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ABSTRACT  

   

Latent profile analysis (LPA), a type of finite mixture model, has grown in 

popularity due to its ability to detect latent classes or unobserved subgroups within a 

sample. Though numerous methods exist to determine the correct number of classes, past 

research has repeatedly demonstrated that no one method is consistently the best as each 

tends to struggle under specific conditions. Recently, the likelihood incremental 

percentage per parameter (LI3P), a method using a new approach, was proposed and 

tested which yielded promising initial results. To evaluate this new method more 

thoroughly, this study simulated 50,000 datasets, manipulating factors such as sample 

size, class distance, number of items, and number of classes. After evaluating the 

performance of the LI3P on simulated data, the LI3P is applied to LPA models fit to an 

empirical dataset to illustrate the method’s application. Results indicate the LI3P 

performs in line with standard class enumeration techniques, and primarily reflects class 

separation and the number of classes.  
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CHAPTER 1 

INTRODUCTION 

Finite mixture models (FMMs) are a series of statistical models often used to 

identify potentially unmeasured groups within heterogeneous data (McLachlan & Peel, 

2000). FMMs have grown in popularity over the past decades due to the integration of 

FMMs with structural equation models, improvements in computational power, and 

theories highlighting differential effects. The unmeasured groups in an FMM, called 

latent classes or latent profiles, are often assumed to represent homogenous 

subpopulations from a larger heterogenous population. FMMs are the foundation of two 

popular classification techniques: latent class analysis (LCA) and latent profile analysis 

(LPA). LCA was originally implemented to detect latent classes with ordinal variables, 

whereas LPA was used when dealing with continuous indicators. More recently, these 

methods have been extended beyond their original uses to accommodate both ordinal and 

continuous variables, as well as count and nominal variables, and any combination of 

these variable types (Magidson & Vermunt, 2002). Moreover, FMMs have been 

combined with a variety of statistical models, such as regression analyses (e.g., Liu, & 

Lin, 2014), factor models (e.g., Lubke & Muthén, 2005), and growth models (Muthén & 

Shedden, 1999) to search for unobserved groups with different model parameters.  

The process of using FMMs in empirical data involves fitting several models with 

differing numbers of latent classes and different parameter constraints across classes. For 

example, a researcher who is exploring empirical data for latent classes with an LPA may 

fit an LPA with zero covariances within each class for k successive classes, and then fit 

an LPA with estimated covariances within each class for k successive classes. The fit of 
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each LPA model is recorded using several different techniques and after all of the models 

are run, the fit of the models is compared to determine the optimal model. Additionally, 

the researcher may consider the interpretability of the latent class parameters and the 

mapping of the latent classes to theoretical expectations when determining which model 

configuration to use.  

The number of subpopulations and their model parameters are unknown with 

empirical data, which makes determining the correct number of classes a primary 

challenge. To this end, multiple class enumeration techniques have been proposed over 

the years to aid researchers and have continued to be modified and improved. Recently, a 

new approach, called the likelihood incremental percentage per parameter (LI3P), was 

proposed to measure the proportional improvement in model fit (Grimm et al., 2020).  

In this thesis, I explore the commonly used fit indices for determining the number 

of latent classes and review recent research into the accuracy and reliability of these 

techniques for LCA and LPA models. I then examine new LI3P measure and evaluate its 

performance relative to the other commonly implemented fit indices using a series of 

Monte Carlo simulations. I conclude by using the LI3P on empirical data from a recent 

study that used LPA models to search for latent classes among individuals who no longer 

believe in God but the standard approaches failed to yield clear results.  

Class Enumeration Techniques 

 Three broad approaches exist for the current primary class enumeration methods. 

The first, information criteria (IC), refers to a group of techniques that seek to quantify 

model fit while penalizing overly complex models. The second approach is a group of 

likelihood ratio tests (LRTs) that involve using a chi-square distribution (or an 
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approximation) to determine if the model fit significantly improves when a latent class is 

added. The third approach is a group of resampling techniques, such as k-fold cross 

validation. Here, I review the theory and performance of the first two methods as they are 

the most commonly used and studied.  

Information Criteria. ICs attempt to quantify the fit of the model while penalizing 

complexity. To achieve this, the −2 log likelihood (−2𝐿𝐿) is used to quantify model fit 

with a penalty imposed for each estimated parameter. Likelihood is a function used to 

determine the probability of the observed data given a specified model. For LCA and 

LPA models, the likelihood function refers to the calculated probability that the observed 

sample data is drawn from a population described by the estimated model with its 

specific number of classes and parameter estimates, with values ranging between zero 

and one. The natural log of the likelihood function is taken to transform the likelihood 

values to larger values to improve computational efficiency. Finally, this log likelihood is 

multiplied by −2, transforming the values into positive numbers. Altogether, -2 log 

likelihood can be calculated as  

 −2𝐿𝐿 = −2 ∙ ∑ (−
𝐾𝑖

2
ln(2𝜋) −

1

2
log|𝚺𝑖| −

1

2
(𝐲𝑖 − 𝛍𝐢)

′𝚺𝑖
−1(𝐲𝑖 − 𝛍𝑖))

𝑁

𝑖=1

 (1) 

where 𝑖 identifies the case, Ki is the number of variables for each case, |𝚺𝑖| is the 

determinant of the model-implied covariance matrix for case 𝑖, yi is the vector containing 

the scores for case 𝑖, and 𝛍𝑖 is the model implied mean vector for case 𝑖. Thus, −2𝐿𝐿 

values close to zero represent a good fitting model, whereas higher values indicate worse 

fitting models and greater discrepancy between the observed empirical data and the 

model-implied covariance matrix and mean vector, holding the data constant (Grimm et 
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al., 2020).  

 ICs take the −2𝐿𝐿 and apply a penalty in an effort to avoid overly-complex 

models. There are two common IC groups: the Akaike Information Criterion (AIC; 

Akaike, 1973) and the Bayesian Information Criterion (BIC; Schwarz, 1978).  

 The AIC is calculated as 

 AIC = −2𝐿𝐿 + 2𝑝 (2) 

where -2LL is the -2 log likelihood equation and p is the number of estimated parameters 

in the model. The AIC has a constant penalty for each estimated parameter, which tends 

to under penalize models fit to data with moderate or larger sample sizes. Additionally, 

the AIC is inconsistent, meaning that the AIC will not indicate the correct model as the 

number of parameters increases to infinity (Woodroofe, 1982). However, despite being 

inconsistent, it has still been found to be useful in certain situations (e.g., Bozdogan, 

1987; Gonzalo & Pitarakis, 2002).  

Recognizing the issue with the AIC in larger samples, Hurvich and Tsai (1989) 

proposed another form of the AIC, known as the HT-AIC or AICc, which adds an 

additional term to the AIC formula in order to adjust for sample size. The AICc can be 

calculated as 

 AICc =  AIC + 
2𝑝2 + 2𝑝

𝑁 − 𝑝 − 1
  =  −2𝐿𝐿 + 2𝑝 +  

2𝑝2 + 2𝑝

𝑁 − 𝑝 − 1
 (3) 

where p is the number of parameters and N is the sample size. Additional versions of the 

AIC have been proposed, such as the consistent AIC (CAIC; Bozdogan, 1987) and the 

AIC3 (Andrews & Currim, 2003); however, these forms are not commonly implemented 

or studied.  
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 The second popular IC group is the BIC, which is calculated as  

 BIC = −2𝐿𝐿 + ln(𝑁) ⋅ 𝑝 (4) 

where -2LL is the -2 log likelihood equation, N is the sample size, and p is the number of 

parameters in the model. Like the AIC, the BIC applies a penalty to the -2LL based on the 

number of estimated parameters, but the penalty term used here is not constant. Instead, 

the penalty parameter is scaled by the natural log of the sample size, resulting in a larger 

penalty than the AIC when 𝑁 > 7. Thus, the BIC tends to select models with fewer 

parameters compared to the AIC. It is due to this non-linear penalty term that the BIC is 

considered to be consistent, unlike the AIC. 

 As with the AIC, several modifications of the BIC have been proposed. Sclove 

(1987) proposed a sample size adjusted form (SaBIC) replacing N in the BIC formula 

with an altered form, calculated as  

 SaBIC = −2𝐿𝐿 + 𝑙𝑛(
𝑁 + 2

24
) ∗ 𝑝 (5) 

which lowers the penalty term in the BIC, making it prefer relatively more parameterized 

models. The saBIC has often been shown to do well compared to the BIC, though it 

needs 50 or more cases per class to perform well (Yang, 2006). This is perhaps the most 

popular derivation of the BIC that is used, though others exist, such as the DIC (Draper, 

1995) or the ICL-BIC (Biernacki et al., 2000), though these are used less commonly and 

have rarely been investigated in FMM simulations.  

Likelihood Ratio Tests. A second class of enumeration technique approach are the 

LRTs, which attempt to use a chi-square distribution to determine improvements in 

model fit for nested models. In FMMs, LRTs are implemented by comparing a model 
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with 𝑘 classes to a model with 𝑘 − 1 classes given the same set of parameter constraints, 

such that the latter model is nested under the former. With this assumption, a chi-square 

distribution could then be used to determine if the 𝑘 class model fits the data significantly 

better than the 𝑘 − 1 model. However, the change in −2𝐿𝐿 does not follow a chi-square 

distribution because the parameter constraints applied to the 𝑘 class model to create the 

𝑘 − 1 class model are on the boundary of the parameter space (McLachlan & Peel, 2000).  

An alternate LRT method was proposed by Lo, Mendell, and Rubin (LMR-LRT 

or VLMR-LRT, 2001), who developed an approximation to the chi-square distribution 

for the difference between the −2𝐿𝐿 values. This was based on the work done by Vuong 

(1989) and allowed researchers to statistically compare the 𝑘 and 𝑘 − 1 class models and 

produce a p-value to check for improved model fit. Lo, Mendell, and Rubin (2001) also 

proposed an ad hoc adjustment to this test (aLMR-LRT), which scales the LMR-LRT as a 

function of the parameters so it converges to the correct Type I error rate faster, though in 

practice both tests yield nearly identical results (Tofighi & Enders, 2008; Peugh & Fan, 

2013). In 2003, the LMR-LRT was found to have a mathematical flaw in the underlying 

proof by Jefferies (2003). Despite this flaw, several simulation studies have found the 

LMR-LRT to be useful in determining the correct number of latent classes (Lo et al., 

2001; Olivera-Aguilar & Rikoon, 2018).  

 A second LRT approach, the parametric bootstrap likelihood ratio test (BLRT), 

was developed by McLachlan and Peel (2000). This test also compares the fit of the k and 

k-1classes, but does so by recording the difference in -2LL and simulating data repeatedly 

based on the parameter estimates of the k-1 class model. The k and k-1 models are then fit 

to these simulated datasets and the difference in -2LL values are used to create a sampling 
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distribution. The -2LL difference obtained from the empirical dataset is then compared to 

this distribution of -2LL values yielding a p-value to determine if the model fit is 

significantly better. This method has grown in popularity, but it has not been thoroughly 

studied because the method takes a significant amount of computational time compared 

to other methods (Nylund et al., 2007).  

Review of Class Enumeration Performance in Past Studies 

 Previous research has explored the performance of these class enumeration 

techniques using simulation methods. The research reviewed here includes both LCA and 

LPA models, as they are conceptually alike and the findings tend to be similar, with a 

focus on simulation conditions, notable results, and trends in the performance of the 

indices.  

Latent Class Analysis Studies. In 2006, Yang conducted an LCA simulation study 

which focused on the performance of six ICs while manipulating three factors: sample 

size, the number of binary indicator variables, and the number of latent classes. Yang 

found that sample size affected IC performance, with smaller samples decreasing 

accuracy. Yang also found that higher numbers of latent classes lowered IC accuracy. In 

general, the AIC was found to be unreliable and overestimated the number of classes, 

though it did perform well with small sample sizes and many classes. The CAIC 

performed slightly better, but was even more unreliable. The BIC generally 

underestimated the number of classes but performed well with large sample sizes. The 

saBIC performed the best in this study, with the highest overall accuracy of the ICs 

examined.  

 A follow-up study by Yang and Yang (2007) found similar results. In this study, 
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sample size, the number of classes, and three different class configurations were 

manipulated. As before, smaller sample sizes and more classes were associated with 

decreased IC accuracy. The AIC again performed well with small samples and many 

classes, whereas the BIC performed poorly with a large number of classes and low 

sample sizes. Notably, the modified ICs that used a sample size adjustment (such as the 

saBIC) performed better than the original form. These results were mirrored by Zhang et 

al. (2014), whose research also focused on the use of LCA with binary variables. 

 Swanson et al. (2012) also explored class enumeration in LCA models, but 

manipulated additional conditions including the number of indicators per class, 

conditional probabilities, missing data, local dependence, and sample composition. Using 

these conditions, they found that most ICs improved with increasing sample size. They 

also found that the AIC performed poorly for almost every condition, again 

overestimating the true number of classes. As before, the BIC often underestimated the 

number of classes, whereas the saBIC again performed the best overall.  

 Nylund et al. (2007) examined LCA models using both binary and continuous 

indictors, which overlaps with the typical application of LPA models. This simulation 

manipulated several factors, including the number of items, sample size, and the number 

of latent classes. Again, the AIC struggled to find the correct number of classes, often 

overestimating the correct number. The BIC achieved 100% accuracy in some conditions, 

but only 8% in others, while the saBIC was more stable but not as accurate, often 

overestimating the number of classes. The authors thus recommend the BIC as the best 

performing IC with the caveat that it struggles when N < 500. This study also examined 

LRTs, finding that the LMR-LRT performed well but not nearly as well as the BLRT, 
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which the authors concluded was the best performing class enumeration method, though 

they warned it increased computation time by 5 to 35 times, so they ultimately 

recommended using it to confirm the number of classes after using the BIC and LMR-

LRT.    

Latent Profile Analysis Studies. Similar conclusions were found in simulation research 

on model comparison statistics in LPA research. Tein et al. (2013) performed a study 

examining LPA models and class enumeration techniques where they manipulated 

sample size, the number of identifiers, inter-class distance, and the number of classes. 

They found that sample size had a smaller impact than the number of indicators, finding 

that more indicators increased power for certain ICs and LRTs. They also found that 

inter-class distance was more influential than the number of classes, such that greater 

distances led to greater power in the techniques. The AIC had low power for most 

conditions and often overestimated the number of classes, whereas the BIC and saBIC 

generally performed well, though the BIC did favor models with fewer classes. The 

LMR-LRT and aLMR-LRT performed well, but only when given a medium or large 

sample size. Notably, they found that there was not reliable power to detect the number 

of classes no matter the method used when d was .2 or .5.  

 Peugh and Fan (2013) manipulated several factors in their study, including sample 

size, Mahalanobis distance (latent class separation), the number of indicator variables, 

and the number of latent classes. They discovered many of the ICs and LRTs struggled in 

the 1-class condition, with the IC derivatives performing best and a notable increase in 

performance after overriding the default local independence and homogeneity 

assumptions. In the 3-class case, the saBIC performed best, though it still struggled 
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significantly and many of the ICs and LRTs achieved 0% accuracy. These results fall in 

line with Yang (2006) and Nylund et al. (2007) in terms of relative performance, though 

the accuracies were significantly lower. The authors suggested that the poor performance 

was potentially due to the small sample size, citing Paxton et al. (2001) who suggests that 

a sample of less than 500 should be considered small, as well as model misspecification 

due to unmet local independence assumptions.  

 Morgan et al. (2016) manipulated the sample size, the number of indicators, the 

shape of the distribution of the indicators, and profile proportions for their study. This 

resulted in 67,500 datasets, which were analyzed twice – once using the original data and 

a second time where the data was transformed to be normally distributed (using van der 

Waerden quantile normal scores). The AIC performed poorly overall, with the 

distribution of indicators being a major factor in its performance. The BIC and the saBIC 

performed the best among the ICs, particularly with normally distributed indicators and 

when there were more than ten; the saBIC only correctly identified the number of latent 

classes once in the non-normal data. The LMR-LRT was less affected by non-normality 

in the indicators, often performing as well as or better than the ICs. However, once the 

data was transformed to be normally distributed, the BIC and saBIC accuracy increased 

and surpassed that of the LMR-LRT.  

Olivera-Aguilar and Rikoon’s (2018) simulation study examined LPAs and 

manipulated sample size, the proportion of the sample in each class, latent profile size, 

the magnitude of invariance violations, and the number of violating indicators. They 

found that the LRT outperformed the ICs and that the AIC outperformed the BIC and 

saBIC. These results are unique compared with the other literature, but they do fall in line 
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with Finch (2015) who also examined noninvariance. Wang et al. (2021) performed a 

similar study, but found results that were more in line with the rest of the literature, 

potentially, as they suggest, due to differences in how measurement noninvariance was 

defined in their respective studies.  

 In summary, several distinct trends emerge in class enumeration research. The 

AIC appears to perform well in small samples and less-separated classes, but often 

overestimates the number of classes in larger samples. The BIC tends to perform well in 

larger samples and better-defined classes, but often underestimates the number of classes 

in smaller samples. The saBIC generally performs better than the BIC but seems to 

struggles under certain conditions, such as non-normality. Finally, despite the LMR-

LRT’s mathematical flaw, it still performs well – sometimes better than any of the ICs – 

though it too struggles in small samples.  

More generally, it is clear that sample size is often influential in the performance 

of the class enumeration methods. Several researchers have suggested that samples below 

500 may be too small to draw reliable results (e.g., Paxton, 2001; Nylund et al., 2007). 

Typically, the larger the sample, the more accurate the results (Swanson et al., 2012), 

though some studies found that certain ICs struggle in these circumstances (e.g., Yang & 

Yang, 2007). For ICs, this is certainly important as the -2LL, the key measure of model 

fit, changes linearly with sample size (Grimm et al., 2021). Likewise, LRTs are also 

affected by sample size, often struggling to make the correct determinations with small 

samples, whereas large samples can make almost meaningless small differences appear 

important. The importance of adequate sample size cannot be understated, and the issue 

is not always easily resolved, especially when working with hard to obtain samples. 
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There are several other important factors, including the number of classes, 

distance between classes, and the number of indicators. Several studies demonstrated that 

increasing the number of classes decreases the accuracy of the techniques, with the 

exception of the BIC. The distance between classes can be extremely challenging for the 

LPA, so much so that Tein et al. (2013) posited that distances smaller than d = 0.5 may 

be too small to reliably detect. Finally, the number of indicators has repeatedly been 

demonstrated to be influential, with more indicators making it easier for the techniques to 

correctly recover the number of simulated classes.  

 Given these findings, it is not surprising that researchers may find themselves in 

complicated situations when working with empirical data. Class enumeration methods, 

such as the BIC, the saBIC, or the LMR-LRT, may seem to be more reliable, but there 

exist numerous conditions where they may perform poorly and mislead researchers. This 

has led researchers to suggest using multiple methods together and examining the results 

of each to get a comprehensive understanding of what is happening (e.g., Nylund et al., 

2007; Ram & Grimm, 2012). Even then, researchers often find themselves in situations 

where some techniques used indicate one model configuration while the rest indicate 

another (e.g., McLaughlin et al., 2020). Here, a researcher would then need to consider 

the theoretical and interpretive significance of choosing one number of classes over the 

other – a precarious situation, especially if the analysis is exploratory or if the results do 

not align with the initial hypotheses.  

The LI3P. Grimm et al. (2021) recently proposed and briefly explored a new method, the 

likelihood incremental percentage per parameter (LI3P), which takes a different approach 

to comparing models. The LI3P method, a modified form of likelihood incremental 
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percentage (LIP) method proposed by McArdle et al. (2002), is not a new IC, LRT, or a 

resampling method, but rather a sort of effect size for determining the amount of 

improvement in relative model fit.  

  The LIP is calculated as 

 LIP = 100 ∙ (1 −
−2𝐿𝐿 𝑚𝑜𝑟𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑖𝑧𝑒𝑑 𝑚𝑜𝑑𝑒𝑙

−2𝐿𝐿 𝑙𝑒𝑠𝑠 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑖𝑧𝑒𝑑 𝑚𝑜𝑑𝑒𝑙
) (6) 

which is similar in structure to a pseudo r-square effect size in logistic regression. The 

LIP contextualizes the change in the model fit by dividing the k class model’s -2LL by the 

k-1 class model’s -2LL, returning a percentage value for model fit improvement. Grimm 

et al. (2021) proposed an altered form, the LI3P, after their initial analysis, defined as 

 LIP = 100 ∙ (1 −
−2𝐿𝐿 𝑚𝑜𝑟𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑖𝑧𝑒𝑑 𝑚𝑜𝑑𝑒𝑙

−2𝐿𝐿 𝑙𝑒𝑠𝑠 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑖𝑧𝑒𝑑 𝑚𝑜𝑑𝑒𝑙
) /𝑝 (7) 

where p is the number of additional parameters from the previous and current model. 

This scales the LIP value so that it can be compared to other models after removing the 

effects of additional parameters. Like other effect size measures, this method would, in 

theory, be less affected by sample size and help provide much-needed information in 

ambiguous situations.  

 Grimm et al. (2021) initially tested this measure in a series of LPA models, 

replicating the conditions used by Nylund et al. (2007). The LI3P values seemed to 

reliably indicate the correct number of classes, with larger values being reported as the 

models being fit approached the true number of classes, followed by a large drop in LI3P 

values for models with unneeded additional latent classes. The authors cautioned against 

using the LI3P in samples when N < 500, stating that the LI3P values were larger than 
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expected, potentially indicating bias. They also proposed some effect size cutoffs, 

suggesting a score of 0.1 was small, 0.1 to 0.3 was medium, and 0.3 or larger was large.   
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CHAPTER 2 

METHODS 

To test the performance of the LI3P in LPA models more thoroughly, the LI3P 

was calculated for a series of LPA simulations using various conditions that include 

challenging configurations of sample size and latent class separation. According to a 

review by Morgan et al. (2016), the most common number of classes chosen by empirical 

studies is three, so data was simulated with one, two, or three classes. Tien et al. (2013) 

found that most techniques struggle to perform when inter-class distance, measured as 

Cohen’s d, is less than .5, so mean differences were chosen between .25 and 1.0, 

randomly selecting values for each simulation rather than using a set of discrete values. 

Likewise, sample sizes were randomly chosen, such that the minimum total number of 

samples across classes was 300 and the maximum total number of samples was 1,500. 

Values were chosen this way in an effort to achieving a more continuous perspective on 

how the LI3P performs while creating a unique data set that lends itself to novel analyses 

for this area of simulations.  

Fifty thousand datasets consisting of 15 variables were created in R, drawing from 

the conditions described above, with 1-3 classes randomly chosen as the true number of 

classes and a total sample size between 300 and 1500. The first class was always centered 

at 0; with subsequent class means randomly chosen to be 0.25 to 1.0 units away from 

previous class, such that 𝜇1 <  𝜇2 < 𝜇3. The latent profile analysis models were then fit 

in Mplus (version 7.4; Muthén & Muthén, 1998-2017). For each 15-variable dataset, 12 

models were fit: first, LPA models with one through four classes were fit to the 15 

variables (one more than the maximum number of classes simulated), then the process 
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was repeated on a subset of 10 variables, then five. This process yields 150,000 datasets 

(50,000 by 3 variable configurations), each with 4 LPA models fit to them. Popular class 

enumeration techniques were used for performance comparison, including the AIC, 

saBIC, and the aLMR-LRT. The results were imported back into R, where the LIP and 

LI3P were calculated. 
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CHAPTER 3 

RESULTS 

The accuracy of class enumeration techniques, separated by the number of classes 

and the number of indicators, the categorical manipulations, are reported in Table 1, 

Table 2, and Table 3, where Table 1 displays the results for when there was one class in 

the population, Table 2 contains the results for then there were two classes in the 

population, and so on. Each row is identified by the number of indicators analyzed, 

whereas the columns identify the index used followed by the number of classes. For 

example, row “5” and column “SaBIC 1” in Table 1 reports the percentage of times the 

SaBIC chose one class as the solution across simulations, in this case 98. The correct 

number of classes for each table bolded. 

Percentages were calculated after removing models that produced errors or 

warnings, so the values reported in the tables reflect models only for which a researcher 

would presumably accept the values as valid. In some cases, a simulation’s data was 

completely removed because every model failed to converge or failed to converge to a 

proper solution (e.g., negative variance) as indicated by Mplus warnings. Models may fail 

to converge for a variety of reasons, including attempting to fit models to data that were 

greatly misaligned (e.g., fitting a four-class model to a one-class data set), or when the 

distances between classes were too small to properly detect the number of classes. Of the 

600,000 LPA models fit, 46.55% were flagged and were not used in the analyses. Of 

these flagged models, only 7% were models fitting the correct number of classes; the 

remaining 93% occurred almost entirely in models that to fit too many classes.  

To compare the performance of the LI3P to the other techniques, the LI3P values  
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for the one-class, 15-variable condition were examined and the 95th percentile value, 

0.014, was chosen as a cutoff score. This was done because the LI3P, like other effect 

size measures, is not directly made for decision making as there are no explicit decision 

criterion. Using the 95% value was done to approximate the 95% accuracy that most 

statistical tests strive to achieve and was tuned to the one-class case as it was both 

computationally easy and conceptually functions as the null. 

The aLMR-LRT performed the best in the one-class case, whereas the AIC was 

consistently the worst. In the two-class condition, the SaBIC consistently performed best, 

Table 1: Model selection for the one-class condition 
Number 

of Vars 

AIC  SaBIC  aLMR-LRT  LI3P 
1 2 3 4  1 2 3 4  1 2 3 4  1 2 3 4 

5 63.7 28.4 6 1.9  98 1.9 0.1 0  98.9 1 0.1 0  67.1 
29.4 

(0.021) 

3.4 

(0.02) 

0.1 

(0.018) 

10 71.8 23.6 3.3 1.3  99.5 0.4 0 0  100 0 0 0  93.1 
6.5 

(0.011) 
0.3 

(0.01) 
0 

(0.011) 

15 79.3 17.8 2.1 0.7  99.9 0.1 0 0  100 0 0 0  98.9 
1.1 

(0.007) 

0 

(0.007) 

0 

(0.006) 

Each cell reports the % of simulations under the variable condition that the method chose the corresponding column class solution. 

Bolded values indicate the simulated condition. For the LI3P, the number in parentheses is the average LI3P value for models chosen 
with that solution.  

 

Table 2: Model selection for the two-class condition 
Number 

of Vars 
AIC  SaBIC  aLMR-LRT  LI3P 

1 2 3 4  1 2 3 4  1 2 3 4  1 2 3 4 

5 13.1 60.5 22 4.4  34.7 64.5 0.8 0  41.3 57.9 0.7 0.1  13.5 
63.4 

(0.074) 
21.4 

(0.019) 
1.7 

(0.018) 

10 7.1 72 17.4 3.6  23 76.9 0.1 0  27.8 72.1 0.1 0  21.1 
76.7 

(0.062) 

2.1 

(0.01) 

0.1 

(0.009) 

15 4.4 73.8 19.2 2.7  17.1 82.8 0 0  20.6 79.3 0.1 0  24.9 
75 

(0.052) 

0.2 

(0.006) 

0 

(0.006) 

Each cell reports the % of simulations under the variable condition that the method chose the corresponding column class solution. 
Bolded values indicate the simulated condition. For the LI3P, the number in parentheses is the average LI3P value for models chosen 

with that solution.  

 

Table 3: Model selection for the three-class condition 
Number 

of Vars 
AIC  SaBIC  aLMR-LRT  LI3P 

1 2 3 4  1 2 3 4  1 2 3 4  1 2 3 4 

5 0.4 51.7 39.6 8.2  2.4 89.1 8.4 0.1  4.8 88.8 6.2 0.2  0.5 
53.5 

(0.074) 

40.5 

(0.021) 

5.6 

(0.017) 

10 0.1 39.7 49.9 10.4  0.4 71.6 27.9 0  1.1 74.9 23.9 0  0.4 
70.8 

(0.062) 

28.4 

(0.018) 

0.4 

(0.009) 

15 0 26.4 64.9 8.7  0.1 58.1 41.8 0  0.4 61.4 38.1 0  0.5 
69.8 

(0.052) 
29.8 

(0.016) 
0 

(0.006) 

Each cell reports the % of simulations under the variable condition that the method chose the corresponding column class solution. 

Bolded values indicate the simulated condition. For the LI3P, the number in parentheses is the average LI3P value for models 

chosen with that solution.  
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though in this condition the methods difference between the methods was smaller. There 

was no clear worst comparison approach in the two-class condition; the aLMR-LRT 

performed the worst at the five-indicator condition, whereas the AIC performed the worst 

at the 10 and 15-indicator conditions. Table 3 shows that the aLMR was the worst 

performing for the five and 10 variable conditions, but the LI3P was the worst 

performing in the 15-variable condition. 

    Specifically looking at the LI3P’s performance, the method performed slightly 

better than the AIC measure in the one-class case five variable, but performed nearly as 

well as the SaBIC measure in the 15-variable case. In the two-class case, the LI3P was 

the second-best performing approach used here, just behind the SaBIC, though the 15-

variable condition it had fallen to third-best. Notably, it performed better in the 10-

variable condition than the 15-variable condition, possibly indicating that the abundance 

of information might confound the technique. Supporting this idea, in the three-class 

condition, the LI3P’s performance was best in the five-variable condition, with both the 

LI3P and the AIC vastly outperforming the SaBIC and the aLMR-LRT. In the 15-

variable condition, the AIC was the best-performing technique, and the LI3P was now the 

worst.  

  The Adjusted Rand Index (ARI), which evaluates accuracy after adjusting for 

chance (Hubert & Arabie, 1985), was used to determine the overall accuracy of the class 

enumeration techniques across class conditions, broken down by the number of variables. 

These results are displayed in Table 4. Examining Table 4, it becomes alarmingly clear 

that none of the class enumeration techniques were truly reliable. Across the variable 

condition, the best accuracy was less than 50% and the worst was under 30%; by 
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examining the effects of the number of indicators, this can be improved to a best accuracy 

of just over 50%, but the worst accuracy sits at less than 20%. The variability was also 

worth considering; the range in AIC accuracy changed was 23.4%, 10.5% for the SaBIC, 

9.4% for the aLMR-LRT, and 24.8% for the LI3P.  Based on these results, the SaBIC and 

the aLMR-LRT seemed to perform the best, both having relatively high overall accuracy 

with relatively low variability in performance. The AIC performed poorly, with the 

lowest overall accuracy and the second greatest range. Interestingly, the LI3P had the 

largest range in performance and the third-best accuracy. Notably, the order of 

approaches by accuracy was the same across the variable conditions with the SaBIC 

performing best and the AIC performing the worst.   

Finally, the LI3P was directly compared with each of the three class enumeration 

techniques using a series of crosstables, which compared the ultimate “decision” of each 

technique in Tables 5, 6, and 7. These tables compared the overall performance of the 

two techniques (e.g., the LI3P and the SaAIC), broken down by the number of indicators. 

Examining these tables highlights that the SaBIC tended to favor more classes compared 

to the LI3P, but they agreed fairly often, roughly 92.65% of the time in the 15-variable 

case, though that agreement fell as the number of indicators decreased. The LI3P and the 

SaBIC only agreed 62.75% of the time in the five-variable condition. The AIC, by 

Table 4: Adjusted Rand Index values 

Number of 

Indicators 
AIC SaBIC aLMR-LRT LI3P 

5 16.82 39.81 38.16 18.68 

10 27.72 44.81 42.93 38.85 

15 40.24 50.29 47.56 43.48 

Overall 28.26 44.97 42.88 33.67 

The ARI values reveal the accuracies across class conditions, adjusting for chance. The values in the “Overall” row show the 

overall accuracy for the measures, adjusting for chance.  
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comparison, agreed with the LI3P 65.11% of the time in the 15-variable case, with the 

AIC often choosing more classes than the LI3P. In the five-variable condition, that 

agreement was 82.51%, with the AIC choosing more classes and the LI3P choosing 

fewer. Finally, the aLMR-LRT and the LI3P were in agreement 93.43% of the time for 

the 15-variable condition, with the aLMR-LRT occasionally choosing more classes than 

the LI3P. In the 5-variable condition, the agreement dropped to 59.94%, with the LI3P 

often choosing fewer classes relative to the aLMR-LRT. 

To determine the effects of the continuous manipulations, the sample size and 

class distances, a series of 12 scatterplots (Figures 1-12) were created. These plots depict 

the mean difference in the two-class condition on the vertical axis and the total sample 

size on the horizontal axis. Blue dots represent a simulation where the method correctly 

Table 5: Crosstable comparing the SaBIC and the LI3P  
  5 Variables 

SaBIC 

10 Variables 

SaBIC 

15 Variables 

SaBIC 

  1 2 3 4 1 2 3 4 1 2 3 4 

L
I3

P
 1 13535 0 15 0 18918 238 2 0 19356 1412 0 0 

2 7828 16541 0 3 1559 23723 365 2 216 22061 2001 0 

3 1162 8377 1299 0 79 799 4219 0 8 34 4910 0 

4 67 929 229 15 8 38 46 4 1 0 1 0 

  Agreement: 63% Agreement: 94% Agreement: 93% 

              

Table 6: Crosstable comparing the AIC and the LI3P  
  5 Variables 

AIC 

10 Variables 

AIC 

15 Variables 

AIC 

  1 2 3 4 1 2 3 4 1 2 3 4 

L
I3

P
 1 11314 1167 809 260 13017 4896 944 301 13977 5551 1033 207 

2 1498 20777 1136 961 174 17637 6482 1356 11 14170 8850 1247 

3 96 1432 9165 145 3 31 4272 791 0 0 4409 543 

4 4 51 145 1040 0 2 6 88 0 0 0 2 

  Agreement: 85% Agreement: 70% Agreement: 65% 

              

Table 7: Crosstable comparing the aLMR-LRT and the LI3P  
  5 Variables 

aLMR-LRT 

10 Variables 

aLMR-LRT 

15 Variables 

aLMR-LRT 

  1 2 3 4 1 2 3 4 1 2 3 4 

L
I3

P
 1 13516 11 18 5 18959 192 6 1 19735 1028 5 0 

2 8890 15457 5 20 2436 22874 337 2 478 22234 1564 2 

3 1731 8109 995 3 138 1359 3596 4 22 180 4747 3 

4 102 970 141 27 9 53 31 3 1 1 0 0 

  Agreement: 60% Agreement: 91% Agreement: 93% 
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identified the number of classes, and red a simulation where the method was incorrect. 

These scatterplots help visually determine important factors for a given technique. 

For example, the SaBIC seems to be heavily influenced by class distance, but only 

minorly by sample size, as evident by the almost flat slope in the line dividing the red and 

blue along the bottom, and the few red dots along the left axis where sample size is at its 

smallest. Furthermore, the effect of the number of indicators was also important, as the 

graph for the 15-variable condition indicates more correct class enumerations compared 
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to the five-variable case. By comparison, the AIC does not seem to have any clear  

relationship between the number of variables and the outcomes as the scatterplot seems 

almost random. The LI3P, specifically, seems very influenced by the sample size and 

number of indicators, with the more indicators strengthening the effects of sample size. 

To further examine the suggested relationships shown in the scatterplots, regression 

models were fit with the LI3P measure as the outcome and manipulated factors as the 

predictors. The regression analyses examined the two and three class populations with the 
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LI3P values predicted from the categorical and continuous conditions manipulated. The 

estimates of the regression equations are presented in Table 8 and Table 9. 

Examining the point estimates in the tables, increasing sample size (scaled to be 

change per 100) had a small but clear effect. For example, adding 100 observations to the 

first population in the three-class case would reduce the LI3P score by .002, holding the 

other conditions constant. Depending on the condition, this raised or lowered the LI3P 

score. The effect of distance was positive, so an increased distance between classes 

resulted in a relatively larger change in LI3P values. The effect of the number of 

variables was rarely important, with the largest effect being class distance. 

Examining the squared semi-partial correlations, only the distance between 

Table 8: Regression parameters for LI3P scores for the two-class condition 
 

Dependent Variable: 
 

LI3P score with LI3P score with LI3P score with 

Independent Variable: 5 indicators 10 indicators 15 indicators 

Intercept 
-0.072** -0.079** -0.067** 

(0.001) (0.001) (0.0005) 

    

Sample size of 

class one 

-0.001** 0.0002** 0.0003** 

(0.0001) (0.0001) (0.0001) 

0.0004 0.0001 0.0002 
    

Sample size of 

class two 

-0.001** 0.0001 0.0002** 

(0.0001) (0.0001) (0.0001) 

0.0007 0.0000 0.0001 
    

Distance between class 

one and two 

0.233** 0.216** 0.183** 

(0.001) (0.001) (0.0005) 

0.7941§ 0.8756§ 0.9020§ 

Observations 15,014 15,615 16,020 

R2 0.795 0.876 0.902 

Adjusted R2 0.795 0.876 0.902 

Residual Std. Error 0.024 (df = 15010) 0.017 (df = 15611) 0.013 (df = 16016) 

F Statistic 
F(3, 15010) =  

19450.950** 

F(3,15611) =  

36666.170** 

F(3,16016) =  

49176.440** 

Note: Point estimates are reported with p value indicators, followed by standard errors. Squared semi-partial correlation values with 

their associated p value indicators are reported thirdly for predictors.  

   

p<0.01 is indicated with ** 

Squared semi-partial effect sizes: small (†), medium (‡), large (§) 
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classes had a sizeable effect for the two-class condition, each time being identified as 

large. In the three-class case, all of the sample sizes and distances had a small effect size 

in the five-variable condition. The 10-variable condition had a small effect for the third 

sample size and large effects for the distance. Finally, the 15-variable condition had large 

effects only for the class distances. Overall, all six of these models were significant, but  

the R2 ranged from 0.41 to 0.90, indicating that there is more unexplained variance in the 

 

Table 9: Regression parameters for LI3P scores for the three-class condition 
 

Dependent Variable: 

Independent 

Variable: 

LI3P score with LI3P score with LI3P score with 

5 indicators 10 indicators 15 indicators 

Intercept 0.022** -0.020** -0.033** 

(0.0004) (0.001) (0.0005) 
    

Sample size of 

class one 

-0.002** -0.001** -0.001** 

(0.0001) (0.0001) (0.0001) 

0.0901† 0.0185 0.0090  

   

Sample size of 

class two 

-0.001** 0.001** 0.001** 

(0.0001) (0.0001) (0.0001) 

0.0210† 0.0078 0.0144     

Sample size of 

class three 

-0.002** -0.002** -0.001** 

(0.0001) (0.0001) (0.0001) 

0.0956† 0.0225† 0.0078     

Distance between 

class one and two 

0.012** 0.032** 0.039** 

(0.0003) (0.0004) (0.0003) 

0.0876† 0.2622§ 0.3298§     

Distance between 

class two and three 

0.013** 0.032** 0.038** 

(0.0003) (0.0004) (0.0003) 

0.0894† 0.2671§ 0.3289§ 

Observations 9,365 10,175 12,449 

R2 0.407 0.591 0.667 

Adjusted R2 0.407 0.591 0.667 

Residual Std. Error 0.007 (df = 9359) 0.008 (df = 10169) 0.008 (df = 12443) 

F Statistic F(5, 9359) =  

1,285.382** 

F(5,10169) =  

2,937.660** 

F(5,12443) =  

4,988.680** 

Note: Point estimates are reported with p value indicators, followed by standard errors, and squared semi-partial correlation values 
with their associated p value indicators.   

 

p<0.01 is indicated with ** 

Squared semi-partial effect sizes: small (†), medium (§), large (§) 
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three-class condition than the two-class condition. 

Finally, the rpart package (version 4.1.16; Therneaux & Atkinson, 2019) was 

used to implement classification and regression trees (CART) to determine the effects of 

the simulation conditions on the LI3P scores, using the Gini index as the splitting 

criterion and 10-fold cross-validation. The trees were incredibly large, even after pruning 

and cross-validating, the smallest having 60 nodes and the largest tree having 130, which 

wasn’t entirely unexpected given the criterion is a continuous, not categorical, outcome, 

and the sample size is extremely large. In general, the number of groups and the distance 

between groups tended to be selected to initially partition the data, with factors relating to 

sample size and the ratios between sample sizes appearing lower in the trees. The 

variable importance metric was extracted from the models and is reported in Table 10. 

Table 10: CART factor importance list 

Factor k = 1 or 2 

5 var 

k = 1 or 2 

10 var 

k = 1 or 2 

15 var 

k = 2 or 3 

5 var 

k = 2 or 3 

10 var 

k = 2 or 3 

15 var 

k 27.66 24.99 22.26 17.02 16.15 16.49 

N1  18.80 16.16 14.33 7.79 7.21 7.34 

N2 0.27 0.16 0.14 8.68 8.35 8.51 

N3 – – – 0.88 0.90 0.91 

Total N (NT) 18.78 16.09 14.33 9.09 8.65 9.01 

N2:N1  – – – 3.27 3.40 3.36 

N3:N1   – – – 1.17 1.13 1.23 

N3:N2 – – – 2.32 2.68 2.64 

N1:NT 1.58 1.48 1.47 3.22 3.37 3.26 

N2:NT – – – 3.11 3.30 3.18 

N3:NT – – – 2.97 3.20 3.16 

|M1 – M2| 32.92 41.12 47.48 12.38 13.62 14.77 

|M2 – M3| – – – 7.26 8.15 7.64 

|M1 – M3| – – – 20.84 19.87 18.49 

Note: The calculated importance of various factors in the six CARTs. The columns indicate the number of classes being compared, 

along with the number of identifying variables. The rows list the factors themselves and are vaguely categorized into the following: 

number of groups, sample size(s), ratio between sample sizes, and the distances between group means. These scores have been 

scaled so that they sum to 100. The most important factor is bolded, and the second most important italicized.  
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The most important factor is bolded for each column. Notably, the factor that was most 

influential across conditions was always related to distance, followed by the true number 

of classes. The importance of sample size was generally smaller than these other factors, 

with the total sample size being the most important factor of those related to sample sizes. 
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CHAPTER 4 

EMPIRICAL EXAMPLE 

After analyzing the performance of the LI3P relative to the other techniques using 

a simulated dataset, the LI3P was applied to an empirical sample published by 

McLaughlin et al. (2020).  

Empirical Background 

Acknowledging a gap in the literature about the motivations for individuals who 

leave organized Christianity, McLaughlin et al. (2020) used a series of LPA models to 

determine if subgroups exist within formerly religious individuals (termed “religious 

dones”) based on a variety of measured behaviors, beliefs, and attitudes.  

Empirical Method  

Empirical Participants and Procedure. To do this, researchers used the online survey 

platform Qualtrics to collect survey data in the United States, Hong Kong, and 

Netherlands (N = 3071), and 643 participants identified they were formerly religious (US 

n = 206; NED n = 288; HK n = 149). This sample consisted of 51.2% females (48.6% 

males, seven did not report) and had ages ranging from 18 to 87 (M = 44.91, SD=16.35; 

31 did not report).  

Empirical Measures. Religious identity was determined using a categorical three-item 

response scale (e.g., “I was formerly religious, but no longer identify as religious”). 

Current religious belief was assessed using a dichotomous item assessing belief in the 

existence of God, followed by a seven-point Likert scale assessing commitment to their 

beliefs ranging from 1 (“Not very committed”) to 7 (“Extremely committed”) and a 101-

point Likert scale assessing certainty in their belief ranging from 0 (“Not certain at all”) 
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to 100 (“Extremely certain”). Religious behaviors were assessed using an 11-point Likert 

scale asking how often participants engage in religious activities and other religious 

individuals with responses ranging from 0 (“Never”) to 100 (“Extremely frequently”), in 

increments of 10. Finally, religious attitudes were assessed using two items regarding 

attitudes toward religion and religious individuals using an 11-point Likert scale with 

response options that range from -100 (“Extremely negative”) to 100 (“Extremely 

positive”), in increments of 20.  

Empirical Results 

After fitting LPA models in Mplus (version 8.3), McLaughlin et al. (2020) found 

the standard approaches yielded contradicting results: the LMR and entropy suggested 

two classes, whereas the BIC, the saBIC, and the BLRT suggested three classes. The 

specific values for each of these are reported in Table 16, along with the results of the 

LI3P. Notably, the models with a higher number of classes failed to converge, even after 

allowing for more starts, a result that was not altogether unsurprising given the fact that 

many over-fitting models failed to converge in our simulation.  

The researchers decided to use two classes based on these results and theoretical 

interpretability: one class who no longer engaged in religious activities and had neutral 

Table 11: LPA fit information for religious data 

Class 

Solution 
-2LL BIC SaBIC Entropy BLRT LMR LI3P 

1 class 33312.18 33402.7 33358.25 – – – – 

2 classes 32529.16 32671.41 32601.56 0.91 <.0001 <.0001 0.29 

3 classes 32213.28 32407.26 32312.01 0.81 <.0001 0.342 0.12 

4 classes 
Did not 

converge 

Did not 

converge 

Did not 

converge 
0.6 Did not 

converge 

Did not 

converge 

Did not 

converge 

5 classes 
Did not 

converge 

Did not 

converge 

Did not 

converge 
0.84 Did not 

converge 

Did not 

converge 

Did not 

converge 
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attitudes toward religion, and a second class that still held positive attitudes of religion 

and engaged in religious activities to some extent. The LI3P values indicated that using 

two classes instead of one was just shy of being a large effect size, as defined by Grimm 

et al. (2021), whereas moving from a two to a three-class model was a medium effect. 

We would interpret this as evidence that the three-class model constitutes a medium sized 

improvement in model fit compared to the two-class model.  
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CHAPTER 5 

DISCUSSION 

This study considered the performance of the LI3P measure relative to the 

established class enumeration techniques AIC, SaBIC, and aLMR-LRT. These methods 

were applied to analyze LPA models fit to data generated under a variety of conditions, 

including sample size, class separation, number of indicators, and the number of classes, 

with values generated based on past research and guidelines. After evaluating the 

performance in a simulation, the LI3P was then applied to an empirical dataset to 

demonstrate its use.  

Discussion of Simulation Results  

The established approaches performed largely as expected. The AIC erred on the 

side of more classes in the two-class case, though this was reversed in the three-class 

case, potentially due to the range of class distances selected. The SaBIC was highly 

accurate in the one-class case, and tended to choose fewer classes in the two- and three-

class cases. The aLMR-LRT performed similarly, notably almost achieving perfect 

accuracy in the one-class case. To compare the LI3P to these measures in this instance, a 

cutoff score was used. Used this way, the LI3P’s performance was in line with the 

existing measures – exceeding each in some conditions, but not in every condition. The 

ARI summarizes the accuracy across conditions, revealing the LI3P was more accurate 

than the AIC but less accurate than the SaBIC or aLMR-LRT overall.  

The crosstables reveal that the LI3P tended to agree with the aLMR-LRT and 

SaBIC when 10 or more variables were used. In the five-variable condition, the LI3P 

tended to select relatively more classes. The LI3P had a peculiar inverse relationship with 
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the AIC in relation to the number of variables, with decreasing agreement as the number 

of variables increased; this may be because as the number of variables increases the AIC 

preferred solutions with relatively more classes. Furthermore, this reveals an interesting 

association between these methods: the LI3P was not consistently better or worse than 

any of these methods across the conditions, but its performance was based on a variety of 

factors. Knowing these factors may be the key to its successful use.  

The scatterplots revealed numerous interesting trends in the two-class case. 

Depending on the number of variables present to indicate a class, there seems to be a 

linear relationship between sample size and class separation for the SaBIC. As is typical, 

for a given distance, increasing the sample size seems to be a reliable way to increase 

accuracy. The aLMR-LRT behaved similarly, but with slightly less accuracy. The AIC, 

conversely, had no discernable pattern, suggesting its accuracy was not as directly related 

to sample size or distance. The LI3P did not have an interaction between sample size and 

distance, evident by the apparent lack of a slope in the plots, but there were direct effects 

of both sample size and distance, contingent upon the number of variables.  

Examining this more closely, the LI3P performed poorly in the five-variable 

condition, which was suggested by the cross tables. Using 10 or 15-variable greatly 

improved accuracy, at least in terms of predictability. Accuracy was almost guaranteed 

for data with a sample size greater than 400 and a distance greater than .5 in the 15-

varaible condition. This is somewhat reassuring, meaning that to correctly determine the 

number of classes, sample size doesn’t seem to matter after 400 samples. However, class 

distance also mattered, which was not as helpful because this information if not known 

prior to performing the analysis. By contrast, for the SaBIC and aLMR-LRT which had 
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an interaction effect, the user is at least reassured that by adding more individuals, the 

statistical power increases. The graphs seem to suggest that using the LI3P might be more 

useful for situations where large samples are harder to obtain, but less useful for larger 

samples, where other methods may achieve greater accuracy.  

It is worth reiterating that these scatterplots only illustrate the two-class condition. 

Different trends in the three-class condition, such as the LI3P having the best accuracy in 

the five-variable condition and the AIC having the best accuracy overall, suggests that the 

trends observed in the two-class condition may not generalize. Unfortunately, these 

trends that are difficult to observe visually using scatterplots due to the increased 

dimensions of the data.  

The regression analyses partially refute the claim that the LI3P is immune to the 

effects of sample size. Both the regression point-estimates and the squared semi-partial 

correlations in the three-class condition suggest that sample size can influence the LI3P 

values. While unfortunate, this is not entirely unexpected; using the same method, even 

the SaBIC, which supposedly adjusts the BIC for sample size and arguably performed the 

best for the simulation study, had squared semi-partial correlations of 0.29 to 0.50 for the 

sample sizes across the conditions. However, only the distance variables had large effect 

sizes for the LI3P in the three-class condition. Furthermore, in the two-class condition, 

only the distance manipulation had a sizeable effect.  

The CART analyses largely reaffirm the regression results. For both the one-vs-

two and two-vs-three class comparison, the trees reveal that the initial nodes were splits 

on the distance and class manipulations. Table 10 revealed that the most important factor 

across the conditions was a distance variable, though which distance variable changed, 
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followed by the number of classes. The importance of the distance variables, particularly 

the distance between the first and third classes, is highlighting the importance of class 

separation in distinguishing the classes. Simply put, the further apart the classes, the 

easier it is to determine the correct number of classes. 

Discussion of Religious Data Results 

The empirical example demonstrates a case where the two most accurate methods 

according to this study, the LMR and SaBIC, were at odds with each other. The LI3P 

indicated a medium improvement in fit. This would help directly address the concerns of 

the authors that the class enumeration technique scores did not change as greatly when 

comparing the one-to-two-class model to the two-to-three-class model, suggesting that 

the change in model fit is not so small as to be negligible. This, in conjunction with the 

other class enumeration methods, could be used to justify using a three-class solution.  

However, it is worth acknowledging the logic the authors make that this was an 

exploratory analysis and the interpretability was clearer for two classes. They admittedly 

want to be more conservative in their approach of determining the number of latent 

classes in their study. Hopefully, continued research in this field will help clarify these 

results, perhaps by increasing the sample size and the number of measures used.    

Future Directions and Concluding Remarks 

    Future directions might seek to evaluate the effectiveness of the LI3P using an 

adjustable cutoff value. For example, in our study, this study used a cutoff criterion of 

0.014 because it was the value at the 95th percentile for the 15-variable, one-class 

condition. However, as demonstrated by the study findings, the number of indicators 

affect the LI3P performance, so employing an approach that considers the number of 
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predictors could be useful. In our data, this would be 0.022 for the 10-indicator case, and 

0.044 for the five-indicator case. A different approach but with a similar goal would be to 

use scree plots. Typically used in principal and confirmatory factor analysis, this 

technique could be applied here to simulate data under the null, then compare the 

observed LI3P value to the values produced by the null.  

Additionally, further research may explore LI3P performance in LCAs and 

GMMs more thoroughly, as these are related and popular techniques not explored here. 

The class enumeration techniques discussed here are used in these models, though their 

performance is not always the same, so exploring the application of the LI3P in those 

models would be recommended over generalizing these results to them.   

Overall, these results suggest that while the LI3P is a potentially useful tool in a 

researcher’s statistical toolkit, even though it did not perform as well as originally 

expected. While sample size wasn’t a primary factor in its calculation, it does play a 

small role in certain conditions, meaning the LI3P isn’t entirely “free” of the influence of 

sample size. That being so, the regression analyses reveal that it is more reliant on the 

desired factors of class separation and the true simulated number of classes. The LI3P 

performed better than the AIC in terms of overall accuracy, but not as well as the SaBIC 

or LMR. The LI3P tended to favor fewer classes when 10 or more variables were used, 

which was not uncommon; all of the class enumeration techniques tended to favor fewer 

classes than the correct solution, likely due to the challenging sample size and class 

distance conditions used. The LI3P may be best used when the sample is relatively small, 

and use 10 indicators to balance accuracy. When used with the existing methods, the 

LI3P can help researchers make informed decisions by providing context by reporting 
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scores that reflect distance and the number of classes.  
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