
GPU-enabled Functional-as-a-Service

by

Sungho Hong

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved June 2022 by the
Graduate Supervisory Committee:

Ming Zhao, Chair
Zhichao Cao

Mohamed Sarwat

ARIZONA STATE UNIVERSITY

August 2022

ABSTRACT

Function-as-a-Service (FaaS) is emerging as an important cloud computing service

model as it can improve scalability and usability for a wide range of applications,

especially Machine-Learning (ML) inference tasks that require scalable computation

resources and complicated configurations. Many applications, including ML infer-

ence, rely on Graphics-Processing-Unit (GPU) to achieve high performance; however,

support for GPUs is currently lacking in existing FaaS solutions. The unique event-

triggered and short-lived nature of functions poses new challenges to enabling GPUs

on FaaS which must consider the overhead of transferring data (e.g., ML model

parameters and inputs/outputs) between GPU and host memory.

This thesis presents a new GPU-enabled FaaS solution that enables functions to

efficiently utilize GPUs to accelerate computations such as model inference. First, the

work extends existing open-source FaaS frameworks such as OpenFaaS to support

the scheduling and execution of functions across GPUs in a FaaS cluster. Second,

it provides caching of ML models in GPU memory to improve the performance of

model inference functions and global management of GPU memories to improve the

cache utilization. Third, it offers co-designed GPU function scheduling and cache

management to optimize the performance of ML inference functions. Specifically,

the thesis proposes locality-aware scheduling which maximizes the utilization of both

GPU memory for cache hits and GPU cores for parallel processing.

A thorough evaluation based on real-world traces and ML models shows that the

proposed GPU-enabled FaaS works well for ML inference tasks, and the proposed

locality-aware scheduler achieves a speedup of 34x compared to the default, load-

balancing only scheduler.

i

TABLE OF CONTENTS

Page

LIST OF TABLES . iv

LIST OF FIGURES . v

CHAPTER

1 INTRODUCTION . 1

2 BACKGROUND . 5

2.1 Function-as-a-Service . 5

2.2 OpenFaaS . 7

2.3 GPU Computing . 9

2.4 Deep Learning . 12

2.5 GPU-enabled FaaS . 14

2.5.1 GPU Sharing . 15

2.5.2 GPU Scheduling . 17

3 DESIGN . 20

3.1 Architecture . 20

3.2 Scheduler . 21

3.3 GPU Manager . 22

3.4 Cache Manager . 23

3.5 Datastore . 26

4 SCHEDULING POLICIES . 27

4.1 Round Robin . 28

4.2 Load Balance . 29

4.3 Round Robin Out-of-Order . 30

4.4 Locality-aware Load-balancing . 30

ii

CHAPTER Page

4.5 Out of Order Dispatch . 32

5 EVALUATION . 36

5.1 Methodology . 36

5.1.1 Workloads . 36

5.1.2 Dataset . 38

5.1.3 Testbed. 39

5.2 Latency Results . 39

5.3 Utilization . 41

5.4 Efficiency . 43

5.5 O3 Sensitivity Test . 46

6 CONCLUSION . 48

REFERENCES . 50

iii

LIST OF TABLES

Table Page

1. Occupation Size in GPU, Uploading Latency, and Inference (Fixed Batch

Size of 32) Latency of Models . 38

2. Average Number of Duplicates for Top 5 Inference Models 44

3. Performance under Different O3 Value in Working Set 35. 46

iv

LIST OF FIGURES

Figure Page

1. General FaaS Architecture . 6

2. OpenFaaS Architecture . 7

3. GPU Cache in OpenFaaS Architecture . 21

4. Logical Representation of the Scheduler . 22

5. Average Total Latency . 40

6. Cache Miss Ratio . 40

7. GPU (SM) Utilization . 42

8. False Miss Ratio . 43

9. Average Number of the Top One Duplicated Model . 43

10. Latency and Cache Miss Ratio of Different O3 Limit Value 46

v

Chapter 1

INTRODUCTION

The popularity of Function-as-a-Service (FaaS) increases as there is a growing

demand for building websites, real-time file processing, and machine learning (ML)

inferences without worrying about scalability and resource management Jonas et

al. 2019. However, running ML inference with FaaS functions is limited as the major

public cloud providers do not provide or directly provide FaaS platforms to access

GPU resources. For example, AWS Lambda Chand 2021, a popular FaaS from

Amazon, does not provide GPU to FaaS, while Azure functions Garg 2020, FaaS

from Microsoft, can indirectly access GPU via GPU-enabled Kubernetes. However,

the support for sharing GPU in the Azure function is limited as Kubernetes avoids

addressing the challenges of GPU resource management by preventing multiple pods

from sharing a single GPU. Therefore, GPU-enabled-FaaS is a growing research area

where both industry and the research community work to uncover and address the

unique challenges of managing GPU resources in the FaaS platform.

Applying GPUs to the FaaS platform is imperative as ML inference running on

FaaS requires low latency to meet the Service-Level-Agreement (SLA). The survey of

FaaS Scheuner and Leitner 2020 indicates the increasing deployment of ML inference

on FaaS platform. ML inference applications in production have stringent latency

requirements; for example, providing auto-suggestions in the search bar requires

returning the inference results in real-time while users browse for keywords Garg

2020. Using GPU for running ML inference can significantly reduce the latency when

input data can be grouped into a large batch and models are designed for parallel

1

computation. The larger batch size allows ML inference to further benefit from GPU

acceleration Gunny 2019 because a bigger batch gives the GPU a higher volume of

work to run in parallel. ML inference models such as Transformers Wolf et al. 2020

translate the sequential computation of recurrent neural networks (RNN) into the

independent calculation to benefit from GPU parallelization.

Managing the GPU resources in the FaaS platform is challenging as sharing GPUs

differs from sharing conventional resources such as CPU and memory. The GPU is

designed to maximize a single application’s throughput performance by allocating the

entire resource to a single GPU process. Since the single process has full access to the

GPU resource, the GPU expects the application to be programmed to avoid exceeding

the available GPU memory. Unless the GPU is configured with vendor-specific features

such as Nvidia Unified Memory Li et al. 2015, the applications using the GPU are

constantly vulnerable to an out-of-memory (OOM) error Landaverde et al. 2014. The

limited sharing capabilities of GPU are problematic for the FaaS platform because

functions require sharing the limited GPU resources to maximize GPU utilization and

performance.

Estimating the latency of data transfer and execution of the GPU is a significant

challenge for scheduling FaaS functions that have access to GPUs. The initialization

phase of the GPU application takes longer in GPU memory than in host memory

because the GPU has the extra overhead of transferring the data from host memory

to device memory. Additionally, determining the size of the input data the GPU

will process is critical as the benefit of GPU acceleration must outweigh the cost

of the data uploading overhead. Estimating the latency of FaaS functions using

GPU is imperative, as accurate estimation allows the FaaS platform to improve the

performance of FaaS functions using GPU resources.

2

The major challenge of GPU-enabled FaaS is to address the above limitations by

finding the balance between locality and load-balancing. From a locality perspective,

the GPU-enabled-FaaS can reduce the function latency by serving requests on the

same cached GPU that already has uploaded the model. However, the extreme locality

may increase the average latency of requests because all the requests are forwarded

to the cached GPU while other uncached GPUs stay idle. From a load-balancing

perspective, the GPU-enabled-FaaS can increase GPU utilization by distributing the

requests evenly to available GPUs. However, load-balancing may increase the cache

miss ratio when handling a workload with a larger working set size. The more extensive

working set increases the chance of evicting popular models in limited memory space.

The thesis introduces complementary components that allow the existing open-

source FaaS platforms to utilize GPU resources and improve the performance of ML

inference running as FaaS functions. The GPU Manager decouples the GPU resource

management from the FaaS platform by handling the GPU resources on behalf of

FaaS functions and estimates each GPU’s finish time of its queued requests. The

Cache Manager treats the uploaded inference models in GPU memory as cache items

and follows the LRU cache eviction policy to evict the unpopular models when GPU

memory exceeds. The Scheduler reads the estimated finish times and LRU lists from

the GPU Manager and Cache Manager and follows a scheduling policy to dispatch

the FaaS Function to a GPU.

The proposed locality-aware scheduler improves the GPU utilization by balancing

the workload to GPUs and increasing the hit ratio of cached items in GPUs. The

scheduler reads the LRU list from the Cache Manager to prioritize the requests to

be dispatched to the idle GPU with the cached items. However, suppose the GPU

with the cached item is busy. In that case, the scheduler uses the estimated finish

3

time of the busy GPU to determine whether the cache hit in the busy GPU has a

lower estimated finish time than the cache miss in the idle GPU. The scheduler only

forwards the cache miss request to idle GPUs when the busy GPUs do not provide a

lower finish time with cache hits.

The performance of the GPU-enabled FaaS is evaluated using the real-world

trace disclosed by the public cloud provider and inference models widely used in

production. The results indicate that the proposed locality-aware scheduler improves

the performance of FaaS functions with a limited GPU resource. The locality-aware

scheduler reduces the average latency and cache miss ratio of the baseline (load-

balancing) scheduler by 80% and 65%. With the out-of-order dispatch, the scheduler

further reduces the average latency and cache miss ratio of the baseline scheduler by

97% and 81%.

The rest of the paper is organized as follows: Section 2 introduces the background

and related works; Section 3 describes the design of the GPU-enabled-FaaS; Section

4 discusses our performance evaluation of the five scheduling policies, and Section 5

concludes the paper.

4

Chapter 2

BACKGROUND

2.1 Function-as-a-Service

Function-as-a-Service (FaaS) is emerging as a popular cloud computing service

that can provide scalability and cost-efficiency to event-driven applications Jonas

et al. 2019. Amazon Web Services Miller, Vandome, and McBrewster 2010, one of

the major public cloud providers, markets the FaaS as part of AWS Lambda Chand

2021 to provide scalability and cost-efficiency while running short event-driven jobs.

Unlike traditional cloud services that provide the entire VM instance to the user,

FaaS introduces function as a service unit by deploying each user’s function code in

lightweight containers. Using lightweight virtualization takes less space and time to

run the functions, allowing FaaS significantly improve scalability and cost-efficiency

for event-driven workloads.

To deploy the FaaS function in Lambda, the user must first select the type of

function and then write the function code to upload to the API-Gateway. Lambda

provides options for deploying functions with specific dependencies such as Program-

ming languages: Java, Python and popular 3rd party libraries such as Tensorflow or

Pytorch. The registered function responds to specific events such as an HTTP request

or a trigger from other AWS services such as S3 and DynamoDB.

Figure 1 explains the components of the FaaS architecture. The general FaaS

architectures contain three major components: API Gateway, Watchdog, and Datastore

that run on top of the container orchestration, such as Docker Swarm Soppelsa

5

Figure 1. General FaaS architecture

and Kaewkasi 2017 or Kubernetes Hightower, Burns, and Beda 2017. The grey

boxes represent the applications that run on containers. The red box represents the

background process that runs inside the container and terminates with the container.

API Gateway component is the public route that interacts with the end-user

by handling the create, read, update, delete (CRUD) of functions and invoking the

registered functions. The Watchdog runs in the background along with the function

code to serve as the communication bridge between API Gateway and Datastore. The

Watchdog receives a request and returns a response to API Gateway and stores history

status such as execution latency to Datastore. Datastore stores the history log of the

invoked functions. Datastore can also be configured to trigger the API Gateway to

scale up the function containers when the same function is repeatedly invoked for a

specific time interval.

The end-users of the FaaS service can write function without configuring any

resources and installing dependencies required to run the function. The end-users

can use the code template provided by the specific FaaS platform to deploy the FaaS

function. Once the end-user forwards the function code and the template to the FaaS

platform, the platform builds the function by creating a running container that installs

6

Figure 2. OpenFaaS architecture

the required resources written in the template. The deployed function is registered as

a RESTFUL API, and the end-user can invoke the function by creating an HTTP

request or implementing a trigger in other applications.

Netflix is one of the avid users of AWS cloud services that shows an exemplary use

case of AWS lambda Retter 2020. Netflix uploads thousands of video files submitted

by the producers in S3, which must be encoded and correctly reordered before the

customers can stream the file as a movie. The S3 is configured to trigger multiple

Lambda functions when the producer finishes uploading a video file. The Lambda

functions split the updated files into 5-minute blocks and encode them in parallel.

After the last block of the video is processed by the final Lambda function, the S3

triggers another Lambda function that aggregates the encoded files following the

correct order.

2.2 OpenFaaS

We now explain the fundamental components and the lifecycle of the OpenFaaS,

an open-source FaaS framework, in Figure 2. OpenFaaS simplifies the management

7

of containers by running on top of container orchestrators such as Docker Swarm or

Kubernetes. The FaaS/Gateway (API-Gateway) works as an intermediator between

the end-user and the internal components of OpenFaaS by forwarding create, delete,

and modify requests to FaaS/Provider. FaaS/Gateway records the unique function ID

and name to Prometheus when the user registers the function so that Watchdog can

record the logs of the running function.

Prometheus Rabenstein and Volz 2015 is an open-source time-series database

that collects metrics from FaaS/Function and can be configured to trigger alerts

to OpenFaaS/Gateway. The FaaS/Provider translates the request forwarded by

FaaS/Gateway into acceptable request that the interface of the container orchestrator

can understand. FaaS/Function is the container that runs the function code of

the end-user, and the Watchdog is a background process that communicates with

the FaaS/Provider and stores the metrics such as function results, and latency to

Prometheus.

The lifecycle of deploying and invoking functions in the default OpenFaaS is

straightforward. The end-user registers the function by building a container with the

function code and OpenFaaS template and invokes the function using HTTP requests

to the FaaS/Gateway. The FaaS/Gateway either creates a new function container or

runs the requested function by forwarding the request to the FaaS/Provider.

FaaS/Provider translates the request received from API/Gateway into a message

that the container orchestrator, such as Docker swarm or Kubernetes, can understand.

The container orchestrator finds the registered container that matches the description

of the requested function and deploys the container that represents the FaaS/Function.

The Watchdog that runs as a background process inside the container receives the

request, returns the response to FaaS/Provider, and updates metrics such as latency

8

as a history log in Prometheus. Finally, the FaaS/Gateway receives the return message

from the FaaS/Provider and returns the result to the end-user.

It is important to note that the feature of scheduling decisions such as replicating

functions or load-balancing is not implemented in the OpenFaaS framework. The

absence of the scheduling feature in OpenFaaS is to maintain the OpenFaaS framework

as simple as possible by bequeathing all the matured scheduling decisions to 3rd party

components. For example, Prometheus is in charge of making decisions for replicating

the number of containers by triggering the FaaS/Gateway when Prometheus detects

a burst of duplicated requests. Container orchestrators are responsible for making

fundamental scheduling decisions such as load-balancing for deploying the containers

to the available nodes.

2.3 GPU Computing

Graphics Processing Unit (GPU) Agbaje, Ohwo, and Adekunle 2018 introduces a

different design than conventional multi-core processors by offering thousands of simple

cores and a high bandwidth memory architecture. A GPU has multiple streaming

multiprocessors (SM) that contain computing cores, shared cache, and shared memory.

Each SM holds local registers, an integer arithmetic logic unit, and a floating-point

unit for computing cores to execute instructions.

A GPU memory management unit (MMU) provides virtual address spaces for GPU

applications by mapping the application context with the unique GPU page table.

The GPU is an external device that communicates via PCI Express (PCIe) with the

host, and the data transfer between the host and GPU is required for the application

to utilize the GPU. Memory-mapped input/output (MMIO) allows the CPU in the

9

host to access the GPU registers and memory. GPU applications communicate with

the GPU by sending operations using the MMIO interface.

GPUs are traditionally used for graphics acceleration, but the popularity of general-

purpose computing such as machine learning has been increasing dramatically. The

graphics acceleration focuses on rendering 2D, and 3D graphics using GPU rendering

features such as tessellation, compute shaders, and multi-threading. The applications

that benefit from GPU rendering capabilities range from video encoding programs

to visually intensive 2D and 3D graphic games. General-purpose computing focuses

on improving the performance of throughput-sensitive and computation-intensive

applications. Machine learning models widely use the GPU features of general-purpose

computing using API frameworks such as CUDA Cook 2012 and OpenCL Khronos

OpenCL Working Group 2011.

The growing demand for accelerating ML applications with GPUs gave birth to

popular ML framework APIs such as Tensorflow Martín Abadi and Ashish Agarwal

2015 and Pytorch Paszke et al. 2019 that support tools and pre-trained models that

are tailored for GPUs. For example, TensorFlow provides a GPU-enabled version that

allows programmers to deploy the vectors and matrices (tensors) and the functionality

without the knowledge of CUDA. Furthermore, a growing number of research works

focus on applying GPU acceleration to model serving platforms such as TF-Serving

Olston et al. 2017 that host the pre-trained models on cloud or on-premise for ML

applications to share. For example, Hu et al.Hu et al. 2018 integrate GPU scheduling

with the existing model serving system to further improve application performance

and GPU utilization.

A GPU disassembles the application into many threads operating on different data

spaces, maximizing execution throughput with high data parallelism. For example,

10

CUDA API allows the programmer to define functions called kernels run by the

computing cores of GPU. CUDA threads can execute the kernels, and they have access

to the local memory shared among the threads defined in the same thread block and

the global memory. The applications using GPU need the functionality of the GPU

memory allocation and deallocation and data transfer between host and GPU memory.

GPUs have three limitations that make it unsuitable for multiple applications to

share the same GPU. First, the capacity of GPU memory is significantly lower than

host memory. Without using the special features such as Unified Memory available in

devices equal to or higher than Nvidia’s Pascal architecture, the GPU memory does

not automatically take care of oversubscribed memory. If the processing data size is

larger than the available GPU memory capacity, GPU programmers are responsible

for managing the active working set in GPU memory. The oversubscription of GPU

memory ultimately leads to an out-of-memory error (OOM), terminating the entire

GPU application.

Second, the multiple computing cores of the GPU are not designed for multiple

applications to effectively share. In other words, running multiple inference applications

that process a small number of images concurrently provides sub-optimal performance

compared to a single inference application that processes a large number of images.

Third, although GPU provides fast computation for inference models, it incurs extra

overhead while transferring data from host memory to GPU memory. The data

transfer overhead of GPU arises in the PCIe interface as the maximum bandwidth of

the current PCIe is low (i.e., 16GB/s) compared to the internal memory bandwidth of

GPU (i.e., hundreds GB/s). To address the three limitations, it is essential to build a

GPU scheduler that can both balance requests across GPUs and utilize the models

already loaded in GPU memory to service the requests.

11

2.4 Deep Learning

Deep learning applications based on deep neural networks (DNN) are the key

solution to many important tasks, such as voice recognition, natural language process-

ing, image classification, and object detection Hu et al. 2018. DNN is an advanced

version of artificial neural network (ANN), which is a subfield of machine learning

where the architecture follows the brain’s neural networks. The architecture of DNN

is represented as the weighted directed graphs where the neurons are grouped as

multiple layers, and each connection between neurons communicates with each other.

The Convolutional Neural Network (CNN) O’Shea and Nash 2015, one of the major

classifications of DNN Liu et al. 2017, is used as the primary workload in this paper’s

evaluation.

The main tasks of deep learning comprise training a model and using the model

for inference. Training updates the weights of each layer iteratively towards a target

by running the forward and backward propagation. Inference uses the updated

weights of each layer to make a prediction based on the input by running the forward

propagation. For image classification, training reduces the difference between the

result of the forward propagation and the ground truth label by updating the weights

of a model during backpropagation. The inference predicts the image class of the

image input by translating the input data into a numeric result representing the

classes.

GPUs offer excellent parallelism for both model training and inference. For example,

the convolution operation in CNN requires configuring a fixed-sized filter to generate

a feature table from the input and determine the batch size in training and inference.

The filter performs repeated calculations by traversing through the whole image file,

12

and the repeated calculations provide opportunities for GPU to exploit parallelism.

The larger batch size allows more data to be propagated through the neural network,

thus allowing more input to be processed in parallel. Therefore, GPUs can significantly

reduce the latency than CPUs.

The thesis focuses on FaaS functions running ML inference as the characteristics

of inference applications are ideal for the FaaS platform to maximize scalability. The

training applications are predictable long-running tasks that generate the pre-trained

model by processing many training samples. The inference applications are short-

running tasks triggered on-demand and process a small amount of input data using

the pre-trained model. Unlike training, the inference can significantly benefit from the

scalability of FaaS as the workload is unpredictable and resource occupation is small.

The stateless nature of ML inference greatly benefits inference functions from FaaS

architecture. The training application requires the computed result from forward

propagation to be stateful, as the computed result is used again during the backward

propagation. However, the inference application performs stateless computation as

it returns the output by running the forward propagation. As the inference can run

stateless, the FaaS platform has less restriction to scale in and out when provisioning

resources to multiple ML inferences.

Apart from scalability, the FaaS architecture improves the productivity of software

development. FaaS platform maintains the functions as containers that can be installed

with the required dependencies of ML libraries. ML inference running on the FaaS

function no longer needs to address the compatibility issues, as the functions run on

the predefined containers. Also, FaaS improves the reusability of the functions as

the ML inference models can be treated as a function and be accessed by multiple

applications such as smart-car and traffic surveillance applications.

13

2.5 GPU-enabled FaaS

Enabling GPUs in FaaS can significantly reduce cost and improve the performance

of computation-intensive applications Baldini et al. 2017. Specifically, the use cases

of ML inference in FaaS are becoming popular throughout the industry Zaharia

et al. 2018. FaaS functions that use ML inference require significant computation

resources and parallelization; therefore, introducing GPU to FaaS is crucial to reduce

latency. However, addressing the unique challenges of GPU FaaS like GPU sharing

and GPU scheduling make optimizing the inference functions difficult.

There are three challenges to enabling GPUs on FaaS for ML inference. Firstly, the

non-preemptive characteristic of SMs degrades the performance of multiple processes

sharing the same GPU. The thread block is the schedulable unit consisting of a number

of threads translated into a computation core residing in one of the SMs in the GPU.

The end-user can allocate thread blocks to the computation task called kernels which

can perform computations on the SM of the GPU. Once a thread block is dispatched

to the SM, the execution of the SM cannot be preempted by another thread block.

Secondly, the accelerators such as GPU and FPGA are limited resources compared

to traditional resources such as CPU and memory. The scarcity of GPU resources

could be a bottleneck if the FaaS functions are dependent on GPU to finish the tasks.

The latency of the FaaS function may increase if multiple FaaS functions are throttled

by waiting for the release of the GPU resources from other Faas functions. Therefore

it is vital to share the limited GPU resources efficiently without hurting the scalability

of FaaS.

Thirdly, the overhead of GPU data transfer creates a challenge for inference

applications. The latency of the training application is long as the application needs

14

to process sample data to create the pre-trained model. The data transfer overhead is

obsolete in a training application, as the training application requires running forward

and backward propagation on a large number of sample data to create the pre-trained

model. On the other hand, the data transfer overhead takes a large portion of the

inference latency because the inference application runs a forward propagation of a

small number of input data. Thus, depending on the input data size, the inference

application can perform better on the CPU than the GPU due to the data transfer

overhead.

2.5.1 GPU Sharing

Kim et al. Kim et al. 2018 introduce a FaaS platform with GPU support by

enabling containers used in the FaaS platform to access GPU directly. Although the

research shows the benefits of GPU-enabled functions, the functions use the NVIDIA

Container Toolkit “Nvidia Docker Container Toolkit” 2022 that restricts multiple

containers from sharing a single GPU. The function that occupies the GPU may run

non-GPU tasks such as preprocessing the input images while preventing other waiting

functions from using the GPU. Our solution solves the issue of GPU monopolization

by enabling the functions to share the GPUs and provide optimized GPU resource

management for the functions. For example, our functions in GPU-enabled FaaS

occupy the GPU resource only when uploading the inference model or running the

inference.

Naranjo et al. Naranjo et al. 2020 overcome the GPU monopolization by intro-

ducing rCUDA, a GPU virtualization framework, to FaaS Duato et al. 2010. The

solution prevents the FaaS functions from directly managing GPUs by intercepting the

15

GPU operations from FaaS functions to the rCUDA interface. The research entirely

decouples the FaaS from GPU resource management by relying on rCUDA. The FaaS

platform and rCUDA fail to coordinate to improve performance because they do not

share the information on pending FaaS requests and GPU utilization. Our solution

decouples the GPU resource from FaaS functions but also allows coordination between

global GPU cache management and FaaS scheduler to improve the performance of

GPU-enabled FaaS.

Satzke et al. Satzke et al. 2020 implements features for GPU sharing on top

of Knative, an open-source framework that provides tailored features for managing

FaaS functions in Kubernetes. The proposed solution translates the memory of a

single GPU into multiple vGPUs and provides a constraint policy that prevents FaaS

functions from oversubscribing the GPU memory. However, the solution focuses on

avoiding out-of-memory (OOM) errors caused by GPU memory oversubscription while

failing to address the increased overhead caused by multiple functions sharing the

same GPU. Our solution prevents over-subscription of GPU memory and reduces the

average runtime of functions by introducing GPU cache management compatible with

GPU scheduling.

Dakkak et al. Dakkak et al. 2019 introduce GPU caching by implementing a

daemon process that provisions the GPU memory to functions by intercepting their

CUDA requests. The solution uses GPU memory virtualization services such as

Unified Memory and CUDA IPC to share uploaded models among GPU memory and

processes. The solution prevents OOM in GPU by limiting the memory usage of GPU

and using basic cache mechanisms such as LRU to reduce the latency. However, the

solution fails to address locality-aware scheduling that can further increase the cache

hit and uses load-balance scheduling by forwarding the requests to the GPU with

16

the lowest utilization. Our solution uses LRU as the GPU cache replacement policy

while managing the GPU resources globally and a locality-aware scheduler tailored to

improve performance on the real-world trace.

2.5.2 GPU Scheduling

Cox et al. Cox et al. 2020 introduce KFServing, a lightweight auto-scaling technique

that scales out GPU resources according to the number of pending requests waiting

to be scheduled. KFServing promotes batching by waiting for the requests that use

the same model within a fixed period and batching them for processing on the same

GPU. The solution fails to address the optimal waiting time to accumulate enough

requests to create batch requests. The paper warns that the fixed waiting time may

degrade the performance on a low-intensive workload because the scheduler may waste

time waiting for requests to be batched. Furthermore, the paper fails to provide the

ideal batch size that guarantees both locality and load balance in GPU scheduling.

Our solution uses the scheduling policy that improves locality and load balance by

estimating the optimal size of batched requests without specifying the waiting period.

Both Romero et al. Romero et al. 2021 and Zhang et al. Zhang, Krintz, and

Wolski 2020 introduce a FaaS scheduler that reduces the latency by allocating the

FaaS functions on the resources such as CPU, GPU, and network with the lowest

estimation overhead. The scheduler improves both locality and load balance by

assigning computation-intensive functions to GPU and prioritizes batching as long as

there is no violation of the target latency. However, both schedulers fail to provide

on-demand estimations as they are unaware of how the GPU resources are managed,

as they rely on GPU virtualization provided by public or private cloud providers.

17

For example, periodical profiling assumes that a function recently deployed on

the specific GPU may perform faster as the GPU memory still has the required data.

The GPU may evict the uploaded data as multiple functions share the GPU, and

the scheduler needs to wait for the following periodical profiling to have the correct

estimation for the GPU overhead. The problem intensifies as the network and CPU

may encounter unforeseen issues and affect the GPU overhead while coordinating

with the GPUs. Our scheduler makes on-demand estimations free from profiling by

allowing the scheduler to coordinate with the global GPU cache management.

Prakash et al. Prakash et al. 2021, Garg et al. Garg et al. 2021, and Yang et al.

Yang et al. 2020 use function code of GPU (kernel) as a schedulable unit to support

the schedulers with time-share and space-share of GPU resources. The solutions

provide space-sharing of GPU by dynamically changing the allocated compute cores

of the kernels and control time-sharing of GPU by slicing the kernel input into small

batches. The solutions customize a specific version of the CUDA API (CUDA version

9) so that the CUDA API framework can allow kernels to be compatible with different

thread block sizes. However, the solutions are unrealistic for inference applications

as pre-trained models require occupying a fixed number of thread blocks, and inputs

must be processed in large batches to benefit from GPU acceleration.

The kernel-slice scheduler expects each FaaS function to request for GPU resourced

as kernel with undefined size, which is not compatible with ML inference as each pre-

trained model requires a bundle of kernels with a specific resource size. Our solution is

highly compatible with any ML inference and any version of the CUDA library because

we provide Pytorch’s generic actions, such as data transfer and execution of GPUs as

a schedulable unit. First, our solution includes GPU Manager that intercepts requests

from ML libraries such as Pytorch API, and no complicated changes in the CUDA

18

library are required. Second, we provide coarse-grained but lightweight scheduling

decisions that reduce average latency and control starvation with a parameter.

19

Chapter 3

DESIGN

3.1 Architecture

The objective of our proposed GPU-enabled FaaS is to improve the performance of

GPU functions, especially for model inference functions, by optimizing GPU scheduling

and resource management. Figure 3 shows our framework’s complete architecture that

includes four additional containers (Scheduler, ETCD, Cache Manager, GPU Manager)

which enables and optimizes GPU functions upon an existing FaaS framework such

as OpenFaaS. The blue color boxes and the solid arrow lines represent the default

components (running as containers) and the data flow of the default OpenFaaS. The

yellow color boxes and the dotted arrow lines represent the components and data flow

of the new solution.

The architecture explains the components and the life-cycle of our new solution

built on top of the OpenFaaS with minor changes in FaaS/Gateway. The end-user

can include a GPU-enable flag in the Dockerfile of FaaS/Function when registering

the function using the FaaS/Gateway. The FaaS/Gateway checks for the GPU-enable

flag in the Dockerfile and replaces the Pytorch interfaces with the customized Pytorch

interface. The change of Pytorch API is not visible to the end-user as the customized

interface receives the same parameters as the original interface. The custom interface

replaces the generic Pytorch interface that accesses the GPU resources, such as data

transfer and execution of GPU, with the interface that redirects those requests to the

GPU Manager.

20

Figure 3. GPU cache in OpenFaaS Architecture

3.2 Scheduler

The role of the Scheduler component is to schedule the function request to a GPU

before forwarding the request to the FaaS/Provider. The Scheduler follows a specific

scheduling policy that can be enabled when the Scheduler component is first initiated.

Once the Scheduler decides the requests that need to be dispatched, it groups the

function information with the GPU address and forwards them to the FaaS/Provider.

The function request contains the input data and the registered function’s ID that

uses the pre-trained model for inference. The GPU address contains the IP address of

the server where the GPU is installed and the device name that is used to access the

GPU on that server.

21

Figure 4. Logical representation of the Scheduler

The diagram of Figure 4 explains how to dispatch the forwarded request to a

GPU according to scheduling policies. Two queues (global queue and local queue) are

used for the request to wait before being dispatched to the GPU. Once the request is

forwarded from the FaaS/Gateway to Scheduler, Scheduler puts the request into the

global queue. The pending requests in the global queue are sorted by the earliest arrival

time. Scheduler dispatches the pending requests to GPU following the scheduling

policy. If the GPU selected by the policy is in busy state, Scheduler puts the requests

in the local queue of the selected GPU.

3.3 GPU Manager

GPU Manager exists in each GPU node and manages the GPU processes running

on the GPU node. GPU Manager runs the Pytorch process on behalf of the function

by receiving the inference request from the customized Pytorch API and returning

the results to the Pytorch API. Each GPU process uploads an inference model when

initiating, and the GPU process reports the latency reports to ETCD. When the GPU

process is uploading or processing the inference request, GPU Manager reports to

22

ETCD that the GPU status is busy and then updates the status back to idle when

the GPU process finishes the task.

The Algorithm 1 and the Algorithm 2 explain how GPU Manager works once

receiving the request from the FaaS/Provider. GPU Manager enforces GPU to run

one request at a time and sets the status of GPU to busy when GPU is processing

the request. GPU Manager manages the local GPU processes on the same node

GPU Manager is running on. GPU Manager communicates with Cache Manager to

maintain the running GPU processes as cache items.

First, GPU Manager requests Cache Manager to get the cache hit or miss result

and whether there are victim models to evict if there is a cache miss. If there is

a victim, GPU Manager first kills the processes reported as victims to guarantee

that the new GPU process has enough GPU memory to upload the inference model.

After the GPU process uploads and runs the inference model, GPU Manager forwards

the input for the GPU process to run inference. Once the GPU process finishes the

inference, the GPU process returns the result, and GPU Manager returns the result

back to FaaS/Provider when the inference function finishes.

3.4 Cache Manager

Cache Manager exists along with the Scheduler as a global component and follows

the LRU cache policy to manage the models for each GPU in its memory. The cache

item is a running GPU process that uploaded the inference model to GPU by GPU

Manager. When the function is ready to use GPU, the function requests Cache

Manager to return the GPU process that uses the required inference model. If the

required GPU process exists in GPU Manager, this is equivalent to a cache hit as

23

Algorithm 1: GPU Manager

Input:
The specific GPU that the request uses

The inference model that the request uses

The input (image files) that request uses

1 Set the requested GPU as busy

2 Get victim models and cache result (hit or miss) from Cache Manager

/* Each GPU process uploads a model to GPU and is represented as a cache
item to Cache Manager */

3 If victim models exist {

4 Send Kill message to the GPU processes with victim model

5 }

6 If cache result is a miss {

7 Create the new GPU Process with model and input

8 Send input as a message to the GPU Process

9 Return the inference result as the response

10 Set the GPU as idle

the function can skip the model transfer and use the existing GPU process. If the

required GPU process does not exist in the GPU Manager, this is equivalent to a

cache miss as the Cache Manager requests the GPU Manager to create a new GPU

process to have the new inference model uploaded to GPU memory.

Algorithm 3 explains how Cache Manager manages the GPU memory cache. Cache

Manager receives a message that contains the available memory space of GPU that

needs to run the inference, the name, and the required memory size for the model

from GPU Manager. The purpose of Cache Manager is to provide the list of victim

models that need to be evicted from GPU according to the LRU eviction policy. If

there is a cache miss, Cache Manager provides a list of cache models for eviction to

24

Algorithm 2: Function GPU Process

Input:
The specific GPU that the request uses

The inference model that the request uses

The input (image files) that request uses

/* Cache miss scenario where model is uploaded to the GPU */
1 FinishTime = (uploading time + inference time)

2 Upload the model to the GPU

3 FinishTime -= uploading time

4 While True {

5 Receive message from the GPU Manager

/* Cache eviction scenario where the process is killed */
6 If received an exit message {

7 Break

8 }

9 If received an input from the message {

/* Cache hit scenario where function skip model uploading and starts
from here */

10 If this is a not the first inference {

11 FinishTime += inference time

12 }

13 Run the inference

14 FinishTime -= inference time

15 Return result to GPU Manager

16 }

17 }

make enough space for the new model. Cache Manager updates the LRU list of GPU

for every request.

25

Algorithm 3: Cache Manager
Input:

The selected GPU’s name, used, and total memory

The inference model that is used by the request

1 Get the latest version of LRU list of GPU

2 If the model is a hit {

3 Update the model to the head of LRU list

4 Return model

5 }

6 If new model exceeds the GPU memory {

7 Collect the victims from the LRU list

8 }

9 Update the model to the head of the LRU list

10 Return victims (if exists) and model

3.5 Datastore

Etcd “Etcd: A distributed, reliable key-value store for the most critical data of a

distributed system” 2021 stores the estimated latency of each inference model, the

LRU list of each GPU, and the status of each GPU. Etcd is a distributed key-value

store that guarantees a high level of consistency appliable in a distributed environment.

The estimated latency is used by the Scheduler to decide the optimal GPU to dispatch

the request during scheduling. The LRU list is used to prioritize the cache hits for

the waiting requests in the local queue. The status of GPU is used by all policies to

identify which GPU is available for the function to immediate dispatch.

26

Chapter 4

SCHEDULING POLICIES

By default, the OpenFaaS platform relies on the load-balancing scheduling policy

that container orchestrators perform on dispatching the containers. The container

orchestrators such as Kubernetes use CFS quota Bovet and Cesati 2005 as a schedulable

unit to perform load-balancing. The load-balancing scheduler aims to maximize the

overall CPU utilization by predefining the containers with the upper bound of the CFS

quota and dispatching the containers to the CPUs while not exceeding the available

CFS quota of each CPU.

We introduce a load-balancing scheduler that aims to maximize GPU utilization

by forwarding the request to the idle GPUs that are least frequently used. However,

the GPU load-balancing scheduler is limited compared to the CPU load-balancing

scheduler in terms of performance and utilization. The CPU load-balancing scheduler

provides better utilization by forwarding the requests to CPUs until the CPU reaches

the limit because the CPUs are well designed for multiple processes to share the same

CPU without degrading performance. However, the GPU resources are not designed

for sharing; thus, the GPU load-balancing scheduler is limited to dispatching one

request to one GPU at a time.

We propose a locality-aware and load-balancing (LALB) scheduler that addresses

the GPU’s limitation. Besides using the load balancing feature to improve GPU

utilization, the scheduler treats the data uploaded to the GPU as cache items to

combine the locality-aware feature to enhance the performance and utilization of

the GPU. Locality-aware feature in the LALB scheduler reduces the latency of each

27

function by forwarding the request to the cached GPU to avoid the upload time of

the inference model. However, the LALB scheduler also considers load balancing by

allowing cache miss when the estimated finish time of cache GPUs is higher than

uncached GPUs.

4.1 Round Robin

The Algorithm 4 explains the Round-Robin scheduler (RR), which serves as the

baseline. The RR scheduler invokes when at least one request arrives at the global

queue. The RR scheduler dispatches the waiting request in the global queue to the

least frequently used GPU. If the GPU state is busy, the request will be forwarded

from the global queue to the local queue of the selected GPU. Scheduler will dispatch

the request at the head of the local queue once the GPU status becomes idle.

The RR scheduler is expected to have an imbalance as the it assumes that each

GPU will process identical requests that require the same amount of GPU resource

and runtime. Although the requests are evenly distributed to the GPUs, each request

uses inference models with different sizes. The GPUs processing small pre-trained

models will quickly become idle, while some GPUs processing large pre-trained models

will become throttled. The limitation of the RR scheduler reveals that the scheduler

requires to consider that each function uses a different amount of resources to avoid

the load imbalance.

28

Algorithm 4: RR: Round Robin

Input:
The list of GPUs sorted by frequency

The list of pending requests sorted by earliest arrival in global queue

/* Scheduler starts when at least one request exists in the global queue */
1 Foreach GPUs {

2 Foreach request in global queue

3 Move the request to local queue of GPU

4 Break

5 }

6 If GPU status is idle {

7 Dispatch the request at the head of the local queue to the idle GPU

8 }

9 }

4.2 Load Balance

The Algorithm 5 explains the Load-balance scheduler (LB), which is another

baseline scheduler. The LB scheduler reduces the latency of the function more than

the RR scheduler by considering the GPU’s status (busy or idle). Identifying the GPU

status helps the LB scheduler prioritize idle GPUs available to process the request

immediately, preventing the request from waiting in the local queue of the GPU. The

LB scheduler starts when there is at least one waiting request in the global queue

and one idle GPU and forwards the earliest arrived request to the idle GPU. The LB

scheduler evenly distributes the requests with different GPU resource requirements by

prioritizing the idle GPUs to process the requests first.

29

Algorithm 5: LB: Load Balance

Input:
The list of idle GPUs sorted by frequency

The list of pending requests sorted by earliest arrival in global queue

/* Scheduler starts when at least one waiting request and idle GPU */
1 Foreach idle GPU {

2 Dispatch the request at the head of the global queue

3 }

4.3 Round Robin Out-of-Order

The Algorithm 6 explains the Round Robin Out-of-Order scheduler (RRO3) that

increases the cache hit by allowing requests in the local queue to be dispatched out of

order. The RRO3 scheduler is invoked as same as the RR scheduler, but the scheduling

decision changes as the waiting requests in the local queue follow the out-of-order

(O3) dispatch. When the GPU is idle and more than one waiting request in the local

queue, the O3 dispatch prioritizes the waiting requests that use the models already

cached in that idle GPU.

4.4 Locality-aware Load-balancing

The locality-aware and load-balance scheduler (LALB) is invoked only when at

least one request is waiting in the global queue and at least one GPU is idle. The

Algorithm 7 and the Algorithm 8 explains how the scheduler considers both the GPUs’

load balance and the models’ locality in the GPU memory.

First, the LALB scheduler gets the request from the head of the queue and checks

for available idle GPUs that can generate a cache hit, i.e., have the requested model

30

Algorithm 6: RRO3: Round Robin Out of Order

Input:
The list of GPUs sorted by frequency

The list of pending requests sorted by earliest arrival in global queue

/* Scheduler starts when at least one requests exists in the global queue
*/

1 Foreach GPUs {

2 Foreach request in global queue

3 Move the request to local queue of GPU

4 Break

5 }

6 If GPU status is idle {

7 Foreach request in the local queue {

8 If the request’s model is cached in the idle GPU {

9 Dispatch the request to the idle GPU;

10 Break

11 }

12 } else {

13 Dispatch the request at the head of the local queue to the idle GPU

14 }

15 }

16 }

already stored in their memory. If the request is found not to be cached in any idle

GPUs, then the LALB scheduler immediately dispatches the request to the least

frequently used idle GPU. If the request can be a cache hit, the request is dispatched

to the one of the idle GPUs with the cached item. After the LALB scheduler finds

out that there are no available cache hits in idle GPUs, the LALB scheduler searches

for the cache hits in busy GPUs.

If there is a cache hit in a busy GPU, the LALB scheduler compares the estimated

31

finish time between cache miss in the idle GPU and cache hit in the busy GPU. If

the cache hit in the busy GPU provides a lower estimated finish time than the idle

GPU, the request is scheduled in the local queue of the busy GPU. The requests

waiting in the local queue are used to calculate the estimated finish time of the busy

GPU when the scheduler again finds the cache hit in the busy GPU. Finally, when no

cached GPUs can produce a lower finish time than the idle GPUs, the LALB scheduler

dispatches the request to one of the idle GPUs, creating a cache miss.

The estimated finish time is calculated by using the Table 1. The latencies of

uploading the model and running the inference are collected by profiling each unique

function on the GPUs in the system. The inference time represents combined latency

of both processing the input and uploading the input data to the GPUs. For our

experiments, all the models is expected to use the batch size of 32, and process the

total size of the images is 24.4 MB. As long as the number of inputs is larger than the

batch size, the larger batch size reduces the inference time as GPU can process more

inputs in parallel. However, the configurable batch size is limited as a larger batch

size requires more GPU memory, and the GPU memory is limited.

4.5 Out of Order Dispatch

The out-of-order (O3) dispatch prioritizes the waiting requests that can be a cache

hit in one of the idle GPUs and can be applied in the RR and LALB scheduler.

For example, applying O3 dispatch in the locality-aware load-balance out-of-order

scheduler (LALBO3) changes the behavior of the LALB scheduler as the waiting

requests in the global queue are no longer first come first served. The request waiting

in the global queue may revisit the LALBO3 scheduler because the LALBO3 may

32

Algorithm 7: LALB: Locality-aware Load-balancing

Input:
The list of GPUs sorted by frequency

The list of pending requests sorted by earliest arrival in global queue

The map that records the number of visits made by the policy

/* Scheduler without out-of-order rule has a specified limit of 0 */
/* Scheduler with out-of-order rule has a specified limit of 25 */

1 Foreach idle GPU {

/* Prioritize the waiting requests already dispatched to busy GPUs */
2 If the local queue is not empty {

3 Dispatch request at the head of the local queue to idle GPU

4 Continue

5 }

/* Following LALB scheduling policy */
6 Foreach request in the waiting queue (starting from the head) {

7 If request’s model is cached in the idle GPU {

8 Dispatch the request to the idle GPU

9 Break

10 }

/* Enforcing out-of-order rule */
11 If the number of visits of the request is higher than the specified limit {

12 Flag = localityLoadBalance(idle GPU, idle GPUs, busy GPUs,
request)

13 Break if flag is True else Continue

14 } else {

15 Increment the number of visits of the request;

16 }
17 } Else {

18 Foreach request in the waiting queue (starting from the head) {

19 Flag = localityLoadBalance(idle GPU, idle GPUs, busy GPUs,
request);

20 Break if flag is True else Continue

21 }

22 }

23 } 33

Algorithm 8: Function localityLoadBalance

Input:
The selected of idle GPU

The list of idle GPUs excluding the selected idle GPU

The list of busy GPUs

The selected request by the scheduling policy

/* Allow cache miss as there are no cached GPUs */
1 If the request is not cached in any other GPU {

2 Dispatch the request to the idle GPU

3 Return True

/* Dispatch this request to one of the idle GPUs */
4 } Else if the request is cached in another idle GPU {

5 Dispatch the request to that idle GPU

6 Return False

7 } Else {

/* Considering cache hit in busy GPUs */
8 Foreach busy GPU {

9 Estimate the finish time of the request on the busy GPU

10 If the finish time is less than the model loading time then {

11 Move the request to the local queue of the busy GPU

12 Return False

13 }

/* Allow cache miss as cache hits can no longer benefit */
14 } Else {

15 Dispatch the request to the idle GPU

16 Return True

17 }

18 }

34

prioritize the latest requests that generate cache hits. A specified limit value is set to

25 by default in the O3 dispatch to prevent the waiting requests from starvation. If

the number of revisits of the request exceeds the O3 limit value, then the request is

immediately dispatched by the LALB scheduler regardless of a cache hit or miss.

35

Chapter 5

EVALUATION

5.1 Methodology

The experiment focuses on evaluating the performance of ML inference workloads.

We have explored five aspects of GPU performance in GPU-enabled FaaS: average

latency, cache miss ratio, GPU (SM) utilization, false-miss ratio, and average number

of duplicated cache items of popular working set. We introduce our unique metric

called the false-miss ratio. The false miss is a type of cache miss that happens when

the scheduler does not forward the request to the cached GPU since the busy cached

GPU is estimated to have a higher latency than the idle uncached GPU. The false

miss ratio correlates with the number of duplicated cache items because the false

miss decision forces idle uncached GPUs to store the cache item already held in busy

cached GPUs.

5.1.1 Workloads

The Table 1 shows the 22 popular CNN models considered in our workload. In

the table, we have checked the models’ actual size and the occupation size in GPU

memory when the model inference runs with the fixed batch size of 32. The Cache

Manager uses this peak memory occupation size for cache replacement decision, as

the GPU results in OOM if it exceeds the available memory. Based on the GPU

36

occupation size of the models, we have categorized the models into small, medium,

and large groups.

We have used the Microsoft Trace Shahrad et al. 2020 to evaluate the performance

of the schedulers. Our evaluation uses this trace because the trace represents the actual

workload of FaaS functions provisioned by Microsoft Azure. Microsoft Trace contains

14 files that represents 14 days of invocations of each unique function. Each file

provides a column representing each minute, a row representing each unique function,

and a value containing the total invocations of the unique function per minute. We

have extracted the first 6 minutes of the trace and normalized the maximum number

of requests for each minute to 325 requests to prevent overburdening the 12 GPUs we

are using for our experiment.

The total number of unique functions (working set) in Microsoft trace is 46413

which is too large for our testbed to handle. Therefore, we consider only the most

frequently used functions as the working set in our workload. We use three different

working set sizes: 15, 25, and 35. The larger working set size introduces more

unique functions while maintaining the maximum number of requests per minute

to be 325 requests. We map each unique working set to a model that belongs to

a specific category (grouped by model size) and ensure models with different sizes

(small, medium, and large) are distributed evenly in the workload.

The Microsoft Trace provides a workload with a highly skewed working set, as the

top 15 popular working set represents 56% of the total invocations per minute. We

have further identified that the working set below the top 15 represents less than 0.01%

of the total invocations per minute. For this reason, we set the minimum working set

size as 15 because we believe the top 15 represents the skewness of the working set

37

for each minute. The working sets are randomly distributed to each minute of our

normalized workload while preserving the ratio of the actual invocations per minute.

Size Name Size(mb) Model(sec) Input,Inference(sec)

small squeezenet1.1 1269 2.41 1.28
resnet18 1313 2.52 1.25
resnet34 1357 2.60 1.25
squeezenet1.0 1435 2.32 1.33
alexnet 1437 2.81 1.25
resnext50.32x4d 1555 2.64 1.29

medium densenet121 1601 2.49 1.28
densenet169 1631 2.56 1.30
densenet201 1665 2.67 1.40
resnet50 1701 2.67 1.28
resnet101 1757 2.95 1.30
resnet152 1827 3.10 1.31
densenet161 1919 2.75 1.32
inception.v3 2157 4.42 1.63
resnext101.32x8d 2191 3.51 1.33

large vgg11 2903 3.94 1.29
wide_resnet50_2 3611 3.16 1.31
wide_resnet101_2 3831 3.91 1.32
vgg13 3887 3.98 1.30
vgg16 3907 4.04 1.27
vgg16.bn 3907 4.03 1.26
vgg19 3947 4.07 1.33

Table 1. Occupation size in GPU, uploading latency, and inference (fixed batch size
of 32) latency of models

5.1.2 Dataset

For the input image used for inference, we have provided a small group of 150

image files which comprise standard datasets such as CIFAR10 Krizhevsky, Hinton,

et al. 2009, Modified National Institute of Standards, and Technology (MNIST) Kaziha

38

and Bonny 2019, and Hymenoptera Paszke, n.d. The MNIST dataset provides a fixed

28x28 grayscale image file that splits into 60,000 training images and 10,000 validation

images. CIFAR-10 includes fixed 32x32 RGB images that have 50,000 training images

and 10,000 validation images. Hymenoptera provides RGB images with different sizes

ranging from 50KB to 2MB that must be compressed before being used in model

inference. The dataset consists of 245 training images and 153 testing images.

5.1.3 Testbed.

We conducted all the experiments on three GPU servers equipped with four

GeForce RTX 2080 GPUs and deployed GPU Managers as Nvidia Docker containers

that have access to GPU resources. A separate server is used to run Docker containers

for Scheduler, ETCD, Cache Manager, and the components required for the OpenFaaS

platform. Once OpenFaaS receives a request, OpenFaaS will deploy the FaaS function

as the Docker container installed with our custom Pytorch API in one of the GPU

servers. Pytorch API communicates to the GPU Manager, which manages the GPU

resources in the server.

5.2 Latency Results

Figure 5 shows the total latency of the five scheduling scheduler. First, RR and

LB shows the performance improvement by only using load-balancing. Both RR and

LB schedulers show a similar cache miss ratio in Figure 6, but the LB reduces the

average latency of the RR scheduler by 44% in a working set size of 35. The RR

scheduler distributes the requests evenly to all the GPUs without considering that each

39

Figure 5. Average total latency Figure 6. Cache miss ratio

request has different runtime. The requests with longer runtime may be skewed to a

single GPU, causing load imbalance. The LB scheduler reduces the load imbalance by

prioritizing the idle GPUs that are readily available to process the request.

The performance improvement of O3 dispatch is shown by comparing the RR

and RRO3 schedulers in Figure 5. The O3 dispatch prioritizes the requests in the

local queue of the GPU that can be a cache hit. RRO3 scheduler reduces the average

latency and cache miss ratio of RR by 47% and 23% in a working set size of 15 because

the O3 dispatch improves the locality of the RR scheduler. However, the average

latency and cache miss ratio of RR reduces meagerly by 13% and 7% in a working set

size of 35 because the more extensive working set size increases the chance of cache

eviction.

One interesting factor is the comparison between LB and RRO3 because both

schedulers have a similar cache miss ratio. LB scheduler reduces the latency with

better load balance, whereas the RRO3 reduces the latency by increasing cache hits

using O3 dispatch. When the working set size is 15, RRO3 reduces the average latency

40

of RR by 5% more than the LB because the working set size is small enough for local

queues of a GPU to increase the cache hits. However, as the working set size increases,

the performance difference between RRO3 and LB becomes negligible because the

working set size is too big for each GPU to maintain without a considerable number

of cache eviction.

The further performance improvement of locality-aware is shown by comparing

LALB with RR and LB in Figure 5 and 6. The LALB scheduler reduces the average

latency of RR by 98% and LB by 97% in working set size of 15 and 25. However,

the average latency and the cache miss ratio of the LALB scheduler degrades as the

working set size increases to 35. The result indicates that the cache miss ratio reduces

by 94% in the working set size of 15 but reduces by 65% in the working set size of 35.

The degrading performance is the same as the RRO3 because the improving locality

becomes challenging when the working set size becomes more extensive.

Applying the O3 dispatch to the LALB scheduler further improves the performance

in the working set size of 25 and 35. The O3 dispatch further prioritizes the cache hit

by allowing requests in the global queue to be dispatched out of order. As the working

set size increases, reducing the cache miss ratio becomes essential as the working set

size overwhelms the limited GPU memory size. The LALB scheduler reduces the

cache miss ratio of LB by 65%, and the LALBO3 scheduler reduces the cache miss

ratio of LB by 81% in working set size of 35.

5.3 Utilization

Figure 7 shows SM utilization of the five schedulers. The SM utilization of the five

schedulers remain consistent across all three working sets, as the maximum number

41

Figure 7. GPU (SM) utilization

of requests per minute is 325 for all three working sets. The result indicates that

RR, LB, LALB, LALBO3 scheduler utilizes 7.48%, 7.51%, 12.41%, 13.17% of the

computing cores of the GPU. Reaching the SM utilization of 100% is impossible as

the GPUs accommodate multiple inference models and cannot risk exceeding memory

by allocating a large batch size.

The LALBO3 scheduler has the highest SM utilization due to the lowest cache

miss ratio. The SM utilization negatively correlates with the cache miss ratio because

GPUs cannot use the SM to run the inference until the inference models are uploaded

to the GPU memory. When there is a cache-miss, the SM utilization remains zero

until the victim model becomes evicted and the new model is uploaded to the GPU.

As a result, the LALBO3 scheduler shows the highest SM utilization as it has the

lowest cache miss ratio.

42

Figure 8. False miss ratio Figure 9. Average number of the top
one duplicated model

5.4 Efficiency

This section explains the efficiency of the five schedulers determined by the false-

miss ratio and the number of duplicated hot items. The ideal scheduler should

maintain a minimal number of duplicated items while not degrading the number of

cache hits. The false-miss ratio is a cache-miss scenario in the scheduling decision

where the request is forwarded to the idle GPU as a cache miss even though a cached

item exists in the busy GPU. The number of duplicated cache items is collected by

tracking the total number of GPUs that cached the most popular working set (vgg19)

in Table 2 per scheduling decision.

Figure 8 shows that both LALB and LALBO3 schedulers reduce the false miss ratio

in working set 15 and 25. The LALB and LALBO3 reduce the false-miss ratio of RR

by 34% and 35% while LB and RRO3 schedulers fail to minimize the false-miss ratio

of RR in a working set size of 15. For the small working set size, the available GPU

memory can find the optimal number of duplicated cache items to promote locality

43

Working Set Scheduler vgg19 densenet161 resnet152 resnet18 alexnet

15 RR 8.66 8.64 7.52 4.83 3.26
LB 7.70 8.57 7.73 4.24 2.75
RRO3 7.30 7.82 6.69 5.00 3.24
LALB 3.93 4.91 3.95 3.92 1.94
LALBO3 3.89 4.37 3.96 2.72 1.90

25 RR 7.65 7.29 6.94 4.14 2.92
LB 7.58 7.22 6.53 4.00 2.63
RRO3 6.40 6.68 6.13 4.00 3.19
LALB 4.86 4.78 5.75 4.24 2.67
LALBO3 3.46 5.41 3.86 4.36 2.64

35 RR 7.05 7.24 6.44 3.94 2.62
LB 6.83 6.75 6.49 3.59 2.63
RRO3 5.90 6.76 5.90 4.03 2.86
LALB 4.56 5.20 4.08 4.19 2.86
LALBO3 4.21 4.48 4.01 3.31 2.47

Table 2. Average number of duplicates for top 5 inference models

without the O3 dispatch. As the working set size increases to 35, only LALBO3

scheduler is able to reduce the false-miss ratio of the RR scheduler by 6%, as the

LALBO3 has the O3 dispatch to exploit locality further by prioritizing the waiting

requests to the cached GPUs.

Figure 9 shows the total number of duplicated models for the most popular function.

As the GPU-enabled-FaaS uses 12 GPUs, the highest number of duplicated models

cannot exceed the number 12. We further explain the average number of duplicated

popular items for the top 5 popular items in Table 2. The vgg19, desnenet161,

resnet152, resnet18, and alexnet are the top 5 popular working sets representing 13%,

11%, 9%, 4%, and 3% of the total workload.

The LB scheduler reduces the average number of duplicates of the RR scheduler

by 11%. Both RR and LB scheduler does not consider locality are subjected to the

situation where the duplicated cache items continuously evict each other. The LB

44

scheduler slightly reduces the number of duplicates compared to the RR scheduler

because the scheduler reduces the scope of spreading duplicates to only idle GPUs.

The LALB scheduler reduces the average number of duplicates of the RR and

LB scheduler by 54%, 43% in working set size of 15. The LALB scheduler improves

locality by prioritizing the request to the cached idle GPU. The increased cache hits

reduces the number of duplicated cache items per scheduling decision. Increasing the

working set size degrades the ability of the LALB scheduler to maintain the optimal

number of duplicates, as it meagerly reduces the duplicates of RR and LB scheduler

by 24%, 13% in working set size of 35. The working set size of 25 and 35 degrades the

locality performance of the LALB scheduler as it increases the chance of cache misses

in the limited GPU memory.

The LALBO3 scheduler does not significantly reduce the number of duplicates

compared to LALB as it reduces the average number of duplicates of the RR and LB

scheduler by 55%, 44% in a working set size of 15. The working set size of 15 shows

negligible performance improvement for the O3 dispatch because the available GPU

memory is enough to cover the working set size. The LALBO3 scheduler performs

better than the LALB scheduler in working set size of 35 by reducing the average

number of duplicates of the RR and LB scheduler by 28%, 17%. The results indicate

that by applying the O3 dispatch, the performance of locality can be further improved

to reduce the average number of duplicates.

45

Figure 10. Latency and cache miss ratio of different O3 limit value

Limit Avg lat (sec) Lat var (sec) Miss ratio False miss ratio

0 29.54 210.15 0.24 0.85
5 14.30 8.22 0.19 0.81
10 10.10 7.71 0.15 0.81
15 5.20 6.02 0.14 0.81
20 4.88 5.51 0.14 0.81
25 4.61 5.49 0.13 0.79
30 4.53 8.33 0.13 0.79
35 4.40 12.54 0.13 0.79
40 4.32 13.14 0.13 0.79
45 4.30 13.15 0.13 0.79

Table 3. Performance under different O3 value in working set 35

5.5 O3 Sensitivity Test

Figure 10 focuses on the sensitive study of the specified limit value of the O3

dispatch in LALBO3 scheduler. We have experimented on the workload with the

working set size 35, and changed the specified limit of the O3 dispatch from zero to

35 (x-axis). The total latency (left y-axis) and the cache miss ratio (right y-axis) are

used as the evaluate the performance changes created by the different limit value. The

46

result indicates that the both latency and cache miss ratio reduce as we increase the

specified limit value of O3. Note that we do not provide the results above the limit 45

as the latency, cache miss ratio, and variance do not change significantly.

The O3 limit value of 25 reduces the average latency and cache-miss ratio of the

O3 limit value of 0 by 84% and 45%. The more significant O3 value increases the

locality performance as it increases the number of times requests with cache hit can

prioritize the earliest arrived requests. Furthermore, the O3 limit value of 25 reduces

the variance of the average latency of the O3 value of 0 by 97%. The larger O3 value

reduces the latency variance as the variance is contributed significantly by the busy

GPUs uploading a new inference model. To check the performance changes in detail,

we have provided Table 3.

47

Chapter 6

CONCLUSION

The demand for GPU-enabled FaaS is growing as the use-cases of ML inference

tasks that can benefit from GPU acceleration increase in the FaaS platform. Our

solution focuses on improving the FaaS functions running ML inference tasks such as

CNN that heavily benefit from GPU acceleration. However, the existing GPU design

provided limited resource sharing capabilities among multiple FaaS functions, and the

short-lived nature of the FaaS function makes the GPU difficult to outweigh the cost

of data transfer overhead with the benefit of parallelization.

Our approach is applicable to different FaaS frameworks, as it requires additional

complementary components to introduce the GPU scheduling and management. Our

GPU-enabled FaaS provides global management of GPU memory and treats the

uploaded inference models in GPU as cache items to reduce the data transfer overhead

of inference models. Furthermore, the GPU-enabled FaaS includes the LALB scheduler

that considers both locality and load balance to improve the GPU performance of the

FaaS functions.

We have used real-world trace and inference models widely used in production to

evaluate the performance of our GPU-enabled FaaS. The LALB scheduler reduces

the baseline (LB) scheduler’s average latency and cache miss ratio by 80% and 65%.

Additionally, the out-of-order (O3) dispatch can work with the LALB scheduler to

improve the locality performance further. The LALBO3 scheduler reduces the LB

scheduler’s average latency and cache miss ratio by 97% and 81%. We believe that

48

the LALBO3 scheduler can provide optimal performance for GPU-enabled FaaS that

handles model inference tasks.

Future work will improve the cache replacement algorithm by converting from

local to global. Currently, the cache replacement follows the local LRU policy by

evicting cached items within the GPU. The local LRU may evict the hot items if the

local LRU list contains only hot items and misses the opportunity to evict the cold

items cached in other GPUs. The plan is to improve GPU-enabled FaaS performance

by converting the local LRU to a global LRU.

49

REFERENCES

Agbaje, Michael, Onome Ohwo, and Bammeke Adekunle. 2018. “Heterogeneous System
Architecture (HSA).” International Journal of Scientific Research in Computer
Science Engineering and Information Technology 3 (March): 2456–3307.

Baldini, Ioana, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink, Vatche Ishakian,
Nick Mitchell, et al. 2017. “Serverless Computing: Current Trends and Open
Problems.” In Research Advances in Cloud Computing, 1–20. Singapore: Springer
Singapore. https://doi.org/10.1007/978-981-10-5026-8_1.

Bovet, Daniel P, and Marco Cesati. 2005. Understanding the Linux Kernel: from I/O
ports to process management. " O’Reilly Media, Inc."

Chand, Poornima. 2021. “Machine learning inference at scale using AWS serverless.”
Amazon blog (November). https://aws.amazon.com/blogs/machine-learning/
machine-learning-inference-at-scale-using-aws-serverless/.

Cook, Shane. 2012. CUDA Programming: A Developer’s Guide to Parallel Computing
with GPUs. 1st. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Cox, Clive, Dan Sun, Ellis Tarn, Animesh Singh, Rakesh Kelkar, and David Goodwin.
2020. “Serverless inferencing on Kubernetes.” arXiv preprint arXiv:2007.07366.

Dakkak, Abdul, Cheng Li, Simon Garcia de Gonzalo, Jinjun Xiong, and Wen-mei Hwu.
2019. “TrIMS: Transparent and Isolated Model Sharing for Low Latency Deep
Learning Inference in Function-as-a-Service.” In 2019 IEEE 12th International
Conference on Cloud Computing (CLOUD), 372–382. https://doi.org/10.1109/
CLOUD.2019.00067.

Duato, José, Antonio J. Peña, Federico Silla, Rafael Mayo, and Enrique S. Quintana-
Ortí. 2010. “rCUDA: Reducing the number of GPU-based accelerators in high
performance clusters.” In 2010 International Conference on High Performance
Computing Simulation, 224–231. https://doi.org/10.1109/HPCS.2010.5547126.

“Etcd: A distributed, reliable key-value store for the most critical data of a distributed
system.” 2021, https://etcd.io/.

Garg, Anirudh. 2020. “Why use Azure Functions for ML inference?” Microsoft blog
(May). https://techcommunity.microsoft.com/t5/apps-on-azure-blog/why-use-
azure-functions-for-ml-inference/ba-p/1416728.

50

https://doi.org/10.1007/978-981-10-5026-8_1
https://aws.amazon.com/blogs/machine-learning/machine-learning-inference-at-scale-using-aws-serverless/
https://aws.amazon.com/blogs/machine-learning/machine-learning-inference-at-scale-using-aws-serverless/
https://doi.org/10.1109/CLOUD.2019.00067
https://doi.org/10.1109/CLOUD.2019.00067
https://doi.org/10.1109/HPCS.2010.5547126
https://etcd.io/
https://techcommunity.microsoft.com/t5/apps-on-azure-blog/why-use-azure-functions-for-ml-inference/ba-p/1416728
https://techcommunity.microsoft.com/t5/apps-on-azure-blog/why-use-azure-functions-for-ml-inference/ba-p/1416728

Garg, Anshuj, Purushottam Kulkarni, Umesh Bellur, and Sriram Yenamandra. 2021.
“FaaSter: Accelerated Functions-as-a-Service with Heterogeneous GPUs.” In 2021
IEEE 28th International Conference on High Performance Computing, Data, and
Analytics (HiPC), 406–411. IEEE.

Gunny, Alec. 2019. “Accelerating Wide and Deep Recommender Inference on GPUs.”
TECHNICAL BLOG (December). https://developer.nvidia.com/blog/acceleratin
g-wide-deep-recommender-inference-on-gpus/.

Hightower, Kelsey, Brendan Burns, and Joe Beda. 2017. Kubernetes: Up and Running
Dive into the Future of Infrastructure. 1st. O’Reilly Media, Inc.

Hu, Yitao, Swati Rallapalli, Bongjun Ko, and Ramesh Govindan. 2018. “Olympian:
Scheduling GPU Usage in a Deep Neural Network Model Serving System.” In
Proceedings of the 19th International Middleware Conference, 53–65. Middleware
’18. Rennes, France: Association for Computing Machinery. https://doi.org/10.
1145/3274808.3274813.

Jonas, Eric, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag Khandel-
wal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja Yadwadkar,
et al. 2019. “Cloud programming simplified: A berkeley view on serverless com-
puting.” arXiv preprint arXiv:1902.03383.

Kaziha, Omar, and Talal Bonny. 2019. “A comparison of quantized convolutional and
LSTM recurrent neural network models using MNIST.” In 2019 International
Conference on Electrical and Computing Technologies and Applications (ICECTA),
1–5. IEEE.

Khronos OpenCL Working Group. 2011. The OpenCL Specification, Version 1.1.
https://www.khronos.org/registry/cl/specs/opencl-1.1.pdf.

Kim, Jaewook, Tae Joon Jun, Daeyoun Kang, Dohyeun Kim, and Daeyoung Kim.
2018. “GPU Enabled Serverless Computing Framework.” In 2018 26th Euromicro
International Conference on Parallel, Distributed and Network-based Processing
(PDP), 533–540. https://doi.org/10.1109/PDP2018.2018.00090.

Krizhevsky, Alex, Geoffrey Hinton, et al. 2009. “Learning multiple layers of features
from tiny images.”

Landaverde, Raphael, Tiansheng Zhang, Ayse K Coskun, and Martin Herbordt. 2014.
“An investigation of unified memory access performance in CUDA.” In 2014 IEEE
High Performance Extreme Computing Conference (HPEC), 1–6. IEEE.

51

https://developer.nvidia.com/blog/accelerating-wide-deep-recommender-inference-on-gpus/
https://developer.nvidia.com/blog/accelerating-wide-deep-recommender-inference-on-gpus/
https://doi.org/10.1145/3274808.3274813
https://doi.org/10.1145/3274808.3274813
https://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
https://doi.org/10.1109/PDP2018.2018.00090

Li, Wenqiang, Guanghao Jin, Xuewen Cui, and Simon See. 2015. “An Evaluation
of Unified Memory Technology on NVIDIA GPUs.” In 2015 15th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, 1092–1098.
https://doi.org/10.1109/CCGrid.2015.105.

Liu, Weibo, Zidong Wang, Xiaohui Liu, Nianyin Zeng, Yurong Liu, and Fuad E Alsaadi.
2017. “A survey of deep neural network architectures and their applications.”
Neurocomputing 234:11–26.

Martín Abadi and Ashish Agarwal. 2015. TensorFlow: Large-Scale Machine Learning
on Heterogeneous Systems. Software available from tensorflow.org. https://www.
tensorflow.org/.

Miller, Frederic P., Agnes F. Vandome, and John McBrewster. 2010. Amazon Web
Services. Alpha Press.

Naranjo, Diana M., Sebastián Risco, Carlos de Alfonso, Alfonso Pérez, Ignacio Blan-
quer, and Germán Moltó. 2020. “Accelerated Serverless Computing Based on
GPU Virtualization.” J. Parallel Distrib. Comput. (USA) 139, no. C (May): 32–42.
https://doi.org/10.1016/j.jpdc.2020.01.004.

O’Shea, Keiron, and Ryan Nash. 2015. “An introduction to convolutional neural
networks.” arXiv preprint arXiv:1511.08458.

“Nvidia Docker Container Toolkit.” 2022. official documentation (January). https:
//docs.nvidia.com/ai-enterprise/deployment-guide/dg-docker.html#enabling-
the-docker-repository-and-installing-the-nvidia-container-toolkit.

Olston, Christopher, Fangwei Li, Jeremiah Harmsen, Jordan Soyke, Kiril Gorovoy,
Li Lao, Noah Fiedel, Sukriti Ramesh, and Vinu Rajashekhar. 2017. “TensorFlow-
Serving: Flexible, High-Performance ML Serving.” In Workshop on ML Systems
at NIPS 2017.

Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, et al. 2019. “PyTorch: An Imperative Style, High-
Performance Deep Learning Library.” In Advances in Neural Information Pro-
cessing Systems 32, 8024–8035. Curran Associates, Inc. http://papers.neurips.
cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-
library.pdf.

Paszke, Pytorch. n.d. “An imperative style, high-performance deep learning library.”
Adv. Neural Inf. Process. Syst, no. 32, 8026.

52

https://doi.org/10.1109/CCGrid.2015.105
https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/10.1016/j.jpdc.2020.01.004
https://docs.nvidia.com/ai-enterprise/deployment-guide/dg-docker.html#enabling-the-docker-repository-and-installing-the-nvidia-container-toolkit
https://docs.nvidia.com/ai-enterprise/deployment-guide/dg-docker.html#enabling-the-docker-repository-and-installing-the-nvidia-container-toolkit
https://docs.nvidia.com/ai-enterprise/deployment-guide/dg-docker.html#enabling-the-docker-repository-and-installing-the-nvidia-container-toolkit
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Prakash, Chandra, Anshuj Garg, Umesh Bellur, Purushottam Kulkarni, Uday Kurkure,
Hari Sivaraman, and Lan Vu. 2021. “Optimizing Goodput of Real-time Serverless
Functions using Dynamic Slicing with vGPUs.” In 2021 IEEE International
Conference on Cloud Engineering (IC2E), 60–70. IEEE.

Rabenstein, Bjorn, and Julius Volz. 2015. “Prometheus: A Next-Generation Monitoring
System (Talk).” Dublin: USENIX Association, May.

Retter, Mariliis. 2020. “Serverless Case Study - Netflix.” dashbird (July). https :
//dashbird.io/blog/serverless-case-study-netflix/.

Romero, Francisco, Mark Zhao, Neeraja J Yadwadkar, and Christos Kozyrakis. 2021.
“Llama: A Heterogeneous & Serverless Framework for Auto-Tuning Video Ana-
lytics Pipelines.” arXiv preprint arXiv:2102.01887.

Satzke, Klaus, Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Andre
Beck, Paarijaat Aditya, Manohar Vanga, and Volker Hilt. 2020. “Efficient gpu
sharing for serverless workflows.” In Proceedings of the 1st Workshop on High
Performance Serverless Computing, 17–24.

Scheuner, Joel, and Philipp Leitner. 2020. “The State of Research on Function-as-a-
Service Performance Evaluation: A Multivocal Literature Review” (April).

Shahrad, Mohammad, Rodrigo Fonseca, Íñigo Goiri, Gohar Chaudhry, Paul Batum,
Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and Ri-
cardo Bianchini. 2020. “Serverless in the wild: Characterizing and optimizing the
serverless workload at a large cloud provider.” In 2020 USENIX Annual Technical
Conference (USENIX ATC 20), 205–218.

Soppelsa, Fabrizio, and Chanwit Kaewkasi. 2017. Native Docker Clustering with
Swarm. Packt Publishing.

Wolf, Thomas, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al.
2020. “Transformers: State-of-the-art natural language processing.” In Proceedings
of the 2020 conference on empirical methods in natural language processing: system
demonstrations, 38–45.

Yang, Ryan, Nathan Pemberton, Jichan Chung, Randy H Katz, and Joseph Gonzalez.
2020. Pyplover: A system for gpu-enabled serverless instances. Technical report.
Technical report, University of California, Berkeley.

53

https://dashbird.io/blog/serverless-case-study-netflix/
https://dashbird.io/blog/serverless-case-study-netflix/

Zaharia, Matei, Andrew Chen, Aaron Davidson, Ali Ghodsi, Sue Ann Hong, Andy
Konwinski, Siddharth Murching, Tomas Nykodym, Paul Ogilvie, Mani Parkhe,
et al. 2018. “Accelerating the machine learning lifecycle with MLflow.” IEEE
Data Eng. Bull. 41 (4): 39–45.

Zhang, Michael, Chandra Krintz, and Rich Wolski. 2020. “STOIC: Serverless Tele-
operable Hybrid Cloud for Machine Learning Applications on Edge Device.”
In 2020 IEEE International Conference on Pervasive Computing and Commu-
nications Workshops (PerCom Workshops), 1–6. https : //doi . org /10 . 1109/
PerComWorkshops48775.2020.9156239.

54

https://doi.org/10.1109/PerComWorkshops48775.2020.9156239
https://doi.org/10.1109/PerComWorkshops48775.2020.9156239

	Table of Contents
	List of Tables
	List of Figures
	Chapter
	1 introduction
	2 background
	3 design
	4 scheduling policies
	5 evaluation
	6 conclusion

	References

