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ABSTRACT

This dissertation covers several topics in machine learning and causal inference. First,

the question of “feature selection,” a common byproduct of regularized machine learn-

ing methods, is investigated theoretically in the context of treatment effect estimation.

This involves a detailed review and extension of frameworks for estimating causal

effects and in-depth theoretical study. Next, various computational approaches to

estimating causal effects with machine learning methods are compared with these

theoretical desiderata in mind. Several improvements to current methods for causal

machine learning are identified and compelling angles for further study are pinpointed.

Finally, a common method used for “explaining” predictions of machine learning al-

gorithms, SHAP, is evaluated critically through a statistical lens.
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Chapter 1

INTRODUCTION

This dissertation is an exploration of many themes around machine learning and

causal inference. Chapter 2 reviews, and draws connections between, several frame-

works for estimating causal effects. These formalisms help to establish principles for

estimating average treatment effects when coarsening the available adjustment set.

Chapter 3 derives a “minimal” adjustment set for estimating the average treat-

ment effect, which we call λ(X). We then show in precise terms when it is desirable

to reduce variance by “refining” this minimal adjustment set. We discuss the problem

of bias in feature selection, in particular the notion of “regularization-induced con-

founding” (Hahn et al. (2020)) for treatment effect estimation. We show that certain

estimation and regularization conventions can mitigate this problem.

Chapter 4 is a thorough empirical investigation of machine-learning-based causal

effect estimators. We review Accelerated Bayesian Causal Forests (XBCF, Krant-

sevich et al. (2022)), Generalized Random Forests (GRF, Athey et al. (2019)), and

several “meta-algorithms” (Künzel et al. (2019), Kennedy (2022)). We articulate our

principles of simulation-driven methods development, in which simulations are used

to “stress test” estimators, to identify weak points or failure modes, and to develop

solutions. We combine this empirical strategy with the theoretical insights of Chapter

3 to design simulation experiments and to propose updates to some of the algorithms

mentioned above.

Chapter 5 investigates the theme of “machine learning explainability,” a field of

research that dovetails with many concepts in causal inference. We discuss a method

called SHAP for scoring machine learning predictions according to features’ contri-

1



bution to a prediction. We argue that the intended applications of this explanation

algorithm are not always well-served by the numerical output of the algorithm and

that “counterfactual” approaches to explaining machine learning models deserve more

attention and research.
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Chapter 2

MEAN REGRESSION FOR CAUSAL EFFECT ESTIMATION

2.1 Notation

Let Y ∈ R be a continuous outcome variable, and Z ∈ {0, 1} be a binary treatment

variable. X is a p-vector of covariates defined on vector space X . We are interested

in the causal effect of Z on Y . In order to discuss this causal effect rigorously, we

must introduce several frameworks for performing causal inference, from which we

can formalize the estimand of interest. We refer to observations with Z = 1 as the

treated group and we refer observations with Z = 0 as the control or untreated group.

2.2 Three Frameworks for Formalizing Causal Inference

2.2.1 Potential Outcomes

The “Potential Outcomes” framework for causal inference is most closely associ-

ated with Jerzy Neyman and Donald Rubin and reviewed in depth in Imbens and

Rubin (2015). Define counterfactual random variables Y 0 and Y 1 in which Z is coun-

terfactually fixed at Z = 0 and Z = 1, respectively, but the distributions of X and

the rest of the data are unchanged. The distributions of Y 1 and Y 0 are not generally

equivalent to Y | Z = 0 and Y | Z = 1 because X may influence both Y and Z so

that X | Z = 1 and X | Z = 0 have different distributions from X.

The average treatment effect is formally defined using Potential Outcomes as

τ̄ = E
[
Y 1 − Y 0

]
or the expected difference between the treated and control potential outcomes. We

3



will discuss the identifying assumptions that enable unbiased estimation of this coun-

terfactual estimand later in this chapter, but first we review two other “frameworks”

for inferring causal effects.

2.2.2 Causal Directed Graphical Models

The causal graphical model perspective is most commonly associated with the

work of Judea Pearl and collaborators and is summarized in great detail in Pearl

(2009). For an intuitive overview focused on causal effect estimation, we refer readers

to Shalizi (2021). We introduced X above as a p-vector of covariates, but we can also

split the vector into its p component random variables and write X = {X1, . . . Xp}.

The joint probability distribution of (Y, Z,X) may be written compositionally as

P(Y, Z,X1, . . . , Xp) = P(Y | Z,X1, . . . , Xp)P(Z | X1, . . . , Xp)P(X1, . . . , Xp).

P(X1, . . . , Xp) can be further decomposed (non-uniquely) as

P(X1 | X2, . . . , Xp)P(X2 | X3, . . . , Xp) . . .P(Xp)

or

P(Xp | X1, . . . , Xp−1)P(Xp−1 | X1, . . . , Xp−2) . . .P(X1)

or any other compositional arrangement of the covariates {X1, . . . , Xp}.

For any given composition of P(Y, Z,X1, . . . , Xp), it may be the case that some

of the conditional probability terms simplify due to conditional independence, which

allows that P(A | B,C) = P(A | B) if A ⊥⊥ C | B. A compositional probability

distribution can be expressed as a directed graph G, with nodes {Y, Z,X1, . . . , Xp}

and directed edges extending from one node A to another node B if A appears in the

conditioning set of the probability distribution of B.

The terminology of directed graphical models mirrors that of genealogy, where

nodes A,B,C, . . . that appear in the conditioning set of the probability distribution

4



of another node T are parents of node T . Any nodes that can reach T through

available directed paths are ancestors of T . Similarly, nodes reachable by a single

directed edge from node U are children of U and nodes reachable by any directed

path from U are descendants of U .

This representation of probability distributions by directed acyclic graphs (DAGs),

reviewed in great depth by Koller and Friedman (2009), is entirely agnostic of causal

relationships. We now define a causal directed acyclic graph (CDAG) as a directed

graphical model in which every directed edge represents a causal relationship. Pearl

(2009) highlights three patterns of connection among sets of three nodes in a CDAG,

which we introduce here for later discussion.

• Chain: A −→ B −→ C

• Fork : A←− B −→ C

• Collider : A −→ B ←− C

Finally, before we discuss functional causal models, it is important to note that

the graphical causal model has its origins in the work of Sewell Wright, whose “path

analysis” methods were an early linear Gaussian precursor to the more general modern

theory expounded by Pearl. Interested readers should refer to Wright (1918), Wright

(1920), and Wright (1921).

Functional Causal Models

Before proceeding, we caveat that while the notation and many of the results pre-

sented below largely follow Pearl (2009), our exposition may differ in parts due to the

focus of this dissertation. We are primarily concerned with causal graphs compatible

with the variables outlined in Section 2.1. Specifically, the outcome Y is continuous,

5



the treatment Z is binary, and the covariates X are arbitrary, though they will cor-

respond to the notion of “covariates” in applied settings as “pre-treatment variables”

(see, for example, Imbens and Rubin (2015)). We do not consider or discuss in detail

graphs in which variables in X are descendants of either Z or Y . We will also assume

throughout this chapter and the following chapter that the available covariates X are

all of the variables in a specified causal model except for Z and Y

A CDAG G embeds causal relationships between variables but says nothing of

their magnitude, complexity and functional form. Letting Vx refer to all of the causal

parents of variable X in a CDAG G, we define the functional causal model of X as

X ←− F (Vx, ϵX)

where ϵX is an exogenous (but not necessarily univariate) random variable and F is

the function that completely determines X from Vx and ϵX .

To make this concept more concrete before we proceed, suppose that X has no

causal parents (Vx = ∅) and has a standard normal distribution. In this case, X

can be generated by plugging uniform random variables ϵX into the standard normal

inverse CDF, so that F (Vx, ϵX) = Φ−1(ϵX).

While a CDAG G implies functional models for each of the nodes in the graph,

the functional model of greatest interest is that which generates Y from its parents,

which in applications typically include Z and a number of covariates X:

Y ←− F (X,Z, ϵY ).

We can use this functional model to write the average treatment effect estimand as

τ̄ = E [F (X,Z = 1, ϵY )− F (X,Z = 0, ϵY )]

where the expectation is taken over (X, ϵY ) jointly.

6



This mathematical representation of an “intervention” is worth highlighting for its

unity with the two potential outcomes. F (X,Z = z, ϵY ) fixes Z = z mechanistically

while allowing X and ϵY to vary randomly without modification. This is quite differ-

ent from F (X,Z, ϵY ) | Z = z, which induces observed distributions of X | Z = z and

ϵY | Z = z. Though the latter carries the same distribution as ϵY , it is not generally

true that X
d∼ X | Z = z. From here, it is clear that Y 1 ← F (X,Z = 1, ϵY ) and

Y 0 ← F (X,Z = 0, ϵY ), as noted, for example, in Richardson and Robins (2013).

2.2.3 Mean Decomposition of Potential Outcomes

A “mean decomposition” approach to causal inference, which prioritizes identifi-

cation and estimation target the means of counterfactual random variables is often

associated with the work of James Heckman (see for example Heckman (1996)). To

illustrate this approach, we define a decomposition

µ(X) = E [F (X,Z = 0, ϵY ) | X]

τ(X) = E [F (X,Z = 1, ϵY ) | X]− E [F (X,Z = 0, ϵY ) | X]

ν(X, ϵY ) = F (X,Z = 0, ϵY )− µ(X)

δ(X, ϵY ) = {F (X,Z = 1, ϵY )− F (X,Z = 0, ϵY )} − τ(X)

where the expectations above are evaluated over ϵY , so that

Y ← µ(X) + ν(X, ϵY ) + Z [τ(X) + δ(X, ϵY )] .

We can use this model to write our target estimand as

τ̄ = E [τ(X)]

where the expectation is taken over X. This decomposition of Y into two “mean

terms,” µ(X) and τ(X) and two “error terms” will prove important in discussions of

feature selection for causal effect estimation.
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This decomposition allows us to represent the counterfactual potential outcomes

in terms of two “mean functions” — µ(X) and τ(X) — and two “error terms.” We

will have much more to say about this decomposition later, for now, we define µ(X)

as the prognostic function and τ(X) as the treatment effect function.

2.3 Identifying Assumptions for Causal Effect Estimation

The estimand τ̄ written in any of the three frameworks in Section 2.2 involves

querying an unknown entity, whether Y z, F , or τ(X). In practice, analysts are left

with the observed data (Y, Z,X) and must make assumptions in order to estimate τ̄ .

Identifying assumptions allow us to obtain unbiased estimate of τ̄ using calculable

functions of observed data. We review each of the assumptions here.

1. Consistency: This concept refers to the alignment of observed treatment and

assigned treatment and is most naturally expressed using Potential Outcomes no-

tation:

Yi = Y 1
i Zi + Y 0

i (1− Zi)

2. No Interference: This concept refers to the independence of one unit’s treatment

assignment and another unit’s potential outcomes

(Y 1
i , Y

0
i ) ⊥⊥ Zj;∀j ̸= i

3. Overlap: This refers to every unit having nonzero probability of treatment

0 < P(Zi = 1 | Xi) < 1

4. Conditional Unconfoundedness: This requires that the counterfactual poten-

tial outcome distributions are rendered independent of Z given covariates X

(Y 1
i , Y

0
i ) ⊥⊥ Zi | Xi
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Note that due to the unity Y z = F (X,Z = z, ϵY ), Assumptions 1, 2, and 4 can

be similarly articulated using the functional causal model:

Yi = ZiF (Xi, 1, ϵY ) + (1− Zi)F (Xi, 0, ϵY )

(F (Xi, 1, ϵY ), F (Xi, 0, ϵY )) ⊥⊥ Zj;∀j ̸= i

(F (Xi, 1, ϵY ), F (Xi, 0, ϵY )) ⊥⊥ Zi | Xi

and conditional unconfoundedness can also be framed using the decomposed potential

outcome model:

(ν(Xi, ϵY ), δ(Xi, ϵY )) ⊥⊥ Zi | Xi

2.3.1 Graphical Identification Criteria

The functional causal model allows for a simple mathematical unity with the po-

tential outcomes framework. However, much of the machinery and insight of the

Causal DAG framework are built around the direct use and manipulation of CDAGs,

rather than functional models. In particular, the conditional unconfoundedness as-

sumption may be expressed as a graphical criterion known as “d-separation,” which

we discuss in this section largely mirroring the presentation of Pearl (2009). As in

Pearl (2009), we let a “path” in graph G refer to an ordered list of edges, which

connect successive nodes. For example, a path from node A to C might look like

{(A,B), (B,C)}, {(A,B), (B,D), (D,E)(E,C)}, or (A,C), depending on the graph.

In many graphs, two nodes are connected by several possible paths.

In a CDAG, we are interested in paths from Z to Y , which may include the

direct path Z −→ Y as well as a number of “backdoor paths” that reflect causal

relationships between and among Z, Y and covariates X. Pearl (2009) defines a path

between two nodes, Z and Y , as “d-separated,” or “blocked” by a set of variables S

if the following is true:

9



X1 X2

Z Y

X3 X4

Figure 2.1: The “box graph”, which encodes two backdoor paths from Z to Y .

1. The path contains a chain or fork whose middle variable is in S

2. The path contains a collider which is not in S, nor are any of its descendants

The process of blocking every path between two variables Z and Y with a set S is

also defined by Pearl (2009) as “d-separating” variables Z and Y with S.

We are not interested in blocking a direct path from Z to Y , and this leads to

Pearl’s definition of the “backdoor criterion,” which a set S satisfies if it d-separates

every backdoor path between Y and Z and includes no descendants of Z (sometimes

referred to as “post-treatment variables”). It is worth highlighting that this criterion

does not imply a unique adjustment set S. Rather, it provides a set of desiderata

for evaluating an adjustment set in a graph. For example, conditioning on a collider

opens a backdoor path, which can be closed by conditioning on either of the collider’s

parents.

To make this discussion more concrete, consider the CDAG presented in Figure

2.1 which we will refer to from now on as the “box graph.” This graph represents a

causal model whose probability distribution factors into

P (Y | Z,X2, X4) P (Z | X1, X3) P (X2 | X1) P (X3 | X4) P (X1) P (X4)

The box graph implies a functional causal model Y ←− F (Z,X2, X4, ϵY ) from which

the modified CDAG presented in Figure 2.2 can be constructed. Since both Y 1

10



X1 X2

Z Y 0 Y 1

X3 X4

Figure 2.2: The “box graph” with Y replaced by counterfactual random variables
(Y 1, Y 0)

and Y 0 are counterfactual random variables constructed by F (1, X2, X4, ϵY ) and

F (0, X2, X4, ϵY ), respectively, the modified graph does not contain edges from Z to

either Y 1 or Y 0.

In this modified box graph, there are two paths from Z to Y z:

1. {(Z,X1), (X1, X2), (X2, Y
z)}

2. {(Z,X3), (X3, X4), (X4, Y
z)}

Each of these paths contains a chain and a fork. The middle node of the fork in path

1 is X1 and the middle node of the chain in path 1 is X2. The middle node of the

fork in path 2 is X4 and the middle node of the chain in path 2 is X3. Including

either or both of {X1, X2} and {X3, X4} in a conditioning set S d-separates Z and

(Y 1, Y 0) in this graph, demonstrating the non-uniqueness of valid control sets that

can be determined by causal graphs.

For illustrative purposes, consider another CDAG presented in Figure 2.3 which

we will refer to from now on as the “M graph.” This graph represents any probability

distribution that factors into

P (Y | Z,X3) P (Z | X1) P (X2 | X1, X3) P (X1) P (X3)

11



X1

X2

X3

Z Y

Figure 2.3: The “M graph”, which contains a collider among its covariate set X =
(X1, X2, X3).

Performing the same counterfactual modification to Y in this graph, we see that there

is one path from Z to Y z:

{(Z,X1), (X1, X2), (X2, X3), (X3, Y
z)} .

This path contains a collider (X1 −→ X2 ←− X3) so that the empty adjustment set

S = ∅ satisfies the backdoor criterion with respect to Z and Y . Conditioning on

X2 alone opens an undirected path from X1 to X3, and the criterion presented above

implies that such a path may be “blocked” by conditioning on either or both of X1

and X3. The adjustment sets S that satisfy the backdoor criterion with respect to Z

and Y are thus:

• S = ∅

• S = {X1, X2}

• S = {X2, X3}

• S = {X1, X2, X3}

This example is instructive for two reasons. First, it underscores the non-uniqueness

of valid adjustment sets as in the discussion of the box graph. Second, it shows

that conditioning on some subset of variables in a graph may “open up” paths that

12



were previously blocked, thus necessitating further conditioning to d-separate the

treatment and outcome.

Each of the two specific graphs share a common feature: a control set S = X,

consisting of all of the covariates in the causal models under consideration in this

dissertation, satisfies the backdoor criterion with respect to Z and Y . In the next

section, we will articulate the relationship between the backdoor criterion and condi-

tional unconfoundedness.

2.3.2 Conditional Unconfoundedness in the Three Causal Frameworks

For the remaining sections of this chapter (and for most of Chapter 3) we will

establish most theoretical results assuming that X is discrete. These insights will

inform the computational results in Chapter 4 which include continuous covariates.

We will also reflect on extensions to / analogues with continuous covariates at various

points in the following two chapters.

The conditional unconfoundedness assumption has a direct correspondence

between the potential outcomes and mean decomposition formalisms, namely that

the two expressions below are exactly equivalent:

(Y 1, Y 0) ⊥⊥ Z | X

(ν(X, ϵY ), δ(X, ϵY )) ⊥⊥ Z | X

This can be demonstrated as follows. Since,

Y 1 ← µ(X) + ν(X, ϵY ) + [τ(X) + δ(X, ϵY )] = µ(X) + τ(X) + ν(X, ϵY ) + δ(X, ϵY ),

Y 0 ← µ(X) + ν(X, ϵY ),

and both µ(X) and τ(X) are constant conditional on X, (µ(X), τ(X)) ⊥⊥ Z | X holds

trivially, so that

(Y 1, Y 0) ⊥⊥ Z | X ⇐⇒ (ν(X, ϵY ), δ(X, ϵY )) ⊥⊥ Z | X.
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What relation do these two equivalent statements hold to the graphical criterion

that X d-separates Z and Y ? From a CDAG G, we define a modified graph G̃ such

that the outcome Y ←− F (Z,X, ϵY ) is replaced with two counterfactual nodes:

Y 1 ←− F (1, X, ϵY ), and

Y 0 ←− F (0, X, ϵY ).

Theorem 1.2.4 of Pearl (2009) shows that if X d-separates Z and (Y 1, Y 0) then

(Y 1, Y 0) ⊥⊥ Z | X. The converse, however, is not true without a further assumption

of faithfulness (sometimes also called stability in the literature, as in Pearl (2009)).

Faithfulness asserts that the conditional independence relationships computable from

a functional causal model do not vary depending on the parameters of the model, a

phenomenon that Shalizi (2021) refers to heuristically as a “conspiracy among the

parameters” and which we illustrate below with a simple example. The details of this

equivalence (and the various departures) between graphs and potential outcomes are

discussed in detail in Richardson and Robins (2013).

Example of a violation of the faithfulness assumption

Consider the following data-generating process (DGP):

X ∼ Categorical (p1, p2, p3)

π(X) = γ1I {X = 1}+ γ2I {X = 2}+ γ3I {X = 3}

Z ∼ Bernoulli (π(X))

µ(X) = α1I {X = 1}+ α2I {X = 2}+ α3I {X = 3}

τ(X) = β

Y ∼ Bernoulli (µ(X) + τ(X)Z)

(2.1)

with the constraint that maxx µ(x) + β ∈ (0, 1).
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X

Z Y

Figure 2.4: The “triangle graph”, which contains a single “fork” variable X.

Note that the Bernoulli CDF F (Y ≤ y) = 0 + (1 − µ(X) + τ(X)Z)I {y = 0} +

I {y = 1} has a discrete image, so inverse transform sampling cannot be used to

generate Y values from X, Z and a uniform error ϵY , however the simple function

I (ϵY < µ(X) + τ(X)Z) for standard uniform ϵY will generate Bernoulli random vari-

ables with probability µ(X)+ τ(X)Z. Thus, we can express the functional model for

Y as

Y ←− F (X,Z, ϵY ) = I {ϵY < µ(X) + τ(X)Z}

The graph that corresponds to this DGP is presented in Figure 2.4. We see

that satisfying the backdoor criterion with respect to Y and Z requires a control

set of S = X. Note however, that there are particular values of the data-generating

parameters for this model that render (Y 1, Y 0) ⊥⊥ Z unconditional ofX. In particular,

let

(p1, p2, p3) =

(
16

60
,
28

60
,
16

60

)
(γ1, γ2, γ3) =

(
5

8
,
5

14
,
5

8

)
(α1, α2, α3) =

(
1

4
,
2

4
,
3

4

) (2.2)
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In this case,

P(Y 1 = 1 | Z = 1) =

∑3
x=1(µ(x) + β)π(X)px∑3

x=1 π(X)px
=

1

2
+ β

P(Y 1 = 1 | Z = 0) =

∑3
x=1(µ(x) + β)π(X)px∑3

x=1 π(X)px
=

1

2
+ β

so that P(Y 1 = 1 | Z = 0) = P(Y 1 = 1 | Z = 1) and thus Y 1 ⊥⊥ Z. Similar derivations

hold for Y 0 so that in this particular model, conditional unconfoundedness is satisfied,

while in the causal graph in Figure 2.4 that includes all models described by Equa-

tion 2.1, (Y 1, Y 0) are not d-separate from Z. The faithfulness assumption rules out

sets of parameters as in Equation 2.2 that give spurious independence relationships

that conflict with the specific class of independences corresponding to the general

CDAG of a causal model. This assumption allows for conditional unconfoundedness

((Y 1, Y 0) ⊥⊥ Z | X) to imply that X d-separates (Y 1, Y 0) from Z.

2.4 Identifying Assumptions for Causal Effect Estimation with a Subset of

Variables

The discussion in Section 2.3 focuses on the question of identification of a causal

effect of Z on Y given an entire covariate set X. Without any further assumptions, we

saw that d-separation is a stronger assumption than conditional unconfoundedness,

but that the two assumptions are equivalent if we assume faithfulness. We now turn to

the question of identification conditional not on X but on functions of the covariates

s(X). While the identity s(X) = X is technically such a function, the focus of this

dissertation will be on functions s : X −→ S where S ⊂ X ; in other words, functions

that induce some measure of coarsening or dimension reduction of the covariates.

First, note that s(X) here is intended to refer to arbitrary functions of X, includ-

ing variable selection operations (which return only a subset of the variables in X),

nonlinear operations (i.e. s(X) = X1X2 + I {X4 > 0}), and simple linear combina-
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tions (i.e. s(X) = X1 − X2). Broadly, s(X) plays the same “feature selection” role

as do nonparametric machine learning methods. The following section gives several

illustrative examples of such functions with discrete and continuous covariates.

2.4.1 Feature Selection as a Function of Covariates

To make the concept of a “feature selection function” concrete, consider a simple

example in which X is composed of 3 independent binary covariates, so that the

covariate space X has 8 elements. In this case any selection function is essentially

a stratification function, which must map each of these 8 elements to a (possibly

collapsed) “stratum.” As we will see when we review estimators in Section 2.6, the

values of these labels do not matter for estimation purposes — what matters is which

levels of X are grouped together.

In Table 2.1, we give four examples of such operations. The first, s1, maps each

level of X to its own stratum and is thus equivalent to the identity function in that

conditioning on s1(X) has exactly the same effect as conditioning on X. The next

two functions, s2 and s3, perform traditional “variable selection” by collapsing unique

levels of X1 and X2, respectively, into the same strata. Finally, s4 performs a more

elaborate feature construction, expressable as

s4(X) = 2 + 2X3 − I {X1 = X2} ,

which returns a “non-axis-aligned” adjustment set.

To give one more example of a feature selection function, this time on continuous

covariates, note that decision trees construct mutually exclusive bases in the form of

repeated logical statements. Consider that the decision tree in Figure 2.5 partitions

X into three leaves, and the conditions that define these leaves can be expressed as a
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X1 X2 X3 s1(X) s2(X) s3(X) s4(X)

0 0 0 1 1 1 1

1 0 0 2 1 2 2

0 1 0 3 2 1 2

1 1 0 4 2 2 1

0 0 1 5 3 3 3

1 0 1 6 3 4 4

0 1 1 7 4 3 4

1 1 1 8 4 4 3

Table 2.1: Visualization of several “feature selection” operations performable by
functions of the unique levels of X

X1 > 0

X2 > 0

a1 a2

a3

Figure 2.5: A simple decision tree with splits on X1 and X2

3-vector of basis functions,

s(X) = [I {X1 > 0} I {X2 > 0} , I {X1 > 0} I {X2 ≤ 0} , I {X1 ≤ 0}] .

2.4.2 Identification of the Average Treatment Effect using s(X)

In potential outcomes, s(X) satisfying conditional unconfoundedness is expressed

naturally as

(Y 1, Y 0) ⊥⊥ Z | s(X).
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To express this identification criterion in the “mean decomposition” approach, we

must first define a new decomposition

µ(s(X)) = E
[
Y 0 | s(X)

]
= E

[
E
[
Y 0 | s(X)

]
| s(X)

]
= E [µ(X) | s(X)]

τ(s(X)) = E
[
Y 1 | s(X)

]
− E

[
Y 0 | s(X)

]
= E [τ(X) | s(X)] + E [µ(X) | s(X)]− E [µ(X) | s(X)] = E [τ(X) | s(X)]

ν(s,X, ϵY ) = Y 0 − E
[
Y 0 | s(X)

]
= Y 0 − E [µ(X) | s(X)]

= µ(X) + ν(X, ϵY )− E [µ(X) | s(X)] = (µ(X)− µ(s(X))) + ν(X, ϵY )

δ(s,X, ϵY ) =
(
Y 1 − Y 0

)
−
(
E
[
Y 1 | s(X)

]
− E

[
Y 0 | s(X)

])
= (τ(X)− τ(s(X))) + δ(X, ϵY )

From here, we follow the same line of reasoning as in Section 2.3: µ(s(X)) and

τ(s(X)) are constant given s(X) so that

(ν(s,X, ϵY ), δ(s,X, ϵY )) ⊥⊥ Z | s(X)⇐⇒ (Y 1, Y 0) ⊥⊥ Z | s(X).

The structural model view of conditional unconfoundedness exposes two separate

conditions in the case of coarse functions s of X. The first is exactly as demanded by

conditional unconfoundedness given all of X,

(ν(X, ϵY ), δ(X, ϵY )) ⊥⊥ Z | s(X).

The second is that

(µ(X), τ(X)) ⊥⊥ Z | s(X).

Unconditionally, both ν(X, ϵY ) and µ(X) (as well as δ(X, ϵY ) and τ(X)) are random

variables. Conditional on X, both µ(X) and τ(X) are constants and the conditional

unconfoundedness assumption simply stipulates that any residual variation in Y 1

and Y 0 is independent of Z given X. Conditional on s(X), both µ(X) and τ(X)

are potentially non-constant random variables, and conditional unconfoundedness
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X1

X2X3

X4

Z Y

Figure 2.6: Causal graph in terms of original covariates

demands that the residual variation in µ(X) and τ(X) (not controlled by s(X)) be

independent of Z given s(X). We will have more to say about this assumption as

it relates to the average treatment effect in the following section, but we first must

discuss how s(X) influences identification in causal graphs.

To discuss identification of a graphical model given s(X), we must consider trans-

formed graphs which include the variable(s) s(X) as nodes. Depending on the as-

sociated functional model and the nature of s(X) the new graph may be causal in

its transformed variables or may contain probabilistic (non-causal) edges. We review

examples of each case below.

First, consider this DGP, corresponding to the graph in Figure 2.6.

X1, X2, X3, X4 ∼ Bernoulli (p)

Z ∼ Bernoulli (γ0 + γ1 (2X1X2 −X1 −X2 + 1) + γ2X3)

Y ∼ N (τZ + α0 + α1 (2X1X2 −X1 −X2 + 1) + γ2X4)

Defining W ←− F (X1, ϵW ) = 2(X1 − 1)(ϵW − 1) as a random variable generated by

a functional transformation of X1 and ϵW ∼ Bernoulli (p), we can write a modified

graph that is still causal in each of its variables as in Figure 2.7.

Letting s(X) = W , we see that s(X) d-separates all backdoor paths from Z

to Y in the transformed causal graph, just as did (X1, X2) in the original causal

graph. Consider now the box diagram presented in Figure 2.1. X2 has no direct
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X1

X3 X4

W

Z Y

Figure 2.7: Causal graph under transformed covariates

X2

Z Y

X3

Figure 2.8: The “box graph” represented only by (X2, X3, Z, Y )

causal relationship on Z, and X3 has no direct causal relationship with Y , but if

we write the graph solely in terms of these four variables, we must represent the

probabilistic relationship between Z and X2 (unconditional of X1) and that between

Y and X3 (unconditional of X4) which we do using a dashed line in Figure 2.8.

In this graph, there are two backdoor paths between Z and Y : {(Z,X2), (X2, Y )}

and {(Z,X3), (X3, Y )}, so that an adjustment set s(X) which “selects” X2 and X3

d-separates Z and (Y 1, Y 0).

Perhaps it is worth checking in to pose (and answer) the question: what is the pur-

pose of this lengthy elaboration of identifying conditions using three causal inference

frameworks? Some concepts are more easily expressed in certain frameworks. For

example, the causal graph framework, which encourages expressing causal relation-

ships in graphs, allows practitioners to more readily reason about variable selection
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for causal inference. By contrast, the assumptions of no interference and consistency

are more naturally expressed in the potential outcomes verbiage, which more directly

represents observations in a sample. Finally, the concept of separating counterfactual

random variable Y 1 and Y 0 into “mean terms” µ(X) and τ(X) and “error terms”

ν(X, ϵY ) and δ(X, ϵY ) we be useful in reasoning about average treatment effect iden-

tifying criteria in the following section.

2.5 Identifying Assumptions for Average Treatment Effect

The purpose of the identifying assumptions presented above, broadly, is to enable

computation of counterfactual estimands (which by their very nature are not directly

observable) via observable random variables. Consider again the average treatment

effect defined in Section 2.2.1:

τ̄ = E
[
Y 1 − Y 0

]
.

2.5.1 Identification Based on Conditional Unconfoundedness

We can show step-by-step how the identifying assumptions are used to convert

this counterfactual estimand into an observable estimand. First, the law of iterated

expectations shows that

τ̄ = E
[
Y 1 − Y 0

]
= E

[
E
[
Y 1 − Y 0 | X

]]
= E

[
E
[
Y 1 | X

]
− E

[
Y 0 | X

]]
.

Conditional unconfoundedness implies that both

E
[
Y 1 | X

]
= E

[
Y 1 | Z = 1, X

]
E
[
Y 0 | X

]
= E

[
Y 0 | Z = 0, X

]
Conditional on Z, we can rewrite

E
[
Y 1 | Z = 1, X

]
= E

[
Y 1Z + Y 0(1− Z) | Z = 1, X

]
E
[
Y 0 | Z = 0, X

]
= E

[
Y 1Z + Y 0(1− Z) | Z = 0, X

]
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and by consistency we have that

E
[
Y 1 | Z = 1, X

]
= E

[
Y 1Z + Y 0(1− Z) | Z = 1, X

]
= E [Y | Z = 1, X]

E
[
Y 0 | Z = 0, X

]
= E

[
Y 1Z + Y 0(1− Z) | Z = 0, X

]
= E [Y | Z = 0, X]

Finally, we require that both E [Y | Z = 1, X] and E [Y | Z = 0, X] be nondegener-

ate across the entire support of X, so that both E [E [Y | Z = 1, X]] = E [Y 1] and

E [E [Y | Z = 0, X]] = E [Y 0]. This can be achieve by ensuring that the conditioning

sets (Z = 1, X) and (Z = 0, X) are not measure zero whenever X is not measure

zero, which is true because positivity

0 < P(Z = 1 | X) < 1

holds across the support of X.

Thus we have that

τ̄ = E
[
Y 1 − Y 0

]
= E [E [Y | Z = 1, X]− E [Y | Z = 0, X]] ,

where the conditional expectations in the final estimand are expressed in terms of

observable random variables Y , Z, and X.

There are many ways to convert this estimand to an estimator, which will be

discussed in more depth in Section 2.6. For now, we simply note that the “no inter-

ference” assumption, which stipulates unconditional independence of potential out-

comes and treatment assignment between observations, is required to ensure that any

of the estimators has expected value E [E [Y | Z = 1, X]− E [Y | Z = 0, X]].

2.5.2 Minimal Identifying Assumptions for the Average Treatment Effect

Consider now an adjustment set s(X) where s(X ) ⊂ X . The above derivations

hold, except that we now express the law of iterated expectations in term of s(X):

τ̄ = E
[
Y 1 − Y 0

]
= E

[
E
[
Y 1 − Y 0 | s(X)

]]
= E

[
E
[
Y 1 | s(X)

]
− E

[
Y 0 | s(X)

]]
.
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This thus requires only one modification to the assumptions as discussed in Section

2.4:

(Y 1, Y 0) ⊥⊥ Z | s(X).

Note, however, that the derivation above does not make use of full conditional inde-

pendence of the random variables (Y 1, Y 0) and Z given s(X), just that

E
[
Y 1 | s(X)

]
= E

[
Y 1 | Z = 1, s(X)

]
E
[
Y 0 | s(X)

]
= E

[
Y 0 | Z = 0, s(X)

]
a condition known more generally in probability theory as “mean conditional indepen-

dence.” This point – that certain average causal effects such as the ATE are identified

without requiring full conditional independence – has been made in several places in

the literature, most notably in Heckman (1996) and Cameron and Trivedi (2005).

2.5.3 Identifying Assumptions via Mean Terms

The assumption stated above is “minimal” but it is also not particularly illumi-

nating. It asserts simply that the smallest adjustment set that identifies the average

treatment effect is the set s(X) that can remove Z from the conditioning sets in

E [Y 0 | Z = 0, s(X)] and E [Y 1 | Z = 1, s(X)]. Analysts are left to reason about the

counterfactual random variables Y 0 and Y 1. Above, we showed that these two vari-

ables can be expressed in terms of “mean functions” and “error terms,”

Y 0 = µ(X) + ν(X, ϵy)

Y 1 = µ(X) + τ(X) + ν(X, ϵy) + δ(X, ϵy).

Depending on the application, which variables impact the prognostic and treatment

effect functions may be easier to hypothesize than which variables impact the entire

distributions of Y 0 and Y 1.
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We now show that a very similar assumption which we call mean conditional

unconfoundedness, based on µ(X) and τ(X) alone identifies the average treatment

effect in exactly the same manner as in Section 2.5.2:

µ(X) ⊥⊥ Z | s(X)

τ(X) ⊥⊥ Z | s(X)

These criteria offer a way of reasoning about “feature selection” – any function s of

X that satisfies mean conditional unconfoundedness identifies the average treatment

effect. Any variation in X not accounted for by s(X) may well impact the shape or

magnitude of ν(s,X, ϵy) and δ(s,X, ϵy), but these terms are mean zero and vanish

when evaluating the average treatment effect.

Now, we demonstrate that this assumption identifies the average treatment effect,

assuming as stated in Section 2.3.2 thatX is discrete. The applications of consistency,

positivity and no interference are exactly as in Section 2.5, so we omit them here and

focus on showing that

E
[
Y 1 | Z = 1, s(X)

]
= E

[
Y 1 | s(X)

]
E
[
Y 0 | Z = 0, s(X)

]
= E

[
Y 0 | s(X)

]
First, observe that

E
[
Y 0 | X,Z

]
= E [F (X, 0, ϵy) | X,Z] =

∫
ϵy

F (X, 0, ϵy)dP (ϵy | X,Z)

=

∫
ϵy

F (X, 0, ϵy)dP (ϵy) = µ(X) = E
[
Y 0 | X

]
E
[
Y 1 | X,Z

]
= E [F (X, 1, ϵy) | X,Z] =

∫
ϵy

F (X, 1, ϵy)dP (ϵy | X,Z)

=

∫
ϵy

F (X, 1, ϵy)dP (ϵy) = µ(X) + τ(X) = E
[
Y 1 | X

]
where the second line of each derivation holds because ϵy ⊥⊥ (X,Z).
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Now, we can write

E
[
Y 0 | s(X), Z

]
= E

[
E
[
Y 0 | X,Z

]
| s(X), Z

]
= E [µ(X) | s(X), Z]

= E [µ(X) | s(X)] = E
[
Y 0 | s(X)

]
E
[
Y 1 | s(X), Z

]
= E

[
E
[
Y 1 | X,Z

]
| s(X), Z

]
= E [µ(X) + τ(X) | s(X), Z]

= E [µ(X) + τ(X) | s(X)] = E
[
Y 1 | s(X)

]
where the second line of each derivation holds because µ(X) ⊥⊥ Z | s(X) and τ(X) ⊥⊥

Z | s(X), and the result holds.

Finally, the mathematical statement and intuition behind mean conditional un-

confoundedness differs from that of mean conditional independence, but we do not

contend that the substance of the assumptions are different. Rather, it is plausible

that an exact mathematical equivalence exists, though we do not explore the issue in

this dissertation. This research will largely be concerned with applications of mean

conditional unconfoundedness, rather than any claim to its mathematical novelty.

2.6 Estimators for the Average Treatment Effect

Note that the identification derivations above always convert E [Y 1 − Y 0] into

E [E [Y | s(X), Z = 1]− E [Y | s(X), Z = 0]] for some conditioning set s(X) (which

could simply be the identity s(X) = X). Estimators for the ATE rely on sample

based approximations of these conditional expectations. First, we note that when

covariates are discrete, there is an exact equivalence between three common ATE

estimators, which we review below.

2.6.1 Equivalence of Three Common Estimators when X is Discrete

Let n be the number of observed samples of treatment Z, outcome Y and covari-

ates X. We assume that X is discrete and can thus be transformed into a matrix of
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binary “regression contrast offsets” which we refer to as X̃ and we let p refer to the

number of columns in X̃.

We define the inverse propensity weighting (IPW), stratification, and regression

estimators using the entire covariate set X below

τ̄IPW =
1

n

n∑
i=1

(
YiZi

p̂(Xi)
− Yi(1− Zi)

1− p̂(Xi)

)
τ̄strat =

∑
x∈X

nx

n

(
Ȳx,Z=1 − Ȳx,Z=1

)
τ̄reg =

1

n

n∑
i=1

(
ŶZ=1,X=xi

− ŶZ=0,X=xi

)
where the propensity score is defined empirically,

p̂(x) =
Nx,Z=1

nx

Nx,Z=1 =
n∑

i=1

1(Xi = x, Z = 1)

nx =
n∑

i=1

1(Xi = x)

and the regression fit for τ̄reg is a fully saturated linear model

Y =
(
α0 + α1X̃1 + · · ·+ αpX̃p

)
+ Z

(
β0 + β1X̃1 + · · ·+ βpX̃p

)
+ ϵ

Each of these estimators require the condition that every unique value of X has

at least one treated and at least one control unit (that is Nx,Z=1 > 0 and Nx,Z=0 > 0

for all x). Now, observe that the IPW and stratification estimators are exactly equal

in this case

τ̄IPW =
1

n

n∑
i=1

(
YiZi

p̂(Xi)
− Yi(1− Zi)

1− p̂(Xi)

)
=

1

n

∑
x∈X

(
nxNx,Z=1Ȳx,Z=1

Nx,Z=1

− nxNx,Z=0Ȳx,Z=0

Nx,Z=0

)
=

1

n

∑
x∈X

(
nxȲx,Z=1 − nxȲx,Z=0

)
=
∑
x∈X

nx

n

(
Ȳx,Z=1 − Ȳx,Z=0

)
= τ̄strat
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Chapter 17 of Imbens and Rubin (2015) gives a similar result comparing “subclassi-

fication” estimators (stratification estimators that use ranges of the propensity score

as strata) and the IPW estimator.

Similarly, Ŷz,x in the regression estimator reduces to the cell mean Ȳx,z, so that

the same equivalence holds

τ̄reg =
1

n

n∑
i=1

(
ŶZ=1,X=xi

− ŶZ=0,X=xi

)
=
∑
x∈X

nx

n

(
ŶZ=1,X=x − ŶZ=0,X=x

)
=
∑
x∈X

nx

n

(
Ȳx,Z=1 − Ȳx,Z=1

)
= τ̄strat

For a subset s(X), the estimators are defined in the exact same manner, simply

using the unique levels of s(X) rather than X.

τ̄ sIPW =
1

n

n∑
i=1

(
YiZi

p̂(s(Xi))
− Yi(1− Zi)

1− p̂(s(Xi))

)
τ̄ sstrat =

∑
j∈s(X )

nj

n

(
Ȳj,Z=1 − Ȳj,Z=1

)
τ̄ sreg =

1

n

n∑
i=1

(
ŶZ=1,s(X)=s(xi) − ŶZ=0,s(X)=s(xi)

)
where the propensity score is defined empirically,

p̂(s(x)) =
Nj,Z=1

nj

Nj,Z=1 =
n∑

i=1

1(s(Xi) = j, Z = 1)

nj =
n∑

i=1

1(s(Xi) = j)

and the regression fit for τ̄reg is a fully saturated linear model on a similarly defined

design matrix S̃

Y =
(
α0 + α1S̃1 + · · ·+ αpS̃p

)
+ Z

(
β0 + β1S̃1 + · · ·+ βpS̃p

)
+ ϵ
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2.6.2 Flexible Estimators for the Average Treatment Effect with Arbitrary

Covariates

Estimating conditional expectations is comparatively straightforward with a dis-

crete conditioning set. The exact equivalence above vanishes when covariates are

continuous, as does the relative simplicity of most of the estimators. The direct re-

gression estimator requires a specification of the functional form of the regression

equation — linearity in the covariates may be assumed, or more flexible bases, in-

cluding polynomials and splines, may be constructed. For the IPW estimator, es-

timates of the propensity score face the same model specification question — will

the propensity model be linear in the covariates? The stratification estimator faces

a related challenge — without discrete covariates, exact stratification is impossible.

One common alternative is to discretize an estimated propensity score and stratify on

the discretized “strata” of a continuous propensity score (Imbens and Rubin (2015),

Chapter 17).

We will have more to say about regression estimators with continuous covariates

in Chapter 4. Chapter 3 investigates the theoretical considerations in selecting an ad-

justment set s(X) from discrete covariates. These insights inform our computational

investigations in Chapter 4.

It is worth mentioning another estimator which we do not discuss in depth in this

dissertation — “matching” — in which treated-control pairs with similar covariate

values are constructed and used as the basis for a regression adjustment. Readers

interested in more in-depth coverage of matching are referred to Chapter 18 of Imbens

and Rubin (2015) or Chapter 5 of Morgan and Winship (2015).
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Chapter 3

FEATURE SELECTION IN CAUSAL INFERENCE USING DISCRETE

COVARIATES: THEORY, DESIDERATA, AND EXAMPLES

3.1 Introduction and Notation

We assume throughout this chapter that n samples of (Y, Z,X) are observed and

that X is discrete. Let K refer to the total number of unique levels of X and define

a function k : X −→ {1, . . . , K} that maps the unique levels of X to a univariate set

of labels {1, . . . , K}. We assume that Z | X ∼ Bernoulli(π(X)) where π(X) ∈ (0, 1)

and we assume that Y | Z,X ∼ N (µ(X) + Zτ(X), σ2).

3.2 Theoretical Considerations in Selecting s(X)

Section 2.3 outlined four identifying conditions for causal effects of Z on Y , and

Section 2.5.3 showed that the “conditional unconfoundedness” assumption can be

supplanted by a comparatively weaker “mean conditional unconfoundedness” assump-

tion, which demands of any conditioning set s(X) that

µ(X) ⊥⊥ Z | s(X), and

τ(X) ⊥⊥ Z | s(X).

This leaves open the question: how does an analyst go about selecting an adjust-

ment set that satisfies mean conditional unconfoundedness? We review two prominent

examples from the causal inference literature, before introducing general theory on

how to “go beyond” either of these two adjustment sets.
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3.2.1 Propensity Function

Rosenbaum and Rubin (1983) define the propensity score as the conditional prob-

ability of receiving treatment given covariates,

π(X) = P (Z = 1 | X) ,

and show that the propensity score satisfies conditional unconfoundedness when X

satisfies conditional unconfoundedness. This in turn implies that a valid estimate of

P (Z = 1 | X) can serve as a conditioning set that identifies the average treatment

effect, an insight that is especially helpful when X is high-dimensional as a one-

dimensional projection can be used in its place.

We show briefly that the propensity score also satisfies the comparatively weaker

mean conditional unconfoundedness assumption. Let s(X) = π(X) and note that

Z ∼ Bernoulli(π(X)) so that, conditional on π(X), Z is independent from any other

function of X, including µ(X) and τ(X).

3.2.2 Generalized Prognostic Function

Hansen (2008) shows that when a treatment effect function τ(X) is constant and

X satisfies conditional unconfoundedness, E [Y 0 | X] also satisfies conditional uncon-

foundedness. This conditional expectation corresponds to µ(X) in our structural

model decomposition, so we use that notation here. Hansen (2008) also shows that

µ(X), which he refers to as the “prognostic score,” may be estimated as E [Y | X,Z = 0].

Furthermore, Hansen (2008) notes that in the more general case in which τ(X)

is a non-constant function of X, the average treatment effect is only identified given

both µ(X) and τ(X). We denote the union

s(X ) = µ(X ) ∪ τ(X ),
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and refer to s(X) as the “generalized prognostic function.” We can see that the

generalized prognostic function satisfies mean conditional unconfoundedness because

µ(X) and τ(X) are both constant given the generalized prognostic function and are

therefore independent of Z.

3.2.3 Minimal Deconfounding Function

We have seen that two common “data-defined” approaches to computing a uni-

variate conditioning set, the propensity score and the prognostic score, identify the

average treatment effect. Each conditioning set provides the comparatively-strong

phenomenon of conditional unconfoundedness. We have also noted that for our es-

timand of interest — the average treatment effect — only mean conditional uncon-

foundedness is necessary. A natural question is thus: what is the smallest possible

conditioning set that provides mean conditional unconfoundedness? We define

λ(X) = E [Z | µ(X), τ(X)] ,

and first show that λ(X) satisfies mean conditional unconfoundedness. Observe that

the distribution of Z | X is fully characterized by

P (Z = 1 | X) = π(X) = E [Z | X] .

We must thus show that

E [Z | λ(X)] = E [Z | λ(X), µ(X), τ(X)] .

First, observe that λ(X ) is a projection onto µ(X ) ∪ τ(X ) so that

E [Z | λ(X), µ(X), τ(X)] = E [Z | µ(X), τ(X)] .
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Now, by the law of total expectation, we have that

E [Z | λ(X)] = E [E [Z | λ(X), µ(X), τ(X)] | λ(X)]

= E [E [Z | µ(X), τ(X)] | λ(X)]

= E [λ(X) | λ(X)] = λ(X) = E [Z | λ(X), µ(X), τ(X)]

= E [Z | µ(X), τ(X)]

Now, we show that λ(X) is the smallest adjustment set that satisfies mean con-

ditional unconfoundedness.

Proposition 1. Let X be a discrete space supporting the random variable X. There

exists no function s for which it is both true that

1. |s(X )| < |λ(X )|

2. µ(X) ⊥⊥ Z | s(X) and τ(X) ⊥⊥ Z | s(X)

Proof. We assume that there exists an s satisfying conditions 1 and 2 above. There

thus exist distinct x, x′ such that s(x) = s(x′) and λ(x) ̸= λ(x′). If λ(x) ̸= λ(x′), then

it must be the case that both (µ(x), τ(x)) ̸= (µ(x′), τ(x′)) and E (Z | µ(x), τ(x)) ̸=

E (Z | µ(x′), τ(x′)). Let c = s(x) = s(x′) and observe that condition 2 above implies

E [Z | s(X) = c] = E [Z | s(X) = c, µ(x), τ(x)] = E [Z | µ(x), τ(x)]

= E [Z | s(X) = c, µ(x′), τ(x′)] = E [Z | µ(x′), τ(x′)] .

This is a contradiction as this would imply that λ(x) = λ(x′).

3.3 Variance Considerations in Selecting an Adjustment Set

Thus far, we have reviewed several adjustment sets that satisfy mean conditional

unconfoundedness and identify the ATE. It is worth pausing to reflect on this discus-

sion for a moment. Given the propensity score identifies the ATE and is computable
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from the (Z,X) data, why did we bother discussing the generalized prognostic func-

tion and λ(X)? The primary reason is variance reduction, which will be the subject

of Proposition 2. We will make this precise below and in the ensuring discussion, but

for now consider a data-generating process with many variables that influence only

Z. Estimating and adjusting for the propensity score will effect a stratification on

many instrumental variables, which only influence the treatment assignment. Since

these variables were not necessary for identifying the average treatment effect and

they do not help predict the outcome, adding them to an adjustment set increases

the variance of the resulting ATE estimator.

We consider the DGP introduced in Section 3.1. Since there is a one-to-one

correspondence between X and k(X), for notational simplicity, we let X refer to

k(X), a mapping from the unique values of X to numeric stratum indices. Define

subset-specific sample sizes as follows:

• Nx: the number of observations with X = x,

• Nx,z: the number of observations with X = x and Z = z.

We assume that Nx > 0 and Nx,z > 0 for all x and z ∈ {0, 1}. The stratification esti-

mator introduced in Section 2.6 can be expressed here using a stratification function

s (X ), which returns J ≤ K discrete function values. We compute the average differ-

ence in outcomes between the treated and control groups separately for individuals
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in each of the J strata, so that

τ̄ sstrat =
∑

j∈s(X )

Nj

n

(
Ȳj,1 − Ȳj,0

)
Nj,0 =

n∑
i=1

1 {s(Xi) = j}1 {Zi = 0}

Ȳj,0 =
1

Nj,0

n∑
i=1

Yi1 {s(Xi) = j}1 {Zi = 0}

Nj =
n∑

i=1

1 {s(Xi) = j}

Nj,1 =
n∑

i=1

1 {s(Xi) = j}1 {Zi = 1}

Ȳj,1 =
1

Nj,1

n∑
i=1

Yi1 {s(Xi) = j}1 {Zi = 1}

Note that if we choose the trivial stratification s(x) = x, we stratify completely on

all K unique levels of X .

Below we present a proposition that articulates when an unbiased estimator that

stratifies beyond the minimal adjustment set, λ(X), improves upon the minimal es-

timator by reducing estimator variance.

Proposition 2. Consider an adjustment set s(X) which satisfies mean conditional

unconfoundedness and, for at least two x, x′ ∈ X , s(x) ̸= s(x′) while λ(x) = λ(x′).

Define τ̄λstrat as a stratification estimator based on the unique levels of λ(X) and τ̄ sstrat

as a stratification estimator based on the unique levels of s(X). Then Var (τ̄ sstrat) <
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Var
(
τ̄λstrat

)
if ν < η where

m(j) = |{s(x) : x ∈ X such that λ(x) = j}|

B = {j ∈ λ(X ) : m(j) > 1, sub-strata means and variances are constant}

C = {j ∈ λ(X ) : m(j) > 1, sub-strata means and variances are non-constant}

ν =
∑
b∈B

Var(Nb

n

(
Ȳb,1 − Ȳb,0

))
− Var

m(b)∑
ℓ=1

Nbℓ

n

(
Ȳbℓ,1 − Ȳbℓ,0

)
η =

∑
c∈C

Var
m(c)∑

ℓ=1

Ncℓ

n

(
Ȳcℓ,1 − Ȳcℓ,0

)− Var

(
Nc

n

(
Ȳc,1 − Ȳc,0

))
and Var (τ̄ sstrat) ≥ Var

(
τ̄λstrat

)
otherwise.

A detailed proof is provided in Appendix A, but here we offer a sketch of the proof

to build intuition. In comparing two stratifications, λ and s, across discrete covariates

X, we can partition the level sets of the two stratfication functions as follows:

1. A: values of x ∈ X for which both λ and s agree

2. B: values of x ∈ X for which s substratifies λ but the mean and variance of

Y | Z are constant across substrata formed by s

3. C: values of x ∈ X for which s substratifies λ and either the mean of Y | Z, the

variance of Y | Z, or both vary across substrata formed by s

We ignore A and focus on B and C. In the case of B, s performs “unnecessary”

stratification, estimating and re-aggregating conditional means which are the same in

the underlying data generating process, and thus incurs additional variance over the λ

stratification estimator. On the other hand, when we consider C, λ incurs additional

variance over s by failing to control for differences in Y | Z.

We note that many of the core insights of Proposition 2 are known to researchers

and presented in various forms in the literature. Rotnitzky et al. (2010) show that
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marginal structural models can achieve variance reduction by removing instruments

from the propensity score. Henckel et al. (2022) derive and prove theorems about

efficient adjustment sets in linear causal graphs. Rotnitzky and Smucler (2020) derive

similar results for nonparametric models on causal graphs. Witte et al. (2020) develop

an graph-based algorithm for learning efficient adjustment sets from data. Cinelli

et al. (2020) shows using graphs that what we call “prognostic” adjustment can

reduce variance and what we call “instrumental” adjustment can increase variance,

and Hernan and Robins (2022) explain a similar phenomenon. The literature on

sampling theory is also clear about when stratified sampling schemes (different from

the type of post-stratified estimator we study here) can reduce estimator variance

for population parameters (see for example Lohr (2019)). We do not present this

proposition for the sake of “claiming” its content. Rather, we seek to express several

well-understood insights about adjustment in causal inference in the context of our

problem of interest in a way that is not done precisely in any of the above citations.

3.4 Bias-Variance Tradeoff and Regularization-Induced Confounding

The previous section compared two unbiased estimators, addressing the question

of when an estimator with a larger adjustment set might yield a variance reduction.

A common insight in statistics and machine learning is that biased estimators can

effect a large enough variance reduction to attain a favorable estimator mean-squared

error (see for example Chapter 4 of Murphy (2022)). To what extent can this insight

be put to use for our purposes? We argue that the mean squared error (MSE) of

τ(X) should be minimized. In practical settings, in which X is continuous, or X is

discrete and high-dimensional, some manner of regularized machine learning must be

employed to stabilize estimation of the ATE. Considering only estimators that are

strictly unbiased can yield intolerably high variance, as we will see in Chapter 4.
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Great care must be taken in this case to avoid a phenomenon described as “regu-

larization induced confounding” (RIC) in Hahn et al. (2018) and Hahn et al. (2020).

This phenomenon is specific to the problem of regularized estimation, not prediction

(for a thorough discussion of the difference, see Efron (2020)). If an observed sample

of (τ(X), X) pairs were available, many supervised learning methods for predicting

τ(X) from X with regularization are available and can be tuned to minimize the

MSE of τ(X) | X. In such cases, focusing on the prediction MSE of τ(X) introduces

a direct tradeoff between its bias and variance. In causal inference problems, how-

ever, τ(X) is an unobserved function, and it must be estimated in some fashion from

(Y, Z,X) pairs.

There are many approaches to nonparametric estimation of τ(X), many of which

(explicitly or implicitly) estimate both µ(X) and τ(X). We will review machine

learning estimators for causal inference in more depth in the next chapter, and it is

important to underscore that there are methods that estimate τ(X) using a different

approach. This presentation simply illustrates the phenomenon of RIC for a common

class of methods that estimate µ(X) and τ(X) jointly. We refer to estimators of µ

and τ as µ̂(X) and τ̂(X). Since the true functions µ(X) and τ(X) are unobserved,

estimation typically proceeds by exploiting the fact that setting Ŷ = µ̂(X) + Zτ̂(X)

allows Ŷ to be “scored” against Y .

If X is discrete, then both µ(X) and τ(X) may be estimated from the entire

covariate set X, but as we have seen in this chapter, it may be desirable to consider

a “coarsened” adjustment set s(X). If X is continuous, then an adjustment set s(X)

typically must be specified in terms of basis functions used to estimate µ(X) and τ(X)

(setting s(X) = X as a linear basis with continuous X, for example, is a stronger

modeling assumption than the “no coarsening” effect of setting s(X) = X in the

discrete case).
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In many machine learning methods, the procedure for defining s(X) is a crucial

aspect of the regularization offered. In the case of discrete covariates, when s(X) con-

stitutes a stratification of the unique levels of X, estimation of µ̂(s(X)) and τ̂(s(X))

may proceed straightforwardly from a saturated linear model of Y on Z interacted

with S̃, a transformation of the strata of s(X) into a regression matrix (assuming that

every unique level of s(X) has at least one treated and one untreated observation).

Thus, µ̂(s(X)) and τ̂(s(X)) are completely characterized by the specification of

s(X), and we refer to the combined outcome prediction as Ŷs = µ̂(s(X))+Zτ̂(s(X)).

This estimation problem can thus be specified as an optimization problem with respect

to s, where we seek

s∗ = argmin
s

E
(
Ŷs − Y

)2
.

One insight of regression theory (see for example Rencher and Schaalje (2008))

is that the MSE of a regression model is nonincreasing in the number of covariates,

so that the objective above is minimized by stratifying on all of X. Consider in-

stead attempting to minimize E
(
Ŷs − Y

)2
+ α|s(X)|, mirroring the LASSO penalty

of Tibshirani (1996). This will favor small adjustment sets s that do not substantially

increase E
(
Ŷs − Y

)2
. The expansion of E

(
Ŷs − Y

)2
below (derived in detail in Ap-

pendix C) shows that a simple “size-based regularization” can have very unpredictable

effects on the MSE of τ(X).

τ̂(s(X)) can be decomposed into its mean, the stratification estimator τ̂s, and an

offset t̂(s(X)). We can also decompose the “true” τ(X) into its mean, the average

treatment effect τ̄x and an offset t(X). Defining Ŷs as above, we have that E
(
Ŷs − Y

)2
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decomposes into

E
(
Ŷs − Y

)2
= E (π(X))

[
Var (τ̂s) + Bias (τ̂s)

2]
+Var (µ̂(s(X))) + Bias (µ̂(s(X)))2

+ E
[
Z
(
t̂(s(X))− t(X)

)2]
+ 2E [Z (µ̂(s(X))− µ(X)) (τ̂(s(X))− τ(X))]

+ 2E
[
Z (τ̂s − τ̄x)

(
t̂(s(X))− t(X)

)]
+ 2E [Z (µ(X) + Zτ(X)− Y ) (µ̂(X) + Zτ̂(X)− µ(X)− Zτ(X))]

+ σ2

Here the constrained search for small s adjustment sets will aim to minimize this

sum and will implicitly prioritize controlling the values of the terms with the largest

magnitude. Thus, rather than simply trading off bias and variance in τ̂s, we trade

off the bias of τ̂s, with the variance of τ̂s, the bias and variance of µ̂(s(X)), and sev-

eral conditional product expectations involving µ̂(s(X)), τ̂s, and t̂(s(X)). While this

example covers only one method of regularization, it shows that naive application

of regularized prediction to a causal effect estimation problem can result in an esti-

mator whose bias and variance depend on the properties of the true data generating

process, in particular, the functions µ(X), τ(X), and π(X). This is the core of the

“regularization-induced confounding” phenomenon — a mode of regularization can

have a completely benign impact on estimators of τ̄ or a disastrous impact, depending

on aspects of the data which are unknown a priori to the analyst.

To give two concrete examples of how a data generating process may encourage

estimators that penalize |s(X)| to select adjustment sets that confound τ̄s, consider:

• µ(X) is large in magnitude to τ(X): in this case, selecting strata that reduce

the variance of µ̂(s(X)) may decrease E
(
Ŷs − Y

)2
by much more than selecting

strata that reduce
[
Var (τ̄s) + Bias (τ̄s)

2] (and thus help to deconfound τ̄s)
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• A confounded s(X) makes E [Z (µ̂(s(X))− µ(X)) (τ̂(s(X))− τ(X))] negative:

in this case, trading off “deconfounding” stratification with such an s(X) will de-

pend on the magnitude of E [Z (µ̂(s(X))− µ(X)) (τ̂(s(X))− τ(X))] compared

to that of Var (τ̂s) + Bias (τ̂s)
2.

The first case is discussed at length in Hahn et al. (2020). These examples are not a

purely analytical curiosity and have many plausible occurrences in real life settings.

For example, in health and social science settings, outcomes such as blood pressure

or test scores are marked by high noise and heterogeneity, and common interventions

may have a comparatively small effect.

3.5 Adjusting for Different Control Sets in Estimation of µ(X) and τ(X)

Our definition of mean conditional unconfoundedness in Section 2.5.3 assumed

that a common adjustment set would be used in estimating µ(X) and τ(X) on the

entire set of (Y, Z,X) observations. In fact, we can show that the ATE is identifiable

without using the exact same adjustment set s(X) for estimating both µ(X) and

τ(X). Let s1(X) refer to the adjustment set used for µ(X) and s2(X) refer to the

adjustment set used for τ(X). A sufficient condition for identifying the ATE given

both s1 and s2 is that

µ(X) ⊥⊥ Z | s1(X)

τ(X) ⊥⊥ Z | s2(X)

The first condition implies that

E [Y | Z = 0, s1(X)] = E [µ(X) + ν(X, ϵy) | Z = 0, s1(X)]

= E [µ(X) + ν(X, ϵy) | s1(X)] = E [µ(X) | s1(X)] ,
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after setting R = Y − E [µ(X) | s1(X)], we have by the second condition that

E [R | Z = 1, s2(X)] = E [µ(X) + τ(X) + ν(X, ϵy) + δ(X, ϵy) | Z = 1, s2(X)]

− E [E [µ(X) | s1(X)] | Z = 1, s2(X)]

= E [µ(X)− E [µ(X) | s1(X)] | Z = 1, s2(X)]

+ E [τ(X) + ν(X, ϵy) + δ(X, ϵy) | s2(X)]

= E [µ(X)− E [µ(X) | Z = 1, s1(X)] | Z = 1, s2(X)]

+ E [τ(X) | s2(X)] .

and thus

E [E [R | Z = 1, s2(X)]] = E [E [τ(X) | s2(X)]] = E [τ(X)]

3.5.1 Two Stage Estimation of the Average Treatment Effect

This introduces the possibility of two-stage nonparametric estimation procedure

for the ATE. A µ(X) model can be fit (and cross-validated) to (Y,X) on the control

dataset using any nonparametric method. The resulting model can be used to obtain

estimates µ̂(X) on the treated dataset and then a τ(X) model can be fit to (Y −

µ̂(X), X) on the treated dataset.

This is similar at first glance to the “T-Learner” meta-algorithm which we will

discuss in the following chapter, but a key difference is that the T-Learner estimates

µ(X) using (Y,X) on the control dataset, then estimates µ(X) + τ(X) using (Y,X)

on the treated dataset, and estimates τ(X) as the difference in predictions. The

residualized approach in this section estimates τ(X) directly in the second model,

allowing analysts to separate regularization of µ(X) and τ(X). The desirability of

separately regularizing µ and τ is discussed at length in Hahn et al. (2020) and it

stems from the possibility of the two functions varying drastically in magnitude and

complexity.
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3.5.2 Separate Regularization of µ(X) and τ(X)

In the simplified example presented in Section 3.4, we can use this insight about

separate adjustment sets for µ and τ to partially address regularization-induced con-

founding. One of the scenarios discussed above, in which RIC can be extreme, involves

a µ(X) term which is much larger in magnitude than the τ(X) term. In applications

where this is suspected to be the case, analysts can apply a comparatively weak

penalty to |s1(X)| than to |s2(X)|. This parallels the approach taken in BCF (Hahn

et al. (2020)), in which µ(X) and τ(X) are fit using BART models with different

degrees of regularization on their respective tree ensembles.
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Chapter 4

PRACTICAL MACHINE LEARNING APPLICATIONS OF FEATURE

SELECTION INSIGHTS

4.1 Causal Effect Estimation via Nonparametric Function Estimation

Künzel et al. (2019) provide a detailed overview of several “meta-algorithms”

for estimating the conditional average treatment effect function, τ(X). We review

each such method along with several modifications briefly here. First, they introduce

and label two methods that have been explored in the literature. The “S-Learner”

learns a function f(X,Z) using all sample observations (Yi, Xi, Zi) and then estimates

τ̂(X) as f(X, 1)−f(X, 0). For one concrete example of such an estimator, Hill (2011)

estimate the nonparametric f term using Bayesian Additive Regression Trees (BART,

Chipman et al. (2010)). The “T-Learner” learns two functions: f0(X) using control

observations (Yi, Xi) | Zi = 0 and f1(X) using treated observations (Yi, Xi) | Zi = 1,

and then estimates τ(X) as their difference f1(X)− f0(X).

The “X-Learner” originates with Künzel et al. (2019) and it follows several esti-

mation steps:

1) Estimate f0(X) using control observations (Yi, Xi) | Zi = 0 and f1(X) using

treated observations (Yi, Xi) | Zi = 1

2) Estimate h0(X) using control observations (f̂1(Xi) − Yi, Xi) | Zi = 0 and h1(X)

using treated observations (Yi − f̂0(Xi), Xi) | Zi = 1

3) Estimate τ(X) by finding a weighting function g(X) to minimize the variance of

g(X)h0(X) + (1 − g(X))h1(X) (the authors note that setting g(X) equal to the
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propensity score appears to work well empirically)

Kennedy (2022) defines and introduces a similar method called the “DR-Learner.”

This method splits a dataset at random into two folds and fits models of Y |X,Z = 1,

Y |X,Z = 0, and Z|X on the first fold. We refer to estimates from this first step as

Ŷ1, Ŷ0, and π̂, respectively. On the second fold, a “pseudo-outcome” is constructed

as

Ỹ =
Z − π̂
π̂(1− π̂)

(
Y − ZŶ1 − (1− Z)Ŷ0

)
+ Ŷ1 − Ŷ0,

and τ(X) is estimated on this fold via a model of Ỹ | X.

Künzel et al. (2019) also introduce the “F-Learner,” which estimates π(X) on

(Zi, Xi) and then estimates τ(X) on
(

Zi−π̂(Xi)
π̂(Xi)(1−π̂(Xi))

Yi, Xi

)
, and the “U-Learner” es-

timates f(X) on (Yi, Xi) then estimates π(X) on (Zi, Xi) and then estimates τ(X)

on
(

Yi−f̂(Xi)
Zi−π̂(Xi)

, Xi

)
. Our experimentation revealed these estimators to be quite unsta-

ble on data-generating processes with strong selection (due to the inclusion of π or

Z − π in the denominator), so we do not discuss these methods in great depth. We

do note, however, that one aspect of the U-Learner — fitting a marginal Ŷ model

and a marginal Ẑ model — is a key component of several common causal machine

learning estimators. Specifically, this includes “double machine learning” (DML,

Chernozhukov et al. (2022)) and the causal forest (Athey and Wager (2019)).

We will incorporate the causal forest into many of the experiments in this chapter,

so we describe it here at length. The line of work culminating in the R implemen-

tation of the causal forest algorithm has its origins in the causal tree method and

theory introduced in Athey and Imbens (2015). Wager and Athey (2018) develop

a modified random forest algorithm and asymptotic efficiency theory for conditional

average treatment effects. Athey et al. (2019) introduce the “generalized random

forest” (GRF), of which the causal forest is one of several application-focused imple-
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mentations. First, GRF substitutes Ỹ = Y − m̂(X) as outcome and Z̃ = Z − π̂(X)

as treatment, where m̂(X) is an estimate of E [Y | Z]. Next, GRF trains a random

forest (Breiman (2001)), and in each tree, it splits the sample dataset (Ỹ , Z̃, X) into

two folds. The first fold is used to grow a tree recursively on a “pseudo-outcome”

re-defined at each node as

Rν = (Z̃i − Z̄ν)((Ỹi − Ȳν)− τ̄ν(Z̃i − Z̄ν)),

where ν refers to a node, Z̄ν is the average Z̃ within node ν, Ȳν is the average Ỹ

within node ν, and τ̄ν is the coefficient of a regression of Ỹ − Ȳν on Z̃ − Z̄ν within

the samples in node ν. Finally, weights are computed based on shared membership

in the tree leaves using the second fold of each tree, and those weights define a kernel

used to estimate τ(X).

The “Bayesian causal forest” (BCF) method of Hahn et al. (2020) defines a non-

parametric Bayesian model of τ(X), which jointly estimates functions f(X), g(X)

and parameters a, b0, and b1 on (Yi, Zi, Xi) so that

E [Yi | Zi, Xi] = af(Xi) + (b0(1− Zi) + b1Zi) g(Xi)

= [af(Xi) + b0g(Xi)] + (b1 − b0) g(Xi)Zi,

with both f and g sampled using BART. After simulating posterior samples of f ,

g, a, b0 and b1, we estimate τ(X) as (b1 − b0) g(X). BCF is typically sampled with

π(X) included as a covariate in either or both of the f(Xi) and g(Xi) models, which is

particularly useful in cases of “targeted selection,” where treatment is assigned based

on the expected untreated outcome. Krantsevich et al. (2022) introduce a modified

BCF estimator — XBCF— that replaces the BART models for f and g with XBART,

a fast algorithmic approximation of BART (He and Hahn (2021)).

We do not claim that these estimators are “exhaustive” of approaches for esti-

mating τ(X) using machine learning. Other approaches not reviewed in depth in this

46



dissertation include Wager et al. (2016), Bradic et al. (2019), Oberst et al. (2021),

Johansson et al. (2020), Johansson et al. (2016), Ju et al. (2019), Zhang et al. (2022),

Shi et al. (2019). Many of these methods are focused on high-dimensional penal-

ized linear regression, making better use of propensity scores in high dimensions, or

defining neural network architectures to help estimate causal effects. This chapter

is focused more narrowly on understanding the inductive biases, explicit or implicit,

of different causal inference methods on realistic (but simulated) low-n tabular data

settings. Tree ensembles are common and highly performant nonparametric method

for prediction with tabular data (Grinsztajn et al. (2022)), so we focus on comparing

methods which either directly use tree ensembles, such as XBCF and GRF, or can

be made to use tree ensembles, such as the S–, T–, X–, and DR–Learners.

4.2 Enhanced Regularization Targeting the Average Treatment Effect

As noted in Section 2.5.3, the average treatment effect is identified with the nar-

rower assumption ofmean conditional unconfoundedness, or that both µ(X) and τ(X)

are independent of Z given an adjustment set s(X). This desired feature selection

may be articulated in the context of nonparametric estimation as follows. BCF esti-

mates functions f(X) and g(X) which together approximate µ(X) and τ(X). This

estimation method allows for separate regularization of the two structural compo-

nents of the response surface. Hahn et al. (2020) suggest modest regularization on

g(X) and comparatively weaker regularization on f(X). They use BART models to

estimate f and g and they control the respective regularization through the number

of trees used in each ensemble as well as the tree depth parameters, α and β. They

also recommend including π(X) as a covariate in the f(X) model to manage targeted

selection — if treatment selection is informed by expected untreated outcomes, so

that π(X) and µ(X) are closely correlated, then inference on µ(X) can be improved
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by including π(X) as a covariate.

The use of π(X) may improve inferences on µ(X) in cases of targeted selection, but

an insight of Chapter 3 is that π(X) is a strictly larger adjustment set than is necessary

to identify the average treatment effect. In the discussion of Hahn et al. (2020), Ray

et al. (2020) show that a DGP with strong instruments can lead BCF to underperform

other methods, since π(X) is not informative about µ(X) when it includes several

strong instruments. Identifying and removing instruments is challenging in a data-

adaptive machine learning setting. With a priori knowledge of µ(X), τ(X), and

π(X), we could attempt to identify instruments by conducting conditional incremental

independence tests on each of the variables in a dataset. However, in practice, we must

typically estimate µ(X) and τ(X), even if π(X) is known because of an experimental

design.

Estimating µ(X) and τ(X), so that we can identify instruments and remove them

from π(X) and then estimate µ(X) and τ(X) with this modified π(X) is problematic

for several reasons. First, in many settings including the Bayesian approach under-

taken in BCF, it requires care to avoid feedback between the estimation procedures

for π(X) and any feature selection procedure used as a precursor to subsequent esti-

mation procedures for the average causal effect (as discussed in Zigler et al. (2013),

Zigler and Dominici (2014), and Wang et al. (2015)). Second, if one were able to

construct initial models of µ(X) and τ(X) that were accurate and precise enough to

provide reliable representations that enable valid instrument selection, then there is

little practical need to proceed to the second stage of estimate the treatment effect

using a dimension-reduced adjustment set! In short, one specific case in which esti-

mation of µ(X) and τ(X) is difficult in finite samples due to the presence of strong

instruments is also the case in which identification and removal of those instruments

using a first-stage model will be unreliable.
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What alternatives are available for removing instruments? The theory discussed

Chapter 3 helps us to understand that the general goal of causal feature selection is

to remove instruments without removing confounders or prognostic variables, but it

is silent on how. Several causal variable selection methods suggest a conservative ap-

proach which selects instruments, confounders and prognostic variables (Belloni et al.

(2014), Shortreed and Ertefaie (2017)). De Luna et al. (2011) propose a method

for selecting confounding variables via a series of conditional independence tests.

Vansteelandt et al. (2012) define a stochastic search procedure designed to screen

confounders while controlling the estimator MSE. Zigler and Dominici (2014) pro-

poses a Bayesian method for selecting confounders that uses model averaging to ad-

dress “feedback” issues with Bayesian approaches that jointly model the outcome and

propensity score. Wilson and Reich (2014) introduce a penalized regression method

to select confounders in joint linear models of treatment and outcome. Schnitzer et al.

(2016) propose an iterative method to screen instruments by forward selection of a

propensity model using a collaborate targeted minimum-loss estimation procedure

(C-TMLE). Häggström (2018) learn a graphical model from observed data and select

confounders based on the resulting graph.

We note however that many of these approaches are either focused on axis-aligned

variable selection (thus limiting the available feature selection functions, s(X)), are

very computationally demanding, or require large datasets. Because we are interested

in algorithms that “learn” basis functions which minimize the MSE of τ(X), we focus

our potential improvements on refinements of the XBCF / BCF family of estimators.

Rather than attempt to deliberately test for and identify instruments, a computa-

tionally feasible alternative that is the subject of our early experiments is to compute

π(s(X)) using multiple subsets of the full covariate set, each of which we denote as

s(X). We achieve this by first sampling a number k between 1 and p − 1 and then
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sampling k covariates from {1, . . . , p} without replacement. Letting Sk refer to this

sampled set of covariates, we compute π(Sk) = E [Z | Sk] and include π(Sk) in the

matrix of covariates.

We let ΠX refer to a matrix of propensity scores including the “full propensity”

π(X) and a user-defined number of “propensity submodels” π(s(X)) for different

feature subsets s. We define the “Multiple Propensity XBCF” (XBCF-MP) estimator

as an XBCF model where ΠX augments X as the covariate matrix in both the f and

g terms, so that

E [Y | X,Z] = [af(X,ΠX) + b0g(X,ΠX)] + (b1 − b0)g(X,ΠX)Z

4.3 Principles for Comparing Regularized Causal Effect Estimators

Several of the methods introduced in Section 4.1, notably GRF, the X-Learner, and

the DR-Learner, are presented by their authors alongside large-sample theory demon-

strating either semiparametric efficiency or pointwise MSE convergence. These results

are impressive, not only for their technical sophistication but also in articulating the

specific mathematical conditions under which an estimator performs optimally. Given

how much these results vary in what they prove about each estimator, it would be

challenging and, in our opinion, not very illuminating to attempt to compare esti-

mators based on their large sample theory. Furthermore, the sample sizes required

for such asymptotic results to hold are typically so large that the benefits of different

regularization or feature selection schemes are not obvious.

But what are the alternatives to large sample study of nonparametric estimators?

Finite sample results are difficult to establish, though there is an emerging literature

of such results using conformal inference (Lei and Candès (2021)). This literature is

promising and we suspect that, as these methods develop, they will become part of the

applied toolkit for researchers and analysts working doing causal effect estimation.
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The focus of this dissertation, however, will be to compare methods — and guide

future method development — using simulation studies.

It is worth taking time to dwell on this topic and its philosophical importance in

this dissertation. It is certainly true that simulation studies do not offer conclusive

“proof” of a method’s performance beyond the specific data generating processes

under review. Indeed, simulation studies can be designed (even “cherry-picked”) to

give one method an advantage over other methods. Care must be taken to design

meaningful and informative simulation studies, for which the goal is experimentation

— using the simulations to test hypotheses and offer insights about the “inductive

biases” of different methods.

The discussion of Hahn et al. (2020) highlights the importance of designing sim-

ulation studies with real world characteristics in mind. Motivated by applications in

the social and health sciences, they focus on data generating processes with:

1. High noise: variation in Y accounted for by µ(X) + Zτ(X) is small

2. Large relative prognostic effects: variation in µ(X)+Zτ(X) accounted for

by τ(X) is small

3. Targeted selection: µ(X) is closely related to π(X).

This is important as it motivates the development of simulation studies in which

treatment effects are neither “too easy” to learn, in which case most methods would

present similar results, nor “too hard” to learn, in which case most methods would

also present similar results. Along these lines, Knaus et al. (2021) develop an “em-

pirical monte carlo” strategy of evaluating estimators using simulations informed by

real data. Curth and van der Schaar (2021) and Curth and van der Schaar (2023)

discuss issues in comparing estimators against common “benchmark” causal inference
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datasets (such as ACIC and IHDP) and offer guidance and examples on designing

simulation studies with experimentation in mind.

This dissertation contends that carefully crafted simulation studies are useful in

comparing methods, and they are also useful in designing new causal effect estimation

methods. Broadly, the progression of simulation studies in the next few sections is

such that we will run simulations, observe some results, offer some hypotheses, and

evaluate the hypotheses in the following section, typically by making changes to

one or several estimators. The end result is several practical recommendations for

improving estimators “out-of-the-box” as well as promising research directions for

low-level implementations of new methods.

4.4 Data Generating Processes for Experimentation

We consider several data-generating processes (DGPs) for simulation studies com-

paring the estimators introduced above.

4.4.1 Targeted Selection with Small Treatment Effects and Large Prognostic

Effects

We define a modified version of the “targeted selection” DGP reviewed in Hahn

et al. (2020), in which the selection probability is closely influenced by the expected

untreated potential outcome, µ(X), and the magnitude of the treatment effect, τ(X),

is smaller in comparison to the prognostic effect. This mirrors the reality of many
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observational causal inference problems in the health and social sciences.

X1, X3, X6, . . . , Xp ∼ N (0, 1)

X2, X5 ∼ Bernoulli

(
1

2

)
X3 ∼ Categorical

(
1

3
,
1

3
,
1

3

)
µ(X) = 1 + 4X1(2X2 − 1)− 4I (X3 = 1) + 4I (X3 = 3)

τ(X) =
1

2
+

1

2
X1 +

1

2
(2X2 − 1)

π(X) = Φ

(
−µ̄+ µ(X) + 2X4 − 2(2X5 − 1)

9

)
Z ∼ Bernoulli (π(X))

Y ∼ N (µ(X) + τ(X)Z, (κs)2)

where µ̄ is the sample mean of µ(X), s2 is the sample variance of µ(X) + τ(X)Z

and κ is a scale multiple that determines the noise-to-signal ratio of the DGP. This

DGP has several features that make it ideal for experimental comparison of causal

estimators:

1. Strong confounding: X1, X2 and X3 have a strong confounding effect between

π(X) and µ(X) and a modest confounding effect between π(X) and τ(X)

2. Targeted selection: π(X) is a noisy function of µ(X), so that the distribution

of µ(X) learnable from (Y,X) | Z = 0 may differ strongly from the distribution

of µ(X) learnable from (Y,X) | Z = 1

3. Weak instruments: X4 and X5 are both modest instrumental variables, whose

effect is not as strong as the confounding effects of X1 through X3

4. Noise variables: X6 through Xp (p itself will vary in simulation experiments)

have no relationship with Y or Z and should thus be removed from the adjust-

ment set if possible.
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We will refer to this DGP as “DGP 1” for shorthand in the presentation of results.

4.4.2 Strong Instruments, Strong Prognostic Effects, Modest Confounding

We now consider a DGP with strong instruments, strong prognostic effects, com-

paratively weak confounding. This DGP underscores the importance of necessary

dimension reduction — adjusting for instrumental variables will inflate variance with

no deconfounding effect and failing to adjust for prognostic effects will inflate variance.

X1, . . . , Xp ∼ Uniform (0, 1)

µ(X) = 3 sin(2πX1) + 6 cos(2πX2) + 6 sin(2πX3)

τ(X) =
1

2
+ 2

(
X4 −

1

2

)
+

1

2

(
X5 −

1

2

)
π(X) = Φ ((X1 − 0.5) + (X4 − 0.5) + 5 (X6 − 0.5) + 5 (X7 − 0.5) + 5 (X8 − 0.5))

Z ∼ Bernoulli (π(X))

Y ∼ N (µ(X) + τ(X)Z, (κs)2)

where s2 is the sample variance of µ(X) + τ(X)Z and κ is a scale multiple that

determines the noise-to-signal ratio of the DGP. We will refer to this DGP as “DGP

2” for shorthand in the presentation of results.

4.4.3 Homogeneous treatment effect, linear confounding, and prognostic functions

We now consider a DGP with modest confounding, no instruments, and modest

prognostic effects. The treatment effect is homogeneous and all selection and prog-

nostic functions are linear in the covariates. This DGP serves as a counterbalance to

the complicated response surfaces presented above, seeking to address the question
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of how each of these approaches perform when the effects are “easy” to estimate.

X1, . . . , Xp ∼ Uniform (0, 1)

µ(X) = 3X1 − 3X2

τ(X) =
1

2

π(X) =
1 + 2X1

4

Z ∼ Bernoulli (π(X))

Y ∼ N (µ(X) + τ(X)Z, (κs)2)

where s2 is the sample variance of µ(X) + τ(X)Z and κ is a scale multiple that

determines the noise-to-signal ratio of the DGP.

4.5 Simulation Results

4.5.1 Computational Details: Model Fitting and Treatment Effect Evaluation

In each simulation study, we run the following 7 CATE estimation method: XBCF,

XBCF-MP, GRF, DR-Learner, S-Learner, T-Learner, X-Learner. Most of these meth-

ods provide estimates of τ(X), which are then converted to estimates of the average

treatment effect by computing their sample average.

The code for these experiments is available at https://github.com/andrewherren/

dissertation-experiments. Wherever an estimate of π(X) is required, xgboost

(Chen and Guestrin (2016)) is used with a modest degree of regularization (50 trees,

learning rate of 0.05, max depth of 2 for each tree in the ensemble, and early stopping

after 10 boosting rounds). When a propensity function is assumed known (as it is in

some of the simulations below), π(s(X)) is evaluated by numerically integrating any

variables not included in s(X) out of the true π(X) function. Whenever an estimate

of Y | X is required, XBART (He and Hahn (2021)) is used with 40 trees for 30
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iterations (after 30 “burn-in” iterations) and the predictions are averaged across each

of these iterations for a single set of average predicted values.

XBCF is fit with 30 trees in the f(X) model, with node splitting probabilities (see

Chipman et al. (2010)) set to α = 0.95 and β = 1.25, and 10 trees in the g(X) model,

with node splitting probabilities set to α = 0.25 and β = 3. This corresponds to a

high degree of regularization on the τ(X) term and a comparatively low degree of

regularization on the µ(X) term. Additionally, π(X) is included in each of the f(X)

and g(X) models. The same training instructions are used for XBCF-MP; the only

difference is that the π(X) used is now a matrix of many “propensity submodels.”

Estimates of τ(X) are obtained in each case by running the XBCF sampler for 30

iterations after 30 “burn-in” samples and averaging the τ(X) estimates.

GRF, except in the case of one of our later simulation studies, is fit using its

defaults. The marginal Ŷ model is first estimated using a random forest, and, in

simulations where the propensity score is assumed unknown, the marginal π̂ model

is also estimated using a random forest. Then the causal forest algorithm described

in Section 4.1 is fit to Y − Ŷ and Z − π̂.

The meta-algorithms (S–, T–, X–, DR–Learner) are all estimated using XBART

with 40 trees for 30 iterations after 30 “burn-in” iterations. First-stage estimates

that must be plugged into second-stage estimators are averaged across all 30 samples.

Similarly, second-stage prediction samples are converted to estimates of τ(X) by

averaging pointwise.

Our simulation studies consider each of the three DGPs in Section 4.4 with n =

500. For each DGP, we evaluate 1,000 simulations each across the grid of p ∈ {10, 50}

and κ ∈ {0.25, 0.5, 1, 2}. These evaluations range from “low dimensionality, low noise”

(p = 10, κ = 0.25) to “moderate dimensionality, high noise” (p = 50, κ = 2). For each

combination of DGP, p, and κ, we evaluate each method’s root mean squared error
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across the 1,000 simulations, as

RMSE =

1,000∑
j=1

(τ̄j − τ̄)2 ,

where τ̄j is the ATE estimate for simulation j and τ̄ is the true ATE.

4.5.2 Simulation Results using Method “Defaults”

Table B.1 shows the simulation results in which the true propensity function is

assumed known. Here, we can see that the meta-algorithms are not competitive with

XBCF and GRF. Furthermore, two things become apparent in the comparison of

XBCF and the other two methods. First, the “multiple propensity” update to XBCF

tends to attain a lower RMSE, likely by being able to condition on instrument free

version of the propensity score in estimating µ(X). Second, GRF tends to attain

an even lower RMSE in many cases. A hypothesis that we will investigate in the

next round of simulations is that conditioning on an estimate of E [Y | X] = µ(X) +

π(X)τ(X) allows the tree ensemble to focus on learning offsets from Ŷ rather than

learning the entire response surface and decoupling µ(X) and τ(X) at the same time.

Table B.2 shows the simulation results in which the propensity function must

be estimated from a fixed sample. Here, we see that XBCF and XBCF-MP far

outperform any of the other methods, and also that XBCF-MP outperforms XBCF

in DGP 2, which has strong instruments. This presents the curious finding that GRF

outperforms XBCF in the case where the propensity function is known (as in the case

of a randomized experiment, for example) but is not competitive when regularized

estimates of the propensity function are used.
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4.5.3 Simulation Results with Ŷ Estimates as XBCF Covariates

Motivated by the results of Section 4.5.2, in which GRF outperforms XBCF when

the true propensity function is known, we modify the XBCF estimator to include

estimates of E [Y | s(X)] for different random subsets of features drawn as s(X) (in-

cluding the “full model,” E [Y | X], as a default). Table B.3 shows the simulation

results in which the true propensity function is assumed known. Here, we see as

before that the meta-algorithms are not competitive with XBCF and GRF. We now

also see that XBCF attains a lower RMSE than GRF and XBCF-MP does not offer

nearly the same degree of RMSE reduction as it did in Section 4.5.2.

Table B.4 shows the simulation results in which the propensity function must be

estimated from a fixed sample. These results largely mirror previous results, in which

regularized estimation of propensity scores impacts the performance of GRF and the

meta-learners much more than that of XBCF.

4.5.4 Simulation Results with Ŷ as XBCF Covariates and Regularized Margins in

GRF

Observing that GRF takes a large performance hit when using estimated propen-

sity score, we next wonder, is it possible to improve the performance of GRF by

providing XBART estimates of Ŷ and xgboost estimates of π̂? Table B.3 shows these

results when the true propensity function is assumed known. Here, we see that GRF

attains a lower RMSE than XBCF. Table B.4 shows the same results in which the

propensity function must be estimated from a fixed sample. Here, we see that GRF

performs better than in Section 4.5.2 and 4.5.3, but still attains a higher RMSE than

XBCF, suggesting that the method is highly sensitive to “good” estimates of the

propensity score.
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4.6 Discussion of Results and Future Directions

4.6.1 How Effective are Multiple Propensities at Reducing RMSE?

In Section 4.2, we motivated the use of multiple propensity features as targeting

the removal of instruments. We reviewed the literature on removing instruments and

noted that most approaches did not address our goals. We reasoned that estimating

multiple propensity scores on randomly drawn “subsets” of features would give the

tree ensembles “hints” as to propensity scores that better predict the outcome. This

is a case in which our use of XBCF is beneficial, as the greedy training structure

encourages splitting on the specific π̂(s(X)) columns that fit the outcome well.

We can understand this effect by studying the results in Tables B.1 and B.2.

When the propensity function is known, XBFC-MP attains a universal reduction in

RMSE over XBCF, as instruments can be completely integrated out of submodels.

When propensities must be estimated from (Z,X) pairs, the picture is less clear. For

DGP 2, which contains several very strong instruments, XBCF-MP attains the same

completely univeral RMSE reduction. For DGP 1, XBCF attains a lower RMSE

(sometimes considerably lower) when the noise level (governed by κ) is low. In this

case, the “full propensity” score does contain instruments, but is associated strongly

enough with µ(X) that screening instruments may not be as beneficial as conditioning

on the values of full π(X) in estimating µ(X). Finally, on DGP 3, in which the

estimation problem is straightforward, XBCF-MP attains a higher RMSE, likely a

simple byproduct of training an algorithm with a large feature space.

This suggests that the “instrument-screening” benefits of conditioning on multi-

ple π(s(X)) models accrue in DGPs where instruments make estimation extremely

challenging (as in the example presented in Ray et al. (2020)).
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4.6.2 What is the Effect of Conditioning on Ŷ ?

Noting that

E [Y | X] = E [E [Y | Z,X] | X] = E [µ(X) + Zτ(X) | X] = µ(X) + π(X)τ(X),

we can see that even a perfect model for Ŷ is not “instrument-free” in the sense that

variation in π(X) leads to variation in E [Y | X]. However, we observe in Table B.1

that GRF, which uses the transformed outcome Ỹ = Y −Ŷ and the transformed treat-

ment Z̃ − π(X), outperforms XBCF and XBCF-MP, sometimes substantially. This

gap disappears in Table B.2, in which estimated propensity scores are used. Given

the extreme values of the propensities in DGPs 1 and 2, estimating the propensity

function with regularization may preserve the shape and ordering of the π(X) but

not the exact values. For methods like XBCF which use π̂(X) as covariates in a

tree ensemble, preserving the sort order of the true π(X) is likely more important

than preserving its specific values. GRF’s comparatively sharp decline in performance

when using estimated propensities suggests that it depends more proximately on the

actual values of π(X).

While it is reasonable to study the performance implications of GRF’s use of

π(X) compared to XBCF, we note that XBCF by default does not make any use

of marginal Ŷ estimates. This presented an avenue for experimentation, particularly

on the studies for which GRF outperformed XBCF. Could XBCF’s performance be

improved through the use of Ŷ ? We followed the same approach as “multiple propen-

sity” XBCF — fitting multiple models of Y | s(X) for different subsets s of the

variables and including them as covariates in both XBCF and XBCF-MP.

We see in Table B.3 that when the true propensity function is known, conditioning

on multiple Ŷ submodels substantially narrows the performance gap between XBCF

and XBCF-MP. This suggests (though it does not prove conclusively) that the in-
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strument removal benefits of XBCF-MP are also satisfied by conditioning on multiple

Ŷ values. Furthermore, Table B.4 shows that XBCF and XBCF-MP with estimated

propensities exhibit a considerably less conclusive performance comparison, though

XBCF-MP tends to perform slightly better in low noise simulations for DGPs 1 and

2.

Finally, it is worth asking the question — what justifies using an “estimate” of

Y in an XBCF model that ultimately attempts to fit Y given Z and X? We believe

this procedure is appropriate for several reasons. First, the XBCF model predicts Y

through two partitioned nonparametric terms f(X) and g(X) which combine with

Z to predict Y . In some sense, the estimation task is to learn two “offsets” from

the conditional mean of Y | X, so that conditioning each of these learners on Ŷ is

more akin to “centering” the estimates than “using the data twice.” Second, while

our simulations averaged over samples of Ŷ | X estimated using XBART, it would be

feasible and indeed desirable in future cases to incorporate the uncertainty inherent

in our samples of Ŷ into the second stage XBCF model. This is akin to using Jeffrey’s

Rule (Diaconis and Zabell (1986)), in which a probability distribution is updated by

conditioning on, and then integrating out, the values of another probability distribu-

tion, as opposed to linking the two distributions formally using a Bayesian update.

While this justification of XBCF-MP is well-motivated, it does preclude the ability

to construct a “fully Bayesian” extension of the method (as in the correspondence of

BCF and XBCF).

4.6.3 The Benefits of Access to “Unlabeled” Data

One common theme of the results in Appendix B is that estimators using true

propensities outperform estimators that use estimated propensities. In the case of

GRF in particular, the difference is typically quite stark. What practical implications
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does this have for analysts that don’t have access to the randomization protocol of

an experiment? Herren and Hahn (2020) note that “unlabeled data” of treatment-

covariate pairs (Z,X) can be used to estimate the propensity function with greater

fidelity. These simulations demonstrate the thought experiment at the extreme limit

of that phenomenon, in which an unlimited amount of treatment-control data is

available to learn the propensity score perfectly.

We also note that other forms of unlabeled data can be incorporated into several

of the nonparametric estimators introduced into this chapter. A large amount of

“untreated” outcome-covariate pairs (Y,X), which are plausibly more abundant in

many medical databases, can be used in XBCF and the T-Learner to obtain better

estimates of µ(X).

4.6.4 Future Directions

These experiments have provided empirical insight on the behavior of regularized

estimators on extreme-but-realistic DGPs. Here, we discuss several research direc-

tions — inspired by this work — that we are currently pursuing. First, we note that

we were able to improve GRF’s performance over its default (and over that of XBCF)

by conditioning on regularized XBART-based estimates of Ŷ . This leads us to won-

der whether aspects of the GRF estimation procedure, in particular its node-wise

regression adjustment, could be incorporated into the XBCF sampling algorithm. As

we see in Table B.5, GRF attains a lower RMSE than XBCF in the low noise (κ < 1)

settings, so we suspect it may be the case that any modified XBCF sampler should

incorporate estimates of the residual variance in deciding whether to employ such an

adjustment. Nonetheless, this is an exciting avenue for future research.

Furthermore, a considerable benefit of XBCF highlighted in Krantsevich et al.

(2022) is the ability to “warm-start” the MCMC sampler of BCF and attain better
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interval coverage of τ(X) than XBCF at a much faster rate than BCF. We did not

explore interval coverage of the estimators in this study, but it remains important

future work to investigate the ability of XBCF (and its many modifications), GRF,

and the meta-learners in quantifying uncertainty about τ(X).
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Chapter 5

FUNCTIONAL ANOVA FOR MODEL EXPLAINABILITY

5.1 Introduction

Algorithmic approaches to “explaining” model predictions have proliferated as

machine learning methods gain in popularity. We refer interested readers to Molnar

(2022) or Arrieta et al. (2020) for in-depth surveys. For the purposes of this paper, we

simply note that there are many high-level approaches to explaining model predictions

and we focus solely on SHAP (Lundberg and Lee (2017)). SHAP is a popular “local

feature attribution” method, which means it attempts to explain a model by “scoring”

input feature contributions for a specific prediction. Other common examples of

local attribution methods include LIME (Ribeiro et al. (2016)), Integrated Gradients

(Sundararajan et al. (2017)), and GradCAM (Selvaraju et al. (2017)). While each of

these methods deserve detailed study, this paper is a thorough investigation of the

statistical properties of SHAP.

SHAP applies the Shapley value from game theory (Shapley (1953)) to model

explanation by considering features as “players” in a cooperative game. Lundberg and

Lee (2017) approximate Shapley values for each feature using a weighted least squares

regression, where the regression weights are a transformation of the original Shapley

value weights. They refer to this method (and the accompanying python library1)

as SHAP, which is the focus of this paper. The idea of explaining a model through

Shapley values has also appeared several times in earlier literature. Both Štrumbelj

and Kononenko (2014) and Datta et al. (2016) discuss approximations to the Shapley

1https://github.com/slundberg/shap
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value for explaining specific predictions. In the literature on variance-based sensitivity

analysis, Shapley values have been used to allocate global model variance to specific

features (Owen (2014), Song et al. (2016), Owen and Prieur (2017)).

SHAP is popular in industry (Bhatt et al. (2020)) and its reach has motivated

an active literature of debates and proposed improvements. Several papers have

presented modifications to SHAP that make use of the correlations between features

in the training set (Aas et al. (2019), Frye et al. (2020)). Others have proposed

algorithms that augment Shapley value computation with user-specified knowledge of

causal patterns in the data (Datta et al. (2016), Frye et al. (2019), Wang et al. (2020)).

Kumar et al. (2020) argue that many of the above methods have problems that make

Shapley values an awkward fit for the problem of machine learning interpretability.

Kaur et al. (2020) note that many professional data scientists misinterpret Shapley

values. Chen et al. (2020) respond to many of the concerns noted above, arguing

that it is up to users to figure out which variety of Shapley value is useful for their

problem, but that there is nothing wrong with the general approach of using Shapley

values.

This paper seeks to clarify this debate by studying the statistical properties of

SHAP, where we note connections to the literature on computer experiments and

sensitivity analysis. Specifically, SHAP can be represented as a partition of the com-

ponents of a model’s functional ANOVA decomposition (Hoeffding (1948)). This

functional ANOVA lens enables a formal investigation of two problems that occur

frequently in the SHAP literature:

• How many of the 2p conditional expectations to calculate when approximating

Shapley values

• The choice of a reference, or “baseline,” distribution for each of the conditional
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expectations

While it is well known that there are many possible variants of Shapley value

(Sundararajan and Najmi (2020)), this paper clarifies the technical decisions that a

SHAP user must make (or does make implicitly by using the shap library). Rather, we

hope that this paper helps practitioners move past this debate and proceed cautiously

in using SHAP for their specific model.

5.2 SHAP Overview and Notation

This section introduces both the “Shapley value” from game theory and the SHAP

method in machine learning explainability. We show that SHAP attempts to define

the Shapley value in the context of model interpretation and then show that this

definition can be expressed as a linear combination of functional ANOVA components.

We will typically use “Shapley value” in context to refer either to the original game

theoretic concept, or to the estimand approximated by SHAP.

5.2.1 Shapley Value

Shapley (1953) considered cooperative games with n players, each of whom can

join a coalition with 0 or more other players who will receive a collective score. In

the economics literature, these scores are often utilities or monetary values, but the

mathematics of cooperative games only requires that some numeric score be associated

with each coalition. Let Ω refer to the set of n players and 2Ω be the set of all possible

subsets of Ω. Let S refer to an arbitrary coalition, so that S ∈ 2Ω. The score of a given

coalition S is determined by the game’s characteristic function, ν : 2Ω → R. Shapley

introduced the following formula, which has come to be known as the “Shapley value,”

ϕi (ν) =
∑

S⊆Ω\{i}

(|S|)! (n− |S| − 1)!

n!
[ν (S ∪ {i})− ν (S)]
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for player i and characteristic function ν. Broadly speaking, the Shapley value is a

weighted average of the contribution that player i makes to each of the 2n−1 coalitions

that do not include player i. Shapley showed that this formula produces a unique

score which satisfies the following axioms:

1. Symmetry: if ν (S ∪ {i}) = ν (S ∪ {j}) for all S ∈ 2Ω and i ̸= j, then ϕi (ν) =

ϕj (ν)

2. Efficiency:
∑n

i=1 ϕi (ν) = ν (Ω)− ν (∅)

3. Additivity: For two games with characteristic functions ν and µ, ϕi (ν + µ) =

ϕi (ν) + ϕi (µ)

While it has its origins in theoretical microeconomics, the Shapley value has proven

useful in modeling a variety of phenomena. We refer interested readers to Roth (1988)

for a detailed discussion of the broader impact of the Shapley value.

5.2.2 SHAP: Modified Shapley Values for Model Explainability

This description of the SHAP algorithm largely follows its presentation in Lund-

berg and Lee (2017) and its implementation in the shap python library. Much of

this investigation was conducted based on the SHAP codebase as implemented in

2020 and 2021. A more recent review of the codebase suggests many of the described

implementation details are current, but we focus this chapter on the reviewed version

of shap, allowing that some defaults or procedures may have changed since 2021.

Definition of Players and Coalitions

Lundberg and Lee (2017) apply Shapley’s formula to model explanation by redefining

of a game’s players and characteristic function in terms of a trained machine learning
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model. In SHAP, the p features of a model’s training set are considered “players”

and the characteristic function is a call to the model’s prediction function. While the

characteristic function in its traditional formulation is a set function, which operates

on subsets of players of a game, most model prediction functions require a value for

every feature that was used in training. At a high level, SHAP’s solution to the

problem of “including” or “excluding” features from a prediction call is to switch

between a “target value” for a given feature, which would indicate that the feature

was included in a coalition, and a “reference value” used for non-included features.

To see how this works in more detail, we first introduce some helpful notation and

terminology. The target is the specific prediction that a modeler seeks to explain,

and the baseline is a “background” covariate vector which will replace the target

value for features that are “excluded” from a coalition. Since the construction of

coalitions requires switching between baseline and target values, we let z refer to a

binary vector where 1 indicates use of the target value. Thus, we can map a coalition

S to a synthetic covariate vector, xsynthetic, as follows:

xbaseline = (b1, b2, ..., bp)

xtarget = (t1, t2, ..., tp)

gi(S) =


1 i ∈ S

0 i ̸∈ S

z = g(S) = (g1(S), ..., gp(S))

h(z, xbaseline, xtarget) = xbaseline × (1− z) + xtarget × z

xsynthetic = h(g(S), xbaseline, xtarget)

where the multiplication terms in the expression xbaseline × (1− z) + xtarget × z are

both element-wise.

To see this more concretely, suppose a model’s training set has 3 real-valued
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features. We define xtarget = (t1, t2, t3) as the vector of covariates corresponding to

the target and xbaseline = (b1, b2, b3) as the vector of covariates corresponding to the

baseline. Let f be the prediction function for a trained machine learning model. We

observe the model predictions for each of the baseline and target as f(b1, b2, b3) = a

and f(t1, t2, t3) = b and we seek to explain the difference, b − a, in terms of each of

the three features. If we consider the three features as “players,” then the set Ω is

equal to {1, 2, 3} and we can construct a mapping from each of the “coalitions” to

valid vectors in R3 as follows.

S z xsynthetic

∅ (0, 0, 0) (b1, b2, b3)

{1} (1, 0, 0) (t1, b2, b3)

{2} (0, 1, 0) (b1, t2, b3)

{3} (0, 0, 1) (b1, b2, t3)

S z xsynthetic

{1, 2} (1, 1, 0) (t1, t2, b3)

{1, 3} (1, 0, 1) (t1, b2, t3)

{2, 3} (0, 1, 1) (b1, t2, t3)

{1, 2, 3} (1, 1, 1) (t1, t2, t3)

Now we can define the Shapley characteristic function as ν (S) = f(xsynthetic) =

f (h(g(S), xbaseline, xtarget)). Figure 5.1 visualizes the synthetic samples created in

service of SHAP estimation.

69



f(b1, b2, b3) f(t1, b2, b3)

f(b1, t2, b3)

f(b1, b2, t3)

f(t1, t2, b3)

f(t1, b2, t3)

f(b1, t2, t3)
f(t1, t2, t3)

Figure 5.1: Hypercube view of SHAP model evaluation with one baseline value and
one target value

We can see that the Shapley values for each of the three features are

ϕ1 (ν) =
∑

S∈Ω\{i}

(|S|)! (3− |S| − 1)!

3!
[ν (S ∪ {i})− ν (S)]

=
0! (3− 1)!

3!
[ν (∅ ∪ {1})− ν (∅)] +

1! (3− 2)!

3!
[ν ({2} ∪ {1})− ν ({2})] +

1! (3− 2)!

3!
[ν ({3} ∪ {1})− ν ({3})] + 2!0!

3!
[ν ({2, 3} ∪ {1})− ν ({2, 3})]

=
1

3
[f (t1, b2, b3)− f (b1, b2, b3)] +

1

6
[f (t1, t2, b3)− f (b1, t2, b3)] +

1

6
[f (t1, b2, t3)− f (b1, b2, t3)] +

1

3
[f (t1, t2, t3)− f (b1, t2, t3)]

ϕ2 (ν) =
1

3
[f (b1, t2, b3)− f (b1, b2, b3)] +

1

6
[f (t1, t2, b3)− f (t1, b2, b3)] +

1

6
[f (b1, t2, t3)− f (b1, b2, t3)] +

1

3
[f (t1, t2, t3)− f (t1, b2, t3)]

ϕ3 (ν) =
1

3
[f (b1, b2, t3)− f (b1, b2, b3)] +

1

6
[f (t1, b2, t3)− f (t1, b2, b3)] +

1

6
[f (b1, t2, t3)− f (b1, t2, b3)] +

1

3
[f (t1, t2, t3)− f (t1, t2, b3)]
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S z1 z2 z3 z4 x1 x2 x3 x4
(

4
|S|

)
|S|

∅ 0 0 0 0 b1 b2 b3 b4 1 0

{1} 1 0 0 0 t1 b2 b3 b4 4 1

{2} 0 1 0 0 b1 t2 b3 b4 4 1

{3} 0 0 1 0 b1 b2 t3 b4 4 1

{4} 0 0 0 1 b1 b2 b3 t4 4 1

{1, 2} 1 1 0 0 t1 t2 b3 b4 6 2

{1, 3} 1 0 1 0 t1 b2 t3 b4 6 2

{1, 4} 1 0 0 1 t1 b2 b3 t4 6 2

{2, 3} 0 1 1 0 b1 t2 t3 b4 6 2

{2, 4} 0 1 0 1 b1 t2 b3 t4 6 2

{3, 4} 0 0 1 1 b1 b2 t3 t4 6 2

{1, 2, 3} 1 1 1 0 t1 t2 t3 b4 4 3

{1, 2, 4} 1 1 0 1 t1 t2 b3 t4 4 3

{1, 3, 4} 1 0 1 1 t1 b2 t3 t4 4 3

{2, 3, 4} 0 1 1 1 b1 t2 t3 t4 4 3

Ω 1 1 1 1 t1 t2 t3 t4 1 4

Table 5.1: Powerset of coalitions

Multiple Baseline Values

Section 5.2.2 discusses Shapley value estimation in the context of a single baseline

value. In practice, SHAP users commonly evaluate their target prediction in reference

to multiple baselines. We show that notation of the previous sections can be extended

to cover multiple baselines quite straightforwardly by averaging the Shapley values

calculated for each individual baseline.
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Let Z be a 2p× p binary matrix whose rows are coalitions (1 indicates a feature’s

inclusion). Z is contructed for p = 4 in Table 5.1. We let n refer to the number of

baseline vectors under evaluation. We refer to the i-th baseline as b(i) and the target

vector as t. Let X(i) = Zt+ (1− Z)b(i) be a 2p × p matrix of “synthetic” predictors,

determined by the baseline and target vectors. Note that for any baseline, b(i), the

Shapley values ϕ(i) can be estimated by regressing f(X(i)) on Z as detailed in Section

5.2.2. Now, we can express the SHAP regression problem with multiple baselines as
Z

· · ·

Z

ϕ∗ =


f(X(1))

· · ·

f(X(n))


(
I · · · I

)
Z

· · ·

Z

ϕ∗ =

(
I · · · I

)
f(X1)

· · ·

f(Xn)


nZϕ∗ = f(X(1)) + · · ·+ f(X(n))

nZϕ∗ = Zϕ(1) + · · ·+ Zϕ(n)

ϕ∗ =
ϕ(1) + · · ·+ ϕ(n)

n

Thus, the solution to the SHAP regression problem with multiple baselines is sim-

ply the average of the SHAP estimates for each of the individual baselines. Since

expectation is a linear operator, we see that these Shapley values can alternatively

be computed as the solution to a regression of the average synthetic predictions on

Z (Zϕ∗ = 1
n

[
f(X(1)) + · · ·+ f(X(n))

]
). If multiple baselines are selected to approxi-

mate the sampling distribution of X, then we can use hypercube notation of Section

5.2.2 to write
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E [f(X1, X2, X3)] E [f(t1, X2, X3)]

E [f(X1, t2, X3)]

E [f(X1, X2, t3)]

E [f(t1, t2, X3)]

E [f(t1, X2, t3)]

E [f(X1, t2, t3)]
E [f(t1, t2, t3)]

Figure 5.2: Hypercube view of SHAP model evaluation with multiple baselines.
Note that all corners of this hypercube except one require computing (or estimating)
a conditional expectation of a function over subsets of the random variable X.

Functional ANOVA Representation of SHAP

Functional ANOVA refers to a decomposition of function evaluations into the 2p

powerset of “effects” attributable to subsets of features. Much has been written about

the functional ANOVA. We introduce the notation necessary to draw connections to

SHAP and refer the interested reader to Hoeffding (1948), Stone (1994), Hooker

(2004), Hooker (2007), and Liu and Owen (2006) for more detail.

Hooker (2004) define the functional ANOVA recursively in terms of a subset u ⊆

{1, . . . , p} of feature indices,

fu = E

[
f(X)−

∑
v⊂u

fv | Xu = xu

]

where Xu refers to the variables in X indexed by indices u and xu refers to a specific

realization of Xu. Since each component fv of fu has the same recursive contrast-
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based structure as fu, we can rewrite fu as

fu = E [f(X) | Xu = xu] +

|u|−1∑
s=0

∑
v⊂u:|v|=s

(−1)|u|−s E [f(X) | Xv = xv]

and the function evaluation f(x) can be represented as

f(x) =
∑

u⊆{1,...,p}

fu

We now illustrate this decomposition with a specific example. Assume that all

features Xi are independently distributed U [0, 1], so that each marginal density

p(Xi) = 1 and that p = 3. In this case, Ω = {1, 2, 3}, X = (X1, X2, X3), and

the power set of feature combinations is given by

2Ω = {∅, {1} , {2} , {3} , {1, 2} , {1, 3} , {2, 3} , {1, 2, 3}}

So the value of a function f evaluated at some realization x of the random variable
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X can be decomposed as

f(x) = f∅ + f1 + f2 + f3 + f12 + f13 + f23 + f123

f∅ = E [f(X1, X2, X3)]

f1 = E [f(X1, X2, X3) | X1 = x1]− f∅ = E [f(x1, X2, X3)]− E [f(X1, X2, X3)]

f2 = E [f(X1, X2, X3) | X2 = x2]− f∅ = E [f(X1, x2, X3)]− E [f(X1, X2, X3)]

f3 = E [f(X1, X2, X3) | X3 = x3]− f∅ = E [f(X1, X2, x3)]− E [f(X1, X2, X3)]

f12 = E [f(X1, X2, X3) | X1 = x1, X2 = x2]− f1 − f2 − f∅

= E [f(x1, x2, X3)]− E [f(x1, X2, X3)]− E [f(X1, x2, X3)] + E [f(X1, X2, X3)]

f13 = E [f(X1, X2, X3) | X1 = x1, X3 = x3]− f1 − f3 − f∅

= E [f(x1, x2, X3)]− E [f(x1, X2, X3)]− E [f(X1, X2, x3)] + E [f(X1, X2, X3)]

f23 = E [f(X1, X2, X3) | X2 = x2, X3 = x3]− f2 − f3 − f∅

= E [f(X1, x2, x3)]− E [f(X1, x2, X3)]− E [f(X1, X2, x3)] + E [f(X1, X2, X3)]

f123 = E [f(X1, X2, X3) | X1 = x1, X2 = x2, X3 = x3]

− f12 − f13 − f23 − f1 − f2 − f3 − f∅

= f(x1, x2, x3)− E [f(x1, x2, X3)]− E [f(x1, X2, x3)]− E [f(X1, x2, x3)]

+ E [f(x1, X2, X3)] + E [f(X1, x2, X3)] + E [f(X1, X2, x3)]− E [f(X1, X2, X3)]
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Some arithmetic shows that in this case

ϕ1 (f) =
1

3
[E [f(x1, X2, X3)]− E [f(X1, X2, X3)]]

+
1

6
[E [f(x1, x2, X3)]− E [f(X1, x2, X3)]] +

1

6
[E [f(x1, X2, x3)]− E [f(X1, X2, x3)]]

+
1

3
[f (x1, x2, x3)− E [f(X1, x2, x3)]]

=
1

3
(f1) +

1

6
(f12 + f1) +

1

6
(f13 + f1) +

1

3
(f123 + f12 + f13 + f1)

= f1 +
1

2
(f12 + f13) +

1

3
(f123)

ϕ2 (f) = f2 +
1

2
(f12 + f23) +

1

3
(f123)

ϕ3 (f) = f3 +
1

2
(f13 + f23) +

1

3
(f123)

This allows a straightforward interpretation of SHAP as an equal division of func-

tional ANOVA terms for a given “target” value x. More broadly, with p features we

can write the SHAP estimate for feature i and function f as

ϕi (f) =

p∑
j=1

1

j

∑
S⊆2Ω:i∈S,|S|=j

fS

Note that this equivalence is not new to the sensitivity analysis literature. Owen

(2014) decomposes the global Shapley value as above using the variances of the func-

tional ANOVA terms. For examples of references in the context of individual Shapley

values, see Keevers (2020), Hiabu et al. (2022), and Bordt and von Luxburg (2022).

We do not present the equivalence here as a novel finding, but rather to motivate

empirical statistical issues that arise in the estimation of Shapley values

Connection to Design of Experiments

A central challenge in computing Shapley values in the p-dimensional model inter-

pretation setting is that the power set expansion of 2p terms is computationally pro-

hibitive for large p. This problem is addressed in the model interpretation literature
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by choosing a small subset of the full power set for evaluation. Before discussing

the details of this approximation in SHAP (Section 5.2.2), we introduce the closely

related problem of fractional factorial design.

Dean et al. (2017) define a contrast vector as an m-vector of coefficients c such

that
∑m

j=1 cj = 0 which define an estimator cy as a linear combination of y values.

In multi-baseline SHAP, the y values correspond to 2p corners (E [f(X) | XS = xS])

of the hypercube in Figure 5.2 and the contrast coefficients c corresponds to SHAP

weights determined by the formula |S|!(p−|S|−1)!
p!

if i ̸∈ S and (|S|−1)!(p−|S|−2)!
p!

otherwise.

Thus, SHAP estimates for feature i correspond to a contrast in E [f(X) | XS = xS]

that estimate ϕi (f) =
∑p

j=1
1
j

∑
S⊆2Ω:i∈S,|S|=j fS. Traditional experimental design lit-

erature introduces the notion of a fractional factorial design, which economizes the

number of experiment runs at the expense of estimating some higher order interac-

tions. In the SHAP framing, we can see the utility of this approach in the following

example. Suppose fS = 0 for all S with |S| > 1, ϕi (f) can be evaluated for each

i as E [f(X) | Xi = xi] − E [f(X)], requiring 2p conditional expectation calculations

rather than 2p.

Of course, exact knowledge of the nonzero interaction terms is rare. In traditional

experiments, fractional factorial designs are often created with careful integration of

domain knowledge and statistical expertise so that interactions are omitted if prior

scientific knowledge suggests factors are not related. In the SHAP use case, domain

knowledge can also play a role, though it may be difficult in high dimensional problems

to identify specific interactions that can be excluded. Instead, users may choose sam-

pling plans according to specific hypotheses. One example is the hypothesis of factor

sparsity (Box and Meyer (1986)), which posits that only a small subset of features

and their higher-order interactions are active. Another example is the hypothesis that

higher-order interactions are rare.
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We note briefly that in traditional design of experiments (DoE) problems, the

number of factors being studied, p, might be relatively manageable, but each sample

might be time-consuming or costly to collect. In SHAP experiments, each sample

collection is simply a call to a machine learning prediction API, which is typically

efficient on modern computers. The problem with a full factorial design in SHAP is

typically that 2p is an impossibly large number on high-dimensional models. Super-

ficially, both approaches involve collecting n < 2p samples. However, the reasons for

doing so are different enough that many approaches which are used in DoE (Gaus-

sian process surrogates, Gramacy (2020), for example) are not always tractable or

applicable in explainability. In the following section, we show the standard sampling

procedure employed by the shap library in approximating Shapley values.

SHAP Sampling

We see that the exact Shapley value formula includes 2p−1 differences in model con-

ditional expectations, for a total of 2p conditional expectations of f . This makes

Shapley value estimation intractable for large p. To overcome this, Lundberg and

Lee (2017)’s method approximates these values by deliberately sampling coalitions

in descending order of |p/2 − |S|| and approximating the values via weighted linear

regression. Covert and Lee (2021) discuss some convergence properties of this approx-

imation method and introduce an alternative. We will have more to say on SHAP

approximations when p is large, but first, we introduce the weighted least squares

SHAP approximation of Lundberg and Lee (2017).

First, note using the formula above that the sum of Shapley values for a target

x across every feature is
∑

i ϕi = f(x) − f∅. Thus, any attempt to estimate ϕi via

linear regression introduces the condition that
∑

i ϕi = f(x)−E [f(X)], so that these

two estimates cannot be omitted during sampling-based estimation. To illustrate the
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sampling scheme, we now consider a model with p = 4 features, given in Table 5.1.

We group coalitions in Table 5.1 by size (for example S1 = {1} and S2 = {2} are

different coalitions but |S1| = 1 = |S2|). Observe that every coalition with |S| = 1

has an inverse coalition with with |S| = 3 ({2, 3, 4} is the inverse of {1}, etc...). For

|S| = 2, on the other hand, there is no inverse coalition. In general, with p features,

there are ⌊(p− 1)/2⌋ matching blocks. If p is odd, then every block of coalitions with

|S| = a for some a will have an inverse block, and if p is even, then there will be 1

“center block.”

SHAP attempts to enumerate the entire power set, starting with the outermost

blocks (1 and 3 in Table 5.1). The sampling process is iterative and at each step,

SHAP determines whether to enumerate an entire block. Suppose a user has specified

that they would like to draw m < 2p samples. We defer discussion of the regression

weights to the next section, but for now we note that the regression weights imply a

frequency distribution of samples from each block that is proportional to the block’s

size. During sampling, SHAP uses this implied distribution as a stage gate. SHAP

iterates from i = 1 to ⌈(p−1)/2⌉ and at each i, SHAP looks at the implied frequency

of a block, the number of samples that can be allocated, and determines whether to

allocate all the samples from block i (and p− i if i ̸= p/2). Let k ≤ m be the number

of remaining samples, j be the size of block i, and w be the target share of samples

from block i. SHAP will enumerate the entire block if w ≥ j
k
. Once w < j

k
, SHAP

samples from the remaining blocks uniformly with replacement.

SHAP Regression

Once a subset of the SHAP coalitions has been sampled, the Shapley values are

estimated using weighted linear regression. The equivalence between weighted least

squares estimation and Shapley values is established in the supplement to Lundberg
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and Lee (2017) 2, but we derive it below using a slightly different approach which will

make clear the relation to experimental design. At a high level, the goal is to fit a

regression model to the synthetic data whose coefficients are the exact Shapley values

when the full powerset of coalitions is observed and will approximate the Shapley

values when the data are a subsample of coalitions.

Let Z be a binary matrix whose rows are coalitions (1 indicates a feature’s inclu-

sion). Assume for now that Z is a (2p−2)×p matrix, so that all of the coalitions with

0 < |S| < p have been sampled. The weighting function Lundberg and Lee (2017)

use for the SHAP regression is

wi(Z) =
p− 1(

p
s

)
s (p− s)

=
(p− 1) (p− s− 1)! (s− 1)!

p!

s =

p∑
j=1

Zij

This function is undefined when Zi· is the one or zero vector (corresponding to f(x)

and E [f(X)], respectively), which is why the regression matrix Z only has 2p−2 rows.

However, we still incorporate these two vectors in estimation via the side condition

expressed above.

Let yt = f(x) and yb = E [f(X)] and we express the regression model below. First,

we define the vector of conditional expectations corresponding to hypercube corners

in Figure 5.2. For each row Zi in the Z matrix, let Si refer to the columns j for which

Zij = 1. Now define yi = E [f(X) | XSi
= xSi

]. Letting j be a p-dimensional vector

of ones, we can approximate y via a linear model with side conditions.

y = Zβ + ε

j′β = yt − yb

2The supplemental files can be accessed at https://papers.nips.cc/paper/2017/hash/

8a20a8621978632d76c43dfd28b67767-Abstract.html
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We also define a matrix of weights as

W =



w1 0 0 ... 0

0 w2 0 ... 0

0 0 w3 ... 0

... ... ... ... ...

0 0 0 ... w(2p−2)


We estimate the Shapley values by fitting a constrained weighted least squares

regression using the synthetic Z matrix, the predictions y, the weight matrix W ,

f(x) and f∅. The derivation of the regression solution and its equivalence to Shapley

values is given in detail in Appendix C. Defining I as the p-dimension identity matrix

and J as a p× p matrix of all ones, we note that the regression solution is given by

β̂ =

(
p

p− 1
I − 1

p− 1
J

)
Z ′Wy +

j (yt − yb)
p

which corresponds to a weighted contrast estimate of the 2p predictions. It is worth

noting that the derivations in Appendix C simply demonstrate that the SHAP re-

gression estimator returns Shapley values when the entire power set of coalitions is

available. Lundberg and Lee (2017) show through a simulation study that the SHAP

regression estimates can converge to the exact Shapley values with m << 2p samples.

Covert and Lee (2021) study the convergence to exact Shapley values analytically.

5.3 Estimation Decisions

It was shown above that SHAP is a partition of contrasts of functional ANOVA

terms. Since there are 2p functional ANOVA terms, when p is large, users cannot

typically compute 2p conditional expectations. Thus, users must select some subset

of the full power set of feature interactions. This is the first significant choice a user
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must make in estimating Shapley values for their model, although most users make

this decision implicitly by using the shap library which samples as in Section 5.2.2.

In addition to the sampling challenges outlined above, there is also the question

of how to approximate the requisite conditional expectations. In real world scenarios,

it would be highly unusual to have access to an analytical formula for the joint

distribution, p(X), of the features. Thus, even if a model provides parameters that

can be converted into an analytical formula y = f(X), analytically computing the

expectation of f(X) | Xu for any subset u of feature interactions is impossible without

further assumptions. p(X) must be estimated from the data or assumed directly by

the user, introducing the second significant user decision.

Consider approximating an expected value with a sample X of size n and evalu-

ating S ⊆ 2Ω of the functional ANOVA effects. These two decisions thus correspond

to the choice of S and then choice of X.

5.3.1 Selecting Interaction Terms to Evaluate

The default sampling scheme for conditional expectations implemented in the

shap library is the paired sampling approach described in Section 5.2.2.

The Current Implementation of Sampling in the shap Library

The shap sampling procedure first draws subsets s with |s| = 1 and |s| = p −

1 and proceeds “inwards” in decreasing order of |p/2 − |s||. We show below that

this procedure is generally effective if lower-order interactions dominate, because the

first and second order interactions are properly aliased (according to the share of

interactions described in Section 5.2.2) after only 2p samples are taken.

We demonstrate this empirically for one example. Consider the case of p = 6 in
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which we sample a 12× 6 matrix of subsets s with |s| = 1 and |s| = 5

Xr =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 1 1 1 1 0

1 1 1 1 0 1

1 1 1 0 1 1

1 1 0 1 1 1

1 0 1 1 1 1

0 1 1 1 1 1


The matrix of second order interaction terms can be split into 5 sub-matrices indexed
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as Xji with j as the leading interaction variable.

X1i =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 1 1 1 0

1 1 1 0 1

1 1 0 1 1

1 0 1 1 1

0 1 1 1 1

0 0 0 0 0



X2i =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 1 1 0

1 1 0 1

1 0 1 1

0 1 1 1

0 0 0 0

1 1 1 1



X3i =



0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1 1 0

1 0 1

0 1 1

0 0 0

1 1 1

1 1 1



X4i =



0 0

0 0

0 0

0 0

0 0

0 0

1 0

0 1

0 0

1 1

1 1

1 1



X5i =



0

0

0

0

0

0

0

0

1

1

1

1
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The weight terms for the regression matrix Xr are all
p−1

( p
|s|)|s|(p−|s|)

= 1/6. One way

to impose the side condition that
∑

i ϕi = f(xt)− f(xb), is to subtract one of the Xr

columns from the others. Performing this operation defines a new 2p × p − 1 main

effect matrix which we denote X∗
r and a new set of interaction matrices X∗

ji with the

p-th column of Xr subtracted. Observe that

X∗′
r WX∗

r = (1/3)I + (1/3)J(
X∗′

r WX∗
r

)−1

= 3I − (1/2)J

X∗′
r WX∗

1i =



1/2 1/2 1/2 1/2 1/3

1/2 1/3 1/3 1/3 1/6

1/3 1/2 1/3 1/3 1/6

1/3 1/3 1/2 1/3 1/6

1/3 1/3 1/3 1/2 1/6



X∗′
r WX∗

2i =



1/3 1/3 1/3 1/6

1/2 1/2 1/2 1/3

1/2 1/3 1/3 1/6

1/3 1/2 1/3 1/6

1/3 1/3 1/2 1/6
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And thus, for these first two sets of interactions, the alias matrix is given by

(
X∗′

r WX∗
r

)−1

X∗′
r WX∗

1i =



1/2 1/2 1/2 1/2 1/2

1/2 0 0 0 0

0 1/2 0 0 0

0 0 1/2 0 0

0 0 0 1/2 0



(
X∗′

r WX∗
r

)−1

X∗′
r WX∗

2i =



0 0 0 0

1/2 1/2 1/2 1/2

1/2 0 0 0

0 1/2 0 0

0 0 1/2 0


which is exactly the alias pattern given by the full design matrix with 2p−2 samples.

Thus, with only 2p samples, Shapley regression estimates will be “exact” in the sense

of properly allocating interactions if the model consists of first and second order

interactions. In this sense, the shap sampling strategy can be an effective way to

sample from the 2p possible rows of the design matrix.

An Alternative Sampling Approach: Numeric Interaction Testing

While the shap sampling approach appears to work well upon empirical investigation

(and is explored in theoretical terms in Covert and Lee (2021)), the question may

remain: to what extent is the model dominated by low-order interaction terms? From

the derivations in Section 5.2, we can see that if fS = 0 for all S with |S| > 1, then

ϕi = fi and
∑

i fi = f(x) − f∅. Of course, since fS ∈ R, the converse is not true.

Hooker (2004) defines σ2
S(fS) = E [f 2

S] where the expectation is taken with respect to

features XS which were not conditioned in fS. We can see that if σ2
S(fS) = 0 and

86



E [fS] = 0 (as is commonly established in the functional ANOVA decomposition),

then fS = 0 for all x.

One approach to numerically screening interactions terms introduced in Hooker

(2004) is to search for the smallest set of functional ANOVA terms S such that∑
s∈S σ

2
s(fs) accounts for a pre-specified share of the variance of f(X). Hooker

(2004) introduces two different algorithms representing different inductive biases: a

“breadth-first” algorithm which assumes higher order interaction effects are more

likely to be null and a “depth-first” algorithm which assumes factor sparsity. We

present a modified version of the breadth-first algorithm below and show how it can

be used in conjunction with SHAP and a suitable interaction scoring criteria ψ(S).

Note that the substance of the algorithm below is as introduced in Hooker (2004),

but the presentation and notation is updated here to reflect the intended application

and previously-introduced notation. Let ε ∈ [0, 1] be specified by the user.
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Algorithm 1: Breadth-first search for low-order functional ANOVA terms

Result: List of functional ANOVA terms to include in SHAP approximation

Vt = Var(f(X));

Vs = 0;

U = {};

for j = 1 to p do

S = {S ⊆ 2Ω : |S| = j};

Ψ = {ψ(s) for s in S};

I = argsort(Ψ);

for k = 1 to
(
p
j

)
do

s = SIk ;

U = U ∪ s;

Vs = Vs + σ̂s(fs);

if Vs > Vt(1− ε) then

break;

else

continue;

end

end

end

Since the procedure above involves the global σ̂s(fs), it can be used to identify a

sufficient set of features for computing Shapley values on any target value for a given

model. In particular, it provides a approximate empirical measure of “convergence”

since Vs/Vt > 1 − ε. This is of course only helpful and desirable if the resulting U

is a considerably reduced subset of 2Ω. However, if the algorithm fails to stop at a

small subset of 2Ω, that can also provide the user with valuable information about the
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quality of their Shapley value estimates with less than 2p conditional expectations.

Hooker (2004) also notes that when p is large, this algorithm can be configured to

stop at a given interaction order, thus providing a tractable way of signaling that

higher order interactions may be present and the user should take care in interpreting

Shapley values. Variants of this algorithm are appealing in that they enable a numeric

search that can be tailored to the user’s inductive bias. For example, Hooker (2004)

provides an depth-first algorithm which corresponds to the factor sparsity hypothesis.

With the computational infrastructure in place to compute Gs(x) for subsets s of

2Ω, researchers can modify the search algorithm to prioritize a hypothesized feature

structure.

If the algorithm has been run successfully and a subset U of 2Ω has been identified,

we can reduce the computational burden of SHAP estimation in either of two ways.

First, noting that ϕi (f) =
∑p

i=1
1
i

∑
S⊆Ω:|S|=i fS, we can simply compute fS for every

S ∈ U and combine their estimates according to the formula for ϕi (f). Second, we

can construct a regression matrix Z whose rows correspond only to the coalitions

S ∈ U and estimate ϕi via weighted least squares.

Now, we discuss one approach to estimating an interaction importance measure

ψ(S). For p = 3, we can visualize the SHAP terms as a power set, organized in rows

according to |s|; s ⊆ 2Ω as in Figure 5.3.
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f∅

f1 f2
f3

f12 f13
f23

f123

Figure 5.3: Hasse diagram of connections between functional ANOVA terms. Ex-
cluding an interaction or main effect from the evaluation set involves pruning the
estimable functional ANOVA terms in the above diagram. When a small subset of
this lattice explains most of the variability of f(X), Shapley values may be approxi-
mated well with less computational burden.

Now, consider the effect of removing s = {1} from the lattice above, which leaves a

new structure defined in Figure 5.4 below. Thus, the effect of removing s = {1} is that

f(x) must be approximated as f∅+f2+f3+f23 = E [f(X1, x2, x3)] If f(x) = f∅+f2+

f3+f23, then the approximation is perfect so that E
[
(f(x)− E [f(X1, x2, x3)])

2] = 0.

Using the notation and verbiage of Hooker (2004), we let Gs(x) denote the ap-

proximation of f(x) with s and all of its supersets removed from the functional

ANOVA lattice and we refer to E
[
(f(x)−Gs(x))

2] as the L2 cost of exclusion

(L2COE) of set s. In this example, Gs(x) = E [f(X1, x2, x3)] and L2COE(s) =

E
[
(f(x)− E [f(X1, x2, x3)])

2]. We can use the L2COE as an interaction importance

criteria in Algorithm 1, replacing ψ(s) = L2COE(s). Liu and Owen (2006) present a

“pick-freeze” algorithm for estimating L2COE. First, select a sample Z of size n× p.

Then, select a sample X of size n× |s| where |s| is the size of the interaction term s.
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f∅

f2
f3

f23

Figure 5.4: Pruned Hasse diagram of functional ANOVA terms with feature 1 re-
moved. Approximating the Shapley value with these terms requires 4 < 23 = 8
conditional expectations.

This gives an estimate

L2COE =
1

n2|s|

n∑
i=1

(∑
r⊆s

f(xri , z
−r
i )

)2

where xri refers to the i-th sample of x for the features indexed by interaction s and

z−r
i refers to the i-th sample of z for the features not indexed by interaction s.

To illustrate this algorithm, we implement a simple example where the active

subsets in this case are {1}, {2}, {3} and {2, 3}.

X = (X1, X2, X3)

y = f(X) = X1 +X2 +X3 +X2X3

To test this algorithm, we conduct 100 simulations with n = 500 using a cus-

tom R implementation of the algorithm3. We approximate Vt =
∑

s⊆2Ω σ̂s(fs) where

σ̂s(fs) =
1
n

∑n
i=1 f̂

2
s (xi) and the expected values in f̂s (xi) are also calculated as em-

pirical expectations with respect to the matrix x = (x1, · · · , xn)′. X2 and X3 have the

same L2COE, and we observe that the correct ranking of either {{2}, {3}, {1}, {2, 3}}

or {{3}, {2}, {1}, {2, 3}} in 100% of simulations.

3The code is available at https://github.com/andrewherren/shap-anova-examples
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Finally, with a list S of low-order interaction terms returned by the above algo-

rithm, Shapley values can be estimated by computing the functional ANOVA terms

for each of the terms in S and combining them according to

ϕi (f) =

p∑
j=1

1

j

∑
S⊆2Ω:i∈S,|S|=j

fS.

Measures of Effective Dimensionality

The above search procedure is helpful in identifying structure of the model, but it

could be costly when the inductive bias is incorrect. Saltelli et al. (2010) outline a

sensitivity analysis technique that can be used to determine both factor sparsity as

well as interaction order. Kucherenko et al. (2009) introduce two definitions of “effec-

tive dimensionality” which correspond roughly to the principles of effect sparsity and

dominance by low-order interactions. The first measure, truncation dimensionality,

is defined as the value of dT such that∑
u⊆{1,...,dT }

σ2
u ≥ (1− ε)σ2

which corresponds broadly to the minimum number of factors required to explain

(1− ε)% of the total variance. The second measure, superposition dimensionality, is

defined as the value of dS such that∑
0<|u|<dS

σ2
u ≥ (1− ε)σ2

which corresponds to the minimum interaction size required to explain (1 − ε)% of

the total variance.

Saltelli et al. (2010) show that two common variance-based sensitivity analysis

measures can be used to assess dT and dS. Common estimands for the first order and
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total variance-based sensitivities for feature i are given by

Si =
VarXi

(
EX−i

(f(X) | Xi)
)

Var (f(X))

STi
=

EX−i
(VarXi

(f(X) | X−i))

Var (f(X))
= 1−

VarX−i
(EXi

(f(X) | X−i))

Var (f(X))

There are a number of approaches to computing these indices using random or low-

discrepancy samples for Xi and X−i (see, for example, Sobol (2001) and Saltelli

(2002)). The R package sensitivity (Iooss et al. (2021)) provides a convenient

interface to compute both Si and STi
. Once these indices are computed, the im-

portance of interactions can be determined by the magnitude of Si/STi
for each i

and the relative sparsity (or varying feature importance) can be determined by the

distribution of Si or STi
. In addition to providing a computationally efficient gauge

of sparsity and interaction importance, in some cases these indices could be used

on their own to replace the numeric search algorithm in Section 5.3.1. For exam-

ple, if
∑

i∈{1,2,5} Si ≥ 1 − ε, then the SHAP estimates can be computed with only 7

conditional expectations.

5.3.2 The Impact of Choosing a Baseline Distribution

The SHAP estimand can be loosely characterized as “the average effect of setting

feature i equal to its target value,” which raises the question: average with respect

to which distribution? In Section 5.2, we referred to “individual” and “multiple”

baselines as two different approaches to SHAP. However, we can unify these two ap-

proaches using the functional ANOVA notation. In the functional ANOVA, each of

the fu terms are a contrast of conditional expectations, which may be taken with

respect to any distribution p(X). In the “multiple baseline” scenario commonly em-

ployed by SHAP users, the implied distribution p(X) is the empirical distribution

of each feature, treated independently from other features. Similarly, the “single
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baseline” scenario constitutes a degenerate distribution for which p(X) = 1{X =

xbaseline}.

We examine the impact of the choice of baseline distribution by comparing Shapley

values with p = 3 and xtarget = (1, 1, 1) with three different baseline distributions:

(a) Global independent: p(X) ∼ N ((0, 0, 0), I)

(b) Global correlated: p(X) ∼ N

(0, 0, 0),


1 0.9 0.5

0.9 1 0.75

0.5 0.75 1




(c) Local independent: p(X) ∼ N (xtarget, 0.25
2I)

(d) Single baseline: p(Xi) = 1{Xi = xbaseline,i}

We compute Shapley values for xtarget using the above three distributions on four

functions presented in the table below.

The results (Table 5.2) show that while each of these baselines could be viewed as

reasonable or plausible in different circumstances, they are far from interchangeable.

With strong correlation in the data, using the correlated conditional distribution to

compute Shapley values has a profound effect on the estimated Shapley values rela-

tive to treating the features as independent. Similarly, a local baseline distribution

centered around the target only estimates nonzero Shapley values for functions with

strong evenness or nonlinearity. The single baseline estimates are perhaps the most

intuitive to grasp, but they raise a crucial question of where to place the one represen-

tative baseline. Google’s AI Explanations Whitepaper (Google (2020)) suggests the

single baseline only when there is an “informative reference” value for comparison.
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f(X) Baseline X1 X2 X3

−2X1 + 1.5X2 + 0.5X3

A -2.00 1.50 0.50

B -0.39 -0.03 0.41

C 0 0 0

D -2.00 1.50 0.50

−2X1 + 1.5X2 + 0.5X3 − 2X2X3

A -2.00 0.50 -0.50

B -0.47 -0.01 -0.02

C 0 0 0

D -2.00 0.50 -0.50

−2 sin(X1) + 1.5|X2|+ 0.125X2
3

A -1.68 0.31 -0.00

B -0.78 -0.48 -0.13

C -0.05 0.00 -0.01

D -1.68 1.50 0.12

−2 sin(X1) + 1.5|X2|+ 0.125X2
3 + cos(X2X3)

A -1.69 0.22 -0.09

B -0.80 -0.45 -0.22

C -0.05 0.02 0.01

D -1.68 1.27 -0.10

Table 5.2: Shapley values with different baseline distributions
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5.4 Discussion

This work has explored the relationship between SHAP and the functional ANOVA.

A result of this connection is that decades of literature on computer experiments and

function approximation may be brought to bear on questions of model interpretabil-

ity. However, this connection also dashes any hope of settling the question of “which

Shapley values to use” due to the influence of the baseline distribution which is em-

bedded in the estimand itself!

While SHAP is typically regarded as a tool for making modeling decisions “in-

terpretable,” this interpretability is not free. As noted above, the estimand can be

loosely messaged to stakeholders as “the average effect of setting a feature equal to

its target value,” but this conceals decisions about the underlying distribution used

in computing those averages.

The connection between sensitivity analysis and model explainability is fascinat-

ing. We believe that computational methods used in sensitivity analysis (for example,

quasi-monte carlo or low-discrepancy sampling) might be profitably applied to im-

prove convergence of existing explainability methods.

An interesting future line of research would be to study the goals of model ex-

plainability and determine for which purposes SHAP is best suited. Modern model

explainability tools are increasingly being used for legal or compliance purposes, such

as algorithmic recourse (Karimi et al. (2020)). Based on this review of SHAP, it is

not immediately obvious that a series of functional ANOVA terms can provide the

necessary information for algorithmic recourse. At the very least, this topic deserves

further study, contrasting SHAP with methods such as counterfactual explanations

(Wachter et al. (2017)).
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Chapter 6

CONCLUSION

This dissertation has been a fascinating investigation into nonparametric causal

inference and machine learning explainability. We have seen that each of three com-

mon frameworks for estimating causal effects offer complementary abstractions, each

of which is useful for framing the questions we pose about feature selection for causal

inference.

We showed that it is possible to express a minimal adjustment set (though comput-

ing this may be impossible) and explained when a larger adjustment set is warranted

for its variance reduction properties. We discussed the possibility of using separate

adjustment sets for µ(X) and τ(X), either in a “two-stage” estimator or in methods

like XBCF (Krantsevich et al. (2022)).

We presented and advocated for a simulation-based approach to developing new

statistical methods. We tested several improvements that can be made straightfor-

wardly to treatment effect estimation methods like XBCF and identified new avenues

for implementation and experimentation.

Finally, we explored the statistical issues that arise in “machine learning explain-

ability,” particularly as revealed through the popular SHAP method. We make con-

nections to the sensitivity analysis literature, arguing that explainability practitioners

could make better use of algorithms and concepts from this literature. We also advo-

cate for further research into counterfactual explainability methods for applications

such as algorithmic recourse.
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S. Garćıa, S. Gil-López, D. Molina, R. Benjamins et al., “Explainable Artificial
Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges Toward
Responsible AI”, Information Fusion 58, 82–115 (2020).

Athey, S. and G. W. Imbens, “Machine learning methods for estimating heterogeneous
causal effects”, stat 1050, 5, 1–26 (2015).

Athey, S., J. Tibshirani and S. Wager, “Generalized random forests”, Annals of Statis-
tics 47, 2, 1148–1178 (2019).

Athey, S. and S. Wager, “Estimating treatment effects with causal forests: An appli-
cation”, Observational Studies 5, 2, 37–51 (2019).

Belloni, A., V. Chernozhukov and C. Hansen, “Inference on treatment effects after
selection among high-dimensional controls”, The Review of Economic Studies 81,
2, 608–650 (2014).

Bhatt, U., A. Xiang, S. Sharma, A. Weller, A. Taly, Y. Jia, J. Ghosh, R. Puri, J. M.
Moura and P. Eckersley, “Explainable Machine Learning in Deployment”, in “Pro-
ceedings of the 2020 Conference on Fairness, Accountability, and Transparency”,
pp. 648–657 (2020).

Bordt, S. and U. von Luxburg, “From Shapley Values to Generalized Additive Models
and back”, arXiv preprint arXiv:2209.04012 (2022).

Box, G. E. and R. D. Meyer, “An Analysis for Unreplicated Fractional Factorials”,
Technometrics 28, 1, 11–18 (1986).

Bradic, J., S. Wager and Y. Zhu, “Sparsity double robust inference of average treat-
ment effects”, arXiv preprint arXiv:1905.00744 (2019).

Breiman, L., “Random forests”, Machine Learning 45, 1, 5–32 (2001).

Cameron, A. C. and P. K. Trivedi, Microeconometrics: methods and applications
(Cambridge university press, 2005).

Chen, H., J. D. Janizek, S. Lundberg and S.-I. Lee, “True to the Model or True to
the Data?”, arXiv preprint arXiv:2006.16234 (2020).

Chen, T. and C. Guestrin, “Xgboost: A scalable tree boosting system”, in “Proceed-
ings of the 22nd acm sigkdd international conference on knowledge discovery and
data mining”, pp. 785–794 (2016).

98



Chernozhukov, V., W. K. Newey and R. Singh, “Automatic debiased machine learning
of causal and structural effects”, Econometrica 90, 3, 967–1027 (2022).

Chipman, H. A., E. I. George, R. E. McCulloch et al., “Bart: Bayesian additive
regression trees”, The Annals of Applied Statistics 4, 1, 266–298 (2010).

Cinelli, C., A. Forney and J. Pearl, “A crash course in good and bad controls”,
Available at SSRN 3689437 (2020).

Covert, I. and S.-I. Lee, “Improving KernelSHAP: Practical Shapley Value Estimation
Using Linear Regression”, in “International Conference on Artificial Intelligence
and Statistics”, pp. 3457–3465 (PMLR, 2021).

Curth, A. and M. van der Schaar, “Doing great at estimating cate? on the ne-
glected assumptions in benchmark comparisons of treatment effect estimators”,
arXiv preprint arXiv:2107.13346 (2021).

Curth, A. and M. van der Schaar, “In search of insights, not magic bullets: Towards
demystification of the model selection dilemma in heterogeneous treatment effect
estimation”, arXiv preprint arXiv:2302.02923 (2023).

Datta, A., S. Sen and Y. Zick, “Algorithmic Transparency via Quantitative Input
Influence: Theory and Experiments with Learning Systems”, in “2016 IEEE sym-
posium on security and privacy (SP)”, pp. 598–617 (IEEE, 2016).

De Luna, X., I. Waernbaum and T. S. Richardson, “Covariate selection for the non-
parametric estimation of an average treatment effect”, Biometrika 98, 4, 861–875
(2011).
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Proof of Proposition 2 in Section 3.3

We consider a sample of n i.i.d. observations of (X, Y, Z) from the data generating
process in Section 3.1. We assume that there exists a function λ defined on X such
that the ATE is identified conditional on λ(X). We assume that |λ(X)| = J <
K = |X | so that the unique values of λ(X) define a non-trivial “coarsening” of X.
Consider a function s(X) such that there exists at least one pair x, x′ ∈ X such that
s(x) ̸= s(x′) while λ(x) = λ(x′). We assume that s(X) also identifies the ATE, so
that conditioning on s(X) does not induce collider bias.

For each j ∈ λ(X ), there exist m(j) ≥ 1 unique values of s(X ), which we denote
as {j1, . . . , jm}. By the definition of s(X), there exists at least one j ∈ λ(X ) such
that m(j) > 1.

We define a stratification estimator of the ATE based on λ(X) as:

τ̄λstrat =
∑

j∈λ(X )

Nj

n

(
Ȳj,1 − Ȳj,0

)
Nj =

n∑
i=1

1 {λ(Xi) = j}

Nj,1 =
n∑

i=1

1 {λ(Xi) = j}1 (Zi = 1}

Nj,0 =
n∑

i=1

1 {λ(Xi) = j}1 (Zi = 0}

Ȳj,1 =
1

Nj,1

n∑
i=1

Yi1 {λ(Xi) = j}1 (Zi = 1}

Ȳj,0 =
1

Nj,0

n∑
i=1

Yi1 {λ(Xi) = j}1 (Zi = 0}
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We define an additional stratification estimator based on s(X) as

τ̄ sstrat =
∑

j∈λ(X )

m(j)∑
ℓ=1

Njℓ

n

(
Ȳjℓ,1 − Ȳjℓ,0

)
Njℓ =

n∑
i=1

1 {s(Xi) = jℓ}

Njℓ,1 =
n∑

i=1

1 {s(Xi) = jℓ}1 {Zi = 1}

Njℓ,0 =
n∑

i=1

1 {s(Xi) = jℓ}1 {Zi = 0}

Ȳjℓ,1 =
1

Njℓ,1

n∑
i=1

Yi1 {s(Xi) = jℓ}1 (Zi = 1}

Ȳjℓ,0 =
1

Njℓ,0

n∑
i=1

Yi1 {s(Xi) = jℓ}1 (Zi = 0}

where the notation s(Xi) = jℓ is overloaded here to denote an equivalence, rather
than equality of the stratum labels. To explain this, consider some j ∈ λ(X ) with
m(j) > 1 so that there are m(j) unique levels of s(X ) within stratum j. We define an
ordering of these sub-strata such that they can be uniquely identified by jℓ for every
ℓ ∈ {1, . . . ,m(j)}. This ordering establishes a one-to-one correspondence between
the values s(x) for every x such that λ(x) = j and the pairs (j, ℓ).

Now, we consider a j ∈ λ(X ) with m(j) > 1. We introduce some notation.

µj,1 = E (Y | λ(X) = j, Z = 1)

µj,0 = E (Y | λ(X) = j, Z = 0)

σ2
j,1 = Var (Y | λ(X) = j, Z = 1)

σ2
j,0 = Var (Y | λ(X) = j, Z = 0)

µjℓ,1 = E (Y | s(X) = jℓ, Z = 1)

µjℓ,0 = E (Y | s(X) = jℓ, Z = 0)

σ2
jℓ,1 = Var (Y | s(X) = jℓ, Z = 1)

σ2
jℓ,0 = Var (Y | s(X) = jℓ, Z = 0)

By the law of iterated expectations and the law of total variance, it follows that

µj,1 = E (E (Y | s(X) = jℓ, Z = 1) | λ(X) = j, Z = 1) = E (µjℓ,1 | λ(X) = j, Z = 1)

σ2
j,1 = E (Var (Y | s(X) = jℓ, Z = 1) | λ(X) = j, Z = 1)

+ Var (E (Y | s(X) = jℓ, Z = 1) | λ(X) = j, Z = 1)

= E
(
σ2
jℓ,1 | λ(X) = j, Z = 1

)
+Var (µjℓ,1 | λ(X) = j, Z = 1)

We denote
µ̄j,1 = E (µjℓ,1 | λ(X) = j, Z = 1) = µj,1

σ̄2
j,1 = E

(
σ2
jℓ,1 | λ(X) = j, Z = 1

)
v (µjℓ,1) = Var (µjℓ,1 | λ(X) = j, Z = 1)
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Conditioning on N = {Nj1,1, . . . , Njm,1, Nj1,0, . . . , Njm,0}, we see for a given j that

Var

m(j)∑
ℓ=1

NjℓȲjℓ,1 | N

 =

m(j)∑
ℓ=1

N2
jℓVar

(
Ȳjℓ,1

)
=

m(j)∑
ℓ=1

N2
jℓ

σ2
jℓ,1

Njℓ,1

=

m(j)∑
ℓ=1

(Njℓ,1 +Njℓ,0)
2

Njℓ,1

σ2
jℓ,1

Var
(
NjȲj,1 | N

)
= N2

j Var
(
Ȳj,1
)
= N2

j

σ2
j,1

Nj,1

=
(Nj,1 +Nj,0)

2

Nj,1

σ2
j,1

=
(
∑m(j)

ℓ=1 (Njℓ,1 +Njℓ,0))
2∑m(j)

ℓ=1 Njℓ,1

σ2
j,1

=
(
∑m(j)

ℓ=1 (Njℓ,1 +Njℓ,0))
2∑m(j)

ℓ=1 Njℓ,1

(
σ̄2
j,1 + v (µjℓ,1)

)
and

E

m(j)∑
ℓ=1

NjℓȲjℓ,1 | N

 =

m(j)∑
ℓ=1

NjℓE
(
Ȳjℓ,1

)
=

m(j)∑
ℓ=1

NjℓE (Y | s(X) = jℓ, Z = 1)

=

m(j)∑
ℓ=1

Njℓµjℓ,1

E
(
NjȲj,1 | N

)
= NjE

(
Ȳj,1
)
= NjE (Y | λ(X) = j, Z = 1) = Njµj,1

=

m(j)∑
ℓ=1

Njℓ,1

 µ̄j,1
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Thus, we have that

Var

m(j)∑
ℓ=1

NjℓȲjℓ,1

 = E

Var

m(j)∑
ℓ=1

NjℓȲjℓ,1 | N


+Var

E

m(j)∑
ℓ=1

NjℓȲjℓ,1 | N


= E

m(j)∑
ℓ=1

(Njℓ,1 +Njℓ,0)
2

Njℓ,1

σ2
jℓ,1

+Var

m(j)∑
ℓ=1

Njℓµjℓ,1


Var

(
NjȲj,1

)
= E

(
Var

(
NjȲj,1 | N

))
+Var

(
E
(
NjȲj,1 | N

))
= E

(
(
∑m(j)

ℓ=1 (Njℓ,1 +Njℓ,0))
2∑m(j)

ℓ=1 Njℓ,1

(
σ̄2
j,1 + v (µjℓ,1)

))

+Var

m(j)∑
ℓ=1

Njℓ,1

 µ̄j,1


We can broaden this to entire set of observations:

Var (τ̄ sstrat) = Var

 ∑
j∈λ(X )

m(j)∑
ℓ=1

Njℓ

n

(
Ȳjℓ,1 − Ȳjℓ,0

)
=

1

n2

E
 ∑

j∈λ(X )

m(j)∑
ℓ=1

(Njℓ,1 +Njℓ,0)
2

(
σ2
jℓ,1

Njℓ,1

+
σ2
jℓ,0

Njℓ,0

)
+

1

n2

Var
 ∑

j∈λ(X )

m(j)∑
ℓ=1

Njℓ (µjℓ,1 − µjℓ,0)


Var

(
τ̄λstrat

)
= Var

 ∑
j∈λ(X )

Nj

n

(
Ȳj,1 − Ȳj,0

)
=

1

n2
E

 ∑
j∈λ(X )

m(j)∑
ℓ=1

(Njℓ,1 +Njℓ,0)

2

(v1 + v0)


+

1

n2
Var

 ∑
j∈λ(X )

m(j)∑
ℓ=1

Njℓ

 (µ̄j,1 − µ̄j,0)
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where

v1 =
σ̄2
j,1 + v (µjℓ,1)∑m(j)

ℓ=1 Njℓ,1

v0 =
σ̄2
j,0 + v (µjℓ,0)∑m(j)

ℓ=1 Njℓ,0

Case I: Equal Sub-Strata Means and Variances

If σ2
jℓ,i = σ̄2

j,i and µjℓ,i = µ̄j,i for all ℓ, i ∈ {1, . . . ,m(j)} × {0, 1}, then v (µjℓ,i) = 0
and the variance and expectation terms factor out of both expressions and we are left
to compare the nonlinear sums of the strata cell sizes. Focusing on λ(X) = j and

Z = 1, we show by induction that
∑m(j)

ℓ=1
(Njℓ,1+Njℓ,0)

2

Njℓ,1
≥ (

∑m(j)
ℓ=1 (Njℓ,1+Njℓ,0))

2∑m(j)
ℓ=1 Njℓ,1

for positive

cell sizes Njℓ,1.
For the base case, suppose that m(j) = 2 so that

m(j)∑
ℓ=1

(Njℓ,1 +Njℓ,0)
2

Njℓ,1

=
(Nj1,1 +Nj1,0)

2

Nj1,1

+
(Nj2,1 +Nj2,0)

2

Nj2,1

and
(
∑m(j)

ℓ=1 (Njℓ,1 +Njℓ,0))
2∑m(j)

ℓ=1 Njℓ,1

=
((Nj1,1 +Nj1,0) + (Nj2,1 +Nj2,0))

2

Nj1,1 +Nj2,1

.

For ease of exposition, we let

a = Nj1,1

c = Nj2,1

b = Nj1,0

d = Nj2,0

and we thus compare (a+b)2

a
+ (c+d)2

c
with (a+b+c+d)2

a+c
where a, b, c, d > 0

0 ≤ [c(a+ b)− a(c+ d)]2

0 ≤ c2(a+ b)2 + a2(c+ d)2 − 2ac(a+ b)(c+ d)

2ac(a+ b)(c+ d) ≤ c2(a+ b)2 + a2(c+ d)2

ac [(a+ b) + (c+ d)]2 ≤
[
c(a+ b)2 + a(c+ d)2

]
(a+ c)

[(a+ b) + (c+ d)]2

(a+ c)
≤ [c(a+ b)2 + a(c+ d)2]

ac

[(a+ b) + (c+ d)]2

(a+ c)
≤ (a+ b)2

a
+

(c+ d)2

c

Now, we proceed to the induction case. Assume that

m(j)∑
ℓ=1

(Njℓ,1 +Njℓ,0)
2

Njℓ,1

≥ (
∑m(j)

ℓ=1 (Njℓ,1 +Njℓ,0))
2∑m(j)

ℓ=1 Njℓ,1

.
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We consider a new stratum, indexed m(j) + 1 and we see that

m(j)∑
ℓ=1

(Njℓ,1 +Njℓ,0)
2

Njℓ,1

≥ (
∑m(j)

ℓ=1 (Njℓ,1 +Njℓ,0))
2∑m(j)

ℓ=1 Njℓ,1

m(j)∑
ℓ=1

(Njℓ,1 +Njℓ,0)
2

Njℓ,1

+ ω ≥ (
∑m(j)

ℓ=1 (Njℓ,1 +Njℓ,0))
2∑m(j)

ℓ=1 Njℓ,1

+ ω

m(j)+1∑
ℓ=1

(Njℓ,1 +Njℓ,0)
2

Njℓ,1

≥ (
∑m(j)

ℓ=1 (Njℓ,1 +Njℓ,0))
2∑m(j)

ℓ=1 Njℓ,1

+ ω

where

ω =
(Nm(j)+1,1 +Nm(j)+1,0)

2

Nm(j)+1,1

Letting

a =

m(j)∑
ℓ=1

Njℓ,1

c = Nm(j)+1,1

b =

m(j)∑
ℓ=1

Njℓ,0

d = Nm(j)+1,0

we see that
(
∑m(j)

ℓ=1 (Njℓ,1 +Njℓ,0))
2∑m(j)

ℓ=1 Njℓ,1

+
(Nm(j)+1,1 +Nm(j)+1,0)

2

Nm(j)+1,1

=
(a+ b)2

a
+

(c+ d)2

c

≥ (a+ b+ c+ d)2

a+ c
=

(
∑m(j)+1

ℓ=1 (Njℓ,1 +Njℓ,0))
2∑m(j)+1

ℓ=1 Njℓ,1

and the relationship follows by induction.
Thus, when E (Y | s(X) = jℓ, Z = 1) and Var (Y | s(X) = jℓ, Z = 1) are constant

for all j ∈ λ(X ) and ℓ ∈ {1, . . . ,m(j)}, it follows that Var
(
τ̄λstrat

)
≤ Var (τ̄ sstrat).

We now let

α1 =
1

n2
E

 ∑
j∈λ(X )

σ̄2
j,1


m(j)∑

ℓ=1

(Njℓ,1 +Njℓ,0)
2

Njℓ,1

−

(∑m(j)

ℓ=1 (Njℓ,1 +Njℓ,0)
)2

∑m(j)
ℓ=1 Njℓ,1





α0 =
1

n2
E

 ∑
j∈λ(X )

σ̄2
j,0


m(j)∑

ℓ=1

(Njℓ,1 +Njℓ,0)
2

Njℓ,0

−

(∑m(j)

ℓ=1 (Njℓ,1 +Njℓ,0)
)2

∑m(j)
ℓ=1 Njℓ,0





so that α = α1+α0 is the degree to which Var
(
τ̄λstrat

)
≤ Var (τ̄ sstrat) when all substrata

of λ(X) are constant. We see that this depends on σ̄2
j,1, σ̄

2
j,0, and the distribution of

Njℓ,i for each j and i.
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Case II: Unequal Strata Means or Variances

We partition λ(X ) into three sets:

• A: m(a) = 1 for all a ∈ A

• B: for all b ∈ B, either

– m(b) > 1

– σ2
bℓ,i and µbℓ,i are constant for all ℓ ∈ m(b), i ∈ {0, 1}

• C: For all c ∈ C

– m(c) > 1, and

– σ2
cℓ,i or µcℓ,i is non-constant for some i ∈ {0, 1}

In the previous section C = ∅, so that the variance comparison is uncomplicated:
s(X) was “overstratified” relative to λ(X) and as a result Var

(
τ̄λstrat

)
≤ Var (τ̄ sstrat).

In this case, C ̸= ∅ so that there may be variance reduction to stratification (see
Lohr (2019) for one reference). We define several terms
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β1 =
1

n2
E

∑
b∈B

σ̄2
b,1


m(b)∑

ℓ=1

(Nbℓ,1 +Nbℓ,0)
2

Nbℓ,1

−

(∑m(b)

ℓ=1 (Nbℓ,1 +Nbℓ,0)
)2

∑m(b)
ℓ=1 Nbℓ,1





β0 =
1

n2
E

∑
b∈B

σ̄2
b,0


m(b)∑

ℓ=1

(Nbℓ,1 +Nbℓ,0)
2

Nbℓ,0

−

(∑m(b)

ℓ=1 (Nbℓ,1 +Nbℓ,0)
)2

∑m(b)
ℓ=1 Nbℓ,0





c1 =
1

n2
E

∑
c∈C

m(c)∑
ℓ=1

(Ncℓ,1 +Ncℓ,0)

2(
σ̄2
c,1 + v (µcℓ,1)∑m(c)

ℓ=1 Ncℓ,1

)
+

1

n2
Var

∑
c∈C

m(c)∑
ℓ=1

Ncℓ

 (µ̄c,1)


c0 =

1

n2
E

∑
c∈C

m(c)∑
ℓ=1

(Ncℓ,1 +Ncℓ,0)

2(
σ̄2
c,0 + v (µcℓ,0)∑m(c)

ℓ=1 Ncℓ,0

)
+

1

n2
Var

∑
c∈C

m(c)∑
ℓ=1

Ncℓ

 (−µ̄c,0)


c2 =

1

n2
E

∑
c∈C

m(c)∑
ℓ=1

(Ncℓ,1 +Ncℓ,0)
2

(
σ2
cℓ,1

Ncℓ,1

+
σ2
cℓ,0

Ncℓ,0

)
+

1

n2
Var

∑
c∈C

m(c)∑
ℓ=1

Ncℓ (µcℓ,1 − µcℓ,0)


η = c1 + c0 − c2
ν = β1 + β0

We see that Var
(
τ̄λstrat

)
> Var (τ̄ sstrat) if η > ν, where η refers to the reduction in

variance by stratifying on s(X) within C and ν refers to the increase in variance by
“over-stratifying” on B.
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APPENDIX B

SIMULATION RESULTS
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Simulation Results of Chapter 4

The tables below present ATE RMSEs of each method under consideration at
varying values of p and κ. “XBCF” refers to the accelerated Bayesian Causal Forest
(Krantsevich et al. (2022)) and “XBCF-MP” refers to our proposed modification of
XBCF in which the covariates are augmented with multiple estimates of π̂(s(X))
for different subsets of the covariates defined by a s. “GRF” refers to Generalized
Random Forest (Athey et al. (2019)). “DRL” refers to the “DR-Learner” (Kennedy
(2022)). “SL,” “TL,” and “XL” refer to the “S-Learner,” “T-Learner,” “X-Learner,”
respectively (Künzel et al. (2019)).

Known Propensities, Default XBCF

DGP p κ XBCF XBCF-MP GRF DRL SL TL XL
1 10 0.25 0.27 0.23 0.44 2.22 0.84 1.31 0.64
1 10 0.50 0.42 0.40 0.57 3.05 1.32 2.09 1.29
1 10 1.00 0.84 0.75 0.87 4.47 2.41 3.73 2.73
1 10 2.00 1.88 1.44 1.55 5.07 3.59 4.93 4.16
1 50 0.25 0.30 0.24 0.48 3.68 1.16 1.82 1.15
1 50 0.50 0.47 0.42 0.57 4.54 2.08 2.99 2.23
1 50 1.00 0.94 0.77 0.88 5.24 3.61 5.00 4.30
1 50 2.00 2.63 1.69 1.56 5.67 4.02 5.81 5.33
2 10 0.25 0.30 0.30 0.48 2.98 2.84 2.78 2.63
2 10 0.50 0.52 0.52 0.64 3.49 3.16 3.65 2.96
2 10 1.00 1.04 0.98 0.95 4.13 3.38 4.56 3.43
2 10 2.00 2.32 1.99 1.69 4.66 3.52 5.30 4.06
2 50 0.25 0.34 0.32 0.54 3.95 3.25 3.92 3.28
2 50 0.50 0.62 0.56 0.67 4.40 3.48 4.63 3.65
2 50 1.00 1.23 1.05 0.98 5.04 3.87 5.81 4.69
2 50 2.00 3.26 2.51 1.75 5.54 4.20 6.52 5.65
3 10 0.25 0.03 0.04 0.04 0.06 0.03 0.04 0.03
3 10 0.50 0.07 0.07 0.07 0.10 0.06 0.07 0.06
3 10 1.00 0.13 0.14 0.13 0.18 0.12 0.14 0.12
3 10 2.00 0.25 0.25 0.25 0.37 0.22 0.27 0.24
3 50 0.25 0.03 0.03 0.05 0.06 0.03 0.04 0.03
3 50 0.50 0.07 0.07 0.07 0.11 0.06 0.08 0.07
3 50 1.00 0.14 0.14 0.14 0.20 0.14 0.16 0.13
3 50 2.00 0.25 0.24 0.25 0.39 0.26 0.30 0.25

Table B.1: Comparison of machine-learning-based ATE estimators with known
propensities. RMSE of ATE across 1,000 simulations with n = 500.
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Estimated Propensities, Default XBCF

DGP p κ XBCF XBCF-MP GRF DRL SL TL XL
1 10 0.25 0.62 0.89 4.09 2.22 0.83 1.32 0.89
1 10 0.50 1.00 1.49 4.23 3.10 1.34 2.12 1.62
1 10 1.00 2.00 2.77 4.65 4.46 2.42 3.72 3.09
1 10 2.00 4.69 4.66 5.27 5.13 3.68 5.01 4.47
1 50 0.25 0.94 1.37 4.84 3.69 1.18 1.84 1.45
1 50 0.50 1.88 2.47 4.98 4.55 2.05 2.98 2.55
1 50 1.00 3.60 3.98 5.42 5.29 3.64 5.03 4.59
1 50 2.00 5.47 5.28 6.11 5.68 4.06 5.84 5.51
2 10 0.25 1.13 0.60 3.49 3.00 2.86 2.80 2.71
2 10 0.50 1.43 0.88 3.59 3.44 3.14 3.61 3.08
2 10 1.00 2.11 1.45 3.98 4.18 3.40 4.59 3.65
2 10 2.00 3.59 2.77 4.68 4.72 3.62 5.38 4.35
2 50 0.25 1.30 0.62 4.60 3.96 3.24 3.90 3.41
2 50 0.50 1.75 0.98 4.85 4.41 3.50 4.63 3.87
2 50 1.00 2.72 1.67 5.45 5.11 3.87 5.83 4.93
2 50 2.00 4.97 3.39 6.45 5.51 4.21 6.51 5.79
3 10 0.25 0.03 0.04 0.04 0.06 0.03 0.04 0.03
3 10 0.50 0.07 0.09 0.07 0.10 0.06 0.07 0.06
3 10 1.00 0.15 0.21 0.13 0.19 0.12 0.14 0.12
3 10 2.00 0.26 0.30 0.26 0.38 0.22 0.27 0.24
3 50 0.25 0.03 0.05 0.08 0.06 0.03 0.04 0.03
3 50 0.50 0.07 0.11 0.11 0.11 0.06 0.08 0.07
3 50 1.00 0.14 0.23 0.17 0.20 0.13 0.16 0.13
3 50 2.00 0.27 0.34 0.31 0.42 0.27 0.32 0.28

Table B.2: Comparison of machine-learning-based ATE estimators with estimated
propensities. RMSE of ATE across 1,000 simulations with n = 500.
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Known Propensities, XBCF with Multiple Ŷ Estimates as Covariates

DGP p κ XBCF XBCF-MP GRF DRL SL TL XL
1 10 0.25 0.30 0.28 0.47 2.20 0.83 1.31 0.63
1 10 0.50 0.41 0.38 0.57 3.09 1.35 2.12 1.32
1 10 1.00 0.68 0.60 0.85 4.49 2.39 3.70 2.70
1 10 2.00 1.13 1.07 1.55 5.14 3.63 4.96 4.20
1 50 0.25 0.33 0.32 0.47 3.70 1.15 1.82 1.15
1 50 0.50 0.49 0.43 0.57 4.52 2.06 3.00 2.23
1 50 1.00 0.72 0.61 0.85 5.27 3.59 4.98 4.28
1 50 2.00 0.98 0.97 1.53 5.71 4.05 5.83 5.35
2 10 0.25 0.28 0.26 0.49 2.97 2.82 2.77 2.61
2 10 0.50 0.36 0.36 0.59 3.46 3.15 3.62 2.96
2 10 1.00 0.59 0.60 0.95 4.15 3.43 4.62 3.48
2 10 2.00 1.14 1.11 1.71 4.68 3.52 5.29 4.05
2 50 0.25 0.29 0.27 0.53 3.97 3.26 3.93 3.28
2 50 0.50 0.37 0.36 0.65 4.38 3.48 4.62 3.64
2 50 1.00 0.59 0.58 0.99 5.07 3.87 5.82 4.71
2 50 2.00 1.23 1.06 1.75 5.53 4.21 6.53 5.65
3 10 0.25 0.12 0.12 0.04 0.06 0.03 0.04 0.03
3 10 0.50 0.12 0.12 0.06 0.10 0.06 0.07 0.06
3 10 1.00 0.18 0.18 0.13 0.18 0.12 0.14 0.12
3 10 2.00 0.28 0.27 0.24 0.37 0.21 0.27 0.23
3 50 0.25 0.17 0.16 0.05 0.06 0.03 0.04 0.03
3 50 0.50 0.18 0.18 0.07 0.11 0.06 0.08 0.06
3 50 1.00 0.25 0.25 0.13 0.21 0.13 0.16 0.13
3 50 2.00 0.32 0.32 0.25 0.37 0.25 0.31 0.26

Table B.3: Comparison of machine-learning-based ATE estimators with known
propensities and marginal ŷ models as covariates in the XBCF models. RMSE of
ATE across 1,000 simulations with n = 500.
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Estimated Propensities, XBCF with Multiple Ŷ Estimates as Covariates

DGP p κ XBCF XBCF-MP GRF DRL SL TL XL
1 10 0.25 0.30 0.28 4.09 2.19 0.83 1.32 0.89
1 10 0.50 0.43 0.40 4.23 3.08 1.35 2.11 1.61
1 10 1.00 0.67 0.60 4.62 4.50 2.41 3.72 3.09
1 10 2.00 1.12 1.10 5.30 5.17 3.70 5.04 4.51
1 50 0.25 0.32 0.29 4.83 3.68 1.17 1.82 1.43
1 50 0.50 0.48 0.39 4.98 4.49 2.07 2.99 2.55
1 50 1.00 0.73 0.55 5.38 5.32 3.61 4.99 4.56
1 50 2.00 1.25 1.97 6.05 5.68 4.01 5.79 5.44
2 10 0.25 0.23 0.26 3.47 2.97 2.83 2.77 2.68
2 10 0.50 0.36 0.43 3.60 3.48 3.16 3.63 3.10
2 10 1.00 0.58 0.70 3.98 4.18 3.42 4.60 3.66
2 10 2.00 1.10 1.22 4.63 4.64 3.55 5.31 4.28
2 50 0.25 0.23 0.26 4.60 3.96 3.25 3.92 3.43
2 50 0.50 0.33 0.38 4.80 4.36 3.47 4.59 3.83
2 50 1.00 0.60 0.62 5.41 5.07 3.85 5.81 4.90
2 50 2.00 1.18 1.04 6.40 5.44 4.15 6.47 5.76
3 10 0.25 0.12 0.11 0.04 0.06 0.03 0.04 0.03
3 10 0.50 0.12 0.10 0.07 0.10 0.06 0.07 0.06
3 10 1.00 0.17 0.15 0.13 0.19 0.12 0.14 0.12
3 10 2.00 0.27 0.25 0.25 0.37 0.21 0.27 0.24
3 50 0.25 0.16 0.15 0.08 0.06 0.03 0.04 0.03
3 50 0.50 0.17 0.14 0.11 0.11 0.07 0.08 0.07
3 50 1.00 0.23 0.18 0.18 0.21 0.14 0.16 0.14
3 50 2.00 0.31 0.26 0.30 0.37 0.25 0.31 0.26

Table B.4: Comparison of machine-learning-based ATE estimators with estimated
propensities and marginal ŷ models as covariates in the XBCF models. RMSE of
ATE across 1,000 simulations with n = 500.
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Known Propensities, XBCF with Multiple Ŷ Estimates as Covariates, GRF
Estimated with a First-Stage XBART Model of Ŷ Rather than the Default Random

Forest

DGP p κ XBCF XBCF-MP GRF DRL SL TL XL
1 10 0.25 0.30 0.28 0.21 2.21 0.83 1.31 0.63
1 10 0.50 0.42 0.38 0.32 3.10 1.34 2.13 1.32
1 10 1.00 0.71 0.64 0.70 4.49 2.39 3.68 2.68
1 10 2.00 1.08 1.04 1.39 5.13 3.68 5.03 4.26
1 50 0.25 0.33 0.32 0.25 3.63 1.15 1.79 1.14
1 50 0.50 0.49 0.43 0.32 4.52 2.05 2.97 2.20
1 50 1.00 0.74 0.62 0.68 5.31 3.61 5.01 4.32
1 50 2.00 0.96 0.92 1.38 5.67 3.99 5.75 5.28
2 10 0.25 0.27 0.26 0.30 2.97 2.82 2.77 2.62
2 10 0.50 0.35 0.34 0.40 3.50 3.16 3.64 2.98
2 10 1.00 0.56 0.58 0.75 4.11 3.37 4.54 3.41
2 10 2.00 1.10 1.09 1.50 4.64 3.55 5.33 4.07
2 50 0.25 0.29 0.28 0.32 3.95 3.25 3.92 3.26
2 50 0.50 0.38 0.36 0.42 4.38 3.48 4.60 3.64
2 50 1.00 0.58 0.55 0.70 5.05 3.87 5.80 4.69
2 50 2.00 1.23 1.06 1.47 5.47 4.11 6.48 5.58
3 10 0.25 0.13 0.12 0.13 0.06 0.03 0.04 0.03
3 10 0.50 0.13 0.13 0.11 0.11 0.06 0.07 0.06
3 10 1.00 0.18 0.17 0.12 0.18 0.12 0.14 0.12
3 10 2.00 0.28 0.27 0.23 0.36 0.22 0.27 0.24
3 50 0.25 0.17 0.17 0.17 0.06 0.03 0.04 0.03
3 50 0.50 0.18 0.18 0.15 0.11 0.06 0.08 0.06
3 50 1.00 0.25 0.25 0.14 0.21 0.13 0.15 0.13
3 50 2.00 0.33 0.32 0.23 0.40 0.26 0.31 0.26

Table B.5: Comparison of machine-learning-based ATE estimators with known
propensities, marginal ŷ models as covariates in the XBCF models, GRF estimated
with XBART for ŷ and true propensities for π̂. RMSE of ATE across 1,000 simula-
tions with n = 500.

120



Estimated Propensities, XBCF with Multiple Ŷ Estimates as Covariates, GRF
Estimated with a First-Stage XBART Model of Ŷ Rather than the Default Random

Forest

DGP p κ XBCF XBCF-MP GRF DRL SL TL XL
1 10 0.25 0.30 0.27 0.17 2.20 0.84 1.32 0.89
1 10 0.50 0.44 0.40 0.26 3.05 1.32 2.09 1.59
1 10 1.00 0.69 0.60 1.04 4.48 2.42 3.72 3.08
1 10 2.00 1.15 1.06 2.85 5.13 3.65 5.00 4.47
1 50 0.25 0.32 0.29 0.20 3.69 1.18 1.82 1.44
1 50 0.50 0.49 0.40 0.75 4.54 2.04 2.99 2.56
1 50 1.00 0.72 0.56 2.33 5.26 3.59 4.99 4.56
1 50 2.00 1.25 1.93 4.60 5.73 4.07 5.85 5.51
2 10 0.25 0.23 0.26 0.93 2.98 2.83 2.78 2.69
2 10 0.50 0.36 0.43 1.49 3.47 3.16 3.63 3.09
2 10 1.00 0.59 0.71 2.14 4.15 3.41 4.57 3.64
2 10 2.00 1.10 1.23 3.00 4.74 3.61 5.37 4.34
2 50 0.25 0.25 0.27 1.09 3.94 3.23 3.90 3.41
2 50 0.50 0.34 0.40 1.54 4.36 3.48 4.60 3.83
2 50 1.00 0.59 0.60 2.23 5.05 3.86 5.81 4.89
2 50 2.00 1.17 1.07 3.48 5.50 4.20 6.50 5.78
3 10 0.25 0.12 0.11 0.11 0.06 0.03 0.04 0.03
3 10 0.50 0.12 0.10 0.09 0.10 0.06 0.07 0.06
3 10 1.00 0.18 0.16 0.12 0.20 0.13 0.14 0.13
3 10 2.00 0.27 0.26 0.24 0.39 0.22 0.27 0.24
3 50 0.25 0.16 0.15 0.13 0.06 0.03 0.04 0.03
3 50 0.50 0.17 0.14 0.11 0.11 0.07 0.08 0.07
3 50 1.00 0.24 0.18 0.12 0.20 0.13 0.15 0.12
3 50 2.00 0.31 0.26 0.24 0.40 0.26 0.31 0.26

Table B.6: Comparison of machine-learning-based ATE estimators with estimated
propensities, marginal ŷ models as covariates in the XBCF models, GRF estimated
with XBART for ŷ and xgboost for π̂. RMSE of ATE across 1,000 simulations with
n = 500.
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Derivation of RIC from Prediction MSE in Section 3.4

As in the proof of Proposition 2, we assume that X is discrete. Fitting a model
of E [Y | Z,X] = µ(X) + Zτ(X), we estimate the µ and τ terms nonparametrically
using a saturated linear model based on some adjustment set s(X). Estimation follows
directly from specification of s, so cast the problem of estimating E [Y | Z,X] as an
optimization problem with respect to s,

s∗ = argmin
s
||µ(s(X)) + Zτ(s(X))− Y ||2.

In order to solve this saturated linear regression, we encode s(X) as a full-rank
design matrix, which we call S̃. Estimating a saturated regression of Y on S̃ and Z
gives two sets of coefficients:

• coefficients corresponding to the non-interacted columns of S̃, which we dub α,
and

• coefficients corresponding to the columns of S̃ interacted with Z, which we dub
β.

Thus, µ̂(s(X)) = S̃α and τ̂(s(X)) = S̃β.
Now, observe that for any estimate µ̂(s(X)) and τ̂(s(X)), we have

(Ŷs − Y )2 = [µ̂(s(X)) + Zτ̂(s(X))− µ(X)− Zτ(X)− ϵ]2

= [µ̂(s(X)) + Zτ̂(s(X))− µ(X)− Zτ(X)]2 + ϵ2

− 2ϵ [µ̂(s(X)) + Zτ̂(s(X))− µ(X)− Zτ(X)]

= (µ̂(s(X))− µ(X))2 + Z2 (τ̂(s(X))− τ(X))2

+ ϵ2 − 2ϵ (µ̂(s(X))− µ(X))− 2Z (τ̂(s(X))− τ(X)) [ϵ+ (µ̂(s(X))− µ(X))]

Now, note that, given n observations of (X, Y, Z) and a stratification function s,
the stratification estimator of the ATE (which is equivalent to the regression estimator
and the empirically-weighted IPW estimator with discrete covariates) can be written
as

τ̂s =
∑

s∈s(X )

ns

n

(
Ȳs,z=1 − Ȳs,z=0

)
where ns =

∑n
i=1 1 (s(Xi) = s) for a sample of size n.

This targets an estimand of

τ̄s = Es(X) [EY [Y | s(X), Z = 1]− EY [Y | s(X), Z = 0]] = Es(X) [E [τ(X) | s(X)]]

of which the fully-stratified estimand corresponds to the case in which s(X) = X

τx = EX [EY [Y | X,Z = 1]− EY [Y | X,Z = 0]] = EX [τ(X)]

We now note that τ̂(s(X)) estimated with the same n observations and adjustment
set s as above, can be rewritten, for any xi, as

τ̂(s(xi)) = Ȳs(xi),1 − Ȳs(xi),0.
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We define, for each xi, a “centered” τ̂(s(xi)) as

t̂(s(xi)) = τ̂(s(xi))− τ̂s
So that τ̂(s(X)) = t̂(s(X)) + τ̂s and we can thus represent the predicted value of Y
for any s by τ̄s and three other terms, which we define below

Ŷs = µ̂(s(X)) + Z
(
τ̂s + t̂(s(X))

)
Similarly, the “true” τ(X) term of Y can be decomposed for any x

µ(x) + Zτ(x) = µ(x) + Z (τx + t(x))

τx = E [τ(X)] t(x) = τ(x)− E [τ(X)]

This can also be written in terms of aggregated covariate strata s(X)

τs = Es(X) [E (∆s | s(X))]

t(s) = E (∆s | s(X) = s)− Es(X) [E (∆s | s(X))]

where ∆s = E [Y | s(X) = s, Z = 1]−E [Y | s(X) = s, Z = 0]. If s(X) does not satisfy
mean conditional unconfoundedness, then τs is not necessarily equal to τx.

For any random vector (Y,X,Z) and adjustment set s(X), we have that(
Ŷs − Y

)2
=
(
µ̂(s(X)) + Z

(
τ̂s + t̂(s(X))

)
− Y

)2
=
(
µ̂(s(X)) + Z

(
τ̂s + t̂(s(X))

)
− µ(X)− Z (τx + t(X))

)2
(C.1)

+ (µ(X) + Z (τx + t(X))− Y )2 (C.2)

+ 2
(
Ŷs − θY

)
(θY − Y ) (C.3)

where θY = E [Y | Z,X] = µ(X) + Z (τx + t(X)). Note that C.1 constitutes the
“squared prediction error” of µ̂(s(X)) + Z

(
τ̂s + t̂(s(X))

)
with respect to the true

structural model µ(X) + Z (τx + t(X)), C.2 is a stratification-independent measure
of the magnitude of the noise terms of Y , and C.3 is twice the product of the true
noise term of Y and the prediction error of µ̂(s(X)) + Z

(
τ̂s + t̂(s(X))

)
.

We compare estimators based on different stratification functions s(x) via their

mean squared error, E
(
Ŷ − Y

)2
. Since C.2 does not depend on the choice of s(X),

we denote its expectation as σ2. Similarly, C.3 is a constant multiple of the prediction
error which is squared in equation C.1, so we focus our analysis on equation C.1.(

µ̂(s(X)) + Z
(
τ̂s + t̂(s(X))

)
− µ(X)− Z (τx + t(X))

)2
=
(
(µ̂(s(X))− µ(X)) + Z (τ̄s − τx) + Z

(
t̂(s)− t(x)

))2
= (µ̂(s(X))− µ(X))2 + Z (τ̄s − τx)2 + Z

(
t̂(s)− t(x)

)2
+ 2Z (µ̂(s(X))− µ(X)) (τ̄s − τx) + 2Z (µ̂(s(X))− µ(X))

(
t̂(s)− t(x)

)
+ 2Z (τ̄s − τx)

(
t̂(s)− t(x)

)
= (µ̂(s(X))− µ(X))2 + Z (τ̄s − τx)2 + Z

(
t̂(s)− t(x)

)2
+ 2Z (µ̂(s(X))− µ(X)) (τ̂(s(X))− τ(X)) + 2Z (τ̄s − τx)

(
t̂(s)− t(x)

)
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We evaluate the expectation of this expression in parts. First, note that

E (µ̂(s(X))− µ(X))2 = E [µ̂(s(X))− E [µ(X) | s(X)] + E [µ(X) | s(X)]− µ(X)]2

= E
[
(µ̂(s(X))− E [µ(X) | s(X)])2

]
+ E

[
(E [µ(X) | s(X)]− µ(X))2

]
+ E [(µ̂(s(X))− E [µ(X) | s(X)]) (E [µ(X) | s(X)]− µ(X))]

= Var (µ̂(s(X))) + Bias (µ̂(s(X)))2 + 0

E
[
Z (τ̄s − τx)2

]
= E

[
E
[
Z ((τ̄s − τs) + (τs − τx))2 | Z

]]
= E

[
E
[
Z (τ̄s − τs)2 | Z

]]
+ E

[
E
[
Z (τs − τx)2 | Z

]]
+ 2E [E [Z (τ̄s − τs) (τs − τx) | Z]]

= E
[
E
[
Z (τ̄s − τs)2 | Z

]]
+ E

[
E
[
Z (τs − τx)2 | Z

]]
+ 0

= E (π(X))
[
Var (τ̄s) + Bias (τ̄s)

2]
These terms measure the bias and variance of the prognostic function and the average
treatment effect computed on the data after stratifying by s(X).

These derivations show that E
(
Ŷ − Y

)2
can be decomposed into the bias and

variance of τ̂s, the bias and variance of µ̂(s(X)), the bias and variance of t̂(s(X)),
and expected conditional product terms between µ̂, τ̂s, and t̂.

Minimizing the MSE without any penalty will favor full stratification (i.e. s(X) =

X). If we introduce a penalized objective function E
(
Ŷs − Y

)2
+ α|s(X)| for some

α > 0, the optimization problem trades off model fit (E
(
Ŷs − Y

)2
) and stratification

size |s(X)|. While it is certainly possible to construct a bias-variance decomposition

of Ŷs such that E
(
Ŷs − Y

)2
= E

(
Ŷs − E(Y )

)2
+ (E(Y )− Y )2, this tradeoff is in Ŷ ,

not the estimator of interest, τ̂s.

Derivation of the SHAP Regression

Following Rencher and Schaalje (2008), we can express the objective function as

L(β, λ) = (y − Zβ)′W (y − Zβ) + λ′ (j′β − (yt − yb))

where λ is a Lagrange multiplier.
We can minimize this objective function by differentiating L with respect to β

and λ, setting both partial derivatives equal to 0, and checking the determinant of
the Hessian matrix. Solving for β gives

β̂ = (Z ′WZ)
−1
(
I − jA−1j′ (Z ′WZ)

−1
)
Z ′Wy + (Z ′WZ)

−1
jA−1 (yt − yb)

A = j′ (Z ′WZ)
−1
j

We note, as do Lundberg and Lee (2017), that Z ′WZ is a symmetric matrix of
the form aJ + bI, where I is the p-dimension identity matrix and J is a p× p matrix
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of all ones. Solving for a and b, we get that

a =

p−1∑
i=1

(i− 1)

p (p− i)

b =
p− 1

p

We can determine (Z ′WZ)−1 by setting (Z ′WZ)−1 = cJ + dI and solving

(Z ′WZ) (Z ′WZ)
−1

= I

(aJ + bI) (cJ + dI) = acJ2 + bcJ + adJ + bdI = pacJ + bcJ + adJ + bdI = I

This implies that pac + bc + ad = 0 and bd = 1 so that d = 1/b = p/ (p− 1) and

c = −
(
a
b

) (
1

pa+b

)
. Now observe that j′ (Z ′WZ)−1 = (cp + d)j′ and j′ (Z ′WZ)−1 j =

(cp+ d)p and thus

(j′ (Z ′WZ)
−1
j)−1 =

1

(cp+ d)p

j(j′ (Z ′WZ)
−1
j)−1j′ (Z ′WZ)

−1
=
jj′ (Z ′WZ)−1

(cp+ d)p
= J/p

(Z ′WZ)
−1
(
I − jA−1j′ (Z ′WZ)

−1
)
= (cJ + dI)

(
I − 1

p
J

)
= dI + cJ − d

p
J − cJ = dI − d

p
J

=
p

p− 1
I − 1

p− 1
J

Similarly,

(Z ′WZ)
−1
j(j′ (Z ′WZ)

−1
j)−1 =

(Z ′WZ)−1 j′

(cp+ d)p
= j/p

Thus, the regression solution simplifies to

β̂ = (Z ′WZ)
−1
(
I − jA−1j′ (Z ′WZ)

−1
)
Z ′Wy + (Z ′WZ)

−1
jA−1 (yt − yb)

=

(
p

p− 1
I − 1

p− 1
J

)
Z ′Wy +

j (yt − yb)
p

Z ′W is a p×(2p − 2) matrix in which the columns correspond to coalitions in the Z
matrix multiplied by the weight wi of that coalition.

p
p−1

I− 1
p−1

J is a square symmetric

matrix. Letting s represent the number of nonzero entries in a given column of Z ′W ,
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we see that the weights attached to those nonzero entires is w(s) = (p−1)(p−s−1)!(s−1)!
p!

so

− 1

p− 1
JZ ′W =

−
s(p−1)(p−s−1)!(s−1)!

(p−1)p!
... − s(p−1)(p−s−1)!(s−1)!

(p−1)p!

... ... ...

− s(p−1)(p−s−1)!(s−1)!
(p−1)p!

... − s(p−1)(p−s−1)!(s−1)!
(p−1)p!


=

− s(p−s−1)!(s−1)!
p!

... − s(p−s−1)!(s−1)!
p!

... ... ...

− s(p−s−1)!(s−1)!
p!

... − s(p−s−1)!(s−1)!
p!


and

p

p− 1
IZ ′W =


p(p−1)(p−s−1)!(s−1)!

(p−1)p!
... p(p−1)(p−s−1)!(s−1)!

(p−1)p!

... ... ...
p(p−1)(p−s−1)!(s−1)!

(p−1)p!
... p(p−1)(p−s−1)!(s−1)!

(p−1)p!


=

p(p−s−1)!(s−1)!
p!

... p(p−s−1)!(s−1)!
p!

... ... ...
p(p−s−1)!(s−1)!

p!
... p(p−s−1)!(s−1)!

p!


And thus the entries of matrix B =

(
p

p−1
I − 1

p−1
J
)
Z ′W are

Bij =

{
(p−s)!(s−1)!

p!
Zji = 1

− s(p−s−1)!(s−1)!
p!

= − (p−s−1)!s!
p!

Zji = 0

which correspond to Shapley weights with and without the feature of interest included
in a coalition. When s = 0 or s = p− 1, the Shapley weight is exactly 1/p, which is
the weight attached to yb and yt in the second term of regression coefficient solution.
Thus, since Z includes all 2p − 2 synthetic coalitions, the first term of β̂ is a linear
combination of all of the synthetic predictions f(Z) and the second term of β̂ is a
column vector of yt/p− yb/p.

Rather than view the regression weights as separate error and constraint terms,
we can concatenate into one linear operation. Adding yb to the beginning of the y
vector and yt to the end, we have y∗ = (yb y′ yt)

′
. Similarly, we can append the

vector j′/p to both ends of B, getting B∗ = (−j′/p B j′/p). Then we see that

β̂ = B∗y∗. Since each row of B∗ is a set of positive and negative Shapley weights and
y∗ is the complete set of 2p model predictions, we see that each entry i in the p rows
of β̂ correspond to the exact Shapley value, ϕi, for feature i.

To see this illustrated, we return to the example from Figure 5.1. We can see that

Z =


1 0 0
0 1 0
0 0 1
1 1 0
1 0 1
0 1 1

 W =


1/3 0 0 0 0 0
0 1/3 0 0 0 0
0 0 1/3 0 0 0
0 0 0 1/3 0 0
0 0 0 0 1/3 0
0 0 0 0 0 1/3
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Z ′WZ =

(
1 1/3 1/3
1/3 1 1/3
1/3 1/3 1

)

(Z ′WZ)
−1

=

(
12/10 −3/10 −3/10
−3/10 12/10 −3/10
−3/10 −3/10 12/10

)

I − jA−1j′ (Z ′WZ)
−1

=

(
2/3 −1/3 −1/3
−1/3 2/3 −1/3
−1/3 −1/3 2/3

)

(Z ′WZ)
−1
(
I − jA−1j′ (Z ′WZ)

−1
)
=

(
1 −1/2 −1/2
−1/2 1 −1/2
−1/2 −1/2 1

)

Z ′W =

(
1/3 0 0 1/3 1/3 0
0 1/3 0 1/3 0 1/3
0 0 1/3 0 1/3 1/3

)

(Z ′WZ)
−1
(
I − jA−1j′ (Z ′WZ)

−1
)
Z ′W =


1/3 −1/6 −1/6
−1/6 1/3 −1/6
−1/6 −1/6 1/3
−1/3 1/6 1/6
1/6 −1/3 1/6
1/6 1/6 −1/3


′

(Z ′WZ)
−1
jA−1 =

(
1/3
1/3
1/3

)

y =


f (t1, b2, b3)
f (b1, t2, b3)
f (b1, b2, t3)
f (t1, t2, b3)
f (t1, b2, t3)
f (b1, t2, t3)


yb = f(b1, b2, b3)

yt = f(t1, t2, t3)

If we conduct the same concatenation as described above, we get

y∗ =



f (b1, b2, b3)
f (t1, b2, b3)
f (b1, t2, b3)
f (b1, b2, t3)
f (t1, t2, b3)
f (t1, b2, t3)
f (b1, t2, t3)
f (t1, t2, t3)


B∗ =

(−1/3 1/3 −1/6 −1/6 1/6 1/6 −1/3 1/3
−1/3 −1/6 1/3 −1/6 1/6 −1/3 1/6 1/3
−1/3 −1/6 −1/6 1/3 −1/3 1/6 1/6 1/3

)
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And thus we find that

ϕ = β̂ = B∗y∗

ϕ1 =
1

3
[f (t1, b2, b3)− f (b1, b2, b3)] +

1

6
[f (t1, t2, b3)− f (b1, t2, b3)] +

1

6
[f (t1, b2, t3)− f (b1, b2, t3)] +

1

3
[f (t1, t2, t3)− f (b1, t2, t3)]

ϕ2 =
1

3
[f (b1, t2, b3)− f (b1, b2, b3)] +

1

6
[f (t1, t2, b3)− f (t1, b2, b3)] +

1

6
[f (b1, t2, t3)− f (b1, b2, t3)] +

1

3
[f (t1, t2, t3)− f (t1, b2, t3)]

ϕ3 =
1

3
[f (b1, b2, t3)− f (b1, b2, b3)] +

1

6
[f (t1, b2, t3)− f (t1, b2, b3)] +

1

6
[f (b1, t2, t3)− f (b1, t2, b3)] +

1

3
[f (t1, t2, t3)− f (t1, t2, b3)]

and the Shapley values are the same as those calculated using the Shapley formula in
Section 5.2.1. Thus, we see that the regression approximation yields exact Shapley
values when the number of samples is exactly equal to 2p.
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