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ABSTRACT

Molecular Dynamics (MD) simulations are ubiquitous throughout the physical sci-

ences; they are critical in understanding how particle structures evolve over time

given a particular energy function. A software package called ParSplice introduced a

new method to generate these simulations in parallel that has significantly inflated

their length. Typically, simulations are short discrete Markov chains, only captur-

ing a few microseconds of a particle’s behavior and containing tens of thousands of

transitions between states; in contrast, a typical ParSplice simulation can be as long

as a few milliseconds, containing tens of millions of transitions. Naturally, sifting

through data of this size is impossible by hand, and there are a number of visualiza-

tion systems that provide comprehensive and intuitive analyses of particle structures

throughout MD simulations. However, no visual analytics systems have been built

that can manage the simulations that ParSplice produces. To analyze these large

data-sets, I built a visual analytics system that provides multiple coordinated views

that simultaneously describe the data temporally, within its structural context, and

based on its properties. The system provides fluid and powerful user interactions

regardless of the size of the data, allowing the user to drill down into the data-set to

get detailed insights, as well as run and save various calculations, most notably the

Nudged Elastic Band method. The system also allows the comparison of multiple

trajectories, revealing more information about the general behavior of particles at

different temperatures, energy states etc.
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Chapter 1

INTRODUCTION

Molecular dynamics (MD) simulations enable scientists to observe how particles

evolve over time assuming a potential energy function. Each step of a MD simu-

lation is typically an extraordinarily small length of time (e.g, femtoseconds; 10e-15);

this time-scale is chosen based on the fastest vibrational frequency in the system

- choosing time-scales larger than the system’s vibrational frequencies can lead to

missing important transitions between states, as these transitions depend on the par-

ticle vibrating. MD simulations have found applications in drug design (Hospital

et al., 2015; Durrant and McCammon, 2011), biophysics (Berendsen, 1987), materi-

als science (Miyazaki and Shiozaki, 1996), and numerous other fields in the physical

sciences. A large family of software packages have been developed in order to generate

these simulations, such as GROMACS (Bekker et al., 1993) for biological simulations,

LAMMPS (Thompson et al., 2022) for materials modeling, as well as countless others

in other fields. These software packages simulate the interactions of atoms within the

particle by using Newton’s laws of motion. A simulation management system called

ParSplice (Perez et al., 2016) was recently introduced, which enabled MD simulations

to span relatively long time-scales, provided that the particles being simulated are of

a modest size.

MD simulations generate thousands of transitions between discrete particle struc-

tures, referred to as states. States contain meta-data about the particle being sim-

ulated at a given point in time, such as its position, species, etc. These states tend

to repeat numerous times throughout a simulation, often cycling through a set of

neighbor states rapidly.
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A chain of states is called a trajectory, and a single trajectory describes one of

the many possible ways a particle can behave given a potential energy function. Tra-

jectories generated by ParSplice are mostly comprised of energy basins (Figure 1.1),

long periods of time where the simulation oscillates between a small subset of states,

remaining structurally similar throughout. This is caused by the fact that transition-

ing between these states does not require a large amount of energy, but transitioning

to another basin (set of states) does. Regions where the atoms drastically change

their structure and overcome the energy barrier between basins occur rarely and usu-

ally within the span of a few timesteps (Henkelman, 2017). These regions are called

transition regions (Figure 1.1), and the heterogeneity of energy barriers has been a

long-standing problem in simulating long MD trajectories.

Despite the obvious scientific value of these simulations, trajectories with the

heterogeneous energy barrier problem are difficult to analyze due to the large amounts

x
y

z

Figure 1.1: A 3D Surface Demonstrates the Energy (Z-axis) of a Particle Through-
out a Simulation. The Black Line (Left) Illustrates the Trajectory the Particle Has
Taken. The Numbers (Right) Indicate Hypothetical Energy Basins Which Usually
Correspond to Different Structures of a Particle. Transition Regions Can Be Regarded
as Lines Separating These Basin Regions. Figure Was Reproduced with Permission
from the Original Author, Danny Perez (danny perez@lanl.gov)).
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of superfluous data they produce. Since there are a large amount of uninteresting

transitions (i.e energy basins) even within a small data-set, there is a need to develop

a compact, progressive visualization (Fekete et al., 2019) that highlights the essential

components of the trajectory (i.e., the transition regions), while understating the

parts of the trajectory where there is little to no change in the structure of the

particle. To contribute to the problem further, simulations generated by ParSplice

contain states that transition to their topologically equivalent ”symmetric” cousins

that differ only in their atomic labeling, yielding no new insights yet making analysis

more difficult. Such a workflow was explored in Huang et al. (2017, 2018) but has

not been automated nor visualized.

A large variety of visual analytics systems exist for molecular dynamics simula-

tions (Mixcoha et al., 2016; van der Kamp et al., 2010; Sk̊anberg et al., 2018; Newport

et al., 2019; Chae et al., 2019; Rodŕıguez-Espigares et al., 2020), however, none have

been built specifically for the analysis of transitions between energy basins, especially

for the kinds of trajectories that are generated by ParSplice. The data-sets explored

in this work are long-duration, heterogeneous energy barrier trajectories that were

generated through the use of accelerated molecular dynamics techniques (AMD); due

to the relative novelty of these techniques, few visual analytics tools have been devel-

oped for them as of the time of this writing.

Ultimately, this work facilitates the exploratory analysis of these trajectories

by providing an aesthetically pleasing and user-friendly interface through a web-

application, as well as providing a back-end library for domain experts to efficiently

access a graph database containing simulation data. Analyzing an ensemble of trajec-

tories can explain a particle’s behavior at different temperatures and energy states,

which can be used to qualify a novel material’s usefulness and robustness to extreme

conditions.
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This work consists of three major contributions:

• A visual analytics system that seamlessly integrates a overview of trajectory

ensembles, a detailed view of node-link diagrams as well as a series of supple-

mentary coordinated views that support the interactive analysis of transitions

between energy basins;

• A data processing library that manages large-scale molecular dynamics data

and supports the automatic detection of transition regions;

• Two case studies of the system where a domain expert identifies and compares

regions of interest within an ensemble of trajectories.

The contents of the rest of this work are as follows: chapter 2 covers related

scientific background information; chapter 3 focuses on related work; chapter 4 covers

the system’s architecture as well as its individual components; chapter 5 covers a case

study of platinum nano-particles; chapter 6 discusses the results of the case study, as

well as the limitations and benefits of the system that were revealed by the case study

of the system; finally, chapter 7 concludes the thesis and discusses future work.
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Chapter 2

BACKGROUND

In this chapter, relevant scientific background will be covered. This chapter explains

the mechanics of molecular dynamics simulations, and then covers how simulations

generated by ParSplice differ from traditional MD techniques. Then, the heteroge-

neous barrier problem is covered, and understanding it is key to grasping what my

system is attempting to accomplish. Following the description of the heterogeneous

barrier problem is a description of nano-particles, as well as their structures. Fi-

nally, the chapter concludes with explanations of established methods used to explore

transition regions that are incorporated into the system.

2.1 Molecular Dynamics Simulations

Molecular dynamics (MD) simulations use Newton’s law of motion to explain the

detailed movements of atoms alone as well as within molecules/particles. Traditional

MD simulations use Newton’s laws of motion to evolve the system starting from an

initial state; while this works well for simple systems, there are certain classes of

systems that cannot be easily simulated due to their prohibitive computational costs.

This primarily occurs with long-duration simulations, as they are typically made up

of energy basins where the trajectory states in a small sub-set of states for a long

time. Traditionally, Transition State Theory (TST) (Truhlar et al., 1996) was used to

quantitatively explain chemical reactions, but increasing interest in high-complexity

systems made this approach impractical; this is due to the fact that complex systems

tend to have large sets of possible paths the reaction can take. This weakness inherent

in TST caused scientists to look elsewhere to explain chemical reactions.
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Accelerated molecular dynamics (AMD) techniques (Hamelberg et al., 2004) allow

the simulation of systems that were previously thought to be impossible to simulate

through the exploitation of the mathematical properties of MD simulations. The

Parallel Replica technique (Voter, 1998) generates N copies of a simulation at each

time-step and runs them until one of the simulations transitions to another state.

Hyper-dynamics (Voter, 1997) adds a potential energy bias to each state so that the

simulation overcomes the energy barrier between states faster. Another technique is

to simply run simulations at higher temperatures, decreasing their reaction times,

and then filtering out transitions that would not occur at lower temperatures. This

list is far from conclusive, as there is a wealth of other AMD techniques available that

are used for other molecular systems. Despite the prevalence of alternative techniques

to run MD simulations, they still fall short of solving the heterogeneous barrier

problem.

2.2 Heterogeneous Barrier Problem

There are certain classes of systems where the energy barriers are not uniform;

i.e, some transitions require a high amount of energy to occur, while other transitions

in the system require low energies; this is known as the heterogeneous or low barrier

problem (Miron and Fichthorn, 2004). This problem is especially pronounced in

systems where the molecules rapidly bounce around in one set of states for a long

time before making a slow, drastic change to another set of states. These low energy

barriers (fast transitions) can be easily simulated with standard MD techniques, while

high energy barriers are addressed by AMD techniques. However, in this case, using

AMD techniques would fail because they are only sped up by their fastest processes.

In other words, the low-energy barrier transitions would be the only ones to benefit

from using AMD techniques, as they take into account only the fastest processes.
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The lack of a solution to this problem left a number of interesting systems difficult

to generate until ParSplice was introduced.

2.3 ParSplice

ParSplice was developed with the heterogeneous barrier problem in mind, and

uses the power of both standard and accelerated MD techniques to generate simula-

tions. This implies that ParSplice is not a classic simulation software; rather, it is a

simulation manager that takes results from multiple simulations and compounds the

results to generate data that otherwise could not be generated.

The way ParSplice works is partially inspired by the Parallel Replica Dynamics

(ParRep) technique (Voter, 1998), and Parsplice gains most of its computational

efficiency through the clever use of parallelism. ParSplice works by simulating the

all state-to-state transitions separately in parallel, and then splicing them together;

standard MD techniques can be used for the low-energy barrier transitions, while

AMD techniques can be used to simulate the high-energy transitions. Segments of

the trajectory that start and end in the same state can be spliced to other segments

and are simulated in parallel - this is in contrast to ParRep which runs N simulations

at a time in hopes of finding the transition to the next state. ParSplice uses statistical

methods to predict what segments are needed in the trajectory, and then splices

them together in order. After the simulation is spliced together, these segments

are discretized into a Markov State Model (MSM) and placed into one long chain

that is described in the trajectory file generated by ParSplice. This reduces the

size of trajectories significantly as it compresses the trajectory file into transitions

between states instead of focusing on each individual time-step. If this compression

method was not used, trajectory files would be infeasible to read and write. For

instance, a millisecond long simulation would contain 1012 lines (1012 femtoseconds in
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a millisecond). Each line would on average take 14 bytes, assuming that each state

ID was 10 characters long (10 bytes), each duration was on average 3 characters long

(3 bytes), and including the necessary 0 (1 byte) at the end of the line. Not including

symmetry lines (adding more lines each 3 bytes long), an uncompressed file of such

length would be 1.4 ∗ 1014 bytes, or 14 terabytes.

2.4 Canonical States

A factor that makes it difficult to analyze raw MD simulation data from ParSplice

is the presence of canonical and non-canonical states. These states are topologically

equivalent to each other, and are marked as such during the simulation. While the

simulation is running, non-canonical states are switched to their canonical represen-

tation in order to save some computational effort, as restarting the simulation from

a new state is slower than working from a previously explored state. However, this

comes with a few disadvantages, particularly when handling the data - the canoni-

cal states should be used for visualization purposes, as well as in computations such

as the Perron-Cluster Cluster Analysis (PCCA) (Deuflhard and Weber, 2005), but

the non-canonical versions must be used while using Nudged Elastic Band (NEB)

(Jónsson et al., 1998) methods, covered in detail further in this section.

Non-canonical states must be used for NEBs because NEBs can only be performed

between actual state transitions, and not when states are remapped to their canonical

versions. To further complicate things, NEBs cannot be performed between states

that do not belong to the same segment when generated by ParSplice; this is because

NEBs rely on the fact that atom labels match up exactly, and there is no guaran-

tee atom labels will match up between a state within a segment and a canonical

representative.
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2.5 Nano-particles

Nano-particles are defined as particles of matter between 1 and 100 nanometers

(nm) in diameter (Vert et al., 2012) - far smaller than what is visible to humans. The

main interest in studying nano-particles is the fact that their properties are wildly

different in relation to their aggregate form.

These changes are caused primarily by the fact that the ratio of surface area

to volume is increased, leading to the surface of each particle becoming the center

of activity. (Sajanlal et al., 2011) Moreover, nano-particles are small enough to be

subject to various quantum effects, further exaggerating their differences from their

aggregate form. Quantum effects are highly influential at the nano-scale precisely

because of the size of the particles; the electrons within each atom in the particle

behave differently due to the restricted amount of space they have to move around

in. (Roduner, 2006) As such, it is difficult to predict the properties of nano-particles

without directly observing them, thus dictating the need to generate their trajectories

with advanced MD simulation techniques. Certain metal nano-particle simulations

are characterized by their heterogeneous energy barriers, making ParSplice a natural

choice for simulation.

Platinum nano-particles are particularly interesting because they have a non-

spherical shape and belong to the family of metal nano-particles; metal nano-particles

tend to have applications in catalyzing chemical reactions and building optical de-

vices. (Stepanov et al., 2014) Platinum nano-particles in particular have been used

to reduce pollution from cars (Bell, 2003), develop new kinds of fuel cells (Balbuena

et al., 2010), and manufacture various electronic parts (Yoshida et al., 2009).
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2.6 Crystalline Structures

In order to produce a meaningful analysis of a MD simulation, an analyst needs

to identify the characteristic structures of the trajectory, as well as the structures

along transition paths. The characteristic structures of a trajectory are often derived

using various clustering algorithms that attempt to group together similar states.

Characteristic structures are often the ones the simulation spends the most time

oscillating to, and they describe the essence of the reaction being studied. Structures

along transition paths reveal exactly how the particle changed its form over the course

of a reaction, allowing domain experts to qualify exactly how the reaction took place.

The most common crystalline structures found in metals are the face-centered cu-

bic structure (FCC), the hexagonal close-packed structure (HCP), the body-centered

cubic structure (BCC), and the icosahedral coordination structure (ICO). These struc-

tures are most common in metals because the atoms within the particles tend to pack

together in order to fill space as densely and efficiently as possible. All of these struc-

tures are differentiated by the relationships between the angles between sides of the

unit cell, which can be thought of as a bounding box, and the distance between points

in the cell.

These structures can be quantified within a particle’s structure through Ackland-

Jones analysis (Ackland and Jones, 2006) and the Common Neighbor Analysis (CNA)

(Faken and Jónsson, 1994). The Ackland-Jones analysis uses the angles between pairs

of atoms to derive how many of the atoms within the particular structure conform to

one of the above-mentioned structures. Meanwhile, CNA works by first determining

the structures of all of the atoms in the set, and then classifying each atom by the

structures of its nearest neighbors.
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2.7 Perron-Cluster Cluster Analysis

Perron-Cluster Cluster Analysis (PCCA) (Deuflhard and Weber, 2005) has been

demonstrated to produce meaningful metastable sets (clusters) of MD trajectories

based on the kinetic properties of a trajectory (Huang et al., 2017; Cordes et al.,

2002). PCCA is commonly used in biological MD trajectories, but has been recently

been demonstrated to provide insight into the behavior of nano-particles (Huang

et al., 2018). PCCA works by calculating the eigenvectors of a trajectory’s transition

matrix and uses them to build meta-stable sets of states. These meta-stable sets are

groups of states that represent energy basins within a trajectory; PCCA clustering

can be used to highlight when the trajectory shifts from energy basin to energy basin.

It should be noted that PCCA only takes into account the transitions between states,

and not their actual molecular structure. For this reason, PCCA can be used as a

tool to determine where to look for structural changes, but it does not identify them

entirely - manual analysis is still needed to determine where exactly a transition region

occurs.

The GPCCA algorithm (Reuter et al., 2018), used in NeoMD, uses Schur decom-

position (Schott, 2016) in order to speed up the computation of the PCCA, and is

robust enough to work on simulations that do not have thermodynamic equilibrium,

which opens up the analysis to a wide array of systems, including the system of

platinum nano-particles explored in the case study (chapter 5).

2.8 Nudged Elastic Band

The goal of the Nudged Elastic Band (NEB) calculation is to find the minimum

energy path (MEP) between temporally adjacent states. In order to find the MEP,

an optimization problem must be solved over a 3D surface called the potential energy
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surface (PES), which describes the potential energy for each atom in the system

in terms of their positions. Saddle points within this energy surface correspond to

transition states, and between any two minima, the MEP will necessarily pass through

a maximum at a saddle point, hence the need to calculate the MEP between states.

Minima themselves correspond to physically stable states - in other words, the states

that were chosen for the calculation themselves. Finding the saddle point along the

MEP provides the activation energy barrier, the quantity of energy that is needed to

transition from one state to another. Deriving the activation energy barrier quantity

is necessary to estimate the transition rate between two states.

The NEB itself is an optimization problem that tries to find the saddle-points

of the PES along the MEP. NEB implementations typically allow the user to set an

arbitrary number of intermediate images between states on the path; these images aim

to find the lowest energy position possible while maintaining equal distance between

their neighbors. By optimizing intermediate images, the energy curve gets smoothed

out and the energy trajectory between two states becomes clearer.
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Chapter 3

RELATED WORK

Visual analytics systems for exploring large data-sets have been keeping up with

the current big data explosion (Naeem et al., 2022) that has been occurring over

the past decade - many important decisions made by businesses, corporations and

governments throughout the world are heavily reliant on the use of analytical tools

that can produce valuable insights on large data-sets. MD simulation visual analytics

(VA) systems are no different, and there have been a number of VA systems that

explore long-duration MD simulations (Chae et al., 2019; Hildebrand et al., 2019;

Sk̊anberg et al., 2018). However, the incredibly long duration trajectories that can

be handled by NeoMD (proposed in this thesis) have not been explored previously

because they were not available prior to the introduction of ParSplice. NeoMDWeb

(the web application proposed in this thesis) was designed with these long duration

data-sets in mind, prioritizing optimized and fluid views over computationally com-

plex visualizations. Moreover, the focus of the system is to highlight basin-to-basin

transitions, instead of state-to-state transitions; this is what primarily sets it apart

from other MD visual analytics systems. Additionally, most MD VA systems focus on

biological macro-molecules - such visualization and analysis methods are not suited

for the small nano-particle simulations generated by ParSplice.

Chae et al. (2019) explored long duration MD simulations in the context of biol-

ogy. They used dimensionality reduction techniques to simplify the data-set before

visualizing it in a 3-Dimensional context. The authors also admit that the interac-

tions to select clusters within a 3-Dimensional context are still clumsy; as selection

interactions are typically done in 2-Dimensions. My approach to overcome the curse
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of dimensionality lies in focusing purely on the relationships between states, some-

thing made possible by Neo4j. In my system, the PCCA algorithm and sequence

view are rendered simply by placing the database ID of each state in a sequence and

using that ID to index into an array containing the relevant metadata. Through

keeping the data representation as simple as possible, my system allows direct access

to data relevant to the user’s interest without losing any of its fidelity caused by using

machine learning techniques utilized in other systems.

There also exist a number of analytical libraries that can process MD data (McGib-

bon et al., 2015; Michaud-Agrawal et al., 2011; Roe and Cheatham, 2013; Seeber et al.,

2007). However, these libraries, much like the currently available visual analytics sys-

tems, focus on MD systems that do not suffer from the heterogeneous barrier prob-

lem, or they are specifically built for the analysis of bio-molecular systems. MDTraj

(McGibbon et al., 2015) serves more as a bridge for bringing obscure data formats to

known analysis tools, but its low-level interface proves to be challenging for analysts

to use. In the future, NeoMD may come to leverage some of the computations made

possible by these analytical libraries.

Visual analytics systems for analyzing spatio-temporal problems have been ex-

plored in Steptoe et al. (2018); Tominski et al. (2012) and more (Paula Afonso et al.,

2020; Liu et al., 2019; Andrienko and Andrienko, 2021). The pixel-based representa-

tion of a trajectory proposed in Steptoe et al. (2018) was adopted within my system,

with major changes, since my system usually only deals with a limited number of

trajectory sequences at one time, and these sequences are very large compared to the

ones explored in the paper.

The stacking trajectory approach proposed in Tominski et al. (2012) suggests

using colors for encoding attribute values, but applying this to the sequence view

would result in the PCCA clustering context being lost; moreover, encoding attributes
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through color has a number of weaknesses, including diminishing accessibility to color-

blind persons. Each state has at least a dozen ”default” attributes generated by

DBExtract (proposed in this thesis), not to mention the attributes that are calculated

in various analyses provided by the system. Encoding these values with color would

result in a loss of context for the properties. Instead, I decided to use a coordinated

scatter-plot view alongside the other views to allow the user to compare portions of

the sequence and its properties.

The immense size of the trajectories that my system visualizes has led to the

development of a stacked bar-chart approach that uses semantic zooming techniques

(Buering et al., 2006; Conti et al., 2005; Dunsmuir, 2011; Garcia et al., 2011), a well-

established approach for displaying large amounts of data in limited screen space.

Semantic zooming allows the system to hide extraneous data from the user in order

to reduce both the cognitive and computational load of the data-set. The semantic

zooming available in the sequence view is coordinated with the graph view.

A highly scalable graph view was proposed in Abello et al. (2006); the authors

used clustering algorithms to build hierarchies on arbitrary data-sets in order to enable

the exploration of very large data-sets. In their system, the hierarchies are explored

through clicking on the nodes that the user is interested in a tree-like interface. This

approach is similar to the one employed in my system - I used PCCA to generate a

clustering for the data-set, and then simplified the results into hierarchies based on

the temporal occurrence of each state that was deemed important. Then, through

zooming on the sequence view, the user explores the hierarchy of the clustering - the

graph view updates dynamically according to the view-port of the sequence view. The

sequence view itself is an implicit tree-view, as there is only one level that changes

based on the users zoom level; the user is not interested in the hierarchy between

levels, only the difference between a group of states and their individual data points.
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My system has multiple-coordinated views (Roberts, 2007), providing the user

with multiple contexts to explore the data in - the graph focuses on relations, the

sequence provides temporal context, and the scatter-plot view provides detail. This

allows for a multi-dimensional look at the data that encompasses all of the possi-

ble relationships between a state’s neighbors, their temporal significance and their

structural properties.

The scatter-plot grid displayed on the main view was inspired by Elmqvist et al.

(2008). My scatter-plot grid is admittedly much simpler than the one discussed -

it does not support any of the inter-scatter-plot interactions that are covered in the

paper; moreover, my system does not support the automatic creation of scatter-plots

based on available attributes due to computational constraints, as well as lack of

screen real-estate. However, the coordination between the scatter-plot matrix and

the other relational and temporal views still makes it a valuable component in the

system.

Craig and Kennedy (2003) discuss a coordinated scatter-plot similar to the ones

used in the scatter-plot matrix; the work discusses the weaknesses of overviews dis-

playing detailed properties about the data, and uses a similar approach to highlight

the properties of a data-set. However, my views are coordinated in multiple ways,

and the work does not consider saving ”snapshots” of user selections the way my

system does with the sub-sequence view.

I applied concepts from common trajectory mining techniques (Uddin et al., 2011;

Mazimpaka and Timpf, 2016) in order to identify regions of interest within MD tra-

jectories. In my system, PCCA gets applied before the trajectory is visualized; I used

the fuzzy memberships generated by PCCA as criteria for whether or not a state

should be simplified or presented to the user. As discussed in the background section,

PCCA is a coarse-grained method that reveals kinetic relationships between states;

16



this was the main driving force behind adopting it as our method for finding regions

of interest. The simplification algorithm in NeoMD functions primarily through out-

lier detection; it searches through the list of unique states to find states that have a

membership probability below a user-defined threshold and places them into chunks

that can be explored, hiding the rest of the unimportant information.
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Chapter 4

SYSTEM

My proposed system is a computational pipeline composed of three major compo-

nents: DBExtract, NeoMD, and the front-end interface, called NeoMDWeb. A sample

workflow is provided in Figure 4.1, NeoMDWeb focuses on simulation data generated

by ParSplice, particularly in systems where the energy barrier are heterogeneous.

However, the system can work with any kind of simulation data, provided that it is

represented as a discrete Markov chain. This chapter will describe the intent behind

the system, as well as go over the major features of the user interface and back-end.

Figure 4.1: My Visual Analytics System Is Designed to Provide Experts with an
Easy Way to Interact with the Trajectories They’re Interested In. (1) the User Ex-
plores the Data-set, Using the Sequence View to Facilitate Selections, and the Graph
View to Understand Relationships Between States; (2) the User Can Utilize Various
Filters to Further Aid Their Analysis. (3) Once a Region of Interest Is Identified,
the User Can Get a More Detailed Look in the Sub-sequence View. From the Sub-
sequence View, They Can (4) Generate Additional Visualizations, and (5) Perform
Various Analyses That Get Saved to the Database.
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4.1 Design Objectives and Tasks

Each component of the pipeline went through an iterative design process with our

domain expert who works in high-energy physics at a national laboratory; together,

we identified a set of eight analytical tasks that I set out to simplify through the use

of NeoMDWeb.

T1 Classify basins and transition regions in individual trajectories. Study-

ing transition regions is critical to domain experts because the states within

them can reveal how the structure of the atoms change between energy basins.

Even with the help of PCCA clustering, which helps identify kinetically similar

cluster within the trajectory, there are simply too many states for an expert

to sift through manually - a computer aided automatic detection could save

experts a lot of time.

T2 Identify commonly repeated states within one trajectory. Commonly

repeated states can be used to further identify states worth exploring in detail.

There is a need to be able to identify states that occur often within a transition

region, throughout a PCCA cluster, and throughout the trajectory. Provid-

ing an interface that can seamlessly display the occurrence of a state within

these levels of detail can save a lot of time for analysts, as without an intuitive

visualization, determining when and how often a state occurs is very tedious,

requiring experts to write convoluted and often disposable analytic scripts.

T3 Find states in common between trajectories. Through studying an en-

semble of trajectories (e.g., simulations at different temperatures) and identify-

ing a state common to all of them, a hypothesis can be formed about a particle’s

structural behavior in a general sense. Comparing entire trajectories manually
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is often done in the temporal domain on a few variables - providing an intuitive

way to compare trajectories visually in multiple dimensions could lead to new

insights.

T4 Compare sub-sequences. Identifying structural similarities between sub-

sequences of trajectories can also be used to form a hypothesis on a particle’s

behavior, especially when comparing novel data to controlled data. Moreover,

providing a way to compare small regions of different trajectories can lessen the

cognitive load on the analyst and lead to insights provided by details that are

otherwise overlooked in a coarse-grained analysis.

T5 Run mathematical analyses on user-defined attributes. These analy-

ses include calculating the Nudged Elastic Band (NEB) calculation, Common

Neighbor Analysis (CNA), and many other structural computations. The anal-

yses are stored in the Neo4j database and can be visually displayed within the

framework in future analysis sessions. Providing an easy to use interface that

can run multiple analyses asynchronously and save the results in a central lo-

cation encourages collaboration between analysts, ultimately leading to more

productive and meaningful analytical output.

T6 Automatically cluster and simplify raw trajectory data with Perron

Cluster Cluster Analysis (PCCA). Manipulating trajectory data into the

various formats that PCCA libraries (Deuflhard and Weber, 2005) use is not

trivial, and providing an interface to do this can save time in future analyses.

Prior to this work, no pipeline existed for extracting and visualizing simulation

data generated by ParSplice.

T7 Avoid calculating unnecessary quantities throughout the data-set As
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mentioned previously, most MD simulation data is repetitive and simply propels

the simulation forward without providing any real insight to experts. Saving

computational resources is of utmost interest to researchers, and is arguably the

most important objective of my system; even with very generous computational

resources, it is important to utilize each and every CPU hour provided to its

utmost potential. Blinding running analyses on entire trajectories is likely to

lead to noisy data, as well as waste computational resources.

T8 Provide a way to easily identify states that characterize a trajec-

tory/cluster. Since states can be very similar yet have different IDs, it is im-

portant to provide an easy way to identify states that occur often throughout a

cluster and a trajectory. Identifying the characteristic states of a MD trajectory

helps shape an analyst’s hypothesis about a particular reaction chain.

4.2 Architecture

The system is designed as an array of micro-services, allowing for greater flexibility

between modules (Figure 4.2). Thanks to the micro-service architecture, DBExtract

can be replaced with a program that can extract MD simulation data from other

simulation software, placed in a format familiar to NeoMD, and be analyzed in the

front-end.

NeoMDWeb’s back-end is split into a RESTful API and a user-configurable amount

of background workers provided by Celery; these background workers can be used to

scale the application up to serve a large number of users, or as a means to run mul-

tiple expensive computations at the same time. Splitting up the back-end this way

allows for a deployment scheme that can take full advantage of a High Performance

Computing (HPC) cluster; the main back-end can be deployed on one node, and it
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Figure 4.2: The Overall Architecture of the System Is Displayed. (1) a Molecular
Dynamics Simulation Is Generated, and the Data Is Stored Somewhere on a HPC
Cluster. Then DBExtract Is Executed, and the Simulation Data Is Populated into
a Neo4j Database. (2) NeoMDWeb Can Be Launched, and the Data Is Available
for Use - (3) NeoMD (the Back-end) Can Be Leveraged to Run Computations on
the Data Using Background Workers Provided by Celery, and (4) NeoMDWeb (the
Front-end) Is Used for Displaying the Results of the Computations, as Well as the
Data-set Itself.

can communicate to other nodes hosting the background workers.

DBExtract and the Neo4j database are also designed to reside on a HPC cluster to

meet the immense storage and memory requirements that long-duration simulations

often require. NeoMDWeb’s back-end should also reside on the same cluster in order

to shorten back-end communications, to again meet the memory requirements that

are common in long-duration trajectories. On the other hand, the front-end server

can be launched as an application on the end-user’s computer, using a SSH tunnel to

connect to the cluster for better security.

22



4.3 DBExtract

DBExtract is a stand-alone C++ program originally included in ParSplice that I

modified to populate Neo4j databases in parallel. When DBExtract is executed, it

reads a simulation’s trajectory file and extracts information from the corresponding

simulation’s LAMMPS data files. DBExtract first processes the trajectory in sequence

before adding each state’s corresponding atoms in parallel using OpenMPI.

DBExtract handles symmetrical transitions in an intelligent way in order to shorten

the sequence and ensure the accuracy of the PCCA. DBExtract separates transitions

from re-mappings of states with their canonical representations (explained in Chap-

ter 2.4). To get the sequence itself, the back-end follows the relation named after the

name of the simulation; to get symmetries, it can query whether or not a state has a

“is canonical representation” relation. This relation is used during NEB calculations;

as discussed previously, NEBs can only be performed between states that share the

same atomic labels - this labeling lost during the remapping process, and must be

kept separately.

Removing symmetrical transitions can make a huge difference in larger data-sets

- besides removing redundant data, as well as simplifying and correcting the PCCA

calculation, it can lead to large reductions in data-set sizes. In one of the test data-

sets I used, with approximately 21,000 transitions and 2,600 unique states, removing

symmetries cut down the number of transitions to approximately 16,000 and the

number of unique states to approximately 2,000, yielding a near 25% reduction of the

entire data-set. In a larger data-set, 8,000,000 transitions were cut to only 5,500,000,

yielding a reduction of 32%!

The ultimate vision I have for DBExtract is to bring all of the old MD data

formats into the 21st century by placing them into a graph database. It goes without
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saying that trajectory data makes the most sense stored as a graph, since trajectories

mostly comprised of relationships between a set of unique nodes. If all MD data

became standardized, it allow for the data to be accessible at any time without the

need for specialized software, ultimately increasing the speed at which the data can

be accessed.

4.4 NeoMD

NeoMD most directly fulfills T5 - it provides a simple Python interface for per-

forming diverse operations on trajectories, such as quickly building trajectory matri-

ces, used in Perron Cluster Cluster Analysis (PCCA) libraries (Reuter et al., 2018;

Scherer et al., 2015), rendering static OVITO (Stukowski, 2010) visualizations of

molecular structures over time, building ParaView Ahrens et al. (2002) visualizations

of the data-set, and more. Critically, NeoMD provides an interface for running both

the Kilmogorov-Smirnov test (Dodge, 2008), as well as the Nudged Elastic Band

calculation (Henkelman et al., 2000) on parts of the trajectory, which was a highly

sought-after feature. Under the hood, NeoMD also uses the Atomic Simulation Envi-

ronment (ASE) (Larsen et al., 2017)- Python package to manage atoms and maintain

compatibility with a wide range of MD formats. Its main role in the pipeline is to

pre-process MD simulation data for the front-end to render.

When a user decides to load a trajectory, NeoMD first queries the database to

retrieve the trajectory’s sequence and ignores any states that are topologically equiv-

alent, leaving behind only one copy; i.e, the state’s canonical representation. It then

re-indexes the sequence and builds a corresponding transition matrix, and then runs a

generalized version of the PCCA (Deuflhard and Weber, 2005) algorithm implemented

in the PyGPCCA library (Reuter et al., 2018).
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4.4.1 Neo4j Queries

The queries provided by NeoMD are specifically optimized for the structure that

DBExtract produces. Through cleverly eliminating bottlenecks present in unrefined

Cypher queries, as well as exploiting the nature of the data-set and graph databases

in general, NeoMD is able to quickly provide information on states throughout the

data-set without any processing lag. Moreover, the query builder frees end-users

from knowing anything about the structure of the data-base, as the queries generated

by NeoMD are based on inferences about the data-base automatically made by the

library through probing queries.

4.4.2 Data-set Simplification

In order to provide a smooth user experience and to lessen the cognitive load of

analyzing the data-set, NeoMD provides a sequence simplification mechanism that re-

duces hundreds of thousands of states to several hundred groups called chunks. The

amount of simplification performed by the algorithm is determined by the simplifi-

cation threshold parameter, set by the user, that determines if a state is interesting

to the user or not by comparing its PCCA cluster membership probability (fuzzy

membership) to the threshold.

If a state’s membership probability is above the threshold, it is considered “unim-

portant” and added to an “unimportant” cluster, and vice versa for “important”

states. The difference between “important” and “unimportant” chunks is that “im-

portant” chunks are split recursively into N pieces, and are continually split until

each sub-chunk is no larger than a chunk size threshold, which is also set by the user.

Grouping states in this way removes states that are likely to be part of a basin, while

leaving behind states that belong to transition regions. This simplification serves not
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only to reduce the computational burden of the system, but also the cognitive load on

the user, since the need to search through thousands of states for transition regions

is lessened. Without the simplification algorithm, the system grinds to a halt, and

yields extremely cluttered and difficult to read graphs. Ultimately, the simplification

algorithm fulfills T7.

4.5 NeoMDWeb

4.5.1 Back-end

The back-end portion of the server software is written in Python to leverage

NeoMD’s capabilities and is powered by FastAPI (fas, 2019). A number of RESTful

endpoints are provided for easy programmatic access to a variety of common MD

analysis tasks - NeoMD provides the building blocks, while NeoMDWeb puts the

pieces together. In the future, the front-end could easily be replaced without the

need to re-write any of the computations, greatly improving the longevity of NeoMD

and its ecosystem. An interface to Celery (cel, 2016) background workers is provided,

allowing the back-end to be scaled indefinitely if placed into a production environ-

ment with larger data-sets and higher user demand. The Celery workers enable the

asynchronous processing of background tasks while the user explores the data-set.

Data properties are displayed as they are calculated, giving users immediate feedback

on the quality and direction of their analysis.

4.5.2 User Interface: Overview

Once a trajectory has been processed by the back-end, a overview + detail (Cock-

burn et al., 2009) interface is loaded (Figure 4.3). The sequence view serves as the

overview; it provides the user with a horizontally-stacked bar-chart view of the tra-
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Figure 4.3: An Overview of the Entire User Interface Is Shown. (1) Is the Sequence
View, Where Data Is Shown Temporally to Give Analysts an Idea of Where in the
Trajectory the States Shown in the Graph View (2) Occur; The Graph View Focuses
on the Relationships Between States; (3) Is the Sub-sequence View Which Shows the
User’s Previous Selections; (4) Is the Scatterplot View That Is Generated from the
Users Selections, and (5) Is the Control Drawer Where the User Can Apply Filters
to the Various Views in the System.

jectory, ordered by the time-step of each state. Upon zooming, the sequence view

eventually turns into a pixel-based representation of the sequence, see Figure 4.5.

The graph view is rendered in the main view-port; it provides a node-link diagram of

every unique state within the ensemble of trajectories, positioned using the d3-force

library provided by D3.js (D3, 2011).

Both views represent the simplified sequence generated by NeoMD, with distinct

goals in mind - the sequence view highlights the contents of each time-step, while

the graph view focuses on the relationships between each unique state within the

ensemble of trajectories. Ultimately, these two views jointly fulfill the requirements

outlined in the previous section - the graph facilitates T1, T3 and T4, while the

overview facilitates T2, T3, and T5. The interactions available in both views fulfill

T5, and both also display the same clustering, fulfilling T6.

The scatter-plot matrix view is based on the traditional way of analyzing tra-
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jectories, providing a familiar X-Y plot with filtering and selection capabilities not

available in simple PNG images generated by commonly used libraries like Matplotlib

or GraphVis. The scatter-plot aims to define the trajectory through the properties

of the data-set, rather than focusing on the relational/temporal dimensions of the

trajectory; it serves as the detail view in NeoMDWeb.

The sub-sequence view is designed to help the user keep track of all of their

selections made in any arbitrary view, and it opens up the possibility of running

analyses on small portions of the data through the interactions available within the

sub-sequence view’s timeframe.

Finally, the NEB view is a simple line plot to demonstrate the results of a NEB

calculation. It renders each state as a function of its time-step and energy level.

4.5.3 Data Representation

The colors assigned to nodes and parts of the sequence correspond to the clustering

generated by NeoMD; these colors were provided by Colorbrewer’s 12-class qualita-

tive data-set (col, 2003). Groups of high cluster membership probability states are

rendered proportionally to their size; the graph view represents them as large nodes,

while the sequence view represents them as bars. Clusters considered “important”

are rendered with a dashed outline and 100% opacity, while “unimportant” chunks

are rendered with a lower opacity with no outline. States gain a solid outline when

hovered, and the cursor changes to the classic selection style when they can be clicked.

4.5.4 Sequence View

The sequence view (Figure 4.3(1)) displays states and chunks in a linear fashion,

allowing users to easily select parts of the trajectory for analysis by using common

modifier keys (SHIFT and CTRL), fulfilling T5. Hovering the mouse over a state
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highlights all of the occurrences of that state within all trajectories, fulfilling T2;

hovering also automatically pans the camera in the graph view to the corresponding

node within the trajectory. The scale is set to range from 1 time-step to the entire

length of the longest trajectory loaded, setting states to be the smallest width possible,

and scaling the chunks up based on the size of each individual node. This scale

conveys the immense size of some chunks, but has the effect of sometimes rendering

individual states very small when zoomed out, but this issue is mitigated by the

semantic zooming feature.

The sequence view does not readily show rare transitions, transitions between

basins, or states that are within multiple trajectories. To overcome these limitations,

I implemented the graph view which utilizes a novel layout mechanism based on the

cluster of each state / chunk.

4.5.5 Graph View

The graph view (Figure 4.3(2)) is intended to qualify the user’s understanding of

the relationships between states; a node-link diagram comes as a natural metaphor to

express these relations. There are a variety of options available to the user through a

context menu, accessed through right-clicking the graph - they toggle various features

of the graph such as rendering arrows on links, highlighting the currently selected node

by hiding the rest, and the “separate trajectory” option. Just as the sequence view,

the scale of the graph’s nodes are set to be based on the size of the timesteps contained

in the chunk, ranging from the default 5 pixel radius for individual nodes to a 125

pixel radius for the largest possible chunks.

The dashed arrows in the graph view represent the temporal adjacency of chunk /

states that are not directly next to each other in the sequence - if a node has more than

a single time-step difference between its neighbor, their relationship is rendered with

29



a dashed stroke. This maintains temporal cohesiveness with nodes, and highlights

the nodes that are actually temporally adjacent.

Separate vs Conjoined Trajectory View Modes

When “separate trajectory” is toggled on, a general position for each trajectory is

calculated using a layout inspired by the group-in-the-box algorithm first conceived in

Rodrigues et al. (2011), and nodes that are shared between trajectories are duplicated

for each trajectory that they are a member of. Once the trajectory has been localized

to a part of the visual space, each cluster within the trajectory is assigned a local x

position in which its nodes will attempt to remain. This leads to a graph where nodes

that have transitions between clusters are rendered in between each cluster column,

thus fulfilling T1, i.e these nodes are within a trajectory region.

On the other hand, if the “separate trajectory” rendering mode is turned off, each

trajectory is assigned a local x position instead, acting as the cluster did in the other

rendering mode. This creates a graph that highlights which nodes are shared between

trajectories - these states are rendered black, and the transitions that point to them

demonstrate the clustering in which they participated in depending on the trajectory

that is being considered; ultimately, this functionality satisfies T4. Groups of states

detected by the simplification procedure are the only elements within the graph that

have a fixed layout - they are organized in the y direction in the order in which they

appeared throughout the trajectory. While both views are useful alone, their mutual

interactions make them powerful.

4.5.6 Scatter-plot

The scatter-plot matrix (Figure 4.4) fulfills T4 - it enables the user to compare

the attributes of various sub-sequences as they evolve over time, or how groups of
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Figure 4.4: The Scatter-plot Matrix Featuring Scatter-plots Derived from Two Dif-
ferent Trajectories. The Top Two Focus on Structural Properties of Atoms, While
the Bottom Two Look at the Occurrences of Various States Throughout the Two
Trajectories Selected. The Bottom-right Scatter-plot Reveals That the Pink Cluster
from Nano-pt-750 Shares States with Nano-pt-700. This Demonstrates the Power of
the Scatter-plot Matrix in Making Inter-trajectory Comparisons.

states differ from each other. It also has the power to compare entire clusters /

trajectories - since the representation of states in this view mode is relatively simple,

the scatter-plot itself can render a large number of states. The fact that properties are

decoupled from their trajectory also allows the in-depth comparison of trajectories,

as demonstrated in Figure 4.4. Thus, the scatter-plot matrix also fulfills T3.

The scatter-plot matrix is built entirely by the user - they can either choose to

render the entire data-set through clicking the + button at the top of the window, or

through the ADD SCATTERPLOT button in the sub-sequence view(s). The X and

Y values for each scatter-plot can be changed by right clicking the plot and selecting

the desired attributes within a context menu.
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4.5.7 Coordinated Interactions

Hovering above a state in any view triggers the hover action in all of the other

views, i.e, the sequence and scatter-plot views highlight all of the occurrences of the

given state while the graph view moves the camera to the state. This coordinated

mode of interaction works between scatter-plots as well, making it exceptionally easy

to see states in common between selections, fulfilling T4.

Pressing and holding SHIFT while clicking and dragging the mouse allows the

user to select any arbitrary subset of the trajectory with a brush, and selections are

continuously made until the user lets go of the SHIFT key (Figure 4.6). Pressing and

holding the CONTROL key while clicking on states selects them individually, allowing

for fine grained selections between states that are not necessarily spatially adjacent in

any view. These behaviors work similarly in any view, allowing the analyst to select

data based on its occurrence in the trajectory, as well as selecting states based on

their relations with each other.

Clicking on states without holding any modifier key in any view opens a modal

that displays more information, including the attributes of the state and its structural

rendering. Pressing the left or right arrow keys after hovering on a state in any

view moves the graph view to the next state in the temporal sequence, as well as

highlighting it in the sequence and scatter-plot views.

Semantic Zooming

The most important coordinated interaction is the sequence view’s ability to provide

semantic zooming for the entire system, shown in Figure 4.5. When exploring the

data-set, zooming into any important cluster breaks it down into smaller chunks,

and zooming in sufficiently enough ultimately leads to individual states being shown.
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Figure 4.5: Example of the Semantic Zooming Feature Being Used to Focus on a
Transition Region Detected by the Simplification Algorithm. As the User Zooms in,
the Region Expands to Show Multiple Chunks That Are Broken down Further until
Individual Nodes Are Reached.

Zooming out far enough merges clusters together, and removes individual states from

the view in order to ensure a smooth user experience. This is mimicked in the graph

view - the graph view shows only the important chunks/individual states that are

within the sequence view’s visible range, allowing for fluid user interactions, as well as

simplifying the process of finding and selecting interesting portions of the trajectory.
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Figure 4.6: Some of the Brush Interactions That Create Sub-sequence Views Are
Displayed. On the Left, the Sequence View Is Brushed to Create a Sub-sequence
View, in the Center, the Graph View Is Brushed, and on the Right, a Scatter-plot
Is Brushed. All of These Sub-sequence Views Contain the Same Functionality When
It Comes to Analysis; However, NEBs Can Only Be Performed on Selections Made
in the Sequence View Because Time-step Information Is Preserved When Making a
Selection in the Sequence View.

4.5.8 Sub-sequence View

Selections made with the modifier keys in any visualization create a sub-sequence

selection in the sub-sequence view; see Figure 4.6. This view shows the relative

temporal occurrences of the states that were selected, and presents the user with

several buttons that open modals for further analysis. Each line associates with

one unique state; the width of one line shows the relative occurrence period (from the

earliest to the latest timesteps) and the thickness of one line represents the occurrence

of a state within the given timeframe.
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When selections are made within the sequence view, they are represented by

lines that span the entirety of when the states within the selection occur within the

trajectory. The different colors help identify unique states within the sub-sequence

selection, and they are also coordinated as with any other view - hovering/clicking

states in the sub-sequence view finds its equivalent in the other views. This view

helps users search for similar selections within the currently loaded trajectories. This

also helps reinforce the difference between the sequence view and the other views -

the sequence view is meant for exploring the data temporally, while the other views

focus on different dimensions of the data.

The ANALYSIS button opens a modal with options to run the Kilmogorov-

Smirnov test on the selection against a distribution, a cosine similarity calculation if

multiple selections are made, as well as the option to run OVITO analyses, custom

Python code and Neo4j queries on the selection. The results of every analysis can be

rendered on the screen by checking the corresponding “save results” checkbox in each

modal window; these results are displayed underneath each sub-sequence view. The

ADD SCATTERPLOT button creates a new scatter-plot from the group of states

selected - multiple scatter-plots can be made from one selection, allowing the user to

build a scatter-plot matrix for any attribute loaded in the trajectory.

Finally, the NEB button allows the user to run the NEB calculation on selections

that were made in the sequence view (i.e selections that preserve temporal order).

The results of each calculation are added to the NEB view, which is simply a list

of line charts containing the NEB data - these charts describe the minimum energy

paths along the course of the selection; see Figure 4.7. The NEB implementation

used in my system is provided by LAMMPS.

Each sub-sequence view also contains an OVITO visualization provided by the

back-end, allowing the user to see the physical structure of the atoms changing over
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Figure 4.7: The NEB’s Parameters Can Be Tuned Using the Modal That Pops up
upon Clicking a Sub-sequence View’s NEB Button (This Is Only Accessible If the
Selection Was Made Within the Sequence View). The Calculation Is Performed by
a Background Worker, so the User Is Free to Continue Exploring the Data-set While
the Computationally Complex NEB Operation Completes.

the subset(s) selected. Since the rendering of each frame is computationally expensive,

if the length of the sequence exceeds an arbitrary number (100 states), a LOAD

VIDEO button is shown instead so that the server is free from wasting time computing

useless data.

In order to contextualize the user’s visible range in the sequence view, a box

corresponding to the extents of the sequence view’s view window is overlaid on each

sub-sequence view. This context-box functions as a focus + context (Cockburn et al.,

2009) view and provides a way for the user to understand their viewpoint in relation

to the selections they have made.

All of the calculations provided by the sub-sequence view are implemented asyn-

chronously - Celery handles the task in the background while the user is free to

interact with the rest of the system, allowing for a fluid user experience.
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Figure 4.8: An Example of How the Filtering System Works with a Scatter-plot.
On the Left, (1), the Clustering Difference Algorithm (Zhang et al., 2016) Is Applied
to the Scatter-plot to Describe Which Clusterings Are Stable. (2) Demonstrates the
Selection Menu in Which the User Can Choose What Visualizations the Filter(s) Are
Applied To. On the Right, (3), a Simple Opacity Filter of Nano-pt-700 Occurrences
Is Applied, Removing All States That Occur Less than 764 Times. Not Pictured Is
the Ability to Chain Filters Together to Get a Finer-grained Look at the Data.

4.5.9 Control Drawer/Filtering

When the user clicks the menu button at the top right of the screen, a drawer

slides open and presents an accordion element for each trajectory as well as a prop-

erties accordion. The property accordion contains a table with a list of toggle-able

properties; toggling a property loads/unloads the selected property for each state in

each trajectory currently loaded. If a property does not exist for a given state, they

are simply not rendered if they are chosen in the scatter-plot view - the undefined

property is also not displayed within any tool-tips if hovered.

Each trajectory accordion contains options to change the simplification level of the

trajectory, the ability to change the number of clusters shown, and a variety of filters.

Every filter can be applied to each trajectory and view individually, allowing for

powerful, fine-grained interactions. Moreover, the gear next to the filter’s name allows

the user to apply the filter on any arbitrary plot, allowing for powerful comparisons to

be made in the scatter-plot matrix - the user can take the same sub-sequence, create
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Figure 4.9: An Example of the Dominant State Filter. The Top Sequence View Is
with the Filter Applied, and the Bottom Is with the Filter Switched Off. This Small
Region of Individual States Does Not Have Any Transitions to/From the Dominant
State, so They Are Rendered with Zero Opacity.

two scatter-plots, and apply different filters to gain a greater understanding of the

nature of the data.

Several filters are loaded automatically, and the user is free to create their own

based on the attributes of each trajectory; these filters map a state’s opacity based

on the user’s criteria. The attribute filters are relatively simple - they allow the user

to determine a cut-off point and only render states that are above/below or within

the range set by the user. Notably, I implemented a filter that attempts to further

define transition regions using the clustering difference algorithm described in Zhang

et al. (2016); “unstable” regions, or regions where states tend to change their cluster

membership depending on the number of clusters, are colored red, while “stable”

regions are colored green, yellow dots are states in between (Figure 4.8).

The dominant state filter iterates through the sequence with a user-defined win-

dow, and tries to determine how many times the states within the window transitioned

to/from the dominant state of the cluster (i.e, the state the occurs most frequently

within a cluster). This filter is designed to help co-locate states that accompany the

dominant state of a cluster (Figure 4.9).
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Interactions are not suspended while the graph view is rendering - the user is free

to operate the system and perform various analysis tasks using the sequence view. For

instance, the user can select one or more parts of the trajectory within the sequence

view and directly compare them, as well as run all the analyses provided by NeoMD

on any arbitrary subset of the trajectory.
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Chapter 5

PLATINUM NANO-PARTICLES: A CASE STUDY

Prior to beginning the analysis, all of the data was pre-processed due to the immense

computational workload it entailed. All three data-sets were loaded using DBExtract

the previous day, and PCCA was applied to each data-set, using cluster sizes from 2

to 20; extracting the data using DBExtract took about an hour on average, and the

PCCA calculation ranged from 1 to 2 hours per trajectory. The results were cached

in JavaScript Object Notation (JSON) files to be used by the analyst, as PyGPCCA

was not used with PETSc and SLEPc. The aforementioned libraries were not used

due to linking issues, which unfortunately meant that I could only leverage the slow

Python implementation. Once the PCCA was completed, the optimal cluster count

was reported by PyGPCCA, and was used in each trajectory analysis.

Since the data is loaded completely in memory, high-performance computing

(HPC) clusters were used to be able to manipulate the large data-sets. Due to the

difficulty of managing dependencies on different machines and the lack of secure con-

tainer technologies available for HPC clusters, charliecloud (Priedhorsky and Randles,

2017) was used to containerize the workflow.

The data itself is comprised of long-duration versions of the data-sets first de-

scribed in Huang et al. (2017). Even with the use of HPC clusters, there are still

data-sets that I have not yet analyzed due to their size. The nano-particle simula-

tions at higher temperatures are 4 times larger in the case of the 800K simulation,

and nearly 10 times larger in the 900K simulation, taking up 14 and 32 GB respec-

tively. In comparison, the data-sets that were analyzed, 700K and 750K, take up 1GB

and 3.5GB respectively. Despite the fact that these data-sets could not be loaded,
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my system is still the first to allow the analysis of long duration molecular dynamics

simulation, as these data-sets did not exist until recently, and are confined to the

domain of materials science.

The ultimate goal of each analysis was to identify groups of states that made

up transition regions and to characterize/summarize their structural properties to

get insight into the mechanism under which the molecule changes its structure. The

domain expert I worked with wanted to get a feel for the system itself and explore

a relatively small data-set on its own, so he opted to load the 700K platinum nano-

particle data-set first.

5.1 Nano-pt 700K

To begin the analysis, he sets the PCCA clustering algorithm to cluster the data-

set into 2 to 20 clusters, expecting an optimal clustering amount to become apparent

through analysis. He immediately notes, “It is impressive that the system remains so

responsive despite the size of the data-set.” He then sets the clustering amount from

2 to 4, 6, 10, and then to 20, seeing that the trajectory stays in the same energy basin

for most of the trajectory, starting from approximately time-step 1000000. He then

sets the clustering amount back to 4 clusters, stating that “this clustering amount

seems to be the best balance between being detailed and noisy; there are a few micro-

regions within the transition from the left colorful side to the right teal side I’d like

to explore.” He also sets the simplification threshold to 60%, in order to cut back the

amount of useless states.

The next thing he does is make large selections over the various clusters; despite

having 4 clusters selected, it seems like there are two primary clusters that characterize

the data-set. He presses the SHIFT key and brushes over the two major clusters and

builds a scatter-plot for each cluster. He sets the X attribute to be the ID of the state,
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Figure 5.1: The Characteristic States for Nano-pt-700k. The Blue Characteristic
State Seems to Be a HCP Structured Particle Based on Its Relatively High HCP
Count, While the Orange Characteristic State Seems to Be a BCP Structured Particle.

and the Y attribute to be the number of occurrences in the trajectory. Once again, he

notes the speed and fluidity of the system despite looking at over 8 million transitions.

Once the two scatter-plots are built, he applies filters that cut off states that occur

more than 500 times - he states, “I am looking for states that characterize the clusters,

as well as states that are rare - they might be interesting for further analysis.” He

notes that the very first cluster that appears does not really contain any interesting

states that characterize the cluster - this makes sense as the blue cluster only occurs

in the first several thousand transitions of the trajectory. He individually clicks a

few states to look at their structures - he notes that the states that occur the most

in each cluster are all very similar, dictating the need to drill down into the data

further, as well as simplify the number of clusters. Thus, he switches the number of

clusters back to 2, which was the original suggestion given by PyGPCCA. He sets

the simplification threshold to 85% to account for the fact that there are only two

clusters splitting the membership probabilities instead of 4.
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Figure 5.2: The Transition Pathway Discovered in Nano-pt-700. Note the Structural
Change Through the Series of States.

He then selects all of the states in the scatter-plot with more than 500 occurrences,

and runs the Ackland-Jones (Ackland and Jones, 2006) and Common Neighbor anal-

yses to gain more insight on the data. He repeats this for both scatter-plots, the

one that characterizes the left hand side of the trajectory, and the one that char-

acterizes the right. He then starts building filters on the scatter-plots based on the

structural properties of the selections; he sets up a filter for the max filter on the

HCP counts calculated by both analyses, as well as a filter on the OTHER count.

After applying the filters gradually and noting the states that both occurred numer-

ous times, and had a structure different from the overall structure of the trajectory,

he identifies the states that characterize each cluster. As shown in Figure 5.1, State

11614905136287283587 characterizes the blue cluster (as well as most of the run), and

state 14921126474608566906 characterizes the orange cluster to the left. There are a

number of states that are similar to each characteristic state, but they are omitted

here.
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He then starts to zoom into the first transition, and comments “the graph view

changing as I zoom in helps a lot to keep my analysis focused.” He zooms into

the region between timesteps 899650 to 899700, where the orange clustering begins

to merge into the blue clustering. Once he zooms in far enough, individual states

are visible for the first time - he immediately begins clicking the states that seem

to have large number of neighbors in the graph view; these are therefore the most

recurring states within the region selected (T2). He also notes, “the graph view

very intuitively shows the most frequently occurring states within this region; I was

immediately drawn to this state that was central to all of the other states.” The

characteristic states for each cluster have been already discovered by the scatter-plot,

but the transition region analysis shows the exact mechanism in which the transition

occurs. The analyst decides to select some part of the sequence that starts before the

indicated important cluster to slightly after to see how the trajectory changes. He

runs the Ackland-Jones and Common Neighbor analyses on this sub-sequence. He

also elects to load the OVITO video to observe how the clustering changes over time,

and it reveals the the transition region detected by the simplification algorithm does

indeed correspond to a change in the particle’s structure - the simulation starts in a

relatively rare state, and progresses through a series of easy to-see transformations

until it arrives at a state similar to the characteristic state of the orange cluster; this

transformation is captured in Figure 5.2.

Finally, the analyst decides to run a NEB calculation on the transition path to

confirm the results attained by visually inspecting the states. Indeed, as soon as

the blue cluster begins, a higher energy barrier is observed - meanwhile, the states

in the transition regions have low energy barriers in between, with saddle points

corresponding to the energy needed for a transition.
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Figure 5.3: A Look at the Clustering for Nano-pt-700k, Shown as the Second Bar
with Pink and Purple Clusters. The Trajectory Spends Most of Its Time Within the
Pink Cluster, and Visits the Purple Cluster Momentarily Before Returning to the
Pink, Visiting It Again Once More Before Continuing the Rest of the Run in the
Pink Cluster.

5.2 Nano-pt 700K and 750K

Due to the relatively small temperature difference between the 700K and 750K

simulations, the domain expert decided to explore the two simulations at the same

time to compare them. Since he used the same data-set as before, the characteristic

states for nano-pt-700 were known ahead of time - refer back to Figure 5.1.

In order to determine the characteristic states for nano-pt-750K, the analyst uses

the same technique as he did for the previous trajectory. He creates two scatter-plots

that cover the two major clusters in the nano-pt-750K trajectory - pink, which spans

most of the trajectory, and purple that splits the pink into two separate sections; see

Figure 5.3. He looks at the scatter-plots that show the number of occurrences for

each state in both trajectories - unsurprisingly, the most common state in the 700K

run is also the most common state in the 750K run. Noticing that a lot of the 750K

trajectory has overlapping states with the 700K trajectory, he brings back the scatter-

plots that cover the previous two clusters from the 700K run. After hovering over a
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few states in the scatter-plot, it becomes obvious that the pink cluster in the 750K

run corresponds to the blue cluster in the 700K run, and the purple cluster in the

750K run corresponds to the orange cluster in the 700K run. Thus, the characteristic

states of the 700K run were the same in the 750K run; this was expected considering

the fact that there was a minor temperature difference between the two trajectories.

However, the transition between the purple and pink cluster remains unexplained

- the analyst decides to continue exploring the two trajectories. There are three tran-

sition regions within this trajectory, and it would prove for an interesting analysis to

compare the three regions with each other, as well as the transition region discovered

in the case study for the 700K run. He zooms into the region that splits the pink

cluster into two chunks, and makes a selection that covers the left transition from

pink to purple, and the right transition from purple to pink again, and first runs the

CNA and Ackland-Jones analyses. He then sets up several simple cosine similarity

computations between the two selections based on their structural properties. Their

similarity score is returned, but it is a mere 10% - not enough to be a significant

similarity - this ends up to hold true for the other pairs of transition regions.

The analyst then sets the simplification threshold to 100%, meaning the simplifi-

cation is turned off. He zooms into the first transition region, and looks at the graph

view to discover that indeed there is a transition from the characteristic state of the

first cluster to the characteristic state of the second cluster, within approximately

40 timesteps. He comments, “I wish the transition region encompassed more of the

states within the pink clustering to really show me the complete transformation be-

tween the two clusters.” He identifies the characteristic state of the second cluster

by simply hovering over and clicking a node in the graph view that is surrounded

by neighbors, and he instantly recognizes the state as the characteristic state of the

second cluster by its number of occurrences.
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Then, the analyst pans over to the region where the pink cluster is split by the

purple cluster, and finds the simplification algorithm has left 3 extremely rare states

from the pink cluster as a part of the transition region. After these three states

occur, the characteristic state of the purple cluster occurs shortly after. He repeats

this process for each transition region, identifying the pathway in which the transitions

occur, and finds that they all differ from one another, but he still wants to explore

the relationship between the 700K run and the 750K run.

The analyst selects the first transition in the 700K trajectory, and makes an 750K

occurrence count to ID scatter-plot, and zooms into the first transition region within

the 750K sequence. As he hovers over the scatter-plot, and as the graph view jumps

from node to node, he realizes that while the nature of the 750K transition is different

from the first transition in 700K, both trajectories end up in the same set of states

afterward. This is made apparent through the coordination of the scatter-plot with

the graph view - the analyst is able to compare the properties of the 700K transition

region with the relationships in the 750K transition region.

Since there are not many similarities between the two trajectories, there is not

much left to do - the analyst classifies the rest of the transition regions, and finishes

his analysis.
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Chapter 6

DISCUSSION

The nano-pt-700K data-set demonstrated that NeoMD can be used to determine the

characterstic states of clusters, as well as quickly determine transition regions - the

analyst did not hesitate to zoom in on the region mentioned above to find the transi-

tion between the orange and blue clusters. Despite the fact that the analyst selected

the region that extended beyond the area suggested to him by the system, the states

suggested were exactly the states that were ultimately determined to be the transi-

tion states between the two clusters, thus qualifying the usefulness of the system in

finding transition regions. The system allowed the analyst to visually and analytically

verify the transition regions, and observe exactly how the particle changes structure

during the transition in real-time. The fact that the clusters robustly characterized

the meta-stable sets present in the trajectory aligns with the findings of Huang et al.

(2017), verifying the usefulness of applying PCCA to nano-particle simulations.

The system also was effective in comparing multiple trajectories; the analyst was

able to quickly find states in common between two trajectories, and make judgments

on how transition regions differed between the two trajectories. The path similarity

calculation saved the analyst a lot of time in making comparisons between selections

- within seconds, a similarity score based on structural information was calculated

between groups of states. Usually, these kinds of analyses are run through simple

scripts, and are not reusable between simulations without altering a significant portion

of their code; this is not to mention the immense cognitive load of keeping the particle

structures in mind.

Despite the ease of analysis, there are a few weak points of the system that hin-

48



dered making completely fluid judgments. The primary weakness in the system was

the structural view - it was very difficult for the analyst to compare states with one

another and get an overall idea of the atom, since the structural view is a static

rendering of one angle of the atom. Besides the structural view, there could be im-

provements with the general workflow within the system, as the analyst often noted

that the interactions were clunky and still did not completely reduce the cognitive

load of analysis. A better way to classify transition regions is needed, as the regions

detected do not entirely capture all states within a transition region.
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Chapter 7

CONCLUSION AND FUTURE WORK

7.1 Future Work

The case study demonstrated while the system drastically simplifies trajectory

analysis, there is a still a large body of work that can be done to improve the system.

The two major areas of improvement lie in improving the user interface, namely

the structural view, and improving the back-end analysis techniques. The structural

view’s interactions were found to be lacking in depth compared to the interactions

provided by OVITO’s own native interface. A larger set of analysis options would

also greatly enhance the user experience, and streamlining the process will be the

among the first goals to reach in the future.

7.1.1 Visualizations / User Experience

Using an approach similar to the one proposed in Kincaid (2010) to highlight and

stretch transition regions can improve the user experience when looking for regions

of interest. However, this could be difficult to implement without modifying how the

semantic zoom feature works in the sequence view; more work needs to be done before

implementing this feature. Additionally, encoding the length of time the trajectory

spends in a discrete timestep could aid in visually detecting interesting states; this

was not implemented due to time constraints and the fact that extent selection relies

on each state being a set length.

The analyst wished that he could select states through a searchable text-box where

one could put in a desired value and have only matching states be displayed. This

50



could certainly save time in locating specific states, as filtering, panning and zooming

can be too coarse to specifically locate states.

Another comment I received during the case study was the fact that the OVITO

visualizations could not be modified at all - the user is only shown one angle of

the atoms without any modifiers applied. In typical analyses, OVITO visualizations

are rendered with a number of modifiers applied that encode attributes about the

molecule’s structure; not rendering these color encodings severely harms the ease of

using the system. Adding this feature may prove to be difficult, as I am not sure how

to provide an interface to OVITO through JavaScript without essentially writing my

own, which is a huge body of work. Perhaps the best solution would be to just

statically render the atoms, and provide a simple interface, similar to the analysis

view to add modifiers. In order to get a good view of the entire atom, I change

the rendering to slowly pan around the molecule before switching to the next in

the sequence. Adding an easy-to-use interface to compare molecular structures was

another highly-requested feature by the analyst - the current view is simply too small

and far from other structural views for the user to really appreciate the differences

between two structures, and clicking through modals to get information does not

suffice.

The analyst also mentioned that the process of building a scatter-plot matrix

manually was very tedious - adding an automated way to choose the most relevant

properties of the trajectory could enhance the user’s experience and save clicks. A

brute-force approach that comes to mind is to simply build a Cartesian product of

all of the properties currently loaded in the system and display the resulting matrix

to the user. More intelligently, some properties such as the bounding box dimensions

of the state and atom counts, which are unlikely to change throughout the course of

a simulation, can simply be hidden and then the brute-force matrix method applied.
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The graph view can be improved through clustering states in the graph by their

attributes, which could lead to interesting insights. More time is needed to determine

a graph layout that could be as information-dense as possible. Additionally, the

graph can visually benefit from graph-bundling, where overlapping links are bundled

together to reduce clutter, as well as circle packing chunks with their children.

Chunk interactions could be expanded in order to demonstrate similarities between

chunks and their children. One method could be to highlight all similar chunks on

hover, based on the state that occurs most often within the chunk. There should be

a way for the user to select a chunk and automatically select all of its contents for

analysis in the sub-sequence view.

The sub-sequence view could also be made more powerful - there could be an

option to view the sub-sequence selection as a mini-graph view, in order to view the

relations within easily. Moreover, the sub-sequence view could add interactions for

the user to be able to get a detailed look at the states within without having to

pan to the selection in the sequence view. This is to get around the rigidness of the

simplification algorithm, as the analyst was often interested in viewing areas that

were classified as non-important by the system.

A task-queue view for viewing background analysis tasks could inform users about

the state of their queries; this feature, coupled with a smart cache system could sig-

nificantly enhance the power and utility of NeoMD. The cache system could save the

results of analysis for other analysts to view on their machines, saving computational

costs. This cache system needs to be implemented for NEBs as well, since they are not

available for the user to browse without directly interfacing with the Neo4j database.

Currently, the only way to see an NEBs results is to run the same calculation again,

which can take a considerable amount of time depending on the fidelity of the analy-

sis requested. Additionally, more work needs to be done parallelizing and optimizing
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certain computations in the back-end to provide a more fluid user experience, as the

PCCA algorithm tends to take over an hour for modest-sized data-sets.

NeoMDWeb itself can be made to stream its results, but this could be difficult

due to the nature of the computations. Because the PCCA calculation requires the

entirety of the sequence to be loaded for it to complete, it is unlikely that the PCCA

results could be streamed without the entire trajectory. However, the design of the

system could be changed such that the user can explore the sequence itself while the

PCCA loads. Unfortunately, this could prove to be difficult since the simplification

algorithm relies on the PCCA results to simplify the sequence. If an alternative metric

could be implemented to simplify the data-set without the use of PCCA, then the

progressive streaming of the PCCA could be implemented.

A minor improvement that was suggested during the case study was the fact that

nothing in the UI alerted the user to the fact that the optimal clustering was already

rendered - this led to the analyst wasting time coming to the same conclusion the

system already had.

The dominant state filter needs improvement as well, as the current implemen-

tation does not take into account the fact that the dominant state of a cluster may

not occur throughout all of it, leaving many states without any transitions to / from

the dominant state. This leads the filter to render them with 0 opacity, making them

invisible, thereby leaving the filter with limited usefulness.

7.1.2 Back-end

NeoMD can only handle systems with one atom type - this is a limitation that

will be addressed in the near future, as it is critical for analysts to be able to process

nano-particles that are alloys of various metals. This missing feature is especially

apparent when ASE analyses are being run - other than that, the visualizations will
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work on any arbitrary particle. Adding support for multiple atom types would also

open the door for NeoMD to be used for analysis in other domains, such as biology.

Since states can be labeled differently and yet contain many of the same properties,

a better way to highlight similar states needs to be developed, either by aggregat-

ing similar states into one “canonical” version, or by changing the way states are

highlighted to include states that are similar. This would also mean improving the

similarity algorithms in use by the system, and perhaps developing a way to identify

states that are similar before the visualization is even displayed. This could be a way

to further optimize the system’s speed and reduce the amount of redundant states.

The transition region detection / simplification algorithm needs to be improved

to include more states from the cluster being transitioned to. While the fuzzy-

membership metric is a powerful one, it is not enough to highlight all of the states

within a transition region. Applying machine learning techniques can help classify

these transition regions, and perhaps enable scientists to classify reaction pathways;

no such system exists as of now, as transition regions are highly variable. However,

such an approach may prove to be difficult, as it has not been proven that transi-

tions occur similarly in all types of particles. Despite its flaws, the current detection

algorithm brings the analyst’s attention to the states near the region of interest.

Larger data-sets (over 15GB+) are yet to be tackled in my system, as even loading

the entire sequence into Python leads to out-of-memory errors. This can be remedied

by re-writing the critical parts of the code in more performant, low-level languages

such as C / C++ or Rust.

Providing a feature that could color trajectories based on clustering results from

other trajectories could potentially be very useful for analysts when comparing two

or more trajectories. Re-coloring based on clustering could highlight segments of

the trajectory where similar states are observed, making it abundantly clear how
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two trajectories can be characterized in terms of each other. More work can also be

done in discovering new clustering methods based on other hidden characteristics of

transition matrices, besides relying on eigenvectors / Schur vectors. One suggestion

was to use a joint-diagonalization technique, where the eigenvectors of all matrices are

calculated at the same time to find clusters in common between multiple trajectories.

7.2 Conclusion

In this work, I built a visual analytics system that enables the efficient analysis of

molecular dynamics simulations that have not been explored in depth due to the het-

erogeneous energy barrier problem. The heterogeneous energy barrier problem makes

it difficult to explore certain kinds of molecular systems with simulation techniques

commonly in use today; however, the introduction of ParSplice made it possible to

explore these reactions. The system described in this work facilitates the extraction,

processing and visualization of the data produced by ParSplice. Each component of

the system provides a sub-set of these functionalities - DBExtract is for the extraction

of the data, NeoMD processes the data, and NeoMDWeb visualizes the data.

The case study showed that the system works fluidly for ParSplice simulations,

leading analysts to insights within minutes. It did so by demonstrating how simple

it is determine the characteristic states of a cluster, as well as the locations of transi-

tion regions between clusters; additionally, the comparison of trajectories within an

ensemble is supported. The system also enables the computation of various calcu-

lations that previously were hidden behind complex software packages that required

the data to be pre-processed, a time-consuming task that is not worthy of an expert’s

time; I automated this process to speed up the rate at which MD trajectories can be

analyzed.

Analyzing these molecular systems is important, as scientists are attempting to
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explain the fundamental behavior of nano-particles, and other classes of systems that

have not been explored. Understanding the fundamental behavior of nano-particles

will have long-lasting impacts in the applications of these materials in various in-

dustries, particularly in catalyzing chemical reactions and reducing pollution emis-

sions. Perhaps more importantly, gaining an understanding of nano-particles will

give human-kind yet another perspective on the true nature of our reality, as under-

standing the microscopic fragments of our universe leads to an understanding of the

macro-cosmic - “As above, so below”.
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package for estimation, validation, and analysis of markov models”, Journal of
Chemical Theory and Computation 11, 11, 5525–5542 (2015).

Schott, J. R., Matrix Analysis for Statistics, pp. 177–180 (John Wiley & Sons, Hobo-
ken, New Jersey, USA, 2016).

Seeber, M., M. Cecchini, F. Rao, G. Settanni and A. Caflisch, “Wordom: A program
for efficient analysis of molecular dynamics simulations”, Bioinformatics 23, 19,
2625–2627 (2007).

Sk̊anberg, R., M. Linares, C. König, P. Norman, D. Jönsson, I. Hotz and A. Yn-
nerman, “VIA-MD: Visual interactive analysis of molecular dynamics”, in “Pro-
ceedings of the Workshop on Molecular Graphics and Visual Analysis of Molecular
Data”, pp. 19–27 (2018).

Stepanov, A., A. Golubev, S. Nikitin and Y. Osin, “A review on the fabrication and
properties of platinum nanoparticles”, Reviews On Advanced Materials Science 38,
2, 160–175 (2014).
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