
A Proposal for Infrastructure Adaptation and Cascading Failures for Black Swans 

Ryan Michael Hoff 

 

 

 

A Dissertation Presented in Partial Fulfillment 
of the Requirements for the Degree 

Doctor of Philosophy  
 

 

 

 

Approved April 2023 to the 
Graduate Supervisory Committee: 

 
Mikhail Chester, Chair 

Braden Allenby 
Nathan Johnson 

Timon McPhearson 
 
 
 
 
 
 
 
 
 
 
 
 
 

ARIZONA STATE UNIVERSITY 
 

May 2023



i 
 

ABSTRACT 

Infrastructure managers are continually challenged to reorient their organizations 

to mitigate disturbances. Disturbances to infrastructure constantly intensify, and the 

world and its intricate systems are becoming more connected and complex. This 

complexity often leads to disturbances and cascading failures. Some of these events 

unfold in extreme ways previously unimagined (i.e., Black Swan events). Infrastructure 

managers currently seek pathways through this complexity. To this end, reimagined – 

multifaceted – definitions of resilience must inform future decisions. Moreover, the 

hazardous environment of the Anthropocene demands flexibility and dynamic 

reprioritization of infrastructure and resources during disturbances. In this dissertation, 

the introduction will briefly explain foundational concepts, frameworks, and models that 

will inform the rest of this work. Chapter 2 investigates the concept of dynamic 

criticality: the skill to reprioritize amidst disturbances, repeating this process with each 

new disturbance. There is a dearth of insight requisite skillsets for infrastructure 

organizations to attain dynamic criticality. Therefore, this dissertation searches other 

industries and finds goals, structures, sensemaking, and strategic best practices to propose 

a contextualized framework for infrastructure. Chapters 3 and 4 seek insight into 

modeling infrastructure interdependencies and cascading failure to elucidate extreme 

outcomes such as Black Swans. Chapter 3 explores this concept through a theoretical 

analysis considering the use of realistic but fictional (i.e., synthetic) models to simulate 

interdependent behavior and cascading failures. This chapter also discusses potential uses 

of synthetic networks for infrastructure resilience research and barriers to future success. 

Chapter 4 tests the preceding theoretical analysis with an empirical study. Chapter 4 

builds realistic networks with dependency between power and water models and 
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simulates cascading failure. The discussion considers the future application of similar 

modeling efforts and how these techniques can help infrastructure managers scan the 

horizon for Black Swans. Finally, Chapter 5 concludes the dissertation with a synthesis of 

the findings from the previous chapters, discusses the boundaries and limitations, and 

proposes inspirations for future work.  
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CHAPTER 1 

1. INTRODUCTION 

The advent of the Anthropocene has created a global acceleration in development, 

population growth, technological innovation, economic activity, and urbanization  

(Steffen et al., 2015). From the mid-twentieth century to today and into the foreseeable 

future, this acceleration is precipitating many societal and cultural paradigm shifts (Lewis 

& Maslin, 2015). More than half of the world lives in urban rather than rural 

environments, and this is expected to rise to sixty percent by 2030; now more than ever, 

populations are dependent on hard infrastructure to live comfortably (United Nations, 

2016). Infrastructure has become a supporting feature for nearly every facet of modern 

society (Grubler, 1990).  

Infrastructure and infrastructure managers face a great challenge today: 

differential change. Infrastructure has historically been designed for durability and 

stability. However, the effects of the Anthropocene demand greater flexibility and 

adaptation; and infrastructure education and practices increasingly fail to demonstrate 

commensurate adaptability (B. Allenby & Chester, 2018). Thus, the rate of global change 

unapologetically outpaces the adaptive capacity of traditional infrastructure systems 

(Chester & Allenby, 2019b). This differential change can be observed in daily life with 

increasingly intense weather events (A. Helmrich & Chester, 2020; Kim et al., 2022; 

Markolf, Chester, Helmrich, et al., 2021), the COVID-19 pandemic (Carvalhaes et al., 

2020), and cyberwarfare (Chester & Allenby, 2020). These events demonstrate that 

infrastructures are more than unbiased technological enablers of disassociated activities. 
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Rather, they have an interdependent and impactful role within wickedly complex earth 

systems (Carse, 2017; Chester & Allenby, 2019a).  

This dissertation explores themes and models of infrastructure complexity, 

interdependency, and failures. The introduction contains the background context of this 

research, frames overall research questions, and explains the generalized methodologies, 

results, and outputs. The more detailed results follow as individual chapters. The 

dissertation will conclude with a synthesis of the entire research effort and proposals for 

future research. 

1.1 Background Concepts 

In this section, several general concepts for infrastructure are discussed. These 

two concepts provide a foundation and justification for the focus areas of this 

dissertation. The first topic is the complexity of infrastructure, including wicked 

complexity and the potential for black swan events to emerge from complexity. The 

second concept is resilience for infrastructure which includes a brief background of its 

theoretical evolution and the relevance of these theories to infrastructure adaptations. 

Next, several concepts specific to this dissertation will be introduced.  

1.1.1 Complexity for Infrastructure 

Framings of complexity for infrastructure are evolving as the effects of the 

Anthropocene become apparent. It is now clear that infrastructure systems are tied to the 

interactions and feedback loops between human, built, and natural systems (B. Allenby & 

Chester, 2018). Consequently, infrastructure complexity has ballooned beyond 

comprehension in a behavior called emergence, where interactions occur at a rate and 

depth that human minds cannot perceive (Johnson, 2006). The multi-layer, multi-network 
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levels of interdependency and interconnection across many infrastructures are wickedly 

complex. Infrastructure managers can no longer frame infrastructure as static and 

obdurate systems. Optimized designs fail to effectively engage the changing environment 

(Chester & Allenby, 2019a; Markolf et al., 2022). This understanding of infrastructure 

complexity is inspired by the Cynefin framework in leadership decision-making 

(Snowden & Boone, 2007), where there are four levels of complexity: simple, 

complicated, complex, and chaos. Infrastructure systems, which were once complicated 

(i.e., able to be fully understood via expertise, research, and investigation), have moved 

into a complex state, veiling understanding and introducing numerous unknown 

unknowns. The term “wicked complexity” posits that additional forces – wicked 

problems, technical and social complexity – make it extraordinarily difficult for engineers 

to gain even a partial understanding of these relationships, as shown in Figure 1.1 

(Chester & Allenby, 2019a). Technical complexities come from the accretion of new 

technologies on top of old and incomprehensible ways network elements can interact 

(Arbesman, 2016).  

Examination of complexity-competence for various infrastructure design 

approaches indicates that fail-safe approaches are still predominant. These types of 

designs do not consider a wide range of possible outcomes. Instead, they design for the 

worst perceivable outcome and construct robust systems to withstand it. However, this 

approach is increasingly insufficient (Ahern, 2011; Kim et al., 2019). Instead, 

infrastructure managers need to cultivate the ability to analyze and determine complexity 

and uncertainty levels and select contextually appropriate design methods (A. Helmrich 

& Chester, 2020). This sliding scale suggests not that there are optimal design methods 
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but that all design methods have advantages and disadvantages; engineers must know 

how to use them appropriately. Helmrich and Chester (2020) emphasize that engineers 

must focus on comprehending the nature of these complexities to discern how 

infrastructure design and management should shift to be more adaptable. 

 

Figure 1.1 – Cynefin Framework for Infrastructure, from Chester and Allenby (2019b). Reprinted With Publisher Permission. 

Developed in 1962, Ashby’s law of requisite variety claims that stable systems 

must match or exceed the environment in the number of forms it can take (Naughton, 

2017). Originally intended for biology, which has self-organizing systems, Ashby’s law 

relates to infrastructure as a wickedly complex problem. (Boisot and McKelvey 2011) 

then advanced the requisite variety law and established the law of requisite complexity, 

which states that “to be efficaciously adaptive, the internal complexity of a system must 

match the external complexity it confronts.” Infrastructure management must meet the 

environment with requisite complexity to remain viable and effective (Chester & 

Allenby, 2022).  

The concepts in this section state that infrastructure organizations can no longer 

be simplistic or myopic when designing strategies. The concepts will inform the approach 
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for Chapter 2 when proposing strategies for adaptation in infrastructure organizations. 

Strategies for infrastructure must be about engaging complexity. 

1.1.2 Resilience and Adaptations for Infrastructure 

Resilience for infrastructure is multifaceted and should be defined to provide 

context for the multiple strategies employed to build it. The definition of resilience for 

infrastructure has evolved from static framings of the simplified “bounce back” to 

moving forward toward adaptation post-disturbance (Madni & Jackson, 2009; Park et al., 

2013; Westrum, 2006). Resilience theory has now moved from static framings to more 

dynamic framings. Woods (2015) reframed resilience into four concepts:  

(1) resilience as rebound from trauma and return to equilibrium; 
(2) resilience as a synonym for robustness; 
(3) resilience as the opposite of brittleness, i.e., as graceful extensibility when 
surprise challenges boundaries; 
(4) resilience as network architectures that can sustain the ability to adapt to future 
surprises as conditions evolve. 
 

Woods (2015) also recognized that systems must balance optimality and flexibility within 

the system construct. The first three concepts are firmly established and much better 

understood as part of resilience theory. However, systems and organizations often lack 

adaptive capacity (Uhl-Bien & Arena, 2018). Additionally, complexity often creates 

difficulty in identifying actions and attributes which would advance adaptive capacity. 

Current research is changing the way infrastructure is perceived. Traditional 

framings of infrastructure are static and rigid. However, dynamic framings have greater 

potential to apply Wood’s (2015) four-part resilience framework to how infrastructure 

systems are designed, constructed, and managed. Indeed, resilience for infrastructure is 

ultimately defined by how the systems adapt and change to their environment. Chester & 

Allenby (2022) propose four tenants to achieve the requisite variety for infrastructure: 1) 
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sustained adaptation, 2) distributed organizational structures, 3) building capacity for 

horizon scanning (i.e., systematic search for weak signals that reveal coming 

disturbances), 4) loose-fit designs that can be repurposed as conditions change.  

To implement these four tenants, infrastructure organizations need practical 

strategies. For example, resilient design principles find that civil infrastructures should be 

designed in a way that is safe-to-fail (Kim et al., 2019). This concept aligns with Wood’s 

(2015) principle of graceful extensibility, where large pieces of infrastructure may not be 

capable of morphing but can still fail without degrading the resilience of other systems. 

Toward resilience in infrastructure organizations, flexible policies and procedures allow 

for governance restructuring when disturbances occur, decentralizing decision-making 

and reducing bureaucracy (Chester et al., 2020). Also, there are effective leadership 

structures for infrastructure organizations that will help balance the tension between 

administrative and innovative needs and enable new ideas to rise to the surface (A. M. 

Helmrich & Chester, 2022). Organizations that find balance in the pursuit of 

organizational efficiency (rigidity – effective during equilibrium) and exploration 

(innovation – effective during disruption) will be more flexible in the ever-changing 

environment of the Anthropocene (Markolf et al., 2022). These strategies are practical 

and reasonable for infrastructure organizations to implement while also moving them 

toward improved resilience and inform how proposals for resilience will be made in this 

dissertation. 
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1.2 Dissertation-Specific Concepts 

This section will introduce the three primary concepts for this dissertation. 

Chapters 2, 3, and 4 cover these concepts more in-depth. However, this section prepares 

the reader for the primary research objectives in Section 1.3.  

1.2.1 Dynamic Criticality for Infrastructure 

Given the wicked complexity that infrastructure managers face, strategies for 

adaptation should focus on building capacity for flexibility during future disturbances 

(Alderson et al., 2022; Chester et al., 2020). Natural adaptations have been observed in 

many ecological and anthropological areas. In these adaptations, the systems with the 

pre-existing adaptive capacity show resilience to environmental changes (Grubler, 1990; 

Havermans et al., 2015; Pascale, 1999; Roli et al., 2018; Schauppenlehner-Kloyber & 

Penker, 2015; Tebaldi, 2021).  Being wickedly complex infrastructure requires a new 

level of risk analysis to move toward this adaptive state (Chester & Allenby, 2019a). The 

environment is changing rapidly, and it is difficult to know what to prioritize; thus, 

infrastructure organizations should develop useful skill sets in both times of chaos and 

equilibrium (A. M. Helmrich & Chester, 2022). This contextually appropriate 

prioritization is called “Dynamic criticality.” (Roli et al., 2018). It is a general idea that, 

to stay relevant, systems must balance robustness with adaptability. However, because – 

presently – infrastructure systems are not independently flexible, researchers propose that 

these adaptations must occur organizationally via problem-solving, structural changes, 

knowledge co-production, and specific leadership strategies (Chester et al., 2020; A. M. 

Helmrich & Chester, 2022; C. A. Miller & Munoz-Erickson, 2018; Sweet et al., 2014). 
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Current literature notwithstanding, there is a lack of research on how 

infrastructure organizations should adapt toward a state of dynamic criticality. Indeed, 

there are conceptual studies that discuss decision-making concepts for resilience. For 

example, safe-to-fail concepts will guide designs to choosing sacrificial resources to 

prioritize higher assets, capabilities, and people (Kim et al., 2019). Infrastructure 

managers must also be flexible when specifying design relative to the ever-changing 

environment (Markolf, Chester, Helmrich, et al., 2021). Asset criticality must be 

determined by how assets enable human capabilities (Clark et al., 2018). However, 

studies have yet to ask how infrastructure organizations should make decisions for 

dynamic prioritization. This concept will be explored further in Chapter 2. One of the 

reasons infrastructure managers struggle to pivot priorities dynamically is a lack of 

understanding of the complexity of interdependence across different technological 

infrastructures – which will be discussed in the next section. 

1.2.2 Infrastructure Interdependence and Cascading Failure 

Infrastructure systems have become interdependent, and simple disturbances may 

lead to widespread cascading failures (Arbesman, 2016; Rinaldi et al., 2001). The Great 

Northeastern Blackout demonstrated this phenomenon when a local power line failure in 

Ohio resulted in a power loss for 445 million people (NERC, 2004). Similarly, a large 

blackout originated with the failure of one transmission in Arizona, causing widespread 

power outages across San Diego and failures in other infrastructures, such as water, 

sewer, traffic, and air transportation networks (FERC & NERC, 2012). Thus, there is a 

pressing need to understand how interdependencies cause infrastructures to change their 

interactions and possibly lead to cascading failure. This understanding is necessary so 
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infrastructure managers can build resilience into their systems and manage organizations, 

customers, and associated stakeholders (Hoff et al., 2023; Hoff & Chester, 2023; Markolf 

et al., 2018; Ouyang, 2014).  

Considering these future risks in the Anthropocene, researchers study 

infrastructure interdependencies and cascading failure to improve the resilience of 

organizations and technological systems (Banerjee et al., 2014; J. Li et al., 2019). These 

fields generally seek to model network interactions and study how disturbances propagate 

throughout the networks (J. Li et al., 2019). Depending on the need, modeling 

interdependence and cascading failure are separate methodological challenges, and 

different research projects may apply one or both. The largest modeling challenge is a 

lack of access to realistic infrastructure network data (Ouyang, 2014). This restriction 

prevents models from attaining realistic constructs, which hampers the meaning of 

research results (Mahabadi et al., 2021). These concepts will be reviewed in-depth in 

Chapter 3. 

1.2.3 Large, Unexpected, and Extreme Disturbances (i.e., Black Swans and Perfect 

Storms) 

A brief discussion of Black Swans is necessary to understand what they are and 

are not. The term was made popular by Taleb (2007). The concept of Black Swans has 

specific criteria: 

First, it is an outlier, as it lies outside the realm of regular expectations, because 

nothing in the past can convincingly point to its possibility. Second, it carries an 

extreme 'impact.' Third, in spite of its outlier status, human nature makes us 
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concoct explanations for its occurrence after the fact, making it explainable and 

predictable (Taleb, 2007). 

Among the root causes of Black Swans is their tendency to come from highly connected 

and networked systems. Decentralized systems that are not connected rarely suffer from 

these large-scale disasters because they do not offer the opportunity for failures to 

propagate (Taleb, 2014). 

Notably, there are often events that may be misconstrued as Black Swans. Often, 

these are perfect storms, which are the unlikely alignment of multiple relatively well-

understood events (Paté-Cornell, 2012). Many historical large infrastructure failures have 

been called Black Swans but may classify as perfect storms, such as the levy failures and 

flooding during Hurricane Katrina or the 2003 Northeast Blackout (Leavitt & Kiefer, 

2006; NERC, 2004). Care should be taken when applying labels. 

However, emergence and the complexity inflicted upon infrastructure systems and 

their managing organizations bring extreme events' plausibility into question. The 

complexity that infrastructure is now subject to often pushes the quantity of failure 

permutations beyond comprehension (Chester & Allenby, 2019a; Johnson, 2006). Thus, 

events that were once perfect storms may become Black Swans for lack of ability to 

perceive all the permutations or possibilities. Visualizing these permutations has been the 

inspiration for interdependence and cascading failure models. It is also the inspiration for 

an emerging modeling technique. 

1.2.4 Synthetic Infrastructure Modeling 

The dearth of realistic data for infrastructure networks has inspired some 

researchers to design models that can generate realistic but fictional networks (i.e., 
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Synthetic). Researchers for power systems have led the way in developing synthetic 

models. Historically, the power systems community has used benchmark test sets from 

the Institute of Electrical and Electronics Engineers (IEEE). Test sets have waned in 

usefulness as electrical engineers seek to answer questions about infrastructure resilience 

in large-scale networks. IEEE test sets are usually smaller, lacking geographic association 

(which is desirable), and are often limited to testing only one or a few attributes of power 

systems (Marcos et al., 2017). As an alternative, the power systems community is 

developing synthetic models to provide benchmark networks for large areas allowing 

infrastructure researchers to test new theories and algorithms in a realistic environment 

(Mohammadi & Saleh, 2021). Similar work is also being done for water systems (Ahmad 

et al., 2020; Mair et al., 2014; Momeni et al., 2023; Sitzenfrei et al., 2010). 

There may be potential for synthetic models to provide research opportunities for 

the resilience of interdependent infrastructure networks and how they may react to 

disturbances (Hoff & Chester, 2023). Synthetic models for multiple infrastructures have 

only recently emerged, so these realistic networks have yet to be used when studying 

interdependency and cascading failure models (Mahabadi et al., 2021). This combination 

may yield unique insights for infrastructure resilience principles, particularly as multi-

network dependencies change the dynamics and convergence of cascading failures. These 

potential insights will be explored further in Chapters 3 and 4. 

1.3 Problem Statement and Research Objectives 

The research objectives for this dissertation arise from concepts in Section 1.2. 

Indeed, infrastructure management literature lacks clarity regarding how priorities should 

shift during dynamic scenarios. Indeed, complexity reduces infrastructure managers’ 
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ability to sift through overwhelming amounts of data, parse complex systems for root 

causes, and align their organizations for dynamic prioritization (Chester et al., 2020; 

Clark et al., 2018; Paté-Cornell, 2012). This dissertation focuses on three areas of 

research toward infrastructure organizational adaptation: dynamic criticality for 

infrastructure organizations, modeling possibilities for synthetic and interdependent 

networks under cascading failure, and testing such models to explore insights for 

infrastructure resilience. This section discusses the thought process behind the research 

questions that will guide the remaining Chapters and ends with three primary research 

questions. 

Infrastructure managers need to prepare their organizations to react with speed 

and variety toward disturbances (Alderson et al., 2022; Boisot & McKelvey, 2011; 

Chester & Allenby, 2022). The concept of dynamic criticality proposes that infrastructure 

organizations should balance the skills required to be efficient and those required to be 

resilient, unlocking skillsets for dynamic decision-making along the way (Markolf et al., 

2022; Papachroni et al., 2016a; Turner et al., 2013; Tushman & O’Reilly, 1996). There 

may be specific activities and organizational attributes that infrastructure organizations 

should pursue to refine this balance. There appears to be a gap in the literature for these 

disciplines. While there is some guidance for determining dynamic infrastructure 

prioritization (Applied Technology Council, 2016a; Clark et al., 2018), there is little 

knowledge of what skillsets infrastructure organizations should cultivate to facilitate this 

process. Lacking knowledge of these skillsets, other industrial sectors besides 

infrastructure may have wisdom and practices to inform how infrastructure should 
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approach dynamic prioritization. Thus, Chapter 2 will conduct an exercise in searching 

for skillsets from other industrial sectors and contextualizing them for infrastructure. 

Additionally, the body of research for infrastructure managers has yet to develop 

detailed models to visualize realistic dynamics of cascading failure and interdependency 

(Mahabadi et al., 2021; Marcos et al., 2017). Recently, synthetic infrastructure models 

have been developed to provide realistic test datasets for new algorithms. There may be 

additional uses for synthetic networks in conjunction with interdependency and cascading 

failure models (Y. Wang et al., 2022). However, the theory or research possibilities for 

such combinations have yet to be explored. Thus Chapter 3 will explore emblematic 

literature at the intersection of these three types of infrastructure models and discuss 

potential insights that can be gained from their combination, propose a framework for 

future development, and discuss barriers to success.  

Leveraging the preceding exploration and framework for Synthetic 

Interdependent Cascading Failure Mods (SICFMs), Chapter 4 will seek to test this 

concept. Using methodologies from existing research, Chapter 4 will generate two 

synthetic networks for the same geographical area, fuse them via interdependencies, and 

simulate cascading failures. The resulting dynamics will be analyzed and discussedin the 

context of infrastructure resilience and adaptations for  infrastructure organizations. 

Additionally, interdependence in complex human systems often leads to extreme events 

like Black Swans and perfect storms (Taleb, 2007). These events are impossible to 

anticipate and carry paradigm-shifting impacts. The Chapter 4 discussion will explore the 

concept of using SICFMs as a horizon-scanning exercise for extreme event visualization. 
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Based on the preceding concepts and research needs identified, the following 

questions are addressed in the subsequent chapters: 

 

1. How do other industrial sectors perform dynamic prioritization, and how 

can these practices be contextualized for infrastructure? (Chapter 2)  

2. How can infrastructure organizations use modeling techniques with realistic 

infrastructure networks, interdependencies, and cascading failure to gain 

insight into future extreme events? (Chapter 3) 

3. How might cascading failures progress across interdependent infrastructure 

networks to reveal resilience vulnerabilities and expose potential extreme 

events? (Chapter 4) 
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CHAPTER 2 

2. DYNAMIC CRITICALITY FOR INFRASTRUCTURUE PRIORITIZATION IN 

COMPLEX ENVIRONMENTS  

 

This chapter has been published in Environmental Research: Infrastructure and 

Sustainability and appears as published except for text and figure formatting. The citation 

for this article is: Hoff, R., Helmrich, A., Dirks, A., Kim, Y., Li, R., & Chester, M. V. 

(2023). Dynamic criticality for infrastructure prioritization in complex environments. 

Environmental Research: Infrastructure and Sustainability.  

https://iopscience.iop.org/article/10.1088/2634-4505/acbe15/meta 

Chapter Abstract 

As infrastructure confront rapidly changing environments, there is an immediate 

need to provide the flexibility to pivot resources and how infrastructures are prioritized. 

Yet infrastructures are often categorized based on static criticality framings. We describe 

dynamic criticality as the flexibility and reprioritization of infrastructure and resources 

during disturbances. We find that the most important prerequisite for dynamic criticality 

is organizational adaptive capacity through resilience in goals, structures, sensemaking, 

and strategies. Dynamic capabilities are increasingly important in the Anthropocene, 

where accelerating conditions, uncertainty, and growing complexity are challenging 

infrastructures. We review sectors that deployed dynamic management approaches 

amidst changing disturbances: leadership and organizational change, defense, medicine, 

manufacturing, and disaster response. We use an inductive thematic analysis to identify 

key themes and competencies and analyze capabilities that describe dynamic criticality. 



16 
 

These competencies drive adaptive capacity and open up the flexibility to pivot what is 

deemed critical, depending on the particulars of the hazard. We map these competencies 

to infrastructure systems and describe how infrastructure organizations may build 

adaptive capacity toward flexible priorities.  

2.1 Introduction 

Infrastructure organizations increasingly struggle to respond to accelerating and 

increasingly uncertain environments, such as extreme weather events (Helmrich & 

Chester, 2020; Kim et al., 2022; Markolf, Chester, Helmrich, & Shannon, 2021), 

changing demands, pandemics (Carvalhaes et al., 2020), and cyber warfare (Chester & 

Allenby, 2020). These changing environments produce a decoupling between what 

infrastructures can do and what communities need them to do (B. Allenby & Chester, 

2018). The diversity of novel hazard dynamics raises questions about whether static 

framings of critical infrastructures (CI) are appropriate (Carlson & Doyle, 2002; Chester 

& Allenby, 2019b; Gilrein et al., 2019; Markolf et al., 2022). For example, should 

infrastructure managers prepare for extreme weather-related events in the same way as a 

pandemic? Do current framings of criticality provide the flexibility to reprioritize 

resources across various hazards? Throughout this paper, infrastructures refer to 

engineered systems as physical technologies and their associated organizations and 

governance unless otherwise stated. Furthermore, the environment will refer to the many 

external forces that affect infrastructures, including the natural environment, politics, 

cyber warfare, disruptive technologies, economic pressures, etc. 

Static approaches have long characterized prioritization and resilience strategies 

for CI (Humphreys, 2019). Since 9/11, many governmental actions, such as presidential 
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directives, congressional acts, and federal department policies, have attempted to inspire 

greater awareness for critical infrastructure protection and prioritization (Humphreys, 

2019). The seminal definition of critical infrastructure came from the Patriot Act and is 

still used by the Department of Homeland Security (DHS) (CISA, 2019). Multiple lists of 

prioritized national CIs have been created and contain a mix of traditional civil 

infrastructures (i.e., those systems considered “utilities”) and some social and ecological 

systems. There does not appear to be a concerted effort to support rapid transitions of 

resources to different infrastructures sensitive to the hazard. DHS and CISA use a two-

tiered priority system for CI but do not have a dynamic prioritization process for when 

disturbances change (Moteff, 2015). Static framings continue to be standard practice for 

infrastructure organizations (CISA, 2019; Clark et al., 2018; Moteff, 2015).  

Infrastructure organizations often lack the competencies to dynamically prioritize 

critical systems with quickly changing environments (A. M. Helmrich & Chester, 2022). 

As disasters unfold, managers need the competencies to make sense of the impacts and 

the most vulnerable services. COVID-19 is a valuable case study. Whereas energy, water, 

and other lifeline systems were largely uncompromised, parks (to house and socially 

distance the homeless) and digital communications became critical to health and well-

being (Andrew M. Isaacs, 2020; . criticality and prioritization for infrastructure may 

change conditionally (Clark et al., 2018); Montgomery et al., 2021). Infrastructure 

managers need insight into how their organizations should prepare to morph and bend to 

chaotic events, identify changing environmental conditions, and rapidly pivot priorities. 

This is referred to as dynamic criticality, where a system can contextually adjust to 
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environmental disturbances, dynamically prioritize resources, and balance robustness and 

adaptability (Roli et al., 2018).  

Many CI sectors have diverse operational requirements, so a framework for 

dynamic criticality must be broadly applicable and focus on infrastructure organizational 

management and not specific engineered systems. Toward this end, competencies of 

other sectors that appear to be able to pivot how they focus as hazards change are 

reviewed, cross-compared, and applied to engineered infrastructures. 

2.2 Methodology 

Cross-industry sectors that appear to have dynamic criticality capabilities were 

reviewed to improve the capabilities to dynamically define critical infrastructures and 

pivot resources depending on specific hazard contexts. Five sectors were selected and 

analyzed: 1) Leadership and organizational change; 2) Military and defense; 3) Medical 

emergency and triage; 4) Manufacturing; and 5) Disaster response. Literature was 

collected based on keyword searches to identify competencies that enable sectors to have 

the flexibility to reprioritize critical systems and pivot resources accordingly when faced 

with disturbances. Keywords included dynamic, criticality, edge of chaos, self-

organization, decision-making, and priorities. The search used metadata academic journal 

search engines (ASCE, Google Scholar, Crossref, WorldCat, etc.) and identified twenty-

nine sources across journal publications, book chapters, and government reports. 

An inductive approach was used to describe common themes to identify sector 

competencies that support dynamic criticality. Inductive thematic analysis is a qualitative 

process whereby papers or texts are analyzed to develop common concepts and themes 

(Boyatzis, 1998; Corbin & Strauss, 1990; Thomas, 2006). The general process is shown 
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in Figure 2.1. The goal was to evaluate how the sectors prioritize critical systems and 

resources amidst dynamic environments. The inductive analysis followed three steps: 

content review, theme generation, and validation (Thomas, 2006). In reviewing the 

literature, themes about the research objectives were identified, labeled, and defined. The 

themes were analyzed for similarities, subtopics, and associations towards synthesizing 

them into a generalized framework for infrastructure (Creswell, 2002; Thomas, 2006). 

Methodologies, vernacular, and lexicons differ between the sectors, but common themes 

emerged, resulting in a framework with four overarching themes. Lastly, group-sample 

analysis was used to validate the results (Thomas, 2006).  

 

 

Figure 2.1 – Process for Inductive Thematic Analysis 

2.3 Sector Review 

The five sectors identified were examined for their dynamic capabilities. While 

Leadership & Organizational Change reveals generalizable capabilities across many 

domains, Military and Defense, Medical Emergency and Triage, Manufacturing, and 

Disaster Response show capabilities specific to their industries. 

LITERATURE SEARCH

REVIEW THEMES

IDENTIFY EMERGENT THEMES

CONSTRUCT FRAMEWORK
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Leadership & Organizational Change: Leadership and organizational change 

literature transcends specific industries and describes organizations’ cultures, priorities, 

and structures. Organizations have experienced significant transitions in the past century, 

such as the shift from production orientation to knowledge-production and the associated 

technological revolutions (Davenport, 2001; Manville & Ober, 2003; Uhl-Bien et al., 

2007a). These transitions are entangled with tensions such as supply chain disruptions by 

logistics or dwindling resources and changing consumer demands (e.g., increased 

awareness of corporate social responsibility to the latest technology). The transitions also 

include the restructuring of workplace dynamics (e.g., dispersion of power to remote 

work) and competition which pressures the speed of innovation within an organization. 

These tensions interact unpredictably and destabilize organizations (Sterman, 1989; Uhl-

Bien & Arena, 2018). Organizations have responded to this complexity with adaptability, 

recognizing they will be operating with some degree of chaos and disruption, utilizing 

responses such as dynamic decision-making (DDM) (Brehmer, 1992; Edwards, 1962; 

Gonzalez et al., 2005).).) Organizations also developed principles like contextual 

ambidexterity (March, 1991; Papachroni et al., 2016b; Uhl-Bien & Arena, 2018) and 

leadership priorities that emphasize innovation (Uhl-Bien et al., 2007a). Complexity 

Leadership Theory (CLT) describes balancing bureaucratic leadership (during times of 

stability) with more entrepreneurial leadership that emphasizes innovation in the face of 

chaos. CLT emphasizes the ability of the organization to pivot between efficiency 

(stability) and resilience as innovation during instability.  

Military and Defense: Defense organizations must effectively operate across 

stable (peacetime) and chaotic (wartime) contexts and have embraced several techniques 
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for assessing the criticality of resources and threats dynamically. The strategic and 

competitive nature of the military may inspire more proactive planning and decision-

making. These techniques include Dynamic Force Employment (DFE), creating scalable 

and context-specific capabilities to deploy resources in an increasingly chaotic and 

diverse landscape (DoD, 2018; Wetzel, 2018). Mission command has also adopted 

decision-making techniques that encourage collaboration and bottom-up formation of 

relationships, create a continuous dialogue towards a shared understanding, and provide 

clear command guidance and empowerment for autonomous decision-making 

(Deployable Training Division, 2020). The core tool that has emerged for assessing 

threats and responses and how those change with context is Center of Gravity (COG) 

analysis (Mcfadden, 2014; Schnaubelt et al., 2014). COG is the entity capable of 

achieving or enabling an objective or capability and can represent physical assets 

(weapons systems or financial institutions), people (individuals or groups), or ideologies 

(Kornatz, 2016; Perez, 2012). Defense organizations have centered COG as a framework 

for assessing threats (e.g., physical armies, financial networks, or ideologies) in differing 

contexts and surgically deploying responses. COG analysis involves first identifying 

crucial capabilities (crucial enablers for a COG to function). Next, it identifies critical 

requirements, i.e., essential conditions, resources, or means for a critical capability to be 

fully operational. Lastly, COG describes critical vulnerabilities where neutralization, 

interdiction, or attack will create decisive or significant effects on the COG. The COG 

analysis guides the operational response, including lines of operation (actions or events 

that must unfold in a particular sequence) and lines of effort (the linking together of tasks 

to determine how they will lead to an objective) (Kornatz, 2016; Schnaubelt et al., 2014).  
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Medical Emergency & Triage: Originally conceived in the 1700s out of necessity 

to make rapid decisions for wounded soldiers in wartime, medical systems began 

formally developing triage frameworks in the 1970s (Dippenaar, 2019). Emergency 

departments require decision-making tools to prioritize groups and individuals during 

medical emergencies. For triaging groups of patients, the SALT (sort, assess, life-saving 

interventions, treatment, and transport) and START (Simple Triage and Rapid Treatment) 

methods focus on sorting and diagnosing. During sorting, these methods quickly place 

patients into three categories: 1) unresponsive or life-threatening injuries; 2) can respond 

purposefully; 3) can walk, despite injuries. Based on this sorting, medical providers can 

prioritize limited resources to assess and care for patients, including life-saving 

interventions, further care, and transportation. Notably, if providers determine that the 

patient is unlikely to survive due to the severity of their injuries, they may move on to 

other urgent patients. While certainly not devoid of ethical conflicts, these frameworks 

help medical providers rapidly determine criticality and respond accordingly (Aacharya 

et al., 2011).  

Triage for individuals leaves out the “sorting” step and presumes the emergency 

department is experiencing a steady flow of patients to prioritize. With individuals, an 

E.R. physician must first assess how quickly a patient needs attention and then how to 

administer proper care. For example, the Emergency Severity Index (ESI) assesses the 

patient's condition with a series of questions: 1) immediate life-saving required; 2) high 

risk, confused/lethargic/disoriented, severe pain/distress; and 3) the number of resources 

required. ESI combines these questions with vital measurements (heart rate, respiration 

rate, and oxygen levels). The output is a priority level from 1 to 5, with level 1 requiring 
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immediate medical attention and level 5 requiring medical attention within 120 minutes 

(Aacharya et al., 2011).  

Worldwide triage frameworks exhibit thematic commonalities in determining 

criticality, despite practical application differences, often driven by culture (Dippenaar, 

2019). In general, medical providers quickly identify patients that require immediate care, 

administer LSIs for stabilization, and then assess the remaining patients with less 

urgency. Moreover, the individual patient assessment provides a specific checklist of 

critical body systems and symptoms, which points the medical team toward the type of 

care needed (Aacharya et al., 2011). Ultimately, triage frameworks save time, energy, and 

lives when employed properly (Dippenaar, 2019).  

Manufacturing: The globalization of markets has increased demand volatility, 

forcing manufacturing companies away from mass production toward mass 

customization. Prioritizing market competition and profitability, companies have shifted 

to designing unique products for individuals at smaller volumes (Hu, 2013). 

Simultaneously, new technologies have aided manufacturing adaptations, such as 

advanced sensor systems reducing equipment-based disturbances so manufacturers can 

focus more on market analysis and the associated manufacturing pivots (Frankowiak et 

al., 2005). Reconfigurable manufacturing systems (RMSs) have been a pivotal adaptation 

that has increased the ability to manage the market volatility toward rapid customization. 

RMSs are individually reconfigurable machines that can be added, removed, or adjusted 

to customize products to customer needs. The goal of RMSs is to minimize the response 

time to unpredicted market shifts while still allowing for traditional machine and system-

level optimization (Yelles-Chaouche et al., 2021). During the development of RMSs, a 
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new set of organizational requirements emerged: scalability, convertibility, 

diagnosability, customization, maximizing tasks given to machines, and balancing 

maintenance for optimal throughput and reliability (Koren et al., 2018). Manufacturers 

developed methods to detect market disturbances, designing, selecting, and pivoting to 

new configurations. Two priorities drive these configurations: resource availability (i.e., 

tools and machines) and throughput requirements (production volumes) (Mabkhot et al., 

2020). In general, the frequent and rapid pivots that RMSs must undergo highlight key 

capabilities: disturbance detection, coupled with a quick redesign and driven by critical 

priorities.  

Disaster Response: The complexity of disaster response arises from shifting 

climatic conditions in hazard prediction, coordination of limited resources for response 

and recovery activities, and varying adaptive capacity and vulnerability of affected 

populations (O’Sullivan et al., 2013). The stress of chaotic environments underscores the 

importance of heuristics in decision-making (Sterman, 1989) and thoughtfully crafted and 

practiced response plans (FEMA, 2021; O'Sullivan et al., 2013). During disaster 

response, institutions identify critical assets for protection in terms of importance, value, 

sensitivity, associated resource requirements, and interdependencies (FEMA, 2018; 

Hempel et al., 2018). Traditionally, deterministic methods have dominated disaster 

response decision-making based on historical data, experiences, and judgment without 

considering future uncertainties. Some critical values (e.g., water level or flood return 

period) can provide indices for decision-making. More recently, hazard prediction models 

use probability and uncertainty modeling (e.g., the relationship between dam failure 

probability and fatality). Probabilistic approaches can be combined with a real-time 



25 
 

hazard assessment to reduce the uncertainty in the decision during disasters but require 

more information and an iterative process to improve the models, which can potentially 

delay the decision (Peng & Zhang, 2013).  

2.4 Thematic Analysis Results 

Several commonalities emerged across the sectors. The thematic analysis revealed 

four generalizable themes. First, many sectors showed methods for describing goals 

when dynamically shifting priorities. Second, several sectors exhibited capabilities 

towards configuring organizational structures to implement the goals. Third, a common 

theme of sensemaking appeared across sectors: making sense of an environment to open 

up decision-making (Weick, 1995). Fourth, organizations developed specific strategies 

for implementing flexibility amidst changing conditions. These four themes and their 

competencies are shown in Figure 2.2 and are discussed at length in this section. These 

results and Figure 2.2 will guide the following discussion. 

2.4.1 Theme 1: Goals  

Establishing goals was pivotal for sectors to implement dynamic criticality. Goals 

guide organizations toward responding to disturbances or chaos, which leads 

organizations to change structures, sensemaking, and strategies accordingly. Goals appear 

foundational for strategy development. The six competencies that emerged from the goals 

fell into two primary categories as shown in Figure 2.2. The first was a rapid adaptation 

to changing environments. Rapid adaptation includes self-organizing adaptability, 

requisite variety, and quick detection and reaction to disturbances. The first category of 

goals focused on enabling quick decision-making, including prioritization of resources 
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during emergencies, identifying critical requirements for mission accomplishment, and 

building organizational relationships to facilitate dynamic decision-making.  

 

Figure 2.2 – Summary of the Resulting Themes and Competencies. 

When organizations set goals for rapid adaptation, this nudges the organization 

toward dynamic criticality, often indirectly. First, organizations with goals toward 
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dynamic criticality select priorities more efficiently than others (Manville & Ober, 2003). 

Similarly, dynamic environments alternate unpredictably between stability and 

instability. In response, organizations should develop exploitative efficiency and 

explorative innovation. Exploitation focuses on efficiency, which is effective during 

periods of stability, and exploration is more effective during instability. This 

ambidexterity makes an organization efficient, agile, and flexible (March, 1991; Uhl-

Bien & Arena, 2018). Second, requisite variety commonly appeared in both military and 

manufacturing goals. Requisite variety describes how systems in changing environments 

must have a repertoire of responses sufficient for their environment complexity (Chester 

& Allenby, 2022; Naughton, 2017). The military changed its operations to incorporate 

randomness for the timing and movement of forces which simultaneously confuses 

adversaries and builds adaptability and readiness for deployment (DoD, 2019). In 

manufacturing, RMSs match market needs and the pace of change (Khalil et al., 2020; 

Koren et al., 2018). Rapid adaptation goals have also led manufacturing to use sensors, 

process monitoring, and analysis tools to detect and react to process and equipment 

disturbances (Frankowiak et al., 2005). For disaster response, the variability of disaster 

outcomes makes it unrealistic to standardize prioritization methods (such as in medical 

triage). Thus, disaster planners set general goals toward quick contextual discernment of 

criticality and speed of response (Applied Technology Council, 2016b; DHS, 2019b). 

Although the goals found within the thematic analysis were different, they were generally 

oriented toward rapid adaptation. Ultimately, this appeared to inform organizational 

priorities, preventing reflexive decision-making.Goals that supported making faster 

decisions also improved dynamic criticality. The sectors showed many of the same 
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principles for decision-making that (Brehmer (, 1992) cites for the theory of DDM, such 

as decisiveness, delegation, taking responsibility, and avoiding fixation. In medical triage 

frameworks, the goal of appropriately prioritizing patients during emergencies is 

paramount to establishing decision criteria so medical staff can dynamically sort and 

prioritize patients specific to the scenario without time-consuming analysis, testing, or 

judgment (Aacharya et al., 2011; Storm-Versloot et al., 2011). Secondly, several sectors 

set a goal to clarify the requirements needed to meet specific objectives. Military COG 

analysis uses critical requirements, vulnerabilities, and assets to select priorities for 

mission accomplishment (Perez, 2012; Schnaubelt et al., 2014). Similar to how military 

planners need to identify various critical attributes, disaster response planners also must 

prioritize specific assets and resources during a response (DHS, 2019a; O'Sullivan et al., 

2013). As per (Clark et al., 2018), disaster planning seeks to isolate the most critical 

assets and then shift those priorities dynamically. Also, the military realized that micro-

management and lack of trust slowed the decision-making process. So, senior military 

commanders set goals to streamline the decision-making process. They built 

organizational relationships that empowered local commanders to prioritize and make 

decisions swiftly by creating a culture of trust, communication, and deep mutual 

understanding (Deployable Training Division, 2020).  

2.4.2 Theme 2: Structures 

The ability of organizations to change their governance models and processes to 

respond to changing conditions emerged across the sectors. Novel methods for 

transitioning governing structures appear to enable organizations to see game-changing 

disruptions and pivot resources more clearly in response. Two competencies emerged, as 
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shown in Figure 2.2: 1) a commitment to sustained adaptation where the organization 

recognizes that its environment is in flux and structures itself to adjust course as needed, 

and 2) instituting processes that enable dynamic organizational structures and adaptive 

planning, referred to as “loose fit design.” In CLT, organizations can pivot between 

efficiency and innovation governance models, the latter suitable for periods of instability 

(Uhl-Bien & Arena, 2018). RMSs are more flexible at handling demand and disruption 

shocks, adjusting the systems’ orientation in response. RMSs achieve this flexible state 

through convertibility (capable of adaptation to new products), diagnosability (design 

quality assurance with the system, and not as an afterthought), customizability (designed 

around a family of products, and not just one), and scalability (cost-effective adaptation 

to future market demand). The loose-fit design has several associated properties. First, 

horizontal governance – shifting resources and decision-making authority to front-line 

workers who can coordinate and better sense change – creates organizational capabilities 

to diagnose and respond appropriately to chaos and change quickly. Formally, dynamic 

planning involves avoiding fixation – remaining focused on a set of increasingly obsolete 

challenges – and committing to a continuous cycle of reassessment of environmental 

conditions relative to organizational goals and processes (Brehmer, 1992; FEMA, 2016).  

Like how goals inform decisions, organizational structures provide a foundation 

for sound decision-making. Organizations that confront frequent dynamism have 

streamlined processes and aligned their formal and informal structures to be more flexible 

as the environment changes. To maintain readiness, they must suppress natural apathy 

within structures during periods of equilibrium and maintain energy toward adaptability 

(Pascale, 2006). 
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2.4.3 Theme 3: Sensemaking 

Dynamic environments forced organizations to develop new ways of 

understanding and interpreting the environment. In doing so, they are exercising 

sensemaking: taking in new knowledge, structuring it using novel techniques, and 

ultimately opening up decision-making opportunities (Weick et al., 2005). In the thematic 

analysis, sensemaking presented two distinct competencies, shown in Figure 2.2: 1) the 

search for weak signals that may indicate changing environmental conditions in a process 

called horizon scanning; and 2) focusing on organizational co-production of knowledge. 

For DFE, the military collects and interprets data to understand the operational 

environment, enabling it to alter its force structure dynamically (DoD, 2019). Similarly, 

disaster response planners for communities spend significant time understanding the 

dynamic environment within their area of responsibility to anticipate how different 

disturbances may affect the community (FEMA, 2021; O'Sullivan et al., 2013). 

Additionally, manufacturing systems constantly scan within their system to detect weak 

signs of equipment/process failure (Frankowiak et al., 2005) and also scan outside their 

systems (i.e., markets) to see hints of market changes that may trigger shifts in production 

or design (Khalil et al., 2020). Organizational co-production of knowledge supports 

dynamic criticality primarily through network and collaboration. CLT creates informal 

social networks in organizations, allowing for a freer flow of ideas and collaboration, 

thus increasing innovation during disorder when old priorities suddenly become 

irrelevant and new ones must be identified (Uhl-Bien & Arena, 2018).  

Similarly, managers of knowledge workers have shifted focus from task oversight 

towards knowing the capabilities of subordinates and building networked teams, creating 
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more effective organizational knowledge toward shifting priorities during disturbances 

(Davenport, 2001). Indeed, the military has also identified this need for knowledge co-

production with the concept of mission command. Senior commanders have a greater 

understanding of the strategic environment, while subordinate commanders have a better 

contextual awareness. Thus, mission command also shifts focus from oversight. The 

focus on building trust between the higher and lower ranks empowers and supports. The 

continuous dialogue toward shared understanding establishes trust and liberates senior 

commanders to focus on giving clear guidance and intent. Subordinate commanders are 

then empowered to swiftly decide and prioritize without asking for additional guidance 

(Deployable Training Division, 2020). Collectively, horizon scanning and co-production 

of knowledge during disturbances seek to combine information collection and synthesis 

with robust abilities to quickly and efficiently convert that information into relevant 

priorities.  

2.4.4 Theme 4: Strategies  

The goals, structures, and sensemaking culminated in the creation of strategies. 

Eight strategies emerged from the review, describing acute (short-term), continuous 

(long-term), and hybrid decision-making timeframes. Acute strategies address 

disturbances with an apparent beginning and end (e.g., medical triage). Other sectors used 

continuous strategies oriented toward cyclical and ongoing problems (e.g., global military 

competition). Some sectors use hybrid strategies for scenarios with a clear beginning and 

end but require reassessment (e.g., lifeline disaster response). The three types are grouped 

and labeled accordingly in Figure 2.2. 
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The three acute strategies came from the triage and disaster response sectors. 

Time constraints of medical emergencies and disaster scenarios focus on rapid decision-

making using pre-established frameworks, which requires deep systems knowledge to do 

dynamic criticality. In medical triage, this situational urgency requires prioritization via 

predetermined critical information heuristics. Action and priority-based thresholds are 

predetermined for efficiency, so a paramedic or triage nurse is not responsible for 

analyzing the patient’s condition. They are trained for condition determination and 

prioritization via prescribed metrics, charts, data, and sensors (Aacharya et al., 2011), 

with some flexibility for tacit knowledge and experience to account for framework 

simplicity (van Pijkeren et al., 2021). Sometimes, medical triage encounters situations 

where professionals must do initial sorting & emergency interventions and then detailed 

evaluation/determinations – such as in a mass casualty situation. Medical professionals 

begin with simple visual heuristics for prioritization: unresponsive, responsive, or 

walking. While simple, it is the most expedient strategy in the results. It displays how 

organizations can simplify a chaotic environment for tiered criticality prioritization. 

Emergency managers also found that in-depth knowledge of the system, connections, 

capabilities, and dependencies was an effective strategy to cut through the complexity 

and chaos during disasters. This knowledge enables decision-makers to make quick but 

contextualized decisions for prioritization (FEMA, 2021; O'Sullivan et al., 2013). While 

building and maintaining this knowledge is a continuous process, this strategy is acute 

when the knowledge is applied toward rapid prioritization, reducing waiting time and 

ambiguity. 
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Next, the continuous strategies shifted priorities during disturbances via a mixture 

of structures and sensemaking practices. Paradoxically, organizations that use continuous 

strategies appear to exist in a constant state of change where disturbances become a form 

of equilibrium. Business organizations have found that ambidexterity & organic, 

networked adaptation are necessary strategies for survival. Organizations intentionally 

vacillate between exploitation and exploration, building adaptability and dynamic 

decision-making and eliminating dependence on fragile and inaccurate market forecasts. 

Moreover, pursuing informal networks in organizations creates organic adaptation, which 

is more desirable when constantly engaging disturbances (Papachroni et al., 2016b; Uhl-

Bien & Arena, 2018). Also, toward continuous dynamic decision-making, people 

unconsciously fixate during stress and chaos. Intentional decision-makers must measure, 

analyze, and compare marginal gains for each action, allowing for iterative priority 

adjustments (Brehmer, 1992). This cause-effect learning towards improved decision-

making helps decision-makers maintain a state of dynamic criticality. Similarly, the U.S. 

military continuously adapts to a rapidly changing global environment. DFE and 

competition continuum doctrine emphasize adaptation by exploration through continuous 

change, inserting temporal and physical randomness in force movement (DoD, 2018), 

and dynamic engagement levels (i.e., peacetime, cooperation, and combat operations) 

(DoD, 2019). This proactive strategy seeks to constantly develop new "forms" that the 

organization can adopt to outpace competitors, focusing on attaining an adaptive state 

rather than seeking specific outcomes. These strategies all target the deep development of 

organizational adaptive capacity, the ability to reform and reshape when faced with new 

challenges. 
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Last, the military COG analysis, RMSs, and FEMA's community lifeline support 

frameworks were hybrids of acute and continuous strategies. They used continuous 

processes to achieve dynamic criticality, but disturbances also had a clear beginning and 

end. The military uses COG to derive priorities from critical attributes of the environment 

(e.g., financial systems, physical targets) linked to the mission's desired outcome. These 

nodal networks are used for single and continuous objectives (e.g., a long campaign or 

operation), constantly identifying new priorities and updating old ones. COG uses a 

network that maps capabilities, vulnerabilities, assets, and the COGs they orbit around. 

The top priorities are the network attributes connected to the desired end state (i.e., the 

target COG). Critical priorities shift if the end state shifts (Kornatz, 2016; Perez, 2012; 

Schnaubelt et al., 2014). Next, disturbance detection, adaptation identification, 

monitoring, and remembering is a cyclical process that RMS and FEMA use for 

individual disturbances. The RMS process detects market disturbances, develops 

manufacturing system adaptations, and monitors market conditions' relevance. Key to 

this adaptation process is a rich archive of past disturbances and adaptations and the 

ability to recall them for reuse – simplifying future adaptation development (Khalil et al., 

2020). Similarly, emergency support management applies a cyclical process for restoring 

essential CIs (e.g., water, electricity, shelter) after a disruption. When an incident occurs, 

this triggers assessments, prioritizations, logistics, and responses, a process that loops 

until CIs are stabilized. Emergency managers also apply their archive/remember/recall 

process while updating plans so that emergency response goals are relevant to the 

environment (DHS, 2019b). 
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2.5 Discussion: Infrastructure Dynamic Criticality  

Having described the themes and their competencies in the results and in Figure 2, 

it is time to discuss how infrastructure systems can use these capabilities to practice 

dynamic criticality,. These themes can support infrastructure systems to detect 

disturbances early, pivot priorities, and balance robustness and adaptability. The thematic 

analysis showed that organizations that successfully confront chaos tend to engage 

disturbances in three phases: prior, during, and post-disturbance (FEMA, 2016). The 

(Park et al., 2013) framework for Sensing, Anticipating, Adapting, and Learning (SAAL) 

closely aligns with this process. Before chaos, infrastructure managers should probe, 

sense, and respond to the environment (Chester & Allenby, 2019a). The thematic analysis 

shows that most work toward dynamic criticality happens before chaos. In alignment 

with the four main themes, goals are set for adaptability and quick decision-making. 

Dynamic and flexible structures are formed. Organizations will practice sensemaking for 

past, present, and future environments and develop adaptable strategies to engage 

disturbances. Then, organizations must transition during disturbances to more acute and 

hybrid strategies. During disturbances, they will test sensemaking capabilities, execute 

plans, and rapidly innovate. After the disturbance is over and stable conditions return, 

organizations should shift towards expanding resilience for the future. It is time for 

organizations to learn, produce knowledge from the experiences, archive and remember, 

and change adaptations and plans for future chaos cycles. This learning component is a 

looped cycle that links all the other components of the adaptation process and thus 

deserves additional attention (Thomas et al., 2019). This final section will contextualize 

the themes and competencies for infrastructure, discussing them relative to the prior, 
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during, and post phases of disturbance engagement. Henceforth, italicized terms refer to 

the framework of themes and competencies shown in Figure 2.2. 

The primary takeaway from the thematic analysis is that goals toward rapid 

adaptability and quick decision-making are essential to building capacity for dynamic 

criticality. In the thematic analysis, adaptable goals focused on capabilities that enabled 

quick shifts in priorities. Without dynamic criticality as a goal, it is unlikely to permeate 

the structures and operations of the organization. Goals bring inspiration to changes in 

organizational structures. For example, goals to exhibit requisite complexity will inspire 

an organization to look for more forms that an organization can take to fit the increasing 

forms of the environment (Brose, 2020; C. Q. Brown, 2020; Chester & Allenby, 2022). 

After all, addressing complexity is about flux and unpredictability. The environment will 

always overcome more robust or efficient systems. So, these organizational goals, 

determined by leadership, will be a product of new governance that has embraced wicked 

complexity and uncertainty as the new normal (Chester & Allenby, 2021).  

The thematic analysis indicated that, for more complex organizations, pre-

established priority lists are less critical than building the capacity to engage chaos. 

Overemphasis on efficiency and optimization has led to rigidity and catastrophic failure 

in infrastructure. Leading up to the 2021 Winter Storm in Texas, electrical utility 

companies had neglected to upgrade system capacities and improve weatherization, 

resulting in an unprecedented cascading power outage and highlighting numerous areas 

where community resilience had been neglected (Markolf et al., 2022). Dynamic 

criticality thinking would have encouraged utilities to invest time in developing loose-fit 

structures and build horizon scanning capacity for weather-related cascading failure 
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scenarios. With these tools, they may have had the ability to pivot priorities and develop 

strategies for quick reactions to extreme storms. While prioritizing assets is necessary for 

developing readiness and strategies to engage disturbances, static priority lists have often 

been mistaken as a good plan for disturbances (Clark et al., 2018). This static thinking 

causes shortfalls when responding to novel or extreme disturbances that exceed historical 

precedent (Clark et al., 2018). These shortfalls exemplify how goals that focus on 

foundational requirements (e.g., requisite variety, detecting/reacting quickly) enable 

adaptative strategies and specific competencies such as ambidexterity, disturbance 

detection, and adaptation via exploration. This adaptive capacity gives organizations 

more tools to confront chaos when it comes (Chester et al., 2020; B. B. Lichtenstein et 

al., 2007). 

Capacity development for infrastructure must happen in the pre-chaos space. 

Adaptive capacity is not expanded during chaos as much as used (Woods, 2015). 

Successful organizations spend considerable effort building organizational relationships 

toward cultures of sustained adaptation and practicing reactions to chaos from the cause-

effect learning that exercises foster. These efforts may differ depending on the type of 

disturbance (i.e., practicing reactions for a hurricane will look much different than 

practicing for reactions to seasonal monsoon flooding). Hurricane Katrina showed how 

neglect of pre-chaos adaptations could hamper responses. Overdependence on robustness 

for resilience causes infrastructure organizations to undervalue the knowledge co-

production that comes with intentional cooperation and collaboration. There was no 

consensus within and between agencies about pivoting priorities when critical 

infrastructures failed. Organizational relationships and cooperation quickly deteriorated 
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without firm goals and consensus methods to triage and diagnose priorities (Leavitt & 

Kiefer, 2006). This lesson demonstrates how prior-to-disturbance efforts to build adaptive 

capacity for infrastructure should focus on leadership to enable ambidexterity, flexible 

structures, and knowledge co-production necessary to bolster innovation and build 

capacity (A. M. Helmrich et al., 2021; A. M. Helmrich & Chester, 2022). 

Reimagining infrastructures as knowledge enterprises and shifting to flexible 

loose-fit governance structures will grow the capacity to adapt by exploration much 

faster than traditional governance structures (Uhl-Bien & Arena, 2018). Infrastructure 

governance structures historically manifest as divisional bureaucracies, characterized by 

isolated divisions that often lack coordination and collaboration skillsets that may hinder 

many of the dynamic criticality competencies cited in this framework (Chester et al., 

2020). During the Northeast Blackout of 2003, time-crucial coordination and 

sensemaking between two personnel who worked across the hallway could have 

prevented the cascading failure in the initial minutes of the disaster (NERC, 2004; 

Pescaroli & Alexander, 2016). Thus, two organizational transformations are necessary to 

shift toward a more adaptable paradigm. The first is to transition to a knowledge 

enterprise, which focuses less on developing a product (i.e., infrastructure assets) and 

more on developing knowledge workers (i.e., technicians, operators, and engineers) who 

are responsible for systems (Chester et al., 2020; Chester & Allenby, 2021). This 

transformation deemphasizes the importance of supervision and oversight and 

emphasizes leadership, empowerment, and sharing of knowledge (Davenport, 2001; 

Deployable Training Division, 2020), all pieces that bolster sensemaking and more 

adaptable governance structures. Therefore, shifting towards these principles may 
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improve dynamic criticality via communication and coordination. Communication and 

coordination, in turn, increase idea syndication and expand sensemaking (Uhl-Bien & 

Arena, 2018). The second transition is to develop ambidexterity, switching between 

hierarchical and decentralized, ad-hoc structures during equilibrium and chaos, 

respectively (Chester et al., 2020; A. M. Helmrich & Chester, 2022; Siggelkow & 

Levinthal, 2003). These relationships also display the interconnected relationship 

between organizational structures and sensemaking. To this end, infrastructure 

organizations should practice the discomfort of shifting to emergency response teams, 

diverse in expertise and empowered to take quick action to triage and diagnose 

disturbances. In doing so, infrastructure organizations will familiarize themselves with 

scenarios where structure shifts are necessary, diminishing lethargic responses that may 

hinder dynamic criticality (Alderson et al., 2022). Furthermore, an infrastructure 

organization that knows when to shift between efficient and resilient structures gains the 

requisite variety to match its environment, which also aids the dynamic prioritization 

process (Markolf et al., 2022).  

The nature of the disturbance and the outputs of sensemaking should guide 

strategy selection and development. Infrastructure needs to practice and exercise 

disturbance responses, not to be predictive, but to develop familiarity with the discomfort 

of surprise and intimate knowledge of the system dynamics. This practice expands the 

SAAL skillsets toward the sensemaking competencies of horizon scanning and 

knowledge co-production (Alderson et al., 2022; Ancona et al., 2020; Chester & Allenby, 

2022; C. A. Miller & Munoz-Erickson, 2018). Disturbances manifested differently across 

the sectors of this study, and the diversity of hazards battering infrastructure appears to be 
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doing the same. Practically, low-chaos disturbances may allow for node-networked 

responses with multiple considerations for shifting priorities – much like COG analysis, 

which uses critical capabilities to determine priorities dynamically. For high-chaos 

disturbances, reflexive reactions may be more realistic, such as triaging and diagnosing – 

much like how medical professionals sort patients into general categories during mass 

casualty events. Additionally, multiple strategies could be nested within each other to 

increase flexibility. An infrastructure control center may develop a COG-like nodal 

network based on triage-like assessments from multiple teams transmitting information, 

pushing back against the degradation of rationality that often occurs during dynamic 

decision-making (Brehmer, 1992). When chaos is so high, some organizations have no 

choice but to simplify the environment – as discussed in requisite variety (Boisot & 

McKelvey, 2011). But this simplification must also be balanced with proper 

sensemaking, lest infrastructure managers misdiagnose problems (Chester & Allenby, 

2022). So, the nesting of strategies may be a reasonable compromise to these problems. 

Additionally, strategy selection may present an opportunity for human-supervised 

artificial intelligence systems to assist with sensemaking, reducing confusion and 

subjective bias while bolstering speed and agility (Markolf, Chester, & Allenby, 2021). 

Although most sensemaking competencies should be built pre-chaos, they are 

tested and exercised more intensely during chaos. Horizon scanning and knowledge co-

production remain essential to leading through chaos (Ancona et al., 2020) and analyzing 

how the chaos will affect the infrastructure system. The COVID-19 pandemic revealed 

that infrastructure organizations often neglect sensemaking to anticipate hazards 

(Carvalhaes et al., 2020). For example, in the summer of 2021, hospitals began to rapidly 
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consume the available supply of liquid oxygen due to the surge in severe COVID 

patients. Consequently, there was concern that water utilities would run out of the 

resource – commonly used as a critical water treatment component (Rosen, 1973). Until 

the realization of resource constraints, no one had considered the interdependencies that 

might have caused liquid oxygen to become the critical priority for the water utility. 

Managers were forced to revert to simplified decision-making thresholds for water 

consumption and conservation (Lusk et al., 2021). But nodal networked thinking, horizon 

scanning as a discipline, and disturbance detection could have identified this 

vulnerability before it became a crisis. Making sense of a system requires an in-depth 

analysis of connections, interdependencies, and stakeholders (O'Sullivan et al., 2013). It 

is necessary to keep up with real-time shifts in criticality (Clark et al., 2018).    

Finally, cause-effect learning for the future is a best practice for dynamic 

criticality – although it appears to be among the hardest of competencies to retain 

(Thomas et al., 2019; Westrum, 2006). When comparing the different sectors of this 

study, manufacturers appeared to do this more competently. They intentionally archive 

and recall previous strategies when a new market disturbance is detected. It saves time 

and effort in reinventing new strategies and helps an organization remain familiar with 

other competencies for adaptation to disturbances (Khalil et al., 2020). Additionally, 

newly developed strategies contribute to an ever-growing "snowball" of remembered 

potential responses (Sweet et al., 2014), which continue to grow requisite variety and 

contribute to a streamlined decision-making process. Therefore, remembering for 

infrastructure is foundational to requisite variety because of the interactive feedback 

loops between cause-effect learning and other aspects of sensemaking (Clark et al., 
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2019). Moreover, remembering is an essential component of organizational cognition 

(Cooke et al., 2013), and cognition links to knowledge co-production concerning systems 

and how responses should be tailored accordingly (C. A. Miller & Munoz-Erickson, 

2018). So, infrastructure organizations must practice remembering to practice cognition, 

which is ultimately necessary for sensemaking and strategy development for dynamic 

criticality.  

2.6 Conclusion 

Infrastructure organizations must implement practices towards dynamic criticality 

during times of chaos to remain viable in rapidly changing and increasingly unpredictable 

environments. Other sectors provide insights into the competencies that enable rapid 

pivots to reprioritize knowledge and resources. Chaos is not predictable or 

comprehendible (Chester & Allenby, 2019a). Static priorities to engage chaos will remain 

unknowable, much like an "event horizon of chaos" for infrastructure. Thus, the results of 

this study show that if infrastructure organizations wish to approach dynamic criticality 

amidst disturbances, they should focus on maximizing adaptive capacity. Specifically, 

during periods of equilibrium, they should set goals for rapid adaptation and quick 

decision-making. They should alter their formal structures in ways that are friendly to 

sustained adaptation, which can be dynamic, flexible, and shiftable when disturbances 

occur. These goals and structures will then enable sensemaking competencies, allowing 

the organizations to scan the horizon for threats and make sense of increasing information 

flow (before, during, and after disturbances). These efforts will give way to the final 

sought-after product: practical strategies for dynamic criticality. Beneficial future 

research may be the historical analysis of disturbances and how dynamic criticality was 
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or was not achieved by infrastructure organizations. But care must be taken not to 

develop specific decision-making frameworks, as they may lead to strategy entrenchment 

and a decrease in adaptive capacity. The primary lesson from this work is that strategies 

are also dynamic and unique to disturbances. Thus, focusing on adaptive capacity will 

benefit infrastructure organizations more than a rigid list of priorities. 
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CHAPTER 3 

3. PREPARING INFRASTRUCTURE FOR SURPRISE: FUSING SYNTHETIC NETWORKS, 

INTERDEPENDENCY, AND CASCADING FAILURE MODELS 

3.1 Introduction 

There is a pressing need to understand fine-scale infrastructure dynamics of how 

disturbances occur. Infrastructure managers often lack insight into how interdependent 

networks interact and affect each other when failures are triggered (Chester & Allenby, 

2019a; FERC & NERC, 2012; Leavitt & Kiefer, 2006; Mitsova, 2021; Vespignani, 

2010). Limited vision into how failures occur is accentuated by rapidly changing 

conditions in local and global environments (i.e., the Anthropocene, as defined by Lewis 

and Maslin, 2015; Steffen et al., 2015)) which are increasingly subjecting infrastructure 

to hazards that exceed design conditions (B. Allenby & Chester, 2018; Markolf, Chester, 

Helmrich, et al., 2021). The accretion of new technologies, climate change, and 

increasing interdependencies within and across infrastructure are introducing novel 

cascading failure scenarios (Arbesman, 2016; Vespignani, 2010). Increasingly, small, 

localized outages initiate large cascading failure events (Ganin et al., 2016; Zorn et al., 

2020). They are usually preceded by the confluence of unlikely factors leading to an 

extreme outcome (i.e., perfect storms) or are high-impact events that were unforeseen or 

unimagined (i.e., black swans) (Paté-Cornell, 2012; Taleb, 2007). In response to this 

increasing complexity, infrastructure managers require new models and methods to 

systematically search for weak signals that probe for new destabilizing conditions (i.e., 

horizon scanning) (Chester & Allenby, 2022). 
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Horizon scanning requires continued investment toward understanding system 

dynamics and novel disruptors (Chester & Allenby, 2022; Iwaniec et al., 2020; Muñoz-

Erickson et al., 2021). Generally, a single infrastructure's engineering design, 

construction, and dynamics are well understood. However, there is a limited 

understanding of how infrastructure dynamically interacts with other systems (Chester & 

Allenby, 2019a). Infrastructure risk analysis models have historically failed to fill this 

gap (Buldyrev et al., 2010; Hasan & Foliente, 2015). Thus, researchers have developed 

bodies of literature to study infrastructure interdependency (Mahabadi et al., 2021; 

Ouyang, 2014) and cascading failure (J. Li et al., 2019; Valdez et al., 2020). These fields 

generally seek to identify trending behavior and propose changes to repel and resist 

disturbances and failures (i.e., resilience).  

Unfortunately, data availability and low stakeholder participation remain 

persistent barriers to improving interdependency and cascading failure models (Cantelmi 

et al., 2021; Ouyang, 2014). In place of data to build models of real networks (Figure 

3.1), cascading failure and interdependency models are forced to use benchmark 

networks like IEEE networks (Mohammadi & Saleh, 2021) or virtual city networks like 

Micropolis (Balakrishnan & Cassottana, 2022). But these theoretical networks (Figure 

3.1) lack the realistic detail needed for new design algorithms and risk analysis of future 

scenarios like extreme climate events (Bachmann et al., 2020; Marcos et al., 2017; Paté-

Cornell, 2012). Novel models are needed to aid resilience efforts.  
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In response to the need for detailed data, infrastructure sectors are beginning to 

develop Synthetic Networks (Figure 3.1): fictional but realistic models of networks that 

imitate the appearance and behavior of real-world networks (Marcos et al., 2017). These 

networks can serve as platforms for diverse and enhanced urban infrastructure analysis. 

Realistic synthetic networks generally need to have three properties: the 

representativeness of existing networks, the confidentiality of real-world data, and the use 

of real engineering properties (Mohammadi & Saleh, 2021). Methodologies and 

validation of these models are developing, and no established framework or vision is 

identified in the literature for how synthetic networks should be deployed for resilience 

research.  

Figure 3.1 – Fusion of Synthetic Interdependent Cascading Failure Models (SICFMs)  

This paper seeks to advance the vision for infrastructure resilience and risk 

analysis modeling. This chapter proposes that unique and critical insights exist at the 
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intersection of the three modeling domains of Synthetic Networks, Interdependency 

Modeling, and Cascading Failure models (Figure 3.1). This intersection is referred to as 

Synthetic, Interdependent, Cascading Failure Models (SICFMs). Because detailed data 

continues to challenge interdependency and cascading failure research (Ouyang, 2014; 

Valdez et al., 2020), SICFMs may provide the fine-scale analysis necessary to elucidate 

novel scenarios like black swans or aid in unearthing new solutions for wicked complex 

problems. Thus, this paper will explore modeling possibilities for SICFMs. This chapter 

aims to identify practical uses for fine-scale synthetic models combined with 

interdependency and cascading failures.  

Toward identifying a framework of SICFMs, a state of practice will be conducted 

for the three research domains. It is necessary to understand procedures, methodologies, 

capabilities, and limitations for each domain. This state of practice will be focused on 

literature that uses at least one of the domains. As this study is concerned with modeling 

and resilience analysis for urban physical infrastructure, the literature search will focus 

on studies that use geospatial analysis in the model. The literature analysis will focus on 

physical infrastructure (e.g., power, water, road transportation), referred to as “civil 

infrastructure” throughout the text. Reviews already exist for the individual domains, and 

this chapter will utilize this knowledge base (Bachmann et al., 2020; Banerjee et al., 

2014; Guo et al., 2017; Mahabadi et al., 2021; Marcos et al., 2017; Mohammadi & Saleh, 

2021; Ouyang, 2014; Valdez et al., 2020; Wei et al., 2019). Following the state of 
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practice, a framework for SICFMs will be developed, and the capabilities from each 

domain will be synthetized to propose how future SICFMs can be deployed.  

3.2 State of Practice 

The three domains in this study are at different stages of research maturity. 

Synthetic network research is younger than interdependency and cascading failure. 

However, synthetic studies have recently increased in publication. Interdependency 

research is rooted in physics and mathematical relationships between theoretical networks 

but is now applied to study real networks. Similarly, cascading failure research began in 

the physical sciences using theoretical models but increasingly uses engineering models 

to simulate failures. Interdependency and cascading failure models often lack detailed 

information about their networks. This gap appears to be a primary motivation for 

realistic synthetic network development. Academic search databases, Google Scholar, 

Web of Science, Scopus, and ASCE libraries were used. Keyword searches included 

combinations of the terms “infrastructure,” “cascading,” “failure,” “interdependent,” 

“network,” and “synthetic.” Seventy-six peer-reviewed research publications were 

identified and analyzed. In addition to the research publications, 18 academic review 

papers from 2010 to 2022 were included. The state of practice will present general 

observations about infrastructure network modeling and current practices for synthetic 

networks, interdependencies, and cascading failure.  

3.2.1 General Infrastructure Network Modeling State of Practice  

Three archetypical network structures were identified in the literature: theoretical, 

real, and synthetic, as already introduced in Figure 3.1. The archetypes frame the models 

for infrastructure interdependencies and cascading failures. Theoretical networks 
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generally do not mimic a real infrastructure network topology or operation. Rather, they 

are specifically designed to experiment with interdependencies between multiple 

networks or to test topology robustness considering cascading failure to inform future 

real network design (Y. Wu et al., 2021; C. Zhang et al., 2020). Real networks use actual 

network data – often redacted – to study specific components or attributes of 

infrastructure to identify component criticality, resilience, or vulnerabilities. These 

models can give prescriptive recommendations to practitioners for maintenance, asset 

management, or hardening requirements (Abdel‐Mottaleb et al., 2019; Dong, Wang, et 

al., 2020; Zorn et al., 2020). In contrast, synthetic network models are realistic but 

fictional networks. Often used for power infrastructure, synthetic networks are being 

developed to provide realistic test cases for future network optimization and emerging 

technologies such as microgrids and decentralized renewable generation (H. Li et al., 

2020; Marcos et al., 2017; Meyur et al., 2022). Theoretical and real networks were 

primarily used for interdependency studies and cascading failure simulations, whereas 

most literature on synthetic networks still focuses on model development (Marcos et al., 

2017). 

The three domains have researched many different infrastructures but tend to 

focus on power, water, communications, transportation, and energy. Power was the most 

common and contained both transmission and distribution studies. Water primarily 

focused on network constructs, component criticality, and dependency on power 

infrastructure. Studies involving communications tended to focus on co-dependency with 

power and SCADA. Energy infrastructure (non-power), which refers primarily to fossil 

fuels (e.g., oil and natural gas), also focuses heavily on interdependencies with power. 
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Finally, road and other transportation studies focused on interdependencies with 

communications networks, storm, water, sewer, and power. 

3.2.2 Synthetic Infrastructure Networks 

The development of realistic dynamic simulation methodologies for infrastructure 

has revealed a dearth of realistic networks to test these methodologies (Marcos et al., 

2017). Thus, synthetic networks are being developed and validated as realistic 

representations of their real infrastructure network counterparts. While some public data 

are often foundationally used, synthetic networks must function primarily without being 

informed by real network properties. They must also use engineering design for 

construction and operation (Mohammadi & Saleh, 2021). Naturally, the unique functions 

of different infrastructures will have varying requirements to build a synthetic network. 

For example, transportation infrastructure has well-documented network topology with 

well-established models for traffic flow dynamics. This access to topology makes it easy 

to model the structure and simulate functions. In contrast, power infrastructure 

organizations do not generally release topology to the public; however, their operations 

are generally understood and can be engineered in models. So, unlike transportation, it is 

easy to model the operations of a power network but difficult to know how topology and 

design should imitate the real world. From 2015 to 2022, synthetic research has produced 

a small body of literature that has focused chiefly on methodologies for network 

development with some emphasis on operations. But their practical uses for 

interdependency or cascading failure simulations are beginning to emerge.   

Synthetic power models are the most developed of civil infrastructure. 

Mohammadi and Saleh (2021) completed the first systematic review of synthetic power 
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models. Transmission models have advanced separately and faster than distribution 

models. Many transmission test networks, their datasets, and some open-source models 

are publicly available, but no convenient software platforms have been released. 

Additionally, studies have yet to automate the network creation process for transmission 

or distribution. Some expert design with manual input is still required.  

Synthetic transmission power models commonly use population data to estimate 

large-scale loads (Gegner et al., 2016) and contingency and sensitivity analysis to balance 

the model for realistic responses to demand fluctuations (Birchfield et al., 2019; 

Birchfield & Overbye, 2020). Realistic topology is particularly challenging for synthetic 

transmission networks because the lines often cut across geographical features or do not 

follow other urban features such as roads. Thus, models often use economic and technical 

optimization to design transmission network topology (Espejo et al., 2019). This topology 

construction is sometimes aided by Delaunay triangulation and “minimum spanning 

tree,” a geometrical optimization method. Transmission line edges – covering more 

considerable distances – are mapped in a “line of sight” direction from node to node 

(Mohammadi & Saleh, 2021). 

Synthetic power distribution models have kept pace with synthetic transmission 

models. Typically, distribution network edges are assumed to follow road topology from 

open-source street data (Mohammadi & Saleh, 2021). Synthetic distribution feeders have 

been synthesized using generalized census data for small-grid test cases (Saha et al., 

2019), allowing for detailed, realistic grid monitoring in power flow simulators. Ali et al. 

(2022) incorporated customer-level power data with demand for every facility in the 

distribution area. They used a validation methodology that included a review from 
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industry experts at a local utility company. Notably, the researchers had access to detailed 

demand data – which deviates slightly from the tradition of synthetic models using 

public-only data. In partnership with NREL, Mateo et al. (2020) created “RNM-US,” a 

methodology to synthesize power distribution networks for large areas in the United 

States. Meyur et al. (2022) created a synthetic distribution model using publicly available 

data in combination with engineering and economic optimization. The simultaneous 

emergence of various synthetic transmission and distribution models bodes well for the 

future of synthetic power research. Ideally, merging best practices will unify research 

efforts as methodologies are refined. 

Combining synthetic transmission and distribution networks was only identified 

once in the literature. Li et al. (2020) combined a synthetic power distribution grid model 

created by the RNM-US model (Mateo et al., 2020) with existing synthetic transmission 

methodologies (Birchfield et al., 2017; Gegner et al., 2016) to develop a realistic and 

cross-scale synthetic power grid for the entire state of Texas. The methodology was 

validated using utility-provided metadata.  

Water distribution models have received some synthetic methodology 

development. DynaVIBe was one of the earliest attempts to synthesize water networks 

(Sitzenfrei et al., 2010). The model used roads to create a realistic topology with 

simplified demand estimations. The authors later improved their loop methodology to 

reduce unnecessary redundancies (Mair et al., 2014). Then, using an Integrated Urban 

Water Management Model (IUWM) by Sharvelle et al. (2017) to estimate small-scale 

demand, Ahmad et al. (2020) automated the hydrology design in EPAnet using minimum 

spanning tree topology, resulting in a model that realistically imitated the Phoenix Metro 
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Region. More recently, a synthetic dynamic water flow framework was developed in a 

multi-infrastructure synthetic study by Wang et al. (2022). Instead of focusing on realistic 

network generation, they used existing synthetic networks to develop a methodology for 

dynamic flow throughout the water network and between the other networks. Momeni et 

al. (2023) designed an iterative WDN synthetic network generator. They used standard 

design criteria to govern network creation and used resilience and cost constraints as 

optimization factors. 

The remaining infrastructure types that included synthetic networks were road 

transportation, communications, energy, stormwater, and buildings. Synthetic 

development appears nascent for these sectors. Most research for transportation 

infrastructure focuses on road networks (Mohebbi et al., 2020). Road topology is well 

documented with publicly accessible data, eliminating the need for synthesizing. 

Additionally, existing dynamic traffic flow models are abundant, but they have 

significant theoretical components because of the agent-based nature of traffic flow 

(Dong et al., 2020). As such, they are not “synthetic” in the same ways as, for example, 

power or water. Thus, the characteristics of synthetic networks may vary across 

infrastructure domains. Despite these differences, other infrastructure models share a goal 

of re-creating realistic behavior. For example, a synthetic road model was coupled with 

synthetic stormwater to analyze resilience during intense storms and floods. The 

geographic and physical interdependencies revealed more realistic responses for the two 

infrastructures that would have been latent in single-network analysis (Y. Yang et al., 

2019). Moreover, in a later study, the same authors added variance to storm sewer 

component conditions for nuance and realistic behavior (Y. Yang et al., 2020). 
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Additionally, Wang et al. (2022) modeled dynamic exchanges of resources within and 

between natural gas, power, and water networks instead of static or binary 

interdependencies. Two studies created synthetic communication networks and paired 

them with synthetic power grids. In both cases, the communication network topology was 

based on the power topology. Additionally, network operation was calculated 

stochastically instead of using realistic engineering parameters (Fu et al., 2022; Korkali et 

al., 2017).  

Validation methodologies for synthetic networks appear primarily for power and 

water. Most commonly, models use metadata from real-world infrastructure counterparts 

to validate topology (Espejo et al., 2019; H. Li et al., 2020; Sitzenfrei et al., 2010). Some 

real-world test datasets may be compared to model topology and functionality. Ahmad et 

al. (2020) followed this validation method for synthetic water models by testing topology 

and operation against a publicly available small-town water distribution network. 

Similarly, Meyur et al. (2020) obtained a small subset of real-world data within their 

study region and compared topology and network performance to their model for 

validation. Synthetic power network operational validation is improved by analyzing 

voltage variability across time to test realistic behaviors (Idehen et al., 2020). 

Additionally, the water and power research communities have provided open-source test 

sets that researchers may use to improve methodologies. But, test cases have significant 

real-world limitations in their realism (Marcos et al., 2017). So, while test cases may be 

helpful for development, the validation process still requires some real-world data 

(Mohammadi & Saleh, 2021; Sitzenfrei et al., 2010). One model for synthetic power 

distribution used industrial validation, sending the model and data output to the utility 
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provider from the region of study. The utility provider analyzed and compared the model 

to the real-world network without compromising security and then provided feedback to 

the research team (Ali et al., 2022). Using industrial experts seemed to be the most robust 

validation method, but stakeholder participation may be a barrier for different locations.  

As progress continues in developing realistic infrastructure models, researchers 

have begun to couple different infrastructure types together. Wang, Yu, and Baroud 

(2022) combined synthetic power, water, and gas to investigate interdependent 

relationships during flow variations. As already mentioned, Yang et al. (2019, 2020) 

coupled stormwater and road transportation. But, thus far, these are the only two studies 

with coupled synthetic networks.  

Synthetic network model development is still nascent for most infrastructure. The 

power research community has recognized the need to develop robust synthetic 

methodologies (Marcos et al., 2017; Mohammadi & Saleh, 2021). Some water models 

have been developed but are still emerging, and other infrastructure disciplines appear to 

be focused elsewhere. Synthetic network development for multiple infrastructures may 

aid interdependency modeling (Marcos et al., 2017), and a few synthetic studies attempt 

to couple multiple infrastructures (Yang et al., 2019; Yang et al., 2020; Wang, Yu and 

Baroud, 2022). More work is needed to develop other infrastructure methodologies. The 

need for a greater understanding of interdependencies may motivate the acceleration of 

synthetic development in other infrastructure disciplines.  

3.2.3 Infrastructure Interdependence 

Interdependency research is the study of interactions between mutually reliant 

infrastructures. Usually, these studies involve reactions to disturbances (J. Li et al., 2019). 
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It is more mature than the synthetic infrastructure domain but still needs major progress 

for models to be useful in the real world (Banerjee et al., 2014). The events of 9-11 

accelerated awareness of the urgent need for increased infrastructure security and how 

infrastructures interact and are accessed and affected via multiple mediums. Thus, 

interdependency research seeks to inform the design and management of various 

infrastructures (Pederson et al., 2006; Rinaldi et al., 2001). For example, urban fires can 

cause failures in power infrastructure, which cuts power to water pumps, hampers 

firefighting capabilities, and simultaneously deprives power plants of cooling water, 

leading to more power outages (Bagchi et al., 2010). Large urban disturbances often 

congest roads and lead to cascading feedback loops between transportation and 

communication (Barrett et al., 2010). Terrorist attacks can disable coupled energy 

infrastructure like power and gas (B. Wu et al., 2016). Earthquakes can simultaneously 

disable power and communication, adding confusion and complexity to response efforts 

(Cardoni et al., 2020) and can cause further interdependent losses to critical infrastructure 

like water and gas (Cárdenas et al., 2022). Also noteworthy, interdependencies between 

environmental and technological factors can quietly amplify social vulnerabilities and 

inequalities (Wakhungu et al., 2021). To discuss the state of practice for interdependency 

research, this section will briefly overview the evolution of interdependent models. A 

generalized discussion of methodologies to study interdependencies will follow. This 

section concludes with ongoing challenges and paths forward. 

The infrastructure community recognizes four general types of infrastructure 

interdependencies Rinaldi et al. (2001): i) physical (a direct link between two networks 

where inputs and outputs directly affect each other), ii) geographic (co-location such that 
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a local event can create a mutual state change), iii) cyber (relying on communications 

infrastructure and its dataflows for proper function), and iv) logical (mutual reliance via a 

means that is not physical, geographic, or cyber-related, e.g., financial). Many physical 

interdependency studies focused on the nexus of water and energy (Bagchi et al., 2010; 

Balakrishnan & Cassottana, 2022; Cárdenas et al., 2022; Heracleous et al., 2017; Holden 

et al., 2013; Kong et al., 2019; Min et al., 2007; Munikoti et al., 2021; Sharma & 

Gardoni, 2022; K. Wang et al., 2022; Yin et al., 2022; Zorn et al., 2020). Geographic 

interdependencies were also common in real network analysis, likely because realistic 

geospatial data were available. Multiple studies examined the interdependencies between 

power and communications. Still, many of them recognize that the modeling logic used 

between the power-cyber nodes may be more representative of a physical 

interdependency than a cyber interdependency (Buldyrev et al., 2010; Eusgeld et al., 

2011; Fu et al., 2022; Heracleous et al., 2017; Kalstad & Wolthusen, 2007; Kong et al., 

2019; Korkali et al., 2017; Liu et al., 2019; Min et al., 2007; Nan & Sansavini, 2017; 

Ramachandran et al., 2015; Rueda & Calle, 2017; P. Zhang & Peeta, 2014; Zorn et al., 

2020). Some studies used logical interdependence to represent human factors such as 

demand (Heracleous et al., 2017) or the behavioral relationships between traffic and 

cellular network congestion (Barrett et al., 2010).  

The first interdependency models were developed by mathematicians and 

physicists but eventually became an interdisciplinary field (Pederson et al., 2006; 

Satumtira & Dueñas-Osorio, 2010). Following the seminal definition of 

interdependencies by Rinaldi et al. (2001), the first numerical studies focused on the 

behavior of non-specific interdependent networks (Eusgeld et al., 2011). These initial 
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models used networks with simple node and edge structures. They also had binary 

interdependency relationships and randomized disturbances that were less realistic 

(Ganin et al., 2016; Holden et al., 2013; Kalstad & Wolthusen, 2007). These confirmed 

the theory that interdependencies could often lead to more severe cascades and thus 

deserve greater attention. Satumtira & Dueñas-Osorio (2010) reviewed studies of 

interdependency and confirmed at the time that current models were too rudimentary and 

recommended the development of dynamic models with realistic engineering principles. 

Models also needed to be developed for practitioners and commercial use to make 

interdependency study more accessible (Pederson et al., 2006; Satumtira & Dueñas-

Osorio, 2010). Subsequently, more studies focused on practical applications, asking 

questions about how interdependence affects infrastructure. Shen (2013) coupled an 

IEEE test case power model and a random network to simulate interdependence with 

SCADA and optimized interconnections by minimizing construction and repair time 

when disturbances were introduced. They concluded that simplified network 

interdependency was inadequate for optimizing infrastructure network construction. Nan 

& Sansavini (2015) focused on interactions between Switzerland’s simplified power 

transmission, associated communication networks, and stochastic human operator 

decisions during disturbances. They used these interactions to find how interdependence 

and operator decision-making affected power resilience. Most recently, interdependence 

modeling has come from theoretical and practical applications (Sharma & Gardoni, 

2022). Theoretical models are rooted in physics, seeking broadly applicable virtues of 

interdependency, while practical models employ engineering design principles to answer 

specific resilience questions (Buldyrev et al., 2010; Mahabadi et al., 2021). Practical 
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models have struggled to emerge in the absence of real-world data. Stakeholder 

participation is needed to improve understanding of real interdependencies to make the 

models more realistic (Mitsova, 2021; Suo et al., 2021).  

Methodologies for interdependency generally revolve around feedback between 

networks, stochastic factors, topology (i.e., the shape of the network), and node and edge 

criticality (Abdel‐Mottaleb et al., 2019; Bachmann et al., 2020; Schweikert et al., 2021). 

Graph and network theory are long-time accepted methods for representation and 

analysis (Satumtira & Dueñas-Osorio, 2010). Interdependency studies can model 

feedback between the networks bilaterally or unilaterally. Bilateral modeling simulates 

dynamic exchanges between infrastructure networks but is computationally expensive 

and can be complicated to synchronize temporally. Unilateral representations lose some 

dynamic realism, but researchers try to balance this loss with stochastic variables. Both 

feedback methodologies are currently used (Sharma & Gardoni, 2022). Additionally, 

stochastic factors are used in other ways to increase realism. For example, some 

components may deteriorate over time, affecting the probability of spontaneous and 

interdependent failures (Bondank, Chester, and Ruddell, 2018; Yang et al., 2020). 

Another example is Zhou et al. (2022), who stochastically represented dynamic response 

prioritization based on node and edge criticality. They found that this prioritization 

improves long-term network performance. Studies focusing on topology construct usually 

seek distinctive physical traits of the more resilient networks. The hope is that these 

unique traits may correlate to real-world resilience (Dueñas-Osorio & Vemuru, 2009). 

Results have been mixed on whether interdependency generally aides or hampers 

robustness. Wang et al. (2018) found that interdependency sometimes caused a decrease 
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in robustness during targeted attacks on crucial nodes. Similarly, Zorn et al. (2020) found 

that sympathetic failures tended to spill across networks when interdependence was high. 

But context is important in these conclusions. When networks had asymmetric 

interdependent connections, the network was more resistant to cascading failure (Liu et 

al., 2019). Also, Korkali et al. (2017) compared two models, one with simple feedback 

between networks and the other with more realistic and complex feedback. They found 

that in the realistic model, robustness increased as interdependency increased. But the 

inverse was true for simple networks. So there is no firm conclusion regarding topology 

construct and robustness. Similar to topology research, other studies have investigated 

node and edge criticality for network resilience. In these models, highly connected nodes 

are bottlenecks. Munikoti et al. (2021) found that outages involving critical nodes were 

more destabilizing to multi-network models. Ouyang (2016) had similar results for node 

criticality but also found that edge criticality was not as impactful on resilience. Overall, 

interdependency research has standards for methodologies, but the interdisciplinary 

nature of this field implies that there will be variance in how models are constructed. 

Some studies focus on the role of interdependencies in real-world events. These 

studies often use case studies investigating the practical dynamics of disturbance-related 

interdependence in real-world infrastructure. Krishnamurthy et al. (2016) did an in-depth 

case-study on power and communications interdependencies after earthquakes in Japan 

and Chile. They found that power is not only dependent on communications for SCADA 

operation, but coordination of response and repair teams also relies on communication 

infrastructure, significantly affecting operations and recovery for both systems. These 

dynamics imply that more continuous exchanges between these two networks may be 
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necessary for interdependent studies that model continuous cascades (Varga et al., 2014). 

Another study used historical outage data from Hurricane Hermine to train a statistical 

model, predicting road closures and power outages (Madhavi et al., 2019). They used the 

model for predictions of failure in future storms. The study of real data from past events 

may help inform how interdependencies should be modeled in the future and is necessary 

to improve models (Bachmann et al., 2020).  

There are three primary research gaps for infrastructure interdependence, 

according to Haggag et al. (2020): i) resilience quantification, ii) defining 

interdependence, and iii) modeling of real-life systems. These issues are rooted in several 

shortfalls. First, models have computational limitations. They cannot account for all 

spatial and temporal factors; there is tension between the accuracy of models and the time 

and cost to produce and run them. Second, researchers have limited access to or cannot 

collect data to study and mimic real-world infrastructure. Thus, researchers are forced to 

narrow their questions.  

Interdependency research is a broad and interdisciplinary field. The focus is 

primarily on power, water, communications, and transportation. Other civil 

infrastructures are not as developed. Non-technological critical infrastructure (e.g., 

medical, agriculture, logistics) has yet to be included in interdependency research. 

Physics and mathematics-based methods have successfully unearthed macro-behaviors. 

Detailed models seek to elucidate more nuanced behaviors, but these are slow to emerge. 

3.2.4 Infrastructure Cascading Failure 

Cascading failure modeling is a prominent subfield of infrastructure research. 

Cascading failure models have been applied to many infrastructures, evaluating failure 
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behaviors and recovery strategies. Cascading failure models have two primary 

approaches. The first is to capture reactions to progressive failure. This method tests 

robustness by progressively removing nodes and edges and often foregoes detailed 

engineering functions within the physical and operational model (Mahabadi et al., 2021). 

The other approach, dynamic failure, introduces an initial disturbance and uses 

engineering operations combined with stochastic variables to simulate responses within 

the model (Y. Wu et al., 2021). These models are often complex and computationally 

expensive (Valdez et al., 2020). Cascading failure models are used for the general 

purposes of 1) resilience framework development; 2) topology evaluation, 3) identifying 

component criticality; 4) seeking thresholds for total collapse, and 5) supporting 

interdependency model development. Within these uses, some models focus only on 

cascading failure, while others expand the model to simulate post-disturbance recovery. 

Methods and uses are discussed in this section, followed by a brief overview of which 

infrastructures have been included in cascading failure models. 

Some research efforts develop models to evaluate the resilience of real-world 

networks. These studies use theoretical test networks to simulate dynamic failure and 

observe behaviors to derive evaluation metrics. These metrics form the basis for a 

framework, which can then be used to evaluate other infrastructure networks for 

resilience. Oftentimes, the studies will use a second test network to validate the 

framework (Bagchi et al., 2010; Balakrishnan & Cassottana, 2022; Cárdenas et al., 2022; 

Cardoni et al., 2020; Guidotti et al., 2016; Kong et al., 2019; Korkali et al., 2017; 

Munikoti et al., 2021; Nan & Sansavini, 2017; Oughton et al., 2019; Sharma & Gardoni, 
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2022; Thacker et al., 2017; B. Wu et al., 2016; B. Yang et al., 2020; Y. Yang et al., 2019; 

Zorn et al., 2020).  

A body of work focuses on the resilience of different network topologies when 

subjected to disturbances (Azzolin et al., 2018; Berardi et al., 2014; Buldyrev et al., 2010; 

Dueñas-Osorio & Vemuru, 2009; Korkali et al., 2017; Liu et al., 2019; K. Wang et al., 

2022; Y. Wu et al., 2021; C. Zhang et al., 2020). For example, cascading failures were 

used to optimize topology for a coupled power and gas model in Harris County, Texas, 

by changing the network characteristics (Ouyang & Dueñas-Osorio, 2011). Additionally, 

Dueñas-Osorio & Vemuru (2009) modeled cascading failure in a simple power network 

and found that a strategic combination of intentional redundancy and islanding via weak 

links decreased failures.  

Cascading failure models are used to identify critical components of single and 

multi-network models (Abdel-Mottaleb & Zhang, 2020; Berardi et al., 2014; Buldyrev et 

al., 2010; Dueñas-Osorio & Vemuru, 2009; Ouyang, 2016; Schweikert et al., 2021; S. 

Wang et al., 2018, 2019; C. Zhang et al., 2020; J. Zhou et al., 2022). For a single network 

model, a power grid study might focus only on critical nodes and edges (Dueñas-Osorio 

& Vemuru, 2009). Conversely, a water-road model might consider the water network’s 

service level and how the road network may flood when a water pipe bursts (Abdel-

Mottaleb & Zhang, 2020). These models typically use dynamic failure simulations. 

The possibility of total collapse when key tipping points are reached is another 

area of focus. These studies typically use progressive failure approaches with simple 

networks and interdependent relationships. They progressively and randomly fail nodes 

and edges until the entire network collapses (Mahabadi et al., 2021). Networks will often 
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continue to function despite initial outages but reach a transition point where collapse 

occurs very quickly. A single- or multi-network model is considered more robust if the 

transition point occurs late in the failure process, indicating that the network can 

withstand more failures before the collapse suddenly accelerates (Barrett et al., 2010; 

Dong, Mostafizi, et al., 2020; Dong, Wang, et al., 2020; Liu et al., 2018; Pahwa et al., 

2015).  

In some cases, cascading failure models are often used within other models that 

focus on the dynamics of infrastructure interdependencies. In these cases, failure is 

generally not the focus but, instead, how failures affect dynamics and exchanges between 

the modeled networks (Heracleous et al., 2017; Holden et al., 2013; K. Wang et al., 2022; 

Yin et al., 2022). 

Cascading failure models are generally focused on the vulnerabilities of 

infrastructure (Mahabadi et al., 2021; Meyur, 2022), but some studies also focus on 

recovery from disturbances. (Barrett et al., 2010; Guidotti et al., 2016; Holden et al., 

2013; Munikoti et al., 2021; Nan & Sansavini, 2017; Sharma & Gardoni, 2022; Shen, 

2013; Y. Yang et al., 2019). For example, Sharma & Gardoni, (2022) modeled power-

water recovery after an earthquake to estimate recovery times for Tennessee emergency 

management response plans. Recovery from cascading failure is also modeled to test 

disturbance response strategies. Kong et al. (2019) found that prioritizing path-dependent 

(i.e., more connected) assets during recovery minimized restoration times for the overall 

system of interdependent networks. Also, recovery modeling can test how maintenance 

strategies for components will change how networks fail and recover from outages, 
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helping infrastructure managers seek an optimal return on investment (K. Wang et al., 

2022). 

There is a notable absence of research on perfect storms and black swans in 

cascading failure research. Many cascading failure models simulate failure until total 

collapse. But the subsequent analysis tends to focus on generalized behaviors, avoiding 

low-probability-high-impact outcomes. Previous literature has pointed out that cascading 

failure models and risk assessment tools have been historically inadequate for analyzing 

black swans (Aven, 2013; Hasan & Foliente, 2015; Paté-Cornell, 2012), and this appears 

still to be true.  

Cascading failure has been studied across many infrastructures, such as 

electricity, energy, water, stormwater, sewer, and transportation. Power is the most 

studied infrastructure (Pagani & Aiello, 2013). Studies that focused solely on electricity 

investigated questions around ideal network topologies and sought to understand the 

dynamics of outages in transmission and distribution. These studies have recommended 

topology changes to decrease cascading failure (Azzolin et al., 2018; Dueñas-Osorio & 

Vemuru, 2009). Dueñas-Osorio & Vemuru (2009) used dynamic failures to recommend 

topology changes involving “weak links” in the transmission network. As a result, service 

areas would be naturally islanded from specific line failures during outages, protecting 

the remaining network. Others used progressive failures to estimate total collapse 

thresholds. They found that larger networks are more at risk of catastrophic blackouts and 

prescribed methods for intentional islanding during disturbances (Pahwa et al., 2015). For 

water, mechanical component failure is often the cause of cascading failures. Berardi et 

al., (2014) used dynamic failure to determine the criticality of components. They found 
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that prioritizing preventive maintenance by criticality rather than component age reduced 

cascade severity. For roads, Dong et al., (2020) progressively failed random portions of 

the road network to estimate the critical point at which Portland’s transportation 

infrastructure transitioned to total collapse. These single-network studies bring critical 

insight into how cascades occur. But there is also a growing need to study and quantify 

how failures in one network may also affect other networks (Rinaldi et al., 2001). 

Models of cascading failure involving multiple interdependent infrastructures 

have begun to appear in recent years. Power networks appear most frequently and are 

often paired with water distribution, communications, and non-electrical energy (e.g., oil 

and natural gas) infrastructure (Haggag et al., 2020). These models are frequently used to 

elucidate how interdependent relationships affect cascading failure (Zorn et al., 2020). 

Power-water cascading failure is a topic of interest due to their high interdependence in 

the face of rising global temperatures (Bagchi et al., 2010; Balakrishnan & Cassottana, 

2022; Bartos & Chester, 2014; Clark et al., 2019). Power and communications network 

cascading failure is also commonly examined due to the inseparable nature of power and 

SCADA and the associated risks of catastrophic outages (Korkali et al., 2017; 

Krishnamurthy et al., 2016; Liu et al., 2019). Power and other energy infrastructure are 

often paired due to the economic impact of power failures that may affect oil and gas 

production and distribution (Ouyang, 2016; Ouyang & Dueñas-Osorio, 2011; S. Wang et 

al., 2018; B. Wu et al., 2016). Abdel-Mottaleb & Zhang (2020) paired water-road 

networks to inform water component maintenance priorities based on how water pipe 

failures degraded road transportation. In an exceptional case, Zorn et al., (2020) created 
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cascading failure model for ten interdependent infrastructure networks. But their results 

were necessarily more granular than models with only two or three infrastructures. 

3.3 Discussion: A Framework for the Future of SICFMs 

This section fuses the three domains to propose a framework for SICFMs. 

Synthetic networks are detailed and realistic enough to serve as a modeling foundation. 

However, SICFMs need synthetic networks to reach a viable point of development before 

being deployed. SICFMs will also need expanded interdisciplinary stakeholder support to 

ensure that the specialized facets of the model are robust and continuously validated. 

Researchers should balance automated modeling with expert design to maximize 

deployability and realism. SICFMs should employ dynamic interdependencies for 

coupled networks, expanding opportunities for cyber and logical interdependencies. With 

these new developments, SICFMs should incorporate other non-technological factors to 

tie cascading failures back to human capabilities. These improvements should provide 

novel opportunities for fine-scale risk analysis to scan the horizon for surprise events 

(i.e., perfect storms and black swans). These recommendations are summarized and 

shown in Figure 3.2.  
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Figure 3.2 – Resulting Framework for SICFMs. 

Synthetic network methodologies should strive to meet two requirements before 

deployment in SICFMs. First, the methodology should be usable across many geographic 

locations (Mohammadi & Saleh, 2021)(Mateo et al., 2020). Second, the method must 

withstand rigorous validation (Ali et al., 2022; Birchfield et al., 2017; Idehen et al., 2020; 

Krishnan et al., 2020; Mohammadi & Saleh, 2021). Synthetic power models can currently 

produce highly detailed transmission and distribution networks in nearly any location in 

the United States and Europe (Ali et al., 2022; Birchfield et al., 2019; Birchfield & 
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Overbye, 2020; Gegner et al., 2016; H. Li et al., 2020; Mateo et al., 2020; Saha et al., 

2019). Thus, power networks appear mature enough to be deployed for SICFMs. Water 

models have been developed, and some are applicable in many geographic regions, but 

further validation of current methodologies is needed (Ahmad et al., 2020; Momeni et al., 

2023). Some synthetic networks exist for other energy, transportation, and 

communication, but only water and power methodologies have been explicitly developed 

with multiple research papers. More work is needed to bring other infrastructure to the 

same level of development as power and water. 

This need also reveals an ongoing challenge for SICFM development. SICFMs 

come from interdisciplinary research. But interdisciplinary researchers seeking to develop 

SICFMs may not have the expertise to engineer synthetic networks for specific 

infrastructures. In the state of practice, synthetic network development comes from 

research experts in an infrastructure field, prompting two recommendations. First, 

stakeholder partnerships should be expanded across research fields to foster synthetic 

development (Cantelmi et al., 2021; Hasan & Foliente, 2015). Second, synthetic networks 

should be designed for easy access by the broader research community, and expert 

designers should structure synthetic models so interdisciplinary researchers can integrate 

them into SICFMs (Marcos et al., 2017; Mohammadi & Saleh, 2021).  

Notably, research for synthetic power has exemplified how to blend automation 

with expert design during crucial parts of the modeling process (H. Li et al., 2020; 

Mohammadi & Saleh, 2021). Expert design may not be as fast as automated procedures. 

However, an expert engineer is capable of specifying important details during the 

modeling process. This nuance is necessary for risk analysis for surprise events (Paté-
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Cornell, 2012), further emphasizing that broad stakeholder participation is vital for 

developing SICFMs (Hasan & Foliente, 2015).  

Additionally, synthetic models are engineered to react dynamically to changes in 

supply and demand (Gegner et al., 2016), so they should also be engineered with points 

of connection for interdependencies with other infrastructure. These connections would 

allow synthetic models to react not only to the direct impacts of hazards but also to 

unexpected changes in interdependency. For example, a power model can allow a coal-

powered generation plant to rely on water cooling to maintain performance. These 

continuous integrations are necessary to make SICFMs more realistic (Nan & Sansavini, 

2015; Satumtira & Dueñas-Osorio, 2010; Shen, 2013). Thus, synthetic models should be 

constructed for modular interfacing to maximize portability in interdisciplinary research.  

SICFMs may also open possibilities to study interdependencies between 

technological, social, and ecological infrastructure (e.g., financial, medical, and logistics) 

for more meaningful results. Infrastructure as technological and physical assets cannot be 

divorced from their social and environmental contexts, and the interactions between 

social, ecological, and technological infrastructure have yet to be meaningfully captured 

(Markolf et al., 2018; McPhearson et al., 2021). Historically, studies that seek to model 

interactions between civil infrastructure and other domains struggle to include geospatial 

dimensions or incorporate realistic engineered designs (due to complexity) (Haggag et 

al., 2020; Min et al., 2007; P. Zhang & Peeta, 2014). SICFMs may provide a realistic 

foundation that can be coupled with these other domains to extend the results of SICFMs 

to human capabilities. This extension may reframe priorities for infrastructure based on 

the impact on people, which has been done in select studies (Oughton et al., 2019; 
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Thacker et al., 2017; Zorn et al., 2020). But these studies did not delve into social or 

ecological infrastructure. Yet, they remind us that cascading failure studies should be 

concerned with human capabilities, not just technological infrastructure systems (Clark et 

al., 2018). SICFMs may create novel opportunities for this type of advanced research. 

Infrastructure managers need greater insight regarding surprise events, and 

SICFMs might be able to elucidate these insights. Generally, interdependency and 

cascading failure research use simulations to generate distributions of outcomes, critical 

failure thresholds, or recovery rates. But, in the state of practice, there was no analysis of 

outliers or “fat tails” to find low-probability-high-impact vulnerabilities. The concept of 

emergence demonstrates that infrastructures continue to interact in complex ways that 

have never been imagined (B. Allenby & Chester, 2018; Oughton et al., 2018; Taleb, 

2007). Thus, infrastructure managers must meet this increasing complexity with requisite 

organizational complexity (Boisot & McKelvey, 2011; Chester & Allenby, 2022). 

Requisite complexity can take the form of more detailed risk analysis to scan horizons for 

weak signals of change and vulnerability (Chester & Allenby, 2022). Risk analysis for 

surprise events requires imagination and systematic study of history, especially near-miss 

events to search for precursor symptoms (Paté-Cornell, 2012). Risk analysis using simple 

networks (i.e., theoretical) has a limited depth of insight (Hasan & Foliente, 2015; 

Mahabadi et al., 2021). But synthetic networks’ realistic and fine-scale capability may 

allow for more imaginative and systematic distributions of outcomes for SICFMs 

(Marcos et al., 2017).  

Validation of SICFMs should underpin the modeling process and include many 

stakeholders. Validation of realistic infrastructure models usually requires real-world 
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data, which is paradoxical because the absence of real-world data is the primary 

motivator to create synthetic networks. Currently, many studies use publicly available 

meta-data and comparisons of previous test cases for validation (Ahmad et al., 2020; 

Birchfield & Overbye, 2020; H. Li et al., 2020; Mohammadi & Saleh, 2021). But the 

future research community for SICFMs should include stakeholders from outside 

organizations in the validation process. Stakeholders with engineering knowledge of the 

imitated networks can give feedback during the modeling process (Ali et al., 2022; 

Meyur et al., 2020). Also, community stakeholders often possess tacit insight into 

interdependencies between infrastructure networks and can advise engineers accordingly 

(Mitsova, 2021; S. Zhou et al., 2020). With this iterative feedback, SICFMs can 

progressively imitate their real-world counterparts. 

Some research possibilities for SICFMs may enhance the use of interdependent 

models for identifying vulnerabilities, determining maintenance priorities for 

infrastructure components, and establishing which infrastructure systems are most critical 

to humanity during emergencies. First, it may become easier to identify the components 

that may be critical during cascading failure – and thus require maintenance 

prioritization. Also, realistic interdependency dynamics combined with highly detailed 

infrastructure can allow for fine-scale sensitivity analysis during the design phase or 

when performing failure risk analysis (Birchfield & Overbye, 2020). Additionally, 

because SICFMs should yield more realistic behavior during failure (Marcos et al., 

2017), the performance of individual components should be more insightful when 

including cascades in other critical infrastructure networks (Abdel-Mottaleb & Zhang, 

2020). Moreover, realistic behaviors and highly detailed networks can allow social 
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infrastructure and human needs to be considered during failure simulations, linking 

human capabilities to infrastructure services. Thus, modeling these diverse 

interdependencies can give a new perspective on infrastructure criticality (Clark et al., 

2018).  

SICFMs may also improve how the four different types of interdependencies are 

studied. Physical and geological interdependencies are most commonly studied, whereas 

logical and cyber interdependencies remain difficult to capture (Cárdenas et al., 2022). 

Simplistic networks usually only allow for binary (i.e., simple) interdependent 

relationships between networks (Korkali et al., 2017). But this may change as synthetic 

networks are designed with more accurate engineering principles. As previously 

discussed, this capability should allow for realistic connections between infrastructure. In 

the model, interdependent networks should exchange some resource, energy, or “flow,” 

as Varga et al. (2014) proposed. This type of modeling should allow for a distinct 

representation of all four interdependency types from Rinaldi et al. (2001). 

It is important to also address security concerns for highly detailed models such as 

SICFMs. If detailed and realistic models for insight into infrastructure systems can be 

produced with public data and public methodologies, this places a powerful capability in 

the hands of the public. While infrastructure managers may intend to use them for 

constructive purposes, some people or organizations may use such models for destructive 

purposes. Geopolitical strategic competition between adversaries is an essential 

consideration for critical infrastructure managers and has transformed civil infrastructure 

systems into military targets (B. R. Allenby, 2016). Infrastructures are also vulnerable to 

localized or smaller subversive threats such as terrorism (DoD, 2019; Efron et al., 2020; 
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Grant, 2021; R. A. Miller & Lachow, 2008). Thus, as SICFMs advance, researchers must 

consider security measures during development and use discretion when syndicating 

models and results. 

Security vulnerabilities for infrastructure highlight an interesting tradeoff 

associated with SICFMs. There may be a need for insight at fine scales for infrastructure, 

but how should these insights be protected? Is it better to share these capabilities so many 

infrastructure planners can analyze their systems for overall robustness? Or would it be 

better to pursue resilience via other means? The dynamic criticality framework in Chapter 

2 highlights critical capabilities for infrastructure organizations that – if mastered – ought 

to also improve the security infrastructure. Moreover, these types of generalized 

competencies may not betray the weaknesses of infrastructure systems. On the other 

hand, SICFMs are a kind of horizon-scanning exercise. Foregoing these types of 

exercises may cause infrastructure organizations to miss opportunities to bolster specific 

aspects of resilience for their technological systems. 

Another question worth considering is the true utility of developing SICFMs. 

Indeed, this chapter argues for their insight and necessity. But how much insight toward 

real-world infrastructure network resilience is actually gained from these types of 

models? If the right partnerships could be formed, this question would be best answered 

by side-by-side simulations of SICFMs and cascading failure for real-world network data. 

But lack of access to real data is what drives the need for SICFMs. So, infrastructure 

researchers are left with a conundrum: not being able to truly validate their systems 

without real data, and thus not knowing whether resilience insights from their models are 

viable or not. Conversely, if validation with real data is required for a synthetic system to 
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be used, this will be an insurmountable barrier for most of these models. Therefore, it 

may be more reasonable for modelers to seek validation from meta-data, which is often 

publicly available (H. Li et al., 2020).  

If SICFMs should only seek to reach a minimal level of realistic validation, what 

are the implications of the results from these interdependent cascading failure 

simulations? What do infrastructure managers and other resilience planners gain from 

these simulations? It is true that component-specific recommendations will not be 

possible. However, generalizable conclusions can help inform contingency plans for 

response to cascading failure. For example, emergency response teams may not know 

how to plan for the population that may be without power during a heatwave blackout in 

Phoenix (Clark et al., 2019; Stone et al., 2021; Wittlinger, 2011). While SICFMs would 

be unable to provide precise locations and populations, a realistic cascading model ought 

to yield total populations that can inform planning factors. Thus, a strength of SICFMs 

may be in providing more accurate scenarios to build adaptive capacity for infrastructure 

organizations (Chester & Allenby, 2022). 

Additionally, SICFMs use non-probabilistic design factors such that individual 

simulations can be analyzed. In contrast, Monte Carlo simulations from probabilistic 

cascading failure models give generalized results that can only be analyzed via 

distributions. Although SICFMs have different components than their real counterparts, 

the results from SICFMs may be used as a horizon-scanning exercise to provide 

inspiration for the reanalysis of once-ignored real-world components (Chester & Allenby, 

2022). This concept ties back to sensemaking from Chapter 2. SICFMs should ultimately 
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be considered another means for infrastructure managers to make sense of their systems 

to build organizational resilience (Hoff et al., 2023). 

Lastly, there are some practices that SICFMs should incorporate for more realistic 

results. First, models that seek to create realistic behaviors must be rooted in realistic 

demand patterns (Meyur et al., 2020). Power and water infrastructure already have 

repositories for researchers to retrieve realistic demand patterns for the United States 

(Frick et al., 2019; Hill et al., 2016; Sharvelle et al., 2017; Thorve et al., 2019; Wilson et 

al., 2022). Some demand models may even incorporate agent-based behavior, where 

nodes can have nuanced demands (H. Li et al., 2020; Nan & Sansavini, 2015). Second, 

models can use time series calculations that synchronize infrastructure network 

operations (H. Li et al., 2021). Time series will likely be necessary to create the “flows” 

between networks and may assist in portraying differences in demand (Varga et al., 

2014). Third, the condition-based performance of individual components (i.e., reliability) 

within SICFMs changes the dynamics of cascading failure models. When reliability is 

incorporated, models typically use time series to introduce condition changes (Bondank 

et al., 2018; B. Yang et al., 2020; J. Zhou et al., 2022).  

The proposed framework is a roadmap for how researchers could use SICFMs to 

gain a more meaningful and expedited understanding of how infrastructure responds to 

disturbances. Novel research efforts are immediately needed to confront the destabilizing 

conditions of the Anthropocene. 

3.4 Conclusion 

This paper has discussed the intersection of synthetic infrastructure networks, 

interdependency models, and cascading failure simulations. At the nexus of these 
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domains, there are opportunities for improving how infrastructure managers understand 

infrastructure vulnerabilities and prepare infrastructure for destabilizing future 

conditions. The inclusion of synthetic networks will benefit interdependency and 

cascading failure models. However, synthetic networks still require development, and 

future work should include the development of synthetic methodologies for other 

infrastructures besides power and water. Additionally, it may be worthwhile to perform 

case studies of interdependencies in historical events to aid the development of realistic 

interdependencies for synthetic infrastructure networks. This real-world data might be 

used to validate and inform how interdependencies can be integrated into synthetic 

models. Moreover, future SICFM development should intentionally embed stakeholders 

for network development, hazard scenario planning for dynamic failures, and 

interdependent links with continuous flows. 

Ultimately, SICFMs seek to create novel insights into interdependent cascading 

failures. In their basic form, SICFMs are realistic representations of physical assets, 

relationships, and rules. Synthetic networks are a method to meaningfully organize these 

attributes. However, if realistic network representations might be obtained via some other 

means, then the intent of SICFMs will still be satisfied. Naturally, if utility owners share 

data regarding their networks more frequently, then synthetic networks may become 

unnecessary. But currently, synthetic networks may be the best available tool for 

interdependent cascading failure analysis. 

Lastly, it is worth recognizing that SICFMs will undoubtedly tend toward 

computationally large and complex models. However, “There is nothing inherently 

wrong with complex models, just as there is nothing inherently correct with simple 



86 
 

models; it is more a question of appropriateness.” (Logan, 1994) For infrastructure 

research, simple models are not providing the necessary insights for adequate horizon 

scanning (Chester & Allenby, 2022). Thus, this chapter suggests that advancing modeling 

for analysis at fine scales may help infrastructure managers obtain surgical information 

needed to (Alderson et al., 2022)intervene prior to disasters (Alderson et al., 2022) 

appropriately. Infrastructure organizations must be prepared to face the accelerating 

challenges and hazards of the future (Chester et al., 2020). To this end, SICFMs may be 

rife with insights, and – today – insights are scarce (Chester & Allenby, 2022; Paté-

Cornell, 2012). 
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CHAPTER 4 

4. FUSING SYNTHETIC INFRASTRUCTURE MODELS FOR CASCADING FAILURE 

ANALYSIS: A PHOENIX CASE STUDY 

 

Chapter 4 appears as a manuscript in preparation for submittal to an academic journal. 

The anticipated author list is Ryan Hoff, Ryan Sparks, Rui Li, Adam Birchfield, Nasir 

Ahmad, Nathan Johnson, and Mikhail Chester. 

 

4.1 Introduction 

The volatility of the modern world is challenging the operations of infrastructure. 

Human forces are accelerating at an unprecedented rate producing change across social, 

ecological, and technological systems (Lewis & Maslin, 2015; Steffen et al., 2015). 

Aging and obdurate infrastructure and their managers cannot easily adjust and adapt to 

these changing conditions (i.e., resilience) (B. R. Allenby & Chester, 2018). There are 

many ways in which infrastructure may fail, but the wicked complexity of these systems 

often veils which mechanisms deserve scrutiny (Chester & Allenby, 2019a). This 

complexity exasperates infrastructure managers, who often lack adequate tools to 

perform risk analysis (Ouyang, 2014; Paté-Cornell, 2012). Unimaginable, extreme, and 

far-reaching disturbances (i.e., Black Swans) will continue to disrupt infrastructure 

systems (Alderson et al., 2022). Moreover, limited stakeholder participation, particularly 

from data owners, can hamper efforts to identify risk and develop contingency plans 

(Cantelmi et al., 2021). Thus, more advanced tools are needed to scan the horizon for 



88 
 

surprises and build resilience for infrastructure systems and organizations without access 

to proprietary data (Hoff et al., 2023; Marcos et al., 2017).  

Researchers have developed many models to improve the resilience of 

infrastructures. They have sought to model infrastructure interdependencies, showcasing 

how different technological systems mutually rely on one another and how these 

behaviors may enhance or reduce resilience (Banerjee et al., 2014; Mahabadi et al., 2021; 

Ouyang, 2014; Pederson et al., 2006). Other models seek to model how cascading failure 

can occur within infrastructure systems, frequently including interdependent relationships 

between multiple networks (Guo et al., 2017; Li et al., 2019; Mahabadi et al., 2021; 

Valdez et al., 2020). While these models have made significant progress in advancing 

risk analysis for infrastructure, they usually lack realistic network topology and simulated 

engineered operations (Mahabadi et al., 2021; Marcos et al., 2017). 

To address chronic data gaps, a new model has emerged to provide realistic 

networks that can be used instead of restricted data. These are known as “synthetic 

networks” and were initially developed for electrical infrastructure networks (Marcos et 

al., 2017). These models seek to engineer realistic but fictional models for real geospatial 

regions. These networks are designed with engineered functions that can be used with 

simulation packages such as PowerWorld for electrical systems or EPANET for water 

systems. Thus far, electrical network models have developed a large portfolio of design 

and validation methodologies for transmission and distribution (Mohammadi & Saleh, 

2021). Some work has also been done to develop synthetic network methods for water 

distribution (Ahmad et al., 2020; Mair et al., 2014; Momeni et al., 2023; Sitzenfrei et al., 
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2010). However, other infrastructure systems have not received formal attention for 

synthetic networks (Hoff & Chester, 2023). 

Enhanced risk analysis for infrastructure requires more detailed datasets, which 

may be supplied by synthetic networks (Marcos et al., 2017). Interdependency models 

and cascading failure simulations often seek to elucidate vulnerabilities. However, 

without detailed data, these models are often forced to simplify engineering properties 

and topology, reducing the results' meaning (Mahabadi et al., 2021; Ouyang, 2014). 

Synthetic networks can, however, serve as foundations for interdependent and cascading 

failure models. The realistic topology and engineered operations may provide more 

specific and plausible simulations (Marcos et al., 2017). Results from these networks may 

be used to research infrastructure network behaviors and combined with social and 

ecological research scenarios (Hoff & Chester, 2023). With more detailed engineered 

qualities, simulations that use synthetic models may provide realistic scenarios for 

extreme events – such as Black Swans. Making sense of this type of risk analysis is the 

crucial skill infrastructure managers require to build the requisite complexity to face 

tomorrow’s hazards (Ancona et al., 2020; Chester & Allenby, 2022; Hoff et al., 2023).  

This study seeks to test the outcome of combining a synthetic power transmission 

network with a synthetic water distribution network, simulate cascading failures between 

the two networks, and produce novel insights into the complexities of failure behavior 

across systems and space. The modeling framework uses the City of Phoenix, Arizona 

(referred to in this paper as “Phoenix”) for model development and testing. Phoenix – 

with a population of 1.6 million – is the fifth largest city in the U.S. and is subject to 

extreme summer heat (Stone et al., 2021; US Census Bureau, 2020; Wittlinger, 2011). 



90 
 

This study aims to advance cascading failure models towards improved insight into 

failure behavior; synthetic models that describe realistic networks are used as the basis 

(Ahmad et al., 2020; Birchfield et al., 2017, 2019; Hoff & Chester, 2023). Relevant 

research is discussed in the remainder of the introduction. The methodology explains how 

the networks are constructed and how cascading failures are simulated. The results 

contain the outputs from the cascading failure simulation, and the discussion addresses 

implications for future models and infrastructure risk analysis. 

4.1.1 Related Work1 

Significant progress has been made in cascading failure, interdependencies, and, 

most recently, synthetic network design (Hoff & Chester, 2023). These advancements 

now enable the development of more detailed models. Synthetic power and water models 

have been the most developed methodologies for network generation and will be the 

focus of this paper. Power networks have had separate research development efforts for 

transmission and distribution methodologies (Mohammadi & Saleh, 2021). While this 

study will focus only on transmission, many publications can be referenced for synthetic 

distribution networks (Ali et al., 2022; Krishnan et al., 2020; H. Li et al., 2020; Mateo et 

al., 2020; Meyur et al., 2020, 2022; Saha et al., 2019). Synthetic water network models 

have been developed to simulate water distribution from one or multiple sources to 

service nodes (Ahmad et al., 2020; Momeni et al., 2023; Sitzenfrei et al., 2010). Synthetic 

water networks have not received as much focus as power systems. Still, both power and 

water synthetic methods have been developed and validated to such a degree that they 

can be used in interdependent cascading failure simulations (Hoff & Chester, 2023).  

 
1 Section 3.2 contains a detailed literature review of synthetic networks, interdependencies, and cascading 
failure. 
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Synthetic transmission network models generally use public data to determine 

regional electrical demand, and then the network topology is optimized using a variety of 

economic and design constraints (Birchfield et al., 2017, 2019; Birchfield & Overbye, 

2020; Espejo et al., 2019; Gegner et al., 2016; H. Li et al., 2020). Due to the international 

heterogeneity of transmission systems, studies vary in how they design node topology, 

but there is agreement that geometric optimization often aligns with the most economical 

solution (Espejo et al., 2019). In general, it appears that power transmission 

methodologies are still in a period of rapid development. Methodologies will likely 

continue to change in the future, as concluded in Chapter 3. Current models are actively 

used to generate other synthetic datasets, such as annual time series datasets, for use in 

renewable energy research (Lu et al., 2023). Engineered synthetic models have been used 

in some rudimentary cascading failure models but have yet to be used in realistic 

interdependent cascading failure modeling (Mahabadi et al., 2021). 

Synthetic water network models follow power models as the next most developed 

infrastructure system (Hoff & Chester, 2023). There are fewer barriers to developing 

synthetic water models than power models. Water networks generally follow road 

topology and have well-understood hydrology design considerations based on a standard 

use-per-capita (Mair et al., 2014; Sitzenfrei et al., 2010). There are robust estimation 

models which estimate future demand for all census tracts in the United States, improving 

modeling efforts' accuracy (Sharvelle et al., 2017). Studies have developed optimization 

methods, balancing cost and resilience (Momeni et al., 2023). The model used in this 

study leverages EPANET to engineer the design based on the demand requirements from 

Sharvelle et al. (2017) and iteratively add booster pumps to maintain the system's 
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pressure(Ahmad et al., 2020). The current state of practice for water models indicates that 

they – like power systems – are ready to be used for other research efforts such as this 

one (Hoff & Chester, 2023). 

Cascading failure modeling has a variety of methods and applications. A common 

use for cascading failure models is called dynamic failure: a method that introduces an 

initial disturbance and then uses a combination of engineered operations and stochastic 

variables to model reactions (Y. Wu et al., 2021). These models generally require high 

computation and development time but yield more nuanced results than simplified 

models (Valdez et al., 2020). These models can be used for various research purposes, 

such as evaluating the resilience of real-world networks, evaluating different network 

topologies, identifying critical components, or simulating the dynamics of infrastructure 

interdependencies (Hoff & Chester, 2023). The last two uses are most relevant to this 

study, where critical components within the synthetic networks may be identified, and the 

dynamics via physical dependence will be simulated.  

Infrastructure interdependence research analyzes how the systems rely on one 

another for operation (J. Li et al., 2019). Infrastructure models may seek to simulate four 

types of relationships, physical (direction operational connections between nodes), 

geographic (co-location, where state changes in one node would affect another network), 

cyber (where dataflow between systems is essential to their operation), and logical 

(dependence by some other means besides the other three) (Rinaldi et al., 2001). 

Although these four types are known and recognized within the infrastructure research 

community, it remains difficult to meaningfully capture them via interdependency 

models. Some relationships are physical, and others are institutional (e.g., governmental, 
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financial) (Hoff & Chester, 2023). Researchers attempt to model these relationships by 

creating feedback loops between network models. Coding limitations usually demand 

that relationships can only flow in one direction, which decreases realism. Stochastics are 

then used to account for assumptions in these relationships (Sharma & Gardoni, 2022).  

Interdependence and cascading failure for infrastructure have been ongoing 

research topics but have yet to incorporate realistic synthetic networks meaningfully. 

Indeed, the engineered properties of synthetic models may increase realism in simulated 

interdependencies and cascading failures (Hoff & Chester, 2023). However, thus far, 

realistic synthetic networks are not yet being used in this capacity. This study uses a real-

world landscape to develop synthetic power and water models and explore disturbance-

induced behavior for resilience insight and advancement for synthetic networks.  

4.1.2 The City of Phoenix 

Phoenix can be a realistic example of how cascading infrastructure failures might 

unfold in an environment experiencing rapid change in multiple domains. The qualitative 

attributes of the real infrastructure are important when comparing the operational 

construct of Phoenix to a synthetic model. The discussion must account for these 

differences when extrapolating the results of a fictional system to the real world. Thus, a 

brief background of Phoenix sets up the ensuing discussion. 

Phoenix is the Arizona State Capital and the county seat of Maricopa County. 

Phoenix has remained the fastest-growing large city in the United States for a decade, 

with 1.7 million residents in 2020 (making Phoenix the fifth largest city in the United 

States). Additionally, there are 4.8 million residents in the combined metro area and 

county (the fourth largest county in the United States)  (U.S. Census BereauBureau, 
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2020). Despite its reputation as a diamond oasis in the Sonoran Desert, Phoenix does 

have a history of well-established sustainability challenges (Ross, 2011), many of which 

may increase vulnerability to cascading failures of infrastructure systems. Development 

and expansion are not expected to slow down within the metro area in the short-term or 

long-term future, which will increase the gross demand for energy from the population. 

Moreover, climate change is expected to cause maximum ambient temperatures to rise 

(Clark et al., 2019; Wittlinger, 2011), placing environmental performance stress upon the 

entire system (Allen-Dumas, Binita KC, et al., 2019). Arizona Public Service (APS) and 

the Salt River Project (SRP) are the two primary power providers in the metro area. APS 

provides service to most of Phoenix, although it is important to note that the two service 

providers have interconnected power systems. Also of note is that APS has committed to 

transitioning all power generation to carbon-emissions-free sources by the year 2050 

(APS, 2020). 

The Phoenix water supply originates from multiple sources, including the Salt and 

Verde Rivers, the Colorado river via the Central Arizona Project (CAP) canal, and 

groundwater. Arizona maintains water reserves supplied by the annual snowfall and 

precipitation in the northern and eastern regions of Arizona and southern Colorado. These 

reserves provide long-term water assurance for Phoenix during droughts (Phoenix, n.d.). 

Three water treatment plants (WTP) treat water from the Salt and Verde rivers, and two 

WTPs treat water from CAP. Phoenix stores water flows from these sources in large 

reservoirs and water tanks located to the north in elevated regions, providing the water 

pressure needed to service all locations in the metro area. In general, the system operates 
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with 100-foot pressure increments. Phoenix also has access to groundwater aquifers, 

which are occasionally used, but surface water sources are used first (Gober et al., 2010).  

Based on known changes expected in the Anthropocene, it is logical to suspect 

that Phoenix's infrastructure will undergo significant challenges to keep pace. A 

reasonable hypothetical cascading failure event for Phoenix is abnormal high-power 

demands caused by extreme heat. In this situation, the distribution network would 

experience opposing responses in performance capacity and demand, with the 

performance capacity significantly decreasing (Allen-Dumas, Binita KC, et al., 2019) and 

the demand from customers significantly increasing (Clark et al., 2019). This inverse 

shift may represent a critical tipping point, leading to cascading failures that affect 

services from other infrastructures. This scenario becomes increasingly plausible as the 

hottest months have become more intense recently, leading to increased heat-related 

casualties (Hamstead & Coseo, 2019; Iwaniec et al., 2020; Larson et al., 2013) and ever-

increasing risk to populations. The power loss alone is a critical hazard to vulnerable 

populations, but cascading failure from power to water systems in Phoenix could 

substantially increase risk. Regarding future sustainability, water is among the most 

important issues for the desert city (Larson et al., 2013; Ross, 2011; Sampson et al., 2016; 

Z. H. Wang et al., 2019). 

4.2 Methodology: Network Creation & Cascading Failure 

The overall model was designed as a series of modules that synthesize the power 

and water networks and simulate cascading failure initiated by transmission line failures 

(Figure 4.1). Notably, this study incorporates multiple methodologies from different 

engineering disciplines. Thus, for brevity, the overall methodology is generalized for 
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each module. Detailed explanations of each methodology can be found in the references 

provided. The synthetic networks use different existing design methodologies and were 

generated independently. These methodologies will be briefly explained, and the method 

for the cascading failure simulation will follow.  

 

Figure 4.1 – Overall Model Flowchart 

Note: The cascading failure is initiated by a transmission line failure. If additional lines are overloaded, the cascading model returns to additional 
failures until the power flow converges. Dependent outages in the water network will occur if a substation that services a pump becomes isolated. 

4.2.1 Module 1: Power Transmission Network (PTN) Creation 

The synthetic power transmission network (PTN) is generated using the 

methodologies from Birchfield et al. (2017) ,and Birchfield & Overbye (2020), referred 

to as the “Birchfield method” in the remainder of this paper. Appropriately for synthetic 

networks, the Birchfield method only uses public data to create the network. To 
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determine demand, 2.01 kilowatts (kW) per capita is used as a daily consumption rate 

(Gegner et al., 2016). The Birchfield method uses census data to generate large demand 

regions by zip code. These large regions are then divided into smaller, more reasonable 

regions serviced by individual substations (Gegner et al., 2016). Next, public generating 

station information is retrieved from Energy Information Administration (EIA), (2022). 

The closest generators to the area of interest are added first, and more distant generators 

are added until demand can be met. The Birchfield method then uses Delaunay 

triangulation to design an efficient graph network of transmission lines iteratively. These 

iterations also include contingency analysis that tests the sensitivity of different 

connection possibilities to select the most robust permutations. This network is tested in 

PowerWorld, a design analysis software application for PTNs. The resulting network for 

the City of Phoenix resulted in a 3,435 megawatt (MW) total demand, 125 service 

substations, 11 generators (and associated transmission-only substations), and 302 

transmission lines, as shown in Figure 4.2. In this case, generators outside Phoenix were 

incorporated to provide power balance. Most notably, large solar generation stations and 

the Palo Verde nuclear generating station are located 45 miles west of the Phoenix area. 

Despite the distance, they were included in the model to ensure demand provisions were 

met. Once the synthetic power network was completed, the modeling effort moved to the 

water distribution network. 
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Figure 4.2 – Synthetic Power Transmission Network for Phoenix.  

Note: The MVA line weights are divided by quantile. 

4.2.2 Module 2: Water Distribution Network (WDN) Creation 

The design of the synthetic water network was accomplished by the “SyNF” 

model created by Ahmad et al. (2020). SyNF is designed to use public data sources and 

demand models and combine them to generate a pipe network, size pipes for specific 

water flows, and place pumps to provide pressure. SyNF begins with water demand data 

for a specific area. The demand data is retrieved from the Integrated Urban Water 

Management (IUWM) model, which uses census information to approximate specific 

water demands for the census blocks within the specified area (developed only for the 

United States and territories) (Sharvelle et al., 2017). Next, SyNF assumes that the water 

network has the topology of the urban road network (Mair et al., 2014) and thus uses 

N 
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OpenStreetMap’s road network for the given spatial area. For the network’s topology, 

SyNF optimizes the length of the edges in the network using a minimum spanning tree 

algorithm – creating a main “trunk” line and then adding branched water lines until every 

node is serviced (Mair et al., 2014). Finally, to provide pressure to the system, SyNF uses 

iterative tests to find the minimum number of pumps such that 90% of nodes have 

between 40 and 100 pounds per square inch (psi) water pressure. The resulting WDN for 

Phoenix has 64,381 edges, 47,115 nodes, and 46 pumps, as shown in Figure 4.3. SyNF 

creates the WDN as a network file for EPANET, a state-of-the-art application for 

designing and analyzing water distribution systems. Notably, EPANET uses engineering 

design principles to simulate water flow through a network, which will be an important 

facet of the cascading failure simulation. 
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Figure 4.3 – Synthetic Water Network for Phoenix, AZ 

4.2.3 Module 3: Power/Water Cascading Failure Simulation 

This module joins the two synthetic networks, with water network booster pumps 

dependent on the substations for power, and simulates cascading failures initiated by 

transmission lines failures to test how failures may cross over from the power to the 

water network performance. The cascading failure simulation begins with the power 

network. This sequence follows the methodology of Sparks et al. (2023). In this case, the 

synthetic PTN network is loaded into PyPSA, a Python-based model for power flow 

analysis (T. Brown et al., 2018). PyPSA analyzes the power flow throughout the entire 

network and reports the performance of components, flagging any violations or overages. 

N 
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A Monte Carlo simulation forms the basis of the cascading failure model where lines are 

randomly selected for failure, and the effects of load rebalancing are considered. Without 

considering any specific hazard, the simulation tests the result of 1, 2, 3, or 4 lines 

initially failing simultaneously. For each initial failure scenario, three transmission line 

failure thresholds are tested: 115%, 135%, and 245%, respectively – resulting in 12 

different scenarios. The percentages refer to 10-minute, 5-minute, and 1-minute 

probabilistic overload thresholds for power lines, which are standard time limits often 

used in decision-making for transmission line protection (Carneiro & Ferrarini, 2011). 

Ten thousand simulations were run for each of the 12 scenarios, totaling 120,000 unique 

simulations. 

It is also important to note that different actions are taken at these three 

thresholds. In the real world, automatic load-shedding would occur at the one-minute 

threshold. There would likely be measured human intervention for ten and five-minute 

thresholds to smooth out power flows, which may still involve some brown or blackouts. 

However, the time limit would allow this more nuanced controller intervention (Carneiro 

& Ferrarini, 2011; NERC, 2022). 

The cascading power failure progresses from random initial failures to subsequent 

line failures and reports any substation failures. When initial line failures are reported, 

PyPSA attempts to rebalance the transmission system to meet all power demands. If 

power through the transmission line exceeds the failure threshold, then that line is also 

considered failed by PyPSA. Also, if all transmission connections to any substation have 

failed during the cascading failure, those substations are considered failed. When the 

PyPSA network reaches equilibrium, that simulation is complete.  
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The cascading failure simulation then assesses the WDN, which depends on the 

PTN for electricity to booster pumps. The model assumes that power flows from the 

substations to the booster pumps. When a substation loses power, booster pumps in the 

same service region as the substation also lose power, causing a drop in water pressure 

for downstream nodes. This drop in water pressure is simulated for every power loss 

scenario within EPANET. In every power outage scenario, affected pumps are disabled, 

and water pressure changes are recorded for every node in the system. The data for these 

cascading failures are presented in the results.  

4.3 Results 

The results of the synthetic dependent cascading failure simulation for the 

individual and combined networks are presented in this section. The power failure 

simulations are summarized along with visual representations of the failures. Water 

pressure losses are presented with tables and some mapping examples. Lastly, detailed 

combined failure scenarios demonstrate the geospatial variance in cascades for different 

infrastructures. 

There were a variety of outcomes when considering the combined cascade 

between power and water systems. Thirty-one common scenarios accounted for most 

major power and water outages (Figure 4.4). It is easy to observe that some scenarios 

only affect small areas of customers from one substation service region. Additionally, 

water pressure losses are largely contained in or nearby this region. Other scenarios 

experienced power losses in multiple regions, and water pressure losses extend beyond 

the power loss areas. These results are explained further in the remaining results section. 
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Figure 4.4 – Comparative Water/Power Outage Scenarios.  

Note: When referring to scenario numbers, they increase from left to right and top to bottom. (i.e., Row 2, Column 1 is Scenario 8.) See Figure 
4.10 for a detailed symbology legend. 

 

4.3.1 Power Failure Results 

As expected, the failure threshold and the number of initially failed lines 

influenced the overall power cascade, as shown in Figure 4.5 and Figure 4.6. The first 

displays how most initial failures did not precipitate subsequent line failures. Of the 
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120,000 initial failure simulations, 13,621 (11.4%) cascaded to additional lines. The 

power system absorbed most line failures and shifted power flow accordingly. 

Additionally, as the threshold for line failure was increased, the number of cascading line 

failures decreased. The decrease from 135% to 245% is more notable, where cascades in 

the system were nearly eliminated. Substation failures also decreased as the failure 

threshold was raised, as shown in Figure 4.6. This behavior can also be geospatially 

observed in Figure 4.7, Figure 4.8, and Figure 4.9. There was one substation that had 

abnormally high failure rates. A generating substation near the Palo Verde generating 

station failed during all 13,621 cascade events and even failed when there was no cascade 

(See Table B.1, Substation: “Arlington Valley Energy Facility”). This consistent failure 

could signal a critical vulnerability in the network. 

 

Figure 4.5 – Failure Threshold and Initial/Final Line Failures 

There were some outlying high-impact events for line and substation outages. 

Scenario 22 was the most sensitive outage scenario. During two simulations at the failure 
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threshold of 115%, Scenario 22 had outages spread to 81 lines (4 initial lines failed) and 

80 lines (3 initial lines failed). In both cases, the initial failures had three lines in 

common. In these cases, the initial failure involved a transmission line between two 

primary generators and the two primary northern transmission lines from the Palo Verde 

generating station. This initial loss of critical lines led to many more lines overloading. In 

these two simulations, ten substations and 45 sq-km lost power in one; in the other, nine 

substations and 46 sq-km lost power.  

 

Figure 4.6 –  Failure Threshold, Initial Line Failures, and Substation Failures 

The geospatial maps of the failures by threshold value showed that some 

substations and lines are more prone to failure (See Figure 4.7, Figure 4.8, and Figure 

4.9). Based on the trend observed in Figure 4.5 and Figure 4.6, It would be expected that, 

as the failure threshold increased, the failure frequency for all system components would 

decrease uniformly – which is true for transmission lines. However, some substations 

seem to be still vulnerable to failure. This trend revealed a small error in how the random 
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selection was applied to the initial line failures, such that substations with only one line 

connection were consistently islanded during the simulations. This error is discussed 

further in the Future Research portion of the Conclusion. It is also important to note that 

this pattern occurred primarily in substations with only one transmission line connection. 

It is well-accepted within cascading failure literature that more connected nodes are more 

robust, and less connected nodes are more vulnerable (Liu et al., 2019; Valdez et al., 

2020). So this behavior also reflects this trait.  

 

Figure 4.7 – Frequency of Failure for Lines and Substations at 115%-Line Failure Threshold 

N 
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Figure 4.8 – Frequency of Failure For Lines and Substations at 135%-Line Failure Threshold 

 

Figure 4.9 – Frequency of Failure for Lines and Substations at 245%-Line Failure Threshold 

N 

N 
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4.3.2 Cascading Failure to Water Systems 

Water “failures” were recorded as pressure loss at the 47,115 water demand 

nodes. Of the 120,000 power loss simulations, a pump lost power in 4,427 of them. It was 

discovered that, within these 4,427 simulations, there were 31 pump failure scenarios. 

Because there were many unique pressure losses across the many water service nodes, 

binning was used in ten ranges of 10 pounds per square inch (psi) each, from 0 to 100 psi 

(Table 4.1). The total severity of water pressure loss scenarios is calculated via the sum-

product of node count per category and the average pressure value (i.e., for the category, 

0 to 10 psi, the nodes are multiplied by 5). The rows are color-coded to reflect the 

outcome, with red being negative and green being positive. The most severe result was 

Scenario 17, which had many nodes across all the pressure loss categories. The second 

and third most severe scenarios, 6 and 11, had the most severe outcomes considering only 

pressure losses between 10 and 50 psi. These scenarios only occurred two times each out 

of the 4,427 water failures. However, scenarios 22 and 24 occurred 393 and 623 times, 

respectively. These two scenarios were the seventh and ninth most severe when 

considering overall pressure loss in the WDN.   

The presentation of these results focuses on pressure drops relative to the baseline 

pressure of the synthetic WDN; this is because water pressure varies by up to 100 psi 

between the different nodes. First, there are elevation variations in Phoenix, which can 

severely affect the pressure in the synthetic network because it is a centralized network 

where water flow originates from the WTP. Second, the model's creator, Ahmad et al. 

(2020), notes that only 90% of nodes must be within 40 and 100 psi. Thus, some nodes 

were below 40 psi or above 100 psi in the baseline network. The pressure drop analysis 
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did not consider nodes initially below 40 psi. Nodes above 100 psi were included because 

pressure drops at high levels are still meaningful. 
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Table 4.1 – Water pressure Drop Classes (Count of Nodes) 

 
Pressure Loss Class Count by Scenario (psi) 

 
 

Scenario 
No 

Loss 
0 to 
10 

10 
to 
20 

20 
to 
30 

30 
to 
40 

40 
to 
50 

50 
to 
60 

60 
to 
70 

70 
to 
80 

80 
to 
90 

90 
to 

100 

Relative 
Severity 

Rank Frequency 
1 45224 1138 526 98 88 32 9 0 0 0 0 28 12 

2 43701 3413 1 0 0 0 0 0 0 0 0 29 182 

3 7795 39250 53 13 1 2 1 0 0 0 0 20 1 

4 2916 43737 252 50 125 35 0 0 0 0 0 19 246 

5 2838 43633 408 76 112 46 2 0 0 0 0 14 10 

6 30847 9565 1059 1162 1728 1280 1269 179 22 4 0 2 2 

7 2993 43388 422 141 123 46 2 0 0 0 0 13 6 

8 5327 40550 604 100 145 89 58 77 145 19 1 10 1 

9 2416 43697 535 286 101 59 19 2 0 0 0 11 68 

10 2916 43703 258 57 142 39 0 0 0 0 0 17 5 

11 30872 9553 1051 1264 1600 1300 1270 179 22 4 0 3 3 

12 2942 43584 274 123 153 39 0 0 0 0 0 15 1 

13 2973 43612 302 64 126 37 1 0 0 0 0 18 3 

14 3169 43174 388 296 88 0 0 0 0 0 0 16 39 

15 1817 43296 805 327 269 226 127 52 95 78 23 5 77 

16 1817 42951 859 524 327 266 126 54 95 79 17 4 1 

17 2129 40578 1261 965 1247 465 196 78 95 78 23 1 2 

18 40546 6284 266 17 2 0 0 0 0 0 0 26 535 

19 39557 7183 294 68 13 0 0 0 0 0 0 25 4 

20 3559 42537 688 158 125 46 2 0 0 0 0 12 1 

21 47079 2 6 7 17 4 0 0 0 0 0 30 640 

22 29973 11206 1248 704 1392 1144 1245 177 22 4 0 7 393 

23 29918 11225 1237 769 1341 1138 1263 198 22 4 0 6 4 

24 30009 11204 1242 697 1375 1140 1245 177 22 4 0 9 623 

25 45435 1211 94 38 50 97 93 91 6 0 0 27 72 

26 19159 27956 0 0 0 0 0 0 0 0 0 23 942 

27 8734 38223 73 70 12 2 1 0 0 0 0 21 1 

28 47099 0 0 0 0 16 0 0 0 0 0 31 356 

29 26929 19592 196 24 33 43 56 77 145 19 1 24 1 

30 29993 11204 1242 697 1375 1156 1245 177 22 4 0 8 1 

31 8721 38325 52 13 1 2 1 0 0 0 0 22 195 

 

4.3.3 Mapping Detailed Cascades Across Infrastructures 

The water pressure losses were mapped alongside power loss scenarios to 

understand better how cascades occur. Scenario 22 was most severe when considering 
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power and water, as shown in Figure 4.10. The figure analyzes line and substation 

failures for consistent associations with this specific water outage scenario. The results 

show that many permutations of line failures can lead to the same substation outages. 

Additionally, many substations may or may not be involved in the cascade. Multiple lines 

are strongly associated with this scenario, particularly in the southwest of Phoenix. 

Additionally, the northern transmission lines from the far-western generators consistently 

failed in the cascade, which may have forced too much power to flow through the 

southern transmission line and into South Phoenix, tripping a series of lines in South 

Phoenix. At this point, the power failures cascaded into the city's center, causing the lines 

into and out of two crucial substations that supplied power to some of the most critical 

pumps in the city, leading to a large loss of water pressure. The failure of the substations 

separated from the pressure loss likely plays some significant role in the progression of 

power losses that cause the pumps in the center to lose power. The level of detail in the 

results for each scenario gives each one a unique story.  

These substation failures precipitate an event that cascades across the entire city. 

In less severe scenarios, the water system was often able to maintain pressure to most of 

the system when few pumps were lost. However, in Scenario 22, many adjacent pumps 

failed, straining those remaining. Consequently, 17,142 nodes (36%) of the WDN 

experienced some pressure reduction, and 4,357 (9%) of those nodes lost water pressure 

completely. Thus, the cascading effect on the water system is even greater than those 

nodes that lose service completely; see Figure 4.11. 

Some severe cascades did not include as many nodes but were more severe 

toward the nodes that did lose pressure. For example, Table 4.2 shows how Scenario 6 
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only affects 16,268 nodes (35%). However, more than 4,000 nodal pressure losses were 

between 30 and 100 psi (compared to the 2,000 in Scenario 17). Scenario 6 was caused 

by a power loss for the key WTP pumps at the center of Phoenix, which effected nodes at 

lower elevations less but severely affected all nodes higher in elevation.  
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Figure 4.10 – Mapping Cascading Failure Scenario 22 

 

 

N 
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Figure 4.11 – Example of Pressure Losses for Nodes in Scenario 22  

Note: Not all nodes have completely lost water service, but this figure demonstrates that cascading effects may be more far-reaching than simply at 
those nodes that drop below 40 psi. 

The overall cascades can be analyzed more simply to demonstrate the severity of 

the various scenarios – instead of analyzing probabilities of outages for lines and 

substations or specific pressure losses for each node. In this case, the 31 cascade 

scenarios can be reduced to simply power loss areas, water loss areas, and areas where 

the two outages overlap, as shown in Table 4.2. Water outages were identified at nodes 

above 40 psi in the initial network and fell below 40 psi after a water outage occurred. In 

N 
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some cases, large power outages can occur with minimal water service losses (i.e., 

Scenario 3). Conversely, there can be large water outages with smaller power outages 

(i.e., Scenario 30). Power and water failures may be geographically separated or 

overlapped. Scenario 22 is the most severe scenario when considering both power and 

water losses, demonstrated by Table 4.2. In this case, power losses occurred across a 

large area of South and Central Phoenix, with water pressure dropping below 40 psi 

across much of the city center. Other severe Scenarios, like Scenario 24, had nearly the 

same number of nodes that lost only Power or only Water, and there were very few nodes 

that lost both services. This location difference highlights the disparity between 

geographic and physical interdependencies. Physical interdependencies can involve 

geographically disparate failures(Rinaldi et al., 2001). Scenarios 6 and 17, while severe, 

only occurred twice each. However, scenarios 22 and 24 occurred more frequently (392 

and 623). This higher rate of occurrence could signal specific vulnerabilities within the 

associated components. 
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Table 4.2 – Service Node Counts in Power/Power Cascade Scenarios 

Cascade Scenario No Outages No Water No Power Both 

1 46280 28 758 49 

2 45912 49 1154 0 

3 43089 47 3921 58 
4 44573 579 1881 82 

5 44459 416 2021 219 

6 39235 3674 3341 865 
7 43375 398 3104 238 

8 42663 521 3348 583 

9 45081 849 1074 111 
10 45243 579 1207 86 

11 40837 4177 1739 362 

12 44553 555 1901 106 
13 42385 568 4015 147 

14 44807 708 1598 2 

15 44992 981 551 591 
16 44619 1124 647 725 

17 40435 1545 3744 1391 

18 44036 14 3055 10 
19 44507 64 2528 16 

20 43930 411 2526 248 

21 44337 0 2774 4 
22 34554 2867 8204 1490 

23 38721 2511 4010 1873 

24 38545 4081 4217 272 
25 45746 242 983 144 

26 45478 5 1620 12 

27 43720 5 3322 68 
28 44048 1 3052 14 

29 44585 105 2061 364 

30 41368 4176 1379 192 
31 42377 5 4675 58 
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4.4 Discussion 

These simulations demonstrate plausible outage scenarios in realistic power and 

water networks, providing resources to analyze interdependent cascading failure, 

envision potential Black Swan scenarios, and unlock potential analysis for other research 

fields. Interpretations from these and similar results from future models may aid in 

identifying vulnerabilities, quantifying risks, and envisioning future scenarios for social, 

ecological, and technological systems. These possibilities, as well as future research 

opportunities, are discussed in this section. 

4.4.1 Interpretations of the Results and Comparison to Phoenix Real Networks 

Before providing recommendations, this simulation's results should be 

contextualized and compared with real-world factors. As intended, the power and water 

networks attempted to continue providing service when disturbances occurred. In 89% of 

120,000 simulations, the networks provided service to all nodes without interruption – 

despite initial transmission line failures. Moreover, when service outages did occur, the 

effects were usually minimal. This robustness is expected and desirable in realistic 

networks. Thus, the synthetic networks fulfilled expectations in that respect. When 

analyzing specific portions of each system, there were some consistent vulnerabilities. An 

outlying generator substation consistently failed in the power network for unknown 

reasons – a potentially critical vulnerability. For the water network, there were pumps 

clustered near the northern water treatment plant that, when they failed, caused large 

pressure losses in some scenarios. These observations reveal areas for continued 

improvement in the model. Additionally, because access to real-network data for Phoenix 
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was not possible to validate the synthetic models, public data was used as a comparison 

to contextualize how the outputs might be considered in the greater context of 

infrastructure resilience. This section discusses these comparisons for the power and 

water networks and their dependent relationship. 

The power network provided sufficient variance and robustness when met with 

disturbances. When the Monte Carlo simulation presented the most disadvantageous 

scenario (115% failure threshold with four initial transmission line failures), the network 

did not fully collapse and, in most cases, continued providing power to most of the 

network. This study did not push the network to total collapse with progressively more 

transmission line failures because the progressive failure threshold was not an objective. 

Progressive failures are more commonly observed in percolation theory studies 

(Mahabadi et al., 2021). Rather this study sought to create dynamic failures driven by 

engineered operations – not stochastics. Transmission line failures were used as the 

initiating disturbance due to the high association with their failure and blackout events 

(FERC & NERC, 2012; NERC, 2004). As expected from past network resilience 

research, highly connected substations failed less often, and those with fewer connections 

failed more often. The robustness and realistic power dynamics imply that synthetic 

power networks may serve as suitable platforms for future cascading failure research.  

When evaluating the power network's realism, it was not possible to compare it 

with the real transmission network for the city of Phoenix or substations and their service 

areas. Instead of real data, outage distributions from this simulation were compared with 

data from the energy information administration (EIA) for major U.S. power outages in 

2020, as shown in Table 4.3 and Figure 4.12. The major U.S. outages' mean, median, 
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standard deviations, maximum, and percentiles were consistently one order of magnitude 

higher than the synthetic outage results. The distributions display similar behavior, with 

the synthetic power failures centering near 10,000 people and the EIA data centering 

around 100,000 customers. The EIA data focused primarily on the most significant 

outages in the United States, frequently involving metro areas with multiple cities and 

sometimes regional cascades. In contrast, this study focuses only on the City of Phoenix 

and does not consider the Phoenix metro area, which is more than triple the population 

being considered. This size difference naturally limits the cascade size in the model. 

However, the similarity in distribution and patterns of descriptive statistics suggests that 

the outages of the synthetic power model using Sparks et al. (2023) methodology are 

within an acceptable range for a city this size. 

Table 4.3 – Cascading Power Outage Validation 

  

Population 
Affected (U.S. 

Data) 
Population 

Affected (Synthetic) 
N   157 16,808 

Mean 161,108 15,859 
Std. Deviation 241,800 16,661 
Minimum 1 353 
Maximum 1,400,000 144,051 
Percentiles 25 52,082 4,754 

50 78,314 9,049 
75 156,750 22,610 
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The synthetic network was compared to public information for transmission 

networks in the United States. Some basic public data is stored on the Homeland 

Infrastructure Foundation Level Data (HIFLD) database, which contains generalized data 

for the national power network in the United States. Data accuracy and completeness 

vary depending on location, but – in place of real network data – it was helpful to 

compare topologies for general similarities and differences (see Figure 4.13). Some of the 

major features of the synthetic network match the HIFLD network. Both networks have a 

northern and southern connection flowing into Phoenix from the far-west generators (i.e., 

Palo Verde generating station). Additionally, those same western generators appear to be 

an important part of the system in the HIFLD dataset, which is consistent with the design 

of the synthetic network. Also, for both networks, the density of substations in 

Central/South Phoenix is higher than in Northern Phoenix. Two notable differences are in 

the far-south and far-north regions. The HIFLD network does not have substations in 

some of these low-population areas, and the synthetic network has substations in those 

locations (although, in the synthetic network, these were the lowest power demand 

Figure 4.12 – Cascading Power Outage Distribution Validation 
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regions in the city). For future research, manual adjustments for topographical features 

and population should occur while calculating substation service regions and network 

topology.  

 

Figure 4.13 – Comparison of Phoenix HIFLD Data (Left) and Synthetic Network (Right)  

Note: The HIFLD database is known to be incomplete. Thus, it serves only as an informal comparison resource for the synthetic power network. 

The water network exhibited realistic behavior in response to pump outages, 

despite some inaccuracies regarding components in the network construct. Pressure 

losses were graduated across regions and demonstrated significant variability across the 

31 scenarios where pumps lost power. The system displayed resistance to total failure, 

even when large outages occurred. The largest water outages typically occurred when the 

cluster of pumps near the WTP lost power. However, scenario 17 was one exception. 

Although it did not have as many high-pressure drop nodes as scenario 6, it had the 

largest city-wide pressure drop of all scenarios. Notably, this outage occurred without the 

WTP pumps losing pressure. Rather, it occurred because pumps in central and south 

Phoenix lost power, drawing flow away from northern (i.e., higher elevation) nodes, 

which had simultaneously experienced some pump losses. However, is scenario 17 
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realistic? Contextualization and comparison with real-network data are required, and 

there are some inherent differences to discuss.  

For security purposes, employees at the Phoenix public works department could 

not provide the specific layout of the water system. However, they provided a generalized 

interview description(Kelso, 2022). They provided qualitative information and a 

summary table of pipe lengths and diameters across the city. Qualitatively, there are 

notable differences between the real and synthetic WDSs. The real WDS provides power 

backup generators for the water distribution plants and larger (but not all) pumps across 

Phoenix. Therefore, in an outage, there is a grace period to restore power before pumps 

fail. Additionally, rather than supplying direct pressure to the system, water tanks in high 

locations are often used to service nodes in North and South Phoenix hilly regions, 

allowing for local clusters in the WDN and providing additional redundancy. Tanks have 

a reserve supply if no power is available, and backup generators can also allow for 

maintaining water tank levels for a graceful period. The synthetic WDN system does not 

contain water tanks or pump backup generators. Thus, city-wide pressure losses in this 

model, such as scenario 17, would likely be conditional upon long power outages that 

exhaust water tanks and backup generator capacity.  

Regarding pump design, the synthetic system had a loose-fit similarity to the 

available data for phoenix pumps. The Phoenix WDS maintains an inventory of 105 

pumps across the city. Smaller pumps provide as little as 40,000 gallons per day (GPD), 

while larger pumps or pump clusters provide 160 million gallons per day (MGD). The 

synthetic system created 46 pumps across the city to maintain pressure. The smallest 

pump provided 230,000 GPD, and the largest provided 80 MGD. Although this is not as 
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large of a range as the real network, with fewer pumps, it is notable that the minimum 

pump size provides much higher volumes. So the average flow from each pump may be 

larger than the real Phoenix network. Moreover, real Phoenix pumps are often co-located, 

servicing the same parcel regions for redundancy. The synthetic applies only one pump 

node per location, regardless of flow requirements. These qualitative differences may still 

be realistic because only generalized comparisons should be made for real WDN pump 

infrastructure.  

The pipe sizes and lengths for the synthetic and real WDNs were within the same order of 
magnitude in most pipe sizes. The largest difference in pipe length was for 11-to-16-inch 
distribution and 25-to-60-inch main pipes, as shown in   
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Table 4.4. Additionally, the synthetic system had six times more pipes over 100 

inches than the phoenix system. The construct of the synthetic system likely accounts for 

this difference. The synthetic system uses a minimum spanning tree method to design one 

unified network. Thus, the largest pipe sizes will transport large volumes of water, 

whereas real systems may divide this transport between multiple main water lines. 

Additionally, the synthetic model may have fewer miles of pipes because the system was 

designed as one network rather than the ad hoc sprawl design that developing cities tend 

to have from growth and development.  
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Table 4.4 – Water Pipe Size Comparison 

Bin 
sizes (in) 

Synthetic 
Total Length (ft) 

Syntheti
c Total length 

(mi) 
Actual 

Total Length (ft) 

Actual 
Total Length 

(mi) 

≤ 10 
25,879,55
2 

4,901.4 28,849,40
4 5,464 

11 to 16 685,833 129.9 5,617,677 1,064 
17 to 24 510,822 96.8 782,404 148 
25 to 60 687,090 130.1 1,512,625 286 
61 to 100 116,094 22.0 249,015 47 
101 to 173 62,811 11.9 10,206 2 

TOTA
L 

27,942,17
1 

5,292 37,021,33
1 7,012 

 

4.4.2 Large-Scale Outcomes and Black Swans 

A primary goal of this study was to observe if the cascading failure between the 

power and water networks would yield outcomes that could be classified as Black Swan 

events. Referring back to the introduction of the term in Chapter 1, black swans must 

carry a large impact (positive or negative). Moreover, the impacts are not only physical 

but reverberate through all of society in various ways. Black swans present challenges to 

infrastructure managers in two ways: likelihood (very low) and perceivability (very low) 

(Paté-Cornell, 2012; Spiegelhalter & Riesch, 2011). As to the likelihood, infrastructure 

managers do not have the time, resources, or human resources to prepare their systems 

for every low-likelihood scenario – even the most extreme scenarios. However, regarding 

perceivability, infrastructure managers rarely perform robust enough risk analysis to 

elucidate black swan scenarios. Factors of safety area are commonly used in the design, 

but they are often static, and the Anthropocene, notably extreme weather events, will 

continue to exceed these standards (Allenby & Chester, 2018; Markolf et al., 2021). 

Thus, Paté-Cornell (2012) posits that more nuanced modeling efforts can provide unique 

insights, balancing model complexity and generalization (recognizing that 
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oversimplification in modeling causes extreme events to be overlooked, leading to 

calamities when extreme events arrive). 

When considering infrastructure failures, it is also important to distinguish 

between black swans and another term called the “perfect storm.” A perfect storm is an 

alignment of many unlikely but known events that cause a much more extreme outcome 

than expected (Paté-Cornell, 2012). Hurricane Katrina in 2005 is an example of a perfect 

storm. The scenario involved a severe storm with extreme rainfall, cross-organizational 

communication failures, slowness of response, and historical infrastructure 

mismanagement (Leavitt & Kiefer, 2006). All these events were understood and foreseen, 

disqualifying Katrina as a black swan. Large-scale power outages, such as the northeast 

blackout of 2003, are also perfect storms because large-scale power outages have been a 

known possibility for many years. However, the scale of complexity for interconnected 

infrastructure systems creates the possibility for innumerable combinations of negative 

outcomes (Arbesman, 2016; Chester & Allenby, 2019a). For example, a large power loss 

occurred in Arizona/Southern California on September 8th, 2011. The initial power 

outage was a perfect storm of under generation, peak demand in San Diego, and the 

failure of a single critical transmission line in Southern Arizona. When the transmission 

line failed, San Diego’s power demands were automatically rerouted through lower-

voltage systems, overloading them to the point of failure. The power failure cascaded to 

other infrastructure networks in San Diego, causing traffic gridlocks in San Diego, 

aviation delays, water service failures, and sewage system failures (including sewage 

spills on the beach and in the ocean) (FERC & NERC, 2012). The initiating event was a 

power outage (i.e., a known event). Still, the effect of that single event had surprising and 
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expanding effects on other infrastructures and the society of San Diego. This expansion 

of cascading effects is an excellent example of how interconnection between 

infrastructure networks greatly reduces the ability to perceive how known failures can 

cascade into unknown domains. Often, infrastructure managers cannot anticipate how a 

known accident can spread to cause a surprise catastrophe. These mysteries and 

widespread effects capture the essence of a black swan.  

Therefore, while there were extreme scenarios in this modeling effort, they cannot 

all be classified as Black Swans. In the two most extreme power loss cases, 80 and 81 

lines failed. However, these scenarios initially involved two of the most critical lines 

from the Palo Verde generating station to Phoenix. Logically, their loss should cause a 

large outage, and events like this would be perceived and planned for by electrical 

engineers. However, in the case of Scenario 22, with both a severe power and water 

outage, there were 26 possible associated transmission lines – only two of which were 

major transmission lines from generating substations. These lines may not have been 

given as much security scrutiny or contingency planning as other major lines. Moreover, 

the wide range of line associations with this scenario creates many more ways the 

Scenario 22 power loss can cause a large water service loss (See Figure 4.10). This deep 

uncertainty hints at Black Swans.  

Another example is Scenario 17, where 95% of the WDN experienced a pressure 

drop. While this does not mean that 95% of nodes lost pressure, this combination of 

power and pump failures had effects far outside the original failure zone. Over 40,000 

nodes experienced a small pressure drop (0 to 10 psi). For most nodes, this would 

probably not be very important. However, for nodes near the acceptable service of 40 psi, 



128 
 

this would drop them below – which happened to 2,396 nodes in Scenario 17. As 

previously discussed, it would require many unlikely events to create such a large 

pressure drop; thus, this scenario may not be worth consideration. But frequently 

dismissing unlikely outcomes during risk analysis leaves societies unprepared for the 

surprise of extreme events (Paté-Cornell, 2012). 

4.4.3 Synthetic Network Use for Urban Resilience and Sustainability Scenarios 

Suppose infrastructure managers wish to ferret out scenarios for black swans in 

infrastructure and how the cascading effects might cascade to other parts of society. In 

that case, a change in risk analysis is needed. First, models cannot over-rely stochastics. 

They must include prior knowledge and inclusion of the system fundamentals (Paté-

Cornell, 2012). These two principles highlight how infrastructure organizations must be 

able to pivot resources in dynamic environments by remembering past events (i.e., what 

has worked and what has not) and unlocking innovation within the organization (Hoff et 

al., 2023). To this end, this study creates realistic networks via engineered models instead 

of using aleatory or theoretical principles. These networks and simulations can open up 

opportunities to provide engineered resilience analysis for future scenario research. For 

example, Iwaniec et al. (2020) modeled future scenarios for the Phoenix metro region, 

projecting future urban growth and agricultural changes and incorporating climate 

adaptation. Coupling such scenarios with a model like this study could expand 

possibilities, investigating how power demands, climate change, and water availability 

might interact with synthetic infrastructure models for the same region. The results may 

provide insight into the challenges for infrastructure networks facing rapid urbanization 

and climate change in a desert city. 
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Additionally, scenarios can be advanced further with consideration of the social 

implications of power outages as maximum ambient air temperatures are expected to 

increase, which decreases the efficiency and performance of power systems and poses an 

increased threat to vulnerable populations (Allen-Dumas, Binita, et al., 2019; Andresen et 

al., 2023; Hamstead & Coseo, 2019). For example, an overlay of demographic 

populations with Scenario 22 may provide insights into how vulnerable populations could 

experience power and water loss. While specific locations of outages cannot be 

extrapolated from the synthetic network results, realistic behavior could help emergency 

planners estimate affected populations in the event of large-scale power outages 

combined with climate-change-induced extreme heatwaves that Phoenix may experience 

(Clark et al., 2019; Stone et al., 2021). As another example, cascading failure analysis, as 

used in this study, could be paired with scenarios for electric vehicle adoption in a region 

– which is currently a question in the state of California. Researchers may seek to know if 

the additional load can be absorbed by the power transmission and generation system and 

if there will be any interdependent cascading effects on the water systems or other 

infrastructures. To study a question like this, other modeling considerations would be 

necessary due to potential voltage complications (Arfeen et al., 2020; Meyur et al., 2022; 

Muratori et al., 2021). These types of studies may help infrastructure managers analyze 

extreme events within networked and coupled infrastructure systems as an exercise to 

either prepare for surprise or scan the horizon for where resilience-building efforts may 

be the most effective in meeting future complexity (Alderson et al., 2022; Chester & 

Allenby, 2022).  
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This type of scenario insight highlights how SICFMs may be an important 

resilience tool for continuity of operations (COOP). Government and non-governmental 

organizations are responsible for developing plans to sustain operations and services at all 

levels (FEMA, 2011). This capability is considered a critical national infrastructure when 

viewed as a collected capability among governmental and non-governmental 

organizations (Moteff, 2015). Interdependency modeling is considered a critical research 

area to improve plans for COOPs from a national defense perspective (Pederson et al., 

2006; U.S. Army, 2015). Additionally, COOPs for infrastructure systems also directly 

affect COOPs for other organizations that provide essential services. Thus, these SICFM 

simulations may provide crucial sensemaking exercises for many stakeholders besides 

infrastructure managers. 

The need to use SICFMs to improve contingency plans such as COOPs also 

highlights another concern regarding SICFMs and their connection to infrastructure 

systems as strategic security assets. The gap between infrastructure’s significance to 

military and civilian operations continues to shrink. International conflict occurs daily via 

the internet (B. R. Allenby, 2016; Jakubowski, 2019). Infrastructure systems that were 

once independent are now coupled with one another in wickedly complex ways (Chester 

& Allenby, 2019a). Thus, SICFMs may provide additional tools for malignant actors to 

analyze infrastructure systems for vulnerabilities. But it is likely that these capabilities to 

analyze and act on vulnerabilities are already being developed. This should 

simultaneously be alarming for infrastructure managers and also compelling to develop 

the same capabilities to counter the vulnerabilities before they are exploited (Chester & 

Allenby, 2020). Indeed, as this gap diminishes between civil and military operations for 
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infrastructure, stakeholders should consider how SICFMs like this study could both assist 

and harm their systems as well as other dependent systems. 

4.4.4 Future Research 

Industrial validation from the utility provider on the synthetic electrical network 

would provide helpful feedback. Ali et al. (2022) successfully used industrial validation 

and provided iterations of the synthetic network to the utility owner for evaluation and 

refining the design from feedback without the real network data being released.  

The results showed several substations with identical initial-failure frequencies, 

regardless of line failure threshold. This repetition should not have happened if line 

failure selection had been random. When analyzing the results, it was realized that the 

random seed supplied for initial failure selection was tied to the iteration number, which 

led to a consistent pattern in the random selection across the 12 rounds of 10,000 

simulations. Fortunately, this did not cause all substations to follow a consistent pattern 

of behavior – only a small selection. These substations had only one transmission line 

connection, such as with substation “Phoenix_12,” as shown in Figure 4.14. Because 

there was some consistency in how the lines were randomly selected for failure, this 

caused “Phoenix_12” to fail 0, 2, 53, and 80 times for 1, 2, 3, and 4 initial line failures, 

respectively – regardless of line failure threshold. This issue will need to be corrected in 

future versions of the cascading failure model to improve the Monte Carlo simulation.  
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Figure 4.14 – Substation "Phoenix_12" With Only One Line Connection 

Additionally, several changes could be made to the synthetic water model for a 

more realistic water network. The system relies completely on booster pumps to provide 

pressure to the system. Real networks indeed use booster pumps. But they do not use 

them exclusively. Most water distribution networks also leverage gravity with water 

tanks and towers, which are not present in Ahmad et al. (2020). 

Moreover, backup generators could also be added to WDN pumps as stochastics 

to increase realism. Additionally, the network topology could be modified to ensure a 

looped design. The current model uses a minimum spanning tree model. Although it does 

satisfy pressure, velocity, and flow design parameters for most of the pipes and nodes, a 

looped methodology may yield more realistic behavior. A comparison study between the 

two topology methodologies may aid in refining the realism of the water network design. 

Or perhaps comparing the results of multiple synthetic water model methodologies may 

provide insights for improvement or accuracy. 

4.5 Conclusion 

This research aimed to use realistic dependent synthetic networks to elucidate 

cascading failure and observe the ensuing behavior. Some extreme-consequence 

N 
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scenarios appear to model what could be considered a black swan event due to the deep 

uncertainty of their consequences. Others are more representative of perfect storms. 

Whether synthetic networks reveal black swan events that are plausible in the real world 

will remain unanswered simply due to the nature of Black Swans – especially since a 

direct comparison between synthetic models and real networks will likely remain 

unavailable. But while precise outcomes cannot be extrapolated for the real Phoenix 

systems, it can be said that systems similar in construct to these synthetic networks may 

have the potential to experience similar behavior.  

As infrastructure continues to face more extreme events at greater frequencies, 

infrastructure managers must work to give their systems and organizations the requisite 

complexity for the future (Chester & Allenby, 2022). Among these essential activities is 

horizon-scanning, where infrastructure managers use various analysis tools to look for 

weak signals that may hint at coming disturbances. Modeling efforts with synthetic 

networks may provide a useful tool for horizon-scanning exercises. This type of risk 

analysis is not about predicting the unpredictable (an inherent property of Black Swans). 

Rather the purpose is ultimately intended to make infrastructure organizations more 

adaptable and - by extension - the infrastructure network itself (Hoff et al., 2023). These 

are exercises in searching for unknown unknowns. Although it is impossible to expose all 

outcomes, the skills gained in such exercises open the minds of infrastructure managers 

to the existence of Black Swans and – in so doing – give them resilience and reactive 

tools for the advent of surprises (Alderson et al., 2022). 
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CHAPTER 5 

5. CONCLUSION 

The chapters of this dissertation have discussed how infrastructure resilience can 

be bolstered via specific organizational competencies as well as horizon-scanning via 

specific modeling techniques. This final chapter contains a summary of the findings in 

this dissertation (Section 5.1), presents the key takeaways and how they contribute to 

furthering resilience for infrastructure (Section 5.2), discusses the boundaries and 

limitations of this work (Section 5.3), makes proposals for future research opportunities 

(Section 5.4), and concludes with a candid thought about resilience and infrastructure 

(Section 5.5). 

5.1 Summary 

The findings in this dissertation consistently imply that infrastructure 

organizational resilience is rooted in continuous innovation, creativity, collaboration, and 

forward-thinking from infrastructure managers rather than from technological 

improvements. As current events continually overturn the robustness of historical 

infrastructure standards, it is clear that technological infrastructure systems lack adaptive 

capacity for the future Anthropocene. Thus, resilience must come from another source.  

Dynamic criticality for infrastructure orgnizations is born from the desire to be 

resilient combined with a dearth in knowledge of how to quickly pivot priorities in times 

of disorder. Based on the competencies in Chapter 2, infrastructure managers should 

orient their goals, organizational structures, sensemaking, and strategies toward readiness 

for rapid shifts in priorities during disturbances. This study revealed that other domains 

are rife with wisdom for how to work towards dynamic criticality. The four themes and 
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associated competencies are practical and pragmatic for infrastructure managers. 

Moreover, they are nearly all organizational, requiring minimal technological changes to 

infrastructure systems. Infrastructure organizations should take account of the disturbance 

types that they routinely face (i.e., acute, continuous, and hybrid), build relevant 

strategies, and then rehearse the implementation outside of the disturbance setting for 

preparedness.  

In Chapter 3, an explorarion of potential modeling uses at the nexus of synthetic 

infrastructure models, interdependent networks, and cascading failure simulations reveals 

that the insights gained from SICFMs may increase sensemaking capabilities for 

infrastructure organizations. The findings indicate that the bodies of literature for 

synthetic power and water systems are robust enough that these models may be used in 

other research efforts such as scenario analysis, enhanced risk analysis, and black swan 

scenario elucidation. Researchers in other infrastructure fields besides power and water 

should consider developing similar synthetic networks to increase the suite of tools 

available in this space. 

Chapter 4 provides an example of how SICFMs might be used to elucidate  

previously inconceivable scenarios for failure in urban environments. SICFMs 

distinguish themselves from traditional multi-network cascading failure simulations 

because they replace most stochastic variables with engineered operations and are 

deterministic instead of probabilistic – with the disclaimer that an engineered model is 

not perfectly representative of the real world. So, while the results cannot be used to 

prescribe system alterations, the realistic nature of the interactions showcases how 

dependent cascading failure might unfold in similar urban scenarios. These results and 



136 
 

future models can inspire engineers, planners, and officials toward novel risk analysis and 

contingency plans. 

5.2 Synthesis: Infrastructure Resilience Demands Constant Reevaluation 

5.2.1 Dynamic Criticality as a Resilient State of Existence 

The theory of dynamic criticality comes from the physical sciences, describing 

natural systems that find the perfect balance between robustness and adaptability (Roli et 

al., 2018). This balance contrasts with irrelevent systems that perish after disturbances 

exacerbate their weakness (Pascale, 1999). Dynamic criticality for infrastructure 

managers proposes the same balance. Infrastructure managers might consider attaining 

this balance between robust and adaptable as a state of being, rather than a discrete event. 

Unlike many natural manifestations of self-organized criticality (see Bak, 1990), staying 

in this state requires proactive investment. It is not passive. Notably, remaining in this 

balance is not the same as optimization, which should be avoided in an age of volatility 

(Kim et al., 2019). Rather, this should be considered like the differential relationship 

between velocity and acceleration from kinematics (i.e., 𝑣 𝑎𝑡 𝑎 . If the effort 

level (i.e., acceleration) to reach dynamic criticality is a positive number, then an 

organization’s movement (i.e., velocity) toward that state will also be positive. However, 

velocity remains constant if acceleration is zero. With zero acceleration, an organization 

will be surpassed by the accelerating environment. Likewise, quick pivots in priorities 

will not occur for infrastructure organizations without serious investment in the necessary 

skills.  

The means to remain in the state of dynamic criticality would then be the 

competencies that are required. Infrastructure managers should constantly contextualize 
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goals, structures, sensemaking, and strategies to the environment. For example, 

sensemaking is not a one-time exercise. It is a constant process that organizations use to 

constantly distill garbled incoming data and transform it into understandable information 

(C. A. Miller & Munoz-Erickson, 2018; Weick, 1995). Building such habits will develop 

the capacity to recognize threats as they appear on the horizon – analogous to the critical 

role of England’s shoreline radar outposts during the battle of Britain. The competencies 

identified in Chapter 2 each fulfill a specific role in preparing organizations to pivot 

resources when necessary. 

Investment in these activities often seems wasteful and neglectful of small but 

immediate problems facing organizations. Indeed, preparation for extreme disturbances 

often seems futile because of the low probability of such events (Paté-Cornell, 2012). So, 

leadership endorsement and enablement are necessary to inspire cultural buy-in (A. M. 

Helmrich & Chester, 2022; Uhl-Bien & Arena, 2018). Leadership that bridges the gap 

between innovative thinking and efficient administration unlocks creativity (Rosing et al., 

2011; Uhl-Bien et al., 2007b). This innovation and creativity build organizations' 

adaptability during responses to disturbances (Grote, 2019; B. Lichtenstein & Ashmos 

Plowman, 2009). Leaders within infrastructure management should be responsible for 

setting organizational goals, which are tied to dynamic criticality. The findings indicate 

that goals have an initiating role in tipping an organization toward building the 

appropriate competencies to approach dynamic criticality. 

Finally, if infrastructure organizations do not pursue activities in support of 

dynamic criticality for their organizations, it is likely that they will become more 

irrelevant to today’s chaotic environment. Infrastructure has already displayed many 
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obdurate attributes, such as in engineering education, adaptive capacity, and 

consideration of infrastructure as only technological systems (B. Allenby & Chester, 

2018; Chester & Allenby, 2021; Markolf et al., 2018). Greater Society will likely 

continue continue functioning whether infrastructure organizations adapt or not, but 

adaptations (or lack thereof) may define the societal fallout as disturbances continue to 

intensify.  

5.2.2 SICFMs Need Investment and Contextualization 

SICFMs have capabilities that have yet to be fully realized. SICFMs require 

unified investment from the research community and practitioners to come to fruition. 

The literature review in Chapter 3 shows abundant progress in synthetic infrastructure 

modeling, interdependent networks, and cascading failure dynamics. Models that fuse 

these domains may potentially provide novel insights for infrastructure resilience – 

particularly in envisioning previously un-imagined Black Swans. Moreover, there are 

security implications that come with advancements in these models that are important for 

infrastructure managers to be aware of, regardless of how SICFMs are used. 

The advancement of SICFMs hinges on several key developments. It is easy to 

see that the researchers, SICFMs, and community stakeholders have an interdependent 

relationship. Infrastructure planners lack tools for risk analysis at fine scales (Hoff & 

Chester, 2023) and thus rely on developers and researchers for these future tools. In 

return, researchers need validation and assistance from community stakeholders to 

develop realistic SICFMs (Ali et al., 2022; Meyur et al., 2020). First, researchers must 

syndicate synthetic model development outside of academia. But community 

stakeholders are rarely willing (or even able) to share data that would aid the 
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development of these models (Meyur et al., 2020, 2022). Indeed, critical infrastructure is 

a national security concern, and researchers should exercise discretion when advancing 

models and publishing them (see section 5.4.4, Weaponization and Security 

Considerations). But, frequently, security concerns arise because officials are ignorant of 

risk within infrastructure, and many infrastructure personnel are untrained and 

unprepared as a result (Franchina et al., 2021). 

Thus, everyone in the infrastructure community is a stakeholder for SICFMs – 

researchers, utility owners, and community leaders. To fully capitalize on this 

opportunity, many organizations should invest. Without unified investment, it may be 

difficult for the models to advance meaningfully.  

5.2.3 SICFMs as Catalysts (Not Solutions) for Dynamic Criticality 

In essence, SICFMs are a means to move toward a state of dynamic criticality – 

rather than some predictive or prophetic “crystal ball.” Indeed, SICFMs can be a 

powerful tool to extend risk analysis into previously unexplored regions (Paté-Cornell, 

2012); but importantly, they are a tool. Their advent could stimulate new ways that 

infrastructure managers frame their systems (i.e., as dynamic systems that are 

interconnected and constantly affected by other systems) (Chester & Allenby, 2019b; A. 

M. Helmrich et al., 2020). An example: at the time of this dissertation’s writing, the novel 

artificial intelligence (AI) platform ChatGPT has burst into the public limelight, and 

organizations the world over are all considering how to capitalize on this new capability, 

while others are concerned that this acceleration will become existential to humanity 

(Wallace-Wells, 2023). Concerns notwithstanding, AI should not be viewed as anything 
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more than a tool. It cannot solve unprompted problems (yet), but it can be assigned 

menial tasks that are often time-consuming barriers to investigating deeper questions. 

Likewise, SICFMs are tools that visualize scenarios for infrastructure in a 

quantity and fine-scale that has been previously impossible (Hoff & Chester, 2023). The 

work presented in Chapter 4 showcases these models' ability to elucidate unlikely but 

catastrophic events. The discussion on Scenario 22 exemplifies this, as shown in Section 

4.4.3. In this scenario, various transmission line failures can lead to large (and different) 

areas of power and water pressure being lost. Of note, Scenario 22 can converge via 

multiple line and substation avenues – as opposed to just one, like most of the other high-

impact scenarios. This diversity implies a more systemic vulnerability in the synthetic 

power and water networks. (Note: as already mentioned, vulnerabilities in synthetic 

systems do not imply the same vulnerabilities in the real system.) It also showcases 

where weak points of interdependency exist. The cluster of pumps around the WTP is a 

critical vulnerability that would be mitigated by redundancy in the real world. 

Nevertheless, it demonstrates that the potential weak point – if not mitigated – would 

greatly impact Phoenix. These types of “worst case scenarios” could be helpful 

sensemaking exercises for infrastructure organizations and their stakeholders to develop 

plans to support and respond to affected populations and develop or change continuity of 

operations plans.  

This initial test of an SICFM demonstrates that the diverse scenarios can spark 

inspiration for assessing infrastructure networks as they relate to other infrastructure 

networks. To be sure, many infrastructure managers already spend ample time analyzing 
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their systems for vulnerabilities. But do they (or can they) consider interdependence? 

With some investment and partnership, SICFMs can catalyze such analysis. 

5.3 Boundaries and Limitations 

This dissertation's work was subject to some firm boundaries and limitations. 

Each chapter had its unique boundaries, which are discussed in this section. Many of 

these limitations also inspire future work on these topics, which is discussed in the next 

section. 

Best practices for dynamic criticality can be observed in nearly every facet of 

society and nature (Roli et al., 2018), and thus, the scope of Chapter 2 had to be limited. 

The selection of domains for the chapter was primarily limited to those familiar the 

author. The investigation initially proposed two additional industrial sectors (finance and 

logistics). However, these sectors were eliminated after very little literature was found 

during the initial searches. Ultimately, the insights discussed from these sectors are not 

mutually exclusive to insights from other sectors. But, for brevity, the study was limited 

to the five domains included in Chapter 2. 

The fusion of synthetic infrastructure, interdependent networks, and cascading 

failure is only one potential use for these three interdisciplinary research fields. 

Arguments for other uses can be also made using the same literature library from Chapter 

3. The selection of SICFMs as a topic of interest came from the dearth of literature 

discussing the potential uses for synthetic networks. This conversation has not yet 

occurred within the research community. Nevertheless, synthetic networks continue to be 

developed. In the case of synthetic power, there is a clear vision and conversation 

regarding their use as benchmark test networks for many other uses (Marcos et al., 2017; 
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Mohammadi & Saleh, 2021). However, no vision exists beyond how synthetic networks 

can be fused with other infrastructures. Wang et al. (2022) was the first study to use 

synthetic networks to model an interdependent system with exchanging “flows” between 

then different networks. But cascading failure was not included. Thus, this paper took a 

first step in what hopefully becomes a larger body of work toward combining synthetic 

networks for interdependent cascading faiolure.  

Constructing an initial test SICFM using existing methodologies came with many 

challenges. First, Chapter 4 was bounded by the two existing methodologies from 

Birchfield et al. (2017) and Birchfield & Overbye (2020) for the power system and 

(Ahmad et al., 2020) for the water system. The primary goal of the methodology 

selection was to create two networks with approximately equivalent engineering 

robustness. These two networks used engineering operations to operate themselves and 

eliminated the necessity for most stochastics, except for the initial failures – which used a 

Monte Carlo simulation. For the power network, the model does not include any 

distribution networks. Thus, power outages were limited to substation service regions and 

could not be approximated at a finer scale. In the water model, there were some notable 

qualitative differences between the real Phoenix network and the synthetic network. The 

model as it currently existsClick or tap here to enter text. satisfies pressures at nodes 

using only pumps and does not use water towers/tanks. 

Moreover, while water networks do generally follow roads, as new and old water 

synthetic models assume (Mair et al., 2014; Momeni et al., 2023; Sharvelle et al., 2017; 

Sitzenfrei et al., 2010), water tanks do assist in providing localized pressure to some 

clusters within the network (Kelso, 2022). But since this capability was not available in 
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the Ahmad et al. (2020) model, this difference must be accepted and then considered 

when interpreting the results of Chapter 4. Additionally, both models were limited to the 

city limits of Phoenix only because, for this initial study, modeling the whole Phoenix 

metro area would have been a much higher modeling burden. Moreover, nuances within 

the power and water networks for the Phoenix metro region may be misrepresented by 

one simple grid (Kelso, 2022). If the whole metro region is to be modeled in the future, 

the synthetic network construction methodology may need to be modified.  

Lastly, a robust analysis of power and water dynamics was outside the scope of 

Chapter 4. The research objective for the chapter is to elucidate cascading failure in an 

urban area and visualize potential extreme events. Thus, a granular analysis of the 

engineering dynamics within each system would have distracted from the objective. 

However, follow-on research may use these results to delve deeper into engineering 

dynamics to improve synthetic, interdependent, and cascading failure modeling 

techniques.  

5.4 Broader Implications and Future Work 

5.4.1 Success Stories for Infrastructure Dynamic Criticality 

Many infrastructure organizations likely exhibit dynamic criticality in past or 

present actions, and Chapter 2 does not include any positive examples. Research to find 

exemplary manifestations of dynamic criticality within infrastructure could provide 

additional recommendations for infrastructure organizataions. This research could 

include detailed case studies on one or a few examples or perhaps a broader survey with 

many examples in diverse infrastructure sectors. For example, Gilrein et al. (2019) 

identified best practices for transforming infrastructure from rigid to adaptable within 
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multiple infrastructure sectors. A similar study for dynamic criticality may be worthwhile 

and give infrastructure managers tractable courses of action for the future.  

5.4.2 A Common Lexicon for Synthetic Infrastructure 

The term “synthetic” is used in modeling for some infrastructure disciplines, but 

not all of them. Chapter 3 used the term because it was the most common in power and 

water systems – the two most predominant infrastructures with synthetic models. As 

previously stated, Mohammadi & Saleh (2021) defined synthetic networks as those 

possessing three general properties: 1) the representativeness of actual networks, 2) the 

confidentiality of actual data, and 3) the use of real engineering properties. For some 

infrastructures, the concept of a fictional-yet-realistic network is just emerging, and the 

term “synthetic” is not used in their literature. Additionally, “synthetic” is not exclusively 

used to describe the three attributes above. In some cases, the term has been used to 

describe a much wider range of infrastructure models, including those that do not attempt 

to be realistic or detailed (Mahabadi et al., 2021). Therefore, it is important to establish a 

common lexicon for terminology across disciplines. This discussion should be had 

between leaders in research fields to harmonize future modeling efforts.  

5.4.2 The Water Network 

 As mentioned in Chapter 4 and in Section 5.3, the methodology used for 

constructing the synthetic network has some qualitative differences from the real 

network. First, the model uses a source (the WTP), gravity, and booster pumps (when 

necessary) to achieve adequate pressure. But, in a large city like Phoenix, water tanks are 

also placed in elevated locations to provide pressure (Kelso, 2022). Moreover, the 

Chapter 4 model does not intentionally loop the network but uses roads and a minimum 



145 
 

spanning tree approach to reach every node in the network. Coincidentally, Phoenix has 

been geographically constructed as a grid city, and thus, the WDN for Chapter 4 naturally 

has loops. But, most other cities in the United States are not constructed as grids, so loops 

may not occur when using the same methodology.  For these reasons, future research may 

consider modifying the existing model or adopting another method altogether. For 

example, Momeni et al. (2023) recently published a synthetic water network optimization 

model that uses resilience and economic optimization parameters while also satisfying 

pressure in the model.  

5.4.3 The Power Network 

Future research will offer opportunities to make the power network even more 

realistic. As mentioned in section 5.4.2, this model was limited to Phoenix to ensure that 

the water and power networks covered the same geographical region. There would be 

different insight when observing how power failures cascade across the much larger 

metro area.  

This model did not include power distribution networks to specific nodes. 

Synthetic transmission and distribution networks are being developed as separate 

methodologies. But there may be opportunities to combine them in future studies. In one 

study, distribution and transmission models have been combined to create highly detailed 

synthetic networks (H. Li et al., 2020). But it is very laborious to fuse these 

methodologies. Thus far, no research has been conducted on modeling cascading failure 

dynamics between synthetic transmission and distribution networks. This study focused 

on transmission initially because, power generation flows through transmission lines 

initially. However, fusing transmission with distribution in future research could further 
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increase the detail in cascading failures. In Chapter 4, the water network was able to 

provide outages at specific nodes while the power system was limited to service regions. 

So, including power distribution in the future may bring the same level of detail to the 

cascading failure results. 

5.4.4 Weaponization and Security Considerations 

 Developers of SICFMs must not be ignorant of the potential for advanced 

modeling to highlight strategic vulnerabilities within infrastructure and the reality that 

geopolitical adversaries will undoubtedly take notice. Infrastructure has always been a 

strategic consideration in conflict, and the 21st century has amplified this reality (B. R. 

Allenby, 2016). Today, in cyberspace, the United States is constantly assaulted by foreign 

adversaries aiming to destabilize and degrade infrastructure for strategic advantage (Arata 

III & Hale, 2018; Covington & Carskadden, 2013). Models like SICFMs may not predict 

reality, but they do reflect realistic scenarios for realistically designed systems. Thus, 

there may only be a small difference between these realistic scenarios and failures that 

could happen in the real world. As the geopolitical conflict accelerates between the 

United States and other superpowers, it should be expected that adversaries will seek to 

destabilize the United States via cyberspace (Brose, 2020; Jakubowski, 2019), and 

infrastructure will be a primary target (Chester & Allenby, 2020). Thus, care and good 

cybersecurity practices should be used in future work on SICFM models. Moreover, 

future conversations should be had around how much (or how little) SICFMs may benefit 

(or harm) society from a security perspective. 
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5.4.5 Modeling toward SICFMs 

While the model in Chapter 4 is a progressive step toward designing true 

SICFMs, work still needs to be done. The water and power networks are realistically 

constructed, meeting the requirement for an SICFM. However, the models in Chapter 4 

do not not use a time-series, which prevents them from providing continuous feedback to 

each other. Instead, the model uses binary dependency conditions, which are less 

realistic. Realistic interdependencies, as illustrated in Chapter 3, require this real-time 

feedback to simulate the true behavior of real infrastructure systems.  

However, Chapter 4 is a stepping stone to constructing true SICFMs. Chapter 3 

found that interdependency modeling has often used theoretical networks – typically not 

representative of real networks. Additionally, these historical models cannot incorporate 

engineered design or operation to simulate cascading failure. The model in Chapter 3 

satisfies both of these requirements but uses realistically designed networks and 

engineered operations for cascading failure. The power network uses contingency 

analysis for power balancing to determine failure. The water network uses EPANET to 

simulate iterative pressure rebalancing within the water system as pumps lose power. 

Thus, the model satisfies two of the three primary requirements for SICFMs. Additional 

research should be done to add time-series simulations to the power and water networks. 

This progress would enable more realistic feedback and the exchange of resources 

between the two networks (Varga et al., 2014). Time-series operations would also allow 

for time-based demands, which can add dynamic behavior to the system, such as peak 

loads in the evening (Y. Wang et al., 2022).  
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5.5 A Closing Thought About This Work, Infrastructure, and Resilience 

Infrastructure will undergo a monumental paradigm shift in the coming century. 

The strain of the Anthropocene will demand it. The question remains whether 

infrastructure organizations will embrace this shift or adjust slowl; and the answer to this 

question will likely determine the nature of outcomes to society – positive or negative. 

What this work reveals is that infrastructure organizations and the management of their 

systems ultimately determine infrastructure resilience. Chapter 2 discusses how 

infrastructure organizations must first build organizational capacity to prioritize critical 

assets and manage them effectively. Chapter 3 discovers that stakeholder investment is 

more crucial to modeling networks for resilience insights. Chapter 4 finds that, while 

SICFMs are tools to analyze infrastructure systems, they are essentially a sensemaking 

exercise for infrastructure organizations to use for capacity-building (i.e., dynamic 

criticality). Ultimately, SICFMs use foundational scientific principles in an applied 

setting and then seek to translate them into a contextualized format that is useful to build 

stronger and more resilient infrastructure systems and organizations.  

Taleb (2014), in the book Antifragile, discusses the idea that there are things in 

this world that “gain from disorder.” Among his examples is a person named “Fat Tony,” 

who made an absurd amount of money when he bet against the stock market before the 

2008 recession in the United States. Some people saw Tony’s win as a lucky break. But 

Taleb points out that Fat Tony understood the nature of complex human networks: they 

are fragile, and failures are inevitable.  Likewise, infrastructure managers have 

opportunities to act based on the inherent fragility within their wickedly complex systems 

and the inevitability of disturbances to come. Expecting disturbance-induced failure is not 
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a pessimistic viewpoint; rather, it is realistic. This realism can – and should – be a 

compelling driver for changes toward the concepts researched in this dissertation and 

other resilience changes for infrastructure.  
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Table B.1 – Substation Frequency of Failure for Chapter 4 

Sub Name 
Frequency of 

Failure (of 21234) 
115% 

TH 
135% 

TH 
245% 

TH 
PHOENIX_1 322 157 93 72 
PHOENIX_2 540 319 146 75 
PHOENIX_3 0 0 0 0 
PHOENIX_4 438 270 120 48 
PHOENIX_5 281 155 63 63 
PHOENIX_6 0 0 0 0 
PHOENIX_7 80 54 13 13 
PHOENIX_8 349 313 35 1 
PHOENIX_9 0 0 0 0 

PHOENIX_10 0 0 0 0 
PHOENIX_11 0 0 0 0 
PHOENIX_12 474 158 158 158 
PHOENIX_13 150 50 50 50 
PHOENIX_14 209 84 65 60 
PHOENIX_15 0 0 0 0 
PHOENIX_16 11 5 3 3 
PHOENIX_17 0 0 0 0 
PHOENIX_18 783 323 313 147 
PHOENIX_19 263 263 0 0 
PHOENIX_20 1107 369 369 369 
PHOENIX_21 0 0 0 0 
PHOENIX_22 12 4 4 4 
PHOENIX_23 1050 595 322 133 
PHOENIX_24 531 529 2 0 
PHOENIX_25 0 0 0 0 
PHOENIX_26 163 74 60 29 
PHOENIX_27 25 9 8 8 
PHOENIX_28 27 9 9 9 
PHOENIX_29 359 207 120 32 
PHOENIX_30 306 102 102 102 
PHOENIX_31 0 0 0 0 
PHOENIX_32 3 3 0 0 
PHOENIX_33 13 11 2 0 
PHOENIX_34 490 374 91 25 
PHOENIX_35 94 92 2 0 
PHOENIX_36 0 0 0 0 
PHOENIX_37 0 0 0 0 
PHOENIX_38 35 32 3 0 
PHOENIX_39 0 0 0 0 
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Sub Name 
Frequency of 

Failure (of 21234) 
115% 

TH 
135% 

TH 
245% 

TH 
PHOENIX_40 204 154 50 0 
PHOENIX_41 975 814 161 0 
PHOENIX_42 2 2 0 0 
PHOENIX_43 4 4 0 0 
PHOENIX_44 0 0 0 0 
PHOENIX_45 66 24 21 21 
PHOENIX_46 0 0 0 0 
PHOENIX_47 0 0 0 0 
PHOENIX_48 0 0 0 0 
PHOENIX_49 0 0 0 0 
PHOENIX_50 247 89 79 79 
PHOENIX_51 72 72 0 0 
PHOENIX_52 11 11 0 0 
PHOENIX_53 0 0 0 0 
PHOENIX_54 274 92 91 91 
PHOENIX_55 0 0 0 0 
PHOENIX_56 0 0 0 0 
PHOENIX_57 0 0 0 0 
PHOENIX_58 0 0 0 0 
PHOENIX_59 9 8 1 0 
PHOENIX_60 26 23 3 0 
PHOENIX_61 15 5 5 5 
PHOENIX_62 23 14 7 2 
PHOENIX_63 6 2 2 2 
PHOENIX_64 0 0 0 0 
PHOENIX_65 0 0 0 0 
PHOENIX_66 0 0 0 0 
PHOENIX_67 12 4 4 4 
PHOENIX_68 0 0 0 0 
PHOENIX_69 0 0 0 0 
PHOENIX_70 4 3 1 0 
PHOENIX_71 990 330 330 330 
PHOENIX_72 0 0 0 0 
PHOENIX_73 9 3 3 3 
PHOENIX_74 33 20 13 0 
PHOENIX_75 2 2 0 0 
PHOENIX_76 0 0 0 0 
PHOENIX_77 0 0 0 0 
PHOENIX_78 0 0 0 0 
PHOENIX_79 109 86 22 1 
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Sub Name 
Frequency of 

Failure (of 21234) 
115% 

TH 
135% 

TH 
245% 

TH 
PHOENIX_80 9 8 1 0 
PHOENIX_81 0 0 0 0 
PHOENIX_82 942 314 314 314 
PHOENIX_83 327 279 24 24 
PHOENIX_84 3 2 1 0 
PHOENIX_85 0 0 0 0 
PHOENIX_86 0 0 0 0 
PHOENIX_87 3 3 0 0 
PHOENIX_88 1026 834 192 0 
PHOENIX_89 0 0 0 0 
PHOENIX_90 0 0 0 0 
PHOENIX_91 1 1 0 0 
PHOENIX_92 0 0 0 0 
PHOENIX_93 2 0 2 0 
PHOENIX_94 0 0 0 0 
PHOENIX_95 0 0 0 0 
PHOENIX_96 535 525 10 0 
PHOENIX_97 83 65 9 9 
PHOENIX_98 432 424 7 1 
PHOENIX_99 158 156 2 0 

PHOENIX_100 1071 357 357 357 
PHOENIX_101 0 0 0 0 
PHOENIX_102 1401 1340 60 1 
PHOENIX_103 0 0 0 0 
PHOENIX_104 7 7 0 0 
PHOENIX_105 0 0 0 0 
PHOENIX_106 0 0 0 0 
PHOENIX_107 234 224 10 0 
PHOENIX_108 585 454 130 1 
PHOENIX_109 20 20 0 0 
PHOENIX_110 2 0 2 0 
PHOENIX_111 810 270 270 270 
PHOENIX_112 673 480 191 2 
PHOENIX_113 0 0 0 0 
PHOENIX_114 0 0 0 0 
PHOENIX_115 0 0 0 0 
PHOENIX_116 247 247 0 0 
PHOENIX_117 32 32 0 0 
PHOENIX_118 0 0 0 0 
PHOENIX_119 279 272 7 0 
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Sub Name 
Frequency of 

Failure (of 21234) 
115% 

TH 
135% 

TH 
245% 

TH 
PHOENIX_120 203 92 111 0 
PHOENIX_121 0 0 0 0 
PHOENIX_122 607 560 47 0 
PHOENIX_123 1112 1076 34 2 
PHOENIX_124 962 674 285 3 
PHOENIX_125 2 2 0 0 

West Phoenix 0 0 0 0 
Agua Fria 30 29 1 0 

Kyrene 6 5 1 0 
Palo Verde 0 0 0 0 

Waddell 972 324 324 324 
Arlington Valley Energy 

Facility 
21234 11697 5704 3833 

Red Hawk 0 0 0 0 
Luke Solar 1068 356 356 356 

Arlington Valley Solar Energy 
II 

2 2 0 0 

Mesquite Solar 1 2 2 0 0 
Badger 1 3 1 1 1 
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Table B.2 – Chapter 4 - 100 Most Severe Outages, by Population Without Power 

Note 1: all scenarios included some kind water service failure.  

Note 2: Scenario 22 is the most frequently occurring, but does not appear until number 

26. 

Severity 
Rank 
(by pop 
w/o 
power) 

Failure 
Threshold % 

num initial 
failures 

num lines 
cascaded 

num 
subst 
failed 

Area 
without 
Power 
(sq-km) 

Pop 
without 
Power 

Scenario 
Number 

Nodes 
without 
Water 

1 115 4 59 11 80.9 144051 23 2511 
2 115 4 34 9 84.2 132167 13 568 
3 115 4 37 8 59.5 123118 31 5 
4 115 3 33 8 59.5 123118 31 5 
5 115 3 33 8 59.5 123118 31 5 
6 115 3 32 7 57.7 121649 31 5 
7 115 3 32 7 57.7 121649 31 5 
8 115 4 32 7 57.7 121649 31 5 
9 115 4 49 8 79.8 121266 13 568 

10 115 3 38 12 145.6 119555 17 1545 
11 115 4 38 12 145.6 119555 17 1545 
12 135 4 54 13 128.5 116761 8 521 
13 115 3 50 10 97.8 112513 6 3674 
14 115 4 50 10 97.8 112513 6 3674 
15 115 4 38 7 55.1 112217 31 5 
16 115 4 38 7 55.1 112217 31 5 
17 115 4 38 7 55.1 112217 31 5 
18 115 4 38 7 55.1 112217 31 5 
19 115 4 38 7 55.1 112217 31 5 
20 115 4 38 7 55.1 112217 31 5 
21 115 4 38 7 55.1 112217 31 5 
22 115 4 38 7 55.1 112217 31 5 
23 115 4 38 7 55.1 112217 31 5 
24 115 4 38 7 55.1 112217 31 5 
25 115 4 31 8 53.6 110153 22 2867 
26 115 4 36 7 53.6 108199 31 5 
27 115 3 31 8 52.2 105310 22 2867 
28 115 4 48 8 53.9 103188 27 5 
29 115 4 41 9 86.9 101251 7 398 
30 115 4 31 8 47.3 99796 31 5 
31 115 4 21 7 62.2 99121 23 2511 
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Severity 
Rank 
(by pop 
w/o 
power) 

Failure 
Threshold % 

num initial 
failures 

num lines 
cascaded 

num 
subst 
failed 

Area 
without 
Power 
(sq-km) 

Pop 
without 
Power 

Scenario 
Number 

Nodes 
without 
Water 

32 115 4 33 7 48.4 97307 22 2867 
33 115 4 33 7 48.4 97307 22 2867 
34 115 4 32 7 48.4 97307 22 2867 
35 115 3 31 7 48.4 97307 22 2867 
36 115 3 31 7 48.4 97307 22 2867 
37 115 3 31 7 48.4 97307 22 2867 
38 115 4 31 7 48.4 97307 22 2867 
39 115 4 31 7 48.4 97307 22 2867 
40 115 4 30 7 48.4 97307 22 2867 
41 115 3 29 7 48.4 97307 22 2867 
42 115 4 29 7 48.4 97307 22 2867 
43 115 4 29 7 48.4 97307 22 2867 
44 115 4 29 7 48.4 97307 22 2867 
45 115 4 29 7 48.4 97307 22 2867 
46 115 3 28 7 48.4 97307 22 2867 
47 115 3 28 7 48.4 97307 22 2867 
48 115 3 28 7 48.4 97307 22 2867 
49 115 3 28 7 48.4 97307 22 2867 
50 115 3 28 7 48.4 97307 22 2867 
51 115 3 28 7 48.4 97307 22 2867 
52 115 3 28 7 48.4 97307 22 2867 
53 115 3 28 7 48.4 97307 22 2867 
54 115 3 28 7 48.4 97307 22 2867 
55 115 3 28 7 48.4 97307 22 2867 
56 115 3 28 7 48.4 97307 22 2867 
57 115 4 28 7 48.4 97307 22 2867 
58 115 4 28 7 48.4 97307 22 2867 
59 115 4 28 7 48.4 97307 22 2867 
60 115 4 28 7 48.4 97307 22 2867 
61 115 4 28 7 48.4 97307 22 2867 
62 115 4 28 7 48.4 97307 22 2867 
63 115 4 28 7 48.4 97307 22 2867 
64 115 4 28 7 48.4 97307 22 2867 
65 115 4 28 7 48.4 97307 22 2867 
66 115 4 28 7 48.4 97307 22 2867 
67 115 4 28 7 48.4 97307 22 2867 
68 115 4 28 7 48.4 97307 22 2867 
69 115 4 28 7 48.4 97307 22 2867 
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Severity 
Rank 
(by pop 
w/o 
power) 

Failure 
Threshold % 

num initial 
failures 

num lines 
cascaded 

num 
subst 
failed 

Area 
without 
Power 
(sq-km) 

Pop 
without 
Power 

Scenario 
Number 

Nodes 
without 
Water 

70 115 4 28 7 48.4 97307 22 2867 
71 115 4 28 7 48.4 97307 22 2867 
72 115 4 28 7 48.4 97307 22 2867 
73 115 4 28 7 48.4 97307 22 2867 
74 115 4 28 7 48.4 97307 22 2867 
75 115 4 28 7 48.4 97307 22 2867 
76 115 2 27 7 48.4 97307 22 2867 
77 115 2 27 7 48.4 97307 22 2867 
78 115 2 27 7 48.4 97307 22 2867 
79 115 2 27 7 48.4 97307 22 2867 
80 115 2 27 7 48.4 97307 22 2867 
81 115 2 27 7 48.4 97307 22 2867 
82 115 2 27 7 48.4 97307 22 2867 
83 115 2 27 7 48.4 97307 22 2867 
84 115 2 27 7 48.4 97307 22 2867 
85 115 2 27 7 48.4 97307 22 2867 
86 115 2 27 7 48.4 97307 22 2867 
87 115 2 27 7 48.4 97307 22 2867 
88 115 2 27 7 48.4 97307 22 2867 
89 115 2 27 7 48.4 97307 22 2867 
90 115 2 27 7 48.4 97307 22 2867 
91 115 2 27 7 48.4 97307 22 2867 
92 115 2 27 7 48.4 97307 22 2867 
93 115 2 27 7 48.4 97307 22 2867 
94 115 2 27 7 48.4 97307 22 2867 
95 115 2 27 7 48.4 97307 22 2867 
96 115 2 27 7 48.4 97307 22 2867 
97 115 2 27 7 48.4 97307 22 2867 
98 115 2 27 7 48.4 97307 22 2867 
99 115 2 27 7 48.4 97307 22 2867 

100 115 2 27 7 48.4 97307 22 2867 
 


