baseline model is 

critical for accurately detecting and quantifying rarer and episodic evolutionary 

processes, such as positive selection potentially leading to viral adaptation (Johri, 

Aquadro, et al. 2022; Johri, Eyre-Walker, et al. 2022). More specifically, owing to 

overlapping patterns between neutral and selective evolutionary processes (Jensen 

2009; Bank et al. 2014), this baseline model is essential for defining rates of true 

positives and false positives associated with the detection of rare or episodic effects in 

any given population and for any given data set. 

As such an evolutionary baseline model has yet to be fully described for HCMV, 

we here outline important components of such a model and review the current state of 

knowledge pertaining to each: mutation rates, recombination rates, the distribution of 

fitness effects, infection dynamics, and compartmentalization. We close with a series of 

recommendations for improving evolutionary inference in this important human pathogen 

and highlight key areas in need of further investigation. 

Mutation Rate 

The mutation rate quantifies the frequency at which spontaneous (de novo) 

mutations arise in a genome, as caused by a variety of factors including DNA replication 
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errors and spontaneous DNA damage (see review of Pfeifer 2020). This rate is distinct 

from the substitution rate—that is, the rate at which mutations become fixed in a 

population—which is influenced not only by the de novo mutation rate but also by natural 

selection, genetic drift, as well as multiple other factors. However, for strictly neutral 

mutations, the rate of mutational input is equal to the rate of substitution (Kimura 1968), 

leading to a clock-like accumulation of mutations over time. Using a molecular clock 

(divergence)-based approach, recent studies have reported substitution rates of 

approximately 3.0 × 10−9 substitutions per nucleotide per year in HCMV (McGeoch et al. 

2000)—one to two orders of magnitudes lower than the rate reported for a closely 

related virus, herpes simplex virus (HSV-1), which exhibits 3.0 × 10−8 (Sakaoka et al. 

1994) and 1.4 × 10−7 (Kolb et al. 2013) substitutions per nucleotide per year. Mutation 

rates of both HCMV and HSV-1 have also been studied in vitro. For example, by scoring 

null mutations in the tk gene using ganciclovir, mutation rates in HSV-1 have similarly 

been estimated to range from 5.9 × 10−8 (Hwang et al. 2002; Drake and Hwang 2005) to 

1.0 × 10−7 (Hall and Almy 1982) substitutions per nucleotide per cell infection, where cell 

infection is an estimate of a viral generation. 

It is necessary here to highlight the various units being reported when comparing 

between the results described in different studies, with rates reported as substitutions 

per nucleotide per generation (s/n/g), substitutions per nucleotide per year (s/n/y), 

substitutions per nucleotide per cell infection (s/n/c), or substitutions per nucleotide per 

round of copying (s/n/r), if the mode of replication is known. The mode of replication of 

dsDNA viruses is likely limited to semiconservative replication, although RNA viruses by 

comparison are known to use a “stamping machine” model, where a single template is 

used for all progeny strands (Luria 1951). To compare between estimates using 

substitutions per nucleotide per cell infection and estimates using substitutions per 
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nucleotide per year, we have used the number of viral cycles per year as a conversion 

factor (table 1). Specifically, conversion factors of 181.87 to 362.48 viral cycles per year 

were chosen to span lower and upper estimates for HCMV, while 1,946.67 viral cycles 

per year were used for closely related HSV-1 for comparison. These estimates are 

based on internalization times of 10 min (Bodaghi et al. 1999; Hetzenecker et al. 2016) 

and 30 min (Zheng et al. 2014), as well as eclipse times of 24–48 h (Jean et al. 1978) 

and 4 h (Nishide et al. 2019), for HCMV and HSV-1, respectively. Importantly, these 

conversions highlight the discrepancy between divergence and in vitro estimates of the 

substitution rate, demonstrating that molecular clock-based estimates primarily provide 

information about the rate of neutral and nearly neutral mutation, rather than estimating 

full mutational spectra (as discussed in the below section). Additionally, the further 

analysis of future patient samples would be of great value in better characterizing the 

interhost variance in these rates. 
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Virus Approach 
Original 

Unita 
Estimated Rate/Cycle Reference 

HCMV In vitro s/n/c 2.0 × 10−7 Renzette et al. 2015 

HCMV Divergence s/n/y 
1.6 × 10−11 / 8.2 × 

10−12 
McGeoch et al. 2000 

HSV-1 Divergence s/n/y 7.1 × 10−11 Kolb et al. 2013 

HSV-1 Divergence s/n/y 4.1 × 10−11 Sakaoka et al. 1994 

HSV-1 In vitro s/n/c 1.0 × 10−7 Hall and Almy 1982 

HSV-1 In vitro s/n/c 5.9 × 10−8 

Hwang et al. 2002; 

Drake and Hwang 

2005 

Table 1. In Vitro- and Divergence-Based Estimates of De Novo Mutation Rates in HCMV 
Compared with the Closely Related HSV-1. Note.—To compare between estimates 
using substitutions per nucleotide per cell infection (s/n/c) and estimates using 
substitutions per nucleotide per year (s/n/y), we have used conversion factors of either 
181.87 or 362.48 viral cycles per year to span uncertainty in HCMV, and 1,946.67 viral 
cycles per year for HSV-1. as = substitutions; n = nucleotide; c = cell infection; y = year. 
 

Notably, these experimental and empirical measurements of the mutation rate 

based on genome-wide population genetic data neglect the substantial proportion of 

lethal and deleterious mutations that are removed from the population via purifying 

selection. Owing to this neglect, measurements obtained using these methods are likely 

an underestimate of the genuine genome-wide mutation rate (Peck and Lauring 2018). 

Mutation accumulation experiments provide a valuable (and less biased) alternative by 

subjecting a viral population to a series of bottlenecks that reduces the effective 

population size, thus minimizing the efficacy of selection. A similar strategy can be 

applied to natural, longitudinal population data. Using this approach, the mutation rate of 
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HCMV was estimated by Renzette et al. (2015) as 2.0 × 10−7 mutations per nucleotide 

per generation using longitudinal samples obtained from 18 patients, where mutations 

were called if absent in earlier samples and present in all later samples. Importantly, 

however, evaluating such longitudinal data in the context of a mutation accumulation 

study comes with the qualification that selective pressures are expected to be much 

stronger in patient samples relative to traditional experimental mutation accumulation 

lines. In addition, the presence of a reinfection event during the longitudinal sampling—if 

not identified—would be expected to upwardly bias these estimates. It is also important 

to note that rate estimates of this sort are further complicated by practical limitations of 

clinical sampling. Specifically, previous studies have shown that deep sequencing 

through the use of polymerase chain reaction amplicons requires rare variants to be 

present at >1% frequency in order to be reliably detected (Fonager et al. 2015; Kyeyune 

et al. 2016)—though newer methods that utilize target enrichment protocols may 

improve upon this threshold (Hage et al. 2017). Given that the vast majority of variants 

are expected to be rare, such detection thresholds may be of considerable significance. 

Mutation rates in viruses may evolve through both mutator and antimutator 

alleles, the fixations of which are thought to be governed by genome size and effective 

population size (Lynch et al. 2016). When effective population sizes are small, selection 

is weak and may be unable to prevent mutator alleles from fixing. To date, one 

hypermutator has been identified in HCMV (Chou et al. 2016). Mutator alleles are a 

double-edged sword for viruses, having important implications for the rate of adaption 

(Taddei et al. 1997; Travis and Travis 2002), but more significantly also create the 

possibility of mutational meltdown (Crotty et al. 2001; Beaucourt et al. 2011; Bank et al. 

2016; Matuszewski et al. 2017; Ormond et al. 2017). Indeed, owing to interference 

between the greater input of deleterious mutations with the minor input of beneficial 
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mutations, higher mutation rates may slow or stop the rate of adaptation (Pénisson et al. 

2017; Jensen and Lynch 2020; Jensen et al. 2020). Other molecular determinants of 

viral mutation rates include postreplicative repair through interaction with DNA damage 

response pathways (Weitzman et al. 2010; Luftig 2014)—a particularly relevant 

mechanism for HCMV as herpesviruses are known to induce DNA damage responses 

(Xiaofei and Kowalik 2014). 

As HCMV has been observed to be quite diverse compared with other DNA 

viruses—on the order of certain RNA viruses (Wang et al. 2002; Jerzak et al. 2005)—

one formal possible explanation for the high levels of nucleotide diversity observed in 

HCMV is an exceptionally high mutation rate (i.e., as levels of neutral variation are 

expected to be a factor of the effective population size as well as the underlying mutation 

rate). This hypothesis was recognized as unlikely by Renzette et al. (2011), owing, 

among other reasons, to the proofreading activity of HCMV's DNA polymerase 

(Nishiyama et al. 1983). Although Cudini et al. (2019) recently rediscussed this 

possibility (and see the response of Jensen and Kowalik 2020), there appears to be 

general agreement that RNA virus-like levels of variation in HCMV are not due to RNA 

virus-like mutation rates. Specifically, following multiple studies on HCMV interhost and 

intrahost variation (Renzette et al. 2013, 2015, 2017; Pokalyuk et al. 2017; and see the 

below sections), it has been demonstrated that observed diversity is likely generated by 

a combination of mutation, recombination, reinfection, compartmentalization, selection, 

and infection population size histories (Jensen 2021)—with a mutation rate of 2.0 × 

10−7 mutations per nucleotide per generation appearing consistent with the data 

(Renzette et al. 2015). More specifically, the observed high levels of variation appear to 

more likely be related to the population dynamics related to compartmentalization, gene 

flow, and reinfection, rather than to particularly elevated rates of mutation (e.g., Pokalyuk 
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et al. 2017; Jensen and Kowalik 2020). Renzette et al. additionally identified a weak but 

highly significant positive correlation between estimated mutation rates and single 

nucleotide polymorphism (SNP) density across the HCMV genome, as may be 

expected. Heterogeneity in mutation rates across the genome was additionally proposed 

as a contributing factor underlying the observed correlations between intraspecies 

variation and recombination rates, as well as of that between variation and divergence 

(Renzette et al. 2016). 

Recombination Rate 

Recombination not only contributes genetic variation through the generation of 

novel genotypic combinations, but it may also improve the efficacy of selection through 

the reduction of interference effects between and among beneficial and deleterious 

variants (Hill and Robertson 1966; Felsenstein 1974; Lynch et al. 1995; Pénisson et al. 

2017). Studies examining the intergenic variability of HCMV glycoprotein loci (Meyer-

König, Haberland, et al. 1998; Haberland et al. 1999; Yan et al. 2008) provided the initial 

evidence for homologous recombination in the HCMV genome. Nearly two decades 

later, Renzette et al. (2015) estimated a genome-wide recombination map using a 

population genetic approach, reporting a mean recombination rate of ∼0.23 crossover 

events per genome per generation, based on observed patterns of linkage disequilibrium 

(LD) (i.e., by assessing the extent to which observed haplotype distributions may be 

explained by variable rates of recombination; and see the review of Stumpf and McVean 

(2003) for a discussion on estimating recombination rates from population genetic data). 

The authors further reported a correlation between recombination rate and SNP density, 

consistent with widespread purifying selection, as has been observed in multiple diverse 

species (e.g., Begun and Aquadro 1992; Pfeifer and Jensen 2016; Renzette et al. 2017; 

and see the review of Charlesworth and Jensen 2021). However, as with mutation rates, 
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recombination rate estimates can also be misinferred, for example, due to unaccounted 

for progeny skew, which is known to increase levels of LD in highly skewed populations 

relative to standard Wright–Fisher expectations (and as such may downwardly bias 

recombination rate estimation if unaccounted for; Eldon and Wakeley 2008; Birkner et al. 

2013). This observation highlights the need for further computational method 

development of mutation and recombination rate estimators for the type of generalized 

progeny skew distributions applicable to viruses and other human pathogens (Morales-

Arce et al. 2020; Sabin et al. 2022). 

In addition to LD–based approaches, studies have also characterized 

recombination in the HCMV genome using a combination of phylogenetic and 

population-level analyses. By constructing “phylogenetic trees” for each gene in the 

HCMV genome and correcting for recombination breakpoints with the genetic algorithm 

GARD, Kosakovsky Pond et al. (2006) found that the majority of loci showed no 

consistent phylogenetic patterns, indicating that recombination occurs often enough that 

whole genomes can behave as “gene-scale mosaics.” In other words, what certain 

authors refer to as variable phylogenetic trees are in fact better described as variable 

coalescent histories. Further, like the Renzette et al. studies, Sijmons et al. (2015) also 

observed a correlation between recombination rate and nucleotide diversity using a 

phylogenetic approach. However, phylogenetic-based approaches are generally poorly 

suited for the study of recombination compared with the coalescent-based approaches 

utilized in population genetics—and multiple studies suffer from these limitations when 

trying to distinguish between recombination and competing evolutionary processes in a 

phylogenetic framework (e.g., Houldcroft et al. 2016; Cudini et al. 2019). Specifically, 

coalescent theory provides a sophisticated framework for the study of variable gene 

genealogies owing to recombination (Wakeley 2009) and avoids the pretense of 
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searching for a single (and nonexistent) “phylogenetic tree’ to describe within-population 

variation (e.g., Cudini et al. 2019; and see Rosenberg and Nordborg 2002 for a 

discussion). 

The Distribution of Fitness Effects (DFE) 

HCMV is characterized by a large genome relative to other human viruses. 

Although the set of protein-coding genes in HCMV experiences constant revision, there 

are 45 core genes that are conserved across all herpesviruses and ∼117 noncore genes 

that are more specific to the CMVs, many of which are still being functionally 

characterized (Van Damme and Van Loock 2014; Mozzi et al. 2020). Although it is clear 

that protein-coding regions occupy the majority of the HCMV genome, these 

uncertainties mean that the precise fraction of the genome that experiences direct 

purifying selection is not yet fully defined—though roughly 25% of the genome has been 

observed to be nearly devoid of variation, potentially suggesting strong constraint 

(Renzette et al. 2015). Interestingly, within-patient nucleotide diversity in noncoding 

regions of the genome has generally been observed to be on the same order as less-

constrained coding regions (Renzette et al. 2011), suggesting the presence of 

functionally important regions interspersed across the genome and/or widespread 

background selection effects (Renzette et al. 2016). This combination of factors renders 

the identification of neutrally evolving sites challenging. 

Previous studies have used comparisons of sequence evolution at 

nonsynonymous versus synonymous sites at various evolutionary scales to quantify 

selective forces acting on protein-coding regions in the HCMV genome. A comparative 

genomic analysis across multiple CMV species found pervasive purifying selection in 

most protein-coding regions (as indicated by low levels of dN/dS; Mozzi et al. 2020), as 

would be expected. Similarly, comparisons of sequence polymorphism within hosts to 
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the divergence among hosts (i.e., using the McDonald and Kreitman 1991 test) also 

indicated the action of widespread purifying selection (Renzette et al. 2011). In contrast, 

evidence for positive selection was limited to specific regions, including the glycoproteins 

(Renzette et al. 2013). Thus, although glycoproteins and their linked regions will likely be 

additionally impacted by recurrent selective sweeps, the majority of the genome is 

expected to be largely affected by the direct and linked effects of purifying selection. 

As selection against harmful mutations at functionally important sites in the 

genome can affect patterns of variation at linked neutral alleles (i.e., background 

selection; Charlesworth et al. 1993) and as this effect has been suggested to be a 

primary determinant of genomic variation in HCMV (Renzette et al. 2016), it is important 

to characterize the DFE of newly arising mutations across the genome. A recent study 

by Morales-Arce et al. (2022) used an approximate Bayesian computation (ABC) 

framework to infer the DFE of deleterious mutations from a within-patient sample of 

HCMV. This study accounted for the specific demographic history of the within-patient 

population as associated with viral infection dynamics (as previously inferred 

by Renzette et al. 2013), non-Wright–Fisher replication dynamics, as well as background 

selection. They inferred that roughly 50% of all new mutations were effectively neutral 

(−1<2Nes≤0), 24% were mildly deleterious (−10<2Nes≤−1), 12% were moderately 

deleterious (−100<2Nes≤−10), and 13% were strongly deleterious (2Nes≤−100), 

where Ne refers to the effective population size and s to the selection coefficient against 

the homozygote (fig. 1AA). As these estimates were obtained for all sites comprising the 

functional region (i.e., the inference was not restricted to nonsynonymous sites) and 

∼30% of all sites in coding regions are likely to have little or no fitness costs upon 

mutation (e.g., synonymous changes), the DFE at functionally important sites in HCMV 

is probably closer to 30% effectively neutral, 34% weakly deleterious, 17% moderately 
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deleterious, and 19% lethal mutations (fig. 1BB). Importantly, although such a correction 

naturally depends on the fraction of synonymous sites that are behaving neutrally, these 

estimates are in fact quite consistent with multiple previous random mutagenesis studies 

that measured the proportion of lethal mutations in DNA viruses to be ∼20% 

(e.g., Sanjuán 2010). While Morales-Arce et al. (2022) accounted for a number of factors 

that add complexity to within-patient populations of HCMV (including an extremely strong 

bottleneck corresponding to the infection), they simulated only a single population of 

HCMV. As there is strong evidence of HCMV populations being structured within 

patients (Pokalyuk et al. 2017; Sackman et al. 2018; and see the section on 

Compartmentalization below), current estimates of the deleterious DFE might still be 

biased, and future inference incorporating both compartmentalization and reinfection will 

be important in this regard. 

 

 

Fig.1. Distribution of fitness effects (DFE) of all new and new nonsynonymous mutations. 
(A) Using an approximate Bayesian framework to account for the specific demographic 
history of their within-patient population, Morales-Arce et al. (2022) inferred the DFE of 
all new mutations in human cytomegalovirus as roughly 50% effectively neutral 
(−1<2Nes≤0 ; gray), 24% mildly deleterious (−10<2Nes≤−1 ; light blue), 12% moderately 
deleterious (−100<2Nes≤−10 ; dark blue), and 13% strongly deleterious/lethal 
(2Nes≤−100 ; red), where Ne refers to the effective population size and s to the selection 
coefficient against the homozygote. (B) Assuming that ∼30% of all sites in coding 
regions likely have little or no fitness costs upon mutation, the DFE at functionally 
important sites corresponds to roughly 30% effectively neutral, 34% mildly deleterious, 
17% moderately deleterious, and 19% strongly deleterious/lethal mutations. 
 
 
 
 

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=10139446_evad059f1.jpg
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Infection Dynamics 

The demographic history of a population is an important determinant of both 

genetic variation and potential selective outcomes and therefore an appropriate starting 

point for evolutionary analysis, particularly in light of the high levels of HCMV diversity 

observed within patients (Drew et al. 1984; Spector et al. 1984; Haberland et al. 

1999; Faure-Della Corte 2010; Renzette et al. 2011, 2013, 2015, 2016, 2017; Hage et al. 

2017; Pokalyuk et al. 2017). The expected intrahost population dynamics involve a 

strong population bottleneck (a temporary reduction in population size) at the point of 

infection, followed by rapid population expansion (see review of Jensen 2021). The level 

of intrahost genetic variation that is present at the point of infection will in part be 

determined by the severity of the bottleneck. If the transmission bottleneck is wide, then 

there may be numerous virions founding the initial infection, resulting in greater genetic 

variation and an increased probability that beneficial variants may be transferred from 

the founding population. Conversely, a narrow bottleneck can result in a severe loss of 

genetic variation, with low-frequency variants being eliminated regardless of their fitness 

effects. This process is known as a founder effect (see Zwart and Elena 2015, for a 

discussion of this effect in viral populations). 

In the case of congenital infections, demographic modeling approaches have 

shown support for a population bottleneck associated with the initial transplacental 

infection (transmission of virions from the maternal compartment to the fetal plasma 

compartment), followed by additional bottlenecks associated with compartmental 

infections (fig. 2; and Renzette et al. 2013; for a detailed discussion regarding the 

population structure dynamics between compartments, see the section below). 

Importantly, the initial bottleneck was shown to involve potentially hundreds of unique 

HCMV genomes, which helps to explain the relatively high levels of genetic diversity 
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observed at the point of infection, as compared with certain RNA viruses in which a 

single (or very few) virions are thought to be involved in infection (Keele et al. 

2008; Fischer et al. 2010; Renzette et al. 2013, 2014). Furthermore, Renzette et al. 

(2013) found support for gene flow between urine and plasma compartments (the two 

compartments sampled in that study). Their results further suggested that plasma may 

serve as a “route” for gene flow within the host, with preliminary evidence indicating that 

it carries compartment-specific variants from other compartments; this process may thus 

also be an important determinant of within-host variation. 

 

 

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=10139446_evad059f2.jpg
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Fig. 2. Demographic dynamics of congenital human cytomegalovirus (HCMV) infection. 
Demographic scenarios of infection and reinfection in HCMV likely contributing to the 
high levels of observed interhost and intrahost diversity, including a population 
bottleneck associated with the initial transplacental infection (transmission of virions from 
the maternal compartment [red]/plasma [pink] to the fetal plasma compartment [green]), 
followed by additional bottlenecks associated with compartmental infections (urine 
[yellow] and saliva [olive]), as well as gene flow between compartments and reinfection 
of compartments during pregnancy and after birth (e.g., via breast milk [red] and/or 
daycare [purple]). 
 

Further evidence for admixture between compartments (this time including 

plasma, urine, and saliva compartments) was found by Pokalyuk et al. (2017), 

suggesting that reinfection postbirth is possible via, for instance, breast milk (Numazaki 

1997; Enders et al. 2011; also see the review of Bardanzellu et al. 2019). In other words, 

maternal compartment-specific variants appeared to be transmitted to the infant 

postbirth. Although the above examples are focused upon congenital infections, related 

work has similarly highlighted the importance of multistrain infections in 

immunosuppressed adults and particularly the relationship between this infection status 

and the emergence of antiviral resistance mutations (e.g., in transplant 

recipients; Suárez et al. 2019, 2020). 

To date no method exists to prevent maternal–fetal transmission or to reduce the 

severity of fetal infection (Britt 2017). Therefore, the characterization of population 

dynamics is likely to be integral to future therapeutic strategies. For example, clinically 

imposing a more severe population bottleneck during pregnancy may reduce genetic 

variation in the HCMV infecting population, limiting the pool of variation on which natural 

selection may subsequently act, thereby potentially improving treatment outcomes. 

Finally, it has been shown that host immune suppression can reactivate dormant 

viruses, restarting production of viral progeny; this switch from latent to productive life 

cycles can induce temporary or sustained CMV replication (Porter et al. 1985; Dupont 

and Reeves 2016). 
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Demographic inference in HCMV is inherently challenging due to the genome-

wide impact of selection (see the DFE section above), which will in turn bias common 

demographic estimators which are based on neutrality (see the discussion of Ewing and 

Jensen 2016; Pouyet et al. 2018). Namely, neutral demographic estimators require 

sufficiently large nonfunctional regions and high rates of recombination, such that 

assumptions of strict neutrality hold (Gutenkunst et al. 2009; Excoffier et al. 

2013; Kelleher et al. 2019; Steinrücken et al. 2019). These criteria ensure that variants 

can be chosen that are not experiencing background selection. For example, Renzette 

et al. (2013) utilized ∂a∂i, a neutral demographic inference approach based on the site 

frequency spectrum (Gutenkunst et al. 2009), to build and parameterize HCMV infection 

models (and see Sackman et al. 2018; Jensen and Kowalik 2020). 

This inference problem of estimating demography in the presence of selection is 

indeed somewhat circular, as the estimation of selection will also be biased by 

unaccounted for demographic dynamics (Rousselle et al. 2018; Johri et al. 2020). This 

fact highlights the importance of performing joint, simultaneous inference of selection 

with demography, rather than taking the more common stepwise approach of first 

estimating one and then the other (see review of Johri, Eyre-Walker, et al. 2022). 

Recently proposed ABC approaches that jointly estimate population history and the DFE 

of deleterious mutations perform such joint inference and importantly do not require 

the a priori identification of neutrally evolving sites (Johri et al. 2020). Explicitly 

accounting for viral infection dynamics, Morales-Arce et al. (2020) incorporated progeny 

skew into the joint ABC inference scheme of Johri et al. (2020)—an important extension 

to this framework as the assumption of small progeny distributions utilized by a majority 

of population genetic inference approaches is likely violated in many pathogens, as 

noted above (see reviews of Tellier and Lemaire 2014; Irwin et al. 2016). The authors 
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demonstrated that their tailoring of this ABC inference approach specifically to viral 

populations avoided misinference resulting from a neglect of this consideration. Other 

recent inference approaches have also relaxed the assumption of small progeny skew, 

demonstrating an ability to coestimate parameters related to the biology of progeny skew 

together with those of demographic and selective histories (e.g., Matuszewski et al. 

2018; Sackman et al. 2019). 

Compartmentalization 

The final consideration of note impacting intrahost population dynamics of viral 

infections is population structure between different areas of infection, commonly referred 

to as compartmentalization (Zárate et al. 2007). Compartmentalization may be relevant 

for any virus not localized to a single organ or cell type (Di Liberto et al. 2006; Zárate et 

al. 2007; Renzette et al. 2014; Sackman et al. 2018)—including HCMV, known to infect 

several cells and organs throughout the body. 

As a long-studied virus, HCMV has been well documented to infect a wide variety 

of cells including the epithelial cells of gland and mucosal tissue, smooth muscle cells, 

fibroblasts, macrophages, dendritic cells, hepatocytes, and vascular endothelial cells 

(Sinzger et al. 2008; Jean Beltran and Cristea 2014). Unsurprisingly given this broad 

cellular tropism, evidence of infection in specific organs is similarly extensive and 

includes the brain and peripheral nerves, the eyes, the placenta, the lungs, the 

gastrointestinal tract from the esophagus to the colon, the liver, the lymph nodes, the 

heart, the peripheral blood, and the kidneys (Plachter et al. 1996). Of these areas, viral 

shedding from salivary glands, the ductal epithelium of mammary glands and the kidney, 

and the syncytiotrophoblasts (placenta) is thought to be critical to interhost transmission 

(Mocarski 2004; Kinzler and Compton 2005). However, because of potential gene flow 
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between compartments within a host, other sites of infection are nonetheless important 

for understanding the intrahost dynamics of this virus. 

Another necessary consideration is the location of regions that can harbor the 

latent stage—these areas are likely important for the maintenance of genetic diversity 

that may otherwise be lost in actively replicating lineages (Chou 1989; Frange et al. 

2013). While infections can occur across the body, the latent, and importantly 

nonreproducing, stage of the virus seems to be limited in cell tropism. Specifically, 

HCMV has been found to use endothelial and select myeloid lineages as well as 

monocytes, macrophages, and their progenitors (i.e., cells found in the circulating 

plasma population) as latency sites (Jarvis and Nelson 2002; Yatim and Albert 2011). 

Given the wide range of potential sites of infection, it is crucial to resolve 

observed levels of intrahost population structuring that are indicative of 

compartmentalization. Several studies have observed considerable genomic diversity 

(Renzette et al. 2011, 2013; Mayer et al. 2017; Pokalyuk et al. 2017; Cudini et al. 

2019; Pang et al. 2020), while others have found intrahost populations to be 

comparatively invariant (Hage et al. 2017). The comparison of patients with single- 

versus multiple-infection histories is likely one important source of disparity in these 

observed levels of variation (Mayer et al. 2017; Pokalyuk et al. 2017; Sackman et al. 

2018; Cudini et al. 2019; Jensen and Kowalik 2020; Houldcroft et al. 2020; Pang et al. 

2020). It should also be noted that the importance of multiple infections in shaping 

intrahost diversity of infants may still rely on compartmentalization within the maternal 

infection (e.g., with primary infections arising from the cervical population and secondary 

infections being associated with the mammary gland population; Sackman et al. 

2018; Pang et al. 2020). 
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Compartmentalization has also been implicated as a clinically important factor in 

the development of a multidrug resistant lineage within the chronic infections of 

immunocompromised patients (Frange et al. 2013; Renzette et al. 2014; Suárez et al. 

2019, 2020). Furthermore, multiple population genetic studies using longitudinally 

sampled patient data concluded that compartmentalization is an important factor in 

explaining intrahost diversity of fetal and infant infections (Renzette et al. 2013, 2015). 

Models developed from these studies focused on three subpopulations corresponding to 

source sites of samples: salivary glands/saliva, blood/plasma, and kidney/urine 

(Renzette et al. 2014, 2015; Pokalyuk et al. 2017; Sackman et al. 2018). Generally, 

these models attribute plasma as the circulating population that serves as an 

intermediary for spread between the distal compartments of salivary glands and kidney 

(fig. 2). Of particular note, levels of genetic divergence between compartments of a 

single patient were found to be as great as those observed between the same 

compartment sampled from unrelated patients (Renzette et al. 2013), suggesting limited 

between-compartment gene flow within a single host. Yet, the extent to which these 

considerable levels of differentiation are attributable to localized, compartment-specific 

adaptation, or simply the constant operation of neutral evolutionary processes, remains 

unresolved—and this continues to stand as one of the most pressing and interesting 

evolutionary questions in the HCMV system. 

Closing Thoughts 

When developing an evolutionary baseline model of HCMV, special 

consideration should be given to the demographic processes that shape genetic 

diversity and the sampling methods that generate clinical data sets, including the ability 

to detect low-frequency variants, as well as the level of progeny skew, bottleneck 

severity during infection and reinfection, and the degree of compartmental admixture. 
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Correctly modeling these processes and accounting for various ascertainment biases 

will allow researchers to better describe the relative contributions of each evolutionary 

force in shaping observed levels and patterns of variation, as well as quantify uncertainty 

in model choice and in the identification of adaptive loci. In addition, gaining a better 

understanding of when and how HCMV diversity is generated has important implications 

for vaccine development as well as antiviral therapy, both for determining the timing of 

drug delivery and for combating resistance evolution. 
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CHAPTER 6 

CONCLUSION 

We characterized the genomes of two newly identified bacteriophages, 

Phegasus and BiggityBass, and phylogenetically placed them within their respective 

clusters in chapters 2 and 3 and their associated appendices. In Phegasus, we identified 

an integration-dependent immunity system, which regulates the switch between lytic and 

lysogenic life cycles. Computationally inferring host ranges for Phegasus, we identified 

three putative hosts (M. smegmatis, Mycobacterium chelonae, and Mycobacterium 

leprae) that contain the attachment site motif necessary for lysogenic infection by 

bacteriophages with an integration-dependent immunity system (Broussard et. al 2013). 

This indicates that these hosts are at risk of incorporating virulence factors from 

bacteriophages that utilize tyrosine integrases in their integration-dependent immunity 

systems (Pham et. al 2007), and that for these particular hosts Phegasus is not a 

suitable candidate for antibacterial therapeutics. In BiggityBass, we identified a 

toxin/antitoxin (TA) system that allows it to inactivate bacteria-encoded toxins (Otsuka 

and Yonesaki 2012; Wei et. al 2016). We showed that the gene tree of the hicA-like toxin 

does not recapitulate the whole genome phylogeny, which may be due to the mosaic 

architecture of the genome caused by horizontal gene transfer, or could be an artifact of 

inconsistent resampling during bootstrapping caused by the short sequence length 

(Lawrence et. al 2002).  

Further exploring the host range prediction tools used in the study of Cluster P 

and Cluster DR bacteriophages, we assessed the performance of ten computational 

host range prediction tools using a dataset of bacteriophages whose host ranges have 

been experimentally validated in chapter 4. Our results demonstrated that the 

confirmatory tool PHP and the exploratory tool CHERRY have the highest rates of true-
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positive predictions, but at the cost of having the highest rates of false-positives. While 

PHP, WIsH, and VHM all use kmer frequency as their prediction metric, VHM’s 

background kmer subtracting strategy and WIsH’s overly specific 8-mer Markov model 

likely contributes to their high rate of false negatives compared to PHP’s high rate of 

false positives. Phirbo underpredicts due its alignment-based method, which is biased 

towards predicting hosts which have an existing CRISPR spacer (yet only 40%–70% 

prokaryotes encode a CRISPR system at all (Edwards et. al 2016)) or lysogenic phages 

which leave a genetic mark in the host. For the exploratory tools, the features each of 

them are trained on and the type of machine-learning model used are directly related to 

the accuracy of the tool’s results.  Features such as kmer frequency and 

CRISPR/prophage sequences alone (VHMN) are less accurate than using them in 

combination with protein clustering (CHERRY), as demonstrated in this study and others 

that use non-polyvalent phages in their benchmarking (Shang and Sun 2022). For 

genus-level exploratory tools, while the expected order of improving performance would 

be vpf-class, RaFAH, vHULK, and HostG with increasing model sophistication, HostG 

and vHULK only return one genus-level prediction per phage, which represents a major 

drawback when predicting polyvalent phage host range rather than the best virus-host 

pair. Therefore, between vpf-class and RaFAH, RaFAH has the most true-positive 

predictions and fewer false negatives. The results of this evaluation study highlight that 

for polyvalent phages there are still challenges to accurately predicting the true inter-

genus and intra-genus host range, and that even strain-specific differences may 

influence virus-host compatibility. Additional factors determining the success of phage 

infection, including recognition of specific host receptors, ability to overcome bacterial 

Restriction-Modification (RM) and abortive (Abi) systems, and compatibility of 

transcription and translational machinery could be considered to more accurately 



  128 

determine host range. CHERRY presents a promising framework for integrating these 

features through its multimodal graph model. For exploratory tools, one of the primary 

limitations in adopting these tools is the disparity between strains in each tool’s internal 

database and the strains used in experimental validation. We recommend incorporating 

the model sophistication of the exploratory tools with the flexibility of the confirmatory 

tools to evaluate the likelihood of phage-host interaction with strains researchers have 

available to them.  

Finally, the work of chapter 5 describes the current state of knowledge of the 

components of an evolutionary baseline model for Human Cytomegalovirus (HCMV), 

including the mutation rate, recombination rate, the distribution of fitness effects, 

infection dynamics, and compartmentalization of the virus. The significance of this work 

is that HCMV is a major cause of birth defects and can lead to severe effects in 

immunosuppressed and immunonaive individuals. The accurate identification of genomic 

loci underlying viral adaptation relies on an appropriate baseline model that accounts for 

constantly operating evolutionary processes shaping this genetic diversity. From our 

review we conclude that special consideration should be given to the ability to detect low 

frequency variants, the level of progeny skew, the bottleneck severity during infection 

and re-infection, and the degree of compartmental admixture when modeling HCMV 

evolutionary scenarios. By providing an overview of the current understanding of the 

components of an evolutionary baseline model of HCMV, we provide the necessary 

details for researchers to implement such a baseline model for their own genomic 

analysis of patient samples.         
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GENOME OF THE CLUSTER P MYCOBACTERIOPHAGE PHEGASUS. 
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Appendix A. Genome of the cluster P mycobacteriophage Phegasus. Protein-coding 
genes on the forward or reverse strands with their putative functional assignments (if 
available) are displayed above or below the ruler, respectively. The integration-
dependent immunity system (genes 30 to 32 and 34) is indicated by teal-colored boxes. 
ssDNA, single-stranded DNA.
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APPENDIX B 

GENOME OF THE CLUSTER DR BACTERIOPHAGE BIGGITYBASS. 
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Appendix B. Genome of the cluster DR bacteriophage BiggityBass. Protein-coding 
genes on the forward or reverse strands with their putative functional assignments (if 
available) are displayed above or below the ruler, respectively. The RuvC-like resolvase 
(gene 5) and the hicA-like toxin (gene 73) are indicated by teal-colored boxes. ssDNA, 
single-stranded DNA.
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