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ABSTRACT  

   

Pathogens can proliferate in the built environment and can cause disease outbreaks 

if water and wastewater are not properly managed. Understanding pathogens that grow in 

engineered systems is crucial to protecting public health and preventing disease. Using 

dynamic computational models can reveal mechanistic insights into these systems to aid in 

understanding risk drivers and determining risk management strategies.  

The first research chapter of this thesis investigates tradeoffs for reducing the cost 

associated with Legionnaire’s Disease, hot water scalding, and energy use using a 

computational framework for evaluating an optimal water heater temperature set point. The 

model demonstrated that the optimal temperature set point was highly dependent on 

assumptions made regarding the dose response parameter for a common configuration of 

an electric water heater in a hospital setting. The optimal temperature was 55°C or 48°C 

for subclinical vs. clinical severity dose response, respectively, compared with current 

recommendations of 60°C to kill bacteria and 49°C to prevent scalding and conserve 

energy.   

The second research chapter models the population dynamics of antibiotic-

susceptible Escherichia coli (E. coli) and antibiotic-resistant E. coli with a population 

ecology-exposure assessment model in surface water to quantify the risk of urinary tract 

infection from recreational swimming activities. Horizontal gene transfer (HGT) was 

modeled in the environment and the human gastrointestinal tract for several scenarios. 
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HGT was generally not a dominant driver of exposure estimates compared to other factors 

such as growth and dilution, however, the rank order of factors was scenario-dependent.  

The final research chapter models pathogen transport from wastewater treatment 

plant (WWTP) exposures and assesses the risk to workers based on several exposure 

scenarios. Case studies were performed to investigate infection risk drivers across different 

scenarios, including adjustments for the timing of exposure and personal protective 

equipment. A web application was developed for use by WWTP risk managers to be used 

with site-specific data.  

The proposed modeling frameworks identified risk drivers across several microbial 

risk scenarios and provide flexible tools for risk managers to use when making water 

treatment and use decisions for water management plans used for premise plumbing as well 

as for wastewater treatment practices.  
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CHAPTER 1 

INTRODUCTION 

1.1 Importance of research  

Understanding pathogens that grow in water and wastewater systems is crucial to 

protecting public health and reducing the risk of disease. Regulatory entities such as the 

United States Environmental Protection Agency (USEPA) provide guidance on the level 

of treatment for water and wastewater, typically in terms of acceptable levels of 

contaminants or as treatment requirements (e.g. log removals) according to a particular 

purpose.  For example, for direct potable (wastewater) reuse, the California Department of 

Public Health has implemented the “12-10-10 rule” requiring a 12-log removal of viruses, 

and a 10-log removal of Cryptosporidium and Giardia (California Department of Public 

Health, 2011). The USEPA has legally enforceable maximum contaminant levels (MCL) 

that are contaminant-specific for drinking water (US EPA, 2015). The maximum 

contaminant levels goals (MCLG) for all pathogens are zero, although there have been 

efforts to derive risk-based targets (e.g. for Legionella pneumophila (Hamilton et al., 

2019)). However, currently, all MCLG requirements for pathogens are treatment 

technology-based.  

Despite advances in water and wastewater treatment and regulations, some pathogens 

remain a threat due to insufficient barriers. In a drinking water setting, insufficient barriers, 

such as long residence times or lack of necessary disinfectants, could lead to an increase in 

microbial growth. In a wastewater setting, a lack of personal protective equipment or 
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extended exposure to wastewater aerosols could lead to an increased risk of infection from 

wastewater pathogens. Due to treatment performance and other water quality assurance 

lapses (potentially from engineering malfunctions or human error), it is essential to 

investigate health risks and take preventative action if needed. Modern water and 

wastewater treatment have significantly decreased the waterborne disease burden in the US 

and globally (CDC, 1999). However, some situations continue to remain a challenge today 

for pathogen management including (1) pathogens that can (re)grow in drinking water 

(premise plumbing) systems (CDC et al., 2015); (2) the contribution of water and 

wastewater to the antimicrobial resistance (AMR) crisis (CDC, 2019; Murray et al., 2022; 

O’Neill, 2016); and (3) multi-route and multi-pathogen exposures, especially for 

wastewater exposures (Amoah et al., 2022; Xu et al., 2020). Exposures to pathogens during 

wastewater treatment are a concern and will serve as an exemplar of the need for holistic 

pathogen management.  

(1) Pathogens that can regrow in drinking water (premise plumbing) systems: One 

example of a situation where insufficient barriers to human exposure are present is in 

drinking water carried by premise plumbing in the built environment. Water systems in 

buildings can harbor opportunistic pathogens in biofilms on the inner surfaces of water 

pipes which can contribute to pathogen persistence or growth if not properly managed, 

such as with Legionella pneumophila (L. pneumophila) (CDC, 2015; NASEM, 2006).  L. 

pneumophila is a species of bacteria that can cause the pulmonary disease known as 

Legionnaires’ Disease (LD) or the febrile illness Pontiac Fever. LD can be contracted when 

a person is exposed to bacteria-laden bioaerosols (Beer, 2015). L. pneumophila serogroup 

1 is the most frequently responsible for LD and grows at elevated temperatures between 
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25°C-45°C (Paranjape et al., 2020). For this reason, a water heater can act as a source or 

amplifier of L. pneumophila in indoor environments. Existing management guidance, 

including that of the World Health Organization (WHO), and the National Academies of 

Sciences, Engineering, and Medicine (NASEM), recommend flushing water or elevating 

water heater temperatures (the water heater “set point”) to 60°C to kill L. pneumophila 

bacteria (NASEM, 2019; WHO, 2007). However, scalding is a concern at these 

temperatures (Lévesque et al., 2004). Additionally, concerns for increasing sustainability 

would dictate that the energy cost associated with high water heater temperatures should 

be minimized. The Consumer Product Safety Commission (CPSC) and the US Department 

of Energy (DOE) recommend setting water heater temperatures to 49°C to prevent scalding 

in addition to minimizing energy costs (DOE, 2016; Shields et al., 2013). There is a lack 

of federal laws and regulations around balancing the risk of scalding with the risk of LD. 

The current work focuses on hospital premise plumbing systems, with the intention of 

applying the modeling framework beyond hospital systems with modified input 

parameters. To evaluate trade-offs in microbial quality (specifically L. pneumophila 

growth and subsequent risks), energy cost, and scalding risks, I developed a computational 

framework for evaluating an optimal water heater temperature set point to minimize risks 

and cost. The overall risk management goals are to reduce the burdens of illness, injury, 

and death associated with building water supplies while maintaining an economically 

viable approach that conserves energy. 

(2) The contribution of water and wastewater to the antimicrobial resistance (AMR) 

crisis: Water and wastewater environments have the potential to result in pathogen 

exposures or serve as a “hot spot” for the development of antibiotic resistance (Hong et al., 
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2018). Antimicrobial resistance (AMR) can develop when microorganisms acquire 

antibiotic resistance genes (ARG) that enable them to survive exposure to antibiotics 

(World Health Organization et al., 2016). As new ARGs develop to overcome existing 

antibiotics, simple antibiotic treatments for a disease may no longer be effective. Thus, 

antibiotic resistance and the transfer of ARGs are critical issues in public health. Extended-

Spectrum Beta-Lactamase (ESBL)-producing Escherichia coli (ESBL E. coli) are labeled 

by the Centers for Disease Control and Prevention (CDC) as a “Serious Threat” (CDC, 

2019) that are commonly found in wastewater and recreational waters (Blaak et al., 2014, 

2015). ESBL E. coli is a leading cause of UTIs, which affect up to 150 million people every 

year worldwide (Picozzi et al., 2014). Recreational water has been highlighted as a 

potential area for the spread and/or dissemination of AMR  (Nappier et al., 2020; Tyagi & 

Kumar, 2020). Several epidemiological studies have also implicated recreational water via 

surfing (Leonard et al., 2018), swimming in the ocean (Jorgensen et al., 2017; Søraas et al., 

2013; van den Bunt, 2019), or exposure to spa pools (Begier et al., 2004), with a focus on 

E. coli and ESBL E. coli. This model will therefore serve as a framework to address these 

gaps by (1) integrating a population ecology model accounting for changes in bacterial 

populations due to HGT of ARG into the exposure assessment aspect of a quantitative 

microbial risk assessment (QMRA) framework; (2) using literature-based estimates of 

HGT rates for ESBL E. coli in the environment and higher growth conditions meant to 

mimic the type of conditions found within the human body; (3) quantifying the final dose 

of antibiotic susceptible E. coli and resistant ESBL E. coli populations during recreational 

exposure to wastewater-impacted surface waters; and (4) evaluating potential exposure 

scenarios and prioritizing their driving factors. Combining population ecology and QMRA 
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approaches will provide insight into risk drivers for environmentally mediated AMR, with 

a focus on the impact of HGT in the spread of ARG to guide public health protection 

actions. 

(3) Multi-route and multi-pathogen exposures: Wastewater treatment plants 

(WWTP) provide an essential public service by treating wastewater to remove 

contaminants so that the treated water can be discharged back into the environment (Rice 

et al., 2013). The treatment process involves multiple steps that involve the mechanical 

movement or aeration of wastewater (Dada & Gyawali, 2021; Korzeniewska & Harnisz, 

2013). These processes produce bioaerosols that contain pathogens. It is known that 

bioaerosol exposure increases risks to human health (Lu et al., 2020). Consequently, 

WWTP working environments pose potential hazards and risks to workers (Malakahmad 

et al., 2012). WWTP workers are known to have a greater prevalence of self-reported 

illness and report a variety of symptoms including respiratory, flu-like, and skin ailments 

(Kallawicha et al., 2016; Khuder et al., 1998; Smit et al., 2005). As a result, this work aims 

to (1) aggregate information related to multi-pathogen and multi-pathway risk assessment 

for wastewater workers; (2) develop a QMRA model for multi-pathogen and multi-

pathway risks; and (3) create a web-based application to perform and communicate risk 

calculations for wastewater workers. 

Identifying exposure routes for WWTP workers can be difficult, as the tasks that 

workers are asked to perform can vary greatly from cleaning tasks to office work (Maal-

Bared, 2023; Medema et al., 2004). Two exposure routes were identified: (1) accidental 

ingestion (including hand-to-mouth ingestion for certain exposure scenarios and ingestion 
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of non-respirable aerosols, and (2) aerosol inhalation (<5 μm) (Randall et al., 2021). These 

two exposure routes were evaluated over seven different worker tasks: an office setting, 

walking the WWTP, minor contact, moderate contact, high contact, direct splash, and 

wastewater lagoon sampling. Eight different pathogens were evaluated: Cryptosporidium 

hominis, Escherichia coli, Giardia duodenalis, Legionella pneumophila, norovirus, 

rotavirus, and SARS-CoV-2 delta and omicron variants. PPE was also considered 

including cloth masks, surgical masks, and N95 respirators. A QMRA was preformed using 

values from the literature and the final risks for each pathogen evaluated. The results were 

compiled into a web-based application that can be used by WWTP managers to better 

understand the driving factors of occupational risk.  

Using computational tools such as quantitative microbial risk assessment (QMRA) 

can help evaluate the health risks of these situations and intervention strategies can be 

modeled to determine the effect these strategies may have on mitigating health risks for the 

population of interest (Haas et al., 1999). QMRA is a computational method for assessing 

the risk associated with different conditions of exposure to infectious microorganisms 

(Haas et al., 1999). The approach is divided into four steps: identifying an environmental 

microbial hazard (hazard identification), assessing the degree of exposure to the hazard 

from an activity (exposure assessment), relating a dose to a probability of an adverse 

outcome (dose response assessment), and characterizing the risk either through point 

estimates or stochastic analysis (risk characterization) (Gerba, 2015; Haas et al., 2014).  

Risk assessment allows for quantitative comparison of the probability of adverse 

effects for different health endpoints (e.g., infection, illness, or death) based on variable 
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inputs. Modifying these variables allows for the testing of strategies used to mitigate risk 

to evaluate and rank relative risk reduction benefits. Sensitivity and scenario analysis can 

offer mechanistic insights into the most influential variables in a model. Sensitivity analysis 

can be used to identify the variables that have the most influence on the final result. These 

variables can be ranked in order of importance (typically influenced by the magnitude of 

their monotonic relationship with estimated infection risk) and can then be identified as 

driving factors of risks to inform resource allocation for additional data collection or 

intervention strategies. Additionally, multivariate indices, such as Sobol’ indices, can be 

used to evaluate variable interactions within a model. This allows for potentially 

uncovering unexpected variable interactions that could lead to more powerful intervention 

strategies than single variables alone. Scenario analysis allows for the exploration of model 

limitations to provide insight into how the final results are impacted by changes in 

assumptions and/or inputs. 

 

1.2 Goals and objectives of the research 

The overall purpose of this work is to model the fate and transport of pathogens and 

their risk to human health through different exposure routes. The objectives of this research 

are to (1) identify key uncertainties in each model and (2) incorporate key mechanistic 

insights to develop a customizable model framework that can be taken and used by 

decision-makers for their specific settings to better inform the decision-making process. 

The three research chapters explore these types of models in three different settings: a 

premise plumbing system representative of a section of a hospital plumbing system 
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(Chapter 2), a recreational swimming area downstream of treated wastewater effluent 

discharge (Chapter 3), and multiple occupational exposures at a wastewater treatment plant 

facility (Chapter 4). A final chapter highlights conclusions and future work (Chapter 5).  

Chapter 2 has been published as a journal article titled “Computational framework 

for evaluating risk trade-offs in costs associated with legionnaires’ disease risk, energy, 

and scalding risk for hospital hot water systems”, in Environmental Science: Water 

Research & Technology. This work evaluated the trade-offs between the risk of infection 

from Legionella pneumophila, the risk of scalding, and the cost of energy in heating water 

to find an optimal water heater temperature setting, or “set point”, for a premise plumbing 

system that is representative of a section of hospital plumbing including a water heater, hot 

water line and recirculating line with a shower head. Influential variables and data gaps 

were identified to make recommendations for optimal water heater set points that balance 

public health and energy sustainability.  

Chapter 3 is in preparation for journal submission. This chapter describes the 

development of a framework to model the population dynamics of E. coli susceptible to 

developing antibiotic resistance (antibiotic susceptible E. coli) and ESBL E. coli in 

recreational surface water that contains treated wastewater effluent and in the 

gastrointestinal tract for the case of non-dietary ingestion of recreational water for an adult 

during a swimming event. To prevent the spread of antibiotic resistant infections, it is 

essential to understand the primary drivers of environmental exposures. QMRA is used to 

quantify the risk due to susceptible E. coli and ESBL E. coli, with a scenario analysis for 

different conditions given some uncertainties. A sensitivity analysis will be conducted to 
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identify the most influential variables in the model and strategic risk management 

interventions. 

Chapter 4 considers multiple pathogens and exposure pathways to risks of 

occupational exposures within a WWTP and informs management of strategies to reduce 

overall infection risks for ingestion and inhalation pathways. The objectives of this chapter 

are to (1) aggregate information related to multi-pathogen and multi-pathway risk 

assessment for wastewater workers; (2) develop a QMRA model for multi-pathogen and 

multi-pathway risks; and (3) create a web-based application to perform and communicate 

risk calculations for wastewater workers. Eight pathogens were evaluated for exposure 

risks from seven different working tasks. Ingestion infection risks with a health endpoint 

of gastrointestinal infection and inhalation risks with a health endpoint of respiratory 

infections were calculated for each pathogen and task where appropriate, and total risks for 

each health endpoint were also calculated. The web-based application is available to the 

public for use and displayed as a risk calculator. It is a generalized model that contains 

options for user input to make the risk calculations site-specific.  

Chapter 5 contains concluding remarks from this work and future work to be 

conducted from these chapters.  
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CHAPTER 2 

COMPUTATIONAL FRAMEWORK FOR EVALUATING RISK TRADE-OFFS IN 

COSTS ASSOCIATED WITH LEGIONNAIRES’ DISEASE RISK, ENERGY, AND 

SCALDING RISK FOR HOT WATER SYSTEMS 

This chapter was published as a journal article: Heida, A., Mraz, A., Hamilton, M.T., Weir, 

M., Hamilton, K.A., 2022. Computational framework for evaluating risk trade-offs in costs 

associated with legionnaires’ disease risk, energy, and scalding risk for hospital hot water 

systems. Environmental Science: Water Research & Technology 8 (1), 76-97. 

 

2.1 Abstract 

Legionella pneumophila are bacteria that when inhaled cause Legionnaires' disease 

(LD) and febrile illness Pontiac fever. As of 2014, LD is the most frequent cause of 

waterborne disease outbreaks due to drinking water exposure in the United States. The 

optimal temperature for the bacteria's growth is between 25–45 °C, and water heaters that 

are set within this range can become an environment for L. pneumophila to grow. The 

recommended water heater temperature varies across organizations, from 60 °C to kill L. 

pneumophila bacteria to 49 °C to prevent scalding and minimize energy costs. To evaluate 

these trade-offs, we have developed a computational framework for evaluating an optimal 

water heater temperature set point for reducing cost and health risks. This framework uses 

a quantitative microbial risk assessment (QMRA) to assess the risk of infection from a 

single shower aerosol exposure in terms of disability-adjusted life years (DALY) and costs. 
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The model demonstrated that the optimal water heater temperature set point for reducing 

cost and health risks was 55 °C or 48 °C for a common configuration of an electric water 

heater used in a hospital setting, using a subclinical infection or clinical severity infection 

dose response model, respectively. Based on these preliminary results, we expect this 

modeling framework will be able to provide useful insight into the optimal water heater 

temperature set point for hospitals based on their specific premise plumbing system 

configurations and constraints and can inform computational tools used to make site-

specific decisions. 

Figure 1.  Graphical abstract of a computational framework to evaluate trade-offs in 

energy, scalding, and Legionnaires’ Disease illness risk costs. 

 

2.2 Introduction 

Legionella pneumophila (L. pneumophila) is a species of bacteria that can cause the 

pulmonary disease known as Legionnaires’ Disease (LD) or the febrile illness, Pontiac 
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Fever. LD can be contracted when a person is exposed to bacteria-laden bioaerosols (Beer, 

2015), most commonly generated by devices such as water fixtures, cooling towers, spa 

pools, or other sources (Hamilton et al., 2018; van Heijnsbergen et al., 2015). In 2017, there 

were 7,400 reported cases in the United States, which corresponded to 2.29 cases/ 100,000 

persons (CDC, 2018; NASEM, 2019). LD is the most frequently identified cause of 

waterborne disease outbreaks involving drinking water in the United States and is known 

to be found in building plumbing systems where they can be aerosolized by numerous 

water fixtures to cause disease (CDC, 2015; NASEM, 2006). Outbreaks can also result 

from non-potable exposures to contaminated aerosols originating from other sources 

(Hamilton et al., 2018). Together, biofilm-associated waterborne pathogens 

nontuberculous mycobacteria, Pseudomonas, and Legionella cost the US $2.39 billion 

annually in hospitalizations and deaths (Collier et al., 2021). 

Over 60 different species of Legionella spp. have been described (Gomez-Valero & 

Buchrieser, 2019), with the most commonly implicated species being L. pneumophila 

serogroup 1, which grows at elevated temperatures between 25°C-45°C (Paranjape et al., 

2020). For this reason, a water heater can act as a source or amplifier of L. pneumophila in 

indoor environments. Existing management guidance, including that of the World Health 

Organization (WHO), and the National Academies of Sciences, Engineering and Medicine 

(NASEM) recommend setting water heater temperatures (the water heater “set point”) at 

60°C to kill L. pneumophila bacteria (NASEM, 2019; WHO, 2007). However, scalding is 

a concern at these temperatures (Lévesque et al., 2004). Additionally, concerns for 

increasing sustainability would dictate that the energy cost associated with high water 

heater temperatures should be minimized. The Consumer Product Safety Commission 
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(CPSC) and the US Department of Energy (DOE) recommend setting water heater 

temperatures to 49°C to prevent scalding in addition to minimizing energy costs (DOE, 

2016; Shields et al., 2013). A review by Singh et al. (2020) highlighted values from several 

national and international guidance documents which covered multiple set point 

recommendations in this range (Singh et al., 2020). Subsequently, a debate continues over 

what the recommended set point temperature(s) is to prevent L. pneumophila growth, 

reduce scalding risks, and increase energy savings. A quantitative and systematic 

framework is needed for evaluating these tradeoffs for different plumbing systems and 

scenarios to support guidance efforts. 

Due to its public health importance, regulatory and guidance efforts have focused on 

LD prevention (ASHRAE, 2018; CDC, 2017; Parr et al., 2015), with a focus on healthcare 

premise plumbing environments (CMS, 2018) as they are the setting for transmission of a 

large portion of LD cases (Hamilton et al., 2018). Hospital and residential premise 

plumbing systems can differ substantially in design, with hospital systems having larger, 

more complex water systems that can promote Legionella spp. growth if not maintained 

properly, and also serve susceptible populations who are more likely to contract LD due to 

underlying health conditions (CDC, 2021). The focus of this work will be primarily on a 

simplified hospital water system. 

The financial burden associated with LD has many contributing factors that can vary 

greatly between cases. In addition to the loss of life experienced from LD, the infection has 

a significant cost associated with medical treatment, outbreak investigation, and business 

closures. It is estimated that $434 million is paid by insurers for medical treatment of LD 
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each year (Collier et al., 2012), with individual costs varying greatly (Lock et al., 2008). In 

addition to the costs of medical treatment, the cost of investigating a suspected outbreak 

must be considered as it often requires a great deal of effort to locate and confirm the source 

of an outbreak (Lock et al., 2008). The economic cost from lost productivity due to business 

closures at suspected outbreak locations also contributes to the total cost associated with 

LD, although specific estimates of the dollar value of this cost are not available (Collier et 

al., 2012; Lock et al., 2008). 

Tap water scalds are a potential public health concern and have been well documented 

in residential settings (Hockey, 2002; Katcher, 1981; Lowell et al., 2008; Potter et al., 

2017). Approximately 1500 hospital admissions and 50 deaths from scalding due to 

excessively hot tap water are reported annually in the United States (Peck et al., 2010). The 

majority of these cases affect children under 5, disabled persons, and people over age 65. 

Handicapped patients and geriatric patients are often unable to remove themselves from 

excessively hot water, and when grouped with young children account for 85% of hot tap 

water burns (Graitcer & Sniezek, 1988). Scalds can be particularly concerning when 

elderly populations are exposed to showers and bathtubs where prolonged exposure to 

elevated temperatures can cause significant damage but go unnoticed initially due to their 

decreased sensitivity to high temperatures (Graitcer & Sniezek, 1988; NASEM, 2019). 

Specific cases of this have been documented and can result in extended hospitalization or 

death (Katcher, 1981). It is acknowledged that the exact circumstances and causes of a 

scald injury cannot be fully ascertained based on the available scalding data due to factors 

such as the abuse of children. However, in a study where families were questioned about 

the nature of a child’s burn, 15 out of 17 cases were assumed to be accidental and not child 
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abuse (Katcher, 1981).This aligns with a 2005 study from the UK that found approximately 

90% of pediatric burn cases were accidental (Chester et al., 2005).  Public health initiatives 

have been implemented over the years to reduce preset water heater temperatures in 

residential settings to lower the risk associated with tap water scalding but were deemed 

unsuccessful (Katcher, 1981) or had a statistically significant but small (4%) change in risk 

reduction while increasing the risk of L. pneumophila (Barnsley & Barnsley, 2007). 

Passing legislation to reduce water heater temperatures upon installation in residential 

settings has been shown to decrease average water heater temperature in some settings 

(Erdmann et al., 1991), decreasing water scalds. A study of hot water scalds after a change 

in Ontario, Canada building codes to require residential water heaters in new or renovated 

buildings to be set at 49°C resulted in a significant decrease in the age-standardized 

monthly ambulatory scald cases per 100,000 population of 0.01055 and long-term decrease 

of 0.19 per 100,000, but the number of hospitalized cases did not significantly change 

(Clouatre et al., 2013). These residential cases emphasize the importance of considering 

scalding risk while determining optimal water heater temperature set points to reduce L. 

pneumophila in both residential and hospital or healthcare settings.     

There is a lack of federal laws and regulations around balancing the risk of scalding 

with the risk of LD. This is described in the NASEM (2019) report highlighting some 

ambiguity regarding water temperature control guidance (NASEM, 2019). The Center for 

Medicare & Medicaid Services (CMS), which has regulatory authority over hospitals, 

states that patients should not be in “immediate jeopardy” concerning hot water scalds, 

which is defined as “access to hot water of sufficient temperature to cause tissue injury” 

(CMS, 2000). This is interpreted by individual states to correspond to a variety of 



16 

temperatures. However, this varied interpretation is not inconsistent with true variation in 

the range of temperatures that can cause tissue damage. Experimental studies on skin burns 

are understandably rare; using skin from pigs, second-degree burns can be achieved in 

temperatures as low as 44°C if the skin is exposed for extended periods (Moritz & 

Henriques, 1947).  

Globally, various approaches have been taken regarding scalding and Legionella spp. 

tradeoffs. The Canadian government recommends that residential water heater 

temperatures be reduced to 49ºC to reduce the risk of scalding and lower energy costs 

(Government of Canada, 2011). Singh et al. (2020) summarizes findings from 15  guidance 

documents and interviews of 22 premise plumbing subject matter experts, including nine 

documents (from the World Health Organization [WHO], US CDC, USEPA, NASEM, 

Department of Veterans Affairs, European Guidelines, and International Plumbing Code) 

with all recommendations for hot water temperatures >50°C and most hot water heater 

temperature recommendations greater than 60°C for Legionella spp. control (Singh et al., 

2020).  

In addition to direct health risks like LD and scalding, sustainability has risen as a 

priority for the built environment. Consequently, there are national efforts to increase water 

and energy efficiency that can have unintended consequences for public health. As the 

popularity of green buildings increases, green certification programs such as Leadership in 

Energy and Environmental Design (LEED) encourage the minimization of water usage. 

Decreasing water usage is commonly implemented by installing low-flow fixtures or 

eliminating the use of potable water for landscaping purposes. While decreasing the use of 
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potable water is generally encouraged, it can increase the residence time of the water in the 

premise plumbing system. These increases in water age have been found to have 

consequences for the water chemistry, temperature, and microbial growth which leaves 

these new energy-efficient buildings more susceptible to L. pneumophila contamination 

(Rhoads et al., 2016; Rhoads et al., 2015). One factor contributing to increased microbial 

concentrations is the rapid loss of disinfectant residual in green buildings. For example, it 

has been found that 60-91% of the chloramine residual is lost after a stagnation time of 

only six hours in copper pipes (Nguyen et al., 2012; Zhang & Edwards, 2009).  

Due to competing objectives for managing water in buildings, trade-offs can exist. The 

current work focuses on hospital premise plumbing systems, with the intention of applying 

the modeling framework beyond hospital systems with modified input parameters. To 

evaluate trade-offs in microbial quality (specifically L. pneumophila growth and 

subsequent risks), energy cost, and scalding risks, we have developed a computational 

framework for evaluating an optimal water heater temperature set point. The overall risk 

management goals are to reduce the burdens of illness, injury, and death associated with 

building water supplies while maintaining an economically viable approach that conserves 

energy. Weighing these objectives is not always straightforward and a model is designed 

to provide a framework for judgment by building designers and analysts. The model is not 

designed to be used as a direct risk communication tool but rather an in silico testbed for 

evaluating tradeoffs. The goal is for this model is therefore to be able to provide useful 

insight into the optimal water heater temperature set point for hospitals based on their 

specific premise plumbing system configurations and constraints. As a result, our 

objectives are: (1) to develop a conceptual model which incorporates the risk of Legionella 
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infection, the risk of scalding, and the cost of energy associated with a specific water heater 

set point; (2) to demonstrate the utility of applying such a model using a test case of a 

premise plumbing system from a design that would be representative of a section of the 

type of system seen in a hospital; and (3) to identify influential factors and data gaps for 

making recommendations for optimal water heater set points that balance public health and 

energy sustainability.  

2.3 Methods 

2.3.1 Modeling Framework 

As a starting point, a use-case was developed for a hypothetical hospital room located 

in the United States that would serve a susceptible hospitalized population, however the 

generalized model proposed here is not currently regionally- or geographically-specific 

(although a site- or region-specific model could be adapted from this framework). Our 

computational framework is composed of three sub-models that are expressed in final 

terms of daily cost (2020 US dollars per day): (1) L. pneumophila bacteria growth, decay, 

health risk, and subsequent cost of infection and disease; (2) scalding risk and subsequent 

cost of burn injuries; and (3) energy cost. All models are normalized to “per day” costs. 

All models rely upon water temperature calculations throughout a premise plumbing 

system. The water temperature and concentration of L. pneumophila being dispensed at the 

showerhead are calculated for various water heater set points scenarios, from 48°C to 63 

°C at intervals of 1°C. This range was chosen to include a setting lower than the 

recommended temperature from the DOE and the CPSC, to the highest temperature that 

Legionella spp. has been isolated from water (Borella et al., 2004). However, the water 
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heater used as an exemplar in this model is advertised to deliver a temperature range from 

43.3°C to 76.7°C (Westinghouse, 2020).  A conceptual flow chart of the described methods 

is shown in Figure 2 to help guide the reader through the model.  

 

Figure 2. Conceptual flow chart of model sections with select inputs and outputs. 

 

2.3.2 Simplified hot water plumbing system chosen for analysis 

Building plumbing systems are extremely heterogeneous, therefore it is not possible to 

designate a single system that is representative of every situation in this analysis. The 

example chosen premise plumbing system represents a simplified section of what might 
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exist in the patient rooms of a hospital that will provide patients with hot water for bathing 

and showering (Reiling et al., 2008). It is common in the healthcare setting to have at least 

two large water heaters to meet the building’s peak demand. This model is comprised of a 

single 316L water heater with a 295L storage rating (Westinghouse, 2020) and a hot water 

outlet pipe ¾” in diameter. Subsequent branches that lead to the outlet at the showerhead 

are ½” diameter (IAPMO, 2016; Westinghouse, 2020). Only one branching pipe leading 

to a showerhead is considered in this model, any other branching pipes are ignored. A full 

recirculating line ¾” in diameter is assumed at the junction of the ½” branching pipe to 

continually carry water back to the water heater. A cold-water line leading to a mixing 

valve before the showerhead would also be expected but is excluded for this model. A 

schematic of the selected system layout can be seen in Figure 3.  

 

Figure 3.  Schematic of selected simplified, exemplary premise plumbing hospital 

system model. 
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Large hospitals might choose a steam system instead of water heaters (Watts et al., 

2018). The size of the water heaters and the quantity needed to meet peak demand varies 

for each building and is calculated on a case by case basis (Scruggs, 2020). A water heater 

of the size chosen (295L) would serve approximately five showers of 59L each to meet 

peak demand. This would not be considering other fixtures on the floor such as sinks or 

dishwashers. Two of these water heaters would be optimal for a small hospital floor. Water 

heaters of this size commonly have ¾” diameter pipe outlets to disperse the hot water 

throughout the building, so that is why this diameter was chosen (Westinghouse, 

2020).This water heater and pipe system is large enough to meet peak demand for a floor 

with 5-10 showers. The sections below describe heat loss throughout the premise plumbing 

system and water heater, with an assumption made that heat is not lost through the walls 

of the water heater. 

2.3.3 Water temperature in the water heater 

A one-dimensional, multi-node model was selected to approximate the temperature 

change throughout different sections of the premise plumbing system (Kleinbach et al., 

1993). This method divides the water heater into twelve equal nodes (𝑖 = 1-12) stacked on 

top of each other vertically (Figure 4). This aligns with standing water heater models (a 

common configuration in the US) and the stratification experienced will be replicated by 

the nodes that are assumed to be completely mixed at each timestep (Brazeau & Edwards, 

2013). This model for the water heater is similar to a one-dimensional plug flow model 

with the exception that there is an assumed percentage of mixing between nodes and 

intermittent flow is ignored. In this water heater, water enters the system from the mainline 
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at the lowest node, and water exits to the hot water line from the highest node. Equation 1 

represents the temperature of each node based on the flow of water at each timestep. These 

equations were modified from their original form in Kleinbach et al. (1993) (Kleinbach et 

al., 1993) as discussed in Appendix A, Section 1 to allow for implementation in Python.  

  

Figure 4. Water heater schematic divided into nodes for temperature calculations 

following methods used in Kleinbach et al. (1993). 

𝑇𝑖(𝑡) =
1

𝑉𝑖
𝛼𝑖𝑣𝑚𝑎𝑖𝑛𝑇𝑚𝑎𝑖𝑛 + 𝛽𝑖𝑣𝑟𝑒𝑐𝑇𝑟𝑒𝑐(𝑡 − 1) + 𝛿𝑎,𝑖𝑣𝑚𝑖𝑥𝑇𝑖+1(𝑡 − 1) +

𝛿𝑏,𝑖(𝑣𝑚𝑖𝑥+𝑣𝑚𝑎𝑖𝑛)𝑇𝑖−1(𝑡 − 1) + 𝑉𝑛𝑒𝑤𝑇𝑖(𝑡 − 1) (1) 

𝑉𝑖 is the volume in each node [L], 𝛼𝑖 is an indicator variable equal to one at the location of 

the main line and zero elsewhere, and 𝑣𝑚𝑎𝑖𝑛 is the flow rate of water entering the water 
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heater from the main line [L/s]. 𝛽𝑖 is an indicator variable equal to one at the location of 

the recirculating line and zero elsewhere, and 𝑣𝑟𝑒𝑐 is the flow rate of water entering the 

uppermost node from the recirculating water line [L/s]. 𝛿𝑎,𝑖 is equal to one when a node 

exists above the node of interest, 𝛿𝑏,𝑖 is equal to one when a node exists below the node of 

interest, and 𝑣𝑚𝑖𝑥 is the flow rate of fluid mixing between the nodes [L/s].  𝑇𝑚𝑎𝑖𝑛 is the 

temperature of the municipal water from the main line [℃]. Here, Tmain is assumed to be a 

concatenated uniform distribution ranging from 16.5°C to 21.5°C in the winter and 17°C 

to 24°C in the summer (Blokker & Pieterse-Quirijns, 2013), which aligns with the highest 

main line water temperature (25°C) observed in a study in Poland (Chmielewska, 2018). 

𝑇𝑟𝑒𝑐 is the temperature of the water entering the water heater from the recirculating line 

[ºC], 𝑇𝑖 is the temperature of each node [ºC], and 𝑉𝑛𝑒𝑤 is the remaining original volume of 

the node [L].  

Once the temperature in each node has been calculated, the average temperature in 

the tank is measured to determine whether the heating element is on at each timestep. This 

water heater has two heating elements of equal power placed at the third and ninth nodes. 

Both are either fully on or fully off. When the heating elements are on, they add 5,500 J of 

heat to the node at each timestep. This energy input is represented by 𝑄𝑖 in equation 2 and 

is equivalent to a 0.05ºC rise in temperature for a 26.33 L node. This is equivalent to 5,500 

W at that node (Westinghouse, 2020). When the heating elements are off, it is assumed that 

a small amount of heat is lost through the elements (Kleinbach et al., 1993). 𝑈𝐴𝑖 is the heat 

lost equal to a 0.005℃ drop in temperature, or 550 W (Appendix A, Section 1). The 

change in the node temperature described by equation 2 is accounted for at each timestep 
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after the initial temperature calculation. It is assumed that no heat is lost through the walls 

of the water heater. 

𝑇𝑖=3,9(𝑡) = {
𝑇𝑖=3,9 +𝑄𝑖=3,9 𝑡

𝑇𝑖=3,9 − 𝑈𝐴𝑖=3,9 𝑡
   
𝑖𝑓 𝑜𝑛
𝑖𝑓 𝑜𝑓𝑓

    (2) 

 

2.3.4 Water temperature in the premise plumbing pipes 

Heat loss as water flows through the pipes is modeled using one-dimensional plug flow 

where heat loss occurs radially. Each pipe was divided into 1 m sections for calculations at 

each time step and complete mixing within each section of the pipe is assumed. The pipes 

will experience turbulent flow when water is not stagnant due to their Reynolds number 

being greater than 4000. Water exiting the water heater is distributed to the pipe system 

and flows at a constant velocity of 3.04 m/s (Appendix A, Section 2). The hot water line 

¾” in diameter is assumed to have rubber pipe insulation with a thickness of ½”. The 

branching pipe will have rubber pipe insulation with a thickness of ½” for cases where 

branching pipe insulation is present as specified in Table 1. The ½” rubber insulation has 

a thermal conductivity of 0.16 W/ mK (Incropera et al., 2007). Insulation thickness on the 

recirculating pipe is sufficient enough that the temperature loss is not greater than 3.3°C 

for a pipe length of 24 m (ASHRAE, 2019; Guyer, 2016). The water velocity and insulation 

are changed during the scenario analysis described in section 4.4. 

As the water moves through the pipes, heat is lost through radial convection. The 

new temperature is calculated using Newton’s law of cooling (equation 3) and the formula 
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for heat capacity (equation 4), as discussed in Appendix A, Section 3. 𝑄  is the heat 

transfer [W], 𝑈 is the heat transfer coefficient for a multi-layer pipe [W/m2K] (Appendix 

A, Section 4), 𝑇(𝑥) is the temperature of the section being analyzed [°C], and 𝑇𝑒𝑛𝑣 is the 

air temperature inside the building of interest surrounding the premise plumbing system, 

assumed to be uniform distribution ranging from 20°C to 27°C (ASHRAE, 2010; EPA, 

2009). cp is the specific heat of water [J/ kg K] and 𝑚 is the mass of water inside the pipe 

section [kg]. 

𝑑𝑄

𝑑𝑡
= 𝑈(𝑇(𝑥) − 𝑇𝑒𝑛𝑣)𝑑𝐴        (3) 

𝑑𝑄

𝑑𝑡
= −𝑐𝑝

𝑑𝑚

𝑑𝑡
𝑑𝑇       (4) 

Solving for the temperature in pipe section 𝑛 (𝑇𝑝𝑖𝑝𝑒,𝑛) results in equation 5. 𝜌 is 

the density of water [kg/ m3], 𝜈 is water velocity [m/ s], and 𝐷 is the diameter of the pipe 

[m]. The values for these parameters are summarized in Table A2.  

𝑇𝑝𝑖𝑝𝑒,𝑛(𝑡) = (𝑇𝑝𝑖𝑝𝑒,𝑛−1(𝑡 − 1) − 𝑇𝑒𝑛𝑣)𝑒
−

4𝑈

𝑐𝑝𝜌𝑣𝐷 + 𝑇𝑒𝑛𝑣   (5) 

2.3.5 Free chlorine residual concentrations throughout the system 

The free chlorine concentration is first calculated in the nodes of the water heater based 

on the fluid dynamics of the system and water temperature. The concentration is calculated 

at each timestep using equation 6.  

𝐶ℎ𝑙𝑖(𝑡) =
1

𝑉𝑖
𝛼𝑖𝑣𝑚𝑎𝑖𝑛𝐶ℎ𝑙𝑚𝑎𝑖𝑛 + 𝛽𝑖𝑣𝑟𝑒𝑐𝐶ℎ𝑙𝑟𝑒𝑐(𝑡 − 1) + 𝛿𝑎,𝑖𝑣𝑚𝑖𝑥𝐶ℎ𝑙𝑖+1(𝑡 − 1) +

𝛿𝑏,𝑖(𝑣𝑚𝑖𝑥+𝑣𝑚𝑎𝑖𝑛)𝐶ℎ𝑙𝑖−1(𝑡 − 1) + 𝑉𝑛𝑒𝑤𝐶ℎ𝑙𝑖(𝑡 − 1)    (6) 
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𝐶ℎ𝑙𝑖 is the free chlorine concentration in each node (𝑖 = nodes 1-12) [mg/ L], and 𝐶ℎ𝑙𝑟𝑒𝑐 

is the free chlorine concentration of the water in the recirculating line [mg/ L]. 𝐶ℎ𝑙𝑚𝑎𝑖𝑛 is 

the free chlorine concentration in the water entering the system from the main line ranging 

from 0.01 to 4 mg/ L of chlorine (AWWA, 2018).  

Assuming first-order kinetics, the chlorine concentration throughout the plumbing 

system (𝐶ℎ𝑙) will decay due to temperature and is calculated at each point using equation 

7. The decay rate of chlorine due to temperature (𝑘𝑐ℎ𝑙) is calculated using the Arrhenius 

equation, which considers total organic carbon concentrations in the system that were 

estimated to be between 1 and 3 mg/ L (Appendix A, Section 5). 𝐶ℎ𝑙0 is the initial chlorine 

concentration [mg/ L]. 

𝐶ℎ𝑙(𝑡) =  𝐶ℎ𝑙0 𝑒
−𝑘𝑐ℎ𝑙𝑡      (7) 

2.3.6 Legionella pneumophila concentration throughout the system 

L. pneumophila concentrations are modeled as a function of fluid flow, chlorine 

concentration, temperature, and time throughout the system (Appendix A, Section 6). The 

L. pneumophila concentration is first calculated in the nodes of the water heater based on 

the fluid flow of the system at each timestep using equation 8.   

𝐿𝑖(𝑡) =
1

𝑉𝑖
𝛼𝑖𝑣𝑚𝑎𝑖𝑛𝐿𝑚𝑎𝑖𝑛 + 𝛽𝑖𝑣𝑟𝑒𝑐𝐿𝑟𝑒𝑐(𝑡 − 1) + 𝛿𝑎,𝑖𝑣𝑚𝑖𝑥𝐿𝑖+1(𝑡 − 1) +

𝛿𝑏,𝑖(𝑣𝑚𝑖𝑥+𝑣𝑚𝑎𝑖𝑛)𝐿𝑖−1(𝑡 − 1) + 𝑉𝑛𝑒𝑤𝐿𝑖(𝑡 − 1)   (8) 

𝐿𝑖 is the L. pneumophila concentration in each node (𝑖 =1-12) [CFU/ L], and 𝐿𝑟𝑒𝑐 is the L. 

pneumophila concentration in the water in the recirculating line [CFU/ L]. 𝐿𝑚𝑎𝑖𝑛 is the L. 
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pneumophila concentration in the water in the main line [CFU/ L] which is estimated as a 

lognormal distribution [untransformed mean of 1,012 CFU/L and a standard deviation of 

958 CFU/L] (Borella et al., 2004). The growth of the planktonic L. pneumophila was 

limited by an upper bound concentration of 104.17 CFU / L, the maximum culturable 

concentration observed in an experiment where L. pneumophila was allowed to remain in 

stagnant water for 21 days,  to avoid a scenario of unrealistic unconstrained growth (Yee 

& Wadowsky, 1982). This information was combined with kinetic constants (Appendix 

A, Section 7) as a function of chlorine residual, time, and temperature in equation 9. 𝐶𝑝 is 

the concentration of planktonic L. pneumophila [CFU/ L], 𝑘𝑡𝑒𝑚𝑝 is the rate of growth or 

inactivation due to water temperature for both planktonic and sloughed L. pneumophila [s-

1], and 𝑘𝑝,𝑐ℎ𝑙 is the rate of inactivation for planktonic L. pneumophila due to the chlorine 

concentration [s-1]. 𝐶𝑝,0 is the initial concentration of planktonic L. pneumophila [CFU/ L]. 

𝐶𝑝(𝑡) = 𝐶𝑝,0𝑒
(𝑘𝑡𝑒𝑚𝑝+𝑘𝑝,𝑐ℎ𝑙)𝑡      (9) 

2.3.7 Modeling the biofilm sloughing throughout the system 

The amount of L. pneumophila in the system due to biofilm sloughing at the time that 

the shower is turned on (𝑡𝑠) is calculated by equations 10-11.  

𝐶𝑠,0 =
𝐴 𝐶𝑏 𝑆𝑏(𝑡𝑠)

𝐷𝑏𝑉
      (10) 

𝐶𝑠(𝑡) = 𝐶𝑠,0 𝑒
(𝑘𝑠+𝑘𝑏,𝑐ℎ𝑙𝐶ℎ𝑙+𝑘𝑡𝑒𝑚𝑝)𝑡𝑠    (11) 

The concentration of L. pneumophila sloughed from the biofilm, 𝐶𝑠,0, is calculated 

using the inner surface area of the pipes, 𝐴 [cm2], the quantity of L. pneumophila in the 
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biofilm, 𝐶𝑏  [CFU/ cm2] (Thomas, 2012), the biofilm density 𝐷𝑏  [g/ cm3] (Garny et al., 

2009), the mean volume of biofilm per unit area of pipe 𝑉 [cm3/ cm2] (Garny et al., 2009) 

and the biofilm sloughing rate, 𝑆𝑏(𝑡𝑠) [g/ cm2 s] (Garny et al., 2009). The rate of biofilm 

sloughing will decrease over time with the decay rate 𝑘𝑠 if the shower remains on and is 

assumed to be zero if the shower is off. It is acknowledged that some migration of L. 

pneumophila may occur from the biofilm under stagnant conditions but are considered 

negligible in comparison to flow events in the absence of data regarding the dynamics of 

biofilm behavior under prolonged stagnation (Rhoads & Hammes, 2021). There is not 

currently a consensus about whether the L. pneumophila will migrate from the biofilm to 

the bulk water under stagnant conditions, or whether the rate of migration will change with 

the plumbing parameters (Rhoads & Hammes, 2021). The change in biofilm sloughing 

rate, 𝑘𝑠, is modeled using two first order rates that are dependent on how long the shower 

has been on (Huang et al., 2020). The concentration of L. pneumophila sloughed from the 

biofilm will become inactivated due to chlorine in the system and the water temperature. 

The inactivation rate due to temperature, 𝑘𝑏,𝑐ℎ𝑙, is given in units of (mg/ L min)-1 and is 

multiplied by the residual chlorine concentration, 𝐶ℎ𝑙, so that 𝑘𝑏,𝑐ℎ𝑙𝐶ℎ𝑙 is in units of s-1 as 

seen in equation 11 (Huang et al., 2020). Biofilm kinetic parameters for L. pneumophila 

in the biofilm are shown in Table A9 and discussed in Appendix A, Section 7.   

These equations collectively allowed for computation of the temperature, chlorine 

residual concentration, decay rate of chlorine due to temperature, decay rate of L. 

pneumophila due to temperature and chlorine, and final L. pneumophila concentration from 

planktonic and sloughed biofilm to be simulated at all points throughout the system at each 
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timestep (1 s). The temperature, chlorine concentration, planktonic L. pneumophila, and 

biofilm L. pneumophila were initialized for a 24-hour period prior to the Monte Carlo for 

cost analysis (Appendix A, Section 8). 

2.3.8 QMRA model 

The temperature and L. pneumophila concentration at the showerhead is used in a 

quantitative microbial risk assessment (QMRA). QMRA is a computational method for 

assessing the risk associated with different conditions of exposure to infectious 

microorganisms (Haas et al., 1999). The QMRA model used here assesses the daily risk of 

infection from shower aerosol exposure in terms of monetary cost, as determined in the 

case of health risks through a relationship to disability-adjusted life years (DALYs). This 

is then combined with models to assess the cost associated with water heater energy 

consumption and the cost associated with different outcomes related to scalding risk. 

A previously derived QMRA model for L. pneumophila was used from Hamilton et al. 

(2018) (Hamilton et al., 2019). The 𝑑𝑜𝑠𝑒  is calculated using the concentration of L. 

pneumophila at the showerhead and the shower time (equation 12-14).  

𝐿𝑎𝑖𝑟(𝑡𝑠) = 𝐶𝐿𝑒𝑔 (𝑡𝑠) ∑𝐶𝑎𝑒𝑟𝑜 𝑉𝑎𝑒𝑟𝑜  ∑  𝐹 𝐷    (12) 

𝐿𝑎𝑐𝑐(𝑡𝑠) = 𝐿𝑎𝑖𝑟(𝑡𝑠 − 1)𝑒
−𝑑𝑖𝑡𝑠 + 𝐿𝑎𝑖𝑟(𝑡𝑠)    (13) 

𝑑𝑜𝑠𝑒 = ∑𝐿𝑎𝑐𝑐 𝐵 𝑡𝑠       (14) 

The total L. pneumophila concentration at the fixture, 𝐶𝐿𝑒𝑔 , is the sum of the 

planktonic L. pneumophila 𝐶𝑝 and the sloughed L. pneumophila 𝐶𝑠 over the duration of the 
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shower. The dose is calculated using equations by multiplying the L. pneumophila 

concentration 𝐶𝐿𝑒𝑔 [CFUs / L s], the concentration of aerosols 𝐶𝑎𝑟𝑒𝑜  [# aerosols / m2] (i.e. 

the number of water droplets of diameter i in each respirable size bin 1-10 μm, with the 

majority of respirable droplets falling in the 1-5 μm range), the volume of aerosols 𝑉𝑎𝑟𝑒𝑜 

[L / # aerosols], the fraction of L. pneumophila that partition to each of the aerosol 

diameters, 𝐹, the alveolar deposition efficiency, 𝐷, the rate of inhalation, 𝐵 [m3/min], the 

aerosol removal rate, 𝑑𝑖 (Huang et al., 2020), and the duration of the shower (Appendix 

A, Section 9), 𝑡𝑠 [s] (Hamilton et al., 2018). The L. pneumophila concentration released 

into the air, 𝐿𝑎𝑖𝑟(𝑡𝑠), is used to calculate an air concentration assuming accumulation of 

aerosols, 𝐿𝑎𝑐𝑐(𝑡𝑠), and removal due to ventilation at a rate of 𝑑𝑖 which was found using a 

weighted average of aerosol size (Hamilton et al., 2018) and aerosol decay rate (Huang et 

al., 2020). The accumulated concentration of aerosols is used with the average breathing 

rate to determine the accumulating dose, 𝑑𝑜𝑠𝑒, that is inhaled at each timestep.  

Two dose response models have been previously used to describe L. pneumophila 

subclinical infection or clinical severity infection, where a subclinical infection would be 

a case not requiring seeking of medical attention or potentially Pontiac fever, and a clinical 

severity infection would be a case requiring seeking of healthcare resources (Armstrong & 

Haas, 2007, 2008). The dose response parameter for subclinical infection (𝑟𝑠) and clinical 

severity infection (𝑟𝑐 ) were used and were modeled as lognormal distributions. For 

subclinical infection, the risk of infection (𝑅𝑖𝑠𝑘𝑖𝑛𝑓) can be calculated with equation 15. 

The risk of illness from subclinical infection can be calculated from the risk of infection 

modified to be the risk of illness using the morbidity ratio for elderly individuals (𝑀𝑅𝑒) in 
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equation 16 (Weir et al., 2019). For the clinical dose response, the risk of illness can be 

calculated directly from the dose response parameter for clinical severity infection (𝑟𝑐) and 

the dose of L. pneumophila with equation 17. The use of the clinical severity endpoint as 

representative of illness is supported by an analysis that used a dose response model with 

the same order of magnitude median effective dose (N50) used to reproduce epidemic 

curves that aligned with well-documented LD outbreaks (Prasad et al., 2017).  

𝑅𝑖𝑠𝑘inf = 1 − 𝑒−𝑟𝑠 𝑑𝑜𝑠𝑒                         (15) 

𝑅𝑖𝑠𝑘𝑖𝑙𝑙 = 𝑅𝑖𝑠𝑘𝑖𝑛𝑓 𝑀𝑅𝑒                   (16) 

𝑅𝑖𝑠𝑘𝑖𝑙𝑙 = 1 − 𝑒
−𝑟𝑐 𝑑𝑜𝑠𝑒                  (17) 

The cost associated with the risk of illness for each daily showering event, 𝐶𝑖𝑙𝑙𝑛𝑒𝑠𝑠, 

was calculated in equations 18-19. An approach to monetizing a DALY was taken as 

described in Robinson and Hammitt (2019) (Robinson et al., 2019), making use of the 

value of a statistical life year (VSLY). A VSLY is derived from the value of a statistical 

life (VSL), which is not the value that is placed on saving an identified life with certainty 

but rather is indicative of an individuals’ willingness to exchange money for a small change 

in their own risk (Robinson et al., 2019). A recent (2020) estimate for the United States 

VSL corrected for inflation and changes in real income with a low, central, and high 

estimate of 5.3M, 11.4M, and 17.4M USD, respectively was used (US Department of 

Health and Human Services, 2021). In order to calculate a VSLY from a VSL, the VSL 

must be divided by an estimate of the remaining life years (remaining life expectancy) used 

to estimate the underlying VSL estimate, not the remaining years applicable to the impact 
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of the policy since the idea is to convert a VSL to an equivalent VSLY. A simplifying 

assumption was made that a constant VSLY was applicable and therefore that the value of 

mortality risk reduction increases with life expectancy i.e. decreases with age, averaging 

health status over future life years; the limitations of this assumption are discussed further 

elsewhere (Robinson et al., 2019; Viscusi, 2005; Viscusi, 2008). The estimates for VSL 

derived by the US Department of Health and Human Services (US Department of Health 

and Human Services, 2021) were derived from a meta-analysis of VSL values published 

in the literature (Robinson & Hammitt, 2016), and therefore, it was not possible to ascertain 

a single life expectancy value. To compute a remaining life expectancy, the difference was 

taken between the US average life expectancy in the year the meta-analysis was performed 

(2013) with a point estimate of 78.8 years (Arias et al., 2017) and a normal distribution 

computed for the age of the living adult (>18 years) population in December 2013 with a 

mean of 36.0 years and standard deviation of 18.7 years (US Census Bureau, n.d.). The 

disability adjusted life year for LD (𝐷𝐴𝐿𝑌) of 0.97 years was used from a study of a 

Netherlands population and assumed to be representative of a US population (Hamilton et 

al., 2019). QMRA parameters are summarized in Table A10. 

𝐶𝑖𝑙𝑙𝑛𝑒𝑠𝑠 = 𝑅𝑖𝑠𝑘𝑖𝑙𝑙 ∗ 𝐷𝐴𝐿𝑌 ∗ 𝑉𝑆𝐿𝑌         (18)  

Where: 

𝑉𝑆𝐿𝑌 =  
𝑉𝑆𝐿

𝐿𝑖𝑓𝑒 𝑒𝑥𝑝𝑒𝑐𝑡𝑎𝑛𝑐𝑦 𝑜𝑓 𝑎𝑑𝑢𝑙𝑡 𝑢𝑠𝑒𝑑 𝑡𝑜 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑉𝑆𝐿
                      (19) 
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2.3.9 Scalding model 

A set of simple linear regressions for scalding risk as a function of water temperature 

and shower time were developed based on data from Moritz and Henriques (1947) 

(Appendix A, Section 10). Burns from Moritz and Henriques (1947) were categorized by 

epidermal injury and epidermal necrosis for humans and pigs. Human data were used, and 

the regressions were employed to define temperature-time combinations that resulted in 

each injury type (no injury, injury, or necrosis). Based on the temperature computed at the 

point of use (at the showerhead) and the shower duration, an injury category was assigned 

along with a corresponding cost. The range of temperatures considered in this model 

ranged from 48°C to 63°C. The shower times were modeled as a truncated normal 

distribution with a mean of 7.8 minutes and a standard deviation of 1.2 minutes (DeOreo 

et al., 2016). The reaction time, i.e. the time an elderly person would be exposed to scalding 

hot water before moving away from the water, was modeled as a uniform distribution from 

one to five seconds.  

The daily scalding costs (𝐶𝑠𝑐𝑎𝑙𝑑𝑖𝑛𝑔) were approximated as uniform distributions in 

2020 US dollars (USD) that ranged from 142-222 USD for a clinical visit for an injury, 

and from 629-863 USD for an emergency room visit (necrosis injury category) (Blue Cross 

Blue Shield, 2009). There is uncertainty associated with these values as they can vary based 

on insurance types, geographic region, individual susceptibilities, and the care provider.  
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2.3.10 Energy cost model 

The daily energy cost (𝐶𝑒𝑛𝑒𝑟𝑔𝑦) used in this model was calculated in USD/ day for a 

storage tank water heater using the Department of Energy’s (DOE) method for estimating 

costs and efficiency of water heaters (DOE, n.d.). This was done by first calculating the 

amount of water used and multiplying by the difference in water temperature from the 

desired set point (𝑄𝑑𝑒𝑔𝑟𝑒𝑒) as shown in equation 20 [(L/ day) K].  The average water use 

per capita was estimated as the national average of 291.47 L (77 gallons) per day (Dieter 

et al., 2018). However, this includes both cold and hot water. The U.S. Geological Survey 

estimates that the low end of shower water usage to be two gallons of water per minute 

(USGS, 2021). Assuming an average shower time of 7.8 minutes, the average hot water 

usage for showering (𝑄𝑖𝑛) is approximately 59 L/ day. Therefore, an additional 59 L/ day 

will need to enter the water heater from the main line to replenish the water used for the 

shower. This quantity is multiplied by the difference between the temperature set point 

(𝑆𝑒𝑡𝑝𝑡) and the main line temperature (𝑇𝑚𝑎𝑖𝑛). The cost to heat the water that has cooled 

in the recirculating line was also considered. The volume of water that needed to be 

reheated was calculated from the flow rate in the recirculating line over 24 hours (𝑄𝑟𝑒𝑐). 

The difference in temperature that the water needed to be reheated was calculated from the 

difference between the set point and the water temperature at the end of the recirculating 

line (𝑇𝑒𝑛𝑑).  

The cost to heat a liter of water by one degree (𝑐𝑑𝑒𝑔𝑟𝑒𝑒 𝑙𝑖𝑡𝑒𝑟) is calculated in equation 

21. The price per kWh (𝑃 𝑘𝑊ℎ) varies by region across the US for residential energy usage 

with the average from the US Energy Information Administration (EIA) being 13.04 cents 
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per kWh in 2019 (U.S. Energy Information Administration, n.d.). The Energy Factor (EF) 

is a standardized metric used for the energy efficiency of different appliances. It is 

calculated as a ratio of the theoretical energy use required during a 24-hour period over the 

actual energy use of the appliance. For water heater tanks vary between 0.904 and 0.95, 

with some manufacturers of electric heaters claiming higher values (ENERGY STAR, 

2008). A higher EF corresponds to a more efficient water heater. For this model, the EF 

was modeled as a uniform distribution ranging from 0.904 to 0.95. cp is the specific heat 

of water in J/ kg K and is multiplied by the conversion factor from Joules to kilowatt-hours 

[2.77×10-7 kWh/ J] to reach cp units of kWh/ kg K.   

The daily energy cost (𝐶𝑒𝑛𝑒𝑟𝑔𝑦) is calculated in equation 22 with the cost to heat a liter 

of water by one degree (𝑐𝑑𝑒𝑔𝑟𝑒𝑒 𝑙𝑖𝑡𝑒𝑟 ) multiplied by the amount of water used with 

temperature difference (𝑄𝑑𝑒𝑔𝑟𝑒𝑒).This temperature will vary based on the geographical 

region the premise plumbing system is in, thus, the energy cost will change greatly based 

on the difference between the main water line and the water heater set point. Energy 

parameters are summarized in Table A12.     

𝑄𝑑𝑒𝑔𝑟𝑒𝑒 = 𝑄𝑖𝑛 (𝑆𝑒𝑡𝑝𝑡 − 𝑇𝑚𝑎𝑖𝑛) + 𝑄𝑟𝑒𝑐 (𝑆𝑒𝑡𝑝𝑡 − 𝑇𝑒𝑛𝑑)  (20) 

𝑐𝑑𝑒𝑔𝑟𝑒𝑒 𝑙𝑖𝑡𝑒𝑟 =
𝑃𝑘𝑊ℎ 𝑐𝑝 (2.77𝑒−7)

𝐸𝐹 
      (21) 

𝐶𝑒𝑛𝑒𝑟𝑔𝑦 = 𝑐𝑑𝑒𝑔𝑟𝑒𝑒 𝑙𝑖𝑡𝑒𝑟 𝑄𝑑𝑒𝑔𝑟𝑒𝑒     (22) 
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2.3.11 Integration of infection risk, scalding risk, and energy cost models 

The total cost for each water heater setpoint was calculated with equation 23. Once the 

total cost for each set point was calculated, the minimum cost was selected from the array.  

𝐶𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 + 𝐶𝑠𝑐𝑎𝑙𝑑𝑖𝑛𝑔 + 𝐶𝑒𝑛𝑒𝑟𝑔𝑦    (23) 

2.3.12 Scenario analysis and sensitivity analysis 

To investigate various scenarios for varying the branching pipe insulation, pipe length, 

water velocity, and dose response parameter, 15 additional test cases were considered 

(Table 1). A sensitivity analyses was conducted to examine the impact of individual 

variables (input-output correlations using Spearman rank correlation coefficients) for all 

cases. Additionally, for Case 0 (insulation of the branch pipe, 26 m long recirculating line, 

3.04 m/s velocity of water, and subclinical dose response parameter), interactions between 

variables and their impact on the model output was analyzed using a global Sobol 

sensitivity analysis. The Spearman rank correlation coefficient was calculated using the 

Spearmanr function from the stats package in Python. A Spearman rank correlation 

coefficient ranges from -1 to 1, indicating that parameters closer to these limits have a 

strongly negative or positive correlation in ranks whereas a value of zero would indicate 

no meaningful relationship. Parameters with p values less than 0.05 were determined to be 

statistically significant. The Sobol global sensitivity analysis was performed with the 

SALib package in Python (Herman et al., 2017). For each variable that was represented as 

a distribution on the model, the total, first-order, and second-order indices were calculated. 

Total-order indices (ST) account for the influence of a single variable as well as higher-
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order effects over the entire parameter space. First-order indices (S1) measures the 

influence of a single variable on the output and are displayed by the filled circles near each 

variable name. Second-order indices (S2) measures the contribution of interactions to the 

output as displayed by the thickness of the gray connecting line between two variables. 

Higher values of sensitivity indices represent a greater influence of the parameter(s) on the 

model output. Variables below the threshold value of 0.005 in the SALib package were 

considered non-influential and were not displayed. 

2.3.13 Computational specifications 

All simulations were conducted in Python v 3.6.8. Monte Carlo simulations were 

conducted with 10,000 iterations (Burmaster & Anderson, 1994), a 24-hour model 

initialization period, and using random sampling.  Several Python libraries were used 

including torch, torch.nn, torchdiffeq (odeint), matplotlib,pyplot, matplotlib.patches 

(Patch, math), torch.distributions, time, typing, pickle, numpy, pandas, seaborn, os, scipy, 

SALib.sample (saltelli), SALib.analyze (sobol), SALib.tesst_functions (Ishigami), 

itertools, math (pi), and matplotlib.legend_handler (HandlerPatch) (see supplemental code 

files). 

Differential equations were solved using the 5th order Dormand-Prince method, an 

adaptive step ODE solver with a relative tolerance limit of .0001 and absolute tolerance 

limit 0.01 (Dormand & Prince, 1980). We implement ODE equations using PyTorch and 

solve these equations using the “torchdiffeq” package (Paszke et al., 2019). This 

architecture allows for parallel processing of thousands of simulations at once, GPU 

acceleration, and end-to-end differentiability. In particular, our system’s differentiability 
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allows users to tune simulation parameters to real-world data using gradient descent. This 

enables integration and joint optimizations with other machine learning systems and neural 

differential equations (Chen et al., 2018). 

2.4 Results 

2.4.1 Simulation of conditions throughout the premise plumbing system 

The temperature, chlorine, planktonic L. pneumophila concentration, sloughed 

(biofilm-associated) L. pneumophila concentration, and remaining L. pneumophila in the 

biofilm were calculated throughout the system for all simulated time points for a base case 

(Case 0) as well as different combinations of system parameters (Case 1-15) (Appendix 

A, Section 13). The values for the temperature, chlorine, and planktonic L. pneumophila 

concentration were displayed over time in the heatmaps in Figure 5 for Case 0 for select 

water heater set points to demonstrate trends. As the water heater temperature set point was 

increased, the temperatures throughout the system increase. Despite the variation in set 

point from 48°C to 63°C, free chlorine residual concentrations throughout the system were 

all at low concentrations until chlorinated water from the main line entered as the shower 

turned on (𝑡𝑠 = 1). The manufacturer-reported lower limit of the analytical range for some 

commonly used spectrophotometric methods for free and/or total chlorine in practice is 

approximately 0.02 mg/ L (low range kits) to 0.2 mg/L (high range kits), with 

measurements below this range having a greater associated error and therefore indicating 

some potential challenges with measuring very low chlorine concentrations in practice 

(Hach, 2018). The concentration of L. pneumophila in both the planktonic form and within 

the biofilm decreased as the water heater set point was increased over the range of set 
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points. The planktonic L. pneumophila concentrations remain relatively constant at a set 

point between 48°C and 54°C, but will decrease rapidly in the heated regions ≥60°C. 

Similarly, the concentration in the biofilm also rapidly decreases with an increase in 

temperature. The majority of the L. pneumophila in the system is originating from the 

biofilm rather than the planktonic state (the ratio of planktonic to biofilm ranges from 

~1.6% to 2.4% in the current model), consistent with estimates of about only 5% of 

microbial cells thought to exist in the planktonic state in a pipe (Flemming et al., 2002). 

The branching pipe will be stagnant until the shower is turned on and consequently, the 

temperature in the branch is more isolated and consequently less impacted by the set point 

temperature until the shower is turned on. The biofilm residing on the inner surfaces of the 

water heater was not considered due to a high degree of heterogeneity and complexity 

related to biofilms within the water heater.  

Figure 5. Median of 10,000 Monte Carlo iterations for temperature, free chlorine 

concentration, and L. pneumophila concentration in bulk water for Case 0 for 49°C and 
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60°C. Case 0 includes insulation of the branch pipe, 26 m long recirculating line, and 

velocity of the water is 3.04 m/s.  

2.4.2 Identification of optimal water heater set point 

The parameters of the plumbing system calculated throughout the model were used 

to calculate the costs of infection, energy usage, and scalding per showering event as shown 

in Figure 6 for an elderly hospital room occupant for each scenario. The total cost was 

calculated from the sum of these values for subclinical and clinical dose response parameter 

scenarios. The optimal water heater set point corresponds to the minimum total cost for 

each set of conditions. Considerations regarding the magnitude of each cost are included 

in the discussion. The optimal water heater temperature set point based on the minimum 

total cost for each case is shown in Table 1. Optimum set points ranged from 48°C to 59°C 

for all cases.  

A large difference in optimal set point was observed depending on the choice of 

dose response model (subclinical or clinical severity infection) (Figure 6). The use of a 

subclinical infection dose response model generally resulted in higher optimal setpoints 

(55-59°C) due to a more conservative treatment of the health endpoint (any infection vs. 

an infection requiring clinical attention) and therefore in the cost calculations will result in 

a prioritization of infection risks compared to the other considerations. Therefore, for the 

case of subclinical dose response, the infection cost is the driver of the total cost, whereas 

the energy cost is the driver of total cost in the scenario where the clinical dose response 

parameter is used. For the base case scenario (Case 0), optimum set points were determined 

to be 56°C if using a subclinical dose response model and 48°C if using a clinical severity 
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dose response model (Case 8). These had median cost values of 88.31 USD and 3.47 USD 

respectively. The costs for the subclinical dose response parameter ranged from 86.25-

2,902 USD while the costs for clinical dose response ranged from 3.47-11.73 USD. This 

is expected due to the more conservative treatment costs associated with subclinical 

infection and emphasizes the importance of the choice of dose response parameter for the 

scenario of interest. 
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Table 1. Case conditions tested on this model. Variations included insulation on the branching pipe, pipe length, water velocity and 

dose response parameter. Additionally, results for optimal set point for tested case conditions and median costs associated with 

optimal set point are also displayed. 

Scenarios Decision 

analysis 

result 

Results at optimum set point 

Case 

Number 

Branch 

Insulation 

Pipe 

Length 

Water 

Velocity 

Dose 

Response 

Parameter 

Optimal 

Temperature 

Set Point 

Energy 

cost 

(USD-

5th, 

50th, 

95th)  

Microbial 

risk cost 

(USD- 5th, 

50th, 95th)  

Median 

scald 

cost 

(USD-

5th, 

50th, 

95th) 

Total cost  

(USD-5th, 

50th, 95th) 

Median 

microbial 

risk (5th, 

50th, 95th) 

Scald risk 

(no 

injury, 

injury, 

necrosis)* 

Case 0 Yes 26 m 3.04 m/s Subclinical 56°C 2.50 

3.82 

5.83 

3.69 

84.43 

7356.96 

0.00 

0.00 

0.00 

7.54 

88.31 

7360.23 

1.58E-05 

2.82E-04 

3.64E-03 

1.00 

0.00 

0.00 

Case 1 Yes 52 m 3.04 m/s Subclinical 56°C 4.76 

7.26 

11.08 

3.70 

82.89 

6912.72 

0.00 

0.00 

0.00 

11.19 

90.13 

6917.08 

1.61E-05 

2.78E-04 

3.80E-03 

1.00 

0.00 

0.00 

Case 2 Yes 26 m 1.52 m/s Subclinical 55°C 2.43 

3.66 

5.68 

7.78 

185.37 

18060.44 

0.00 

0.00 

0.00 

11.76 

188.62 

18063.78 

3.46E-05 

6.30E-04 

9.06E-03 

1.00 

0.00 

0.00 

Case 3 Yes 26 m 1.90 m/s Subclinical 56°C 2.50 

3.81 

5.82 

5.97 

141.37 

10694.75 

0.00 

0.00 

0.00 

9.80 

145.33 

10698.88 

2.64E-05 

4.69E-04 

6.35E-03 

1.00 

0.00 

0.00 

Case 4 Yes 52 m 0.30 m/s Subclinical 55°C 4.30 

6.49 

10.08 

118.85 

2903.31 

210791.99 

0.00 

0.00 

0.00 

126.03 

2911.33 

210798.13 

5.15E-04 

9.95E-03 

1.24E-01 

1.00 

0.00 

0.00 
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Case 5 Yes 52 m 1.52 m/s Subclinical 55°C 4.59 

6.92 

10.76 

8.08 

185.23 

18313.66 

0.00 

0.00 

0.00 

15.35 

192.59 

18327.57 

3.45E-05 

6.31E-04 

8.95E-03 

1.00 

0.00 

0.00 

Case 6 Yes 26 m 0.30 m/s Subclinical 56°C 2.42 

3.69 

5.63 

125.61 

2897.83 

195685.96 

0.00 

0.00 

0.00 

129.21 

2902.13 

195690.37 

5.26E-04 

9.83E-03 

1.18E-01 

1.00 

0.00 

0.00 

Case 7 No 26 m 3.04 m/s Subclinical 59°C 2.72 

4.17 

6.39 

3.62 

82.05 

8068.23 

0.00 

0.00 

0.00 

7.83 

86.25 

8071.15 

1.55E-05 

2.83E-04 

3.69E-03 

1.00 

0.00 

0.00 

Case 8 Yes 26 m 3.04 m/s Clinical 48°C 1.88 

2.87 

4.42 

0.02 

0.31 

13.52 

0.00 

0.00 

0.00 

2.14 

3.46 

16.65 

8.17E-08 

8.02E-07 

7.78E-06 

1.00 

0.00 

0.00 

Case 9 Yes 52 m 3.04 m/s Clinical 48°C 3.56 

5.44 

8.40 

0.03 

0.35 

13.92 

0.00 

0.00 

0.00 

3.93 

6.21 

19.53 

9.63E-08 

9.38E-07 

8.03E-06 

1.00 

0.00 

0.00 

Case 10 Yes 26 m 1.52 m/s Clinical 48°C 1.87 

2.86 

4.40 

0.04 

0.64 

27.50 

0.00 

0.00 

0.00 

2.25 

3.84 

30.18 

1.38E-07 

1.67E-06 

1.70E-05 

1.00 

0.00 

0.00 

Case 11 Yes 26 m 1.90 m/s Clinical 48°C 1.87 

2.86 

4.41 

0.04 

0.49 

23.18 

0.00 

0.00 

0.00 

2.21 

3.68 

26.43 

1.14E-07 

1.28E-06 

1.37E-05 

1.00 

0.00 

0.00 

Case 12 Yes 52 m 0.30 m/s Clinical 55°C 4.21 

6.49 

9.97 

0.20 

4.66 

229.80 

0.00 

0.00 

0.00 

5.71 

11.78 

238.22 

6.32E-07 

1.18E-05 

1.34E-04 

1.00 

0.00 

0.00 

Case 13 Yes 52 m 1.52 m/s Clinical 48°C 3.53 

5.40 

8.33 

0.05 

0.68 

31.33 

0.00 

0.00 

0.00 

4.08 

6.65 

36.82 

1.59E-07 

1.81E-06 

1.82E-05 

1.00 

0.00 

0.00 

Case 14 Yes 26 m 0.30 m/s Clinical 56°C 2.42 

3.69 

5.62 

0.21 

4.55 

299.61 

0.00 

0.00 

0.00 

3.51 

8.51 

302.36 

6.63E-07 

1.17E-05 

1.34E-04 

1.00 

0.00 

0.00 

Case 15 No 26 m 3.04 m/s Clinical 48°C 1.88 

2.87 

4.42 

0.02 

0.31 

13.75 

0.00 

0.00 

0.00 

2.14 

3.45 

16.98 

8.23E-08 

8.01E-07 

7.91E-06 

1.00 

0.00 

0.00 
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*proportion of scald model iterations that fall within the injury category 
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Subclinical dose response model Clinical severity infection dose response 

(A) Effect of branch insulation 

Case 0 – with insulation 

 

Case 7- without insulation 

 

Case 8 - with insulation 

 

Case 15 - without insulation 

 
(B) Effect of length of hot water line and recirculation line at a faster velocity 

Case 0- short line, fast velocity 

 

Case 1- long line, fast velocity 

 

Case 8 - short line, fast 

velocity 

 

Case 9 - long line, fast velocity 
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(C) Effect of length of hot water line and recirculation line at a slower velocity 

Case 2- short line, slow 

velocity 

 

Case 5- long line, slow 

velocity 

 

Case 10 - short line, slow 

velocity 

 

Case 13 - long line, slow 

velocity 

 
Effect of water velocity 

Case 0- faster velocity 

 

Case 6- slower velocity 

 

Case 8 - faster velocity 

 

Case 14 - slower velocity 

 
 

Figure 6. Comparison of select scenarios and effect on total cost and corresponding optimum water heater set point. The dark lines 

of each color are the median for that cost with the shaded regions being the 5th and 95th percentiles. The optimal water heater 

temperature to minimize costs has been circled on each graph.
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2.4.3 Scenario analysis for multiple cases and sensitivity analysis for Case 0 

2.4.3.1 Spearman rank correlation for all cases 

The associated Spearman rank coefficient for correlations between input distributions 

and the total cost for all cases is shown in Figure 7 (left panel). For subclinical cases (0-

7), there was a strong negative correlation with the shower duration, biofilm density, and 

VSLY (i.e., Monte Carlo variable for remaining life expectancy). There was a strong 

positive correlation with the initial CFU in the biofilm. Using a clinical dose response 

model (cases 8-15), the response time (“jump time”), the price per watt, and the initial CFU 

in the biofilm show the largest positive correlation coefficients and are statistically 

significant (p < 0.05), indicating that these parameters are the most influential parameters 

for the clinical dose response. The shower duration, biofilm density, and VSLY show a 

negative correlation.  

 

Figure 7. Left: Spearman rank correlation coefficient heatmap for subclinical and clinical 

dose response. Parameters shown in black do not apply to the indicated scenario. Right: 
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Sobol Global Sensitivity Analysis for Case 0. The total-order indices (ST) are shown by 

hollow circles. First-order indices (S1) measures the influence of a single variable on the 

output. Second-order indices (S2) measures the contribution of interactions to the output. 

2.4.3.2 Sobol global sensitivity analysis for Case 0 

The Sobol global sensitivity analysis for Case 0 is shown in Figure 7 (right panel). 

The variables with significant indices were the shower duration, dose response, VSLY 

(remaining life expectancy and VSL Monte Carlo parameters), select aerosolization values, 

initial CFU in the biofilm, biofilm density, and breathing rate. The values of the indices are 

represented by the size of the circles. The variables with the largest total and first-order 

indices were shower duration, initial CFU in the biofilm, subclinical dose response, and 

VSLY (remaining life expectancy). These four parameters were influential independently 

as well as with other parameters. The most notable second-order index as displayed by the 

thickness of the gray connecting lines is between the remaining life expectancy to the 

breathing rate and select aerosolization values, which have non negligible correlation 

coefficients on the final costs. These variables together have a notable influence on the 

model, also confirmed by the Spearman correlation coefficients for Case 0 (Figure 7). The 

strong interactions between these variables occur in the intermediate calculations for the 

cost of infections.  
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2.4.4 Scenario analysis 

The scenario analysis varied several parameters determined to be uncertain (Table 1) 

including the branch insulation (insulated vs. not insulated), length of the recirculating line 

(26 or 52 m), the velocity of water in the pipes (0.30 to 3.04 m/s), and dose response model 

(subclinical or clinical severity infection). A comparison of select scenarios is shown in 

Figure 6 for effects of changing the branch pipe insulation (5A), varying the length of the 

hot water line and recirculating line (5B-C), and varying the water velocity (5D).  

Insulation on the branching pipe leading to the shower has the greatest effect on the 

scalding cost. Removing the insulation from the branch will drastically decrease the 

scalding risk for the proposed model (Figure 6A). The length of the pipe and the 

recirculating line will also influence the energy cost. As the water in the pipe has increasing 

time to cool down, the water heater must use more energy to heat the recirculated water 

back to the set point temperature (Figure 6B). At slower water velocities, the infection cost 

increases in addition to the energy cost for longer pipes (Figure 6C). Slower water velocity 

increases the time water spends in the pipe and recirculating line and the water can reach 

lower temperatures that are better for L. pneumophila growth. The increased L. 

pneumophila growth increases the infection cost (Figure 6D). As noted in Section 4.2, the 

dose response parameter chosen will have the greatest impact on determining which 

variable has the greatest influence over the optimal set point. The selection of a subclinical 

dose response parameter increases the cost of infection, which will be greater than the 

energy cost and unaffected by the risk of scalding until temperatures of 59°C. Using the 
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clinical dose response parameter lowers the cost of infection to be at the same order of 

magnitude or lower than the energy cost, making energy cost the most influential variable. 

As a result, it is recommended that the dose response chosen should be carefully considered 

prior to conducting a decision analysis. The importance of considering multiple dose 

response models has previously been emphasized for QMRA of other pathogens (Van Abel 

et al., 2017).   

2.5 Discussion 

The physical system modeled was a simplified model of what might be found in a 

hospital plumbing system leading to a patient room. A water heater, hot water line, 

recirculating line, and branching pipe were included for analysis. The cold water line and 

any mixing valves were excluded from this model as a simplifying assumption but will be 

necessary for a full consideration of risk; incorporating mixing would also presumably 

lower the scalding risk even at higher temperatures but could present opportunities for 

growth on the surfaces of valve components or the introduction of zones of stagnation into 

the system that will vary depending on the placement of the valve (Brûlet et al., 2008; Hugo 

Johansson et al., 2006; Rasheduzzaman et al., 2020). The branching pipe from the hot water 

line to the shower was the only branching pipe considered, although many other lines 

leading to other showers, sinks, and equipment would also be present in a real building. 

The water heater chosen is large and could be used in a hospital setting, although many 

buildings will have more than one large water heater in service to meet peak demand. 

Additionally, some hospitals may use point-of-use heating devices or thermostatic devices 
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that limit temperature ranges to below scalding temperatures. The impact of different water 

heater types, valves, and pipe materials was not considered. However, with additional 

information, this model can presumably be scaled up and applied to a more complete 

hospital premise plumbing configuration but requires validation in order to do so. Demand 

information from a residential setting was used for describing individual patient water 

demand in this model and may not fully describe hospital water demand; water demand 

can be modified if specific information is available for a particular hospital or other setting. 

Sufficient information is not yet available to quantitatively predict concentrations of L. 

pneumophila as a combination of water quality factors. It is presumed that different water 

qualities such as soft vs. hard water, warm vs. cold water, or surface water vs. groundwater 

sources would impact quality and therefore the propensity for Legionella growth. In areas 

where hard water is an issue, water softeners may also be employed which will affect water 

chemistry as well. Investigation of the effects of softeners was beyond the scope of the 

current modeling effort, but recent data from an Arizona study of a commercial building 

indicated potential removal of free chlorine residual by a water softener system, which 

could impact Legionella spp. growth (Richard et al., 2020). Water quality factors such as 

high organic carbon (e.g. total organic carbon [TOC] or assimilable organic carbon [AOC]) 

may also lead to the growth of opportunistic pathogens (LeChevallier et al., 1993, 1996; 

van der Kooij, 1990; Volk et al., 2000). The relative composition of AOC and TOC may 

play a role in Legionella spp. growth and differ between hot and cold water (van der Kooij 

et al., 2017). TOC was addressed in the L. pneumophila kinetic parameters based on 
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available experimental data (AWWA, 2018), however more detailed analysis of the 

relationship between the type of organic carbon present and L. pneumophila could be 

accounted for in a more detailed model.  

Hard water caused by the presence of multivalent cations can cause scaling (Van der 

Bruggen et al., 2009). Scaling in the plumbing system was not considered for this model 

despite its potential to influence the lifetime of the water heater, add regular maintenance 

costs, and increase energy cost because buildup on the heating elements will decrease heat 

transfer efficiency (Hofman et al., 2007). Different methods for scaling prediction have 

been proposed, but the complexity of scaling leads to many limitations that are 

acknowledged (Brink et al., 2004; International Desalination Association, 2006). New 

methods have recently been developed to calculate the calcium carbonate saturation in 

drinking water that can be explored in future iterations of this model if a chemical 

assessment of the water entering the premise plumbing system is conducted (de Moel et 

al., 2013).  

The scalding model used in this decision analysis evaluated the endpoints of epidermal 

injury or epidermal necrosis defined in Moritz and Henriques (1947) to be a 1st degree 

reaction with hyperemia without loss of the epidermis or a 2nd or 3rd degree reaction with 

complete epidermal necrosis. Using regression equations fit to data from Moritz and 

Henriques (1947), we used three injury categories for scalding (no injury, injury, or 

necrosis). However, different assumptions regarding how scalding data are pooled can 

result in slightly different values for optimum set point (Appendix A, Section 10). The 
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scalding severity was determined by using data from human and pig skin experimentation 

from Moritz and Henriquez (Moritz & Henriques, 1947), which was performed using a 

running stream of hot water brought into direct contact with the skin using a metal cup 

covered with a pad of closed-cell sponge rubber to insure a watertight contact. This 

situation produced time-temperature-injury curves but may be slightly conservative due to 

the stringent contact conditions. A reaction time of five seconds was assumed the 

maximum time the model for removing a hot stimulus, and this may be overly optimistic 

given that some elderly populations in hospital care may have reduced reaction times to 

injuries or other conditions. Scalding and infection injuries were considered only from 

showers; however, sinks and toilets may also be a source of LD or Pontiac Fever infections 

(Hamilton et al., 2019), and scalding could reasonably occur at sinks or bathtubs as well. 

Bathtubs were not considered in the current model. 

For the purposes of this model, a clinical visit cost was assumed if the time of exposure 

and water temperature was above the epidermal injury threshold but below the epidermal 

necrosis threshold. An emergency room visit cost was assumed if the time of exposure and 

water temperature was above the epidermal necrosis threshold. This may be a conservative 

estimate due to 1st degree or epidermal burns being categorized as burns with minimal 

damage, whereas 2nd degree or dermal burns extend past the epidermal layer causing 

damage in the dermal layer, and 3rd degree or subdermal burns are complete destruction of 

the dermis (Martin & Falder, 2017). However, a great number of factors can affect the 

severity of a burn. Location of the burn on the body is expected to vary in severity due to 
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the variation of skin thickness throughout the body. Skin thickness is also impacted by age 

and underlying disease. After burn care can also greatly affect the severity of a burn. All 

these variables should be considered on an individual basis, making a generalizable burn 

model very difficult to achieve (Martin & Falder, 2017). 

Numerous challenges exist for verification and/or validation of this model and similar 

premise plumbing models. Validation of health risk predictions would involve comparison 

with disease outcome statistics which in most cases would not be possible at the desired 

level of granularity and therefore our focus here will be on verification. Calibrating the 

concentration portion of this model will involve operating premise plumbing systems at 

multiple scales with well-developed, representative biofilms and conducting frequent 

sampling of L. pneumophila, free chlorine, temperature, and other meta-data. A variety of 

disparate laboratory scale experimental models exist for monitoring L. pneumophila 

growth within various plumbing system schematics that are challenging to integrate with a 

full-scale, decision-relevant mechanistic model as has been done here. While several 

bench- and pilot scale laboratory studies (Proctor, 2014; Rhoads et al., 2015, 2017) and 

some studies at the building-scale (Ley et al., 2020; Salehi et al., 2018) have informed the 

knowledge base for Legionella spp. growth, these concepts have not yet been linked in a 

quantitative way to predict the “trouble spots” in real buildings for informing interventions 

before an outbreak arises and significant barriers exist to integrating this information across 

multiple scales. Full-scale plumbing systems that include both the water heater and the 

pipes have been analyzed (Rhoads et al., 2016), along with the effects of the pipe 
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orientation within the premise plumbing system (Rhoads et al., 2015). A variety of 

simulated water heaters scaled to a benchtop size have also been investigated (Proctor et 

al., 2017; Shaheen et al., 2019). The simulated water heater allows for controlled 

environments where microbial growth can be closely monitored in response to changing 

water temperatures, pipe material, and initial water chemistry. Models using software 

packages such as EPANET or others have been proposed for modeling lead in premise 

plumbing (Burkhardt et al., 2020) or temperature (Hillebrand & Blokker, 2021) for various 

aspects of hot and cold water systems but have not integrated these approaches for 

modeling Legionella spp. specifically. Stone et al. (2019) addressed Legionella growth and 

infection risks in a horizontal water heater using the advanced computational fluid 

dynamics (CFD) software ANSYS (Stone et al., 2019). However, these models exclude the 

pipes leading to the shower and the recirculating lines in their computational analysis, and 

do not consider health risks. 

A quantitative relationship for L. pneumophila growth in operational premise plumbing 

systems has not yet been proposed, and few computational models have assessed L. 

pneumophila growth in plumbing systems. The goal is to use this model is therefore to use 

it as a basis for proposing additional work and identifying the drivers of the model so that 

information collection can be more judiciously targeted toward high-impact parameters 

during a calibration effort. The generalized framework presented here could also be easily 

adapted for a variety of building situations and configurations. This approach also allows 

for a greater degree of complexity to be added if such information were available for a 
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particular building. Therefore, prior to application of this model in practice, verification is 

needed (1) at the pilot scale; and (2) at the full building-scale for a variety of pipe materials 

and configurations, operational strategies, and exposure scenarios. Ideally, information on 

pathogens in both biofilm and bulk water could be collected along with a rich set of meta-

data to support such an effort. In contrast, Saetta et al. (2021) (Saetta et al., 2021) used a 

data-driven approach to chlorine residuals without accounting for mechanistic aspects of 

the system using gradient-boosting machine models, indicating that in the future either 

mechanistic models with learned parameters or purely data-driven models could provide 

improved predictive power for L. pneumophila.  

The quantity of L. pneumophila in the biofilm and in sloughing events will vary greatly 

due to the fluid dynamics within the pipes, stagnation, chlorine residual, and the available 

nutrients in the local water among other things. All the parameters used to calculate the 

biofilm contributions to this model were taken from scenario-specific cases at the bench 

scale, and more information would be needed to be integrated to reflect the type of 

heterogeneity expected in a full-scale system. A simple modified plug-flow approach with 

axial dispersion in the water heater only was taken for modeling flow dynamics in the 

system due to simplicity in this framework. However, with additional system-specific 

information, a more complex approach such as CFD or similar methods could be used for 

a more nuanced consideration of flow within the system. In the current work, a planktonic 

concentration upper-bound limit of 104.17 CFU/L after 21 days of incubation at 37°C in tap 

water was used for constraining the simulated 24-h stagnation period prior to a shower 
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event, as this was the highest concentration observed in a study of L. pneumophila 

stagnation (Yee & Wadowsky, 1982), however the authors noted that the plate count may 

be an underestimation of viable L. pneumophila present due to differences between 

laboratory stock strains and those adapted to growing in water. Additionally, uncertainty 

regarding the net impacts of stagnation and other water quality factors on L. pneumophila 

concentrations remains uncertain (Rhoads & Hammes, 2021), and additional sensitivity 

analysis on the impact of this constraining variable is warranted. 

The model made use of a large literature of disparate kinetic information for L. 

pneumophila behavior in the planktonic and biofilm-associated forms in the presence of 

free chlorine disinfectant as well as different temperatures. Many of these experiments 

were performed at the bench scale under various conditions for solute concentrations and 

reactor setup, indicating the need for more information to reliably fill out this parameter 

space. To calculate kinetic constants beyond the observed ranges of information for 

chlorine inactivation at various temperatures, the Arrhenius equation was used. However, 

the authors cautioned against extrapolating their results beyond 25°C, which in this case 

was required due to a lack of additional experimental information for all required 

temperatures needed for the model. Chlorine demand due to other water quality aspects 

aside from TOC were not considered, resulting in conservative estimates for the 

concentration of chlorine in the modeled system. Recent studies have added to the literature 

on kinetic information (Papagianeli et al., 2021), and additional kinetic information would 

improve the robustness of this model. It is also noted that the water heater set point may 
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not always be fully accurate or fully encompass temperature variations. Consideration of 

temperature and disinfection kinetics in the context of stagnation time, nutrient availability, 

and other considerations is also needed. A disinfectant dose-dependent variability in 

disinfection efficacy for L. pneumophila was not considered and a more rigorous meta-

analysis of disinfection models for L. pneumophila is recommended as an outcome of this 

work. 

Several uncertainties to address involve the selection of dose response models and 

morbidity ratios for LD infection. Two dose response parameters were used in the case 

studies to calculate the risk of infection which influences the optimal water heater 

temperature set point, with terminologies of “subclinical” vs. “clinical severity infection” 

used from prior QMRA work (Armstrong & Haas, 2007, 2008). A morbidity ratio specific 

to elderly populations (Weir et al., 2019) was used in addition to DALYs, VSL, and life 

expectancy to calculate the cost of infection. A DALY estimate from the Netherlands was 

used that did not differentiate between clinical and subclinical cases. Overall, there is a 

lack of information on DALY estimates from the US for LD or Pontiac fever, and US-

based estimates would be needed to update this estimate in the model. The same morbidity 

ratio, DALYs, VSL, and life expectancy was applied for both dose response scenario and 

the VSL was not corrected for age. Therefore, the health-associated parameters would not 

apply to all populations as the focus here was on an elderly hospital vulnerable population. 

However, these data could be included if other populations were to be considered. Future 

efforts for dose response model validation could be made to examine the implications of 
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subclinical infections and account for these costs more explicitly in the calculation for a 

DALY. 

Perhaps counterintuitively, the clinical severity dose response results in a lower cost of 

infection despite having a greater severity due to the fact that the dose response relationship 

results in a lower likelihood of illness using the clinical severity dose response relationship 

compared to multiplying the probability of infection generated with the subclinical 

infection dose response model by a morbidity ratio. While the clinical severity infection 

relationship aligns with efforts to use QMRA to re-produce epidemic curves (Prasad et al., 

2017), additional validation of dose response and morbidity ratio relationships would be 

useful for identifying specific modulating factors in susceptibility and modifying the 

currently developed model to other scenarios and populations of interest. Further validation 

efforts for dose response datasets would be useful for clarifying the interpretation of the 

outcomes of subclinical infection and clinical severity infection as distinct independent 

versus conditional outcomes. 

The type of susceptible subpopulation considered could also impact the exposure 

factors chosen; in this case, a 1.0 to 5.0-second reaction time was conservatively chosen 

for an elderly person removing themselves from a water temperature that could pose a 

danger of scalding. Reaction times to a stimuli can be shorter than 1s (Brenner & Smeets, 

2019). However, while contact heat pain thresholds may not differ between the elderly and 

other populations (El Tumi et al., 2017), actual duration of contact with the hot water of up 

to 5 seconds is assumed to be reasonable as elderly individuals can have co-occurring 
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conditions and decreased mobility compared to younger, healthy individuals (Durand et 

al., 2012; Hewitt et al., 2007; Huyer & Corkum, 1997; Stone et al., 2000).  

Cost assumptions were made for the risk of infection, risk of scalding, and energy cost. 

The predicted costs will vary regionally according to local energy costs, medical costs, as 

well as costs of illness and can be discounted or have uncertainty accounted for accordingly 

in a more detailed consideration of situation-specific costs. This model was limited to only 

a small section of a clinical plumbing system, the average daily water use per capita was 

estimated to be the use for a single patient. The average was used to calculate the 

approximate energy cost to heat the used and recirculating water. This value inherently has 

a lot of uncertainty, as a patient might need a lot more or a lot less water depending on the 

reason for hospitalization. For example, patients with scalding might require that they have 

baths multiple times a day, whereas other patients might not require a bath for 24 hours. 

The cost of heating the water will also depend on the location of the patient room relative 

to the water heater. The further the room, the more the water will cool down and the more 

energy will be required to heat it again. The model did not account for variations beyond a 

single day of operation and exposure, and therefore future models could account for the 

dynamics of the costs over a more comprehensive timeframe, including construction and 

operation, health risks, and scalding risks during a longer time-frame, accounting for 

discounting or weighting preferences for these attributes.  

Choosing appropriate time horizons will be needed for applying discount rates and 

estimating the effects of decision-making over a more realistic operational timeline. To this 
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end, it would be complex to consider the dynamics of pathogen growth over a longer time 

range without additional kinetic information and quantitative relationships between 

performance, stagnation, and occurrence of L. pneumophila in the biofilms and bulk water. 

Presumably if an issue such as an outbreak or scalding episode were to occur, changes 

would be made to water operation that would impact the putative risks. More mechanistic 

understanding of these relationships would allow for implementation of such a model. 

Importantly, the costs associated with remediating a system after a L. pneumophila 

contamination event and the role an initial colonization an event can play in re-seeding the 

system were not considered but presumably would further elevate the importance of 

infection risk as a driving factor in the model. The current model is initialized over a 24-h 

period but could be modified to allow for different stagnation periods. While systematic 

studies of the costs of remediation are not currently available, follow-up studies of 

Legionella spp. after colonization events indicate that long-term measures such as building-

level disinfection may be necessary to  control colonization and would incur additional 

costs (Coniglio et al., 2018), in addition to sampling costs, maintenance, legal, and 

personnel costs. Recolonization after disinfection, heat treatment, or UV treatment may 

occur on a timeframe of weeks to months in water distribution systems and/or premise 

plumbing (Lin et al., 1998; Liu et al., 1995, 1998; Rhoads et al., 2016). Only direct costs 

were considered for infection and scalding and did not account for example, for lost wages 

due to missed work or other costs such as lawsuits resulting from a case of illness or injury, 

pain and suffering, or long-term impacts and associated future costs from infection and/or 
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scalding. Additional cost evaluation methodology such as cost-benefit or cost-effectiveness 

approaches could also be used. 

2.6 Conclusion 

A computational framework is presented for evaluating an optimal water heater 

temperature set point for reducing energy costs and health risks for a single showering 

exposure event. This framework uses a quantitative microbial risk assessment (QMRA) 

model to assess the risk of infection from shower aerosol exposure in terms of DALYs and 

daily costs. The cost associated with the risk of scalding was evaluated, along with the cost 

of energy used to heat the water for a variety of uncertain assumptions related to the system 

design, operation, and risk assumptions. As a starting point, a use-case was developed for 

a hypothetical hospital room located in the United States that would serve a susceptible 

hospitalized population. 

The model provides a valuable means of exploring the impact of interactions between 

the assumptions and evaluated tradeoffs between infection risk for LD, scalding risk, and 

energy costs. Overall, the model was most sensitive to assumptions regarding the system 

configuration and dose response model chosen for analysis. In all cases, the scalding risk 

was not a driver of total cost until the higher set points, assuming no thermostatic mixing 

valve in use (≥59°C). The use of a subclinical infection vs. a clinical severity infection dose 

response model dictated the rank order of infection and energy costs, with the more 

conservative (subclinical) model resulting in a prioritization of infection considerations 
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over the other (energy cost or scalding) considerations. The sensitivity analyses indicated 

that biofilm dynamics drove risk estimates, as well as assumptions regarding energy price. 

Limitations and additional considerations for the model were discussed. 

The approach proposed in this work should be a companion tool to other simple, direct 

evidence-based approaches and a complex model may not be warranted in every situation. 

The uncertainties identified in this work could also be reduced with the use of site-specific 

information regarding building design and operation. With further validation, this model 

could be used by building owners and architects to assess the cost associated with the risk 

of infection or scalding, as well as the energy cost to heat different plumbing configurations 

in different climates.  Ideally, architects will be able to use this tool to minimize total costs 

for different scenarios by evaluating pipe materials, pipe lengths, pipe sizes, stagnant dead 

ends, or insulation prior to the construction phase. Building owners can use this tool for 

existing plumbing systems to make operational improvements by determining the optimal 

water heater temperature set point, adding or removing insulation, or taking regular 

preventative measures to mitigate L. pneumophila growth. This model contributes to the 

mechanistic understanding of system dynamics within premise plumbing systems and 

serves as a good base for the addition of other pathogens like mycobacteria, disinfection 

byproducts, or the cost of emissions for fossil fuel usage. As such, the current analysis 

could constitute a piece in a larger consideration of more holistic building design and 

operational decision support tools. 
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CHAPTER 3 

DEVELOPMENT AND SENSITIVITY ANALYSIS OF A POPULATION ECOLOGY- 

EXPOSURE ASSESSMENT MODEL FOR ANTIBIOTIC-SUSCEPTIBLE AND 

ANTIBIOTIC-RESISTANT E. COLI HEALTH RISK IN RECREATIONAL WATER 

In preparation for a June 2023 journal submission. 

This chapter will be prepared as a manuscript for journal submission. The list of current 

authors is as follows: Ashley Heida, Mark T. Hamilton, Julia Gambino, Kaylee Sanderson, 

Mary E. Schoen, Michael A. Jahne, Jay Garland, Lucia Ramirez, Allison J. Lopatkin, Kerry 

A. Hamilton. 

 3.1 Abstract 

Understanding and predicting the role of waterborne environments in transmitting 

antimicrobial-resistant (AMR) infections is critical for public health. Urinary tract 

infections (UTI) caused by the waterborne bacteria Escherichia coli (E. coli) and antibiotic-

resistant extended-spectrum beta-lactamase-producing (ESBL) E. coli are important causes 

of disease globally with limited information available regarding the progression from 

intestinal or extra-intestinal colonization to disease. A population ecology model with an 

exposure assessment designed to inform quantitative microbial risk assessment (QMRA) 

is proposed to incorporate mechanistic information on UTI infection development. 

Parameters describing one horizontal gene transfer (HGT) mechanism, conjugation, were 

incorporated into the population ecology model to examine the impacts over time on the 
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potential dose of ingested antibiotic susceptible E. coli and ESBL E. coli. HGT was 

prominent in the environment for cases with large starting concentrations of E. coli, while 

bacterial growth was dominant in the body. Conjugation was a significant factor in cases 

where background E. coli in the human gut was considered. A sensitivity analysis 

demonstrated that the growth rate, conjugation rate, and estimated volume of background 

E. coli in the human gut were influential in predicting the final dose. Key uncertainties 

were identified for additional data collection to be able to use existing dose response 

parameters with population ecology models that account for bacterial processes (growth, 

conjugation, and inactivation) inside the human gut. The model is recommended as a tool 

to begin the expansion of the QMRA paradigm to explore the impacts of evolutionary 

changes in AMR risk assessment. 
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Figure 8: The modeled transformations of both susceptible and ESBL E. coli populations 

are described below from the environment to entry in the human body, colonization at the 

target organ (gut), and subsequent pathogenesis. 

 

 3.2 Introduction  

Antimicrobial resistance (AMR) can develop when microorganisms acquire 

antibiotic resistance genes (ARG) that enable them to survive exposure to antibiotics. As 

new ARGs develop to overcome existing antibiotics, simple treatments for a disease may 

no longer be effective. Thus, antibiotic resistance and the transfer of ARGs are critical 

issues in public health. In the United States alone, more than 2.8 million infections caused 

by antibiotic resistant bacteria (ARB) occur each year, resulting in 35,000 deaths (CDC, 

2019). Globally, the estimated deaths due to ARGs were 4.95 million in 2019 (Murray et 

al., 2022). Antibiotic resistant infections continue to rise in importance, with the deaths 

from infection expected to surpass the number of deaths from cancer before the year 2050 

(O’Neill, 2016).  

Environmental settings such as wastewater may be a “hot spot” where ARB, ARGs, 

and stressors can co-occur, resulting in the proliferation of antibiotic resistance (Petersen 

& Hubbart, 2020; Vikesland et al., 2017). While it may not be conducive to population 

growth, HGT can still occur in the environment and result in a susceptible population 

having increased access to ARGs. To prevent the spread of antibiotic resistance, it is 
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essential to understand the primary drivers of human exposures in environmental settings. 

Healthcare-associated transmissions have historically been the focus of study compared to 

environmentally-transmitted infections, and the role of the environment as a transmission 

route for the genetic determinants of AMR is not fully described. While wastewater 

treatment plants (WWTPs) reduce pathogens in the wastewater before releasing the 

effluent into surface waters, including recreational water bodies, these treatments can be 

ineffective in eliminating genetic signals, resulting in discharge of ARGs and subsequent 

opportunities for HGT and human exposure (Garner et al., 2018, 2021). ARBs can survive 

the WWTP process and have been found in higher percentages of the total bacterial load 

after the WWTP process has occurred (Brechet et al., 2014). 

Extended-Spectrum Beta-Lactamase (ESBL)-producing Escherichia coli (ESBL E. 

coli) are labeled by the Centers for Disease Control and Prevention (CDC) as a “Serious 

Threat” (CDC, 2019) that are commonly found in wastewater and recreational waters 

(Blaak et al., 2014, 2015). They have been identified as a priority for focus in 

environmental matrices (Berendonk et al., 2015), along with their genetic determinants 

(e.g. antibiotic resistance genes [ARG] blaCTX-M and blaTEM). The blaCTX-M gene is a 

dominant ESBL gene (Bonnet, 2004; Borgogna et al., 2016; D’Andrea et al., 2013). ESBL 

equips its host to be able to hydrolyze extended-spectrum cephalosporins and other beta-

lactam antibiotics, making infections from the bacteria much more difficult to treat 

(Ghafourian et al., 2015). Nonresistant E. coli, referred to throughout as antibiotic 

susceptible E. coli, can acquire a gene encoded for the ESBL enzyme through conjugation 
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from adjacent ESBL E. coli bacteria and will then become an ESBL E. coli bacteria 

(Lopatkin et al., 2017).  

ESBL E. coli is a leading cause of urinary tract infections (UTIs), which affect up 

to 150 million people every year worldwide (Picozzi et al., 2014). In 2017, there were 

approximately 197,400 hospitalized cases and an estimated 9,100 deaths in the United 

States attributed to ESBL bacteria (CDC, 2019). E. coli generally causes enteric UTIs, or 

sepsis/meningitis infections and is classified into pathotypes or pathovars based on criteria 

including the site of infection (e.g. intestinal pathogenic E. coli [IPEC] and extraintestinal 

pathogenic E. coli [ExPEC]) (Foster-Nyarko & Pallen, 2022; Graham et al., 2021). The 

causative agent of UTI, uropathogenic E. coli (UPEC), is a subset of the ExPEC category 

(Graham et al., 2021). UPEC (not all UPECs are antibiotic resistant) causes 80-90% of UTI 

infections (Flores-Mireles et al., 2015; Foxman, 2014). The health burden from 

environmental exposures remains poorly characterized. Potential environmental exposures 

to ESBL E. coli include non-dietary ingestion of the bacteria during recreational swimming 

downstream of WWTPs , inhalation of wastewater aerosols (Chen et al., 2021), dermal 

exposures (Pitol et al., 2020; Yau et al., 2009), or food (including crops irrigated with 

treated or untreated wastewater) (Collineau et al., 2019; Collineau et al., 2018; Njage & 

Buys, 2015, 2017). While ingestion of water containing E. coli may be linked to UTI, 

understanding of the impact of oral exposure and colonization of the gut microbiome on 

development of UTI due to UPEC is incomplete (Graham et al., 2021). The gastrointestinal 

tract is generally accepted as a reservoir for UPEC strains (Katouli, 2010). Infections are 
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more common among women due to shorter urethra distance compared to men (Harrington 

& Hooton, 2000; Medina & Castillo-Pino, 2019). Several authors have highlighted 

recreational water as a potential area for the spread and/or dissemination of AMR , and 

several outbreaks due to Salmonella spp., Enterococcus spp., E. coli, and Vibrio cholerae 

have also been attributed to sewage-impacted water (Chatterjee et al., 2018; Food Safety 

News, 2022). Epidemiological studies have also implicated recreational water via surfing 

(Leonard et al., 2018), swimming in the ocean (Jorgensen et al., 2017; Søraas et al., 2013; 

van den Bunt, 2019), or exposure to spa pools (Begier et al., 2004), as areas for 

dissemination of AMR to people with a focus on E. coli and ESBL E. coli.  

Typically, quantitative estimates of microbial risk rely on the use of quantitative 

microbial risk assessment (QMRA), an approach for identifying an environmental 

microbial hazard, assessing the degree of exposure to the hazard from an activity (such as 

swimming), relating a dose to a probability of an adverse outcome, and characterizing the 

risk either through point estimates or stochastic analysis (Haas et al., 2014). However, 

current QMRA approaches have generally not yet accounted for complexities related to the 

evolution of AMR due to lack of quantitative data on evolutionary kinetics or process rates, 

and uncertainties regarding the impact of factors such as microbial community and 

environmental matrix on these processes. Acquisition of AMR occurs due to genetic 

mutations and/or recombination, selection and clonal expansion, or horizontal gene transfer 

(HGT) (Banerji et al., 2019; Boolchandani et al., 2019). HGT is thought to be a dominant 

process in the development of AMR and encompasses mechanisms of conjugation, 
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transduction, and transformation which results in a gene being transferred from one 

organism to another (Burmeister, 2015; Emamalipour et al., 2020; Ochman et al., 2000; 

Sun et al., 2019; Thomas & Nielsen, 2005). Conjugation can happen in a given matrix (e.g. 

WWTPs, the environment, or the human microbiome) throughout the bacterial cell cycle 

(Wang & Levin, 2009) and can be efficient in transferring ARG, especially in environments 

with close cell-to-cell contact (Stalder & Top, 2016). The relative importance of 

conjugation is emphasized for environmental matrices and is a function of multiple factors 

including host, recipient, and plasmid identities, media type, and environmental conditions 

(Pruden et al., 2018; Tamanai-Shacoori et al., 1995).  

Existing approaches for assessing the risk of ESBL E. coli using quantitative 

models have focused primarily on environmental exposures without incorporating the 

impact of HGT on resultant risks, highlighting a gap in understanding the linkage between 

ARB and ARG in the natural environment with the risk to humans (Leonard et al., 2015; 

Leonard, Yin, et al., 2018; Leonard, Zhang, et al., 2018, 2018; Njage & Buys, 2017; 

O’Flaherty, Cummins, et al., 2019; O’Flaherty, Solimini, et al., 2019; Rousham Emily K. 

et al., n.d.; Schijven et al., 2015). Quantitatively accounting for HGT in the continuum of 

events leading to the development of antibiotic resistant infections has been identified as a 

critical gap for developing such models (Hamilton et al., 2022; Moralez et al., 2021). A 

single resistant E. coli risk model has considered ARG exposure through swimming events 

in recreational water to quantify maximum allowable concentrations of antibiotic 

susceptible and ESBL E. coli. A recent model developed to estimate Methicillin-resistant 
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Staphylococcus aureus (MRSA) risk from wastewater reuse accounted for HGT among 

susceptible and resistant Staphylococcus aureus (SA) populations but did not consider this 

as a dynamic process (Schoen et al., 2021). The field of population ecology provides a 

framework for integrating HGT into models of ARB occurrence and therefore risk as a 

function of the donor, recipient, and transconjugant cells per time (Lopatkin et al., 2017; 

Lopatkin, Huang, et al., 2016; Lopatkin, Sysoeva, et al., 2016), but to date has not been 

combined with approaches for assessing risk. 

The proposed model will therefore serve as a framework to address these gaps by 

(1) integrating a population ecology model accounting for changes in bacterial populations 

due to HGT of ARG into a quantitative microbial risk assessment (QMRA) framework; (2) 

using literature-based estimates of HGT rates for ESBL E. coli in the environment and 

higher growth conditions meant to mimic the type of conditions found within the human 

body; (3) quantifying the risk of exposure for antibiotic susceptible E. coli and resistant 

ESBL E. coli populations during recreational exposure to wastewater-impacted surface 

waters; and (4) evaluating potential risk scenarios and prioritizing their risk drivers. 

Combining population ecology and QMRA approaches will provide insight into risk 

drivers for environmentally mediated AMR, with a focus on the impact of HGT in the 

spread of ARG to guide public health protection actions. 
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3.3 Methods 

 3.3.1 Conceptual model 

A conceptual model was developed for unifying elements of a QMRA approach 

with a population ecology model to evaluate antibiotic susceptible E. coli and ESBL E. coli 

exposure via non-dietary oral ingestion during recreational swimming in wastewater-

impacted surface waters (Figure 9). Exposure to treated wastewater could occur through 

many scenarios, but non-dietary ingestion via swimming was chosen as an index exposure 

scenario with a health endpoint of UTI. Other non-swimming activities such as jet skiing, 

fishing, boating, kayaking, tubing, canoeing, and playing with water (Sunger et al., 2012) 

are not typically regulatory drivers, as current benchmarks for recreational water quality 

are based on swimming (Sunger & Haas, 2015). The full transmission pathway, transfer 

from gut-associated to urinary tract-associated bacteria, and timing of colonization and 

infection is not fully understood, but generally begins with contamination of the 

periurethral area with a uropathogen from the gastrointestinal tract (gut) (Flores-Mireles et 

al., 2015; Graham et al., 2021; Sarowska et al., 2019). Colonization of the urinary tract 

may also happen directly from swimming but was not considered in this model due to the 

absence of quantitative data on this rate of colonization.  
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Figure 9: Conceptual model for exposure to antibiotic susceptible E. coli and ESBL E. coli 

during recreational swimming. Dotted line boxes are uncertainties not incorporated into 

the current model or beyond the current model scope. 

 

Previous population ecology models have focused primarily on single species 

interactions as a starting point, intending to expand to multi-species models (Lopatkin, 

Sysoeva, et al., 2016). In this model, the focus was limited to a single species (𝑠) of E. coli 

bacteria limited to two populations: (1) antibiotic susceptible E. coli (𝑠0) and (2) ESBL 
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(resistant) E. coli (𝑠1). The model was limited to a single species to demonstrate a use case 

of population ecology modeling without introducing unnecessary complexities. The 

population dynamics between antibiotic susceptible and ESBL E. coli have been previously 

modeled in the lab (Lopatkin, Sysoeva, et al., 2016). Exploratory modeling case scenarios 

were studied that considered the impact of multiple parameters on final dose of antibiotic 

susceptible E. coli and ESBL E. coli (Figure 10 and Table 2). To conduct this analysis, 

multiple assumptions and simplifications were required (Table 3 Summary of model 

simplifying assumptions). 

 

Figure 10: Modeling scenarios for antibiotic susceptible E. coli and ESBL E. coli.  Results 

from scenario 1 were used as input for scenario 3 and 4 to compare the results with and 

without background E. coli. 

  



 

88 

 

 

3.3.2 Population ecology model 

To model conversion between the antibiotic susceptible and ESBL E. coli 

populations, a population ecology model of HGT in bacteria based on bi-molecular logistic 

growth equations (Lopatkin et al., 2017) was combined with an exposure model for both 

antibiotic susceptible and ESBL E. coli. Acquisition of ESBL primarily occurs via 

conjugation (HGT) and thus mutation, transformation, and transduction are less relevant in 

this context (Lopatkin et al., 2017). The model is considered for both “low growth” and 

“high growth” conditions as a proxy for examining different interactions under conditions 

that mimic the low growth, low cell density conditions in a surface water environment 

compared to the higher growth, higher cell density conditions of the human gut. To 

estimate model conditions for the body, we used the gut as a proxy for the gastrointestinal 

system, as this location has a high density of bacteria including E. coli. Thus, we use 

‘environment’ and ‘body’ hereafter to refer to these two generic growth scenarios. This is 

intended to explore whether the human body might represent meaningful dynamics in the 

context of the larger system and to highlight factors which contribute to overall risks. 

Populations are described in terms of concentration (colony forming units per liter, CFU/L) 

in both the environment and body models.  

Simulations in the environment and body were conducted to examine antibiotic 

susceptible and ESBL E. coli behavior (1) in the environment starting with an E. coli water 

concentration at the recommended United States Environmental Protection Agency 

(USEPA) recreational water quality criteria (RWQC) values (USEPA, 2012); (2) in the 
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environment starting with an E. coli water concentration with values from treated 

wastewater effluent to simulate a worst case scenario; (3) in the human body (gut) 

assuming no background E. coli in the human gut; and (4) in the body assuming some  

contribution of pre-existing E. coli in the gut unrelated to the recreational water event. 

Population dynamics were modeled depending on the exposure scenarios described in 

Figure 10. 

Equations 24-25 were used to model ecological and evolutionary dynamics of 

bacteria in either the environment or body (denoted by “e” or “b” subscripts in Table 2), 

where fitness cost, 𝛼𝑓𝑖𝑡, is a unitless value that describes the burden on a cell to retain the 

antibiotic resistant plasmid; bacterial growth, 𝜇 , describes the rate at which bacterial 

populations increase [h-1];  carrying capacity, 𝑁, describes the maximum population in a 

given niche [CFU/ L]; conjugation rate, 휂 [CFU L-1 h-1]; plasmid loss rate, 𝜅, describes the 

rate at which a plasmid containing a resistance determinant (e.g. antibiotic resistance gene) 

is lost from a resistant bacteria [h-1]; and bacterial inactivation, 𝐼, describes the rate which 

the viable population is decreasing due to other factors (e.g. anthropogenic toxins or solar 

inactivation in the environment) [h-1]. In the original model (Lopatkin et al., 2017), fitness 

cost is applied to the antibiotic susceptible (𝑠0) term. Here it is applied to the resistant (𝑠1) 

term for ease of interpretation. In the current formulation, if 𝛼𝑓𝑖𝑡 >1, the plasmid is 

considered beneficial and if 𝛼𝑓𝑖𝑡<1 it is costly. 

𝑑𝑠0

𝑑𝑡
= 𝜇𝑠0 (1 −

(𝑠0+𝑠1)

𝑁
) − 휂𝑠0𝑠1 + κ𝑠1 − 𝐼𝑠0    (24) 
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𝑑𝑠1

𝑑𝑡
= 𝛼𝑓𝑖𝑡𝜇𝑠1 (1 −

(𝑠0+𝑠1)

𝑁
) + 휂𝑠0𝑠1 − κ𝑠1 − 𝐼𝑠1   (25) 

This model was developed in Python version 7.3.0 with Monte Carlo sampling using 

10,000 iterations (Burmaster & Anderson, 1994) for initial conditions of equation 24 and 

25 at the start of the environmental (“low-growth”) and human body (“high-growth”) 

scenarios, respectively (described further in methods sections 3.3.2.1- 3.3.2.2). These 

equations were implemented using PyTorch and solved these equations using the 

“torchdiffeq” package (Paszke et al., 2019). A model unit analysis is provided in the 

Appendix B, Section 1 and model code is provided in Appendix B, Section 2. 

 3.3.2.1 Scenario 1 and 2: Low-growth for environmental model 

Scenario 1 used the USEPA RWQC for an environmental concentration with an 

geometric mean (GM) of 126 and statistical threshold value (STV, 90th percentile of the 

water quality distribution intended not to be exceeded by more than 10 percent of samples 

taken) of 410 CFU/ 100 mL for E. coli (USEPA, 2012). These levels were used to simulate 

a lognormal distribution for E. coli in ambient waters with lognormal parameters µ= 

ln(126), σ=0.92 CFU/L (c0). The initial conditions for susceptible (𝑠0) and resistant (𝑠1) 

populations for the environmental concentration were computed according to equations 

26 and 27. The subset of total E. coli considered to be ESBL (𝐹𝑣) was taken from a large 

study of Dutch recreational waters influenced by WWTPs ranging from 0.05-1% (Blaak et 

al., 2014) (equations 26-27). These values are likely to change regionally with varied 

conditions and are used here due to limited literature data.  
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𝑠0 = (1 − 𝐹𝑒)𝑐0                                                              (26) 

𝑠1 = 𝐹𝑒𝑐0                                                                    (27) 

 Scenario 2 used treated wastewater effluent for an environmental concentration of 

antibiotic susceptible and ESBL E. coli with blaCTX-M gene. These distributions for treated 

wastewater effluent were taken from a large study over eleven sites in France (Brechet et 

al., 2014). This represents a worst-case-scenario where swimmers come into direct contact 

with treated wastewater effluent. For both scenarios, it was assumed that the water body 

was homogenously mixed and that there was a one-time inoculation of E. coli for the 

starting concentration as opposed to a constant flow of wastewater effluent entering the 

water body. This model could also be representative of a combined sewer overflow event.  

The physical dilution was assumed to be zero as the model does not consider additional E. 

coli entering the environment after the initial concentration is set. Additional E. coli from 

other sources was not considered.  

The relative change in the two populations can be described by equations 24 and 

25. The fitness cost, 𝛼𝑓𝑖𝑡, is a unitless value that describes the necessary resources for a 

cell to retain the antibiotic resistant plasmid (Lopatkin et al., 2017). Since negligible growth 

of fecal-associated bacteria is assumed to occur outside of a mammalian host in a nutrient-

limited environment under typical ambient surface water conditions, the fitness cost for the 

environmental model (𝛼𝑓𝑖𝑡,𝑒 ) [unitless] and the bacterial growth rate (𝜇𝑒 )  [hr-1] was 

assumed to be zero (Petersen & Hubbart, 2020). The growth rates of the bacterial 
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populations are bounded by a maximum allowable concentration per unit volume, referred 

to as the carrying capacity (𝑁) [CFU/L]. Due to the null value for the fitness cost (𝛼𝑓𝑖𝑡) 

and bacterial growth rate (𝜇𝑒) for the environmental model, the carrying capacity term (𝑁𝑒) 

is also null and therefore set to one in the environmental model to prevent a division by 

zero or null value.  The rate at which HGT occurs via conjugation is shown by the 

conjugation efficiency rate (휂) multiplied by both the antibiotic susceptible and ESBL E. 

coli populations in equations 24 and 25 [(CFU/L) -1 hr-1]. The plasmid loss rate in the 

environment (𝜅𝑒) will is zero [hr-1] because no bacterial growth is expected for E. coli in 

the environment. The inactivation rate in the environment for both bacterial populations, 

𝐼𝑒, was calculated using the methods described in (Schijven et al., 2015) for a temperature 

of 20°C and a value of prediction uncertainty of 50%. This is a general model for all water 

types, as inactivation of E. coli is temperature-dependent (Franz & Schijven, 2014) and is 

assumed to be the same for both antibiotic susceptible and ESBL E. coli. Information was 

not available for assessing relative differences in persistence of antibiotic susceptible and 

resistant strains under similar environmental conditions.  

The literature was reviewed to determine conjugation rates in environmental 

matrices for E. coli species as a ratio of transconjugants / recipients×donors×time, due to 

the need for converting frequently reported frequencies or ratios into rates for use in 

equation 24-25 (Lopatkin et al., 2017). Units are rarely reported in a time-normalized 

format and absolute concentrations are also typically not reported (e.g., CFU/mL of each 

species used). The best available information was from Amos et al. (2014) from an 
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experiment using E. coli strains from a wastewater-impacted river (Amos et al., 2014). The 

authors conduced conjugation experiments with E. coli strain DH10B and transfer of 

blaCTX-M-15, a dominant ESBL gene (Bonnet, 2004; Borgogna et al., 2016; D’Andrea et al., 

2013) (see Table 3 for limitations). Mid-exponential recipients and donors at a 1:1 ratio 

were spotted onto an agar plate and incubated for 16 h at 30°C for the conjugation mating 

experiments. The donor E. coli strains were isolated from river sediment samples taken 

from downstream and upstream of a WWTP. Ratios of transconjugants / recipients 

enumerated after the assay ranged from 1.70×10-7 to 1.32×10-3. All values observed were 

normalized to a 16 h experimental duration and a  donor cell concentration of ~0.15×108 

cell/mL based on a mid-log phase optical density of 0.2) (Stevenson et al., 2016). This 

resulted in a range of 휂 values from 7.08×10-19 to 5.50×10-15 (CFU/L)-1 h-1. Only one other 

study was available providing conjugation frequencies for ESBL determinants from 

environmental sources (including soil, sewage, and water samples from farms) with ratios 

of transconjugant E. coli J53 containing blaCTX-M-14 to donors cells ranging from 6.40×10-

2 to 2.0×10-7 in detectable  samples (Tansawai et al., 2019). Experiments were conducted 

overnight in broth cultures and absolute concentrations were not reported. If a similar 

concentration assumption was made with regard to the recipient concentration, this would 

result in T/DRdt ranging from 4.27×10-12 to 1.33×10-17 (CFU/L)-1 h-1, which overlaps with 

the range of values observed in Amos et al. (Amos et al., 2014). 
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3.3.2.2 Scenario 3 and 4: High-growth for body model 

High-growth conditions were modeled using concentrations from scenario 1 (t=5 

hr) to simulate non-dietary ingestion for adults during a swimming event (45 minutes) in 

recreational water. The differential equations (equation 24-25) were initialized using 

values for the antibiotic susceptible E. coli population (𝑠0) and the ESBL E. coli population 

(𝑠1) from the concentration in the environment model. These starting concentrations can 

be considered the initial dose (𝑑𝑜𝑠𝑒0,1) of both E. coli populations (equation 28). 

𝑠0 = 𝑑𝑜𝑠𝑒0 = 𝑠0 (
𝑉𝑖

𝑉𝑖+𝑉𝑔𝑢𝑡
) + 𝑠𝑔𝑢𝑡(1 − 𝐹𝑏𝑜𝑑𝑦) (

𝑉𝑔𝑢𝑡

𝑉𝑖+𝑉𝑔𝑢𝑡
)                            (28) 

𝑠1 = 𝑑𝑜𝑠𝑒1 = 𝑠1 (
𝑉𝑖

𝑉𝑖+𝑉𝑔𝑢𝑡
) + 𝑠𝑔𝑢𝑡𝐹𝑏𝑜𝑑𝑦 (

𝑉𝑔𝑢𝑡

𝑉𝑖+𝑉𝑔𝑢𝑡
)                                       (29) 

Scenario 3 assuming no background E. coli in the body (𝑠𝑔𝑢𝑡=0) (Dufour et al., 

2017; US Environmental Protection Agency, 2011; USEPA, 2019). The concentration 

ingested (𝑠0,1 ) was multiplied by the volume ingested (𝑉𝑖 ) [L] (US Environmental 

Protection Agency, 2011) and was normalized by the volume of the gut for male and female 

adults (𝑉𝑔𝑢𝑡) [L] (Rao et al., 2006). Scenario 4 has additional background E. coli present 

in the gut (𝑠𝑔𝑢𝑡≠0). The concentration ingested (𝑠0,1 ) was multiplied by the volume 

ingested and normalized by the volume of the gut. The microbial background population 

of E. coli was also normalized and added to the ingested concentration.  The background 

concentration of E. coli in the gut was used in conjunction with the estimated percentage 
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of ESBL E. coli (Bernard et al., 2016) in order to obtain estimates of antibiotic susceptible 

and ESBL E. coli background populations in the gut (𝐹𝑏). 

The ingested bacteria (𝑠0,1) then underwent population density changes described 

by equations 24 and 25 for the duration of the residence time (𝑡𝑟) [hr], or the time taken 

for matter to move through the digestive tract (Cummings et al., 1976). During the 

residence time, the antibiotic susceptible and ESBL E. coli populations will be affected by 

the low-cost fitness cost (𝛼𝑓𝑖𝑡,𝑏) of 0.98 [unitless], representing the additional biological 

cost of maintaining a resistant plasmid. Bacterial growth is considered in the gut, as E. coli 

will grow in the gut which is its primary environment (Berendonk et al., 2015). The 

bacterial growth rate of susceptible and ESBL E. coli in the body (𝜇𝑏) was modeled using 

a positive uniform distribution [hr-1] (Lopatkin et al., 2017). The growth of the bacterial 

populations were bounded by the carrying capacity in the body (𝑁𝑏) [CFU/L] (Lopatkin et 

al., 2017). The plasmid loss rate in the body (𝜅𝑏) was modeled as a point value of [hr-1] 

and is the rate at which resistant plasmids were lost from the ESBL E. coli population. The 

inactivation rate of the bacterial populations in the gut (𝐼𝑏) was modeled as a point value 

[hr-1] (Lopatkin et al., 2017). No physical dilution (excretion) of bacterial populations is 

assumed during the body residence time.  

 3.3.2.3 Exposure model 

After the allotted residence time, the concentration of antibiotic susceptible and 

resistant E. coli was multiplied by the fraction of the E. coli in the gut considered to be 
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UPEC isolates was applied (FUPEC) as shown by equations 30 and 31. These equations 

return the final dose of each population.  

𝑑𝑜𝑠𝑒𝑠0,𝑓𝑖𝑛𝑎𝑙 = 𝑠0𝐹𝑈𝑃𝐸𝐶                                                        (30) 

𝑑𝑜𝑠𝑒𝑠1,𝑓𝑖𝑛𝑎𝑙 = 𝑠1𝐹𝑈𝑃𝐸𝐶                                                     (31) 

In a standard QMRA, , a curve would be fit to quantal data of at least 3 doses with unique 

probabilities of response that pass the Cochran-Armitage test of trend (Haas et al., 1999). 

However, due to the nature of dose response parameters already accounting for in vivo 

population ecology, applying the dose response parameter to the final dose values 

described above is not compatible with the typical dose response approach. Dose response 

data that can be applied to in vivo population ecology models is needed to continue the 

QMRA beyond exposure assessment for this model.  

 3.3.2.4 Sensitivity analysis 

A Spearman rank correlation coefficient was computed for all Monte Carlo input 

and output variables using the Spearmanr function from the stats package in Python. 

Variables were compared to antibiotic susceptible and ESBL E. coli doses from scenario 

4, which considered a high-growth with background E. coli population. The value of the 

correlation coefficient indicates the strength of the relationship of the variable to the final 

result. 
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Table 2. Exposure model parameters. See Table 3 descriptions of assumptions for assumed 

values. 

Parameter Symbol   Unit  Value  Distribution  Source 

Fitness cost 

Environment 𝛼𝑓𝑖𝑡,𝑒 Unitless  0.00 Point  (Lopatkin et 

al., 2017) 

Body 𝛼𝑓𝑖𝑡,𝑏 Unitless  0.98  Point  (Lopatkin et 

al., 2017) 

Bacterial growth rate 

Environment 𝜇𝑒 hr-1 0.00 Point Assumed 

Body 𝜇𝑏 hr-1 Min: 0.00 

Max: 0.30 

Uniform  (Lopatkin et 

al., 2017) 

Carrying capacity 

Environment  𝑁𝑒 CFU/L 1.00 Point Assumed 

Body 𝑁𝑏 CFU/L Min: 104 

Max: 1015 

Uniform (Lopatkin et 

al., 2017; 

Lunestad et 

al., 2016) 

Conjugation efficiency rate 

Environment 휂𝑒 (CFU/L)-

1 hr-1 

alpha: 

4.76×10-1 

beta: 

6.16×104 

Beta (Amos et al., 

2014) 

Body 휂𝑏 (CFU/L)-

1 hr-1 

Min: 10-6.25 

Max: 10-8.48 

Uniform (Saliu et al., 

2020) 

Plasmid loss rate 

Environment 𝜅𝑒 hr-1 0.00 Point Assumed 

Body 𝜅𝑏 hr-1 1.0 ×10-3  Point  (Lopatkin et 

al., 2017) 

Inactivation rate 

Environment 𝐼𝑒 hr-1 0.53  Point  
 

Body 𝐼𝑏 hr-1 0.05  Point  (Lopatkin et 

al., 2017) 

Bacterial concentration in treated wastewater effluent 

Susceptible E. 

coli  

(wastewater 

effluent) 

𝑐0 CFU/ L  Mean: 

3.7×106 

Sd: 6.0×106 

Truncated 

Normal  

(Brechet et al., 

2014)  
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ESBL E. coli  

(wastewater 

effluent) 

𝑐1 CFU/ L Mean: 

2.2×104 

Sd: 3.1×104 

Truncated 

Normal  

(Brechet et al., 

2014)  

Susceptible E. 

coli  

(RWQC) 

𝑐0 CFU/ L  Mean: 

ln(126) 

Sd: 0.92 

Lognormal  (USEPA, 

2012) 

Dilution rate 

Environment  𝛿𝑒 hr-1 0.00 Point  Assumed 

Body 𝛿𝑏 hr-1 0.00 Point Assumed 

Background E. coli 

Environment  𝑠𝑒𝑛𝑣 CFU/ L 0.00 Point Assumed 

Body 𝑠𝑔𝑢𝑡 CFU/ L Min: 106 

Max: 107 

Uniform Assumed 

Volume  

Volume 

ingested 
𝑉𝑖 L Mean: 0.017  

Sd: 0.019 

Truncated at 

0.00 

Truncated 

Normal  

(US 

Environmenta

l Protection 

Agency, 

2011) 

Volume in gut 𝑉𝑔𝑢𝑡 L Min: 0.20 

Max: 0.75 

Uniform (Amoueyan et 

al., 2020; 

Barker et al., 

2013; Rao et 

al., 2006) 

Residence time 

Body 𝑡𝑟𝑒𝑠 hr Mean: 54.2 

Sd: 2.5 

Normal (Cummings et 

al., 1976) 

Probability parameters 

Fraction of total 

environmental 

E. coli that are 

ESBL E. coli 

𝐹𝑒 Unitless Min: 5 ×10-4 

Max: 0.01 

Uniform (Blaak et al., 

2014) 

Fraction of total 

environmental 

E. coli that are 

ESBL E. coli 

𝐹𝑏 Unitless Min: 5 ×10-5 

Max: 0.023 

Uniform (Bernard et 

al., 2016) 

Fraction of E. 

coli that are 

UPEC 

𝐹𝑈𝑃𝐸𝐶  Unitless Min: 0.050 

Max: 0.088 

 

Uniform (Diallo et al., 

2013; Franz et 

al., 2015; 

Johnson et al., 

2017) 
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 3.4 Results  

3.4.1 Scenario 1 and 2: Low-growth for environmental model 

The concentrations of antibiotic susceptible and ESBL E. coli in recreational waters 

were modeled over a 20-hour period with impacts of bacterial conjugation efficiency and 

bacterial inactivation in water. Two cases were investigated using initial concentrations 

from RWQC (scenario 1) and treated wastewater effluent (scenario 2). Figure 11 shows 

the population ecology model progressing in time. When initial concentrations from 

RWQC were used, the microbial populations were not dense enough for notable 

conjugation to take place. Both antibiotic susceptible and ESBL E. coli experience 

inactivation until the populations are depleted. When initial concentrations of treated 

wastewater effluent are used, conjugation is seen to take place during the first hours of the 

simulation, leading ESBL E. coli to be the dominant population.  After conjugation has 

occurred, both the antibiotic susceptible and ESBL E. coli experience inactivation until the 

populations are depleted. 
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Figure 11. Species concentration in the environment with different initial antibiotic 

susceptible and ESBL E. coli starting concentrations. Concentrations form RWQC (left) 

and treated wastewater effluent (right) were used as starting concentration. Antibiotic 

susceptible E. coli concentrations are shown in green and ESBL E. coli concentrations are 

in blue. The lines represent the median values of the Monte Carlo simulation and the shaded 

regions are the 5th and 95th percentiles. 

 3.4.2 Scenario 3 and 4: High-growth for body model 

Population simulations in the body accounted for select ecological and evolutionary 

changes (growth, conjugation efficiency, carrying capacity, plasmid loss rate, and 

inactivation) as well as processes that focused on relevant subsets of total commensal E. 

coli (UPEC fractions). Ingested concentrations were taken from the environment scenario 

where RWQC was used for the initial concentrations (scenario 1). The high-growth gut 

scenario allows for high cell density and represents favorable growth as well as conjugation 

conditions. The antibiotic susceptible and ESBL E. coli populations were modeled for a 

residence time of up to 70 hours (Figure 12) for scenario 3 (without background E. coli) 

and scenario 4 (with background E. coli).  

For scenario 3, antibiotic susceptible and ESBL E. coli populations increased 

steadily over the simulated residence time within the human gut. The populations do not 

reach a concentration where conjugation is prominently observed. Antibiotic susceptible 

E. coli was the dominant population and reached average value of 2.13 ×103 CFU/L 
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(median: 3.14 × 102 CFU/L). ESBL E. coli reached an average value of 8.40 ×105 CFU/L 

(median: 2.30 CFU/L).  

When background E. coli populations exist in the gut, there is a rapid change in the 

prominent population due to the high conjugation rate. The ESBL E. coli population 

increases rapidly as the antibiotic susceptible E. coli undergoes conjugation and becomes 

ESBL E. coli. The ESBL E. coli population continues to grow for the duration of the 

residence time. The antibiotic susceptible E. coli decreases until it reached the point where 

population growth is equal to the population loss due to conjugation and inactivation. By 

the end of the simulation, ESBL E. coli was the dominant population with an average value 

of 4.71 ×1012 CFU/L (median: 3.77 ×109 CFU/L) whereas antibiotic susceptible E. coli 

was 3.51x104 (median: 3.44 ×103 CFU/L). 

Figure 12. Species concentration in the body without (scenario 3) and with (scenario 4) 

background populations in the gut. 
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 3.4.3 Scenario 3 and 4: Final dose results 

Predicted doses of E. coli in the gut were computed for antibiotic susceptible and 

ESBL E. coli after the gut residence time had elapsed (Figure 13). Scenario 3 without any 

background E. coli in the gut yielded an average dose of 2419 CFU (median: 4.82) for 

antibiotic susceptible E. coli and 459 CFU (median: 0.04 CFU) for ESBL E. coli. For 

Scenario 4 with background E. coli in the gut yielded an average dose of 1366 CFU 

(median: 113 CFU) for antibiotic susceptible E. coli and 7.69 ×109 CFU (median: 2.74 

×107 CFU) for ESBL E. coli.  

 

Figure 13. Dose without and with background E. coli in the gut. 
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 3.4.4 Sensitivity Analysis 

Influential variables in the population ecology-exposure model are shown in Figure 

14. The final dose from scenario 3 with no background E. coli population in the gut (sb = 

0) was most highly impacted by the growth rate in the body with a strong, positive 

Spearman correlation coefficient of 0.96 for antibiotic susceptible E. coli and 0.84 for 

ESBL E. coli. Both antibiotic susceptible and ESBL E. coli populations for this case also 

saw weak positive correlation values for the volume of recreational water ingested and 

starting concentrations of antibiotic susceptible and ESBL E. coli in the environment. The 

final dose from scenario 4 with background E. coli population in the gut (sb > 0) was most 

highly impacted by the conjugation rate in the body for the antibiotic susceptible population 

with a strong negative Spearman correlation coefficient of -0.96. There was also a weak 

positive correlation for percent UPEC E. coli (0.24). The ESBL population was highly 

impacted by the growth rate, with a strong positive Spearman correlation coefficient of 

0.99. There was also a weak positive correlation for background E. coli in the gut. 
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Figure 14. Sensitivity analysis using Spearman’s correlation coefficients for antibiotic 

susceptible and ESBL E. coli final dose for scenario 3 (no background E. coli in the gut, 

sb = 0) and for scenario 4 (with background E. coli in the gut, sb > 0) against all Monte 

Carlo variables. 

 3.5 Discussion 

This model for population-ecology and exposure assessment investigated four 

different scenarios. Scenario 1 and 2 were representative of a low-growth environment for 

cases that assumed a homogenous concentration of E. coli at the RWQC standards and at 

treated wastewater effluent concentrations, respectively. Antibiotic susceptible and ESBL 

E. coli starting concentrations ranged from 100 to 103 CFU/L for scenario 1 and from 104 

to 107 CFU/L for scenario 2. The difference in magnitude between these scenarios is large 

enough to observe different driving effects on each model. For scenario 1, inactivation is 
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the driving variable here. Both the antibiotic susceptible and ESBL E. coli populations 

decline until they are depleted. However, is scenario 2, conjugation is observed to be the 

driving variable for the first few hours. The ESBL E. coli population grows rapidly as the 

antibiotic susceptible population acquires the ESBL plasmid until the antibiotic susceptible 

population is depleted. Both populations still experience inactivation at the same rate as 

scenario 1, but it is less obvious until after the first two hours of the model. 

Scenario 3 and 4 were representative of high-growth model representative of the 

human gut. These cases that assumed a homogenous starting concentration of E. coli 

throughout the gut taken from time t=5 in scenario 1. Scenario 3 only considered the 

starting concentrations from scenario 1, while scenario 4 considered the concentrations 

from scenario 1 in addition to a background E. coli population in the gut. Similar to the 

differences in scenario 1 and 2, scenarios 3 and 4 have a difference in magnitude between 

starting concentrations to observe different driving effects on each model. Scenario 3 sees 

a slow linear growth for the duration of the residence time. The populations do not reach a 

concentration where conjugation is prominently observed. In additional cases (not shown), 

conjugation started to become a prominent factor after the antibiotic susceptible E. coli 

population reached 104 CFU/L and ESBL E. coli population reached 101 during the 

residence time. In scenario 4, conjugation is observed to be the driving variable during the 

first few hours until the growth of the antibiotic susceptible population is equal to the 

population loss due to conjugation and inactivation. Growth drives the ESBL population 

to continue to increase for the duration of the residence time.  
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The final dose for scenarios 3 and 4 were calculated after HGT occurred in the gut. 

The final dose was measured during the available range of residence time as a Monte Carlo 

variable. For scenario 3, the final dose of antibiotic susceptible E. coli was larger than that 

of ESBL E. coli. Scenario 4 has a larger final dose of ESBL E. coli and lower value of 

antibiotic susceptible E. coli that is spread over a much smaller range. This occurs because 

the antibiotic susceptible population has reached a steady state with the population growth 

equaling the population loss due to conjugation and inactivation. In additional cases run 

that were not displayed in this analysis, the steady state of ESBL E. coli is also reached 

when the sum of both populations is equal to the carrying capacity.  

To date, few models have attempted to address the exposure or risk from antibiotic 

resistant pathogens quantitatively, with the exception of some studies focusing mostly on 

exposure without considering in vivo population dynamics (Leonard et al., 2015; Leonard, 

Yin, et al., 2018; Leonard, Zhang, et al., 2018; Njage & Buys, 2017; O’Flaherty, Cummins, 

et al., 2019; O’Flaherty, Solimini, et al., 2019; Rousham et al., n.d.; Schijven et al., 2015). 

UTI infections cost the US over $1.6 billion annually and globally are an important cause 

of both antibiotic susceptible and antibiotic-resistant infections (Foxman, 2002; Foxman et 

al., 2000; Stamm & Hooton, 1993).  Therefore, the ability to predict these infections is 

paramount for targeting resources and reducing disease. Reducing disease could be 

achieved by closing recreational beaches during times of increased pathogen concentration 

in wastewater effluent or modifying the WWTP processes to achieve a higher log removal 

of pathogens. Existing risk frameworks have pointed out the need for filling in numerous 
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gaps to undertake quantitative modeling to address these needs (Ashbolt et al., 2013; 

Hamilton et al., 2022; Pruden et al., 2018). Modeling can be used to define what 

concentrations are associated with a particular risk level and allow for evaluation of the 

appropriateness of that risk level for the purposes of protecting public health. 

The current preliminary analysis demonstrates the potential for combining a 

population ecology model with exposure assessment for identifying drivers of pathogen 

dose to identify and rank these factors for future data collection efforts. Limitations and 

assumptions of the model framework are provided in Table 3 with their respective data 

collection needs. Additional studies are needed to get to a risk endpoint, including 

understanding conditional probabilities (e.g., colonization progressions and morbidity 

ratios) associated with the progression and development of UTI as a function of 

colonization of different parts of the urinary and gastrointestinal tracts as well as human 

host characteristics and susceptibilities (e.g. antibiotic dosing, ratio of susceptible E. coli 

to ESBL, or other pre-disposing factors). Understanding, and continuing to develop 

applicable disability adjusted life year (DALY) values for use in site-specific risk 

assessments is recommended for further investigation. Additionally, there is an opportunity 

for behavioral data to be incorporated to account for the time of day when recreational 

waters are most used. In the population-ecology model, growth parameters were assumed 

to be zero in the environment (e.g., growth rate, carrying capacity, fitness cost, and plasmid 

loss rate). However, these are uncertain point estimates that would benefit from additional 

data collection, especially in relevant matrices (e.g. water and wastewater). Additionally, 
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growth and inactivation rates are likely to fluctuate with the seasons as temperatures and 

UV exposure change. Quantification of these kinetics is challenging and will require 

studies that are able to parse ARG fate (within a live or dead cell, for example).  
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Table 3. Summary of model simplifying assumptions 

Category Assumption Data collection and research needs 

Pathogenesis • Assumed that all E. coli in gut have ability to colonize the urinary 

tract in absence of quantitative rates of “transfer” 

• Probability of UTI given gut colonization is uncertain but likely 

to be related to ratio of ESBL to total E. coli (Ruppé et al., 2013) 

• Population susceptibilities not considered (e.g., prior UTI, 

catheter use, bladder dysfunctions, age, sex differences, or other 

demographics) 

• Parameters specific to high-income North-American populations 

• Conditional probabilities of 

colonization and UTI given E. coli and 

ESBL exposures 

• Quantification of population 

susceptibility impacts on risk of UTI 

• Expansion of current work to low- and 

middle-income water, sanitation, and 

hygiene (WASH) settings 

Microbial 

dynamics 
• Antibiotic susceptible E. coli assumed present in all fecal samples 

• Single species, single plasmid/gene dynamics considered. blaCTX-

M-15, a dominant ESBL gene (Bonnet, 2004; Borgogna et al., 

2016; D’Andrea et al., 2013), but multi-species models are 

available and could be considered in future work (Lopatkin et al., 

2017) 

• Low growth and high growth conditions are representative of 

general trends for low growth, low density conditions in the 

environment and high density, high growth conditions in the 

human gut 

• Conjugation rates derived using environmental strains and grown 

in culture are assumed representative of environmental and 

human body matrices. More information is needed on conjugation 

rates measured in situ in environmental matrices. 

• Ecological parameters measured in 

relevant matrices and reported with 

standardized units (e.g. HGT per unit 

time with absolute concentrations 

reported, plasmid loss rates, and 

inactivation rates) 

• Quantification of impact of antibiotics 

and other stressors on ecological 

parameters at environmentally relevant 

concentrations 

• Development of multi-species 

population ecology QMRA models 

• Consideration of other relevant ARG 

and cross-species transfers 
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• A homogenous ordinary differential equation can be used to 

explore the fundamental dynamics of plasmid transfer in the 

environment and human gut assuming well-mixed conditions. 

This greatly simplifies human gut physiology where density and 

structural constraints change at the mm scale (Contijoch et al., 

2019).  

• Effect of antibiotics or other stressors on dynamics not considered 

• Growth rate is minimal in the environment due to presence of low-

nutrient, high-stress conditions in surface water. This assumption 

results in fitness cost also not being considered in the environment 

as the growth term goes to null 

• Plasmid loss rate depends on reproducing cells, and therefore if 

growth is negligible in environmental water, plasmid loss will 

also be assumed negligible 

• Mutation was not considered: An accumulation of mutations that 

could affect resistance do not arise over the course of the 

timescale studied; assumption that HGT rate is >> mutation rate 

(Foster-Nyarko & Pallen, 2022) and therefore the mutation rate is 

not included in the current calculations. Fully formed resistance 

genes transferred during conjugation will dominate compared to 

accumulation of resistance by random mutation and selection. We 

assume that it is rare to have a single mutation that can cause a 

drastic phenotypic change. In the context of AMR, HGT is the 

main contributor to resistance between the resistance genes are 

already optimized through the evolution process and a more 
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significant player in the spread of resistance compared to 

individual mutations. 

• Conjugation is assumed to be the dominant HGT mechanism: 

Plasmids are prevalent in the environment, contain many ARGs, 

and have broad host ranges. By comparison, phages have 

narrower host ranges and other restrictions related to the amount 

of DNA packaged but are less studied (transduction is a lesser 

consideration). Similarly, uptake of naked DNA is thought to be 

lesser (transformation is a lesser consideration) 

• Populations used in conjugation experiments (donors, recipients, 

and transconjugants) did not report absolute concentrations for 

donors, therefore an estimate for the donor density was used given 

that cells were reportedly grown to mid-log phase. If more 

detailed information is reported, other models are available for 

extrapolating rates of plasmid transfer over other 

conditions(Simonsen et al., n.d.) 

• Assumed the antibiotic susceptible and ESBL E. coli were 

homogeneously distributed in both the low-growth (environment) 

and high-growth (gut) models. 

Exposure • Concentrations of E. coli in recreational water at existing USEPA 

recreational water criteria values; no additional input sources to 

the water body considered and no additional dilution/background 

E. coli considered. 

• Non-oral exposures not considered (e.g. direct colonization of 

urogenital tract during immersion in recreational water) 

• Exposure to antibiotics or other stressors not considered 

• Population-specific exposure 

parameters for water immersion and 

colonization of gastrointestinal and 

urogenital tract 

• Quantification of E. coli and relevant 

pathogenic and resistant subsets (e.g. 
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• Environmental inactivation of E. coli and ESBL E. coli assumed 

to be same  

• Environmental inactivation assumed for this calculation at 20°C 

and to follow first-order kinetics with an empirical constant 

previously derived (Schijven et al., 2015) 

• Gut transit time measured for healthy young men on unregulated 

diet assumed to be representative of general gut transit time 

UPEC, ESBL) in water environments 

and human body 

• Quantification of growth/inactivation 

kinetics for susceptible vs. resistant E. 

coli strains 

• Expansion to other exposure scenarios 

and niches 

Dose 

response 
• Fraction of total E. coli (including ESBL) that is UPEC remains 

constant in the body; UPEC and ESBL are independent outcomes 

• Dose response relationship does not differ for ESBL E. coli 

compared to susceptible E. coli  

• Shedding of E. coli assumed to be representative of “colonization 

of gastrointestinal tract” endpoint 

• Exposure to antibiotics or other stressors and impacts on dose 

response not considered 

• Dose response-time kinetics and impact of background E. coli on 

risk not considered due to in vivo kinetics implicitly included in 

current dose response paradigm (e.g. exponential, Beta-Poisson 

models) 

• Person-to-person transmission and impact of prior infection 

and/or immunity not considered 

• Likelihood of recurrence of UTI after first episode not considered 

• Development of additional dose 

response models for antibiotic resistant 

strains of bacteria and conditional upon 

other exposures such as antibiotics 

(Chandrasekaran & Jiang, 2019)  

• Consideration of dose response-time 

kinetics with reference to antibiotic 

resistant organisms (Haas, 2015; Huang 

& Haas, 2009) 

• Additional information on colonization 

and shedding 

• Incorporation of person-to-person 

transmission dynamics (Brouwer et al., 

2017) 

• Consideration of immunity and other 

dynamics for repeated exposures (Pujol 

et al., 2009) 
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HGT is thought to be an important factor for predicting the likelihood of the spread 

of antimicrobial resistance generally, with attention focused on identifying the hosts of 

ARGs and their ability confer resistance to new strains, especially for E. coli and other 

pathogens (Rice et al., 2020; Stadler et al., 2018). Specifically, conjugation is likely the 

dominant mechanism of HGT within some environments (Pruden et al., 2018; Tamanai-

Shacoori et al., 1995), warranting its focus in the current work. Dilution of wastewater 

streams and specific timings can be investigated with the current modeling framework to 

identify relevant edge-cases under which temporal dynamics of pathogen evolution do 

present meaningful contributions to risk. In particular, incorporation of multi-species and 

antibiotic models have been performed for laboratory conditions and could be expanded to 

address more environmentally-relevant conditions (Lopatkin et al., 2017).  

One of the key bottlenecks is for dose response models. Models are needed for 

assessing differences between antibiotic susceptible and resistant microorganisms, as well 

as the extent to which an ARG can be incorporated in the dose response modeling process 

either independently or as a corollary to their associated ARB (Ashbolt et al., 2013). This 

work models differences in survival as part of the exposure analysis, before applying any 

existing dose response relationships in future work. The advantage of this approach is the 

flexibility in modelling various scenarios and utilization of existing knowledge for dose 

response.  
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There is currently sparse data available for calibrating, verifying, or validating the 

current model. QMRA models are typically validated by comparing model estimates to 

attack rates in well-documented outbreaks where exposure is measured, or where dose 

reconstruction is feasible. QMRA models are useful for comparing the risks from an 

exposure event to existing health benchmarks, but health benchmarks can also be informed 

by QMRAs. Water exposures and disease clusters for E. coli have demonstrated elevated 

risks in some cases (Gordon et al., 2017; Hayward, 2020) but have not provided sufficient 

information for calibration. The current model is likely more applicable for a female 

population, as UTI are more common in women than men (Harrington & Hooton, 2000; 

Medina & Castillo-Pino, 2019); additional exploration of gender differences in risk 

predictions for UTI is warranted. 

As E. coli is a currently accepted fecal indicator bacteria for water environments 

and increasingly advocated as an indicator organism for monitoring AMR (Anjum et al., 

2021), there is an opportunity to collect additional data to parameterize models. Current 

approaches for simultaneous estimation of growth and plasmid-transfer rates (Mishra et al., 

2021) represent a possible step forward for modeling efforts. Considering the interrelated 

nature of AMR dynamic processes present large uncertainties (Bengtsson-Palme et al., 

2021) but are an important step forward for characterizing and predicting the 

environmental dimensions of AMR.  
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 3.6 Additional proposed work 

Traditional dose response models (e.g., exponential and Beta-Poisson) are typically 

an “opaque box” implicitly representing the entirety of in vivo body kinetics (including 

surviving various barriers and gut conditions) without necessitating an understanding of 

the mechanistic process. To avoid a mismatch when applying modelled in vivo doses of E. 

coli to a dose response model fit to oral ingestion, model scenarios including consideration 

of background E. coli in the gut were computed based on a population load endpoint only 

for comparison with a true “dose” for a no-background scenario.  

Recent mechanistic dose response models have been proposed for ARB that 

incorporate differences in in vivo survival as part of the dose response (Chandrasekaran & 

Jiang, 2019, 2021). One of these models proposed for antibiotic susceptible (to the 

antibiotic Gentamicin) and resistant E. coli considers the probability of bacterium death 

using a stochastic death process. In summary, the probability of illness is calculated using 

the dose, the probability of bacterium death, and the time until symptoms are observed in 

the dosed population in a clinical feeding study. The authors report using this approach in 

place of traditional exponential dose response models. This approach will be explored with 

the current model described above by removing the inactivation term from equations 24-

25 and changing the first terms of equations 28-29 to include the probability of bacterium 
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death and the time until symptoms are expected to observed. This will be used in place of 

the dose response parameter (𝑟) and residence time in the gut (𝑡𝑟𝑒𝑠). 
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CHAPTER 4 

QUANTITATIVE MICROBIAL RISK ASSESSMENT (QMRA) TOOL FOR 

MODELING SARS-COV-2 AND OTHER INFECTION RISKS FOR WASTEWATER 

TREATMENT PLANT WORKERS 

In preparation for an April 2023 submission to Journal of Exposure Science and 

Environmental Epidemiology. 

This chapter will be prepared as a manuscript for journal submission. The list of current 

authors is as follows: Ashley Heida, Kelly A. Reynolds, Ahamed Ashraf, Olusola O. 

Ogunseye, Yoonhee Jung, Lester Shulman, Luisa Ikner, Walter Betancourt, Kerry A. 

Hamilton, Amanda M. Wilson 

4.1 Abstract 

Wastewater treatment plants (WWTPs) provide vital services to the public by removing 

contaminants from waste streams before returning discharge to the environment. WWTP 

workers can be exposed to pathogens from wastewater while performing necessary job 

tasks. Exposure routes can include inhalation or ingestion of bioaerosols that are produced 

by the WWTP during treatment processes involving aeration or mechanical movement. 

Workers who come into contact with bioaerosols from these exposure routes can be at risk 

of respiratory or gastrointestinal infection. Therefore, WWTP working environments pose 



 

118 

 

 

potential hazards and risks to workers. The objectives of this model are to (1) aggregate 

information related to multi-pathogen and multi-pathway risk assessment for wastewater 

workers; (2) develop a QMRA model for multi-pathogen and multi-pathway risks; and (3) 

create a web-based application to perform and communicate risk calculations for 

wastewater workers. Case studies were performed investigating infection risk across eight 

different pathogens for seven different job tasks. It was observed that the ingestion risk 

among job tasks was highest for “walking the WWTP”, which involved exposure from 

splashing, bioaerosols, and hand-to-mouth contact from touching contaminated surfaces. 

There was also a notable difference in exposure risk during peak (5 am-9 am) and non-

peak hours (9 am and after), with risks during the peak flow hours of the early morning 

being 5 times greater than non-peak hours. Additionally, the use of PPE was investigated 

by looking at the differences in respiratory risks with mask usage or N95 respirator usage. 

N95 respirator usage significantly reduced median respiratory risks by 3.75 times, 

however, the most significant reduction of risk was associated with a difference in shift 

timing from peak hours to non-peak hours, assuming a 5-fold difference in pathogen 

concentrations between peak- and non-peak times. Due to the influence of exposure timing, 

more comparative data are needed for pathogens in wastewater during peak and non-peak 

hours. Risk management strategies for WWTP workers should be carefully considered, as 

scheduling change may have a significant impact on occupational risk reduction.  
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4.2 Introduction 

Wastewater treatment plants (WWTPs) provide vital services to the public for 

removing contaminants from waste streams before returning discharge to the environment, 

especially as de facto wastewater reuse is common across the US (Rice et al., 2013). 

However, WWTP working environments pose potential hazards and risks to workers 

(Malakahmad et al., 2012). Wastewater contains a mixture of chemical and microbial 

hazards, including pathogenic bacteria, viruses, protozoans, chemical contaminants, and 

heavy metals (Li et al., 2022; Masclaux et al., 2014; Moubarz et al., 2022; Petersen & 

Hubbart, 2020; Staszowska, 2022; Vikesland et al., 2017).  Both well-known and emerging 

pathogenic microorganisms are of particular concern due to their potential to cause acute 

illness.  

Aerated wastewater (WW) contains pathogens that can increase human health risks (Lu 

et al., 2020). WWTP worker exposures and risks have been documented (Khuder et al., 

1998; Smit et al., 2005) that include a wide range of symptoms (Smit et al., 2005). Khuder 

et al. (1998) showed via a questionnaire that WWTP workers have a greater prevalence of 

self-reported gastroenteritis, gastrointestinal symptoms, and headaches than college 

maintenance and oil refinery workers who were also surveyed. Smit et al. (2005) also 

conducted a questionnaire and measured personal endotoxin exposure over a year. They 

found that numerous symptoms were reported that were clustered as “lower respiratory and 
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skin,” “flu-like and systemic symptoms,” and “upper respiratory symptoms”. Kallawicha 

et al. (2016) found that contact dermatitis or other eczema was more prevalent in areas with 

higher ambient bioaerosol exposure by investigating data from a national health database 

(Kallawicha et al., 2016). Bioaerosols are aerosols containing biological material, in this 

case, pathogens (Douwes et al., 2008). Generally, exposure control programs for WWTPs 

are typically recommended (Lee et al., 2007).  

Exposure to untreated wastewater can occur through multiple routes (e.g., bioaerosol 

inhalation,   accidental ingestion via hand-to-mouth transfer or liquid exposure, or other 

routes beyond the scope of this model) (Amoah et al., 2022; Korzeniewska, 2011; 

Korzeniewska et al., 2013; Rodríguez-Molina et al., 2021). Aeration of wastewater in 

WWTPs from wind or the mechanical movement of bioreactors and grit tanks are examples 

of processes that can aerosolize wastewater (Dada & Gyawali, 2021; Korzeniewska & 

Harnisz, 2013). Different types of aeration can introduce different quantities and size 

distributions of aerosols into the air (Han et al., 2020).  

Emerging pathogens are of particular concern for wastewater workers, with previous 

risk assessments addressing Ebola outbreak concerns (Haas et al., 2017), Monkeypox virus 

(Rosa et al., 2022), and the more recent COVID-19 pandemic, caused by the virus SARS-

CoV-2 (Brisolara et al., 2021). Pathogens such as adenovirus, rotavirus, norovirus, 

Legionella spp., and others are also a concern for infection from accidental wastewater 
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exposure or reuse exposures, warranting consideration of potential risks (Medema et al., 

2004; Stobnicka-Kupiec et al., 2022). Aerosol transmission is likely to drive COVID-19 

risks (Jones, 2020), as the SARS-CoV-2 virus is likely to be inactivated in the human gut 

and to date not been cultured from wastewater (Sobsey, 2021). Still, some reports have 

suggested that the fecal-oral pathway, hand-to-mouth transfer, or oral ingestion more 

generally could still be possible (Huang et al., 2021; Xie et al., 2020). However, it should 

be noted that the COVID-19 risks from this pathway (ingestion of wastewater) are likely 

to be low and are uncertain to date (de Oliveira et al., 2021; Kumar et al., 2021).  

While engineering strategies to control aerosol generation at the source are the most 

effective approach according to the hierarchy of controls (CDC & NIOSH, 2023), other 

strategies can also reduce exposures and potential risks. Exposure reduction strategies 

include wearing appropriate personal protective equipment (PPE) such as masks, 

respirators, goggles, gloves, or other personal coverings to reduce exposure to WW and 

subsequent pathogens. Relevant exposure pathways include contact or fomite transfer of 

pathogens to the face (spread of pathogens from one surface to another via contaminated 

hands and, subsequently, to facial mucosa), splash hazards, whole-body contact hazards, 

abrasion, cut, or puncture hazards, and respiratory hazards (LeChevallier et al., 2020). 

To bolster infectious disease preparedness efforts and increase the safety of WWTPs, 

it is important to assess occupational risks and understand the impact of various potential 
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risk management strategies. To prioritize risk management measures, quantitative 

microbial risk assessment (QMRA) is a frequently used method to evaluate the anticipated 

health risks from concentrations of pathogens observed in the environment for different 

exposure scenarios. The approach to QMRA described by Haas et al. (1999) consists of 

four steps. A microbial hazard is identified in the environment of interest, the degree of 

exposure to the hazard is assessed, the dose is related to the probability of an adverse 

outcome, and the risk is characterized in terms of a quantitative estimate of the probability 

of the outcome, with context provided for risk management and communication purposes 

(Haas et al., 2014). For this study, our pathogens of interest (reference pathogens) in 

wastewater include Cryptosporidium hominis, Escherichia coli, Giardia duodenalis, 

Legionella pneumophila, norovirus, rotavirus, and SARS-CoV-2 due to their 

epidemiologic importance and known occurrence in wastewater, or potential to cause 

infection in WW settings, acknowledging limitations surrounding limited evidence of 

SARS-CoV-2 transmission via wastewater matrices (Kumar et al., 2021). 

QMRA models of wastewater bioaerosols have been performed for E. coli (Chen et al., 

2021; Yan et al., 2021), adenovirus (Carducci et al., 2018), Legionella pneumophila (Xu 

et al., 2020), Staphylococcus aureus (Chen et al., 2021; Ma et al., 2022), SARS-CoV-2 

(Zaneti et al., 2020), and other indicator microorganisms (Han et al., 2019; Wang et al., 

2019).  Ma et al. (2022) (Ma et al., 2022) performed a QMRA with Staphylococcus aureus 

exposure from a WWTP in China during different seasons and showed that infection risk 
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was 1.15-6.11 times greater during summer months than winter months. They also 

investigated PPE usage with a QMRA model and found that workers who did not use PPE 

were at a risk 23-36 times higher than workers who did. Mbanga et al. (2020) (Mbanga et 

al., 2020) estimated WWTP workers' exposure risk from E. coli and Enterococcus spp. in 

a WWTP in South Africa. They found the monthly probability of infection for WWTP 

workers who were exposed to 1 mL of untreated wastewater ranged from 91.9-94.5% and 

for treated effluent ranged from 3.1-32.6% depending on the time of year. Carducci et al. 

(2018) (Carducci et al., 2018) performed a QMRA with adenovirus exposure from WWTP 

bioaerosols and predicted a high risk (> 15% chance of illness for less than 3 minutes of 

exposure) to workers who are exposed. Medema et al. (2004) calculated the annual 

probability of infection from Legionellosis or gastrointestinal infection to be high for 

occupational workers of WWTPs, especially during cleaning tasks (reported for cleaning 

the sludge-dewatering installation). As a result, the authors recommended further aerosol 

exposure barriers for WWTP workers (Medema et al., 2004). However, there are gaps in 

the literature for viral QMRAs for WWTP workers, and for multi-pathogen, multi-pathway 

models that can be used to evaluate wastewater worker risks (Divizia et al., 2008; Douwes 

et al., 2003; Maal-Bared, 2023).   

Web-based risk applications are increasingly used in combination with QMRA models 

due to their utility for communicating risks with multiple stakeholders and dynamically 

exploring model assumptions for a variety of applications associated with pathogen 
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exposures in water and wastewater (see Appendix C, Section 2). Gerrity et al. (2019) 

(Gerrity et al., 2019) developed a web application to customize a QMRA for direct potable 

reuse including input on the type of pathogen with distribution, level of log removal, 

treatment train failure scenarios, and more. Rocha-Melogno et al. (2021) (Rocha-Melogno 

et al., 2021) developed the web application Aerosol-Mediated Infectious Disease Risk 

Assessments (AMIDRAs), which includes a QMRA for diarrheal disease near open sewers 

and a QMRA for SARS-CoV-2 aerosolized transmission indoors. In addition to Rocha-

Melogno et al. (2021) (Rocha-Melogno et al., 2021), Schijven et al. (2021) (Schijven et al., 

2021) and Parhizkar et al. (2021) (Parhizkar et al., 2021) have also developed web 

applications for QMRA SARS-CoV-2 aerosolized transmission indoors. Additional web 

applications have been developed for the generalized risk of SARS-CoV-2 for a variety of 

scenarios depending on numerous variables including activity or event type, physical 

characteristics such as age and gender, vaccination status, and mask-wearing (Chande et 

al., 2020; Hu et al., 2020; Olsson et al., 2021; Ranney & Goldberg, 2020). 

To date, applications for assessing the risk of occupational exposure are scarce. 

Additionally, there is a need for site-inclusive exploration of multiple pathogen risks, given 

the variability in pathogen occurrence by the treatment plant, season, and sewershed 

characteristics, among other factors (Li et al., 2022; Lu et al., 2020). As a result, this work 

aims to (1) aggregate information related to multi-pathogen and multi-pathway risk 

assessment for wastewater workers; (2) develop a QMRA model for multi-pathogen and 
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multi-pathway risks; and (3) create a web-based application to perform and communicate 

risk calculations for wastewater workers. 

4.3 Methods 

4.3.1 Modeling framework 

Two different exposure routes were modeled: (1) accidental ingestion (including hand-

to-mouth ingestion for certain exposure scenarios and ingestion of non-respirable aerosols 

(Maal-Bared, 2023), and (2) aerosol inhalation (<5 μm) (Randall et al., 2021). The health 

endpoint for the accidental ingestion model was a gastrointestinal infection. The volumes 

of wastewater estimated to be respirable (<5 μm) range was used in the aerosol inhalation 

model with a health endpoint of respiratory infection. 

4.3.2 Index pathogens and exposure routes 

C. hominis, E. coli, G. duodenalis, norovirus, and rotavirus were considered for the 

ingestion model. L. pneumophila was considered in the aerosol inhalation model, as it 

causes respiratory infections Pontiac Fever or Legionnaires’ Disease. Delta and Omicron 

variants for SARS-CoV-2 were modeled in both ingestion and inhalation pathways, 

acknowledging uncertainties regarding the fecal-oral route as a means of SARS-CoV-2 

infection.  
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4.3.3 Exposure types 

Available exposure settings are based on identified WWTP worker tasks from Maal-

Bared (2023) (Maal-Bared, 2023). Settings include:  

(1) An office at the WWTP (working in the office or on-site trailers); 

(2) Walking the plant (walking through plant areas, exposure from splashing or 

bioaerosols); 

(3) Minor contact (adjusting valves, wiring, or job setup); 

(4) Moderate contact (sampling, lab work, maintenance to primary equipment); 

(5) High contact (sampling, lab work, maintenance to primary equipment); 

(6) Direct splash (accidental splash to the face); and  

(7) Lagoon sampling (sampling at a WW lagoon that would be applicable in 

decentralized and/or low-resource contexts).  

The exposure time for tasks 2-5 and ingested volume for tasks 1-6 are informed by Maal-

Bared (2023) (Maal-Bared, 2023). Due to a lack of data to better inform a range of expected 

ingestion volumes, the point values were varied by ±25% to create triangle distributions to 

be used in the Monte Carlo simulation with 10,000 iterations (Burmaster & Anderson, 

1994). Exposure times for tasks 2 and 5 are assumed to occur between a period of 0.4 and 

4.0 hours as informed by Maal-Bared, 2023 (Maal-Bared, 2023), and ingestion volumes 

were reported on a per-shift basis (assuming an 8 hour shift) for tasks 1-6 ranging from 



 

127 

 

 

1.00 × 10-3 to 5.0 mL (Maal-Bared, 2023). These values were previously adjusted by Maal-

Bared, 2023 to account for the expected percent of an average day that a worker would 

spend performing the job tab task (percent exposure, Fexp). Task 1 is hand-to-mouth 

exposure, so it is assumed no bioaerosols are inhaled in office areas. Task 6 is a direct 

splash to the face, which is assumed to be immediate and only considers ingested volume, 

not aerosol inhalation. The exposure time for task 7, the lagoon sampling scenario, is an 

estimate based on the assumed lagoon sampling time during a shift. This does not include 

time processing the samples. The ingested volume for this scenario was estimated from the 

methods described by Julian et al. (2018) (Julian et al., 2018) for a sampling scenario that 

involved contact with a sampling container (bucket) and hand-to-mouth contact of two 

partial finger areas (Appendix C, Section 1).  

For QMRA, estimates of the distribution of aerosolized pathogens are typically 

developed for pathogen- and process-specific scenarios. Aerosolization information is 

sparse for specific wastewater unit processes. Therefore, the literature was reviewed to 

obtain estimates that are summarized in Table 4. A review paper (Kitajima et al., 2020) 

reported PFU/L and PFU/m3 for various treatment processes in WWTPs and wastewater 

lagoons. Matsubara and Katayama (2019) (Matsubara & Katayama, 2019) reported select 

values for aerosols and wastewater samples across multiple points of a WWTP for 

norovirus genogroup 2, bacteriophages, poliovirus, and murine norovirus. The authors 

reported both CFU/mL of wastewater sampled and CFU/m3 of air sampled for norovirus 



 

128 

 

 

genogroup 2 at the activated sludge chamber and the grit chamber (raw sewage entry). 

These values informed the partitioning coefficient (𝑃𝐶) for the activated sludge chamber 

(1.7x10-4 L/m3) and for the grit chamber (1.6x10-5 L/m3). Gholipour et al., (2021) 

(Gholipour et al., 2021) reported a 𝑃𝐶 for a pumping station and activated sludge chamber 

at a WWTP based on based on SARS-CoV-2 RNA as a uniform distribution (Min =10-5, 

Max = 10-4 L/m3). Due to the lack of specificity in 𝑃𝐶 for different processes at the WWTP, 

these distributions were combined to inform the 𝑃𝐶 for tasks 2-5. Tasks 1 and 6 do not 

consider aerosol exposure and are therefore not assigned a 𝑃𝐶. The 𝑃𝐶 for task 7, the 

lagoon sampling scenario, was informed by Brenner et al. (1988) (Brenner et al., 1988) 

who reported the CFU/mL of lagoon water sampled and CFU/m3 of air sampled for five 

different sampling events from May to October near a wastewater lagoon. The 𝑃𝐶 for the 

lagoon was modeled as a uniform distribution from the minimum (2.6x10-3 L/m3) to the 

maximum (1.6x10-3 L/m3) from the available data in Brenner et al. (1988) (Brenner et al., 

1988). 

Values informed by Matsubara and Katayama (2019) and Gholipour et al., (2021) are 

comparable to partitioning coefficients for Legionella aerosolization from showers (10-6 to 

10-5 CFU/m3 /CFU/L i.e. L/m3) (Gholipour et al., 2021; Matsubara & Katayama, 2019; 

Schoen & Ashbolt, 2011a).  Stobnicka-Kupiec et al. (2022) (Stobnicka-Kupiec et al., 2022) 

report gc/m3 (identified as potentially infectious via viability-PCR coupled with qPCR (v-

qPCR), for influent and treated effluent. Ratios between reported concentrations of 
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airborne rotavirus, norovirus, and SARS-CoV-2 virus to those detected in influent and 

effluent wastewater included a range (on the order of 10-5 up to 10-1 L/m3) that overlapped 

with these values.  

Westrell et al. (2004) reported ingested doses from droplet spray for estimated annual 

ingestion of wastewater by WWTP workers at the pre-aeration process (1 mL/12-hour 

shift) and the belt press (5 mL/12-hour shift). The frequency of exposure to the pre-aeration 

process was 52 times a year and for the belt press was 208 times per year. The annual 

ingestion volumes were divided by an assumed 260 working days a year, accounting for 

weekends and holidays, and by 12 hours per shift. A per-exposure risk lasting 1-hr was 

estimated so it was comparable to the 1-hour aerosol exposure risk estimations. The 

volumes from Westrell et al. (2004) fall within the range of expected droplet ingestion 

based on specific tasks from Maal-Bared (2023) which was used in this model (Maal-

Bared, 2023). Maal-Bared (2023) found that droplet ingestion could range from 0.001 mL/ 

day for minor contact with some wastewater (adjusting valves, electrical work, job setup, 

etc.) to 5.0 mL/ day for walking through plant areas (inspections or other activity that does 

not require primary contact with wastewater). The ingested volumes for Tasks 1 and 2 are 

high (median 3.0 and 5.0 mL) due to the high amount of contact workers have with surfaces 

when working in an office setting or while walking the plant over the course of a working 

day (Maal-Bared, 2023). 
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Table 4: Exposure settings and associated partitioning coefficients with exposure times for 

aerosol inhalation, and accidentally ingested volume from droplet or hand-to-mouth 

exposures.  

Task 

 

PC (L/m3) PC Ref Exposure 

time 

(hrs/task/ 

day) 

Ingested  

volume 

(mL/task/ 

day)* 

Percent 

exposure 

(Fexp)**   

1. Office - - - Triangle 

(2.25, 3.00, 

3.75) 

(hand-to-

mouth) 

15% 

2. Walking 

the plant 

Uniform 

(min = 1.00 

× 10-5,  

max = 1.70 

× 10-4) 

(Matsubara 

and 

Katayama, 

2019) 

(Gholipour 

et al., 2021) 

Triangle 

(0.30, 0.40, 

0.50) 

Triangle 

(3.75, 5.00, 

6.25) 

(hand-to-

mouth  and 

droplet) 

10% 

3. Minor 

contact 

Uniform 

(min = 1.00 

× 10-5,  

max = 1.70 

× 10-4) 

(Matsubara 

and 

Katayama, 

2019) 

(Gholipour 

et al., 2021) 

Triangle 

(0.60, 0.80, 

1.00) 

Triangle 

(7.50 × 10-4,  

1.00 × 10-3,  

1.25 × 10-3) 

(droplet) 

20% 

4. Moderate 

contact 

Uniform 

(min = 1.00 

× 10-5,  

max = 1.70 

× 10-4) 

(Matsubara 

and 

Katayama, 

2019) 

(Gholipour 

et al., 2021) 

Triangle 

(0.60, 0.80, 

1.00) 

Triangle 

(1.50 × 10-2,  

2.00 × 10-2, 

2.50 × 10-2 

(droplet) 

7% 

5. High 

contact 

Uniform 

(min = 1.00 

× 10-5,  

max = 1.70 

× 10-4) 

(Matsubara 

and 

Katayama, 

2019) 

(Gholipour 

et al., 2021) 

Triangle 

(3.00, 4.00, 

5.00) 

Triangle 

(6.80 × 10-2,  

9.00 × 10-2,  

1.10 × 10-1) 

(droplet) 

1% 
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6. Direct 

splash 

- - - Triangle 

(7.50 × 10-3,  

1.00 × 10-2,  

1.25 × 10-2) 

(droplet) 

1% 

7. Lagoon 

sampling 

Uniform 

(min=1.60 × 

10-3,  

max=2.60 × 

10-3) 

(Brenner et 

al., 1988) 

Triangle 

(0.75, 1.00, 

1.25) 

Lognormal 

(-1.05, 1.45) 

(hand-to-

mouth) 

- 

*All exposure times and ingested volumes for tasks 1-6 were reported as point values in 

Maal-Bared (2023) (Maal-Bared, 2023). These values were used as the mode for triangular 

distributions with the minimum and maximum values being set as 25% above or below the 

mode. 

** Percent exposure or full time equivalent of job task. This percentage was applied to 

Maal-Bared, 2023 values exposure time and ingested volume prior to reporting.  

4.3.4 Estimation of infection risk adjusted for time of day 

The time of day was incorporated with a peak differential concentration factor by 

calculating risk during peak flow times (5:00 am- 9:00 am) and non-peak times (9:00 am- 

5:00 am). It was assumed that pathogen concentration would be larger in morning hours, 

due to typically higher loads of fecally-shed pathogens in wastewater during this time of 

day, associated with people generally defecating first thing in the morning (Heaton et al., 

1992; Nguyen Quoc et al., 2022). Pathogen concentrations were assumed to be five times 

higher from 5:00 am to 9:00 am relative to during other times, assuming the WWTP or 
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wastewater lagoon serve a residential area (Nguyen Quoc et al., 2022). A study which 

sampled at a neighborhood level reported similar trends but reported low recovery 

efficiencies for SARS-CoV-2 (Bivins et al., 2021). Depending upon the time of day 

considered in the modeling scenario, the reported concentration was adjusted (e.g., if a 

non-peak concentration was inputted, peak concentrations were estimated within the data 

visualization by multiplying the concentration by a factor of 5). 

4.3.5 Inhalation model 

Inhaled daily dose from pathogens in bioaerosols for each job task was informed by 

equation 32. 

𝐷𝑜𝑠𝑒 = (𝐶𝑤𝑎𝑡𝑒𝑟)(𝑃𝐶)(𝐹𝑟𝑒𝑠)(𝑒
−𝜆𝑡)(𝐼)(𝑀)(𝑡)  (32) 

The concentration in the water (𝐶𝑤𝑎𝑡𝑒𝑟 number of organisms/L) was multiplied by a 

partitioning coefficient (𝑃𝐶, L/m3). The fraction of respirable (𝐹𝑟𝑒𝑠) aerosols are among 

those that are <5 µm was modeled as a uniform distribution from the aerosol distributions 

0.5 m after rotating brushes (66%) to the distribution at the air-water interface (73%)  (Han 

et al., 2020). An inhalation rate for adults assumed light intensity activity (USEPA, 2011) 

(𝐼, m3/min), and an exposure time (Maal-Bared, 2023) (𝑡, hr). Inactivation of aerosols was 

incorporated, where 𝜆 is a first order decay rate (hr-1).  For scenarios where a face covering 

was assumed, 𝐷𝑜𝑠𝑒 was multiplied by mask penetration (𝑀).   
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4.3.6 Ingestion model 

Accidentally ingested WW per day from large (>5μm) aerosols (tasks 2-5), WW 

ingested from a direct splash to the face (task 6), and the equivalent volume ingested from 

hand-to-mouth transfer (tasks 1 and 7) were calculated by equation 33 for each job task. 

𝐷𝑜𝑠𝑒 = (𝐶𝑤𝑎𝑡𝑒𝑟)(𝑉)      (33) 

The volume (𝑉) accidentally ingested was varied by task. 𝑉 for tasks 1-6 were informed 

by (Maal-Bared, 2023). For task 7, 𝑉  was calculated using method described in 

(LeChevallier et al., 2020) (Appendix C, Section 1).  

4.3.7 QMRA 

The risk for infection from each pathogen was calculated with a pathogen-specific dose 

response. Three different dose response model equations were used across the eight 

pathogens (Table 5). An exponential dose response model (equation 34) was used for C. 

hominis, E. coli, G. duodenalis, L. pneumophila, rotavirus, SARS-CoV-2 (Delta), and 

SARS-CoV-2 (Omicron). A Beta-Poisson model (equation 35) was used for rotavirus and 

norovirus and a fractional Poisson model (equation 36) was also used for norovirus.  

 𝑅𝑖𝑠𝑘inf = 1 − 𝑒−𝑟 𝑑𝑜𝑠𝑒     (34) 

𝑅𝑖𝑠𝑘inf = 1 − (1 +
𝐷𝑜𝑠𝑒

𝛽
)
−𝛼

     (35) 
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𝑅𝑖𝑠𝑘inf = 𝑃 ∗ (1 − 𝑒
−
𝐷𝑜𝑠𝑒

𝜇𝑎 )      (36) 

The total risk of infection (for inhalation or ingestion from all pathogens in those 

exposure route groups) was calculated with equation 37 for total inhalation risk and total 

ingestion risk based on the pathogens selected by the user. The probabilities for infections 

were considered to happen independently. Co-infections were not considered in the model. 

𝑅𝑖𝑠𝑘total = 1 −∏(1 − 𝑅𝑖𝑠𝑘inf)    (37) 

 

Table 5: Exposure route associated with each pathogen and available dose response 

parameters. 

Pathogen Ingestion Inhalation Dose response Parameter Reference 

Cryptosporidium 

hominis 

X  Exponential Point 

(5.72×10-2) 

(Chappell et 

al., 2006; 

Messner et 

al., 2001) 

Escherichia coli X  Exponential Point 

(1.95×10-6) 

(Tacket et 

al., 2000) 

Giardia 

duodenalis 

X  Exponential Point 

(1.99×10-2) 

(Rendtorff, 

1954) 

Legionella 

pneumophila 

 X Exponential 

(Sub-

clinical) 

Lognormal 

(μ: -2.93, σ: 

0.49) 

(Armstrong 

& Haas, 

2007a),   

(Muller et 

al., 1983a) 
Exponential 

(Clinical) 

Lognormal 

(μ: -9.69, σ: 

0.30) 

Norovirus X  Beta-

Poisson 

Point (McBride, 

2014; Van 
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(⍺: 0.104, ꞵ: 

32.2) 

Abel et al., 

2017b) 

Fractional 

Poisson 

Point 

(𝑃: 0.686, 

𝜇𝑎: 579) 

Rotavirus X  Exponential Point 

(1.73×10-2) 

(Payment & 

Morin, 

1990) 

Beta-

Poisson 

Point* 

(⍺: 7.28×10-

2, ꞵ: 

1.07×10-1) 

(Ward et al., 

1986) 

SARS-CoV-2: 

Delta 

X X Exponential Triangular 

(1.85 × 10-3, 

2.46 × 10-3,  

3.08 × 10-3) 

(Pitol & 

Julian, 

2021) 

SARS-CoV-2: 

Omicron 

X X Exponential Triangular 

(5.54 × 10-3, 

7.38 × 10-3,  

9.23 × 10-3) 

(Riediker et 

al., 2022) 

*Original N50 value converted to ꞵ with ꞵ=N50/(2
1/⍺-1) (From QMRAwiki) 

For SARS-CoV-2, we used a previously utilized dose-response curve to represent Delta 

variant dose response (Pitol & Julian, 2021). We assume Omicron is 3 times more 

infectious than Delta variant, supported by multiple studies, (Riediker et al., 2022) by 

increasing k (the probability that a single viral particle reaches a site of infection and 

initiates infection) by 3. Each k value was decreased by 25% and increased by 25% to 

inform minimums and maximums, respectively, for a triangular distribution. 

Due to uncertainty regarding the degree of pathogen infectivity and/or viability in 

wastewater, an assumed ratio of infectious and/or viable pathogen per gc could also be 
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selected if the user indicated the pathogen concentration is from molecular methods, with 

drop-down options of 1/100 through 1/1,000,000, decreasing by 1 log10 per option. There 

are limited data elucidating this ratio in published literature. However, our range includes 

those that have been reported in other studies, (Sinclair et al., 2008; Tyagi et al., 2021). It 

should be noted that lower ratios may be more appropriate for wastewater-specific 

contexts. If the concentration is indicated to be from molecular methods and a ratio is 

selected, the concentration of infectious virus in the water (𝐶𝑤𝑎𝑡𝑒𝑟) per mL is multiplied 

by the ratio of infectious pathogen in the model. In the case of culture methods, we assume 

PFU for viruses, CFU for bacteria, or TCID50 are representative of number of viable and/or 

infectious organisms (Tyagi et al., 2021).  A viability ratio of 1/10,000 was applied to the 

concentrations of SARS-CoV-2 Delta and Omicron variants (Sender et al., 2021) 

4.3.8 Sensitivity analysis 

A Spearman rank correlation coefficient heatmap was calculated for a single respiratory 

infection case study. The final risks were compared to the Monte Carlo variables used for 

that case. 10,000 iterations were used for the Monte Carlo analysis (Burmaster & 

Anderson, 1994). The sensitivity analysis was performed with the ggpubr package in R 

version 4.2.1. 
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4.3.9 Risk calculator app 

An interactive web application was developed using RShiny. Adjustable input 

parameters were used for pathogen concentrations, dose response models, personal 

protective equipment usage, sample timing, and job activity type as implemented in the 

QMRA models described above (Table 6). Risk outputs were coded for visualization as 

box plots, with a comparison to user-chosen risk comparison levels. To demonstrate the 

outputs of the web application, a range of hypothetical but representative scenarios were 

chosen, and the simulations were parameterized with values in Table 7. 

1) Differences in infection risk predicted across pathogen types given typical 

wastewater concentrations  

2) Differences in infection risk from selected pathogens C. hominis and L. 

pneumophila across different tasks 

3) Differences in infection risk during peak and non-peak hours  

4) Differences in infection risk from L. pneumophila with and without PPE 

 

Table 6. Risk calculator tool inputs  

Input Parameter Input Type Choices 

Pathogen of interest Multiselect 

Cryptosporidium hominis, Escherichia coli, 

Giardia duodenalis, Legionella pneumophila, 

Norovirus, rotavirus, SARS-CoV-2 (Delta 

variant), SARS-CoV-2 (Omicron variant) 
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Exposure setting 
Drop down 

menu 

Office, Walking the plant, Minor contact, 

Moderate contact, High contact, Direct 

splash, Lagoon sampling 

Exposure time 
Drop down 

menu 

Early morning (5 am-9 am), Late morning 

and after (9 am-5 am) 

PPE Usage 
Drop down 

menu 

None, Cotton Mask, Cloth Mask, Surgical 

Mask, N95 Mask 

Risk comparison 

level 

Drop down 

menu 
1/1,000; 1/10,000; 1/100,000; 1/1,000,000 

Concentration 

(log10/mL) 

Slider or user 

entry 
min=-3, max=7, increment=1 

Sample type 
Drop down 

menu 
Molecular, culture 

Ratio of infectious 

particles to genome 

copies 

Drop down 

menu 

1/100; 1/1,000; 1/10,000; 1/100,000; 

1/1,000,000 

Dose response 

parameter 

Drop down 

menu 
Exponential, Beta-Poisson, Fractional Poisson 

Exposure Setting 
Drop down 

menu 

Office, Walking the plant, Minor contact, 

Moderate contact, High contact, Direct 

splash, Lagoon sampling 

 

Table 7. Parameters, distributions, and their sources 

Parameter Variable Units* 
Distribution/Point 

Value 
Source 

Concentration 

in wastewater: 

C. hominis 

𝐶𝑤𝑎𝑡𝑒𝑟 #/L 

Uniform 

(min=102, 

max=104) 

(Inc. Metcalf 

& Eddy et al., 

2013; US 

EPA, 2019) 

Concentration 

in wastewater: 

E. coli 

𝐶𝑤𝑎𝑡𝑒𝑟 #/L 

Uniform 

(min=105, 

max=1010) 

(Chahal et al., 

2016; 

Matthews et 

al., 2010) 
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Concentration 

in wastewater: 

G. duodenalis 

𝐶𝑤𝑎𝑡𝑒𝑟 #/L 

Uniform 

(min=104, 

max=105) 

(Inc. Metcalf 

& Eddy et al., 

2013; US 

EPA, 2019) 

Concentration 

in wastewater: 

L. 

pneumophila 

𝐶𝑤𝑎𝑡𝑒𝑟 #/L 

Uniform 

(min=103, 

max=105) 

(Caicedo et 

al., 2019) 

Concentration 

in wastewater: 

Norovirus 

𝐶𝑤𝑎𝑡𝑒𝑟 #/L 

Uniform 

(min=101, 

max=109) 

(Eftim et al., 

2017) 

Concentration 

in wastewater: 

Rotavirus 

𝐶𝑤𝑎𝑡𝑒𝑟 # /L 

Uniform 

(min=100, 

max=105) 

(Inc. Metcalf 

& Eddy et al., 

2013; US 

EPA, 2019) 

Concentration 

in wastewater: 

SARS-CoV-2 

𝐶𝑤𝑎𝑡𝑒𝑟 # /L 

Uniform 

(min=103, 

max=106) 

(Weidhaas et 

al., 2021) 

Partitioning 

coefficient 
𝑃𝐶 L/ m3 See Table 4 

(Brenner et 

al., 1988; 

Gholipour et 

al., 2021; 

Matsubara & 

Katayama, 

2019) 

Fraction of 

respirable 

aerosols (<4.7 

um) 

𝐹𝑟𝑒𝑠 
Fraction 

(unitless) 

Uniform 

(min=0.66, 

max=0.73) 

(Han et al., 

2020) 

Inhalation rate 

(men and 

women ages 

31 to <41, 

moderate 

intensity – 

similar to ages 

21 to <31) 

𝐼 m3/min 

Normal 

(mean=2.7 × 10-2, 

SD=5.0 × 10-3) 

Range 1.7 × 10-2 – 

3.7 × 10-2 

(Bussard, 

2011) 

Exposure time 𝑡 hr See Table 4 
(Maal-Bared, 

2023) 
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Cotton cloth 

mask 

penetration (3-

ply) 

𝑀 
Fraction 

(unitless) 

Normal 

(mean=0.49, 

SD=0.077) 

(Lindsley et 

al., 2021) 

Surgical mask 

penetration 
𝑀 

Fraction 

(unitless) 

Normal 

(mean=0.41, 

SD=0.069) 

(Lindsley et 

al., 2021) 

N95 mask 

penetration 
𝑀 

Fraction 

(unitless) 

Beta 

(𝛼=3, 𝛽=8) 

(Wilson et al., 

2021) 

Inactivation 

rate of L. 

pneumophila 

in aerosols 

𝜆 hr-1 

Point 

(0.125 for 0<𝑡<30 

seconds, 

3.1 × 10-4 for 𝑡>30 

seconds) 

(Hamilton et 

al., 2018) 

Inactivation 

rate of SARS-

CoV-2 in 

aerosols 

𝜆 hr-1 

Triangular 

(min=0.096, 

mode=0.253, 

max=0.420) 

(Jones, 2020; 

van 

Doremalen et 

al., 2020; 

Wilson et al., 

2021) 

Volume 

ingested 
𝑉 mL See Table 4 

(Maal-Bared, 

2023) 

Percent 

exposure 
𝐹𝑒𝑥𝑝 % See Table 4 

(Maal-Bared, 

2023) 

Diurnal effect 

factor 
- 

Factor 

(unitless) 

Point 

(Non-peak (9 am 

and after) 

concentration in 

wastewater is 5 

times greater than 

peak (5 am-9 am)) 

(Nguyen 

Quoc et al., 

2022) 

Dose response 

parameter 
𝑘, 𝛼, 𝛽, 𝑃, 𝜇𝑎 Unitless See Table 5 See Table 5 

*Units of measurement determined based on user inputs from Table 6 for variables 

“sample type” and “ratio of infectious particles to genome copies”. For example, if a 

culture-based measurement is chosen, 100% viability is assumed and bacterial units default 
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to CFU. If a molecular-based measurement is specified, the user is prompted for the ratio 

of infectious particles to genome copies, and units default to gc/L. 

4.4 Results 

4.4.1 Description of general model outputs 

The risk calculator application includes several inputs to visualize how risk from 

inhalation of aerosols or ingestion of droplets (or via hand-to-mouth contact) changes 

according to the job task performed, the time of day, assumed fraction of infectious virus 

per gene copy (gc), pathogen type, etc. (Table 6). As users change inputs in this interface, 

the plotted risk distributions change, showing whether risks are below, above, or 

overlapping with a selected risk comparison level. Global variables that affect the risk 

results for both ingestion and inhalation pathways include selected pathogens, exposure 

setting, exposure time, and PPE usage. A user-specified risk comparison level for visual 

comparison could also be selected, with drop-down options of 1/1,000 through 

1/1,000,000, decreasing by 1 log10 per option. The user input for the risk comparison level 

is provided as there is currently no widely adopted human health risk benchmark specific 

to occupational wastewater exposures. All plots graph this horizontal level for visual 

comparison to estimated risk distributions at the 1/10,000 level. These variables are shown 

on the top of the sidebar of the calculator (Figure 15). 
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Figure 15: Calculator page with individual pathogen risks and total risks for ingestion 

and inhalation. The dotted red line displays the risk comparison level that is selected by the 

user. Global variables including selected pathogens, exposure setting, exposure time, PPE 

usage, and risk comparison level are shown at the top of the sidebar. 

 

Each pathogen has a submenu to allow for user inputs that include the concentration of 

pathogens in wastewater as a log10 concentration, point value, lognormal, or uniform 

distribution. This concentration could be specified as being in molecular units (e.g., gc/ 

mL) or culture-based units (e.g., plaque forming units (PFU), colony forming units (CFU), 

or TCID50/mL). If the concentration is in molecular units, the user has to select the 

approximate ratio of infectious pathogen in the sample from 1/100 to 1/1,000,000. The 
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calculator also includes pathogen-specific dose response parameters. For pathogens that 

have more than one commonly available dose response parameter, a drop-down menu 

allows the user to choose from a selection of available dose response models (Figure 16).  

 

 

Figure 16: Calculator page with pathogen-specific parameters for C. hominis. Users can 

enter their concentration of C. hominis in the wastewater and specify the time of day the 

sample was collected and the sample type, as well as the dose response parameter.  
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4.4.2 Web application evaluation using scenario analysis 

4.4.2.1 Difference in infection risk predicted across pathogen types given typical 

wastewater concentrations 

The concentrations of pathogens in wastewater were assumed to be measured during 

peak hours (5 am-9 am) and no diurnal effect factor was applied when the exposure time 

was also during peak hours. Literature estimates for concentration were assumed to provide 

ranges with 100% infectivity for all pathogens was assumed except for SARS-CoV-2 Delta 

and Omicron variants. For these, a viability ratio of 1/10,000 was applied (Sender et al., 

2021). The exposure setting was set as “high contact” and was assumed to be performed 

during peak hours (5 am to 9 am). High contact tasks include tasks that involve primary 

contact with wastewater such as sampling, lab work, and maintenance of primary 

equipment (Section 4.3.3 Exposure Types). No PPE was assumed to be worn during the 

duration of the task. Infection risks for all pathogens and total risks for gastrointestinal 

infection and respiratory infection are shown in gray (Figure 17). G. duodenalis had the 

highest median daily risk of gastrointestinal infection and SARS-CoV-2 Delta had the 

lowest. L. pneumophila had the highest respiratory risk. The numeric results for all scenario 

analyses presented here are reported in Table 8. 
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Figure 17: Ingestion and inhalation risk graphs for all pathogens modeled for a “high 

contact” exposure setting during peak hours (early morning, 5 am-9 am). 

 

Table 8: Summary of risk results for scenario analysis for Monte Carlo simulation with 

10,000 iterations. Ingestion and inhalation summary statistics for all pathogens modeled 

for a “high contact” exposure setting during peak hours (early morning, 5 am-9 am) with 

no PPE. 
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Scenario Min 1st Qu. Median Mean 3rd Qu. Max 

Ingestion, 

Cryptosporidium 3.6e-04 1.6e-03 5.0e-03 1.1e-02 1.5e-02 6.3e-02 

Ingestion, E. coli 1.3e-05 3.0e-04 5.7e-03 1.1e-01 9.5e-02 9.0e-01 

Ingestion, 

Giardia 1.3e-02 3.1e-02 5.4e-02 6.6e-02 9.5e-02 2.1e-01 

Ingestion, 

Norovirus 2.3e-06 3.0e-04 2.8e-02 1.5e-01 3.0e-01 5.7e-01 

Ingestion, 

Rotavirus 1.1e-06 2.4e-05 4.2e-04 1.2e-02 8.1e-03 1.9e-01 

Ingestion, 

SARS-CoV-2: 

Delta 1.5e-07 6.9e-07 2.2e-06 4.7e-06 6.9e-06 3.0e-05 

Ingestion, 

SARS-CoV-2: 

Omicron 4.5e-07 2.1e-06 6.7e-06 1.4e-05 2.1e-05 8.7e-05 

Ingestion, Total 

Ingestion 1.6e-02 1.1e-01 2.4e-01 3.0e-01 4.8e-01 9.5e-01 

Inhalation, 

Legionella 2.2e-03 5.8e-02 1.7e-01 2.9e-01 4.7e-01 1.0e+00 

Inhalation, 

SARS-CoV-2: 

Delta 3.7e-08 9.0e-07 2.9e-06 7.9e-06 9.5e-06 1.3e-04 

Inhalation, 

SARS-CoV-2: 

Omicron 8.2e-08 2.9e-06 8.9e-06 2.4e-05 2.9e-05 3.4e-04 

Inhalation, Total 

Inhalation 2.2e-03 5.8e-02 1.7e-01 2.9e-01 4.7e-01 1.0e+00 

 

4.4.2.2 Differences in infection risk from C. hominis and L. pneumophila across 

different job tasks 

The gastrointestinal infection risk from C. hominis and respiratory risk from L. 

pneumophila was compared among different exposure settings that workers may encounter 
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while working in WWTPs. It was assumed that the tasks were performed during early 

morning hours (5 am-9 am) and that no PPE was worn. Walking the WWTP (task 2) and 

working in the office (task 1) had the highest median daily risks of C. hominis infection 

(Figure 18). This is expected due to the high amount of contact workers have with surfaces 

when working in an office setting. While walking the plant, contact with surfaces is 

included along with exposure to aerosols. Lagoon sampling (task 7) has the largest range 

due to the variability in accidental ingestion from hand-to-mouth contact (Appendix C, 

Section 1).   
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Figure 18: Infection risk from C. hominis for different exposure settings with late morning 

exposure and no PPE. 

 

Infection risks from L. pneumophila are shown in Figure 19 for job tasks that 

include aerosol exposure. The infection risk from walking the plant (task 2) is much lower 

than the infection risk from C. hominis because volume from contact with surfaces is not 

included in this model. Lagoon sampling (task 7) has the highest risk of infection.  
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Figure 19: Infection risk from L. pneumophila for different exposure settings with late 

morning exposure and no PPE. 

 

4.4.2.3 Differences in infection risk during peak and non-peak hours 

Ingestion and inhalation risks for available pathogens were calculated at peak hours 

(early morning, 5 am-9 am) and nonpeak hours (late morning, 9 am and after), for “high 

contact” (task 5), without PPE. During peak and non-peak hours, G. duodenalis had the 

highest median daily risk of gastrointestinal infection and SARS-CoV-2 Delta had the 

lowest (Figure 20). A factor of 5 was assumed for this difference based on the results from 

Nguyen Quoc, 2022 (Nguyen Quoc et al., 2022). More information is needed to inform the 

selection of this value, as reported diurnal concentrations of pathogens varies in the 

literature (Bivins et al., 2021). 
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Figure 20: Ingestion risks for available pathogens during peak hours (early morning, 5 am-

9 am) and non-peak hours (late morning and after, 9 am-5 am), for “high contact”, without 

PPE. 

 

During peak and non-peak hours, the median daily respiratory infection risk from 

L. pneumophila is the largest, followed by the infection risk of SARS-CoV-2: Omicron and 

SARS-CoV-2: Delta (Figure 21). 
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Figure 21: Inhalation risks for available pathogens during peak hours (early morning, 5 

am-9 am) and nonpeak hours (late morning, 9 am and after), for “high contact”, without 

PPE. 

 

4.4.2.4 Differences in infection risk for L. pneumophila with and without PPE 

The available PPE options for this model include cloth masks, surgical masks, and N95 

respirators. For this model, it was assumed that these face coverings completely prevented 
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ingestion-associated exposures. The risk of L. pneumophila was calculated for a high 

contact exposure scenario during peak hours (early morning, 5 am to 9 am) (Figure 22). 

The median risk was lowest with the usage of an N95 respirator. Wearing an N95 respirator 

reduces the median daily risk of infection 3.75 times compared to not wearing a face 

covering. 

 

Figure 22: Inhalation risks during peak hours with and without face covering. 
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4.4.3 Sensitivity analysis for explored conditions 

A sensitivity analysis was performed with Spearman correlation coefficients for a 

single respiratory infection case study. The sensitivity analysis was conducted for the 

infection risk scenario of a high contact exposure scenario during peak hours (early 

morning, 5 am-9 am), with an N95 respirator used for the duration of the exposure (Figure 

23).    
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Figure 23: Respiratory infection risks used in the sensitivity analysis for a high contact 

exposure scenario during peak hours (early morning, 5 am to 9 am) with an N95 respirator.  

 

The final daily risks calculated in Figure 23 were used to calculate Spearman’s 

correlation coefficients for the output (risk) versus each Monte Carlo variable used for that 

case (Figure 24). Inhalation risks for L. pneumophila, SARS-CoV-2: Omicron, SARS-

CoV-2: Delta, and total inhalation risk were most highly correlated with the partitioning 

coefficient (0.37 to 0.38) and N95 mask efficiency (-0.31 to -0.32). 
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Figure 24: Sensitivity analysis with Spearman’s correlation coefficients for Monte Carlo 

variables. *Denotes that the value used in this sensitivity analysis was one minus N95 mask 

efficiency (1 −𝑀) for ease of interpretation (i.e. a 95% efficiency is modeled as 0.05).  

 

4.5 Discussion 

4.5.1 Implications of web application development  

We developed a tool for relating pathogen concentrations in sewage to estimated 

wastewater worker infection risks from accidental ingestion or inhalation of wastewater. 

The web application, titled the Wastewater Exposure Calculator, offers a customizable tool 

for WWTP managers to explore the range of possible risks using site-specific information. 

This calculator can incorporate the pathogens of concern, the type of job tasks, the time of 

day, and the use of available PPE. The model is intended to provide a framework that can 

be built upon to evaluate combinations of site-specific recommendations for decisions such 

as scheduling job tasks, implementing physical barriers between bioaerosols and workers, 

or recommending different types of PPE. While this model is primarily focused on 

assessing risks at centralized WWTPs which are common in urban and peri-urban 

communities, the tool can be expanded to rural or low-resource settings given additional 

information on exposure volumes and timing.  The rural and low-resource settings may not 

be fully represented by the exposures presented in the web applications (Table C2). 
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4.5.2 Scenario analysis findings and utility for exploration of management 

interventions 

The Wastewater Exposure Calculator can explore many different cases by varying 

performed tasks, exposure times, concentrations of pathogens, dose response parameters, 

and PPE. Case studies comparing infection risks for (1) individual pathogens, (2) C. 

hominis and L. pneumophila for different tasks, (3) gastrointestinal and respiratory 

infection risks for exposure during peak and non-peak hours, and (4) respiratory infection 

risks for masks, N95 respirators, and no PPE. For case (1) individual pathogens, G. 

duodenalis had the highest median gastrointestinal infection risk and SARS-CoV-2 Delta 

had the lowest. L. pneumophila had the highest respiratory infection risk.  

Case (2) investigated the risk of gastrointestinal infection from C. hominis among 

different exposure settings that workers may encounter while working in WWTPs. An 

exposure time during early morning hours was assumed and no PPE was accounted for. 

Walking the WWTP and working in the office had the highest risk of infection. This was 

due to the high amount of contact workers had with surfaces or different aerosols during 

the time. Maal-Bared (2023) (Maal-Bared, 2023) clarifies that the volume transferred to 

workers’ hands from the surfaces they come into contact with is very low, but the number 

of contacts is high. Throughout a workday, the authors estimate that individuals working 

in an on-site office will ingest up to 3.0 mL per 8-hour shift. Lagoon sampling has the 
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largest range due to the variability surrounding these sampling events. For the risk of 

respiratory infection from L. pneumophila was highest for lagoon sampling events and 

lowest for walking the plant.  

Comparing ingestion scenarios, the risk of working in an office on-site at the treatment 

plant is ~5000 times greater than the risk of a direct splash of wastewater to the face. The 

ingestion volumes reported in Maal-Bared (2023) (Maal-Bared, 2023) were calculated 

using information collected from focus groups of professionals who worked at WWTPs. 

This study was representative of an urban, industrial, and municipal WWTP and included 

individuals from the utility crew, maintenance crew, operations team, engineers, laboratory 

staff, and health a safety scientists. Reported office hygiene was problematic for several 

reasons. According to the focus group results, many WWTPs did not have designated 

eating or smoking areas, nor did they have appropriate locker rooms for workers to change 

into and out of coveralls or other work clothes. Workers reported wearing contaminated 

PPE in the office eating or smoking areas, and therefore contamination of office surfaces 

was assumed.  

Case (3) investigated infection risks during peak and non-peak hours. G. duodenalis 

had the highest risk for both peak and non-peak hours for all pathogens considered in the 

ingestion risk scenario, and SARS-CoV-2 Delta was the lowest, noting that a 10-4 

infectivity relationship assumed is highly uncertain and was chosen due to lack of cultured 
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SARS-CoV-2 from WWTP, and likely barriers to fecal-oral transmission (Sender et al., 

2021). L. pneumophila had the highest risk for respiratory infection risk, followed by 

SARS-CoV-2 Omicron and SARS-CoV-2 Delta. The infection risk levels increased by 5-

fold for all pathogens from non-peak to peak timing for the modeled scenarios, 

emphasizing that shift timing plays an important role in risk outcomes. 

Case (4) investigated the usage of cloth masks, surgical masks, and N95 respirators and 

their impact on the risk of respiratory infection from inhalation. The use of any face 

covering modeled here reduced the risk of infection when compared to a no-mask scenario. 

It should be noted that respirators would be nearly completely effective for mitigating 

droplet exposures, especially for large droplets (100µm) (Wang et al., 2021), so ingestion 

risk was not modeled for this event.  

The exposure reduction provided by the addition of PPE (3.75 times reduction) is not 

as significant as the reduction seen by peak vs non-peak exposure timings (5 times 

reduction) (Figures 20 and 22). Peak concentrations were assumed to be five times higher 

than non-peak concentrations (Nguyen Quoc et al., 2022) and these trends were confirmed 

for SARS-CoV-2 for similar studies at the neighborhood level (Bivins et al., 2021). 

However when sampling at the influent for a WWTP these trends were not observed 

(Ahmed et al., 2021). Therefore, further research is needed to determine the pathogen 

concentration differences for peak and non-peak hours at WWTP. Comparing 
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concentrations over time for an individual WWTP could help scheduling become safer for 

workers even in the absence of PPE. Additionally, the usage of PPE while workers are in 

the office, walking the WWTP, or sampling at WW lagoons has the greatest potential to 

reduce risks from ingestion exposures. 

4.5.3 Limitations of the modeling tool 

The proposed modeling framework and web application provides a generalizable tool 

that can be customized using site-specific data.  However, some variables are not coded as 

user-specified inputs due to the limited availability of information in the literature (e.g., 

aerosol partitioning information). Factors that individual WWTPs are likely to have data 

for were prioritized as user-controlled inputs to the web application. The PPE options 

included (i.e., masks) are an incomplete list of potential PPE or workplace barriers. 

Additional considerations like other forms of PPE (e.g., gloves, face shields, and coveralls) 

could be incorporated into the model with additional data availability.   

This calculator has options for eight reference pathogens. A much broader swath of 

microorganisms poses a potential risk to human health. These eight were chosen due to 

their epidemiologic importance and representativeness of bacterium (E. coli and L. 

pneumophila), viruses (norovirus, rotavirus, SARS-CoV-2 Delta and Omicron), and 

parasites (C. hominis and G. duodenalis). Fungi are also present in WWTPs in addition to 

bacteria and viruses (Staszowska, 2022) but were not included in the scope of this model 
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due to a lack of dose response information, for example (Haas, 2015b). Norovirus was 

modeled with a Beta-Poisson and fractional Poisson model. Norovirus is used as a viral 

reference pathogen to set pathogen log10-reduction targets (Jahne et al., 2023). Additional 

dose response models including the hypergeometric dose response (α: 0.04, β: 0.055) 

(Teunis et al., 2008) are not considered in this model but can be added to future versions. 

In addition to the risks posed by these pathogen-containing groups, WWTPs allow the 

proliferation of antibiotic resistance genes and resistant bacteria, the risk of which could 

also be considered (Petersen & Hubbart, 2020; Vikesland et al., 2017).  

The large uncertainty in ratios of infectious viruses to RNA measurements (i.e., gc/ L) 

has important implications for the interpretation of results, especially for SARS-CoV-2 

estimates. A viability ratio of 1/10,000 was used for SARS-CoV-2 (Sender et al., 2021). A 

review of the literature indicated that culture-based quantification methods for 

environmental samples of norovirus are not routinely used and therefore there is a lack of 

viability data (Eftim et al., 2017).  

While there were relatively high viral loads of SARS-CoV-2 (2-3 log10 gc/L) that were 

determined to be potentially infectious by Stobnicka-Kupiec et al. (2022) (Stobnicka-

Kupiec et al., 2022) in both influent and effluent samples, SARS-CoV-2 has not been 

successfully cultured from sewage to date to the author’s knowledge. This raises 

uncertainties in several important factors: 1) what fraction of “potentially infectious” gc/L 
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is truly infectious, and 2) the sensitivity of cell culture methods for detecting the infectious 

virus. Early in the SARS-CoV-2 pandemic, it was known that SARS-CoV-2 was shed in 

stool, and therefore the virus was also present in WWTPs (Alam & Ali, 2021), however, 

its infectious state has not been fully ascertained (de Oliveira et al., 2021; Huang et al., 

2021; Kumar et al., 2021; Sobsey, 2021; Xie et al., 2020). While it has been shown that it 

is possible to quantify SARS-CoV-2 from feces (Xiao et al., 2020) or urine (Sun et al., 

2020) of individuals infected with COVID-19, it has been very rare to successfully isolate 

a viable sample (Ahmed et al., 2021). The virus is inactivated by the colonic fluid up to 

80% in 24 hours (Zang et al., 2020) and will further decay as it travels through the WW 

network (Silverman & Boehm, 2020). The inactivated virus has been quantified from WW 

and used for wastewater-based epidemiology (WBE) to estimate the number of disease 

cases in a community. This has proven to be a powerful tool in allowing communities to 

prepare for surges of SARS-CoV-2 cases (Kitajima et al., 2020), rather than a direct risk 

from wastewater exposures. Therefore, SARS-CoV-2 is likely to be inactivated in WW 

and may not contribute to a meaningful increase in the risk of infection when aerosolized 

and inhaled (Brisolara et al., 2021). The focus remains on risk to healthcare professionals 

and aerosol mediated person-to person transmission (Jones et al., 2020). However, as new 

information becomes available, uncertainties can be reduced in the ratio specified within 

the application. 
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Repeated exposures were not considered in this model, as there is a lack of data 

available as to how frequently job tasks will be performed among workers. With further 

job-specific information, annual risks could be calculated and compared to annual risk 

benchmarks. Disability-adjusted life years (DALYs) can be used to look at benchmarks, 

but this would require annual risk values. Additionally, site-specific information is needed, 

as many of the selected values used for this model are informed by the range in the existing 

literature. Site-specific information can be entered for many variables in the app and the 

available data file produced in the application with the calculated risk per event can be used 

to calculate annual risks and DALY values when the frequency of job tasks is available. 

More specific worker time-activity patterns could be incorporated accounting for the 

maintenance and operation of specific WWTP unit processes. 

4.5.4 Additional exposure settings for consideration 

The Wastewater Exposure Calculator is primarily focused on assessing risks at 

centralized WWTPs which are common in urban and peri-urban communities. The 

calculator has seven exposure setting tasks, the first six of which are specific to industrial 

WWTPs. Additional exposure routes in more rural or low-resource settings may not be 

fully represented by the exposures presented in existing web applications. For example, 

waste stabilization ponds, or wastewater treatment lagoons, can be used in place of large 

WWTPs as a low-cost alternative that can still meet treated effluent standards. Wastewater 
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treatment lagoons are commonly used in the USA (USEPA, 2011), Canada (Statistics 

Canada, 2016), and Europe (Mara, 2009). The lagoons can be attached to a local sewershed 

or they can stand alone and be filled with sewage and sludge trucks that regularly fill the 

lagoon (D’Aoust et al., 2021). Other environmental factors such as humidity and season 

have been shown to play an important role in the overall infection risk from working with 

wastewater but have not been included in this model (Stobnicka-Kupiec et al., 2022).  

4.6 Conclusion 

The Wastewater Exposure Calculator developed in this work offers a customizable tool 

for WWTP managers to explore the range of possible risks using site-specific information. 

The tool performs multiple QMRA calculations to estimate WWTP workers' infection risks 

from accidental ingestion or inhalation of wastewater from multiple pathogens and 

exposure scenarios. The model is intended to provide a framework that can modified to 

provide recommendations on a site-specific scale for scheduling tasks, implementing 

physical barriers between bioaerosols and workers, or recommending different types of 

PPE. While this model is primarily focused on assessing risks at centralized WWTPs which 

are common in urban and peri-urban communities, it is also expanded to rural or low-

resource settings and the lagoon-sampling related scenario can be used for this purpose. 

The web application can be found at https://ashleyheida.shinyapps.io/WWapp/. 

https://urldefense.com/v3/__https:/ashleyheida.shinyapps.io/WWapp/__;!!IKRxdwAv5BmarQ!Y7lqubXSlIKDWjCAS4xPb8iy6MNjOyKWMQOYeRf9H1-WQAEYHjJovVOkT_jmvjaWZke64T04H32C3ABSdww$
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Factors identified as important risk drivers included exposure timing (peak vs. non-

peak), and to a lesser degree, the use of PPE. Therefore, further research is needed to 

determine the pathogen concentration differences for peak and nonpeak hours at WWTP. 
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CHAPTER 5 

CONCLUSION 

Modeling pathogen fate and transport in the built environment can help to better 

understand pathogens that grow and persist in engineered systems. Computational tools 

such as QMRA can evaluate the health risks from exposure to pathogens and can help to 

evaluate the effectiveness of different intervention strategies. Scenario analysis of each 

model enabled an understanding of how the full range of the variables used in the model 

affects the model output. Sensitivity analysis can be used to identify variables that have the 

most influence on the final result (typically a risk output) which can be ranked and 

identified as driving factors to inform resource allocation and intervention strategies. These 

methods used in the models described throughout this dissertation have developed 

customizable model frameworks that can be further built upon and used by decision-

makers for their specific settings to better inform the decision-making process. 

Chapter 2 presents a computational framework for evaluating an optimal water heater 

temperature set point for reducing energy costs and health risks for a single showering 

exposure event. For a single use-case representative of a hot water system leading to a 

patient room shower in a hospital, it was found that the optimal water heater temperature 

set point was between the recommended 49°C to prevent scalding (recommended by the 

CPSC and the DOE), and 60°C to inactivate L. pneumophila bacteria (recommended by 
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NASEM). The optimal set point was dependent on numerous factors that were varied in 

the sensitivity analysis including the dose response parameter. A sub-clinical dose response 

parameter is a more conservative health endpoint that includes any infection whether or 

not it requires medical attention from a health care provider. The optimal set point for sub-

clinical cases ranged from 55-59°C, demonstrating that for this particular case, 

temperatures below the higher recommended value could be protective of public health 

while reducing costs. The clinical severity dose response model that only includes 

infections severe enough to necessitate attention from a health care provider had a lower 

average optimal set point of 48°C. This temperature difference emphasizes the importance 

of choosing an appropriate dose response parameter for the population that is intended to 

be represented by this model. For example, if the population of interest in the hospital is 

immunocompromised then the sub-clinical model may be preferred. The consequences of 

infection should further be considered and additional economic variables could be 

accounted for. For example, the impact on quality of life was not evaluated for infection or 

scalding.  

Chapter 3 proposed a population ecology model with an exposure assessment. The 

model is aimed to progress the field of QMRA toward incorporate mechanistic information 

on AMR for predicting risk. As a case study demonstrating the approach, the conjugation 

rate of antibiotic resistant genes was incorporated into the population ecology model to 
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examine the impacts on the dose of ingested antibiotic susceptible and ESBL E. coli during 

a recreational swimming event. 

Two low-growth cases were investigated using initial concentrations from RWQC 

and treated wastewater effluent. Using initial starting concentrations of treated wastewater 

effluent led to conjugation being the driving variable in the model over the first hours of 

the simulation until the antibiotic susceptible E. coli populations were depleted. 

Conjugation was not observed when initial starting concentrations were set to RWQC 

values, as the concentrations of antibiotic susceptible and ESBL E. coli were too low. 

Similarly, two high-growth scenarios were modeled using concentrations from the low-

growth RWQC scenario with and without background E. coli in the human gut. 

Conjugation was the driving variable when background E. coli was added to the 

concentration in the gut until antibiotic susceptible E. coli declined until it reached a steady 

state when the population. After this period, the ESBL population increased due to the 

growth rate and conjugation. Antibiotic susceptible and ESBL E. coli populations increased 

steadily over the simulated residence time when background E. coli was not considered in 

the gut. The populations did not reach a concentration where conjugation is prominently 

observed. The final dose from the high-growth scenario with background E. coli in the 

human gut was most highly impacted by the conjugation rate in the body for the antibiotic 

susceptible population and by the growth rate for the ESBL E. coli population. For the 

high-growth scenario with no background E. coli population in the gut, the final dose was 
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most highly impacted by the growth rate in the body for both antibiotic susceptible and 

ESBL E. coli.  

QMRA models calculate to risk of infection or other adverse outcomes using dose 

response models which represent the entirety of in vivo kinetics without necessitating an 

understanding of the population dynamics. Our high-growth scenarios in this model 

consider population dynamics for both antibiotic-susceptible and ESBL E. coli 

populations. This approach models differences in survival as part of the exposure analysis, 

before applying any existing dose response relationships. Therefore, if a dose response 

model was to be used directly with the final dose from the high-growth scenario, the in 

vivo kinetics would be accounted for twice. Additional research is needed to further 

understand in vivo kinetics for antibiotic susceptible and ESBL E. coli so that we can 

account for microbial gene exchanges in the human gut and further our understanding of 

population interactions.  

Chapter 4 presents a QMRA to estimate WWTP workers' infection risks from 

accidental ingestion or inhalation of wastewater. This model incorporated pathogens of 

concern, type of job tasks, time of day, and use of available PPE. The model is intended to 

provide a framework that can be built upon to eventually provide recommendations for 

scheduling tasks, implementing physical barriers between bioaerosols and workers, or 

recommending different types of PPE based on the job task. This model was also presented 
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as a web application titled the Wastewater Exposure Calculator. This calculator presents a 

customizable tool intended for eventual use by WWTP managers to explore the range of 

possible risks for their employees using site-specific information.  

C. hominis and E. coli posed the highest and lowest risk of gastrointestinal infection, 

respectively. L. pneumophila posed the highest risk of respiratory infection. Out of seven 

different tasks, the highest risk of infection came from walking the WWTP and working in 

the on-site office. This was due to the high amount of simulated contact workers had with 

surfaces and it was suggested in the study from which exposure estimates originated (Maal-

Bared et al.) that lapses in hygienic practices could be occurring in shared breakrooms and 

office spaces. Infection risks were compared during peak and non-peak hours, and resulted 

in a large difference in infection risk, with risk levels increased by 5-fold for all pathogens 

from non-peak to peak timing for the modeled scenarios, emphasizing that shift timing 

plays an important role in risk outcomes. The exposure reduction provided by the use of 

face coverings was not as significant as the reduction seen by peak vs non-peak exposure 

timings. Further research is needed to investigate pathogen concentrations at WWTP 

influent throughout a 24-hour cycle.  

Numerous challenges exist for verification or validation of these models. The premise 

plumbing model presented in chapter 2 could benefit from additional studies that 

investigate concentrations of L. pneumophila, free chlorine, temperature, and other meta-
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data on a building-scale. Studies do exist at both the lab (Proctor, 2014; Rhoads et al., 2015, 

2017) and building scale (Ley et al., 2020; Salehi et al., 2018), but this information has not 

been linked to real building to inform intervention strategies. The recreational water quality 

population ecology model with an exposure assessment presented in chapter 3 could begin 

to be verified through batch reactors mimicking conditions in recreational water and the 

gastrointestinal tract. Known concentrations of antibiotic susceptible E. coli and ESBL E. 

coli could be added to the reactor and measured after a duration of time. While these 

reactors would not be looking to quantify a specific rate, they could be used to simulate an 

environment that is a closer representation of recreational waters and the gastrointestinal 

tract than in vitro studies, acknowledging challenges in making in situ HGT measurements 

(Lopatkin et al., 2017; Moralez et al., 2021). Validating the wastewater occupational 

exposure in chapter 4 could be done with further exposure studies in addition to the 

collection of diurnal concentration data for each pathogen. Exposure studies could be 

completed be observing workers completing tasks in all areas, including the on-site offices 

(Corrao et al., 2013; Nguyen et al., 2018). Additional studies are needed at wastewater 

lagoons to better understand how sampling activities vary and how available PPE is being 

used. Measuring concentrations of the pathogens entering the WWTPs and how these 

concentrations vary throughout the day will be useful in modeling how health risks can 

shift depending on when tasks are performed. Aerosolization rates specific to different 

processes within WWTPs would also be beneficial to continue to build on available data 
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(Brenner et al., 1988; Gholipour et al., 2021; Kitajima et al., 2020; Matsubara & Katayama, 

2019). 

During the process of developing these models, some of the most prominent challenges 

included: (1) modeling the biofilm and associated sloughing for the premise plumbing 

model, (2) investigating available dose response data for antibiotic resistant infections, and 

(3) modeling occupational exposure during different job tasks at WWTPs as described 

below.   

(1) Modeling the biofilm and associated sloughing for the premise plumbing model. 

The mass of the biofilm attached to the pipe walls was calculated using density and 

thickness (Garny et al., 2009). Several bench top experiments were referenced for key 

variables including the sloughing rate for a low turbulent flow inside a straight hot water 

pipe (Garny et al., 2009), and the sloughing rate attenuation (Huang et al., 2020). These 

bench top experiments provide a good starting point to enable modeling of sloughing, but 

further studies are needed to determine biofilm dynamics in more complex systems that 

include multiple pipes and junctions as well as varying flow rates.  

(2) Investigating available dose response data for antibiotic resistant infections. As 

antibiotic resistant infections continue to rise in number, dose response parameters specific 

to these infections will be needed to accurately model the health risks after exposure. 

Understanding background population of antibiotic susceptible and antibiotic resistant 
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bacteria in the gastrointestinal tract is needed to model population dynamics and 

concentration changes. Because dose response parameters already account for in vivo 

population ecology, applying the dose response parameter to the final concentrations of 

bacterial populations from the gastrointestinal tract model is not compatible with the 

typical dose response approach. Dose response data that can be applied to in vivo 

population ecology models is needed to continue the QMRA.  

(3) Modeling occupational exposure during different job tasks at WWTPs. There exists 

great variability reported in the literature when quantifying WWTP workers exposure to 

pathogens. Uncertainties exist in the job tasks performed at municipal WWTPs as well as 

wastewater lagoons, in the aerosolization rates throughout the WWTP, and in the 

concentration of pathogens entering the WWTP. Each of these parameters will likely vary 

based on the specifications of each WWTP, so additional studies adding to the existing 

values in literature will be helpful for future risk assessments.   

All the models presented in this dissertation are presented as companion tools to other 

direct evidence-based strategies such as modifications to building plumbing management, 

closing recreational water that contains high levels of contaminants, or using proper PPE 

when exposure to wastewater is expected.  A Monte Carlo analysis was used in each model 

to converge on median results. 10,000 iterations were used as recommended as a standard 

practice (Burmaster & Anderson, 1994). An alternative approach to using 10,000 iterations 
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is to increase the number of iterations until a stable median is reached for each model which 

could increase the efficiency of the models. Uncertainties in these models can be reduced 

with site-specific information and validation studies. With further modification to each of 

these tools, they may also be used in the design process of water and wastewater systems. 

Ideally, architects could use the water heater model described in Chapter 2 to aid in the 

design process by evaluating pipe materials, pipe lengths, pipe sizes, stagnant dead ends, 

or insulation prior to the construction phase. Additionally, building managers could use 

future iterations of this model to understand the impacts of management strategies such as 

changing the water heater temperature set point, or adding or removing pipe insulation. 

Chapter 3 can be used to merge population ecology models with QMRA. This modeling 

approach could be layered with approaches to source water protection, guidance on 

treatment log removals, and approaches to beach safety notifications used to inform the 

public.  Risk-based monitoring approaches for AMR determinants is needed, and this type 

of approach could be used to assess the safety of current RWQC while considering the 

complexities associated with AMR. Chapter 4 was developed as a web application to 

calculate risk to WWTP workers. This generalizable framework is intended to be built upon 

to better understand the site-specific risks at WWTPs because each plant is unique and 

presents different risk-reduction challenges. As such, these models could constitute a piece 

in larger consideration of more holistic design and operational of water and wastewater 

systems, as well as occupational safety and hygiene practices in a WWTP.  
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Section 1. Implementation of heat transfer equations in the water heater 

The flow of water within the water heater was modeled using a multi-node approach 

from Kleinbach et al., 1993 that follows equation 1.1. 

𝑑𝑇𝑖

𝑑𝑡
= 𝛼𝑖

𝑣𝑚𝑎𝑖𝑛(𝑇𝑚𝑎𝑖𝑛−𝑇𝑖)

𝑉𝑖
+ 𝛽𝑖

𝑣𝑟𝑒𝑐(𝑇𝑟𝑒𝑐−𝑇𝑖)

𝑉𝑖
+ 𝛿𝑎,𝑖

(𝑇𝑖−1−𝑇𝑖)

𝑉𝑖
+ 𝛿𝑏,𝑖

(𝑇𝑖−𝑇𝑖+1)

𝑉𝑖
+ 휀𝑄𝑖 −

(1 − 휀)𝑈𝐴𝑖  (1.1) 

𝛼𝑖 is equal to one at the location of the mainline and zero elsewhere, 𝛽𝑖 is equal to one at 

the location of the recirculating line and zero elsewhere, 𝛿𝑎,𝑖 is equal to one when a node 

exists above the node of interest, 𝛿𝑏,𝑖 is equal to one when a node exists below the node of 

interest, 𝑄𝑖 is the energy input to the system from the heating elements, 𝑈𝐴𝑖 is the heat lost 

through the heating elements when the heating elements are off. 휀 is a binary term that is 

one when the heating elements are on and zero when the heating elements are off. 𝑣𝑚𝑎𝑖𝑛 is 

the flow rate of water entering the water heater from the main line [L/s], 𝑣𝑟𝑒𝑐 is the flow 

rate of water entering the uppermost node from the recirculating water line [L/s], and 𝑉𝑖 is 

the volume of node 𝑖 (𝑖=1-12) [L]. 𝑇𝑚𝑎𝑖𝑛 is the temperature of the municipal water from 

the main line [℃], 𝑇𝑟𝑒𝑐 is the temperature of the water entering the water heater from the 

recirculating line [ºC], and 𝑇𝑖 is the temperature of each node [ºC]. 

The final term of equation one shown in Kleinbach et al., 1993, that is not shown 

here is 𝑈𝐴𝑖(𝑇𝑖 − 𝑇𝑒𝑛𝑣), which accounts for the heat lost to the environment through the 



 

217 

 

 

walls of the water heater. For this model, it is assumed that the walls of the water heater 

are perfectly insulated and no significant heat is transferred. Therefore, the term 

𝑈𝐴𝑖(𝑇𝑖 − 𝑇𝑒𝑛𝑣) will go to zero and is not considered in this model. Kleinbach et al. also 

contains a binary γi term, which toggles on and off based on the quantity of water entering 

from the main line and the recirculating pipe. It is assumed that γi remains positive 

throughout this model so there is no reverse in flow direction. 

To use this equation, it needed to be modified into a form that was suitable for 

PyTorch. The 𝛼𝑖 , 𝛽𝑖 , 𝛿𝑎,𝑖, and 𝛿𝑏,𝑖   terms are all representative of their associated 

parameters in the water heater, but a variable  휁𝑖, needed to be added to account for the 

water exiting the heater at the hot water line, because that value will not always be equal 

to the volume of water entering the water heater from the recirculating line. 휁𝑖 is equal to 

one at the location of the hot water line outlet and is zero everywhere else. 𝑉𝑛𝑒𝑤,𝑖 accounts 

for the volume of water in the node at timestep t that will remain in that node at t=t+1 and 

is calculated by equation 1.2. The difference in the volume of the node 𝑉𝑖 and 𝑉𝑛𝑒𝑤,𝑖 will 

be the volume of water that is now in an adjacent node or the hot water line. The volume 

that is no longer in the node of interest will now be replaced by water from an adjacent 

node or the hot water line which is accounted for in equation 1.3.  

𝑉𝑛𝑒𝑤,𝑖 = 𝑉𝑖 − 𝛼𝑖𝑣𝑚𝑎𝑖𝑛 − 𝛽𝑖𝑣𝑟𝑒𝑐 − 𝛿𝑎,𝑖𝑣𝑚𝑖𝑥−𝛿𝑏,𝑖(𝑣𝑚𝑖𝑥 + 𝑣𝑚𝑎𝑖𝑛) − 휁𝑖𝑣𝑜𝑢𝑡                   

(1.2) 



 

218 

 

 

𝑇𝑖(𝑡) =
1

𝑉𝑖
𝛼𝑖𝑣𝑚𝑎𝑖𝑛𝑇𝑚𝑎𝑖𝑛 + 𝛽𝑖𝑣𝑟𝑒𝑐𝑇𝑟𝑒𝑐(𝑡 − 1) + 𝛿𝑎,𝑖𝑣𝑚𝑖𝑥𝑇𝑖+1(𝑡 − 1) +

𝛿𝑏,𝑖(𝑣𝑚𝑖𝑥+𝑣𝑚𝑎𝑖𝑛)𝑇𝑖−1(𝑡 − 1) + 𝑉𝑛𝑒𝑤𝑇𝑖(𝑡 − 1)    (1.3) 

The heat being added or lost through the heating element is considered in equations 

1.4 and 1.5. There are two 5500 W heaters in the 316 L water heater with a 295 L storage 

rating (Westinghouse, 2020). The two heating elements are estimated to be at nodes 3 and 

9. The location of these nodes is displayed in Figure 2 in the main manuscript. The heat 

entering or exiting the system can be converted from W to ℃/𝑠 for each node and is done 

so in equations 1.4 and 1.5.  

𝑄𝑖 = (5500 𝑊)(
1.89 𝐶𝐻𝑈

1 ℎ𝑟

1 𝑊
)(

1 ℎ𝑟

3600 𝑠
) (

1 𝑙𝑏 1℃

1 𝐶𝐻𝑈
) (

1 

57.86 𝑙𝑏
) = 0.05℃/𝑠 𝑖𝑛 𝑛𝑜𝑑𝑒 𝑖 

 (1.4) 

𝑈𝐴𝑖 = (550 𝑊) (
1.89 𝐶𝐻𝑈

1 ℎ𝑟

1 𝑊
) (

1 ℎ𝑟

3600 𝑠
) (

1 𝑙𝑏 1℃

1 𝐶𝐻𝑈
) (

1 

57.86 𝑙𝑏
) = 0.005℃/𝑠 𝑖𝑛 𝑛𝑜𝑑𝑒 𝑖 

 (1.5) 

The results are added to the final temperature for nodes 3 and 9, 𝑇𝑖=3,9(𝑡) in equation 1.6. 

𝑇𝑖=3,9(𝑡) = {
𝑇𝑖=3,9 +𝑄𝑖=3,9 𝑡

𝑇𝑖=3,9 − 𝑈𝐴𝑖=3,9 𝑡
   
𝑖𝑓 𝑜𝑛
𝑖𝑓 𝑜𝑓𝑓

     (1.6) 

One-dimensional mixing was chosen as to be sufficient for the objective of evaluating an 

optimal temperature for a heterogeneous system and the multi-node model proposed allows 
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for system parameters to be easily changed and evaluated without the use of more 

computationally complex computational fluid dynamics (CFD) approaches. 

The chlorine (𝐶ℎ𝑙𝑖) and planktonic L. pneumophila concentration (𝐿𝑖) throughout 

the system can be calculated synchronously with the temperature by using analogous 

methods as shown in equations 1.7 and 1.8. 𝐶ℎ𝑙𝑖 is the free chlorine concentration in each 

node 𝑖  [mg/ L], and 𝐶ℎ𝑙𝑟𝑒𝑐  is the free chlorine concentration of the water in the 

recirculating line [mg/ L]. 𝐶ℎ𝑙𝑚𝑎𝑖𝑛 is the free chlorine concentration in the water entering 

the system from the main line. 𝐿𝑖 is the L. pneumophila concentration in each node 𝑖 [CFU/ 

L], and 𝐿𝑟𝑒𝑐  is the L. pneumophila concentration reentering the water heater from the 

recirculating line [CFU/ L]. 𝐿𝑚𝑎𝑖𝑛 is the L. pneumophila concentration in the water in the 

main line [CFU/ L].  

𝐶ℎ𝑙𝑖(𝑡) =
1

𝑉𝑖
𝛼𝑖𝑣𝑚𝑎𝑖𝑛𝐶ℎ𝑙𝑚𝑎𝑖𝑛 + 𝛽𝑖𝑣𝑟𝑒𝑐𝐶ℎ𝑙𝑟𝑒𝑐(𝑡 − 1) + 𝛿𝑎,𝑖𝑣𝑚𝑖𝑥𝐶ℎ𝑙𝑖+1(𝑡 − 1) +

𝛿𝑏,𝑖(𝑣𝑚𝑖𝑥+𝑣𝑚𝑎𝑖𝑛)𝐶ℎ𝑙𝑖−1(𝑡 − 1) + 𝑉𝑛𝑒𝑤𝐶ℎ𝑙𝑖(𝑡 − 1)   (1.7) 

𝐿𝑖(𝑡) =
1

𝑉𝑖
𝛼𝑖𝑣𝑚𝑎𝑖𝑛𝐿𝑚𝑎𝑖𝑛 + 𝛽𝑖𝑣𝑟𝑒𝑐𝐿𝑟𝑒𝑐(𝑡 − 1) + 𝛿𝑎,𝑖𝑣𝑚𝑖𝑥𝐿𝑖+1(𝑡 − 1) +

𝛿𝑏,𝑖(𝑣𝑚𝑖𝑥+𝑣𝑚𝑎𝑖𝑛)𝐿𝑖−1(𝑡 − 1) + 𝑉𝑛𝑒𝑤𝐿𝑖(𝑡 − 1)  (1.8) 

The parameters for these variables are defined in Table A1. 

Table A1. Model parameters for a multi-node model (Case 0 of the scenario analysis) 
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Parameter Symbol Unit Value Distribution Source 

Water heater 

set point 

𝑆𝑒𝑡𝑝𝑡 °C 48-63 Point (Westinghouse, 

2020) 

Pipe lengths 

(Case 0: see 

Table 5 for 

summary of 

cases) 

𝑙𝑋 m Initial Pipe: 

13 

Branching 

Pipe: 3 

Recirculating 

Pipe: 13 

Point (IAPMO, 2016) 

Number of 

nodes in the 

water heater  

𝑖 - 12 Point (Kleinbach et al., 

1993) 

Volume of node 

in water heater 

𝑉𝑖 L 24.58 Point (Westinghouse, 

2020) 

Volume of 

water entering 

heater from 

recirculating 

line over time 

𝑣𝑟𝑒𝑐 L/ s 0.17 Calculated (IAPMO, 2016) 

Volume of 

water mixing 

between nodes 

over time 

𝑣𝑚𝑖𝑥 L/ s 0.3 Point 

 

(Kleinbach et al., 

1993) 

Temperature of 

water in 

municipal water 

line 

𝑇𝑚𝑎𝑖𝑛 °C Winter: 

Minimum: 

16.5 

Concatenated 

Uniform 

(Blokker & 

Pieterse-

Quirijns, 2013; 
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Maximum: 

21.5 

Summer: 

Minimum: 17 

Maximum: 

24 

Chmielewska, 

2018) 

Energy input by 

heating element 

𝑄𝑖 °C/ s 0.05 Point (Westinghouse, 

2017) 

Energy lost by 

heating element 

𝑈𝐴𝑖 °C/ s 0.005 Point (Westinghouse, 

2017) 

Temperature 

surrounding 

pipes 

𝑇𝑒𝑛𝑣 °C Minimum: 20 

Maximum: 

27 

  

Uniform (ASHRAE, 

2010; EPA, 

2009) 

Free chlorine 

concentration in 

the water 

entering the 

system from the 

mainline 

𝐶ℎ𝑙𝑚𝑎𝑖𝑛 mg/ 

L 

Min: 0.01 

Max: 4.0 

Uniform (AWWA, 2018) 

L. pneumophila 

concentration in 

the water in the 

mainline 

𝐿𝑚𝑎𝑖𝑛 CFU/ 

L 

Mean:6.60  

Sd: 0.80 

 

Lognormal 

 

(Borella et al., 

2004) 
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Section 2. Water velocity and Reynolds number in pipes 

2.1 Water velocity in pipes 

 The velocity of the water in the main line and the recirculating line is typically set 

by the installer of the recirculating line pump. The velocity is calculated to be the minimum 

value to reduce energy consumption based on the user’s constraint of what an acceptable 

heat loss for the system will be. The velocity in the branching pipe is calculated from the 

flow rate of the fixture at that branch. For this system, a flow rate of 13 L/ min (low 

efficiency) for a “conventional” showerhead is assumed from Bastow Fjord (K. Hamilton 

et al., 2019; O’Toole et al., 2008). Using the known flow rate and the size of the branching 

pipe, the velocity can be calculated with the following equation where 𝐷  is the pipe 

diameter and 𝑙𝑥 is the length of the pipe. The velocity of the water in the hot water and 

recirculating lines were calculated (equation 2.1) to be 1.5 m/s based on pipe radius, 

length, and flow rate. This is also the velocity used for the water in the branching pipe 

when the shower is on, and zero if the shower is off. It is assumed that at least two times 

that flow would be required as the modeled water heater is large and would likely be 

serving multiple taps. 

𝑣 =
𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 

𝜋(
𝐷

2
)
2
𝑙𝑥

      (2.1) 

There will be a multitude of factors that will determine the value of velocity flowing 

through the system. The physical parameters that will influence the velocity include the 
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pipe diameter, length, bends, fittings, tap opening, and mixing valve(s). The only 

parameters considered to influence the velocity in this model are the pipe diameter, length, 

and a single shower fixture. The water pressure should also be taken into consideration, as 

water pressure can vary greatly, and pressure boosters may be installed depending on the 

water pressure entering the premise plumbing from the city line. All these factors will also 

influence the velocity of water in the recirculating line. It should also be acknowledged 

that with a smaller branching pipe, the velocity will be greater than that in the pipe and the 

recirculating line. This was not addressed in the current model.  

For this model, it is assumed that the velocity will be constant at all points in the 

pipes when the water is not stagnant in the branching pipe. In a physical system, the 

velocity will constantly be changing as different taps are opened, and in some systems the 

recirculating line will be off for a period to save energy. The recirculating line is assumed 

to be running for the entirety of the model.  

 The necessary flow rate in m/ s is determined by the tolerable amount of heat lost 

in the system (3.3°C) using the equation described in SI Section 3 solved for velocity 

resulting in equation 2.2. 𝑈 is the overall heat transfer coefficient [W/ m2K], 𝐿 is the 

length of the recirculating pipe [m], 𝑐𝑝 is the specific heat of water, 𝜌 is the density of 

water, 𝐷 is the diameter of the pipe, 𝑇0 is the temperature of the water entering the pipe 
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form the water heater, 𝑇𝐹 is 𝑇0 minus the tolerable loss of heat in the pipe, and 𝑇𝑒𝑛𝑣 is the 

temperature of the environment.  

𝜈 =
−4𝑈𝐿

𝑐𝑝𝜌𝐷 𝑙𝑛(
𝑇𝐹−𝑇𝑒𝑛𝑣
𝑇0−𝑇𝑒𝑛𝑣

 )
     (2.2) 

2.2 Reynolds number 

Reynolds number (𝑅𝑒 ) can be calculated by equation 2.3 for the pipe ¾” in 

diameter (𝐷) [m] and the ½” diameter branching pipe that leads to the showerhead. The 

kinematic viscosity of water, 
µ 

𝜌
 [m2/ s], is the viscosity (µ) over the density of water (𝜌) 

(Table A2). This resulted in a velocity of 3.04 m/s and a Re in the pipe and branch of 

52,349 and 41,444, respectively. These values of the Reynold’s number are consistent with 

turbulent flow.   

𝑅𝑒 =
𝜌𝑣𝐷 

µ
      (2.3) 

The parameters for these variables are defined in Table A2. 

Table A2. Parameters for velocity and Reynolds number 

Parameter Symbol Unit Value Distribution Source 

Specific heat of 

water 

cp J / 

kgK 

 

4186.8 Point (Incropera et al., 

2007) 
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Density of water 𝜌 kg / 

m3 

996 Point (Incropera et al., 

2007) 

Overall heat 

transfer 

coefficients 

𝑈 W / 

m2K 

Uninsulated: 

325.9 

Insulated: 

29.80 

Calculated Supplemental 

Information, 

Section 2 

Diameter 𝐷 m Pipe: 0.019 

Shower: 

0.012 

Point (IAPMO, 2016) 

Kinematic 

viscosity of 

water (50°C) 

µ 

𝜌
 m2/ s 5.53 × 10-7 Point (Incropera et al., 

2007) 
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Section 3. Heat loss in pipes 

The water heater in this model is assumed to be perfectly insulated and will 

experience no transfer of heat to from the water to the environment, however heat loss is 

considered in the pipes (equation 3.1) 𝑇 [℃] is the temperature of water in the pipe, 𝑇𝑒𝑛𝑣 

[℃] is the air temperature in the air surrounding the pipe, 𝑈 [W/ m2K] is the overall heat 

transfer coefficient specific to that pipe configuration, cp [J/ kg K] is the specific heat of 

water, 𝜌  [kg/ m3] is the density of water, 𝜈  [m/ s] is water velocity, and 𝐷  [m] is the 

diameter of the pipe. 

𝑑𝑇

𝑑𝑡
= (𝑇(𝑡) − 𝑇𝑒𝑛𝑣) (

−4𝑈

𝑐𝑝𝜌𝜈𝐷
)     (3.1) 
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Section 4. Heat transfer coefficients 

 In order to track the heat lost through the pipes, the overall heat transfer coefficient 

𝑈 [W/ m2K] was calculated for each pipe size and insultation. 

4.1 Convective heat transfer coefficient 

The convective heat transfer coefficient, ℎ𝑐𝑜𝑛𝑣  [W/ m2K], is the rate at which 

energy is transferred from the water to the copper pipes. To find ℎ𝑐𝑜𝑛𝑣, an energy balance 

equation can be performed starting with equation 4.1, where �̇�𝑖𝑛 is the amount of energy 

entering the shared water to copper surface from the water by convection (�̈�𝑐𝑜𝑛𝑣 ) and �̇�𝑜𝑢𝑡 

is the energy leaving the shared water to copper surface and going into the copper pipe by 

conduction (�̈�𝑐𝑜𝑛𝑑). 

�̇�𝑖𝑛 − �̇�𝑜𝑢𝑡 = 0      (4.1) 

�̈�𝑐𝑜𝑛𝑣 − �̈�𝑐𝑜𝑛𝑑 = 0      (4.2) 

The equations for convective (�̈�𝑐𝑜𝑛𝑣) and conductive (�̈�𝑐𝑜𝑛𝑑) heat flux [W/ m2] can 

be described by equations 4.3 and 4.4 respectively. 𝑇𝑠 is the temperature at the shared 

surface, 𝑇𝑓  is the temperature of the fluid, and 𝑇𝑖  is the temperature of the conductive 

material. 𝑘 is the thermal conductivity of the conductive material [W/ mK], and 𝐿 is the 

radial length of the conductive material [m]. 

�̈�𝑐𝑜𝑛𝑣 = ℎ𝑐𝑜𝑛𝑣(𝑇𝑠 − 𝑇𝑓)      (4.3) 
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�̈�𝑐𝑜𝑛𝑑 = 𝑘
(𝑇𝑖−𝑇𝑠)

𝐿
      (4.4) 

Substituting �̈�𝑐𝑜𝑛𝑣 and �̈�𝑐𝑜𝑛𝑑 into equation 4.2 and solving for ℎ𝑐𝑜𝑛𝑣 results in equation 

4.5. 

ℎ𝑐𝑜𝑛𝑣 =
𝑘(𝑇𝑖−𝑇𝑠)

𝐿(𝑇𝑠−𝑇𝑓)
      (4.5) 

4.2 Radiative heat transfer coefficient 

 

The radiative heat transfer coefficient from a conductive material (copper or 

insulation) to air (ℎ𝑟𝑎𝑑) [W/ m2K], can be calculated by another energy balance equation 

with the radiative heat flux (�̈�𝑟𝑎𝑑) [W/ m2]. 

�̈�𝑐𝑜𝑛𝑑 − �̈�𝑟𝑎𝑑 = 0      (4.6) 

The equation for radiative heat flux (�̈�𝑟𝑎𝑑) can be described by equation 4.7. 

�̈�𝑟𝑎𝑑 = ℎ𝑟𝑎𝑑(𝑇𝑠 − 𝑇𝑓)      (4.7) 

Equation 4.7 and equation 4.4 can be substituted into equation 4.6 and solved for ℎ𝑟𝑎𝑑  

resulting in equation 4.8.  

ℎ𝑟𝑎𝑑 =
𝑘(𝑇𝑖−𝑇𝑠)

𝐿(𝑇𝑠−𝑇𝑓)
      (4.8) 



 

229 

 

 

4.3 System specific variables 

To calculate the heat lost to the environment from the water in the pipes, the 

convective and radiative heat transfer coefficients were calculated. Figure A1 describes 

the temperatures and radial lengths used to calculate the convective heat transfer between 

the water and the copper ℎ𝑐𝑜𝑛𝑣 (equation 4.5), the radial heat transfer between copper and 

air for uninsulated pipes ℎ𝑟𝑎𝑑,𝑐𝑢  (equation 4.9), and the radial heat transfer between 

insulation and air ℎ𝑟𝑎𝑑,𝑖𝑛𝑠 (equations 4.10). 

 

Figure A1: Cross section of insulated pipe (left) and uninsulated pipes (right) with 

locations of temperatures and radial lengths. 

The temperature of the fluid in the pipe was chosen as the mean of the tested 

temperature range (48-63℃) at 𝑇1 = 55.50℃. The temperature of the shared water to 

copper surface was set to be close to the temperature of the fluid in the pipe at 𝑇2 =
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55.10℃. The temperature of the shared copper to insulation surface was set to be close to 

the temperature of the shared water to copper surface at 𝑇3 = 55.01℃. The temperature of 

the outer insulation surface was set to be near the temperature of the surrounding room 

temperature at 𝑇4 = 33.5℃. The temperature of the air surrounding the pipe was set to the 

average room temperature at 𝑇5 = 23.5℃ (ASHRAE, 2010; EPA, 2009). 𝐿1 is the radial 

length of the copper pipe and 𝐿2 is the radial length of the insulation [m]. 𝑘𝑐𝑢 is the thermal 

conductivity of commercial copper and 𝑘𝑖𝑛𝑠 is the thermal conductivity of rubber used for 

insulation [W/ mK].  

ℎ𝑟𝑎𝑑,𝑐𝑢 =
𝑘𝑐𝑢(𝑇2−𝑇3)

𝐿1(𝑇3−𝑇5)
      (4.9) 

ℎ𝑟𝑎𝑑,𝑖𝑛𝑠 =
𝑘𝑖𝑛𝑠(𝑇3−𝑇4)

𝐿2(𝑇4−𝑇5)
      (4.10) 

 

The heat transfer coefficients will vary greatly based on the individual system 

parameters. For this model, the three heat transfer coefficients, ℎ, were found to be within 

the expected values (Incropera et al., 2007) for forced convection (25-250 and 100-20,000 

[
𝑊

𝑚2𝐾
]) for gases and liquids, respectively.  The parameters for these variables are defined 

in Table A3. 
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Table A3 Parameters for heat transfer coefficient calculation 

Parameter Symbol Unit Value Distribution Source 

Thermal conductivity 

of commercial copper 

𝑘𝑐𝑢 W/ 

mK 

401 Point (Incropera et al., 

2007)  

Thermal conductivity 

of rubber (for 

insulation) 

𝑘𝑖𝑛𝑠 W/ 

mK 

0.16 Point (Incropera et al., 

2007)  

Radial length of copper 

pipe 

𝐿1 m 0.005 Point (IAPMO, 2016) 

Radial length of 

insulation 

𝐿2 m 0.013 Point (IAPMO, 2016) 

Temperature of water 𝑇1 ℃ 55.5 Point (Westinghouse, 

2017) 

Temperature at shared 

water/copper interface 

𝑇2 ℃ 55.1 Point Assumption based 

on (Incropera et al., 

2007) 

Temperature at shared 

copper/insulation or 

copper/air interface 

𝑇3 ℃ 55.01 Point Estimation 

Temperature at shared 

insulation/air interface 

𝑇4 ℃ 33.5 Point Estimation 

Temperature of air 

surrounding pipes 

𝑇5 ℃ 23.5 Point (ASHRAE, 2010; 

EPA, 2009) 

Inner radius of copper 

pipe  

𝑟1 m 0.009 Point (IAPMO, 2016) 
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Outer radius of copper 

pipe/ inner radius of 

insulation 

𝑟2 m 0.014 Point (IAPMO, 2016) 

Outer radius of 

insulation 

𝑟3 m 0.027 Point (IAPMO, 2016) 

 

4.4 Overall heat transfer coefficient 

The overall heat transfer coefficient for heat leaving uninsulated (𝑈𝑢𝑛𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑒𝑑) and 

insulated (𝑈𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑒𝑑) [W/ m2K] pipes is calculated using the convective and radial heat 

transfer coefficients (see Table A3 for radius definitions). The results are displayed in 

Table A4. 

𝑈𝑢𝑛𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑒𝑑 = (
1

ℎ𝑐𝑜𝑛𝑣
+

𝑟1

𝑘𝑐𝑢
ln (

𝑟2

𝑟1
) + (

𝑟1

𝑟2
)

1

ℎ𝑟𝑎𝑑,𝑐𝑢
)
−1

    (4.11) 

𝑈𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑒𝑑 = (
1

ℎ𝑐𝑜𝑛𝑣
+

𝑟1

𝑘𝑐𝑢
ln (

𝑟2

𝑟1
) +

𝑟1

𝑘𝑖𝑛𝑠
ln (

𝑟3

𝑟2
) + (

𝑟1

𝑟3
)

1

ℎ𝑟𝑎𝑑,𝑖𝑛𝑠
)
−1

   (4.12) 

The parameters for these variables are defined in Table A4. 

Table A4: Calculated values for heat transfer coefficients and overall heat transfer 

coefficients 

Parameter Symbol W/ m2K 

Convective heat transfer between water and copper ℎ𝑐𝑜𝑛𝑣 20,050 
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Radial heat transfer between copper and air for uninsulated 

pipes 

ℎ𝑟𝑎𝑑,𝑐𝑢 254 

Radial heat transfer between insulation and air ℎ𝑟𝑎𝑑,𝑖𝑛𝑠 27 

Overall heat transfer coefficient (uninsulated) 𝑈𝑢𝑛𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑒𝑑 315 

Overall heat transfer coefficient (insulated) 𝑈𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑒𝑑 20 
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Section 5. Chlorine decay 

 First-order decay of free chlorine is commonly calculated  with a first order decay 

rate (equation 5.1) (AWWARF, 1996; C. Huang et al., 2020), but it lacks any variability 

due to system parameters, such as temperature, total organic carbon (TOC) or differences 

between the bulk decay and the wall decay. 

 𝐶 = 𝐶0𝑒
−𝑘𝑡      (5.1) 

 Instead, an Arrhenius equation was determined to be the best chlorine decay model 

for this system because it accounts for the influence of temperature throughout the system 

and parameters had already been estimated (AWWARF, 1996). The Arrhenius equation 

was used is defined in equation 5.2. 𝐴 is the pre-exponential factor, 𝐸𝑎 is the activation 

energy [J/ mol], 𝑅 is the universal gas constant [J/ mol K] and 𝑇 is the absolute temperature 

[K]. This equation can be used to describe the decay of chlorine in bulk water (Monteiro 

et al., 2014). 

𝑘𝑏 = 𝐴𝑒
−𝐸𝑎
𝑅𝑇       (5.2) 

Equation 5.2 was modified by AWWARF 1996 (equation 5.3 and Table A5).  The 

pre-exponential factor is dependent on the constant 𝑎, the concentration of TOC, and the 

constant 𝑏, which encompasses the activation energy and the universal gas constant. 𝑇 is 
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temperature in Kelvin. This equation allows for the free chlorine decay rate to be estimated 

at varying temperatures and TOC concentrations in the system.  

𝑘𝑏 = 𝑎 ∗ 𝑇𝑂𝐶 ∗ exp (
−𝑏

𝑇
)     (5.3) 

However, the authors caveat this equation is not applicable beyond the range of 5°C 

to 25°C due to their observed experimental range. In the absence of similar data outside 

this range, the kinetic equation was applied for the system temperatures in the current 

model. The parameters for these variables are defined in Table A1. 

Table A5 Parameters for Chlorine Decay 

Parameter Symbol Unit Value Distribution Source 

Measured Constant 

a 

𝑎 L/ mg 

h 

1.8 × 106 Point (AWWARF, 

1996) 

Total Organic 

Carbon 

𝑇𝑂𝐶 mg/ L Min: 1 

Max: 3 

Uniform  (AWWARF, 

1996) 

Measured Constant 

b 

𝑏 K 6,323 Point (AWWARF, 

1996) 

Water 

Temperature 

𝑇 K Measured Point (AWWARF, 

1996) 
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Section 6. L. pneumophila growth and inactivation due to temperature 

L. pneumophila has been observed multiplying in water temperatures from 25°C to 

45°C  (Sharaby et al., 2017; Yee & Wadowsky, 1982) and is known to become inactivated 

from 50°C to 70°C (Cervero-Aragó et al., 2015). No growth or inactivation has been 

quantified in between 45°C and 50°C or below 25°C in these studies.  

6.1 Inactivation rates 

The inactivation rates for temperatures from 50°C to 70°C were calculated by 

assuming a first-order inactivation of L. pneumophila by equation 6.1.   

𝐶𝑓 = 𝐶𝑖𝑒
−𝑘 𝑡𝑒𝑚𝑝𝑡      (6.1) 

The time for a 4-log reduction of L. pneumophila sg. 1 ATCC 33152 was provided 

in Cervero-Aragó et al., 2015. The time to reduction was found for 50°C (117 minutes), 

55°C (10 minutes), 60°C (2 minutes), 65°C (0.8 minutes) and 70°C (0.9 minutes). The 

first-order decay equation was solved for the inactivation rate (𝑘𝑡𝑒𝑚𝑝) of L. pneumophila 

at different temperatures using the known 4-log reduction log(𝐶𝑓 𝐶𝑖⁄ ) , and time 𝑡 

(equation 6.2).  

𝑘 𝑡𝑒𝑚𝑝 =
−log(

𝐶𝑓

𝐶𝑖
)

𝑡
      (6.2) 

6.2 Growth rates 
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 Sharaby et al., 2017 and Yee and Wadowsky, 1982 recorded values for L. 

pneumophila growth at 25°C, 30°C, 37°C, and 42°C. No significant growth was seen at 

45°C. A first order growth of L. pneumophila was assumed (equations 6.1 and 6.2), with 

a positive 𝑘 𝑡𝑒𝑚𝑝 rate. Calculated first-order growth constants are shown in Table A6.  The 

current model does not address the lag phase of growth described by Sharaby, 2017.The 

growth rates from Sharaby, 2017 were chosen to be used with the inactivation rates from 

Cervero-Aragó et al., 2015 for the purposes of this model because it was more recent than 

Yee and Wadowsky, 1982. The final values 𝑘𝑡𝑒𝑚𝑝 are displayed in equation 6.3 [s-1]. The 

growth limit of planktonic L. pneumophila was set to 104.17 CFU/ L (Yee & Wadowsky, 

1982). The parameters for these variables are defined in Table A7. 

𝑘𝑡𝑒𝑚𝑝 =

{
 
 
 
 
 

 
 
 
 
 −7.41 × 10−2

−8.33 × 10−2

−3.33 × 10−2

−6.67 × 10−3

−5.70 × 10−5

0
3.14 × 10−5

6.97 × 10−5

3.22 × 10−5

2.55 × 10−5

0

      

𝑖𝑓 𝑇𝑎𝑙𝑙 ≥ 70℃
𝑖𝑓 65℃ ≤ 𝑇𝑎𝑙𝑙 < 70℃
𝑖𝑓 60℃ ≤ 𝑇𝑎𝑙𝑙 < 65℃
𝑖𝑓 55℃ ≤ 𝑇𝑎𝑙𝑙 < 60℃
𝑖𝑓 50℃ ≤ 𝑇𝑎𝑙𝑙 < 55℃
𝑖𝑓 45℃ ≤ 𝑇𝑎𝑙𝑙 < 50℃
𝑖𝑓 42℃ ≤ 𝑇𝑎𝑙𝑙 < 45℃
𝑖𝑓 37℃ ≤ 𝑇𝑎𝑙𝑙 < 42℃
𝑖𝑓 30℃ ≤ 𝑇𝑎𝑙𝑙 < 37℃
𝑖𝑓 20℃ ≤ 𝑇𝑎𝑙𝑙 < 30℃

𝑖𝑓 𝑇𝑎𝑙𝑙 < 20℃

   (6.3) 

Table A6: Derived L. pneumophila growth rates 

Temperature Growth rate per second Growth rate per second 
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Yee and Wadowsky, 1982 Sharaby, 2017 

25°C 2.30 × 10-5 2.55 × 10-5 

32/30°C 3.08 × 10-5 3.22 × 10-5 

37°C 4.73 × 10-5 6.97 × 10-5 

42°C 4.82 × 10-5 3.14 × 10-5 

 

Table A7: Growth and inactivation rates of L. pneumophila 

Parameter Symbol Unit Value Distribution Source 

Growth/ 

inactivation 

Rates of L. 

pneumophila 

with 

temperature  

ktemp s-1 >70°C:    -7.41 × 10-2 

65-70°C: -8.33 × 10-2 

60-65°C: -3.33 × 10-2 

55-60°C: -6.66 × 10-3 

50-55°C: -5.69 × 10-5 

45-50°C: 0.0 

42-45°C: 4.82 × 10-5 

37-42°C: 4.73 × 10-5 

30-37°C: 3.08 × 10-5 

20-30°C: 2.30 × 10-5 

Point  (Cervero-

Aragó et 

al., 2015; 

Sharaby et 

al., 2017) 

Planktonic L. 

pneumophila 

inactivation 

rate due to 

chlorine 

𝑘𝑝,𝑐ℎ𝑙 s-1 𝐶ℎ𝑙<0.01: 0 

0.01<𝐶ℎ𝑙<0.15:  

1.82 × 10-3 

0.15<𝐶ℎ𝑙<0.35: 

1.92 × 10-3 

0.35<𝐶ℎ𝑙𝑎𝑙𝑙:  
2.31 × 10-2 

Point  (Kuchta et 

al., 1983) 

Planktonic L. 

pneumophila 

growth limit 

- CFU/L 104.17 Point (Yee & 

Wadowsky, 

1982) 
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Section 7. Biofilm kinetics in the pipes 

The mass of biofilm per unit area (𝑀𝑏 [g/ cm2]) was calculated with equation 7.1 

using the biofilm density (𝐷𝑏 [g/ cm3]) (Garny et al., 2009) and the mean volume of biofilm 

per cm2 of pipe area based on the biofilm thickness (𝑉𝑏) [cm3/ cm2] (Garny et al., 2009).  

𝑀𝑏=𝐷𝑏𝑉𝑏      (7.1) 

These values were chosen from the low turbulent flow simulation from Garny et 

al., 2009. This was selected as the most appropriate for the scenario for the current model. 

The data was extracted for both the biofilm density and the biofilm thickness using GetData 

Graph Digitizer® v2.26.0.20 software. A normal curve truncated at zero was fit to the 

biofilm density, 𝐷𝑏, for calculations and a mean value was found to be 34.5 kg/ m3. The 

average thickness of the biofilm was 0.01 cm, which equates to a mean volume of biofilm 

per cm2 (𝑉𝑏) of 0.01 cm3. Using these averages, the density of biofilm per cm2 of pipe area 

was modeled as a normal distribution truncated at zero with an average value of 3.5×10-4 

g/ cm2. The biofilm sloughing rate  𝑆𝑏(𝑡𝑠)  was chosen from the low turbulent flow 

simulation from Garny et al., 2009. The data for the biofilm sloughing rate was extracted 

using Digitizer software and modeled as a lognormal distribution with an upper truncation 

limit of 20 gDW/ m2day. The average sloughing rate based on this distribution was 

7.39×10-9 g/ cm2s. 
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The quantity of L. pneumophila in the biofilm, 𝐶𝑏, was extracted from Figure 6.12 

in (J. M. Thomas, 2012). The mean values for the reactor were 13 CFU/ cm2 for a heated 

condition and 39 CFU/ cm2 at ambient temperature. The quantity of L. pneumophila for 

the reactor at ambient temperature was chosen and modeled as a lognormal distribution 

and decay rates due to temperature were applied appropriately (SI Section 6). The quantity 

of biofilm being sloughed into the water will decline as a first order function as the shower 

remains on by the values in equation 7.2 (C. Huang et al., 2020). It is assumed to that there 

is no sloughing in the branch pipe when the shower is off and the water is stagnant.  

𝑘𝑠 = { 
−1.30
−0.06

   
𝑖𝑓 𝑡𝑠 ≤ 5 𝑚𝑖𝑛
𝑖𝑓 𝑡𝑠 > 5 𝑚𝑖𝑛

     (7.2) 

The quantity of sloughed L. pneumophila is 𝐶𝑠. The  rate of decay of the biofilm 

sloughing, 𝑘𝑠, is modeled in equation 7.2 using two decay rates that are dependent on how 

long the shower has been on (ts) (C. Huang et al., 2020). The decay rate of sloughing is 

applied in equation 7.4. Based on data presented in Huang et al. (2020), we assume that L. 

pneumophila that has been sloughed from the biofilm will decay due to both chlorine in 

the system and due to the water temperature. The inactivation rates for L. pneumophila in 

the biofilm due to chlorine, 𝑘𝑏,𝑐ℎ𝑙, are presented in equation 7.3 (C. Huang et al., 2020). 

The final L. pneumophila concentration in the system due to biofilm sloughing is calculated 

using equation 7.4. The amount of biofilm that is sloughed will decay in concentration due 

to 𝑘𝑠 , and will experience inactivation due to the chlorine decay rate 𝑘𝑏,𝑐ℎ𝑙  times the 
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concentration chlorine residual, 𝐶ℎ𝑙, as well as experiencing growth or inactivation from 

temperature 𝑘𝑡𝑒𝑚𝑝. Biofilm calculation parameters are summarized in Table A8. 

𝑘𝑏,𝑐ℎ𝑙 = { 
−0.46
−0.10

   
𝑖𝑓 𝑡𝑠 ≤ 5 𝑚𝑖𝑛
𝑖𝑓 𝑡𝑠 > 5 𝑚𝑖𝑛

    (7.3) 

𝐶𝑠(𝑡) = 𝐶𝑠,0 𝑒
(𝑘𝑠+𝑘𝑏,𝑐ℎ𝑙𝐶ℎ𝑙+𝑘𝑡𝑒𝑚𝑝)𝑡𝑠    (7.4) 

Table A8. Biofilm parameters 

Parameter Symbol Unit Value Distribution Source 

Biofilm density 𝐷𝑏 kg / m3 Shape: 

3.14 

Scale: 

38.66 

Weibull*  (Garny et 

al., 2009)  

Volume of 

biofilm per m2 

𝑉𝑏 m3 / m2 1×10-4 Point (Garny et 

al., 2009) 

Concentration of 

L. pneumophila 

in biofilm 

𝐶𝑏 CFU / m2 Min: 

3.9×105 

Max: 

7.8×109 

Uniform (Schoen & 

Ashbolt, 

2011a; J. M. 

Thomas, 

2012) 

Duration of 

shower 

𝑡𝑠 s μ: 465 

σ: 72 

 

Normal (DeOreo et 

al., 2016) 
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Sloughing rate of 

biofilm 

𝑆𝑏(𝑡𝑠) g / cm2s Mean 

log: -

18.96 

SD log: 

0.709 

Lognormal (Garny et 

al., 2009) 

Decay of 

sloughing rate 

𝑘𝑠 min-1 -1.30: 

ts≤5min 

-0.06: ts > 

5min 

Point  (C. Huang et 

al., 2020) 

Decay of 

sloughed L. 

pneumophila in 

biofilm due to 

chlorine 

𝑘𝑏,𝑐ℎ𝑙 (mg/L*min)-1  -0.46: 

ts≤5min 

-0.10: ts > 

5min 

Point (C. Huang et 

al., 2020) 

*Modeled as a uniform distribution for Sobol Sensitivity Analysis 
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Section 8. Initialization of the system 

To initialize the system: 

1. The water heater system was run for 24 hours with no shower and no new water 

from the main line to mimic stagnation events. The temperature, chlorine, and L. 

pneumophila will act according to the equations described in Section 2 (Methods) 

of the manuscript. After 24 hours, the initialized temperature throughout the system 

is recorded and stored for later.  

2. The L. pneumophila growth and decay throughout the water heater, hot water line, 

and recirculating line needed to be estimated beyond the growth and decay rates 

shown in Table A7. While the system runs, it is possible for the water temperature 

to pass through different temperature zones that either inactivate or promote growth 

of L. pneumophila. This change in water temperature throughout the system will 

change with pipe length, water velocity, or other physical parameters. The volume 

of water at different temperatures will also vary depending on the location in the 

plumbing system. For example, a smaller amount of water will be at a cooler 

temperature at the end of the recirculating line than the water in node 3 or 9 of the 

water heater which contain the heating elements and have a larger volume. 

Therefore, to determine the average inactivation or growth rate of L. pneumophila 

due to temperature for the 24-hour initialization period in the water heater, hot 

water line, and recirculating line, a mass balance equation was performed with the 
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initialized temperature and volume of each section of the system. The initialized 

inactivation or growth rates were recorded for each case and stored for later use. 

3. For each iteration of the Monte Carlo simulation, the initialized temperature and 

inactivation or growth rates were loaded. The temperature of the system was set as 

the previous initialized temperature for each case.  

4. To initialize the free chlorine values for the water heater, hot water line and 

recirculating line, the free chlorine concentration was calculated using the 

Arrhenius equation for each Monte Carlo iteration (SI Section 5). The time that it 

took the chlorine to decay to be below the limit that it would affect the L. 

pneumophila was calculated. The L. pneumophila concentration after the 24-hour 

initialization period was then calculated using the previously recorded initialized 

inactivation or growth rates applied over the time that the chlorine was below the 

limit that would affect the L. pneumophila growth. The L. pneumophila growth in 

the branching pipe was calculated as a first order growth equation with the room 

temperature growth rate applied over a 24-hour period.  

5. A growth cap was applied over the entire system so the L. pneumophila 

concentration did not exceed 104.17 CFU/ L (Yee & Wadowsky, 1982).  

6. The biofilm was calculated for each case as described in Section 2.7 of the main 

manuscript. The initialized inactivation or growth rates for L. pneumophila was 

applied to the biofilm in the hot water line and recirculating line for a 24-hour 
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period. No chlorine decay was applied. The variables used to calculate the biofilm 

are from sources that conducted experiments at room temperature (Garny et al., 

2009; Schoen & Ashbolt, 2011b; J. M. Thomas, 2012), therefore, there was no 

inactivation or growth rate applied to the biofilm in the branching pipe that 

remained at room temperature for the 24-hour initialization period. 
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Section 9. Decay of aerosols and QMRA parameters 

The decay of aerosols 𝑑𝑖  [s-1] that have been released into the exposure 

environment was calculated using the aerosol removal rates, 𝑑1−2 [min-1], from Huang et 

al., 2020 with the percentage of aerosol sizes, 𝐹1−10, from Hamilton et al., 2019. It is a 

weighted average based on the difference aerosol removal rates for the two aerosol size 

bins of consideration: 1-2 micrometers and 3-10 micrometers. The decay of the aerosols is 

calculated in equation 8.1 and displayed in Table A9. The parameters used for the 

quantitative microbial risk assessment (QMRA) are displayed in Table A10 and described 

in Section 2.8 of the main manuscript. 

𝑑𝑖 = 𝑑1𝐹1−2 + 𝑑2𝐹3−10     (8.1) 

Table A9: Calculated aerosol decay values  

Parameter Variable Value Unit 

Percent aerosols 1-2 micrometer 𝐹1−2 33.89 % 

Percent aerosols 3-10 micrometer 𝐹3−10 66.11 % 

Aerosol Removal Rate <=2 micrometer 𝑑1 0.35  1/min 

Aerosol Removal Rate >2 micrometer 𝑑2 1.24 1/min 

Decay of aerosols 𝒅𝒊 0.016 1/s 

 

Table A10 QMRA parameters 
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Parameter Symbol Unit Value Distribution Source 

Concentration 

of aerosols 

𝐶𝑎𝑒𝑟𝑜 CFU/ m3 1-2: 

μ: 17.5, σ: 0.30 

2-3: 

μ: 17.5, σ: 0.17 

3-6: 

μ: 19.4, σ: 0.35 

6-10: 

μ: 20.0, σ: 0.31 

Lognormal (O’Toole et 

al., 2008, 

2009) 

Volume of 

aerosols 

𝑉𝑎𝑟𝑒𝑜 L/ CFU 1-2: 

Min: 5.25×10-16  

Max: 4.19×10-15 

2-3: 

Min: 4.19×10-15  

Max: 1.41×10-14 

3-6: 

Min: 1.42×10-14  

Max:1.13×10-13 

6-10: 

Min: 1.13×10-13 

Max:5.22×10-13 

Uniform (O’Toole et 

al., 2008, 

2009) 

Fraction of L. 

pneumophila 

that partition 

to each of the 

aerosol 

diameters 

𝐹 % 1-2: 0.34 

2-3: 0.16 

3-6: 0.13 

6-10: 0.17 

 

 

Point (Allegra et 

al., 2016) 

Alveolar 

deposition 

efficiency 

𝐷 Fraction 1-2: 0.23-0.53 

2-3: 0.36-0.62 

3-6: 0.10-0.62 

6-10: 0.01-0.29 

Uniform (Heyder et 

al., 1986) 

Rate of 

inhalation 

𝐵 m3/ min 0.013-0.017 Uniform (Bussard, 

2011) 

Decay of 

aerosols 

𝑑𝑖 s-1 -0.016 Point  (K. 

Hamilton et 

al., 2019; C. 
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Huang et al., 

2020) 

Dose response 

parameter for 

sub-clinical 

infection 

𝑟 s-1 Mean: -2.93 

Sd: 0.49 

Lognormal (Armstrong 

& Haas, 

2007b; 

Muller et al., 

1983b) 

Dose response 

parameter for 

clinical 

infection 

𝑟 s-1 Mean: -9.69 

Sd: 0.30 

Lognormal (Armstrong 

& Haas, 

2007b; 

Muller et al., 

1983b) 

Disability 

adjusted life 

year 

𝐷𝐴𝐿𝑌 years 0.97 Point (van Lier et 

al., 2016) 

Value of a 

statistical life 

𝑉𝑆𝐿 USD Min:5,324,706 

Max: 17,368,683 

Uniform (US 

Department 

of Health 

and Human 

Services, 

2021) 

Remaining 

Life 

expectancy 

𝐿𝑖𝑓𝑒 𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑛𝑐𝑦 years Mean: 31.88 

Sd: 18.32 

Min: 0 

Truncated 

Normal 

(Robinson 

& Hammitt, 

2016) 

Morbidity 

Ratio, elderly 

𝑀𝑅𝑒 Unitless 0.75 Point (Weir et al., 

2019) 

 



 

249 

 

 

Section 10. Scalding and energy costs 

The cost of scalding was calculated using data from Moritz and Henriques (1947) 

(Moritz & Henriques, 1947). Data in the original work were presented in coordinates of 

temperature and time based on two categories of severity of injury: epidermal injury and 

epidermal necrosis. A log of the data on both axes was used so linear regressions could be 

calculated. The points for epidermal injury (mild-moderate injury) were used to find a 

linear regression shown in red below in Figure A2. The points for epidermal necrosis 

(moderate-severe injury) were used to find a linear regression shown in blue below. The 

95% confidence intervals are shaded in grey around each regression.  

• Epidermal Injury: y = -0.0342x + 1.783 

• Epidermal Necrosis: y = -0.0359x + 1.793 



 

250 

 

 

 

Figure A2. The scalding curve for epidermal injury (red) and epidermal necrosis (blue) 

based on log of time and log of temperature.  

The Monte Carlo model then determined where the severity of the injury lies for 

each iteration based on the temperature of the water at the showerhead and the time it took 

for the individual to remove themselves from the water (uniform distribution randomly 

sampled from 1.0 to 5.0 seconds).  

Once it was determined which region each iteration was within, a monetary value was 

assigned based on approximate costs for each category.  

• No injury (blue): $0.00 
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• Epidermal injury (yellow): $141.76 to $221.89 (uniform distribution randomly 

sampled) 

• Epidermal necrosis (red): $628.69 to $862.90 (uniform distribution randomly 

sampled) 

Differences in datasets could not be evaluated directly with statistical tests due to lack 

of alignment between temperature and time points (i.e. measurements that occurred at 

different times and at different temperatures could not be directly compared). The 

regressions used were not statistically significant from each other (p>0.05). Once injury 

has begun, if the stimulus is not removed there will only be a small amount of time until 

the injury progresses. We considered expanding the data set be adding the extensive dataset 

from pig injury and necrosis in Table 2 of Moritz and Henriques (Moritz & Henriques, 

1947) which is plotted in Figure A3. Adding these data did not change the conclusion that 

the regressions associated with the two injury categories are not significantly different. 

Merging the human data in Figure A2 was also considered shown in Figure A4, however 

the small region between the two regressions indicates that there is a small range of 

temperatures before onset of burn where there is a physiological difference in burn 

outcome—a mild burn for a short duration. The merged scenario is a scenario that can be 

chosen by the user in the code for this model. A sensitivity analysis for the cost of the injury 

or necrosis was estimated using data from Blue Cross Blue Shield, 2009, and are displayed 

in Table A12. 
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Figure A3. The scalding curve for epidermal injury (red) and epidermal necrosis (blue) 

based on log of time and log of temperature for pig data.  
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Figure A4. The scalding curve for epidermal injury and epidermal necrosis together based 

on log of time and log of temperature for human data. Regression equation log(y) = -

0.0347*log(x) + 1.788.  

 

Table A11: Sensitivity analysis for three-category scald vs. two-category scald 

Case Three scald categories 

for human data (no 

injury, injury, necrosis -

Fig S2) 

Pooled scalding data with 

categories for injury with 

human data (injury or necrosis) 

vs. no injury (Fig. S5) 

Difference in 

modeled optimum 

water heater set 

point 

0 55 56 +1 

1 54 54 0 
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2 55 59 +4 

3 56 59 +4 

4 55 59 +4 

5 59 56 -3 

6 61 59 -2 

7 59 56 -3 

8 48 48 0 

9 48 48 0 

10 48 48 0 

11 48 48 0 

12 55 52 -3 

13 48 48 0 

14 55 53 -2 

15 48 48 0 

 

Table A12:  Scalding model and energy model parameters 

Parameter Symbol Unit Value Distribution Source 

Burn 

categories 

𝑖𝑛𝑗𝑢𝑟𝑦 𝑡𝑦𝑝𝑒 USD Focal epidermal 

necrosis: 

Min: 141.76  

Max: 221.89  

 

Complete 

epidermal 

necrosis: 

Min: 628.69  

Max: 862.90  

Uniform (Blue Cross 

Blue Shield, 

2009) 

Reaction 

time 

𝑗𝑢𝑚𝑝𝑡𝑖𝑚𝑒 s Min: 1 

Max: 5 

Uniform Estimation 
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Liters of 

water used 

for 

showering 

daily 

𝑄𝑖𝑛 L / 

Day 

59 Point U.S. 

Geological 

Survey 

Price per 

kWh 

𝑃𝑘𝑊ℎ USD / 

kWh 

Mean: -2.01 

Sd: 0.25 

 

Lognormal  (U.S. Energy 

Information 

Administration, 

n.d.) 

Energy 

Factor 

𝐸𝐹 - Min: 0.90 

Max: 0.95 

Uniform (ENERGY 

STAR, 2008) 
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Section 11. Additional results 

A complete set of outputs for the risk of infection, total cost, and heatmaps of water 

quality parameters throughout the premise plumbing system are shown in Figures A13-

A14, respectively. 

 Case 0 

48°C 

 

49°C 

 

50°C 

 

51°C 
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52°C 

 

53°C 

 

54°C 

 

55°C 

 

56°C 
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57°C 

 

58°C 

 

59°C 

 

60°C 

 

61°C 
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63°C 
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Section 11. Additional results 

A complete set of outputs for the risk of infection, total cost, and heatmaps of water 

quality parameters throughout the premise plumbing system are shown in Figures A13-

A14, respectively. 

Figure A13: Heatmaps for temperature, chlorine residual, planktonic L. pneumophila,  

sloughed L. pneumophila, and L. pneumophila remaining in the biofilm. 

 

Case  Risk of Infection or Illness Total Cost 

0 

  

1 
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3 

  

4 
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5 

 

 

6 

  

7 
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8 

  

9 

  

10 
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11 

 

 

12 

  

13 
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14 

  

15 

  

 

Figure A14: Risk of illness or infection of Legionnaires Disease and total cost graphs for 

all cases.  
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APPENDIX B 

SUPPLEMENTAL INFORMATION FOR CHAPTER 3 
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Section 1. Unit analysis for population ecology model 

𝑑𝑠1
𝑑𝑡

= 𝜇𝑠1 (1 −
(𝑠0 + 𝑠1)

𝑁𝑚
) + 휂𝑠0𝑠1 − 𝜅𝑠1 − 𝛿𝑖𝑠1 

 

𝑑𝑠1
𝑑𝑡

= (
1

ℎ𝑟
) (
𝐶𝐹𝑈

𝐿
)(

𝐶𝐹𝑈
𝐿
𝐶𝐹𝑈
𝐿

) + (
1

𝐶𝐹𝑈
𝐿

 ℎ𝑟
) (
𝐶𝐹𝑈

𝐿
) (
𝐶𝐹𝑈

𝐿
) − (

1

ℎ𝑟
) (
𝐶𝐹𝑈

𝐿
)

− (
1

ℎ𝑟
) (
𝐶𝐹𝑈

𝐿
) 

 

 

Section 2.  Model code used for Chapter 3.  

import os 

import numpy as np 

from scipy.integrate import odeint 

from scipy.stats import truncnorm 

import matplotlib.pyplot as plt 

from matplotlib.patches import Patch 

import matplotlib.ticker as mticker 

import pandas as pd 

import seaborn as sns 

from scipy import stats 

import time 

 

######################################################################## 

# FUNCTIONS 

######################################################################## 

 

def transformation(w, t, z):  # Define the function "species_model" 

    afit, mu, eta, k, I, c0, c1, d, Nm = z  # Define parameters 

    # afit, mu, eta, k, I, c0, c1, d, Nm, background = z  # Define parameters 
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    s0, s1 = w  # w hold the initial conditions s0 and s1 

    C = (1 - (s1 + s0) / Nm)  # cap growth rates: (1-(s1+s0)/1e8), ie as we approach the 

limit growth slows down 

    result = [mu * s0 * C - eta * s0 * s1 + k * s1 - I * s0 + c0 * d,  # species 0 

              afit * mu * s1 * C + eta * s0 * s1 - k * s1 - I * s1 + c1 * d]  # species 1 

    return result  # Return the model results 

 

 

def run_transformation(afit, mu, eta, k, I, c0, c1, d, Nm, t): 

    r0 = pd.DataFrame([])  # s0_result 

    r1 = pd.DataFrame([])  # s1_result 

    for i in range(n): 

        z0 = [afit[i], mu[i], eta[i], k[i], I[i], c0[i], c1[i], d[i], Nm[i]] 

        w0 = [c0[i], c1[i]]  # initial species, s0 and s1 

        species = pd.DataFrame(odeint(transformation, w0, t, args=(z0,))).round(1)  # Run 

odeint function "species_model" with initial conditions (w) and time (t). 

        species.columns = ["s0", "s1"]  # Name columns 

        r0 = r0.append(species["s0"]) 

        r1 = r1.append(species["s1"]) 

    r = pd.DataFrame.append(r0, r1)  # s_results 

    return(r) 

 

 

def truncate_normal(clip_a, clip_b, mean, std,n):  

        a, b = (clip_a - mean) / std, (clip_b - mean) / std 

        return truncnorm.rvs(a, b, loc=mean, scale=std, size=n) 

 

# For plots 

def percentile(n): 

    def percentile_(x): 

        return np.percentile(x, n) 

    percentile_.__name__ = 'percentile_%s' % n 

    return percentile_ 

 

def plot_shaded(x, mid, lower, upper, color, label): 

    plt.plot(x, mid, color + '-', label=label) 

    plt.fill_between(x, lower, upper, color=color, alpha=.3) 

 

def draw_plot(data, offset, edge_color, fill_color): 

    pos = np.arange(1) + offset 
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    bp = ax.boxplot(data, positions=pos, widths=0.8, patch_artist=True, 

manage_xticks=False) 

    for element in ['boxes', 'whiskers', 'fliers', 'medians', 'caps']: 

        plt.setp(bp[element], color=edge_color) 

    for patch in bp['boxes']: 

        patch.set(facecolor=fill_color) 

 

 

def lineplot(r, t, title, ylim, savename, date): 

    sns.set(style='white') 

    s_result = pd.melt(r.reset_index(), id_vars='index')  # ,value_vars=['asset1','asset2']) 

    s_result = s_result.rename(columns={"value": "Species", "variable": "Time (hr)"}) 

    grouped = s_result.groupby(["Time (hr)", "index"])['Species'].agg( 

        [percentile(5), percentile(50), percentile(95)]).unstack() 

    grouped.astype(float) 

    cost_types = sorted(set(s_result["index"])) 

    colors = ["g", "b"] 

    fig, ax = plt.subplots() 

    for cost_type, color in zip(cost_types, colors): 

        mid = [] 

        lower = [] 

        upper = [] 

        for time_ in t: 

            lower.append(grouped["percentile_5"][cost_type][time_]) 

            mid.append(grouped["percentile_50"][cost_type][time_]) 

            upper.append(grouped["percentile_95"][cost_type][time_]) 

        ax.plot(t, mid, color + '-', label=cost_type) 

        ax.fill_between(t, lower, upper, color=color, alpha=.3) 

    handles, labels = ax.get_legend_handles_labels() 

    idx = np.sort(np.unique(np.array(["Susceptible EC", "ESBL-EC"]), 

return_index=True)[1]) 

    ax.legend(np.array(handles)[idx], np.array(["Susceptible EC", "ESBL-EC"])[idx]) 

 

    ax.set_title(title) 

    ax.set_xlabel("Time (hr)") 

    ax.set_ylabel("Species Count [log(CFU/L)]") 

    ax.set_yscale("log") 

    ax.set_ylim(ylim) 

    fig.savefig(savename.format(date), dpi=600)  # , bbox_inches='tight') 
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def double_lineplot(r1, r2, t, title, subtitle1, subtitle2,  ylim, savename, date): 

    sns.set(style='white') 

    colors = ["g", "b"] 

    text_size = 14 

 

    s_result1 = pd.melt(r1.reset_index(), id_vars='index')  # ,value_vars=['asset1','asset2']) 

    s_result1 = s_result1.rename(columns={"value": "Species", "variable": "Time (hr)"}) 

    grouped1 = s_result1.groupby(["Time (hr)", "index"])['Species'].agg( 

        [percentile(5), percentile(50), percentile(95)]).unstack() 

    grouped1.astype(float) 

    cost_types1 = sorted(set(s_result1["index"])) 

     

    s_result2 = pd.melt(r2.reset_index(), id_vars='index')  # ,value_vars=['asset1','asset2']) 

    s_result2 = s_result2.rename(columns={"value": "Species", "variable": "Time (hr)"}) 

    grouped2 = s_result2.groupby(["Time (hr)", "index"])['Species'].agg( 

        [percentile(5), percentile(50), percentile(95)]).unstack() 

    grouped2.astype(float) 

    cost_types2 = sorted(set(s_result2["index"])) 

     

    fig, (ax1, ax2) = plt.subplots(1,2, sharey=True, figsize=(10, 4)) 

    fig.suptitle(title, size=text_size+2, y = 1.0) 

    fig.text(0.5, 0.04, "Time (hr)", ha='center', size=text_size) 

     

    for cost_type, color in zip(cost_types1, colors): 

        mid = [] 

        lower = [] 

        upper = [] 

        for time_ in t: 

            lower.append(grouped1["percentile_5"][cost_type][time_]) 

            mid.append(grouped1["percentile_50"][cost_type][time_]) 

            upper.append(grouped1["percentile_95"][cost_type][time_]) 

        ax1.plot(t, mid, color + '-', label=cost_type) 

        ax1.fill_between(t, lower, upper, color=color, alpha=.3) 

    handles, labels = ax1.get_legend_handles_labels() 

return_index=True)[1]) 

    ax1.set_title(subtitle1, size=text_size) 

    ax1.set_ylabel("Species Count [log(CFU/L)]", size=text_size) 

    ax1.set_yscale("log") 

    ax1.set_ylim(ylim)     
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    for cost_type, color in zip(cost_types2, colors): 

        mid = [] 

        lower = [] 

        upper = [] 

        for time_ in t: 

            lower.append(grouped2["percentile_5"][cost_type][time_]) 

            mid.append(grouped2["percentile_50"][cost_type][time_]) 

            upper.append(grouped2["percentile_95"][cost_type][time_]) 

        ax2.plot(t, mid, color + '-', label=cost_type) 

        ax2.fill_between(t, lower, upper, color=color, alpha=.3) 

    handles, labels = ax2.get_legend_handles_labels() 

    idx2 = np.sort(np.unique(np.array(["Susceptible EC", "ESBL-EC"]), 

return_index=True)[1]) 

    ax2.legend(np.array(handles)[idx2], np.array(["Susceptible EC", "ESBL-EC"])[idx2]) 

    ax2.set_title(subtitle2, size=text_size) 

    ax2.set_yscale("log") 

    ax2.set_ylim(ylim) 

 

    fig.savefig(savename.format(date), dpi=600)  # , bbox_inches='tight') 

 

 

os.getcwd() 

os.chdir("C:/Users/ashle/OneDrive/Documents/Arizona State 

University/Dissertation/Chapter3_Results/") 

date = "02_24_2023"  # Name of folder in path for graph storage 

 

# Timer 

start_time = time.time() 

 

######################################################################## 

# Variables 

######################################################################## 

 

# Number on Monte Carlo iterations. 

n = 10000 

 

# Fitness cost 

afit_env = [0] * n 
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afit_body = [0.98] * n  # (alpha_body) the fitness cost, INVERTED FROM 1.02, 

Lopatkin's SI [Unitless] 

 

# Bacterial growth rate 

mu_env = [0] * n 

mu_body = np.random.uniform(0, 0.3, n)  # from Lopatkin's SI,[1/hours] growth rate of 

plasmid population (s1 organism) 

 

# Carrying capacity (max CFU/L) 

Nm_env = [1] * n # cant divide by zero 

Nm_body = np.random.uniform(10 ** 4, 10**15, n)  # 

 

#Background EC 

background_env = [0] * n # background conc are trivial compared to effluent 

background_body_none = [0] * n # for no background case 

C_percent_ESBL = np.random.uniform(0.017, 0.035, n) #C from ESBL v24 

background_body_some = np.random.uniform(10 ** 6, 10**7, n) # From intro of 

Lunestad et al, 2015. CFU/gram feces, 1 gram ~ 1 mL, from 

 

# Conjugation efficiency rate 

eta_env = np.random.beta(4.76e-1, 6.16e4, n)  # [1/hr] from Amos SI, fit in R, conjugate 

efficiency rate (s0 gains a plasmid) 

eta_body = np.random.uniform(10**-6.25, 10**-8.48, n) # From Table 2 in Vahjen et al., 

2020. Range for ALL ESBL to ALL E. coli IMT. 

 

# Plasmid loss rate 

k_env = [0] * n 

k_body = [10 ** -3] * n 

 

# Inactivation rate 

I_env = [0.53] * n  # 1/hr, inactivation 

I_body = [0.05] * n  # (d_body) from Lopatkin's SI, [1/hours] from table 2, dilution rate 

(in main paper) 

 

# Bacterial concentration in treated ww effluent 

c0_env_ww = truncate_normal(clip_a = 0, clip_b = 3*10**7, mean = 3705000, std = 

6007000, n=n) # Brechet et al., 2014 

c1_env_ww = truncate_normal(clip_a = 0, clip_b = 1*10**6, mean = 22000, std = 

31000, n=n) 
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# Bacterial concentration regulation values 

c0_env_rwqc = np.random.lognormal(np.log(126), 0.92, n) # CFU/L 

c1_env_rwqc = c0_env_rwqc * np.random.uniform(0.005, 0.05, n) # This is 0.05% to 5% 

of the susceptible EC 

 

# No "effluent" in body 

c0_body = [0] * n 

c1_body = [0] * n 

 

# Dilution rates 

d_env = [0.50] * n 

d_body = [0] * n 

d_zero = [0.0] * n 

 

# Volume ingested- normalize using vol and mass_gut to keep concentration in CFU/L 

for diff eq. 

# Add in Fupec after diff eq, at dose stage. 

# Fraction of E.coli in body that are esbl e.coli 

Fb = np.random.uniform(5*10**-5, 0.023, n) #unitless, from ESBL v24 

Fupec = np.random.uniform(0.05, 0.088, n) #unitless, from ESBL v24 

mass_gut = np.random.uniform(0.200, 0.750, n) # L in gut 

vol = truncate_normal(clip_a = 0, clip_b = 200, mean = 16/1000, std = ((53 - 21) / 

1.645)/1000, n=n)# mL/event -> L/event, mean: 0.017 L/even 

s_norm_ing = vol/(vol+mass_gut) #1-10% of the volume in the gut, normalize ingested 

volume 

s_norm_gut = mass_gut/(vol+mass_gut) # 90-99% of the volume in the gut 

 

# Environmental time and residence time 

t_env = range(0, 20)  # (t) hr 

t_env_plot = range(0, 20)  # (t) hr 

t_body = range(0, 70)  # Time for body model to run: ESBL E. coli can be in the body 

BEFORE DOSE (incubation time) 

t_body_plot = range(0, 70)  # Time for body model to run: ESBL E. coli can be in the 

body BEFORE DOSE (incubation time) 

restime = np.random.normal(54.2, 2.5, n)  # Time to pull dose from available t_body: 

Residence time from Cummings et al. 1976 

t_biggraph = range(0, 100) 

 

 

# Graphing 
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# lower limit/upper limit #10^-1 -10^4 is plotted as 10^0 - 10^5, DALY need 10-7 to 

10^-2, risk needs 10^-7 to 10^-3 

env_plot = [10 ** 1, 10 ** 6]  # Needs 10^1to10^6 

dose_plt = [10 ** -4, 10 ** 14]  # Needs 10^0 to 10^3 

risk_plt = [10 ** -10, 10 ** 4]  # Needs 10^-7 to 10^-3 

daly_plt = [10 ** -10, 10 ** 4]  # Needs 10-7 to 10^-2 

 

 

######################################################################## 

## Environmental Model 

######################################################################## 

 

r_ww = run_transformation(afit = afit_env,  

                    mu = mu_env,  

                    eta = eta_env,  

                    k= k_env,  

                    I= I_env,  

                    c0 = c0_env_ww,  

                    c1 = c1_env_ww,  

                    d = d_zero,  

                    Nm = Nm_env, 

                    t = t_env) 

 

r_rwqc = run_transformation(afit = afit_env,  

                    mu = mu_env,  

                    eta = eta_env,  

                    k= k_env,  

                    I= I_env,  

                    c0 = c0_env_rwqc,  

                    c1 = c1_env_rwqc,  

                    d = d_zero,  

                    Nm = Nm_env, 

                    t = t_env) 

 

 

double_lineplot(r1 = r_rwqc, r2 = r_ww, t=t_env_plot, 

          title="Low-Growth", 

          subtitle1="Scenario 1",  

          subtitle2="Scenario 2", 

          # subtitle1="Recreational Water Standards",  
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          # subtitle2="Wastewater Effluent", 

          ylim=[10e-1, 10e7], 

          savename="{}/lowCase.png", date=date) 

 

 

######################################################################## 

## Body/ GI tract Model 

######################################################################## 

 

time_ingested = 5 

background = background_body_none 

 

s0_body, s1_body = r_rwqc.loc['s0'][time_ingested], r_rwqc.loc['s1'][time_ingested] 

### Add background to the body, normalize using vol ingested and gut_mass 

c0 = s0_body * s_norm_ing + background*(1-Fb)*s_norm_gut #~98% 

c1 = s1_body * s_norm_ing + background*(Fb)*s_norm_gut #~2% 

 

r_rwqc_none = run_transformation(afit = afit_body,  

                    mu = mu_body,  

                    eta = eta_body,  

                    k= k_body,  

                    I= I_body,  

                    c0 = c0,  

                    c1 = c1,  

                    d = d_zero,  

                    Nm = Nm_body, 

                    t = t_body) 

 

 

######################################################################## 

 

background = background_body_some 

s0_body, s1_body = r_rwqc.loc['s0'][time_ingested], r_rwqc.loc['s1'][time_ingested] 

### Add background to the body, normalize using vol ingested and gut_mass 

c0 = s0_body * s_norm_ing + background*(1-Fb)*s_norm_gut #~98% 

c1 = s1_body * s_norm_ing + background*(Fb)*s_norm_gut #~2% 

 

r_rwqc_some = run_transformation(afit = afit_body,  

                    mu = mu_body,  

                    eta = eta_body,  
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                    k= k_body,  

                    I= I_body,  

                    c0 = c0,  

                    c1 = c1,  

                    d = d_zero,  

                    Nm = Nm_body, 

                    t = t_body) 

 

######################################################################## 

 

double_lineplot(r1 = r_rwqc_none, r2 = r_rwqc_some, t=t_body_plot, 

          title="High-Growth with RWQC", 

          subtitle1='Scenario 3', #"Without Background Population",  

          subtitle2='Scenario 4', #"With Background Population", 

          ylim=[10e-1, 10e9], 

          savename="{}/highCase_rwqc.png", date=date) 

 

plt.close() 

 

######################################################################## 

## Doses 

######################################################################## 

 

doses_rwqc_none = pd.DataFrame([]) 

s0_res_body = r_rwqc_none.loc["s0"] 

s1_res_body = r_rwqc_none.loc["s1"] 

# Dose response for ESBL E. coli 

post_hgt_in_body_s0 = [] 

post_hgt_in_body_s1 = [] 

for i in range(n): 

    post_hgt_in_body_s0.append(s0_res_body.iloc[i, int(np.round(restime[i]))]) 

    post_hgt_in_body_s1.append(s1_res_body.iloc[i, int(np.round(restime[i]))]) 

s0_post_hgt = pd.DataFrame(post_hgt_in_body_s0) 

s1_post_hgt = pd.DataFrame(post_hgt_in_body_s1) 

 

print(np.mean(s0_post_hgt)) 

 

# Dose for both s0 and s1, include fraction UPEC 

ds0 = Fupec * s0_post_hgt.squeeze()  # CFU/event 

ds1 = Fupec * s1_post_hgt.squeeze()  # CFU/event 
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ds0.index = ["Susceptible EC"] * ds0.shape[0]   #    ds0.index = ["ds0"] * ds0.shape[0] 

ds1.index = ["ESBL-EC"] * ds0.shape[0]          #    ds1.index = ["ds1"] * ds0.shape[0] 

dose_rwqc_none = pd.concat([pd.DataFrame(ds0), pd.DataFrame(ds1)]) 

doses_rwqc_none = pd.concat([doses_rwqc_none, dose_rwqc_none], axis=1) 

 

######################################################################## 

 

doses_rwqc_some = pd.DataFrame([]) 

s0_res_body = r_rwqc_some.loc["s0"] 

s1_res_body = r_rwqc_some.loc["s1"] 

# Dose response for ESBL E. coli 

post_hgt_in_body_s0 = [] 

post_hgt_in_body_s1 = [] 

for i in range(n): 

    post_hgt_in_body_s0.append(s0_res_body.iloc[i, int(np.round(restime[i]))]) 

    post_hgt_in_body_s1.append(s1_res_body.iloc[i, int(np.round(restime[i]))]) 

s0_post_hgt = pd.DataFrame(post_hgt_in_body_s0) 

s1_post_hgt = pd.DataFrame(post_hgt_in_body_s1) 

 

print(np.mean(s0_post_hgt)) 

 

# Dose for both s0 and s1 

ds0 = Fupec * s0_post_hgt.squeeze()  # CFU/event 

ds1 = Fupec * s1_post_hgt.squeeze()  # CFU/event 

ds0.index = ["Susceptible EC"] * ds0.shape[0]   #    ds0.index = ["ds0"] * ds0.shape[0] 

ds1.index = ["ESBL-EC"] * ds0.shape[0]          #    ds1.index = ["ds1"] * ds0.shape[0] 

dose_rwqc_some = pd.concat([pd.DataFrame(ds0), pd.DataFrame(ds1)]) 

doses_rwqc_some = pd.concat([doses_rwqc_some, dose_rwqc_some], axis=1) 

 

 

######################################################################## 

 

#for all case comparison 

def box_and_whisker(data, title, ylab, lower_limit, upper_limit, savename): 

    melt = pd.melt(data.reset_index(), id_vars='index') 

    plt.yscale("log") 

    plt.title(title) 

    sns.boxplot(x="variable", y="value", hue="index", data=melt, palette={"b","g"}) 

    plt.xlabel("") 

    plt.ylabel(ylab) 
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    plt.ylim([lower_limit, upper_limit]) 

    plt.savefig(savename.format(date), dpi=600)  # , bbox_inches='tight') 

    # plt.close()  # must close because this is not written with fig/ax. 

 

 

 

doses = pd.concat([doses_rwqc_none, doses_rwqc_some], axis=1) 

# doses.columns = ["Without Background Population","With Background Population"] 

doses.columns = ["Scenario 3","Scenario 4"] 

 

### Dose for s0 & s1 after HGT in body 

box_and_whisker(data=doses, title="Dose", 

                ylab="Dose [log(CFU)]", lower_limit=dose_plt[0], upper_limit=dose_plt[1], 

                savename="{}/boxplot_Dose.png") 

 

######################################################################## 

##### SPEARMAN RANK CORRELATION AGAINST DOSE OF S1 

######################################################################## 

 

name = [c0_env_rwqc, 

        c1_env_rwqc, 

        mu_body, 

        eta_env, 

        eta_body, 

        Nm_body, 

        background_body_some, 

        Fb, 

        Fupec, 

        mass_gut, 

        vol, 

        restime] 

 

name_ib = ["c0_env_rwqc", 

        "c1_env_rwqc", 

        "mu_body", 

        "eta_env", 

        "eta_body", 

        "Nm_body", 

        "background_body_some", 

        "Fb", 
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        "Fupec", 

        "mass_gut", 

        "vol", 

        "restime"] 

 

state = {} 

for i in range(len(name)): 

    state[name_ib[i]]=name[i].squeeze().tolist()  

 

names = ["Susceptible E. coli", 

        "ESBL E. coli", 

        "Growth Body", 

        "Conjugation Env.", 

        "Conjugation Body", 

        "Carrying Capacity Body", 

        "Background E. coli", 

        "Percent ESBL", 

        "Percent UPEC", 

        "Volume of Gut", 

        "Volume", 

        "Residence time"] 

 

 

 

cases_ = ["Susceptible Dose (sb=0)", "ESBL Dose (sb=0)",  

           "Susceptible Dose (sb>0)", "ESBL Dose (sb>0)"] 

# cases_ = ["Susceptible Dose", "ESBL Dose"] 

 

ds1_list = doses["With Background Population"]["Susceptible EC"].squeeze().tolist() 

ds2_list = doses["With Background Population"]["ESBL-EC"].squeeze().tolist() 

ds3_list = doses["Without Background Population"]["Susceptible EC"].squeeze().tolist() 

ds4_list = doses["Without Background Population"]["ESBL-EC"].squeeze().tolist() 

ds_list = [ds3_list, ds4_list, ds1_list, ds2_list] 

# ds_list = [ds1_list, ds2_list] 

 

significant = [] 

colors = [] 

pv = 0.05 

 

sa = pd.DataFrame([]) 
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for ds_list in ds_list: 

    sastats = pd.DataFrame([]) 

    spearman = [] 

    pvalue = [] 

    for i in name_ib: 

        r = stats.spearmanr(ds_list, state[i])[0] 

        p = stats.spearmanr(ds_list, state[i])[1] 

        spearman.append(r) 

        pvalue.append(p) 

    sastats = pd.DataFrame(spearman) 

    sa = pd.concat([sa,sastats], axis=1) 

 

sa.columns = cases_ 

sa.index = names 

sat = np.array(sa.T) 

 

fig, ax = plt.subplots() 

im = ax.imshow(sat,cmap="seismic") 

 

# We want to show all ticks... 

ax.set_xticks(np.arange(len(names))) 

ax.set_yticks(np.arange(len(cases_))) 

# ... and label them with the respective list entries 

ax.set_xticklabels(names) 

ax.set_yticklabels(cases_) 

 

# Rotate the tick labels and set their alignment. 

plt.setp(ax.get_xticklabels(), rotation=45, ha="right", 

        rotation_mode="anchor") 

 

# Loop over data dimensions and create text annotations. 

for i in range(len(cases_)): 

    for j in range(len(names)): 

        # if abs(sat[i,j]) > 0.10: 

            if abs(sat[i,j]) > 0.40: 

                text = ax.text(j, i, round(sat[i, j],2), 

                              ha="center", va="center", color="w",size=8) 

            if abs(sat[i,j]) < 0.40: 

                text = ax.text(j, i, round(sat[i, j],2), 

                              ha="center", va="center", color="black",size=8) 
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ax.set_title("Spearman Correlation Coefficient") 

fig.tight_layout() 

plt.grid(False) 

fig.colorbar(im,shrink=0.4) 

 

savename="{}/SA.png" 

# savename="{}/SA_select.png" 

fig.savefig(savename.format(date), dpi=600)  # , bbox_inches='tight') 

plt.show() 
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APPENDIX C 

SUPPLEMENTAL INFORMATION FOR CHAPTER 4 
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Section 1. Hand-to-mouth ingestion 

Exposure parameters for wastewater workers at lagoons are scarce. This scenario 

is uncommon at many centralized treatment plants but is more common in scenarios where 

wastewater lagoons or other decentralized infrastructure may be used to manage 

wastewater, such as in rural or low-resources areas, or in situations where PPE 

recommendations are incompletely adhered to (D’Aoust et al., 2021). In addition to the 

exposure and risk of respiratory infection from bioaerosols, there exists a risk of hand-to-

mouth ingestion from transporting wastewater from the lagoon to the location of sample 

processing. To model the hand-to-mouth ingestion risk, equations from Julian et al. (2018) 

(Julian et al., 2018) were modified to estimate an ingested volume of wastewater for an 

hourly rate. Julian et al. (2018) observed Vietnamese farmers who were collecting human 

excreta for agriculture purposes. The authors performed a literature review summarizing 

the fraction of the hand in contact with different objects (𝐹ℎ𝑎𝑛𝑑, 𝐹𝑚𝑜𝑢𝑡ℎ) and the transfer 

coefficients between contact with the hand and the object (𝑇𝑏𝑢𝑐𝑘𝑒𝑡→ℎ𝑎𝑛𝑑) or the mouth 

(𝑇ℎ𝑎𝑛𝑑→𝑚𝑜𝑢𝑡ℎ ). The initial concentration of E. coli on the farmers hands (𝐶ℎ𝑎𝑛𝑑 ) was 

estimated to by 0.01 CFU /cm2. The authors found that hand-to-mouth contact occurred 0-

9 times per hand per hours during their study, which is lower than estimates in the U.S. 

The “bucket” scenario was used as a proxy for the wastewater lagoon sampling equipment. 

𝐶ℎ𝑎𝑛𝑑,𝑓𝑖𝑛𝑎𝑙 = 𝐶ℎ𝑎𝑛𝑑 + (𝐹ℎ𝑎𝑛𝑑)[(𝑇𝑏𝑢𝑐𝑘𝑒𝑡→ℎ𝑎𝑛𝑑)(𝐶𝑤𝑎𝑡𝑒𝑟) − 𝐶ℎ𝑎𝑛𝑑]   (1) 
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An assumption was made that the concentration initially on the hands (𝐶ℎ𝑎𝑛𝑑 ) was 

negligible, resulting in equations 1 being rewritten as equation 2 and 3. 

𝑉 = (𝑇𝑏𝑢𝑐𝑘𝑒𝑡→ℎ𝑎𝑛𝑑)(𝑇ℎ𝑎𝑛𝑑→𝑚𝑜𝑢𝑡ℎ)(𝐹ℎ𝑎𝑛𝑑)(𝐹𝑚𝑜𝑢𝑡ℎ)(𝐴ℎ𝑎𝑛𝑑)   (2) 

𝐷𝑜𝑠𝑒 = (𝐶𝑤𝑎𝑡𝑒𝑟)(𝑉)         (3) 

Table C1: Variables used to calculate hand-to-mouth ingestion 

Parameter Variable Units Distribution/ Point 

Value 

Source 

Transfer 

efficiency from 

bucket to hand 

𝑇𝑏𝑢𝑐𝑘𝑒𝑡→ℎ𝑎𝑛𝑑 mL/cm2 Normal 

(mean=21, sd=13) 

Truncated at 0 

Greene et al. 

(2015) 

Transfer 

efficiency from 

hand to mouth 

𝑇ℎ𝑎𝑛𝑑→𝑚𝑜𝑢𝑡ℎ cm2/cm2 

(unitless) 

Normal 

(mean=34, sd=25) 

Truncated at 0 

Rusin et al 

(2002) (mean), 

Julian et al. 

(2010) (sd) 

Fraction of hand 

in contact with 

the bucket 

𝐹ℎ𝑎𝑛𝑑 % 

(unitless) 

Uniform 

(min=0.001, 

max=0.002) 

Auyeung et al. 

(2008) 

Fraction of hand 

that comes in 

contact with 

mouth 

𝐹𝑚𝑜𝑢𝑡ℎ % 

(unitless) 

Uniform 

(min=0.10, 

max=0.18) 

Auyeung et al. 

(2008) 

Area of hand 𝐴ℎ𝑎𝑛𝑑 cm2 Uniform 

(min =890, 

max=1070) 

(Bussard, 2011) 

Concentration of 

pathogen in 

wastewater 

𝐶𝑤𝑎𝑡𝑒𝑟 CFU/L Table 7 Table 7 
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Section 2. Existing web applications 

A literature review was conducted for existing web applications that assess the risk of 

SARS-CoV-2 infection. Eleven applications were included (Table C2). 

 

Table C2. Literature review of existing web applications that look at risk of infection from 

different pathogens and exposure routes. 

Reference Web 

application 

name 

Audience Risk 

scenarios 

addressed 

Variables  

 

Gerrity et 

al., 

2019(Gerr

ity et al., 

2019) 

bit.ly/DPR

isk   

DPRisk Scientists or 

public health 

professionals 

QMRA for 

direct 

potable 

reuse 

Pathogen with 

distribution, level of log 

removal, treatment train 

failure scenarios, 

management barriers 

(blending, dilution, and 

die-off), exposure 

distribution, and dose 

response model.  

Rocha-

Melogno 

et al., 

2021(Roc

ha-

Melogno 

Aerosol-

Mediated 

Infectious 

Disease 

Risk 

Assessment

s 

Scientists or 

public health 

professionals 

QMRA for 

SARS-CoV-

2 

aerosolized 

transmission 

indoors 

AND 

QMRA for 

Can input your own 

distributions for 

diarrheal disease 

QMRA.  

For COVID-19 QMRA: 

exposure time, room 

size, room height, 

https://urldefense.com/v3/__http:/bit.ly/DPRisk__;!!IKRxdwAv5BmarQ!NfrJAmTpfddk2ae6N3XPPDknZVXeVDn6FsJ8PWc017HY28yyCtpu9vWIBFyMgEUeQIjz$
https://urldefense.com/v3/__http:/bit.ly/DPRisk__;!!IKRxdwAv5BmarQ!NfrJAmTpfddk2ae6N3XPPDknZVXeVDn6FsJ8PWc017HY28yyCtpu9vWIBFyMgEUeQIjz$
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et al., 

2021) 

https://rap

idqmra.shi

nyapps.io/

Rapid_Q

MRA/  

(AMIDRA

s) 

diarrheal 

disease near 

open sewers 

number of people in the 

room, ventilation, mask 

efficiency, inactivation 

rate, inhalation rate, viral 

load shedding,  

Includes a risk 

comparison chart at the 

end. 

Tang et 

al., 

2022(Tan

g et al., 

2022) 

No title: 

web-based 

SDSS 

framework 

Scientists or 

public health 

professionals 

SARS-CoV-

2 

wastewater 

surveillance 

on 

University 

campus 

38 wastewater sampling 

sites collected, 

geographical data 

compared to confirmed 

county cases using 

ArcGIS.   

Crank et 

al., 

2019(Cran

k et al., 

2019) 

https://ger

mlab.nd.e

du/resourc

es/qmrasw

im/ 

 

QMRAswi

m 

Scientists or 

public health 

professionals 

Risk of 

crAssphage 

and 

PMMoV 

from 

recreational 

swimming 

Modeled with untreated 

domestic sewage. Can 

model up to 10 

pathogens at one time. 

App options: 

bacterial/virus 

concentration, type of 

distribution, max and 

min concentration, 

number of Monte Carlo 

samples, dose 

distribution. 

https://rapidqmra.shinyapps.io/Rapid_QMRA/
https://rapidqmra.shinyapps.io/Rapid_QMRA/
https://rapidqmra.shinyapps.io/Rapid_QMRA/
https://rapidqmra.shinyapps.io/Rapid_QMRA/
https://rapidqmra.shinyapps.io/Rapid_QMRA/
https://germlab.nd.edu/resources/qmraswim/
https://germlab.nd.edu/resources/qmraswim/
https://germlab.nd.edu/resources/qmraswim/
https://germlab.nd.edu/resources/qmraswim/
https://germlab.nd.edu/resources/qmraswim/
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Schijven 

et al., 

2021(J. 

Schijven 

et al., 

2021) 

AirCoV2 

 

Scientists or 

public health 

professionals 

 

QMRA 

SARS-CoV-

2 

aerosolized 

transmission 

indoors 

Virus concentration, 

exposure time, 

ventilation, types of 

aerosolization included 

breathing, speaking, 

singing, coughing, and 

sneezing 

Parhizkar 

et al., 

2021(Parh

izkar et al., 

2021) 

https://saf

eairspaces

.com/#bcb

9fc15-

e9d7-

4884-

876f-

384f1c841

8a1 

 

Safe Air 

Spaces 

General 

public 

QMRA 

SARS-CoV-

2 

aerosolized 

transmission 

indoors 

Particle emission 

dynamics, particle 

deposition to indoor 

surfaces, ventilation rate, 

and single-zone 

filtration. 

App options: occupant #, 

floor area, ceiling height, 

outdoor air supply, 

filtration card, time in 

room, mask, high 

emitter, low emitter. 

Olsson et 

al., 

2021(Olss

on et al., 

2021) 

https://ww

w.microco

The 

microCOV

ID Project 

General 

public 

Risk for 

everyday 

scenarios 

Built in scenarios: indoor 

hangout, grocery store 

trip, airplane travel, 

going to vote, etc. 

Variables: geographical 

location, nearby people, 

distance from people, 

duration of activity, risk 

https://safeairspaces.com/#bcb9fc15-e9d7-4884-876f-384f1c8418a1
https://safeairspaces.com/#bcb9fc15-e9d7-4884-876f-384f1c8418a1
https://safeairspaces.com/#bcb9fc15-e9d7-4884-876f-384f1c8418a1
https://safeairspaces.com/#bcb9fc15-e9d7-4884-876f-384f1c8418a1
https://safeairspaces.com/#bcb9fc15-e9d7-4884-876f-384f1c8418a1
https://safeairspaces.com/#bcb9fc15-e9d7-4884-876f-384f1c8418a1
https://safeairspaces.com/#bcb9fc15-e9d7-4884-876f-384f1c8418a1
https://safeairspaces.com/#bcb9fc15-e9d7-4884-876f-384f1c8418a1
https://safeairspaces.com/#bcb9fc15-e9d7-4884-876f-384f1c8418a1
https://www.microcovid.org/about
https://www.microcovid.org/about
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vid.org/ab

out  

profile of person, their 

vaccine status, your risk 

tolerance 

Ranney 

and 

Goldberg, 

2020(Ran

ney & 

Goldberg, 

2020) 

https://my

covidrisk.

app/  

MyCOVID

Risk 

General 

Public 

Returns 

low/medium

/high risk 

based on 

user input 

Location, setting (indoor 

vs outdoor), activity 

(walk, pumping gas, 

etc.) duration, number of 

people, percentage of 

masks. 

Hu et al., 

2020(Hu 

et al., 

2020) 

https://19a

ndme.covi

d19.mathe

matica.org

/  

19 and Me General 

Public 

Risk 

assessment 

for SARS-

CoV-2 

Location, age, gender, 

symptoms, underlying 

conditions, level of 

strenuous activity, 

number of people you 

live and interact with, 

hygiene habits, personal 

protective equipment, 

low/medium/high risk 

activity participation, 

vaccination status 

Chande et 

al., 

2020(Cha

nde et al., 

2020) 

The 

COVID-19 

Event Risk 

Assessment 

Planning 

Tool 

General 

Public 

Risk 

assessment 

for SARS-

CoV-2 

based on 

Event size, 

ascertainment bias, full 

vaccination percentage 

https://www.microcovid.org/about
https://www.microcovid.org/about
https://mycovidrisk.app/
https://mycovidrisk.app/
https://mycovidrisk.app/
https://19andme.covid19.mathematica.org/
https://19andme.covid19.mathematica.org/
https://19andme.covid19.mathematica.org/
https://19andme.covid19.mathematica.org/
https://19andme.covid19.mathematica.org/
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https://cov

id19risk.bi

osci.gatec

h.edu/  

geographica

l location  

Bertsimas 

et al., 

2020(Bert

simas et 

al., 2020) 

https://ww

w.covidan

alytics.io/

mortality_

calculator  

COVID-19 

Mortality 

Risk 

(CMR) tool 

Scientists or 

public health 

professionals 

Mortality 

risk for a 

single 

patient 

based on 

available 

app data 

Age, gender, vitals, 

metabolic panel, blood 

counts, other lab values 

and comorbidities. 

Hodcroft, 

2020(Hod

croft, 

2020) 

https://cov

ariants.org

/  

CoVariants General 

public 

Information 

about 

SARS-CoV-

2 variants 

and 

mutations 

Ability to select variant 

or mutation of interest 

and see frequency of 

variant in time for a 

geographical location.  
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https://covid19risk.biosci.gatech.edu/
https://covid19risk.biosci.gatech.edu/
https://covid19risk.biosci.gatech.edu/
https://covid19risk.biosci.gatech.edu/
https://www.covidanalytics.io/mortality_calculator
https://www.covidanalytics.io/mortality_calculator
https://www.covidanalytics.io/mortality_calculator
https://www.covidanalytics.io/mortality_calculator
https://www.covidanalytics.io/mortality_calculator
https://covariants.org/
https://covariants.org/
https://covariants.org/
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Section 1. Published works 

Heida, A., Mraz, A., Hamilton, M.T., Weir, M., Hamilton, K.A., 2022. Computational 

framework for evaluating risk trade-offs in costs associated with legionnaires’ disease risk, 

energy, and scalding risk for hospital hot water systems. Environmental Science: Water 

Research & Technology 8 (1), 76-97. 

 

Kerry A. Hamilton, Aditya Kuppravalli, Ashley Heida, Sayalee Joshi, Charles N. Haas, 

Marc Verhougstraete & Daniel Gerrity (2021) Legionnaires’ disease in dental offices: 

Quantifying aerosol risks to dental workers and patients, Journal of Occupational and 

Environmental Hygiene, 18:8, 378-393, DOI: 10.1080/15459624.2021.1939878 

 

Sayalee Joshi, Rain Richard, Daniella Saetta, Naushita Sharma, Noelle Mushro, Lucas 

Crane, Lucien Dieter, Grace Violet Morgan, Ashley Heida, Bennett Welco, Treavor Boyer, 

Paul Westerhoff, Kerry Ann Hamilton, 2022. Pinpointing drivers of widespread 

colonization of Legionella pneumophila in a green building: Roles of water softener system 

and reduced occupancy. Frontiers in Water.  
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Under Review: 

Jonathan Burkhardt, Walter Grayman, Ahmed Abokifa, Tim Bartrand, Ian Guymer, Feng 

Shang, Ashley Heida, Kerry A. Hamilton, Alexis Mraz, Mark Hamilton, Mark H. Weir, 

2022. Water Quality in Premise Plumbing Systems. American Society of Civil Engineers. 

Under Review. 

 

Brandon Reyneke, Tinta C. Morris, Pilar Fernández-Ibáñez, Kevin G. McGuigan, Ashley 

Heida, Kerry A. Hamilton, Wesaal Khan, 2022. Decentralized solar-based water treatment 

– bridging the last mile to water security in low- and middle-income countries. Water 

Security. Under Review. 
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Section 2. Presentations 

HORIZONTAL GENE TRANSFER OF ESBL E. COLI AND QMRA FOR RISK TO 

SWIMMERS IN RECREATIONAL WATERS 

Presented at the Society for Risk Analysis (SRA) virtual conference, December 

2021. 

QUANTITATIVE MODEL FOR HORIZONTAL GENE TRANSFER OF ESBL E. 

COLI AND SUBSEQUENT RISK IN RECREATIONAL WATERS CONTAINING 

WASTEWATER EFFLUENT 

Presented at the SSEBE graduate research virtual symposium, February, 2021. 

A QUANTITATIVE MODEL FOR EVALUATING THE RISK OF LEGIONNAIRES’ 

DISEASE WHILE FLUSHING PREMISE PLUMBING SYSTEMS AFTER 

EXTENDED STAGNATION 

Presented at the Society for Risk Analysis (SRA) virtual conference, December 

2020. 

LEGIONELLA PNEUMOPHILA IN PREMISE PLUMBING SYSTEMS 

Presented at the Society for Risk Analysis (SRA) conference in Arlington, 

Virginia, December 2019. 
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QUANTITATIVE MODEL FOR EVALUATING RISK TRADE-OFFS IN 

LEGIONNAIRES’ DISEASE RISK, ENERGY COST, AND SCALDING RISK FOR 

HOT WATER SYSTEMS 

Presented at the Association of Environmental Engineering and Science 

Professors (AEESP) conference in Tempe, Arizona, May 2019. 

Section 3. Awards 

NSF-FUNDED IRECCEE FELLOW | ARIZONA STATE UNIVERSITY | SPRING 

2020 

Awarded NSF-funded International Research Experience in Civil, Construction, 

and Environmental Engineering (IRECCEE) fellowship to work with 

collaborators at Stellenbosch University. Was postponed due to COVID-19. 

BIODESIGN TRAVEL GRANT | ARIZONA STATE UNIVERSITY | OCTOBER 2019 

Received $500 to attend the Society for Risk Analysis Conference 2019 
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 All co-authors have granted their permission for the previously published work (Chapter 

2) and works in preparation (Chapters 3 and 4) to be used in this dissertation.  

 


