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ABSTRACT

Deep neural networks (DNNs) have been successfully developed in many applica-

tions including computer vision, speech recognition, and others. As the complexity of

DNN tasks increases, the number of weights or parameters in DNNs surges as well,

leading to consistent demands for denser memories than SRAMs. Conventional DNN

accelerator systems have used DRAM to store a large number of DNN weights, but

DRAM requires cumbersome refresh operations and off-chip memory access consumes

very high energy consumption. Instead of using off-chip memory, several recent acceler-

ators employed embedded non-volatile memory (NVM) such as resistive RAM (RRAM)

to store a large amount of weight fully on-chip and reduce the energy consumption

for overall memory access.

Non-volatile resistive devices such as RRAM can naturally support in-memory

computing (IMC) operations with multiple rows turned on, where the weighted sum

current between the wordline voltage (representing DNN activations) and RRAM

conductance (representing DNN weights) represents the dot-product result.

This dissertation first presents a circuit-/device-level optimization to improve the

energy and density of RRAM-based in-memory computing architectures. experimental

results are reported based on prototype chip design of 128×64 RRAM arrays and

CMOS peripheral circuits, where RRAM devices are monolithically integrated in a

commercial 90nm CMOS technology.

Next, this dissertation presents an IMC prototype with 2-bit-per-cell RRAM devices

for area-/energy-efficient DNN inference. Optimizations on four-level conductance

distribution and peripheral circuits with an input-splitting scheme have been performed,

enabling high DNN accuracy and low area/energy consumption.

Furthermore, this dissertation presents an investigation on the relaxation effects
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on multi-level resistive random access memory-based in-memory computing for deep

neural network inference.

Plus, this dissertation works on the Progressive-wRite In-memory program-VErify

(PRIVE) scheme, which this thesis verify with an RRAM testchip for IMC-based

hardware acceleration for DNNs. This dissertation optimizes the progressive write

operations on different bit positions of RRAM weights to enable error compensation

and reduce programming latency/energy while achieving high DNN accuracy.

For the ongoing project, this dissertation includes the progress of the RRAM-based

hybrid in-memory computing process and the progress on the ferroelectric capacitive

devices for next-generation AI hardware.
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Chapter 1

INTRODUCTION

1.1 DNN Acceleration with Non-volatile Memory

Deep neural networks (DNNs) have been successfully developed in many applica-

tions including computer vision, speech recognition, and others. As the complexity of

DNN tasks increases, the number of weights or parameters in DNNs surges as well,

leading to consistent demands for denser memories than SRAMs. Conventional DNN

accelerator systems have used DRAM to store a large number of DNN weights, but

DRAM requires cumbersome refresh operations and off-chip memory access consumes

very high energy consumption Sze et al. (2017). Instead of using off-chip memory,

several recent accelerators employed embedded non-volatile memory (NVM) such

as resistive RAM (RRAM) Li et al. (2021); Giordano et al. (2021) and magnetic

RAM (MRAM) Rossi et al. (2021), to store a large amount of weights fully on-chip

and reduce the energy consumption for overall memory access. Among the various

choice of the NVMs, this dissertation focuses on the RRAM application for the DNN

hardware accelerations.

Resistive random-access memory (RRAM) is a specific type of non-volatile memory

that relies on the resistive switching behavior of certain materials. RRAM stores

data by altering the resistance state of a memory cell, typically by applying electrical

pulses. This technology offers several advantages, including high storage density, low

power consumption, fast read/write speeds, and compatibility with existing comple-

mentary metal-oxide-semiconductor (CMOS) processes. RRAM has the potential to
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revolutionize memory storage by providing a scalable and energy-efficient alternative

to traditional memory technologiesYang et al. (2013). The integration of RRAM with

DNNs and IMC can further enhance system performance and energy efficiency by

leveraging the non-volatility and fast access times of RRAM.

One step forward in the on-chip memory, in-memory computing (IMC) is an

approach that aims to improve computational efficiency by performing data processing

and computation tasks directly within the memory subsystem. Traditional computing

systems often suffer from the "von Neumann bottleneck" Arikpo et al. (2007), where

data transfer between memory and processing units becomes a limiting factor. IMC

seeks to alleviate this bottleneck by minimizing data movement, which reduces latency

and enhances system performance. By storing and processing data in the same

physical location, IMC can achieve significant speed-ups for various workloads. NVM

technology aligns well with the IMC concepts, with benefits such as high data density,

low power consumption, and fast access times, making it an attractive choice for

various computing systems.

Despite its potential benefits, RRAM faces several challenges when applied to

DNN-related applications. These challenges include:

• Device Variability: RRAM devices exhibit inherent variability due to variations

in manufacturing processes and material properties. This variability can lead to

inconsistent device performance, affecting the reliability and accuracy of DNN

computations. Addressing device variability is crucial for achieving reliable and

predictable performance in RRAM-based DNN systems.

• Endurance and Lifetime: RRAM devices have limited endurance, meaning

that they can only endure a finite number of write and erase cycles before

experiencing degradation. In DNN applications, which involve frequent read
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and write operations, endurance can become a critical concern. Increasing the

endurance and lifetime of RRAM devices is necessary to ensure the longevity

and reliability of DNN systems.

• Energy Consumption: While RRAM is known for its low power consumption

during read operations, energy efficiency during write and erase operations

remains a challenge. The high energy required for switching resistance states

in RRAM can limit its suitability for energy-constrained DNN applications.

Reducing the energy consumption of RRAM write and erase operations is

essential for enabling efficient and sustainable DNN systems.

• Scalability: RRAM faces scalability challenges in terms of achieving high-density

memory arrays. As the size of memory arrays increases, issues such as sneak

paths, cross-talk, and resistance drift become more prominent, leading to reduced

device performance and reliability. Overcoming scalability limitations is crucial

for realizing the full potential of RRAM in large-scale DNN systems.

This dissertation explores the higher-density design of the RRAM IMC array

architecture while maintaining high device variability, endurance, energy consumption,

and data density.

The key contributions of this thesis to DNN acceleration with non-volatile memory

are

• We present circuit-/device-level optimizations to improve the energy and density

of RRAM-based in-memory computing architectures.

• We present the experimental results based on prototype chip design of 128×

64 RRAM arrays and CMOS peripheral circuits, where RRAM devices are

monolithically integrated into the commercial 90nm CMOS technology.
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• The optimization methods using the input-splitting scheme report high energy-

efficiency and inference accuracy under different DNN models.

• Further, we present an IMC prototype with 2-bit-per-cell RRAM devices for

area-/energy-efficient DNN inference.

• Four-level conductance distribution and peripheral circuits with input-splitting

scheme have been performed, enabling high DNN accuracy and low area/energy

consumption.

• We analyze the power performance and the inference accuracy for different

supply voltages for the 2-bit-per-cell RRAM scheme.

• We notice the relaxation effect on the RRAM devices, which may potentially

harm the correctness for the IMC outputs over time.

• Two mitigation schemes are proposed to recover the degraded accuracy for the

RRAM relaxation: 1) at the circuit level, the reference voltage for RRAM IMC

could be calibrated after 80 hours when the relaxation is saturated. 2) At the

algorithm level, the weights are trained with lower percentages to be quantized

to the two intermediate states. With both schemes applied, the accuracy could

be recovered to 87.32% for long-term stability.

• We notice the bottlenecks on RRAM in the IMC training process for the

DNN, where the programming inevitably induces high write latency and energy

consumption.

• we present the Progressive-wRite In-memory program-VErify (PRIVE) scheme,

which we verify with an RRAM testchip for IMC-based hardware acceleration

for DNNs. For 5-bit precision DNNs, PRIVE reduces the RRAM programming

energy by 1.82×, while maintaining high accuracy of 91.91% (VGG-7) and

71.47% (ResNet-18) on CIFAR-10 and CIFAR-100 datasets.
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• Hybrid in-memory computing (HIMC) idea is discussed on RRAM.

• The progress of ferroelectric capacitive devices for in-memory computing is

proposed for the next generation AI hardware. A prototype chip is tape-out

for peripheral circuit verification, and the characterization of the ferroelectric

devices is included in this thesis.

1.2 Thesis Organization

The outline of this thesis is as follows:

• Chapter 2 presents a monolithically integrated CMOS design under 90nm

technology with RRAM arrays. The high-level design logic and circuit-level opti-

mization methods under different DNN models. The results are comprehensively

discussed and compared with prior works.

• Chapter 3 presents an an IMC prototype with 2-bit-per-cell RRAM devices

for area-/energy-efficient DNN inference. On top of the previous chapter, this

chapter focuses more on multi-level RRAM programming with a similar XNOR-

RRAM architecture. The algorithm, optimization topology, and performance

analysis are included in this chapter for this work.

• Chapter 4 presents the characterization and mitigation for the relaxation effect

happening on the multi-level RRAM devices.

• Chapter 5 presents a new algorithm called PRIVE for energy-efficient RRAM

programming.

• Chapter 6 presents the progress on hybrid in-memory computing with non-

volatile memory. This chapter includes the high-level idea for hybrid in-memory

computing, the modeling idea for the non-volatile memory HIMC for RRAM
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and SRAM, and also the progress of one tape-out HIMC chips under 65nm with

RRAM and SRAM.

• Chapter 7 presents the progress on ferroelectric capacitive devices for next-

generation AI hardware.

• Chapter 8 concludes the dissertation.
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Chapter 2

MONOLITHICALLY INTEGRATED RRAM AND CMOS BASED IN-MEMORY

COMPUTING FOR EFFICIENT DEEP LEARNING

Resistive RAM (RRAM) has been presented as a promising memory technology

towards deep neural network (DNN) hardware design, with non-volatility, high density,

high on-off ratio, and compatibility with logic process. However, prior RRAM works

for DNNs have shown limitations on parallelism for in-memory computing, array

efficiency with large peripheral circuits, multi-level analog operation, and demon-

stration of monolithic integration. In this work, we propose circuit-/device-level

optimizations to improve the energy and density of RRAM-based in-memory com-

puting architectures. We report experimental results based on prototype chip design

of 128×64 RRAM arrays and CMOS peripheral circuits, where RRAM devices are

monolithically integrated in a commercial 90nm CMOS technology. We demonstrate

CMOS peripheral circuit optimization using input-splitting scheme and investigate

the implication of higher low resistance state on energy-efficiency and robustness.

Employing the proposed techniques, we demonstrate RRAM based in-memory com-

puting with up to 78.3 TOPS/W energy-efficiency and 84.2% CIFAR-10 accuracy.

Furthermore, we investigate four-level programming with single RRAM device, and

report the system-level performance and DNN accuracy results using circuit-level

benchmark simulator NeuroSim.
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2.1 Introduction

Deep learning algorithms have shown tremendous success in recent years LeCun

et al. (2015) for various applications including computer vision, speech recognition,

language translation, etc. However, an increasing gap exists between the exponential

network size growth of state-of-the-art DNNs (e.g. tens of millions of parameters) and

the incremental energy-efficiency improvement of conventional memory technologies

(e.g. CMOS scaling) for hardware accelerator designs Xu et al. (2018).

To bridge this gap and largely improve the memory energy-efficiency, in-memory

computing (IMC) has been proposed in recent years across different memory technolo-

gies Yin et al. (2020a); Valavi et al. (2019); Si et al. (2019); Seshadri et al. (2017); Li

et al. (2017); Mochida et al. (2018); Xue et al. (2019). IMC typically asserts multiple

or all rows simultaneously to perform multiply-and-accumulate (MAC) computations

of DNNs inside the memory, e.g. along the bitlines with analog current/voltage.

SRAM based IMC works Yin et al. (2020a); Valavi et al. (2019); Si et al. (2019)

demonstrate high energy-efficiency, however typically such IMC SRAM bitcells include

a few additional transistors, which degrades density and leakage. In addition, custom

peripheral circuits such as analog-to-digital converters (ADC) incur lower array

efficiency. Since one SRAM cell occupies 150-300 F 2 (F is the feature size of a

technology node), on-chip SRAMs cannot hold all weights of DNNs. Therefore, CMOS

hardware accelerators inevitably involve off-chip DRAMs at the system level, which

results in high energy consumption.

Consequently, a number of works proposed to bring computation closer to the

DRAM. DRAM based near-memory computing proposes to add logic in the DRAM

die, however logic capability in the optimized DRAM process is relatively limited. On
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the other hand, DRAM based in-memory computing is more challenging, because the

conventional 1T1C DRAM read is destructive, and thus requires additional overheads

such as data copy and write back Seshadri et al. (2017). DRAM cell designs with

non-destructive read have been proposed (e.g. 2T1C, 3T1C) Li et al. (2017), but

they directly degrade density, which is especially disadvantageous for area-efficient

DRAMs.

In addition, both SRAM and DRAM are volatile and have increasing concerns

on leakage power in scaled CMOS nodes. To that end, resistive non-volatile memory

(NVM) has emerged as a good alternative due to high density, non-volatility, and

non-destructive read. Among several well-known candidates including phase change

memory (PCM), resistive RAM (RRAM), and magnetic RAM (MRAM), this work

focuses on RRAM owing to its high on/off ratio, multi-level programmability, and

monolithic integration capability.

There has been only a few works that have demonstrated monolithically integrated

RRAM and CMOS for DNN hardware design Mochida et al. (2018); Xue et al. (2019);

Shulaker et al. (2017). The authors of Mochida et al. (2018) designed 180nm and

40nm prototype chips with embedded RRAM arrays. However, only simple multi-layer

percepton (MLP) has been demonstrated that resulted in low inference accuracy

of 90.8% for MNIST dataset. An RRAM macro integrated with multi-level sense

amplifiers in 55nm CMOS logic process was recently reported in Xue et al. (2019),

targeting convolutional neural networks (CNNs). However, a relatively low CNN

accuracy of 81.83% accuracy for CIFAR-10 dataset was achieved with binary/ternary

precision. Moreover, only 9 WLs are asserted simultaneously in the 256×512 sub-array,

which limits further parallelism, and a relatively complex 4-bit ADC was employed

at the RRAM array periphery, degrading array efficiency and energy consumption.
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In Shulaker et al. (2017), a monolithically integrated 3D nanosystem has been presented,

which connects CMOS transistors, carbon nanotube transistors (CNFET), and RRAM

devices in different layers with inter-layer vias (ILVs). A small-scale support vector

machine accelerator has been demonstrated, but applicability for larger DNNs has not

been shown. While there has been considerable improvement in CNFET integration

with CMOS or RRAM, in terms of manufacturability and yield, integration of RRAM

with CMOS in commercial technology is much superior Ho et al. (2017).

In this work, we address such limitations in RRAM based in-memory computing

towards energy-/area-efficient and accurate DNN hardware design, using monolithic

integration of RRAM and CMOS. In particular, we investigate three different de-

vice/circuit techniques: (1) modulating resistance values for binary RRAM devices,

(2) peripheral circuit minimization with input-splitting technique, and (3) multi-level

RRAM programming. We report measurement results of 90nm CMOS prototype chip

that monolithically integrated RRAM arrays, which executes in-memory computing

operations of CNNs for CIFAR-10 dataset.

In our in-memory computing architecture, monolithic integration of RRAM and

CMOS is crucial, since we need dense connections to all wordlines and bitlines of

the RRAM array. If RRAM and CMOS are not monolithically integrated (e.g.

using through-silicon-vias or silicon interposers), the bitline and wordline delays will

be excessive and the integration density will be too low. Furthermore, monolithic

integration of RRAM with CMOS is simpler and less expensive than that with

CNT Shulaker et al. (2017). RRAM process is CMOS fabrication compatible, with

just a few layers of oxide deposition at the contact via at back-end-of-line (BEOL)

compatible temperature. Typically only one additional mask/lithography is required,

allowing RRAM integration to be low-cost.
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Figure 1. Prototype chip design with monolithically integrated RRAM and 90nm
CMOS technology (adapted from Yin et al. (2020b), with permission). This work
presents further energy/area optimization.

2.2 RRAM Prototype Chip Design

We designed a prototype chip for RRAM-based robust in-memory computing

with Winbond’s embedded RRAM technology Ho et al. (2017), which monolithically

integrates 90nm CMOS and RRAM between M1 and M2 (Figure 1(a)). Figure 1(b)

shows the pad-limited chip micrograph and the core area of the chip. As shown in the

top-level block diagram in Figure 1(c), the chip design includes a 128×64 1T1R array,

row decoder, level shifter, eight 8-to-1 column multiplexers, eight 3-bit flash ADCs

based on seven voltage-mode sense amplifiers (SAs), and two 64-to-1 column decoders

for RRAM cell-level programming. The row decoder has two modes of operation: (1) it

11



Figure 2. In-memory computing operation of XNOR-RRAM (adapted from Yin et al.
(2020b), with permission).

asserts all differential wordline (WL) signals simultaneously for binary or low-precision

multiply-and-accumulate (MAC) operation, or (2) generates one-hot WL signals for

cell-level programming. Eight ADCs (shared among 64 columns) and eight column

multiplexers occupy 20% and 12% of the core area, respectively (Figure 1(d)). In

this work, further energy/area optimization is investigated including peripheral circuit

minimization by using higher LRS and input-splitting scheme.

Conventional binary RRAMs cannot effectively represent the positive and negative

weight values (+1 and -1) in binarized neural networks (BNNs) Hubara et al. (2016),

because the high resistance state (HRS) and low resistance state (LRS) values of

binary RRAM devices are both positive. In addition, as shown in Figure 2, the
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activation/weight value combinations of +1/+1 and -1/-1 should result in the same

effective resistance. To that end, we proposed to use a “XNOR-RRAM” bitcell

design Sun et al. (2018); Yin et al. (2020b) for BNNs. As shown in Figure 2, the

XNOR-RRAM bitcell involves differential RRAM cells and differential wordlines. The

binary activations are mapped onto the differential wordlines, and the binary weights

are mapped onto the HRS/LRS values of XNOR-RRAM bitcells. By asserting all

differential WLs of the RRAM array simultaneously, all cells in the same column are

computed in parallel, which implements the binary MAC computations. The 128×64

1T1R array effectively represents 64×64 XNOR-RRAM bitcells, since one XNOR-

RRAM bitcell consists of two 1T1R baseline bitcells to represent positive/negative

weights and to perform embedded XNOR computation inside the XNOR-RRAM

bitcell.

Both the preliminary simulation results Sun et al. (2018) and initial measurement

results Yin et al. (2020b) of the XNOR-RRAM design only considered the default

LRS and HRS values for the binary RRAM devices, and employed a 3-bit ADC at the

periphery for digitizing the analog partial MAC value. In this work, we investigate

three further optimizations in monolithically integrated RRAM devices and peripheral

circuits, towards enhancing the energy-efficiency and density of the RRAM-based IMC

systems.

First, since the default LRS value (∼6kΩ) consumes large current and the on/off

ratio is relatively high (∼150), we explore using higher LRS values (e.g. ∼12kΩ and

∼24kΩ) to evaluate the trade-off between current reduction, on/off ratio, and CNN

accuracy.

Second, although a 3-bit ADC is relatively simple, it still consumes a large area

compared to the RRAM array itself, resulting in low array efficiency. We present further
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algorithm/hardware improvements beyond the previous input-splitting techniques Kim

et al. (2018a), and employ binary sense amplifiers with an unified reference voltage

across all columns, instead of ADCs at the RRAM array periphery, for digitizing the

analog partial MAC values. Considering that tightly-spaced reference voltages make

flash ADCs more susceptible to variability at low voltages, we show that the proposed

input-splitting scheme actually results in much improved accuracy at lower supplies.

Finally, beyond binary RRAM devices, we investigate four-level programming

with the same RRAM devices in our prototype chip, and experimentally validate the

density, energy and performance gains by benchmarking a CNN for CIFAR-10 dataset.

2.3 Higher Resistance For LRS Devices

In binary RRAM devices, only two states per device exist, namely LRS (high

conductance) and HRS (low conductance). In commercial RRAM technologies that

are typically used for storage applications, on-off ratio of higher than 100 has been

reported. Having a large on-off ratio is certainly good, but on the other hand, having

high conductance value for the LRS leads to high current consumption.

To that end, for a given HRS value is fixed, and if we have higher LRS values in

binary RRAM devices, then the current and energy consumption could be largely

reduced. On the other hand, compared to the default LRS, targeting LRS to have a

higher resistance value can result in wider distribution after programming or more

susceptible to non-ideal effects such as read disturb. In addition, and if the LRS and

HRS ranges become relatively close, it will adversely affect the DNN accuracy for the

RRAM-based IMC hardware.
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Figure 3. New input-splitting scheme that allows unified reference voltage for all sense
amplifiers in the RRAM array periphery.

2.4 Peripheral Circuit Minimization with Input-splitting Scheme

Input-splitting is a method of BNN architecture design for ADC-free in-memory

computing Kim et al. (2018a). Input-splitting reconstructs a large BNN layer with a

network of small layers. It splits input of a large layer so that the number of inputs

per split group is less than or equal to row count of the given RRAM array. Each split

group constructs a new small layer, and the binary output generated from small layers

are accumulated and subsequently binarized with a threshold value of zero. Then,

each layer of input-split BNN can fit on RRAM array so that the array can generate

binary neuron values as output values. However, batch normalization governs that

each neuron has its own threshold value, which necessitates each column to have a

digital-to-analog converter (DAC) Valavi et al. (2019), adding a large overhead.

In this work, we modified the conventional input-splitting method Kim et al.
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Figure 4. Conductance distribution is shown for four levels of RRAM device program-
ming. Both measurement data from prototype chip and fitted Gaussian distribution
curves are shown.

(2018a) to eliminate column-wise threshold values. Batch normalization conducts

scaling and shifting operation, and the shifting operation generates threshold values.

Therefore, as illustrated in Figure 3, we removed batch normalization before output

binarization of small layers. Instead, we experimentally found a proper scaling factor

for pre-binarization values of small layers. For the RRAM array with 64 rows, we

found that, by scaling pre-binarization value with 1/20, most of scaled values lie in

the range of [-1, 1]. As there is no shifting operation on pre-binarization value of small

layers, the column-wise threshold is fixed to 0. Then, we added batch normalization

after the merge to compensate for the loss of batch normalization on small layers.

We tested a VGG-like CNN for CIFAR-10 dataset, which has the network structure

of input-128C3-128C3-MP2-256C3-256C3-MP2-512C3-512C3-MP2-1024FC-1024FC-

10FC Hubara et al. (2016). Here, 128C3-128C3 refers to the convolution layer with

128 input feature maps, 3×3 kernels and 128 output feature maps, MP2 refers to

2x2 max-pooling, and 1024FC refers to the fully-connected layer with 1024 hidden

neurons.

As we used RRAM arrays with 64 effective rows, the input counts per input-split
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BNN layer was set to 63 for convolution layers and 64 for fully-connected layers. We

used 63 for convolution layer because we use 3×3 kernel for convolution, and 63 is the

closest value less than equal to 64. In addition, to make the input of convolution layer

be divided by 63, we changed the number of channels to be an integer multiple of 7.

Using Torch, we trained the input-split BNN with the same training condition used in

conventional input splitting Kim et al. (2018a). For comparison, we trained baseline

BNN (non-split BNN), input-split BNN with column-wise threshold, input-split

BNN without column-wise threshold. The algorithm simulation results showed that

the input-split BNN without column-wise threshold model has compatible accuracy

(86.64%) with the baseline BNN (88.46%) and input-split BNN with column-wise

threshold (88.24%).

2.5 Multi-level RRAM Devices

2.5.1 Multi-level Programming scheme

To achieve 2-bit RRAM, two more conductance states are inserted between min-

imum and maximum conductance levels so that the conductance interval is equal

between adjacent states. A write-verify programming scheme is iterated until less

than 2% of RRAM cells are outside the target conductance range for each of the four

levels. The maximum number of write-verify iterations to program one RRAM cell is

specified as Nmax. For each conductance state, 4,096 RRAM cells in the prototype

chip are programmed and measured. It is observed that the conductance distribution

becomes more concentrated as Nmax increases. The Nmax to achieve the target con-

ductance range are 15, 30, 15 and 10 for the four conductance states, respectively.
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Figure 5. Measured ADC output results compared with bitcount values from BNN
algorithm.

After programming, the percentage of the RRAM cells that are outside the target

conductance ranges were 0.32%, 1.32%, 0.92% and 0.44%, respectively.

2.5.2 Inference Accuracy Simulation

The inference accuracy for a CNN is simulated with the measured 2-bit RRAM

data. However, considering the limited measurement data (4,096 data points for each

state) compared to the total number of parameters in a CNN, we first fitted the

probability density function (PDF) of the measured conductance data with a linear

combination of multiple Gaussians as the fitted PDF. Then, the conductance values

are generated with the fitted PDF for a large CNN. Figure 4 shows the PDF of the

measured conductance and the conductance values generated with fitted PDF. The

distribution tails of the experiment data are captured with the fitted PDF.

Using 2-bit weights and 4-bit activations, we benchmarked the same VGG-like
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CNN for CIFAR-10. It is assumed that each 2-bit weight is stored into one RRAM

cell. We first trained the CNN with the quantized training method proposed in Wu

et al. (2018), and obtained the software baseline accuracy of 91.7%. The 2-bit weights

are then mapped to conductance states, where the conductance values of each RRAM

cell are generated with the fitted PDFs of the corresponding states. The inference

accuracy is simulated for three different array size 64×64, 128×128 and 256×256,

where we employed flash ADCs with 5-bit precision using non-linear quantization Sun

et al. (2018).

2.6 Measurement and Simulation Results

2.6.1 Binary RRAM based IMC Energy and Accuracy Characterization with Higher

LRS and Input-splitting

We envision that large binary CNNs are mapped onto multiple RRAM arrays,

where weights for different input channels are stored on different rows, weights for

different output channels are stored on different columns, and weights within each

convolution kernel (e.g. 9=3×3) are stored in different RRAM macros Yin et al.

(2020a,b). Subsequently, the partial MAC results from different RRAM macros are

accumulated via digital simulation. In Yin et al. (2020b), 3-bit ADC was used

to digitize the analog partial MAC values, where seven reference voltages for each

flash ADC required offset cancellation in order to achieve >83% CIFAR-10 accuracy.

The new input-splitting scheme presented in this work substantially reduces such

calibration overhead, since we only need binary sense amplifiers to digitize the analog
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partial sum, and the same reference voltages are used for all 64 columns of the RRAM

array.

Another important challenge for the flash ADC is that, the adjacent reference

voltages are very close to each other, especially since the partial sum data distribution

is concentrated near zero Sun et al. (2018). If we lower the supply voltage, the

reference voltages actually become even closer to each other, which makes it more

susceptible to process variation. On the other hand, since the input-splitting scheme

allows to have only one reference voltage for the sense amplifiers, the digitization is

inherently more robust to variability and noise.

We performed chip measurements for the experiments of higher LRS values and

the input-splitting scheme. For the higher LRS experiment, we programmed RRAM

devices with different target LRS values of 6kΩ, 12kΩ and 24kΩ. For the input-

splitting scheme experiment, with the same XNOR-RRAM prototype chip, we only

use one SA out of the seven SAs that are present in the flash ADC. This means that,

when we employ the input-splitting scheme, the overall ADC area in the RRAM macro

is effectively reduced by 7X.

In Figure 5, we show the comparison of the bitcount values from the BNN

algorithm (i.e. ideal partial sum values) and the measured ADC output values using

12kΩ LRS target, for both the conventional scheme with 3-bit ADCs and the input-

splitting scheme with binary SAs. As we compare the 1.2V and 0.8V supply results,

it can be seen that the ADC output values become less accurate at 0.8V. However,

with a single reference level, the input-splitting scheme still maintains more robust

operation even at lower voltages.

As shown in Figure 6, the energy-efficiency (TOPS/W) of RRAM-based IMC
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Figure 6. Energy-efficiency with voltage scaling for RRAM IMC with different LRS
values.

increases with higher LRS values and with lower supply voltages. The CIFAR-10

accuracy values for the VGG-like CNN with voltage scaling are reported in Figure 7

with different LRS values for both the input-splitting scheme with binary SAs and

the conventional scheme with 3-bit ADCs. For the conventional scheme with ADCs,

it can be seen that the CIFAR-10 accuracy degrades by a large amount when the

supply voltage scales below the nominal 1.2V. This is due to the fact that that the

seven reference voltages for the flash ADC are separated only by a small voltage value,

which aggravates with lower supply voltages, incurs more ADC output errors, and

adversely affects the DNN accuracy.

For the input-splitting scheme, there is only one reference voltage used by all

eight sense amplifiers for 64 columns, the SA operation is more robust against voltage
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Figure 7. CIFAR-10 accuracy with voltage scaling for RRAM IMC with different LRS
values and input-splitting scheme.

scaling, noise and variability. As a result, Figure 7 shows that high CNN accuracy is

maintained for the input-splitting scheme for 12kΩ/24kΩ LRS values, down to 0.8V

supply. The input-splitting scheme also shows higher accuracy for cases when RBL

voltage is around 0.6-0.7V (high gain region for SA with differential NMOS input) for

bitcount values near zero, e.g. higher supply with 6kΩ LRS and lower supply with

24kΩ LRS value.

The conventional scheme Yin et al. (2020b) achieves energy-efficiency of 20.8

TOPS/W at 1.2V supply (Figure 6), while achieving 83.5% accuracy with binary

CNN. Jointly optimizing the use of higher LRS value of 12kΩ (24kΩ) and the proposed

input-splitting scheme effectively enabled voltage scaling down to 0.8V without any

additional accuracy loss, improving the energy-efficiency by 3.1X (3.8X), achieving

64.5 (78.3) TOPS/W.
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Table 1. CNN simulation results with 2-bit RRAM for different RRAM array sizes.

2.6.2 2-bit RRAM Based CNN Accelerator Performance Benchmarking with Neu-

roSim

2-bit RRAM could further increase the integration density for the CNN accelerator.

The performance benchmarking for 2-bit RRAM based CNN accelerator is conducted

in NeuroSim Chen et al. (2018), where the aforementioned VGG-like CNN is utilized.

We assume that eight columns share one ADC in the RRAM array, and there are

a total of eight ADCs in the RRAM array periphery. The inference computation is

processed layer by layer. Table 1 presents the benchmarking results with different

RRAM array sizes.

First, the inference accuracy drops as the array size is increased, since the ADC
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precision is fixed at 5-bit. This is attributed to the fact that the partial sum distribution

becomes broader with larger array size, and therefore quantization loss is increased.

It should be noted that the conductance variation of 2-bit RRAM only leads to small

accuracy drop when comparing the accuracy with ADC quantization only and with

both ADC quantization and RRAM conductance variation.

In terms of chip area, 256×256 array shows smaller chip area compared with

128×128 array due to the increased array efficiency. However, only small chip area

increase is observed when array size is reduced to 64×64. Comparing with 128×128

array, for 256×256 array, chip area is reduced as less subarrays are needed. It can be

explained by the fact that in 64×64 array, the periphery circuit size is reduced due to

lower maximum column partial sum current, therefore, the array efficiency does not

drop significantly compared with 128×128 array.

For the read latency and dynamic energy consumption, comparing with 128×128

array, 64×64 array needs more partial sum accumulations between subarrays, which

leads to higher latency and energy consumption. For 256×256 subarray, the large

column current leads to significantly higher ADC energy consumption and therefore

the overall energy consumption is increased. Besides, the larger column partial sum

current leads to larger transmission gate (TG) size in the multiplexer, which induces

higher latency for the decoder to drive the TG gate capacitor.

2.7 Conclusion

In this work, we demonstrated RRAM based in-memory computing with 90nm

CMOS prototype chips that monolithically integrated RRAM and CMOS in different

vertical layers. Using device-/circuit-/algorithm-level techniques, both the energy-
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efficiency and density of binary RRAM based IMC hardware improved substantially,

achieving up to 78.3 TOPS/W and 84.2% accuracy for CIFAR-10 dataset. Experiments

with 2-bit RRAM demonstrate sufficient separation between four conductance levels,

and show higher CNN accuracy up to 128×128 RRAM array size.
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Chapter 3

2-BIT-PER-CELL RRAM BASED IN-MEMORY COMPUTING FOR

AREA-/ENERGY-EFFICIENT DEEP LEARNING

In-memory computing (IMC) has emerged as a promising technique for enhancing

energy-efficiency of deep neural networks (DNN). While embedded non-volatile memory

such as resistive RAM (RRAM) is a good alternative to SRAM/ DRAM for IMC

owing to high density, low leakage, and non- destructive read, most prior works have

not demonstrated using multi-level RRAM devices for array-level IMC operations. In

this work, we present an IMC prototype with 2-bit-per-cell RRAM devices for area-

/energy-efficient DNN inference. Optimizations on four-level conductance distribution

and peripheral circuits with input-splitting scheme have been performed, enabling

high DNN accuracy and low area/energy consumption. The prototype chip that

monolithically integrated 90nm CMOS and 2-bit-per- cell RRAM array achieves 87%

(83%) CIFAR-10 accuracy and 25 (51) TOPS/W energy-efficiency at 1.2 V (0.9 V)

supply. At 1.2V, a stable accuracy of 87% is maintained throughout 108 hours.

3.1 Introduction

With exponential growth in the sizes of deep/convolutional neural networks

(DNN/CNN), demands for highly dense and energy-efficient memory devices have

skyrocketedXu et al. (2018). Compared to CMOS memory technologies such

SRAM/DRAM, embedded non-volatile memory such as RRAM has shown advantages

in high density, low leakage power, non-volatility, and multi-level programming.
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For DNN hardware accelerators, conventionally volatile and non- volatile mem-

ories were accessed in a row-by-row manner and data was communicated to/from

separate multiply-and-accumulate (MAC) or computation engines. To resolve such

data access/communication bottleneck, in-memory computing (IMC) has emerged

as a promising technique Verma et al. (2019). By asserting multiple or all rows

simultaneously, analog computations of multiply-and-accumulate (MAC) operations

are performed inside the memory (e.g. along the bitline), substantially reducing

memory access energy and latency of row-by-row operation.

Several RRAM based in-memory computing prototypes have been presented, but

most of them only employed single-level cell design Xue et al. (2019); Yan et al. (2019);

Yin et al. (2019). The device-level programming of 2-bit/3-bit per RRAM cell has

been reported but was limited to row-by-row read-out Le et al. (2018); Hsieh et al.

(2019) or only simulation of multi-row read-out Yin et al. (2019). Recently, Liu et al.

(2020) reported IMC with four-level RRAM, but only demonstrated a simple two-layer

multi-layer perceptron for a low 94.4% accuracy for MNIST dataset.

This paper demonstrates in-memory computing using 2-bit-per-cell RRAM array,

towards dense and energy-efficient inference of large DNNs. We assert all rows of

the 128×64 RRAM array, but use input-splitting scheme to simplify the area-/power-

hungry analog-to- digital converters (ADCs) at the column periphery into single sense

amplifiers (SAs). The prototype chip has been implemented in 90nm CMOS with

monolithic integration of RRAM. We benchmarked three different CNNs for CIFAR-10

dataset, achieving up to 87% (83%) accuracy, and 25 (51) TOPS/W energy-efficiency

at 1.2 V (0.9 V) supply. Compared to a 1-bit-per-cell RRAM design, we achieve

2.8-5.3% CNN accuracy improvement for the same area. We also evaluated the
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RRAM conductance distribution over 108 hours, and demonstrated robust 87% CNN

accuracy.

3.2 In-memory Computing RRAM Macro Design

3.2.1 In-Memory Computing Design with Four-Level RRAM Devices

Our current RRAM macro design supports the multiplication of 2-bit weights

(e.g. -3, -1, +1, +3) and 1-bit activation (e.g. -1, +1) in a single cycle. As shown in

Fig. 8(a), we use two vertically-adjacent cells and differential wordlines to represent

one 2-bit weight. The activation of +1 makes top (bottom) WL to be 1 (0) and

activation of -1 makes bottom (top) WL to be 1 (0). We set the four conductance

levels as GLOW (highest resistance state), GHIGH×1/3, GHIGH×2/3, and GHIGH

(lowest resistance state), and we program the two 1T1R cells differentially as [GLOW

and GHIGH ] or [GHIGH×1/3 and GHIGH×2/3], as shown in Fig. 8(a). This way,

element-wise multiplication results of -3, -1, +1, and +3 will be mapped to RBL

voltage (VRBL) being pulled down with GLOW , GHIGH×1/3, GHIGH×2/3, and GHIGH

conductance, respectively (Fig. 8(b)).

By simultaneously asserting all differential WLs of the RRAM array, all cells in

the same column are computed in parallel. The RRAM cells that pull down RBL and

the configurable PMOS header that pulls up RBL form a resistive divider, resulting

in VRBL that represents the 64-input partial sum between -192 and +192 (Fig. 9.

The PMOS header is digitally configurable in 16 different strength values. Through

8:1 column multiplexers, RBL is connected to a group of SAs, which can be served

collectively as a flash ADC or as individual SAs (Fig. 8(c)). One group of SAs is shared
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Figure 8. In-memory computing operation with four-level RRAM devices.

for every 8 columns. The area of the 1T1R bitcell that we used is ∼0.5µm×0.5µm

(∼31 F 2), and thus one 2-bit RRAM cell occupies ∼62 F 2 area, which is much smaller

than two SRAM cells with 300-400 F 2.

3.2.2 Four-Level RRAM Programming

To achieve 2-bit RRAM, two intermediate conductance levels are inserted between
minimum and maximum conductance levels, where the conductance interval is kept
identical between adjacent states. A write-verify programming scheme is iterated until
<5% of 4kb (128×64) RRAM cells are outside the target conductance range for each
of the four levels. First, we set the initial gate voltage (VG) and apply a 100 ns SET
pulse with 2.1V amplitude. If the resistance after SET is lower than the lower bound,
a 200 ns RESET pulse with 3.8 V amplitude and VG of 4.0 V is applied, followed with
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Figure 9. (Top) Partial MAC data distribution. (Bottom) Simulated transfer curve of
the RBL voltage.

a SET pulse with a new VG lower by a ‘lower voltage step’ (lower ∆V in Table 2). If
the resistance after SET is higher than the upper bound, a RESET pulse is applied,
followed with a SET pulse with a new VG higher by an ‘upper voltage step’ (upper
∆V in Table I). After 15 write-verify iterations, if the resistance is still outside of the
lower/upper bound, we set the lower/upper voltage step to 0.01V for finer adjustment.

Fig. 10 shows the initial four-level programming results and distribution of RRAM

cells over time. While minimum and maximum conductance levels maintain tight

distributions over 108 hours, the two intermediate conductance levels show moderate
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Table 2. RRAM Programming Setup for Different Conductance Levels.

Target Conductance Initial V0 Lower ∆V Upper ∆V
GHIGH 3.25V 0.10V 0.01V

GHIGH × 2/3 1.65V 0.07V 0.03V
GHIGH × 1/3 1.4V 0.05V 0.03V

relaxation over time. In particular, GHIGH×1/3 encounters more relaxation, due to

relatively higher resistance value and stability from a weak filament in RRAM. This

symptom needs to be evaluated for reliable IMC design.

To understand the effect of wider conductance distribution for IMC, we have

calculated the effective resistance (REFF ) of 64 parallel pull-down paths in one

column, by randomly choosing each resistance value from the CDF data in Fig. 10.

We also performed transistor-level simulation of eight columns with randomly selected

resistances from Fig. 10 data and observed VRBL. Fig. 4 shows the simulation results

using conductance distributions after initial programming and after 108 hours. Since

large relaxation only occurs to a small percentage of RRAM cells and positive/negative

relaxation cancels out, REFF and VRBL only changes by up to 1.85% and 0.32%,

respectively, across different MAC values over 108 hours. Therefore, we surmise that

the effect of RRAM relaxation on IMC results will be insignificant. Further chip

measurement results will be presented in Section 3.2.

3.2.3 Column Sensing Optimization with Input-Splitting

In previous in-RRAM computing works Xue et al. (2019), it has been shown

that ADCs pose critical challenges for area and energy. Input-splitting was proposed

originally as a method to reduce the overhead of ADCs in in-memory computing DNN
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Figure 10. Measured four-level conductance distribution over 108 hours.

accelerators Kim et al. (2018b), and has been applied to binary RRAM arrays in Yin

et al. (2019).

In this work, we re-designed the input-splitting algorithm to support 2-bit weights

and 1-bit activations, as illustrated in Fig. 12. It splits input of a large layer so that the

number of inputs per split group is less than or equal to row count of the RRAM array.

Each split group constructs a new small layer, and the binary output generated from

small layers (e.g. RRAM arrays) are accumulated and subsequently binarized to +1 or

-1 with a threshold value of zero. Our new input- splitting algorithm trains DNNs so

that inter-neuron binarization is achieved without batch normalization, which allows

using identical reference voltages (Vref ) for all SAs for 64 columns.
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Figure 11. (a) Effective resistance (REFF ) and (b) VRBL change between initial
programming and 108 hours.

3.3 Measurement Results and DNN Evaluation

The prototype chip (Fig. 13(a)) was fabricated in 90nm CMOS that monolithically

integrates RRAM between M1 and M2 [10]. 128×64 RRAM array is integrated with

the peripheral circuits including eight groups of SAs (one group of SAs shared among

eight columns), 8:1 column multiplexers, and row decoders/drivers that include level-

shifters (for high-voltage programming). We performed measurement of two chips at

room temperature. Fig. 13(b) shows the power breakdown of chip 1 at 1.2V supply.

The power of decoder/driver modules and RRAM/SA modules were measured directly
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Figure 12. Input-splitting scheme with 2-bit weights. DNNs are trained so that RRAM
array outputs are binarized.

from the chip with separate power supplies. With the resistive divider by PMOS

header and RRAM pull-down paths dissipating static current, RRAM array dominates

the power consumption.

3.3.1 IMC Measurement Results from RRAM Array

Our implementation of the input splitting algorithm allows using only one SA

for RBL sensing. Since the RRAM array has seven SAs for every eight columns, we

experimented using the seven independent SAs with identical Vref to vote majority

and obtain the binary output for the interneuron. We first programmed the RRAM

with a 64×64 weight submatrix from the trained DNNs with 2-bit weights using
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Figure 13. (a) Die photo of prototype chip. (b) Power breakdown of chip 1.

write-verify scheme described in Section 3.2.2. 2,000 64-bit binary test vectors were

then presented to the RRAM array, to perform MAC computations and obtain the

2,000×64 outputs. In total, 128,000 pairs of measured sum of seven SAs’ outputs and

target MAC values are used to estimate the joint distribution of these two, and the

resultant 2-D histogram is shown in Fig. 14(a). The sum of seven SAs’ output needs

to be binarized to either +1 or -1 as the interneuron output. From the results in

Fig. 14(a), we obtain the conditional probability for each MAC value being binarized

to +1, as shown in Fig. 14(b).
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Figure 14. (a) 2-D histogram of the partial sum and the measured SA output at
time=108 hours. (b) Probability of interneuron output for partial MAC values.

3.3.2 DNN Evaluation

When we map DNNs onto RRAM arrays, the IMC computations of 64 inputs and

64×64 weights are first stochastically quantized to 1-bit (+1 or -1) according to the

conditional probability distribution in Fig. 14(b). Subsequently, the accumulation of

partial sums and non-MAC operations such as max-pooling are performed in digital

simulation with high fixed-point precision, to obtain the DNN accuracy results. We

benchmarked the inference accuracy of the proposed 2-bit RRAM array for three
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Table 3. DNN models used for evaluation for CIFAR-10 dataset.

DNN Model DNN Layer Structure
Heavy-VGG 126C3-B-126C3-B-252C3-B-252C3-B-511C3-B-512C3-B-FC1024-B-FC1024-B-FC10-B
Light-VGG 126C3-B-126C3-B-189C3-B-189C3-B-252C3-B-256C3-B-FC512-B-FC512-B-FC10-B

AlexNet-Like 91C3-B-M-252C3-B-M-378C3-B-378C3-B-256C3-B-M -FC1024-B-FC1024-B-FC10-B
* nCm: convolutional layer with n channels and m×m kernel, B: batch normalization layer,
M: max-pooling (2×2), FC: fully-connected layer

DNNs (heavy-VGG, light-VGG, AlexNet-like CNN) for CIFAR-10 dataset (Table 3).

Convolution and fully- connected layers of DNNs are mapped onto multiple 2-bit

RRAM instances, where weights for different input (output) channels are stored on

different rows (columns), and weights within each convolution kernel (e.g. 9=3×3)

are stored in different RRAM arrays.

3.3.3 Energy, Performance, and Accuracy Characterization

Fig. 15 shows that the input-splitting algorithm and corresponding measurements

incur minimal accuracy degradation for all three DNNs, and also the two chips that we

measured show similar CIFAR-10 accuracy. Compared to binary RRAMs, in-memory

computing with 2-bit-per-cell RRAMs achieves 2.8-5.3% DNN accuracy improvement

for the same area, or 2X area reduction for the same accuracy. Our implementation

of the input splitting algorithm allows using only one SA for RBL sensing. Since the

RRAM array has seven SAs for every eight columns, we experimented using the seven

independent SAs with identical Vref to vote majority and obtain the binary output

for the interneuron.

While the results in Fig. 15 used all seven SAs in the prototype chip, we exper-

imented using small number of SAs. Fig. 16 shows that, the best SA combination

outputs show similar CIFAR-10 accuracy compared to the voting results of seven SAs.
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Figure 15. Accuracy (software vs. measurements) of three DNNs for 1-bit/2-bit
weights and without/with input-splitting.

On average, using more SAs with voting results in improved CIFAR-10 accuracy, due

to less variability from hardware.

With dynamic voltage scaling (Fig. 17(a)), the power of both analog and digital

modules are largely reduced, improving energy-efficiency from 25 TOPS/W at 1.2V

to 51 TOPS/W at 0.9V. This is achieved by trading off the voltage margin of SAs,

leading to small (1.0% for Light-VGG) or moderate (5.5% for Heavy-VGG) DNN

accuracy loss, as shown in Fig. 17(b).

To assess the robustness of IMC over time amidst RRAM relaxation (Fig. 10), we

characterized the Heavy-VGG CNN accuracy over 108 hours, as shown in Table 4.

Similar relaxation in conductance has been reported in prior works Wang et al. (2015).

Still, we observed that the effective resistance and RBL voltage remains relatively

constant, and with Vref calibration for SAs, the CNN accuracy for CIFAR-10 is

maintained stably around 87% over 108 hours (Table 4). Table 5 shows the comparison

with prior in-RRAM computing works. Our work is the first to demonstrate 2-bit-per-

38



Figure 16. Number of SAs vs. accuracy.

Table 4. Heavy-VGG CNN accuracy over time.

Time(Hours) 0 15 29 43 63 87 108
Accuracy(%) 87.1 87.2 86.8 86.9 87.3 87.2 87.0

cell in-RRAM computing with assertion of a high number of rows (64) for large CNNs

for CIFAR-10 dataset. Using the figure-of-merit (FoM) that represents the inverse

of energy-delay-area product, our design achieves 14X higher FoM than that of Xue

et al. (2019).
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Figure 17. (a) Measured energy/frequency results with voltage scaling. (b) Accuracy
of three DNNs with voltage scaling.

Table 5. Comparison with prior works on RRAM-based in-memory computing demon-
strated on CNNs for CIFAR-10.

Xue et al. (2019) Yan et al. (2019) Hsieh et al. (2019) This Work
CMOS Technology 55nm 150nm 130nm 90nm

Array Size 256×512 256×256 1Mb 128×64
# of bits per RRAM (B) 1 1 2-3 2
# of rows turn on (R) 9 2-16 1 64

Column Sensing 4b ADC spike counting N/A 1b SA
Energy-efficiency(TOPS/W) 53.2-21.9 16.9 N/A 51.4-24.5

FoM1(TOPS/W×B×R) 478.8 270.4 N/A 6579(14X↑)
CIFAR-10 Accuracy 81.8-88.5% ∼80% 83.0% 83.0-87.1%

1FoM represents 1/(energy×delay×area).

3.4 Conclusion

In this work, we present a 2-bit-per-cell RRAM based in-memory computing

prototype in 90nm CMOS. Input splitting scheme replaced power-hungry ADCs with

simple SAs. Three different DNNs were benchmarked, achieving CIFAR-10 accuracy

of 87% (83%) and 24.5 (51.4) TOPS/W energy-efficiency at 1.2V (0.9V) supply. At

1.2V, a stable accuracy of ∼87% is maintained throughout 108 hours.
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Chapter 4

CHARACTERIZATION AND MITIGATION OF RELAXATION EFFECTS ON

MULTI-LEVEL RRAM BASED IN-MEMORY COMPUTING

In this chapter, we investigate the relaxation effects on multi-level resistive random

access memory (RRAM) based in-memory computing (IMC) for deep neural network

(DNN) inference. We characterized 2-bit-per-cell RRAM IMC prototypes and measured

the relaxation effects over 100 hours on multiple 8 kb test chips, where the relaxation

is found to be most severe in the two intermediate states. We incorporated the

experimental data into SPICE simulation and software DNN inference, showing DNN

accuracy for CIFAR-10 dataset could degrade from 87.35% to 11.58% after 144 hours.

To recover the largely degraded accuracy, mitigation schemes are proposed: 1) at the

circuit level, the reference voltage for RRAM IMC could be calibrated after 80 hours

when the relaxation is saturated. 2) At the algorithm level, the weights are trained

with lower percentages to be quantized to the two intermediate states. With both

schemes applied, the accuracy could be recovered to 87.32% for long-term stability.

4.1 Introduction

DNNs have been successful in many computer vision and speech recognition

applications. While state-of-the-art DNN algorithms continue to achieve higher

accuracy with less number of parameters, the most compact models still require >3

million weights to achieve >70% top-1 ImageNet accuracy Deng et al. (2020). This

leads to an insatiable demand for high-density memories such as multi-level RRAM.
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On the other hand, the DNN computations are dominated by multiply-and-accumulate

(MAC) operations, but the overall energy consumption of DNN inference hardware has

been dominated by memory access and data communication Zimmer et al. (2020), due

to the separation of conventional memories with row-by-row access and dedicated MAC

engines. To improve the energy-efficiency of DNN inference, in-memory computing

(IMC) has emerged as a promising technique, which turns on multiple rows and

performs analog MAC computations along the bitline inside the memory.

Recent array-level demonstrations have presented RRAM’s potential towards IMC

for area-/energy-efficient DNN inference Yin et al. (2020c); Xue et al. (2020); Wan et al.

(2020); Hsieh et al. (2019); Liu et al. (2020), but most RRAM based IMC prototypes

today feature only single-level cell design Yin et al. (2020c); Xue et al. (2020); Wan

et al. (2020). Device-level programming of multi-level RRAM has been reported but

was limited to row-by-row read-out Hsieh et al. (2019). Only a few works reported

IMC with four-level RRAM devices Liu et al. (2020); He et al. (2020), while Liu et al.

(2020) only demonstrated a simple two-layer multi-layer perceptron for a low 94.4%

accuracy for MNIST dataset. More importantly, most of the prior prototype designs

just reported the basic functionality of IMC, while the reliability aspect of RRAM at

array-level and during actual IMC operations is largely unexplored, although it can

considerably affect the DNN inference accuracy.

Relaxation occurs as a rapid drift of conductance right after initial programming

but gradually saturates in the long term. For HfO2 RRAM, its relaxation effects at

device-level were reported in Wan et al. (2020); Wang et al. (2015), and read disturb

induced RRAM conductance drift behavior was investigated in Shim et al. (2020a). In

our prior work He et al. (2020), to maintain relatively stable DNN inference accuracy
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with RRAM relaxation effects over time, the peripheral circuits (e.g. reference voltages

to the sense amplifiers) needed to be recalibrated every once in a while.

In this work, we comprehensively characterized the relaxation behavior with and

without IMC operations on array-level with multiple 8 kb test chips He et al. (2020),

and analyzed its impact on DNN inference accuracy over time. The experiments are

based on relaxation measurements of 2-bit-per-cell HfO2 RRAM cells over 1,047 hours

(over one month) accumulatively collected from three test chips, which were designed

for RRAM based IMC with CMOS peripheral circuits. We present two mitigation

schemes to recover the degraded DNN accuracy due to the relaxation effects. First,

at the circuit-level, we calibrate the reference voltages after the relaxation saturates.

Second, at the algorithm-level, we present a relaxation-aware DNN training technique

to maintain high accuracy over time without frequent peripheral circuit calibration.

4.2 RRAM IMC Bitcell and Chip Design

4.2.1 2-bit-per-cell RRAM IMC

As shown in Fig. 18(a), we use two vertically-adjacent cells and differential wordlines

(WLs) to represent one 2-bit weight [8]. Four conductance values with equidistant

conductance levels from GHIGH to GLOW correspond to +3, +1, -1 and -3 weight

values. As shown in Fig. 18(b), the element-wise multiplication between binary

activation (+1, -1) and four-level weights results in four different pull-down strengths

governed by the effective conductance, corresponding to four MAC partial results of

+3, +1, -1, and -3.

Our RRAM macro design exhibits a 128×64 array, and with the vertically differ-
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Figure 18. (a) 2-bit-per-cell RRAM schematic; (b) Conductance representation of
multiplication with 2-bit weights; (c) Chip micrograph. Adapted from He et al. (2020).

ential cell structure, each column stores 64 distinct weights. With all cells in the same

column conducting in parallel, the sum of multiplication or MAC computation of 64

inputs will be between -192 to +192. Each possible MAC value is represented by the

RBL voltage (VRBL), which is formed by the resistive divider between a controllable

PMOS header and the parallel RRAM cells plus the analog multiplexer.

4.2.2 RRAM IMC Macro Periphery and Chip Design

VRBL is compared with a reference voltage (Vref) using voltage-mode sense am-

plifiers (SAs). One SA group consists of seven SAs, which can work in two different
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modes. With seven different Vref voltages, the seven SAs can operate as a 3-bit

(8-level) flash ADC Yin et al. (2020c). Alternatively, we can use the seven SAs with

identical Vref to vote majority and obtain the binary output for the input-splitting

algorithm He et al. (2020). For higher array-efficiency and density, each SA group

is shared among every eight columns of RRAM array. The SAs convert the analog

VRBL voltage that represents the partial MAC results into digital values, which will

be further analyzed for the DNN inference accuracy.

The RRAM macro can operate in two modes. First, the row decoder generates one-

hot WL signals for cell-level RRAM programming and resistance read-out. Second, the

row decoder asserts all differential wordline (WL) signals of the 128×64 simultaneously

for IMC operation and performs the partial MAC computation.

The prototype chips (Fig. 18(c)) were fabricated in 90nm CMOS technology Ho

et al. (2017) that monolithically integrates 128×64 HfO2 RRAM array (between

M1 and M2) with SAs, column multiplexers, clock generator, row/column decoder,

level-shifters, decoupling capacitors, etc.

4.3 Experiment Results

4.3.1 Relaxation and Experiment Setup

We measured the relaxation effects of four-level RRAM device/array over time for

different operating conditions across three different chips. During RRAM programming,

we tighten the conductance distribution using a write-verify programming protocol

He et al. (2020) so that the initial conductance is within 5% of the target state that

ideally maps the four weight values.
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Table 6. Relaxation setup information for eight experiments.

Experiment # Chip # Total Hours
# of array-level IMC

executed during
total hour

A1 #1 94 0
A2 #2 94 0
B1 #3 108 7
B2 #1 144 10
B3 #1 156 9
B4 #2 144 9
B5 #1 154 49
B6 #1 153 12

Table 6 describes the eight different relaxation experiments that we conducted

on three test chips (#1-#3) to monitor the effect of RRAM relaxation. For A1 and

A2 experiments, we focus on the RRAM array resistance change without IMC for

94 hours. On the other hand, for B1, B2, B3, and B4 experiments, we performed

array-level IMC in hardware a different number of times during the total experiment

hours (up to 156 hours). During B5 and B6 experiments, more IMC operations are

executed to verify the mitigation between the read-disturb induced RRAM drift effect

Shim et al. (2020a) and the RRAM relaxation effect.

For six experiments from Table 6, Fig. 19 shows the measured conductance results

of the four-level RRAM devices starting from the programming time up to 156 hours.

The conductance values for the four-level RRAMs shown in Fig. 19 are in the range

of a few µS to a few hundreds of µS.

The overall workflow of the relaxation measurement, simulation and DNN accuracy

evaluation is shown in Fig. 20. During the chip measurement process, the 2-bit
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Figure 19. Four-level RRAM relaxation effect over time for six experiments A1/A2
(without IMC) and B1/B2/B3/B4 (with IMC). For the six experiments, most relaxation
occurs right after the initial programming, and subsequently saturates over time.

Figure 20. RRAM chip measurement and simulation framework of this work.

RRAM chips are programmed with the subsets of the DNN with the input-splitting

algorithm He et al. (2020). With reference voltage configuration, IMC operation, and

relaxation effect, the RRAM array cell resistance changes are monitored over time. To

better characterize the relaxation impact on effective resistance of the column (Reff ),

VRBL and DNN accuracy, we performed HSPICE simulation on the RRAM array

column with the peripheral circuits, where we used the individual RRAM resistance

measurements from the eight experiments in Table 6. With the HSPICE simulation

results, further data processing (2-D histogram and probability table generation)

similar to hardware data processing is available, and we can generate DNN inference

accuracy for RRAM array performance analysis, under different relaxation effect and

operation stress condition.
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While we can measure IMC results directly from the RRAM chips, we performed

HSPICE simulation with RRAM device measurement results, to separate the relaxation

effect over time with the IMC operation. In fact, as we discuss in Section 4.3.4, read

disturb drift effects by IMC operations can partially mitigate the relaxation effects of

RRAM devices.

4.3.2 Relaxation Measurements and DNN Inference Accuracy

For the relaxation measurements, we monitored the cell-level resistance changes

over time for the 128×64 RRAM array across eight experiments, and Fig. 21 shows

the results. The two intermediate states of GHIGH×1/3 and GHIGH×2/3 experienced

more decrease in average conductance and more increase in standard deviation over

time (Fig. 21), indicating that they are less stable than GHIGH and GLOW .

As shown in the cumulative distribution function (CDF) of Fig. 19 and four-level

conductance color map in Fig. 22, we observed a noticeable relaxation effect for six

experiments (A1-A2, B1-B4) obtained from the measurement of three test chips. It

can be seen that a large portion of relaxation occurs right after the programming

(Fig. 19), and a similar behavior has also been reported in other prior HfO2 RRAM

works Degraeve et al. (2016). Low resistance states of the cells tend to reduce their

conductance over time, which agrees with what was reported in Wang et al. (2015),

while high resistance states tend to fluctuate over time (Fig. 23) but they contribute

negligible current to the bitline for MAC operation.

During the RRAM measurement based HSPICE simulation, to reflect the time-
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Figure 21. (a) Mean of conductance and (b) standard deviation of conductance
changes in 100 hours are shown for the eight experiments.
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Figure 22. Four-level conductance color-map. (a) GHIGH ; (b) GHIGH ×2/3; (c)
GHIGH ×1/3; (d) GLOW . For each level, 128 cells’ conductance values are from A1
experiment. Warmer color represents a lower conductance value.

induced noise or variation of SAs, we added a random variation value for each Vref

in the SA group. One input vector applied on 128 rows will perform IMC with

2-bit weights in the 128×64 array, and the output from the SA group indicates the

computed results for the partial MAC value within one column. For each partial MAC

value, Fig. 24(a) and Fig. 24(b) show the 2-D histograms of IMC measurements from

the RRAM chips at 0 hours and 144 hours, respectively. Fig. 24(c) and Fig. 24(d)

represent the 2-D histograms of the HSPICE simulations based on individual RRAM

device measurements at 0 hours and 144 hours, respectively, which show similar

50



Figure 23. Average conductance change of four-level RRAM devices for six experiments.
GHIGH ×1/3 is affected the most by relaxation. While GLOW tends to fluctuate over
time, they contribute negligible current for IMC.

behavior as the IMC measurement results. The 2-D histogram is used to generate a

probability curve (Fig. 26), which states the probability for each MAC value output to

be quantized to “+1” for the binary output (“+1” or “-1”) of the RRAM array, based

on the input-splitting scheme He et al. (2020).

Based on the RRAM conductance changes measured from six experiments, we

compared the VRBL, Reff , and DNN accuracy change over time. First, we discovered

a strong correlation in Reff and Vref changes over time. We simulated the average
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Figure 24. (a)-(b) 2-D histogram from IMC measurements from RRAM chips at 0
and 144 hours for B2 experiment. (c)-(d) 2-D histogram from HSPICE simulation
using individual RRAM device measurements from 0 to 144 hours for B2 experiment.

Reff and Vref changes between 0 and ∼100 hours for six experiments (Fig. 25). A

larger increase in Reff corresponds to a larger VRBL increase and leads to SA output

difference over time. Second, we simulated the MAC operation starting from the time

of 0 hours to ∼100 hours and use the Vref setting at 0 hours throughout the entire

experiment duration. The results indicate that a worse relaxation will lead to a larger

change in average Reff , and correspondingly results in a larger VRBL change. These

VRBL changes cause the difference in SA group output, 2-D histogram, and shifting

behavior in probability curves (Fig. 26), and lead to a considerable DNN inference

accuracy loss, e.g. from 87.35% to 11.58% for B4 (Fig. 27(a)).

As we observe that a large portion of the RRAM relaxation effect occurs soon after

the RRAM programming, one approach to avoid huge loss from it is to wait until most

relaxation saturates, then calibrate the Vref for SAs, and use the calibrated Vref for the

ensuing time. We selected ∼80 hours as the time to perform Vref re-calibration for two

reasons. First, while large conductance changes are observed right after programming

(in 20 minutes from Fig. 19), non-negligible relaxation further occurs from 20 minutes

to ∼80 hours, and the relaxation largely saturates after ∼80 hours. Second, our aim

is that the Vref re-calibration method can mitigate the long-term relaxation effect
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Figure 25. Reff and VRBL correlation. VRBL will increase with R¬eff from the
relaxation effect.

without additional write operations (e.g. throughout hundreds of hours, while our

experiments in this paper are up to 150 hours due to the time limits). Compared

to re-calibrating Vref in 20 minutes or a few hours after programming, performing

Vref re-calibration in ∼80 hours could enable a longer operational time for the RRAM

chips.

Based on the B2/B3/B4 experiments, we characterized the MAC operation starting

from the time of around 80 hours to 144/156 hours and used the Vref setting obtained

at time of around 80 hours through the remaining time of experiments (Fig. 27(b)).
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Figure 26. Probability curve shifting is observed over time from B2 experiment.

Compared to Fig. 27(a), a relatively smaller accuracy drop occurs over time in

Fig. 27(b), due to the saturated RRAM relaxation behavior. This circuit-level

technique improves the long-term stability for IMC, although B4 experiment needs

further improvement.

4.3.3 Relaxation-aware DNN Training and Improvement

As seen in Fig. 20, among the four levels of 2-bit-per-cell RRAM, two intermediate

states suffer more relaxation, due to the weak filament in RRAM cell. If the DNN

is aware of this drawback on the two intermediate states and reduces the overall
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Figure 27. (a) DNN accuracy drops from 0 to ∼100 hours for 6 experiments. (b) DNN
accuracy drops with Vref calibrated at ∼80 hours for B2/B3/B4.
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Table 7. Weight distribution change for DNN training with different magnification
factor (M) for VGG-like CNN for CIFAR-10 dataset.

Mag. Factor
for Training

GHIGH

(%)
GHIGH × 2/3

(%)
GHIGH × 1/3

(%)
GLOW

(%)

Baseline
DNN

Accuracy
1.0 24.603 25.578 25.482 24.338 87.60%
1.5 32.948 17.157 17.128 32.767 87.39%
2.0 36.766 13.189 13.198 36.847 87.24%
2.5 39.389 10.755 10.716 39.141 87.60%

percentage of these states during the training procedure, the inference accuracy should

have less impact from the relaxation effect. Therefore, we introduce a magnification

factor (M) during the training of 2-bit-weight VGG-like DNN for CIFAR-10 dataset

(Fig. 28). By increasing the M during training, it pushes more weights within each

layer to the highest and lowest resistance stages, with almost no initial accuracy

change compared to the baseline DNN (Table 7).

Subsequently, using the measured RRAM conductance values from B2-B4 experi-

ments, we evaluated the DNN accuracy over time for different M values from 1.0 to 2.5

(Table 7), using Vref settings from the time at 0 hours and around 80 hours (Fig. 29).

Compared with the results in Fig. 27(a), the re-trained DNNs with higher M achieves

much higher DNN accuracy over time for both Vref settings. By combining both

schemes, DNN accuracy of >87.2% for CIFAR-10 is achieved for B4 over 144 hours

with a single Vref re-calibration at 86 hours. This indicates that the relaxation-aware

training scheme largely alleviated the impact of RRAM relaxation.
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W = 3× [(round(clip(weightarray ×M,−1,+1)× 1.5 + 1.5)− 1.5)/1.5] (4.1)

Figure 28. DNN training with higher magnification factor (M) pushes more weights
to +3 (GHIGH) and -3 (GLOW ).

4.3.4 RRAM Read Disturb on Relaxation Effect Mitigation

As discussed in Shim et al. (2020a), when the read voltage is higher than a certain

level, read disturb will occur as conductance drift for both LRS and HRS states. High

RBL voltage will tend to increase the conductance of LRS, and reduce that of HRS,

which is the opposite trend of RRAM relaxation effect. In Fig. 19(a), compared to the

no IMC operation experiments A1/A2, we observed that B1-B4 experiments have less

mean conductance change. When IMC operation is applied on the chip, the voltage

between the RRAM cells increases from normal read voltage (0.2V) to a relatively
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Figure 29. (a)-(c) For experiment B2/B3/B4, we tested the DNN inference accuracy
from 0 to 144/156 hours, for RRAM arrays with weight distribution using different
magnification factor (M). Overall, higher percentage of “+3/-3” weights offers improved
robustness against relaxation. (d)-(f) DNN accuracy trends with Vref calibrated at
80 hours for B2/B3/B4 experiments.

high value (0.4-0.6V), thus the read disturb induced conductance drift takes place.

This drift mitigates the relaxation effect on LRS, and results in fewer conductance

changes over time.

To verify this hypothesis, B5 and B6 experiments are conducted with a greater num-

ber of IMC operations and measured for inference accuracy performance comparison.

B5 executes IMC operation every three hours, and B6 executes IMC operation every

twelve hours, both having a higher IMC operation frequency than B1-B4 experiments.

Overall, B5 and B6 experiments have less conductance reduction than B1-B4 at three

LRS states (Fig. 20).

Then, similar relaxation simulations are reproduced with HSPICE simulations and

both circuit-level and algorithm-level optimization methods are applied for B5 and B6

experiments. Fig. 30 shows the DNN inference accuracy changes over time under two
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Figure 30. Simulation results of B5/B6 experiments under high frequency IMC
operation stress. B5 and B6 show better accuracy retention after 150 hours.

59



mitigation methods. Compared to B2-B4 results in Fig 29, the accuracy degradation

without any optimization scheme (M=1.0 case) is lower after 150 hours (87.18% to

71.12% for B5, 87.49% to 58.81% for B6). Regarding the two proposed mitigation

schemes together with the purposely induced read-disturb, both methods result in

similar or better accuracy retention over time compared with B2-B4 experiments.

For B5 and B6 experiments, applying a single scheme is sufficient for DNN accuracy

retention against the relaxation effect. Vref recalibration alone (in solid lines in

Fig. 30) can recover the accuracy of original DNN cases (M=1.0) to be above 83%

after 150 hours. Similarly, relaxation-aware DNN training scheme alone serves similar

improvement results as B2-B4 experiments. M=2.5 case in B5 and B6 (blue dash

lines) can maintain the accuracy above 83% over 150 hours, without the help of Vref

calibration method. The results above indicate that the read disturb drift effects can

also partially cancel out and mitigate the non-ideality from relaxation effect, overall

improving the DNN inference accuracy over time.

4.4 Conclusion

In this chapter, we comprehensively characterized the relaxation effects of multi-

level HfO2 RRAM at array-level for in-memory computing hardware targeting DNN

inference applications. Relaxation effects are noticeable at intermediate states of

multi-level RRAM, but can be compensated using circuit-level (e.g. Vref calibration

after relaxation saturation) and algorithm-level (e.g. relaxation-aware DNN training

for weight re-distribution) techniques that we proposed and demonstrated. Also, the

non-ideality from the read disturb induced drift effect can be utilized to mitigate the
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relaxation effect and could potentially enhance the DNN inference accuracy retention

over time.
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Chapter 5

PRIVE: EFFICIENT RRAM PROGRAMMING WITH CHIP VERIFICATION

FOR RRAM-BASED IN-MEMORY COMPUTING ACCELERATION

As deep neural networks (DNNs) have been successfully developed in many ap-

plications with continuously increasing complexity, the number of weights in DNNs

surges, leading to consistent demands for denser memories than SRAMs. RRAM-based

in-memory computing (IMC) achieves high density and energy-efficiency for DNN

inference, but RRAM programming remains to be a bottleneck due to high write

latency and energy consumption. In this work, we present the Progressive-wRite

In-memory program-VErify (PRIVE) scheme, which we verify with an RRAM testchip

for IMC-based hardware acceleration for DNNs. We optimize the progressive write

operations on different bit positions of RRAM weights to enable error compensation

and reduce programming latency/energy, while achieving high DNN accuracy. For

5-bit precision DNNs, PRIVE reduces the RRAM programming energy by 1.82×,

while maintaining high accuracy of 91.91% (VGG-7) and 71.47% (ResNet-18) on

CIFAR-10 and CIFAR-100 datasets, respectively.

5.1 Introduction

Deep neural networks (DNNs) have been successfully developed in many applica-

tions including computer vision, speech recognition, and others. As the complexity of

DNN tasks increases, the number of weights or parameters in DNNs surges as well,

leading to consistent demands for denser memories than SRAMs. Conventional DNN
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accelerator systems have used DRAM to store a large number of DNN weights, but

DRAM requires cumbersome refresh operations and off-chip memory access consumes

very high energy consumption Sze et al. (2017). Instead of using off-chip memory,

several recent accelerators employed embedded non-volatile memory (NVM) such as

resistive RAM (RRAM) Li et al. (2021); Giordano et al. (2021) and magnetic RAM

(MRAM) Rossi et al. (2021), to store a large amount of weights fully on-chip and

reduce the energy consumption for overall memory access.

While these works Li et al. (2021); Giordano et al. (2021); Rossi et al. (2021)

demonstrated on-chip integration of embedded NVMs, the NVMs only served the

purpose of storage, and physically-separate processing engines (PEs) performed the

computation. In this case, the DNN weights are accessed row-by-row from the NVM

array and communicated to the PEs. To further improve this bottleneck, in-memory

computing (IMC) Kang et al. (2014) has emerged as a promising scheme to embed

computation inside the memory, thereby largely reducing the data transfer. Several

different memory technologies, such as RRAM Liu et al. (2020); Yoon et al. (2022),

SRAM Yin et al. (2021), and phase change memory (PCM) Khaddam-Aljameh et al.

(2022) have been investigated for IMC. Non-volatile resistive devices such as RRAM

can naturally support IMC operations with multiple rows turned on, where the

weighted sum current between the wordline voltage (representing DNN activations)

and RRAM conductance (representing DNN weights) represents the dot-product

result.

Most RRAM-based IMC works employ a weight stationary scheme, but still the

RRAM devices need to be programmed often, to execute inference of different DNN

models over time, or to run workloads that require frequent weight updates (e.g. DNN

training). Efficient programming is one of the critical bottlenecks for RRAM, since
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RRAM write operation requires high voltage and latency. More importantly, a single

write operation is insufficient to program a target conductance value to the RRAM

device due to device and voltage variation.

A popular method to address this challenge is to iterate the process of writing the

targeted value to an RRAM cell and reading the RRAM cell conductance for verifica-

tion, which is referred to as write-verify or program-verify method Cheng et al. (2018);

Gao et al. (2015). Besides RRAM, the conventional write-verify (CWV) method has

been also employed for other devices to compute analog matrix-vector multiplications

(MVMs) such as PCM Khaddam-Aljameh et al. (2022) and MRAM Noguchi et al.

(2016). The CWV method can minimize the write uncertainty and RRAM conduc-

tance variation, but multiple iterations are required for each cell, which incurs large

latency and energy overheads. Furthermore, frequent writing operations can hurt the

cell endurance and possibly limit the lifetime of the memory device Zhao et al. (2018).

Several prior works investigated reducing the RRAM programming energy for IMC

macros/systems, by reducing the number of write iterations and compensating the

induced error (due to the smaller number of write iterations) by different methods.

SWIPE Gonugondla et al. (2020) proposed to perform programming from MSB to

LSB, and compensate for the write error from MSBs by adjusting the programming

of LSBs. Probabilistic early termination was proposed in Meng et al. (2022), and the

programming process was partitioned into the coarse predictive phase (with fewer write

iterations) and the fine-tuning phase in Zhang et al. (2021). However, Gonugondla

et al. (2020); Meng et al. (2022); Zhang et al. (2021) all reported only simulation

results with behavioral RRAM models, and included unrealistic assumptions such as

single-pulse programming for RRAM devices Gonugondla et al. (2020); Zhang et al.
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(2021). Therefore, the claimed programming energy reduction of ∼10× likely will not

be possible for actual RRAM hardware.

Le et al. (2021) is one of the few works that reported programming energy reduction

with measurements of multi-level RRAM devices, but only row-by-row RRAM device

readout was reported without turning on multiple rows as done for IMC and did not

report accuracy results for DNNs.

In this work, we propose the Progressive-wRite In-memory program-VErify

(PRIVE) scheme that is compatible with RRAM-based IMC hardware that has

been prototyped in a commercial RRAM process. We performed RRAM programming

with the PRIVE scheme and obtained measurements of the RRAM prototype chip,

which was evaluated for VGG-7 and ResNet-18 DNNs on CIFAR-10 and CIFAR-100

datasets. To the best of our knowledge, this is the only work to date that reports

RRAM programming energy reduction with an actual RRAM chip for IMC operation

targeting DNN workloads. The main contributions of this work are:

• A new progressive write-verify scheme (PRIVE) is proposed for multi-bit weight

programming using 1-bit-per-cell RRAM hardware. While inspired by prior

work on RRAM programming energy reduction Gonugondla et al. (2020), we

identify impractical aspects of Gonugondla et al. (2020) such as single-pulse

programming and present a practical progressive programming scheme from

MSB to LSB that is verified by RRAM chips.

• PRIVE implementation does not exhibit any overhead, e.g. DNN model re-

training on the algorithm side Meng et al. (2022) or any additional circuits

on the hardware side, as only the RRAM programming method has changed

compared to the CWV scheme.

• We determine optimal configurations to apply PRIVE by investigating two
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different low resistance state (LRS) values for RRAM programming and evaluate

the trade-offs and corresponding DNN accuracy values.

• 1.82× energy reduction is achieved for the overall RRAM programming com-

pared to the CWV scheme, while maintaining high DNN accuracy for VGG-

7/ResNet-18 models on CIFAR-10 and CIFAR-100 datasets, based on RRAM

chip measurements.

5.2 Background and Related Works

5.2.1 RRAM Based In-memory Computing

Recently, non-volatile memory (NVM) based IMC prototype chips have been

reported in Liu et al. (2020); Yoon et al. (2022) and SRAM-based IMC prototype

chips have been reported in Yin et al. (2021). Although the NVM technology is

less mature than CMOS, they have advantages such as non-volatility, low power

consumption, CMOS compatibility, and exhibit higher density compared to SRAMs

at the same technology node. To that end, we focus on RRAM-based IMC design in

this work.

Fig. 31 shows the high-level overview of the RRAM prototype chip reported in Yin

et al. (2020c); He et al. (2020). Each 1T1R cell can be programmed to a low resistance

state (LRS) or a high resistance state (HRS). The RRAM conductance represents DNN

weights and the wordline (WL) voltage represents the activations. When multiple

WLs are activated, the number of RRAM cells driven by LRS versus HRS determines

the analog bitline (BL) voltage, which is digitized by the analog-to-digital converter

(ADC).
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Figure 31. High-level overview of the RRAM prototype chip Yin et al. (2020c).

5.2.2 Prior Works on Efficient RRAM Programming

A number of prior works pursued efficient and accurate programming with the

write-verify schemes on RRAM devices and arrays. Early research Cheng et al.

(2018); Gao et al. (2015) proposed write-verify method for RRAM programming.

Zhao et al. (2018); Chen et al. (2020) proposed write-verify method for multi-level

RRAM devices, by tuning multiple parameters (e.g. bitline voltage, gate voltage,

etc.) for set/reset processes. Building upon Zhao et al. (2018); Chen et al. (2020),

a two-step 2-bit-per-cell write-verify scheme was presented in Shim et al. (2020b).

Similar programming method such as POST Wang et al. (2020) was proposed, which

splits the write pluses into several small pulses for single-cell programming in the

RRAM array. However, these works only focused on the accurate programming of
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a single RRAM cell, while multi-bit weight programming involving multiple RRAM

cells has not been investigated.

For multi-bit weight programming, instead of iterating the programming of single

RRAM cells excessively, SWIPE Gonugondla et al. (2020) proposed to compensate

for the programming errors of more significant bits by adjusting the programming

values of less significant bits. RRAM write energy reduction of up to 10× was

reported, but only simulation results with behavioral device models were reported

and incorrect assumptions such as single-pulse programming were made. Meng et al.

(2022) presented probabilistic early termination on programming single devices and

optimized re-programming a subset of multiple RRAMs that constitute the multi-

bit weight, reporting >3× programming cost reduction based on simulation results.

Zhang et al. (2021) partitioned the programming process into predictive phase and

the fine-tuning phase, reducing the RRAM programming energy by ∼90% based on

simulation. Simultaneously programming multiple RRAM cells was assumed in the

simulation, while this has not been verified with actual RRAM hardware. RADAR Le

et al. (2021) performed multi-level RRAM programming with a coarse resistance

control phase and a fine-tuning control phase and reported 2.4× programming energy

reduction with actual RRAM hardware, but it did not perform IMC or evaluate the

accuracy of DNN workloads.
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5.3 Proposed PRIVE Scheme

5.3.1 Limitations of Prior Works for RRAM Hardware

Several important discrepancies exist between actual RRAM hardware and the

assumptions used in simulation-based prior works to reduce RRAM programming

energy Gonugondla et al. (2020); Meng et al. (2022); Zhang et al. (2021). The main

discrepancy is in the number of pulses needed for the RRAM crossbar programming.

In Gonugondla et al. (2020); Zhang et al. (2021), it is assumed that a single write pulse

could be sufficient to program the RRAM devices for a target conductance. However,

in practice, programming each RRAM device with an acceptable error rate requires

multiple programming pulses, as illustrated from the RRAM chip measurement results

in Fig. 32. The RRAM programming results in Fig. 32 are based on multiple pulses

repeatedly writing RRAM cells to LRS and HRS on chips from Yin et al. (2020c).

Programming with multiple pulses is necessary for real RRAM hardware for three

reasons:

1. The conductance error after the single-write pulse is too high, and this can be

largely reduced and fine-tuned by programming using multiple pulses.

2. Due to the cell-to-cell variation, the single-write programming can result in a high

variation of programming value. With adaptive multiple pulses of programming,

cell-to-cell conductance variation can be reduced to a smaller value during

multiple write-verify pulses, improving the stability against device non-ideality.

3. Aggressive high-voltage or wide pulses for single-write operations can potentially

hurt the cell endurance, and increase the chances of breaking down the RRAM

cell.
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Figure 32. RRAM chip measurements on the RRAM conductance with the number of
pulses for set and reset processes.

In addition, SWIPE assumes that the RRAM conductance programmed with single

write pulses could either overshoot or undershoot the target LRS value. The existence

of both positive and negative conductance errors at more significant bits could enable

more error compensation capabilities at lower significant bits. However, especially

with target LRS values that are configured to achieve a high on/off ratio, Fig. 32

shows that the intermediate conductance values during programming for LRS do not

overshoot the target LRS value, which can limit the error compensation capabilities

of SWIPE for certain weight values of DNNs.

5.3.2 Proposed Progressive Write-verify Algorithm

To address the limitations described in Section 5.3.1, we propose a progressive

write-verify algorithm called PRIVE, as shown in Fig. 33. The PRIVE scheme is
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based on 1-bit-per-cell RRAM devices, where a low resistance state (LRS) represents

“1”, and a high resistance state (HRS) represents “0” as binary storage. For a positive

N -bit weight, we employ N RRAM cells and program each RRAM cell with LRS or

HRS.

In every write epoch, the error of each RRAM cell can be presented as Ei =

Gi − GiW , where Gi is the programmed conductance for the i-th cell. Suppose

Diϵ{0, 1} is the desired state of i-th bit, and Wiϵ{0, 1} is the actual state that RRAM

is programmed with. By default, Wi is identical to Di. Depending on the value of Wi,

GiW would be GHRS or GLRS, the typical conductance value of HRS or LRS value,

respectively. The write iteration will stop when the |Ei| is smaller than the maximum

error threshold, or when the epoch loop number exceeds the maximum epoch limit.

Then, for a n-bit weight programming, the error of the i-th bit is accumulated as:

E ←− E + Ei × 2(n−i) + (GLRS −GHRS)× (Wi −Di)
(n−i) (5.1)

The accumulated error E is used to determine if the error in the current bit requires

compensation in the next bit programming. If the error is larger than (GLRS −GHRS)

conductance gap, the binary value for the next bit position is available for a bit-

flipping compensation. This means that Wi+1 will be effectively programmed as

Wi+1 = 1−Di+1, and this change will be reflected in the error accumulation for the

(i+ 1)-th bit in Eq. (5.1).

In this work, we mapped the 4-bit weights with four 1-bit-per-cell RRAM devices.

To analyze the effectiveness of the PRIVE scheme, we quantify the equivalent weight

(Weq) for each 4-bit weight as formulated in Eq. (5.2), and compare it with the ideal

value.

Weq = [
3∑

i=0

(Gi × 2i)−GHRS × 15]/GLRS (5.2)
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Figure 33. The algorithm and RRAM programming flow of the proposed progressive
write-verify algorithm (PRIVE). The less significant bits are employed to compensate
for the RRAM programming error in more significant bits.

For an ideal RRAM device with GHRS = 0, the equivalent weight will be identical to

the 4-bit weight value.

With the PRIVE scheme, the number of pulses required for write-verify iterations

on each RRAM cell can be progressively reduced to an appropriate number, in order to

balance the trade-off between precise RRAM programming and the energy reduction

of RRAM programming. Note that PRIVE still follows the traditional write-verify

at each pulse, and the proposed changes are made on the decision levels during each

programming stage. Therefore, compared to the conventional write-verify progress,

there does not exist any additional overhead or extra energy consumption to implement

the PRIVE scheme on RRAM chips.

In this work, we set the default number of write-verify pulses to be 25 for the

programming of each RRAM cell, since the error saturates after ∼25 iterations of CWV
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Figure 34. (a) Hardware implementation of PRIVE for the 5-bit weights. (b) Signed
programming method truth table applied in this work with PRIVE. (c) Software
quantization model mapping of PRIVE.

(Fig. 32) for the RRAM chips Yin et al. (2020c). For multi-bit programming, MSB

contributes the highest amount of write error, so we keep the number of programming

pulses for MSB at 25. Then, we progressively reduce the number of pulses from

MSB to LSB for the 4-bit weight programming in the PRIVE scheme, to balance the

programming energy reduction and the programming accuracy. In particular, we use

25 pulses for bit 3 (MSB), 15 pulses for bit 2, 10 pulses for bit 1, and 5 pulses for bit

0 (LSB). These number of pulses (25-15-10-5) were chosen as they provided a good
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(a) (b) (c)
Figure 35. RRAM programming for three samples of 4 RRAM cells for weight value
of 8 (“1000”) with 6kΩ LRS: (a) conventional write-verify scheme, (b) the PRIVE
scheme, and (c) effective 4-bit weight conductance comparison.

(a) (b) (c)
Figure 36. RRAM programming for three samples of 4 RRAM cells for weight value
of 8 (“1000”) with 9kΩ LRS: (a) conventional write-verify scheme, (b) the PRIVE
scheme, and (c) effective 4-bit weight conductance comparison.

energy/accuracy balance, based on a coarse sweep of different pulse configurations

(e.g. 25-10-5-2). Compared to the CWV scheme of using 25-25-25-25 pulses for

4-bit weights, the PRIVE scheme with 25-15-10-5 pulses reduces the total number of

programming pulses by 45%, and this translates into proportional write latency and

energy savings.

The main trade-off of PRIVE is the correctness of the single RRAM cell. As

an example in Fig. 36(b), the errors on less significant bits can increase due to the

reduced programming iterations, which may not get properly compensated (e.g. no

LSBs available). However, this will only occur to a small portion of the weight levels,

such as “7” and “15”, and the overall DNN-level effect will be further discussed in

Section 5.4.
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5.4 Experiment Results and Analysis

The PRIVE scheme is evaluated with RRAM prototype chips Yin et al. (2020c);

He et al. (2020) (Fig. 31), which were fabricated in a commercial CMOS process that

monolithically integrates HfO2 RRAM. For RRAM programming, we use SET voltage

of 2.1V, SET pulse width of 100ns, SET gate voltage of 2.6V/2.3V for 6kΩ/9kΩ LRS,

RESET voltage of 3.8V, RESET pulse width of 250ns, and RESET gate voltage of

4.0V.

We programmed 5-bit weights onto eight 1T1R RRAM cells with positive and

negative columns Liu et al. (2020) as shown in Fig. 34(a), throughout the entire

RRAM array for both conventional and PRIVE schemes. The truth table of each

1-bit RRAM is shown in Fig. 34(b). The programmed value on even or odd columns

will determine the sign of the weight, and all RRAM cells in the other columns will

be programmed with HRS for analog subtraction according to Eq. (5.2). As a result,

the RRAM-based IMC inference is performed with the signed weight values without

introducing auxiliary offset columns Peng et al. (2019). Furthermore, the weights of

the IMC inference are directly represented by the measured conductance values, which

fully incorporate the non-idealities of the actual RRAM devices. The column-wise

partial sum will be scaled by the difference between the typical HRS and LRS values,

so arithmetic correctness will be preserved in the algorithm-level simulation.

Based on the RRAM chip measurement data, we evaluate the DNN inference

accuracy of RRAM IMC hardware with the pre-trained quantized DNN models on

VGG-7 and ResNet-18 frames with CIFAR-10 and CIFAR-100 datasets. We program

the quantized weights on the prototype chip and the measured conductance weight
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values are used to evaluate the overall DNN accuracy. We performed the overall

experiments in the following steps:

1. Map the DNN weights onto existing RRAM chips with a given LRS target for

both CWV and PRIVE schemes

2. Retrieve programmed conductance data from RRAM chips

3. Validate inference accuracy on pre-trained quantization models of VGG-7 and

ResNet-18 DNNs for CIFAR-10 and CIFAR-100 datasets.

5.4.1 Effectiveness of PRIVE programming

We experimented with two LRS values for RRAM programming: (1) the default

6kΩ (1.67×10−4S) that achieves the highest on/off ratio of ∼100, and (2) a higher

LRS value of 9kΩ (1.11×10−4S) that achieves a lower on/off ratio but consumes a

lower current and could exhibit better error compensation capability by PRIVE. 9kΩ

LRS can have better error compensation with PRIVE, because both overshoot and

undershoot can occur during target conductance programming. As shown in Fig. 32,

programming for 6kΩ LRS will only exhibit undershoot with the write pulses.

The effectiveness of the PRIVE scheme is depicted in Fig. 35 (with 6kΩ LRS) and

Fig. 36 (with 9kΩ LRS), where we selected three samples of four RRAM pairs that

are programmed to represent the 5-bit weight value of “+8” (“1000”).

The conventional write-verify scheme will always program LRS for a ‘1’ binary bit

and HRS for a ‘0’ binary bit with many iterations, and could achieve relatively more

accurate programming on the RRAM devices. However, even if the programmed LRS

conductance after write-verify iterations cannot reach the target LRS conductance as
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Figure 37. The deviation of measured Weq from ideal positive 4-bit weight for CWV
and PRIVE schemes with different programming epochs.

shown in Fig. 35(a) and Fig. 36(a), no further improvement or compensation can be

made.

In contrast, the PRIVE scheme is aware of the errors during the programming from

MSB to LSB, and is able to compensate for the programming error or conductance

deviation in more significant bits by rearranging the programming states of less

significant bits, as shown in Fig. 35(b) and Fig. 36(b). Fig. 35(c) and Fig. 36(c) show

that the equivalent conductance of the PRIVE scheme is maintained very close to the

ideal value for both 6kΩ and 9kΩ LRS cases, while noticeable deviations exist for the

conventional write-verify scheme.

In Fig. 37, the differences between the equivalent weight Weq (Eq. (5.2)) measured

from the RRAM chip and the ideal positive 4-bit weight are compared for (1) CWV

scheme with the default 25-25-25-25 programming, (2) CWV scheme with progressive
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25-15-10-5 programming, and (3) PRIVE scheme with 25-15-10-5 programming, with

target LRS of 6kΩ and 9kΩ. The result of each datapoint is averaged from >100

measurements of 4 RRAM pairs. Larger Weq errors are shown when we perform CWV

with 25-15-10-5 epochs, but such errors are largely reduced in the PRIVE scheme

owing to error compensation. While Fig. 36 shows that overshoot possibilities can

provide better error compensation for 9kΩ LRS in certain cases, Fig. 37 shows that

the average programming error of many RRAM devices is still lower for the 6kΩ LRS.

For a few weight values, the PRIVE scheme cannot improve the Weq error of

the 25-15-10-5 conventional scheme, and notably, these weight values, such as “7”

(“0111”), have more ‘1’ bits in the binary representation. Although 9kΩ LRS allows

some amount of conductance overshoot during programming, as shown in Fig. 36(b),

conductance undershoot is still more dominant during programming. Conductance

undershoot needs to get compensated by flipping less significant bits from ‘0’ to ‘1’,

but if the less significant bits are already filled with ‘1’ (e.g. “0111”, “0011”), the

compensation capability of the PRIVE scheme is limited within the 5-bit weight

programming.

On the other hand, for weight values that have more ‘0’ bits, e.g. “8” (“1000”), since

fewer errors are produced at HRS, the PRIVE algorithm will have more capability to

compensate the conductance undershoot error of programming “1” or LRS at more

significant bits, by flipping the ‘0’ bits at less significant bits to ‘1’. This leads to

the result that, the PRIVE compensation works better in levels with more ‘0’ bits

(e.g. “8”) than the levels with more ‘1’ bits (e.g. “7”), as shown in Fig. 37.
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5.4.2 DNN Accuracy Evaluation and Comparison to Prior Works

Based on the RRAM chip measurements, we tested the inference accuracy of

VGG-7 and ResNet-18 models for CIFAR-10 and CIFAR-100 datasets, and the results

are shown in Table 8. PRIVE provides 45% (1.82×) improvement in programming

energy and latency reduction. Compared to the software baseline accuracy with

the same precision, 1-2% accuracy degradation exists for CIFAR-10/100 datasets

but the accuracy values are still higher than those of the CWV scheme for identical

models/datasets.

We also compared the proposed PRIVE scheme and other works on RRAM pro-

gramming energy reduction in Table 9. Due to the reasons mentioned in Section 5.3.1,

the claimed energy reduction in Gonugondla et al. (2020); Meng et al. (2022) likely will

not be possible with real RRAM hardware. PRIVE employs RRAM chip measurement

data to evaluate the effectiveness of realistic programming techniques for IMC designs.

The universal optimization results shown in Table 8 and the flexibility of the PRIVE

algorithm during the programming stage indicate the potential of PRIVE on more

practical and efficient programming for the multi-bit RRAM array, which can be used

on top of other multi-bit-per-cell approaches such as Le et al. (2021).

5.5 Conclusion

RRAM-based IMC accelerators can achieve high density and high energy-efficiency

for DNN workloads, but programming RRAM devices consume high energy. To

effectively reduce the RRAM programming energy for IMC accelerators, this work
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Table 8. The inference accuracy of the PRIVE scheme across different DNN models
and datasets.

Model Dataset LRS
Value

Baseline
Accuracy

CWV
Accuracy

PRIVE
Accuracy

VGG-7 CIFAR-10 6kΩ 92.53% 90.78% 91.91%
9kΩ 87.20% 91.44%

VGG-7 CIFAR-100 6kΩ 69.90% 66.92% 69.17%
9kΩ 56.02% 67.65%

ResNet-18 CIFAR-10 6kΩ 93.16% 91.56% 92.61%
9kΩ 86.00% 91.97%

ResNet-18 CIFAR-100 6kΩ 72.56% 67.26% 71.47%
9kΩ 56.60% 70.17%

Table 9. Comparison to prior works.

Gonugondla et al. (2020) Zhang et al. (2021) Meng et al. (2022) Le et al. (2021) This work
Hardware

Verfication? No No No Yes Yes

Weight
Precision 2-to-9 bit N/A 8-bit 3-bit-

per-cell 5-bit

DNN
Dataset

MNIST,
CIFAR-10

MNIST,
CIFAR-10

CIFAR-10,
CIFAR-100 N/A CIFAR-10,

CIFAR-100

Network
Type

LeNet-300-10,
8-Layer CNN

FC-NN,
LeNet5,

ResNet-20

ResNet-18,
ResNet-34 N/A VGG-7,

ResNet-18

Accuracy
Change − <1% −2-4% +0.23% N/A −1-2%

Write Energy
Reduction 5-10× up to 19× ∼3× 2.4× 1.82×

demonstrated a progressive write-verify algorithm called PRIVE, which was verified

with RRAM chip measurements. We measured two different LRS values during the

RRAM programming to verify the PRIVE error compensation effectiveness. We tested

PRIVE hardware measurement data on several different inference models and achieved

1.82× write energy and latency improvement with minimal accuracy degradation.
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Chapter 6

RRAM-BASED HYBRID IN-MEMORY COMPUTING (HIMC) FOR DNN

TRAINING

6.1 Introduction

With the advent of artificial intelligence (AI), various deep neural networks (DNNs)

such as convolutional neural networks (CNNs) and recurrent neural networks (RNNs)

have emerged and achieved human-level performance in image/speech recognition

tasks. Several emerging applications (e.g. robotics, drones, etc.) require on-chip

and continual learning, necessitating the development of special-purpose devices

and architectures that can implement learning algorithms with large model sizes in

an energy-efficient manner. Conventional SRAM or DRAM-based solutions cannot

satisfy necessary density and energy requirements due to the large area footprint and

prohibitive off-chip memory access costs. Several approaches have been applied to

fulfill the energy-efficiency requirements for AI applications, among those, in-memory

computing (IMC) condenses the processing unit (PU) within the memory blocks to

overcome the bottleneck for data transportation through the buffer. And non-volatile

memory devices (NVM) such as resistive random access memory (RRAM) and phase

change memory (PCM), etc., can minimize the area and power consumption during

the design stage, with the ability to support analog matrix computation within the

memory blocks.

During the training process of the deep neural networks, this work has observed

the ∆W is usually much smaller than W . This work investigated the statistics of
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Figure 38. The position of the first non-zero bit in a LeNet-5 CNN example (for
MNIST dataset), for both W and ∆W in the convolution layer. ∆W is much smaller
than W during the training. Similar behavior is observed in other deep learning
examples

W and ∆W throughout the training iterations of LeNet-5 CNNLeCun et al. (1998).

Fig. 38 presents the preliminary data in which ∆W is >10 bits smaller than W. Such

a behavior is not an empirical coincidence, but a fundamental property of statistical

training, in which each iteration to update W should be a small contribution and

the statistics of many ∆W will be accumulated to determine the classification. We

leverage this property in the proposed hybrid in-memory computing design to minimize

the high write energy for NVM devices without accuracy loss.

This work devises the architectural schemes that employ typical NVM devices in

IMC techniques. A hybrid in-memory computing (HIMC) scheme is proposed that

includes (1) an analog computation array with multi-bit RRAMs for MSBs of weights

and (2) a digital weight update array with traditional SRAM for LSBs of weights.

This hybrid design is motivated by the fact that only MSBs of weights are needed for

forward/backward propagation (FP/BP) of DNN training that targets low-precision

inference. In contrast, typically weight updates are small values that mostly modify

only LSBs of weights.
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Figure 39. Hybrid in-memory computing architecture for accelerating DNN training:
forward/backward propagation are performed by in-memory computing using RRAM
array with analog storage (MSB part of weights), while weight update is implemented
using traditional high-speed SRAM array (LSB part of weights).

The rest of the work will be delivered in the following order:

• Section 6.2 will propose the HIMC design of this work and illustrate the detailed

functionalities of each section;

• Section 6.3 will discuss the experiment in software and hardware of this work.

• Section 6.4 will conclude the contribution of this work.

6.2 Proposed Design

As illustrated in Fig. 39, we propose a hybrid in-memory computing architecture

that includes (1) an analog computation array with multi-bit RRAM for MSBs of

weights and (2) a digital weight update array with traditional SRAM for LSBs of

weights. This hybrid design is motivated by the fact that only MSBs of weights are

needed for forward/backward propagation (FP/BP) of DNN training that targets

low-precision inference [8], while typically weight updates are small values that mostly

modify only LSBs of weights.
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Fig. 40 (right) shows the logic diagram for the RRAM array for the MSB IMC

process. The proposed design builds up based on the weight unit (WU) with 2T2R

RRAM structure. This weight unit can store the signed information of the weight

and the corresponding LRS/HRS will be connected in the positive column source line

(SL) and negative column source line. During the programming stage, the bitline (BL)

switch between BLs and ADC will be open and allow the SET/RESET/FORM process

for RRAM cells, and during the MAC operation, these switches will be connected

to enable ADC conversion. Every two adjacent columns will share one 4-bit SAR

ADC to enable maximum parallelism during the computation. The truth table for

the programming and MAC operation process of this RRAM array is shown in the

left of Fig. 40. The activation is sent from the word line (WL), and the output of the

IMC results is a ratio of the output BL voltage based on the connected LRS numbers

in both positive SL and negative SL, followed by the equation as:

VBL = VDD ×
n∑

i=1

Gi × Ai/
n∑

i=1

(GLRS)× Ai (6.1)

Where Gi is the ith row conductance value on the positive column and Ai is the

activation value at ith row.

While there have been many NVM-based in-memory computing works presented

in the literature, the RRAM design proposed in Fig. 40 particularly focuses on the

following advantages:

• Weight storage using analog programming of RRAM can substantially reduce

the bitcell/ADC overhead for multi-bit precision in-memory computing;

• Enabling high parallel FP/BP computations by leveraging parallel activations

of multiple rows with 2T2R RRAM cell structure;
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Figure 40. left: truth-table for the proposed 2T2R RRAM cell computation logic;
right: Array-level diagram for the MSB RRAM block and detailed zoom-in for the
RRAM array organization.

• Simplified signed computation of MAC without the requirement of dummy array,

or complex subtraction after the individual column read-out, saving the cost of

heavily needed ADCs in analog computing design;

• BL switches prevent the potential non-ideal disturbance during the programming

from ADCs, and allow the symmetric sensing balance between two columns

during MAC operations.

As shown in Equation. 6.1, the output setup reflects the ratio of the positive

column conductance and one of the negative columns, which requires information

about the activation from rows to obtain the precise value based on the ADC output.

Therefore, this work introduces the Input-MAC-Voltage Tuning (IMVT) method to

run post-processing inside the chip. The idea of the IMVT is introduced in Fig. 41.

Besides the ADC output reflecting the voltage in BL, extra bits are calculated based

on the numbers of "1" for the input vectors and the corresponding ADC output and

sent out to the external system for further communication. The range of possible

results is located with this extra information within the small blocks, to help expand
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Figure 41. IMVT method for post-processing to obtain precise MAC results based on
the ADC output.

the limited ADC precision for MAC operation, and determine the exact value for

future processing.
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Figure 42. IMVT method for post-processing to obtain precise MAC results based on
the ADC output.

6.3 Experiment Setup

The detailed block diagram for this HIMC chip design is shown in Fig. 42. The chip

is taped out under a custom 65nm CMOS node, integrated with HfO2 RRAM between

M1 and M2. The tape-out process has cooperated with research and fabrication teams

from SUNY Polytechnic Institute and the University of Tennessee, Knoxville. The

chip is divided into three core sections: MSB blocks with high-speed IMC process

under 4kb RRAM and 32 4-bit SAR ADC unit, digital core controller with data

communication and post-processing IMVT session; and LSB high-precision 4kb SRAM

for high precision weight updating. The updated tape-out design was completed in

August 2023, and we are expecting to have some simulation-based paper submissions

and some hardware measurement works in the future with other fellows. The tape-out

die shot is shown in Fig. 43.
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Figure 43. Tape-out die shots for the proposed 65nm HIMC chips.

6.4 Conclusion

This session introduces the framework for hybrid in-memory computing and the

overall architecture for the HIMC process. RRAM array design with a 2T2R weight

unit for the signed weight process is proposed, with the assistance of IMVT post-
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processing in the digital controller blocks. The tape-out chip prototype has been

sent out for fabrication, and we may expect future paper submission with further

simulation or measurement-based analysis.
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Chapter 7

FERROELECTRIC CAPACITIVE MATERIALS AND DEVICES FOR NEXT

GENERATION AI HARDWARE

Analog computing-in-memory (CIM) with a emerging resistive nonvolatile mem-

ory(NVM) such as FeFET, RRAM Wan et al. (2022); Ye et al. (2022), PCRAM

Khaddam-Aljameh et al. (2021), MRAM Deaville et al. (2021) have been developed

and successfully improved energy-efficiency by reducing the data movement and per-

forming the massive parallel matrix multiplication and accumulation (MAC) with

O(1) complexity. However, this approach encounter several challenges, which can

prevent the achievement of energy efficiency compared to state-of-the-art SRAM based

CIM. One of the main challenges is the static power consumption associated with the

MAC operation based on Kirchhoff’s Law. Also, large current flow due to the low

resistance state in NVM induce IR drop along wires and column MUX in peripheral

circuit, resulting in a degradation in computing accuracy. Additionally, the CIM’s

activation typically have a distribution that is centralized at mean value within a

given operating range. Hence, an ADC having a linear relationship between the input

and output can increase the computational cost in terms of power and area.

In this work, a ferroelectric Hf0.5Zr0.5O2 (HZO)-based capacitor array (FCA)

is employed to represent the programmable weight within CIM macro and perform

the analog MAC operation according to the charge redistribution (CR). The usage

of capacitor provide a solutions naturally for addressing issue such as static power

consumption and IR drop. Our previous study Hur et al. (2022) demonstrated that

the two-terminal FCA achieves an on/off ratio exceeding 110% at near-zero bias,
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enabling read-disturbance-free readout. The distinctive memory states at zero bias,

as shown in Figure 1, result from the asymmetric capacitance-voltage characteristics

and can be attributed to the presence of oxygen vacancies at the bottom electrode

of the FCA. These vacancies effectively pin nearby domains, induce varying domain-

wall motions under different ferroelectric polarities Hur et al. (2022), and affects the

capacitance values. Additionally, in Hur et al. (2022), experimental evidence showcases

8×8 array-level MAC operations with linear weighted sums and minimal read/write

disturbance. Moreover, the investigation reveals a well-defined memory window even

after subjecting the FCA to over 1000 strong 3V/1ms pulses and a projected retention

to 10 years at 85◦. However, it should be noted that the test setup employed discrete

peripheral components. "On the other hand, the parasitic capacitor on the CR node

(bit-line) can introduce an attenuation on the signal margin during the charge to

voltage conversion. To minimize this effect, we employ a ring-amplifier (Ramp)-based

Hung and Kuo (2016) switched capacitor (SC) integrator to enforce the CR node with

virtual ground. Adapting Ramp offers several advantages over conventional operational

amplifier. 1) Ramp operates as digital switch during slewing, resulting in dynamic

power consumption. 2) Ramp’s internal dynamic biasing eliminates the need for a

global biasing circuit, further simplifying the design of column-parallel configuration.

Lastly, we present an efficient non-linear SAR ADC scheme that incorporates power

of two (PoT) quantization Przewlocka-Rus et al. (2022), specifically devised to match

the distribution of CIM’s activation. Compared to the conventional 5b SAR ADC,

proposed PoT SAR ADC achieves 16× and 6.78× saving in terms of area and switching

energy, respectively. Protype FCA-based CIM macro in 180nm CMOS perform the

16×8 analog MAC operation with an energy efficiency of 1.75 TOPS/W at 1.5-bit

input (IN), 1.5-bit weight (W), and 5-bit output (O).
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The proposed FCA-based CIM macro (Fig. 45) perform highly efficient and reliable

analog MAC operation through a two-step process. During the multiplication phase,

the word-line (WL) voltages corresponding to the INs are simultaneously sampled on

the bottom plate of the FCA, while bit-line (BL) is connected to the common mode

voltage (VCM). The stored charge on each cross-junction capacitor cell represents the

product of the IN and W.

QBL =
∑
i

(CP
i − CN

i )× INi × Vread + CP × VCM (7.1)

where CP denotes the total parasitic capacitance at the BL, which mainly arises from

the long off-chip trace. And i is the index of WL. In the accumulation phase, the

WLs are connected to VCM and the BL is set the bias by virtual ground, the voltage

across the capacitor in FCA become zero. After the accumulated charge (QBL) is

transferred into feedback capacitor (CF) in SC integrator. From the law of charge

conservation, the output voltage of SC integrator is given by

VOUT = VCM +
∑
i

(CP
i − CN

i )

CF

× INi × VREAD (7.2)

Since the potential across CP changes from VCM to VCM, we can avoid the

charge attenuation for the output voltage generation. When applying Ramp into SC

feedback structure, the input DC level is not a key issue because the auto-zero CF in

closed loop can hold the DC voltage difference during the multiplication phase. The

schematic and performance of the Ramp are shown in Fig. 46. In WL decoder, the

ternary input activation is converted into input voltages (VRP, VCM, VRN) through

the integrated analog mux and are fed to the bottom of ferroelectric capacitor array,

simultaneously. The proposed PoT SAR ADC (Fig. 46) compose of two identical

capacitors, a dynamic comparator, and SAR logic. The output of SC integrator is
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compared with the reference voltage capacitive DAC. Each reference voltage level is

sequentially generated by pre-charge CPRE according to the output of comparator and

then perform the charge sharing between CPRE and CDAC in order to monotonically

add or subtract charge from CDAC. If MSB and MSB-1 are either 1,1 or 0,0 as

shown in Fig. 47, the ADC no more A/D conversion for the remaining cycles. This

is due to the detection of the given input-level as belong in the outer border of the

conversion range. Otherwise, the MSB and MSB-1 has either 1,0 or 0,1, succeeding

A/D conversion up to the LSB when the third and fourth comparison results are either

0,0 (for 1,0) or 1,1 (for 0,1). Through this process, the generated DOUTs exhibit

fine precision at concentrated input levels, while sparse input levels are resulted in

coarse conversion. While proposed SAR ADC introduce some minor computational

errors, but utilizing a few number of capacitor and skipping of A/D conversion, we

can achieve a substantial reduction in energy consumption. Moreover, because the

proposed ADC realize the 10 quantization-levels with exploiting only two capacitors,

it has higher robustness than conventional SAR ADC against the capacitor mismatch.

As a result, the proposed technique improves the energy, area, and linearity of ADC

by 6.78×, 16×, and 2.47×, respectively, compared to the conventional SAR ADC.

The FCA-based CIM macro was implemented in a 180nm process, and measured

performance are shown in Fig. 48. In order to measure the transfer characteristics, a

16×8 FCA is projected into a 16×8 dummy capacitor array, which is realized inside

the CMOS chip. The unit cell of the dummy capacitor had a fixed capacitance of 60 fF,

and a total of 16 capacitors in a column were program-med with weight values of ±16,

±12, ±8, ±4. With the IN swept from -16 to 16, the output voltage of SC integrator

was quantized using the proposed ADC with VRP=1.0V and VRN=0.8V. To evaluate

the nonlinearity, the root mean square error (RMSE) was calculated in DOUT as
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function of a column-wisely and IN-wisely. A testing of input sweeps is repeated

in eight different chips, and results are extracted based on the 64 plots. Across all

parameters, the worst case absolute nonlinearity in DOUT is 4.0 LSB. The impact

of nonlinearity on the convolutional neural network verified by replacing the ideal

transfer function with the transfer characteristic from measurements. The classification

accuracy of 90.2% is obtained for CIFAR-10 dataset. During MAC operations with

12M Hz clock frequency, SC integrators, PoT SAR ADCs and WL decoder draw 2.6

mW, 0.96 mW, 0.79 mW, respectively from 1.8V power supply. The proposed ADC

reduces the power consumption by 7.89× per CIFAR-10 classification, compared to

conventional 5b SAR ADC. Fig. 49 show the comparison with state-of-the-art NVM

CIM works. For a fair comparison, performance of prior works is scaled to a 22nm

and to equivalent precision. The presented FCA-based CIM macro have the potential

to achieves energy/area-efficiency when advanced technology. The die micrograph and

each block deployment are shown in Fig. 50.
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Figure 44. Challenges in resistive NVM-based CIM and motivations of proposed
ferroelectric capacitor array (FCA) -based CIM are illustrated. Due to the polarization
switching, FCA can be writable.
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Figure 45. (Top) Architecture of the proposed FCA-based CIM. Analog MAC operation
is conducted in charge domain. (Bottom) Encoding of IN/W and parasitic-insensitive
charge read schemes are shown.
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Figure 46. (Top) Schematic and post-layout simulation results for Ramp are rep-
resented. (Bottom) Proposed PoT SAR ADC has a non-linear behavior and well
matched to the distribution of activation.
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Figure 47. (Top) Example of switching behavior for 4bit PoT SAR. (Bottom) It
improves the energy, area, and linearity of ADC to the conventional SAR ADC with
minor computational error.
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Figure 48. (Top) Measured transfer characteristics for a 16×8 FCA. Nonlinearity are
quantified with RMSE as function of IN pattern and deployment. (Bottom)Power/Area
breakdown of the prototype.
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Figure 49. Comparison table with state-of-are NVM-based CIM.
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Figure 50. Die photo of prototype FCA-based CIM in CMOS 180nm technology.
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Figure 51. Test setup.
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Chapter 8

CONCLUSION

This dissertation, first demonstrated RRAM based in-memory computing with

90nm CMOS prototype chips that monolithically integrated RRAM and CMOS

in different vertical layers.Using device-/circuit-/algorithm-level techniques, both

the energy-efficiency and density of binary RRAM based IMC hardware improved

substantially, achieving up to 78.3 TOPS/W and 84.2% accuracy for CIFAR-10

dataset. Experiments with 2-bit RRAM demonstrate sufficient separation between

four conductance levels, and show higher CNN accuracy up to 128×128 RRAM array

size.

Then, this dissertation presents a 2-bit-per-cell RRAM based in-memory computing

prototype in 90nm CMOS. Input splitting scheme replaced power-hungry ADCs with

simple SAs. Three different DNNs were benchmarked, achieving CIFAR-10 accuracy

of 87% (83%) and 24.5 (51.4) TOPS/W energy-efficiency at 1.2V (0.9V) supply. At

1.2V, a stable accuracy of ∼87% is maintained throughout 108 hours.

Moreover, this dissertation comprehensively characterized the relaxation effects of

multi-level HfO2 RRAM at array-level for in-memory computing hardware targeting

DNN inference applications. Relaxation effects are noticeable at intermediate states of

multi-level RRAM, but can be compensated using circuit-level (e.g. Vref calibration

after relaxation saturation) and algorithm-level (e.g. relaxation-aware DNN training

for weight re-distribution) techniques that we proposed and demonstrated. Also, the

non-ideality from the read disturb induced drift effect can be utilized to mitigate the
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relaxation effect and could potentially enhance the DNN inference accuracy retention

over time.

Next, this dissertation presents the progress on hybrid in-memory computing with

non-volatile memory. This chapter includes the high-level idea for hybrid in-memory

computing, modeling idea for the non-volatile memory HIMC for RRAM and SRAM,

and also the progress of one tape-out HIMC chips under 65nm with RRAM and

SRAM.

Finally, besides the RRAM based architecture, this dissertation presents the

progress on ferroelectric capacitive devices for next-generation AI hardware.

In summary, this dissertation comprehensively discusses the novel applications and

research development of the RRAM-based in-memory computing for area-/energy-

efficient deep learning inference/training accelerators.
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