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ABSTRACT

This dissertation contains two research projects: Multiple Change Point Detection in

Linear Models and Statistical Inference for Implicit Network Structures.

In the first project, a new method to detect the number and locations of change

points in piecewise linear models under stationary Gaussian noise is proposed. The

method transforms the problem of detecting change points to the detection of local ex-

trema by kernel smoothing and differentiating the data sequence. The change points

are detected by computing the p-values for all local extrema using the derived peak

height distributions of smooth Gaussian processes, and then applying the Benjamini-

Hochberg procedure to identify significant local extrema. Theoretical results show

that the method can guarantee asymptotic control of the False Discover Rate (FDR)

and power consistency, as the length of the sequence, and the size of slope changes

and jumps get large. In addition, compared to traditional methods for change point

detection based on recursive segmentation, The proposed method tests the candidate

local extrema only one time, achieving the smallest computational complexity. Nu-

merical studies show that the properties on FDR control and power consistency are

maintained in non-asymptotic cases.

In the second project, identifiability and estimation consistency under mild con-

ditions in hub model are proved. Hub Model is a model-based approach, introduced

by Zhao and Weko [76], to infer implicit network structuress from grouping behavior.

The hub model assumes that each member of the group is brought together by a mem-

ber of the group called the hub. This paper generalize the hub model by introducing a

model component that allows hubless groups in which individual nodes spontaneously

appear independent of any other individual. The new model bridges the gap between

the hub model and the degenerate case of the mixture model – the Bernoulli product.
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Furthermore, a penalized likelihood approach is proposed to estimate the set of hubs

when it is unknown.
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Chapter 1

INTRODUCTION

The dissertation contains two research projects: Multiple Change Point Detection

in Linear Models and Statistical Inference for Implicit Network Structures.

1.1 Multiple Change Point Detection in Linear Models

In this project, we consider a canonical univariate statistical model:

y(t) = µ(t) + z(t), t ∈ R, (1.1)

where z(t) is correlated stationary Gaussian noise and µ(t) is a piecewise linear signal

of the form

µ(t) = cj + kjt, t ∈ (vj−1, vj],

where cj, kj ∈ R, j = 1, 2, . . . and −∞ = v0 < v1 < v2 < · · · . Assume the struc-

tures of µ(t) are different at neighboring vj, i.e., (cj, kj) ∕= (cj+1, kj+1), resulting in

a continuous break or jump at vj (see Fig 1.1). Such vj is called a change point or

structural break.

Change point detection is a fundamental and important problem in statistics and

other related fields such as econometrics, genomics, climatology and medical imaging.

It is broadly applied to different areas based on different types of signals. For example,

the piecewise constant signals with jumps occur in the contexts of medical condition

monitoring [46, 37, 14] and image analysis [52, 47]. The piecewise linear signals with

continuous breaks are very common in climate change detection [65, 63] and human

activity analysis [67, 53]. In addition, the piecewise linear signals with noncontinuous

breaks are applied in the stock market monitoring [17, 24] and pitch recognition of

sound [16, 49].
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Based on different ways of linear structure changes, we define the following two

types of structural breaks:

Definition 1. A point vj is called a Type I change point (structural break) if cj +

kjvj = cj+1 + kj+1vj and kj ∕= kj+1, and called a Type II change point if cj + kjvj ∕=

cj+1 + kj+1vj for j ≥ 1, respectively.

At Type I change points, signals are continuous while the slopes change at vj (see

Fig 1.1 (a)). Type II change points are essentially jumps (see Fig 1.1 (d)). Note that,

an important special case of Type II change points is that µ(t) is piecewise constant,

i.e., kj ≡ 0 and cj ∕= cj+1 for j ≥ 1. Throughout this paper, we consider the following

three scenarios of signal µ(t):

Scenario 1. The signal µ(t) contains only Type I change points (continuous breaks).

Scenario 2. The signal µ(t) contains only Type II change points (jumps).

Scenario 3. The signal µ(t) contains both Type I and Type II change points.

We are interested in detecting the number of change points and their locations

simultaneously. We propose a new generic approach to the problem of detecting an

unknown number of multiple structural breaks occurring at unknown locations. Our

method of change point detection for the three scenarios above are illustrated in Fig

1.1. The key idea is that a change point in µ(t) will become a local extremum in the

first or second derivative of the smoothed signal µγ(t). Specifically,

1. A Type I change point becomes a local extremum in the second derivative µ′′
γ(t)

(see figure 1.1 (a) and (c)).

2. A Type II change point becomes a local extremum in the first derivative µ′
γ(t)

(see figure 1.1 (d) and (e)).

2
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Figure 1.1: Illustration of change point detection. A change point in the piecewise

linear signal µ(t) (left panel) becomes a local extremum in the first derivative of

smoothed signal µ′
γ(t) (middle panel) or in the second derivative of smoothed signal

µ′′
γ(t) (right panel). The red dashed lines indicate the location of true change points.

The blue points indicate the kernel smoothed signal regions. The top row shows a

Type I change point vj in µ(t) becomes a local extremum in µ′′
γ(t) exactly at t = vj.

The middle row shows a Type II change point vj in µ′
γ(t) becomes a local extremum

in µ′′
γ(t) around vj. The bottom row reveals only Type II change point can generate

a local extremum in µ′
γ(t), while both Type I and Type II change points can generate

local extrema in µ′′
γ(t).
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Therefore, in scenario 1 and scenario 2, one can detect the change points by finding

the local extrema in the second derivative µ′′
γ(t) and first derivative µ′

γ(t) respectively.

In scenario 3, note that a Type I change point does not generate any local extremum

in the first derivative µ′
γ(t) (see Fig 1.1 (b)), thus one can first identify all Type II

change points as local extrema in µ′
γ(t). On the other hand, since the local extrema

in the second derivative µ′′
γ(t) can be generated from both Type I and Type II change

points (see Fig 1.1 (i)), one can detect all Type I change points as local extrema in

µ′′
γ(t) by removing those generated from Type II change points.

By focusing on the first and second derivatives of the smoothed signal µγ(t),

the change point detection problem is transformed into a peak detection problem.

Schwartzman et al. [61] and Cheng and Schwartzman [20] proposed a Smoothing and

TEsting of Maxima/Minima (STEM) algorithm to find local maxima and minima of

the derivative as candidate peaks. A multiple testing method is used to distinguish

between the local extrema generated by change points and random noise. Further-

more, Cheng et al. [18] introduced differential STEM (dSTEM) method to detect the

change points in data sequences modeled as piecewise constant signal-plus-noise.

Literature on change point detection contains a vast amount of research work of

statistical inference, but most of it specially designed for the case of a single change

point with unknown location. For example, with respect to the models with an un-

known change point, Andrews [4] and Andrews et al. [5] proposed the comprehensive

treatment and testing method for structural change. Perron [59] utilized unit root

for a one-time change in the level or in the slope of the trend function in univariate

time series. Bai [6] introduced the method of least squares to estimate a unknown

shift point (change point) in a piecewise constant model. In recent years, the mul-

tiple change point detection problem has drawn an extensive interest, especially in

terms of the multiple testing based methods. The literature on statistical inference

4



for multiple change points problems is diverse in different type of signals and different

inferential questions. In the piecewise constant signal model, Yao and Au [72] studied

the least squares estimators for the locations and the levels of the step function un-

der known and unknown number of jumps. Lavielle [50] developed a penalized least

squares method for estimating the number of change points and their locations. An-

other general approach is based on the idea of binary segmentation (BS) [68]. Hyun

et al. [45] outlined similar post-selection tests for change point detection via Wild

Binary Segmentation [29] and circular Binary Segmentation [57]. Hyun et al. [44]

considered fused lasso [64] solutions for estimated change points, and test hypotheses

of the equality of signal mean of either side of a given thus-detected change point.

SMUCE [28, 58] estimated the number of change points as the minimum among all

candidates fits for which the empirical residuals pass a certain multi-scale test at a

given significance level. Li et al. [51] proposed an estimator, constructed similarly to

SMUCE, which controls the FDR but with a generous definition of a true discovery.

Hao et al. [38] and Cheng et al. [18] respectively showed FDR control for the SaRa

and dSTEM estimator of multiple change point locations. For the general piecewise

linear signal models, Bai and Perron [8] provided simultaneous asymptotic distribu-

tion results regarding the distance between the estimated change points and their

true locations under the assumption of a known number of change points and the

their minimum distance being O(L). However, the distributional limits depend on

the unknown magnitudes of parameter change, which are often difficult to estimate

well. Baranowski et al. [10] proposed a narrowest-over-threshold (NOT) approach

to estimate the number and locations of change points. NOT focus on the smallest

local sections of the data on which the existence of a feature is suspected. Fryzlewicz

[30] introduced a narrowest significance pursuit (NSP) algorithm for automatically

detecting localised regions, each of which must contain a change point at a prescribed

5



global significance level. NSP works by fitting the postulated linear model over many

regions of the data, using a certain multi-resolution sup-norm loss, and identifying

the shortest interval on which the linearity is significantly violated. However, our

proposed approach is unique in comparison with the existing literature in following

ways.

1. Our method can estimate the number of change points and their locations si-

multaneously. Based on the distribution of local extrma in Gaussian process,

the change points are identified as significant local extrema (in µ′
γ(t) or µ′′

γ(t))

under a global significant level. Moreover, the theoretical analysis in Section 2.2

guarantees that under mild conditions, our proposed method can truly control

the false discovery rate (FDR) of detected change points under the significant

level. Meanwhile, the power consistency is guaranteed.

2. Unlike the traditional change point detection methods, our approach can dis-

tinguish Type I and Type II change points, due to the fact that a Type I change

point does not generate a local extremum in the first derivative µ′
γ(t), while a

Type II change point will. This is especially important and useful for the data

generated from Scenario 3 which is much more practical. One may only interest

in the jumps (Type II) or continuous change points (Type I).

3. We assume that the noise z(t) is a Gaussian process which allows the error

terms to be correlated. The assumption of white noise in most of the change

points literature is violated in practice [43]. Our method shows that change

points methods can be devised for correlated noise, expanding the domain of

their applicability.

4. Our proposed method can achieve lowest computational complexity. As we

test the candidate peaks generated either by change points or random noise

6



only once, the computation of our method is the same as the number of the

candidate peaks, which is much smaller than the data sequence length. Most

of the traditional methods of change point detection require a computational

cost of O(L2) ([28]). A few approaches under strict assumptions can achieve a

linear computational cost ([48], [26],[29]).

1.2 Statistical Inference for Implicit Network Structures

In recent decades, network analysis has been applied in science and engineering

fields including mathematics, physics, biology, computer science, social sciences and

statistics (see [32, 34, 56] for reviews). Traditionally, statistical network analysis

deals with parameter estimation of an observed network, i.e., an observed adjacency

matrix. For example, community detection, a topic of broad interest, studies how

to partition the node set of an observed network into cohesive overlapping or non-

overlapping communities (see [1, 74] for recent reviews). Other well-studied statistical

network models include the preferential attachment model [9], exponential random

graph models [27, 60], latent space models [40, 39], and the graphon model [23, 31, 73].

In contrast to traditional statistical network analysis, this dissertation focuses on

inferring a latent network structure. Specifically, we model data with the following

format: each observation in the dataset is a subset of nodes that are observed simul-

taneously. An observation is called a group and a full dataset is called grouped data.

[69] introduced this format using the toy example of a children’s birthday party. In

their simple example, children are treated as nodes and each party represents a group

– i.e., a subset of children who attended the same party is a group. The reader is

referred to [76, 70] for applications of such data to the social sciences and animal

behavior.
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The observed grouping behavior presumably results from a latent social structure

that can be interpreted as a network structure of associated individuals [54]. The task

is therefore to infer a latent network structure from grouped data. Existing methods

mainly focus on ad-hoc descriptive approaches from the social sciences literature,

such as the co-occurrence matrix [69] or the half weight index [15]. [76] propose the

first model-based approach, called the hub model, which assumes that every observed

group has a hub that brings together the other members of the group. When the

hub nodes of grouped data are known, estimating the model parameters is a trivial

task. In most research situations, hub nodes are unknown and need to be modeled as

latent variables. Under this setup, estimating the model parameters becomes a more

difficult task.

This project has three aims: first, to prove the identifiability of the canonical pa-

rameters and the asymptotic consistency for the estimators of those parameters when

hubs are unobserved. The canonical parameters refer to the probabilities of being a

hub node of a group and the probabilities of being included in a group formed by

a particular hub node. The hub model is a restricted class from the family of finite

mixtures of multivariate Bernoulli [76]. [36] showed that in general the parameters

of finite mixture models of multivariate Bernoulli are not identifiable. [76] showed

that the parameters are identifiable under two assumptions: the hub node of each

group always appears in the group it forms and relationships are reciprocal. That is,

the adjacency matrix is symmetric with diagonal entries as one. This paper consid-

ers identifiability when adjacency matrices are asymmetric. The model is therefore

referred as to the asymmetric hub model. We prove that when the hub set (i.e.,

the set of possible hubs) contains at least one fewer member than the node set, the

parameters are identifiable under mild conditions. The new setup is practical and

less restrictive than the symmetry assumption. Moreover, allowing the hub set to be
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smaller than the node set can reduce model complexity as pointed out by [70]. When

proving the consistency of the estimators, we first prove the consistency of the hub

estimates and then show that the estimators of model parameters are consistent as

a corollary. Our proofs accommodate the most general setup in which the number of

groups (i.e., sample size), the size of the node set, and the size of the hub set are all

allowed to grow.

The second aim is to generalize the hub model to accommodate hubless groups

and then prove identifiability and consistency of this generalized model. The classical

hub model requires each group to have a hub. As observed in [70], when fitting

the hub model to data, one sometimes has to choose an unnecessarily large hub set

due to this requirement. For example, a node that appears infrequently in general

but appears once as a singleton must be included in the hub set. To relax the one-

hub restriction, we add a component to the hub model that allows hubless groups

in which nodes appear independently. We call this additional component the null

component and call the new model the hub model with the null component. The

proofs of identifiability and consistency for the new model do not parallel the first set

of proofs and are more challenging.

Since the new models assume the hub set is a subset of the nodes, this raises a

natural question: how to estimate the hub set from data, which is the third aim.

We formulate this problem as model selection for Bernoulli mixture models. We

borrow the log penalty in Huang et al. [41], originally designed for Gaussian mixture

models, to propose a penalized likelihood approach to select the hub set for the hub

model with the null component. Instead of penalizing the mixing probability of every

component as in Huang et al. [41], we modify the penalty function such that the

probability of the null component is not penalized. The null component does not

exist in the setup of Gaussian mixture models, but it creates a natural connection
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between the hub model and a null model in our scenario. That is, when all other

mixing probabilities are shrunken to zero, the model naturally degenerates to the

model in which nodes appear independently in a group – in other words, each group

is modeled by independent Bernoulli trials.
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Chapter 2

MULTIPLE CHANGE POINT DETECTION IN LINEAR MODELS

2.1 Framework of Change Point Detection

2.1.1 The Kernel Smoothed Signal

We consider the following univariate statistical model:

y(t) = µ(t) + z(t), t ∈ R, (2.1)

where z(t) is correlated stationary Gaussian noise and µ(t) is a piecewise linear signal

of the form

µ(t) = cj + kjt, t ∈ (vj−1, vj],

where cj, kj ∈ R, j = 1, 2, . . . and −∞ = v0 < v1 < v2 < · · · . The jump size aj at vj

is defined as

aj = cj+1 + kj+1vj − (cj + kjvj) = (cj+1 − cj) + (kj+1 − kj)vj, j ≥ 1.

For the model (2.1), we assume d = infj(vj − vj−1) > 0 so that the change points do

not arbitrarily close to each other. In addition, we assume k = infj |kj+1 − kj| > 0

for the data sequence contains pure Type I change points so that the size of slope

change does not become arbitrarily small. We assume a = infj |aj| > 0 for the data

sequence contains pure Type II change points so that the size of jumps does not

become arbitrarily small.

Let wγ(t) be the Gaussian kernel with compact support [−cγ, cγ] and bandwidth

γ, i.e.,

wγ(t) =
1

γ
φ(

t

γ
) {−cγ ≤ t ≤ cγ}.

11



Convolving the process (2.1) with the kernel wγ(t) results in a smoothed random

process

yγ(t) = wγ(t) ∗ y(t) =
!

R
wγ(t− s)y(s) ds = µγ(t) + zγ(t), (2.2)

where the smoothed signal and smoothed noise are defined respectively as

µγ(t) = wγ(t) ∗ µ(t) and zγ(t) = wγ(t) ∗ z(t).

The smoothed noise zγ(t) is assumed to be a zero-mean and four-times differentiable

stationary ergodic Gaussian process. To avoid the overlap of smoothing two neigh-

boring change points, we assume d = infj(vj − vj−1) ≥ 2cγ.

2.1.2 Local Extrema for Derivatives of the Smoothed Signals

For a smooth function f(t), denote by f (ℓ)(t) its ℓ-th derivative, ℓ ≥ 1, and write

by default f ′(t) = f (1)(t) and f ′′(t) = f (2)(t) respectively. We have the following

derivatives of the smoothed observed process (2.2),

y(ℓ)γ (t) = w(ℓ)
γ (t) ∗ y(t) =

!

R
w(ℓ)

γ (t− s)y(s) ds = µ(ℓ)
γ (t) + z(ℓ)γ (t), (2.3)

where the derivatives of the smoothed signal and smoothed noise are respectively

µ(ℓ)
γ (t) = w(ℓ)

γ (t) ∗ µ(t) and z(ℓ)γ (t) = w(ℓ)
γ (t) ∗ z(t), ℓ ≥ 1.

Lemma 1. For µγ(t) with support (vj−1 + cγ, vj+1 − cγ), the first derivative is

µ′
γ(t) =

"
######$

######%

kj[2Φ(c)− 1], t ∈ (vj−1 + cγ, vj − cγ),

kj+1[2Φ(c)− 1], t ∈ (vj + cγ, vj+1 − cγ),

aj
γ
φ(

vj−t

γ
) + (kj − kj+1)Φ(

vj−t

γ
) + (kj + kj+1)Φ(c)− kj, otherwise.

For µγ(t) with support (vj−1 + cγ, vj+1 − cγ), the second derivative is

µ′′
γ(t) =

"
##$

##%

aj(vj−t)+(kj+1−kj)γ
2

γ3 φ(
vj−t

γ
), t ∈ (vj − cγ, vj + cγ),

0, otherwise.
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Remark 1. µγ(t) is discontinuous at vj − cγ and vj + cγ, where µ′
γ(t) and µ′′

γ(t) have

no definitions. Thus in our method, the locations, t = vj − cγ and vj + cγ will not be

tested which does not affect the detection of the true change points.

Lemma 2. Define qj =
kj+1−kj

aj
if aj ∕= 0. The local maximum/minimum of µ′

γ(t)

with t ∈ [vj − cγ, vj + cγ] is

t =

& does not exist, aj = 0, (2.4a)

vj + γ2qj, aj ∕= 0. (2.4b)
The local maximum/minimum of µ′′

γ(t) with t ∈ (vj − cγ, vj + cγ) is

t =

"
#$

#%

vj, aj = 0, (2.5a)

vj −
γ2qj ± γ

'
4 + q2j

2
, aj ∕= 0. (2.5b)

Proposition 1. A Type I change point vj in µ(t) becomes a local extremum (local

maximum or local minimum) in the second derivative of the smoothed signal, µ′′
γ(t),

exactly at vj (see (2.5a)); A Type II change point in µ(t) becomes a local extremum

at vj + γ2qj = vj + o(1) in the first derivative, µ′
γ(t) (see (2.4b)).

Remark 2. A Type I change point does not generate any local extremum in the first

derivative µ′
γ(t) (see (2.4a)). This key feature helps to identify the Type II change

points in the mixture case (see Step 1 in Algorithm 3). Suppose qj is a very small

positive number, for the second derivative, µ′′
γ(t), a Type II change point vj will gen-

erate a pair of local maximum and local minimum at around vj − γ and vj + γ (see

(2.5b)). This helps to remove the local extrema in the second derivative generated by

Type II change points and thereafter to detect the Type I change points in the mixture

case (see Step 2 in Algorithm 3).

2.1.3 Main Ideas

Fig 1.1 shows the central idea of our method, that is to transform the problem

of change point detection in piecewise linear signal to detection of local extrema in
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the first or second derivatives of the smoothed signal. However, a local extremum

is generated not only from change points in the signal, but from the random noise.

Thus we need to use a multiple testing, based on the peak height distribution of z′γ(t)

and z′′γ(t) (see section 2.2.4), to identify the significant local extrema as true change

points.

Toy examples in Fig 2.1 and Fig 2.2 illustrate the main ideas of detection of change

points in a data sequence. Specifically, for a data sequence with piecewise linear signal

in Scenario 1, a Type I change point will generate a peak (positive or negative) in

the second derivative exactly at the same location (see (2.5a)). The peaks in y′′γ(t)

comes from both the six Type I change points and random noise. Then a multiple

testing is applied to find the true change points. For the data sequence with signal in

Scenario 2, a Type II change point can generate a peak in the first derivative around

its location (see (2.4b)). All the six Type II change points are detected as significant

peaks in the second derivative. For the data sequence with signal in Scenario 3, we

first detect the Type II change points as the significant peaks in y′γ(t). Removing

the peaks in y′′γ(t) generated by Type II change points, the Type I change points are

detected as the significant peaks in y′′γ(t).

To detect the change points in piecewise linear model, we improve the method

STEM (Smoothing and TEsting of Maxima/Minima) and propose mSTEM (modified

STEM) which consists of the following steps:

1. Differential kernel smoothing: to transform change points to local maxima or

local minima (illustrated in Fig 1.1), and meanwhile increase the SNR.

2. Candidate peaks: to find local maxima and local minima of the first or second

smoothed Gaussian process (y′γ(t) or y′′γ(t)).
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3. P-values: to compute the p-value of each local maximum or local minimum

under the null hypothesis of no change points in a local neighborhood.

4. Multiple testing: to apply a multiple testing procedure to the set of local max-

ima and local minima, a change point is claimed to be detected if the p-value

(in Step 3) of its local maximum or local minumum is significant.

2.2 Multiple Change Point Detection for Linear Models

2.2.1 Type I Change Point Detection

Suppose we observe y(t) with J Type I change points in a data sequence of length

L centered at the origin, denoted by U(L) = (−L/2, L/2).

Following the proposed mSTEM procedure of change point detection, we intro-

duce the mSTEM algorithm for the detection of Type I change points.

Algorithm 1 (mSTEM algorithm for Type I break detection).

1. Differential kernel smoothing: Obtain the process y′′γ(t) in (2.3) by convolution

of y(t) with the kernel derivative w′′
γ(t).

2. Candidate peaks: Find the set of local maxima and minima of y′′γ(t) in U(L),

denoted by T̃I = T̃I ∪ T̃−
I , where

T̃+
I =

(
t ∈ U(L) : y(3)γ (t) = 0, y(4)γ (t) < 0

)
,

T̃−
I =

(
t ∈ U(L) : y(3)γ (t) = 0, y(4)γ (t) > 0

)
.

3. P-values: For each t ∈ T̃+
I , compute the p-value pI(t) for testing the (condi-

tional) hypotheses

H0(t) : {µ′′
γ(s) = 0 for all s ∈ (t− b, t+ b)} vs.

HA(t) : {µ′′
γ(s) > 0 for some s ∈ (t− b, t+ b)};
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Figure 2.1: Procedure of Type I and Type II change point detection. The left panel

shows the data sequences with six Type I change points and six Type II change

points respectively, the red lines indicate the corresponding piecewise linear signals.

The right panel shows the second and the first derivatives of the smoothed data

yγ(t) (γ = 8) respectively. Local maxima and local minima of first derivatives are

represented by green and red solid dots respectively. Local maxima and local minima

of second derivatives are represented by blue and orange solid dots respectively. The

solid triangles denote the significant local extrema under significant level α = 0.05.

The cyan and pink bars indicate the location tolerance intervals (vj − b, vj + b) with

b = 5 for the true change points. The deepgrey lines indicate the piecewise slopes of

the piecewise linear signal (baselines for the testing of local extrema of y′γ(t)).
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Figure 2.2: Procedure of mixture of Type I and Type II change point detection.

Here, we use the same symbols and colors as in Fig 2.1. The left panel shows the

data with four Type I and four Type II change points. The middle panel shows the

first derivative of the data which can be used to detect Type II change points (see

Step 1 in Algorithm 3). The right panel shows the second derivative of the data.

Before detecting the Type I change points, we first remove the local extrema of y′′γ(t)

on the interval [vj − 2γ, vj + 2γ] (represented by grey bars) avoiding the disturb of

Type II change points. In this example, all the change points are detected and there

is only one false discovery for Type I change points.

and for each t ∈ T̃−
I , compute the p-value pI(t) for testing the hypotheses

H0(t) : {µ′′
γ(s) = 0 for all s ∈ (t− b, t+ b)} vs.

HA(t) : {µ′′
γ(s) < 0 for some s ∈ (t− b, t+ b)},

where b > 0 is an appropriate location tolerance.

4. Multiple testing: Apply a multiple testing procedure on the set of p-values

{pI(t), t ∈ T̃I}, and declare significant all local extrema whose p-values are

smaller than the significance threshold.
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P-values computation

The p-values in step 3 of the algorithm 1 is computed as

pI(t) =

"
##$

##%

Fz′′γ (y
′′
γ(t)), t ∈ T̃+

I ,

Fz′′γ (−y′′γ(t)), t ∈ T̃−
I ,

(2.6)

where Fz′′γ (u) (see the chapter 2.2.4) denotes the right tail probability of z′′γ(t) at the

local maximum t ∈ T̃I, evaluated under the null model µ(3)
γ (s) = 0, ∀s ∈ (t− b, t+ b),

that is,

Fz′′γ (u) = P
*
z′′γ(t) > u

++ t is a local maximum of z′′γ(t)
,
. (2.7)

The second line in (2.6) is obtained by

P
*
z′′γ(t) < y′′γ(t)

++ t is a local minimum of z′γ(t)
,

=P
*
−z′′γ(t) > −y′′γ(t)

++ t is a local maximum of −z′′γ(t)
,

=Fz′′γ (−y′′γ(t)),

since −z′′γ(t) and z′′γ(t) have the same distribution.

Error and Power definitions

We define that the signal region is Sb
1 = ∪J

j=1(vj − b, vj + b) and null region is Sb
0 =

U(L) \ Sb
1. For u > 0, let T̃I(u) = T̃+

I (u) ∪ T̃−
I (u), where

T̃+
I (u) =

(
t ∈ U(L) : y′′γ(t) > u, y(3)γ (t) = 0, y(4)γ (t) < 0

)
,

T̃−
I (u) =

(
t ∈ U(L) : y′′γ(t) < −u, y(3)γ (t) = 0, y(4)γ (t) > 0

)
.

The above equations indicate that T̃+
I (u) and T̃−

1,γ(u) are respectively the set

of local maxima of y′′γ(t) above u and the set of local minima of y′′γ(t) below −u.

The number of totally and falsely detected change points at threshold u are defined
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respectively as

RI(u) = #{t ∈ T̃+
I (u)}+#{t ∈ T̃−

I (u)},

VI(u; b) = #{t ∈ T̃+
I (u) ∩ Sb

0}+#{t ∈ T̃−
I (u) ∩ Sb

0}.

Both are defined as zero if T̃I(u) is empty. The FDR at threshold u is defined as the

expected proportion of falsely detected jumps

FDRI(u; b) = E

-
VI(u; b)

RI(u) ∨ 1

.
. (2.8)

Note that definition of FDR for other type of change points can be defined similarly

as (2.8).

Following the notation in Cheng and Schwartzman [20], define the smoothed signal

region S1,γ to be the support of µ′
γ(t) and smoothed null region S0,γ = U(L)\S1,γ. We

call the difference between the expanded signal support due to smoothing and the

true signal support the transition region Tγ = S1,γ \ Sb
1 = Sb

0 \ S0,γ.

Power

Denote by I+ and I− the collections of indices j corresponding to increasing and

decreasing change points vj, respectively. We define the power as the expected fraction

of true discovered change points

PowerI(u; b) =
1

J

J/

j=1

PowerI,j(u; b)

= E

0
1

J

1
/

j∈I+

2
T̃+

I (u) ∩ (vj − b, vj + b) ∕= ∅
3

+
/

j∈I−

2
T̃−

I (u) ∩ (vj − b, vj + b) ∕= ∅
345

,

(2.9)
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where Powerj,γ(u; b) is the probability of detecting change point vj within a distance

b,

PowerI,j(u; b) =

"
#$

#%

P
2
T̃+

I (u) ∩ (vj − b, vj + b) ∕= ∅
3
, if j ∈ I+,

P
2
T̃−

I (u) ∩ (vj − b, vj + b) ∕= ∅
3
, if j ∈ I−.

(2.10)

Note that definition of Power for other type of change points can be defined simi-

larly as (2.9). The indicator function in (2.9) ensures that only one significant local

extremum is counted within a distance b of a change point, so power is not inflated.

Note that when γ and u are fixed, PowerI(u; b) and Powerj,I(u; b) are increasing in b.

Asymptotic FDR control and Power consistency

Suppose the Benjamini-Hochberg (BH) procedure is applied in step 4 of dSTEM

algorithm as follows. For a fixed α ∈ (0, 1), let k be the largest index for which the

ith smallest p-value is less than iα/m̃γ, where m̃γ is the number of local extrema

of y′′γ(t) on the smoothed signal region. Then the null hypothesis H0(t) at t ∈ T̃I is

rejected if

pγ(t) <
kα

m̃γ

⇐⇒

"
##$

##%

y′γ(t) > ũBH = F−1
z′′γ

2
kα
m̃γ

3
if t ∈ T̃+

I ,

y′γ(t) < −ũBH = −F−1
z′′γ

2
kα
m̃γ

3
if t ∈ T̃−

I ,

(2.11)

where kα/m̃γ is defined as 1 if m̃γ = 0. Since ũBH is random, we define FDR in such

BH procedure as

FDRI,BH(b) = E

-
Vγ(ũBH; b)

Rγ(ũBH) ∨ 1

.
.

Similarly we can define the FDR in BH procedure for other type of change points.

To study the asymptotic theories of FDR and Power, we make the following as-

sumptions:

(C1) The assumptions of §2.1.1 hold.
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(C2) L → ∞, k = infj |kj+1 − kj| → ∞, and k2/ logL → ∞.

Let E[m̃z′′γ (U(1))] and E[m̃z′′γ (U(1), u)] be the expected number of local maxima

and local maxima above level u of z′′γ(t) on the unit interval U(1) = (−1/2, 1/2),

respectively. In particular, applying the Kac-Rice formula, we have the following

explicit result [61],

E[m̃z′′γ (U(1))] =
1

2π

6
Var(z(4)(t))

Var(z(3)(t))
.

Theorem 1. Under assumptions (C1) and (C2), for the data y(t) containing pure

Type I change points, if the number of change points J satisfies J/L → A as L → ∞,

then

(i) suppose that Algorithm 1 is applied with a fixed threshold u, we have

FDRI(u; b) →
E[m̃z′′γ (U(1), u)](1− 2cγA)

E[m̃z′′γ (U(1), u)](1− 2cγA) + A
. (2.12)

(ii) suppose that Algorithm 1 is applied with random threshold ũBH, we have

FDRI,BH(b) → α
E[m̃z′′γ (U(1))](1− 2cγA)

E[m̃z′′γ (U(1))](1− 2cγA) + A
. (2.13)

Theorem 2. Under conditions (C1) and (C2), for the data y(t) containing only Type

I change points, if the number of change points J satisfies J/L → A as L → ∞, then

(i) suppose that Algorithm 1 is applied with a fixed threshold u, we have

PowerI(u; b) =
1

J

J/

j=1

PowerI(j, u; b) → 1. (2.14)

(ii) suppose that Algorithm 1 is applied with the random threshold ũBH, we have

PowerI,BH(b) =
1

J

J/

j=1

PowerI,BH(j; b) → 1. (2.15)
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2.2.2 Type II Change Point Detection

As shown in Fig 1.1, for the detection of Type I change points, the piecewise

slopes of µ′′(t) are 0 everywhere except the smoothed signal region. However, for the

detection of Type II change points, the piecewise slopes of µ′
γ(t) becomes piecewise

constants (not necessary zeros), which are the baselines for the multiple testing (see

Step 3 in Algorithm 2). Hence, we first need to estimate the piecewise slopes of the

signals with Type II change points.

Piecewise slopes estimate

A basic idea of estimating the piecewise slopes is to cut the data sequence into seg-

ments in which there is no change points and thereafter the slopes are estimated by

a linear regression. A Type II break is transformed into a pair of local maximum

and minimum of µ′′
γ(t) (see 2.5b), and the piecewise slope of mu′′

γ(t) are 0 everywhere

except the smoothed signal region, which give us a hint for finding the segments.

(2.5b) shows the pairwise local maximum and local minimum for vj are around

at vj − γ and vj + γ when qj is small. Note that µ′′
γ(vj − γ) and µ′′

γ(vj + γ) are

not symmetric about 0 as shown in figure 2.1, thus it is possible that only one value

is significant in the multiple testing of y′′γ(t). Follow the algorithm 1 with a larger

significant level such that we can get non-conservative estimators for the peaks in

y′′γ(t), say li for i = 1, . . . , K, where K is the number of estimated peaks in y′′γ(t).

Since some of the breaks are detected as a pairwise local maxima and local minima,

hence some of li are pairwise. But we can use the middle point of each pair as the

estimator of a Type II change point.

We assume the distance between any two consecutive breaks is relatively large

enough compared to γ. As the distance of the pairwised local maxima and local
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minima is about 2γ, we define li and lj are paired if

1.5γ ≤ |li − lj| ≤ 2.5γ, for i, j = 1, . . . , K and i ∕= j. (2.16)

Then we use the mean of paired li and lj as the estimator of a Type II break. While if

li, l = 1, . . . , K is identified as a single point (only local maximum or local minimum

is significant in detection of y′′γ(t)), li will be the estimator of a Type II break. even

though the distance between the true break and li is about γ, it does not affect the

estimation of slopes if a robust regression method is applied. Finally, we can obtain

the estimators for Type II breaks, say l̃i for i = 1, . . . , K̃, where K̃ is the number

of estimated breaks. Based on the estimators l̃i, the whole data sequence can be

divided into K̃ + 1 segments. The slope in the jth segment, kj, is estimated through

a robust regression model [42] in the raw signal-plus-noise data over the interval

(l̃j−1 + 2γ, l̃j − 2γ) for j = 1, . . . , K̃, i.e.,

k̂j = Robust Regression (y(t) ∼ t), for t ∈ (l̃j−1 + 2γ, l̃j − 2γ). (2.17)

The following algorithm shows the procedure of estimating piecewise slopes.

Algorithm for estimating of piecewise slopes

1. Perform Algorithm 1 with a larger significant level to detect significant local

extrema, denoted by li, for i = 1, . . . , K.

2. Follow (2.16) to find paired local maxima and local minima.

3. Detect roughly Type II change points as l̃i, for i = 1, . . . , K̃, then the ith

segment is defined as (l̃i, l̃i+1).

4. Estimate piecewise slopes by (2.17) in each segment.

Algorithm 2 (mSTEM algorithm for Type II break detection).
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1. Differential kernel smoothing: Obtain the process y′γ(t) in (2.3) by convolution

of y(t) with the kernel derivative w′
γ(t).

2. Candidate peaks: Find the set of local maxima and minima of y′γ(t) in U(L),

denoted by T̃II = T̃+
II ∪ T̃−

II , where

T̃+
II =

(
t ∈ U(L) : y′′γ(t) = 0, y(3)γ (t) < 0

)
,

T̃−
II =

(
t ∈ U(L) : y′′γ(t) = 0, y(3)γ (t) > 0

)
.

3. P-values: For each t ∈ T̃+
II , compute the p-value pII(t) for testing the (condi-

tional) hypotheses

H0(t) : {µ′
γ(s)− k(s) = 0 for all s ∈ (t− b, t+ b)} vs.

HA(t) : {µ′
γ(s)− k(s) > 0 for some s ∈ (t− b, t+ b)},

where k(s) is the estimated piecewise slope estimated by (2.17) and b > 0 is an

appropriate location tolerance. For each t ∈ T̃−
II , compute the p-value pII(t) for

testing the hypotheses

H0(t) : {µ′
γ(s)− k(s) = 0 for all s ∈ (t− b, t+ b)} vs.

HA(t) : {µ′
γ(s)− k(s) < 0 for some s ∈ (t− b, t+ b)},

4. Multiple testing: Apply a multiple testing procedure on the set of p-values

{pII(t), t ∈ T̃II}, and declare significant all local extrema whose p-values are

smaller than the significance threshold.

Asymptotic FDR control and Power consistency

For the proof of the asymptotic FDR and power consistency of data with Type II

change points, we make the following assumption:

(C3) a = infj |aj| → ∞ and q = supj |
kj+1−kj

aj
| → 0 as L → ∞.
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Theorem 3. Under conditions (C1)−(C3), for the data y(t) containing only Type II

change points, if the number of change points J satisfies J/L → A as L → ∞, then

(i) for a fixed threshold u, we have

FDRII(u; b) →
E[m̃z′γ (U(1), u)](1− 2cγA)

E[m̃z′γ (U(1), u)](1− 2cγA) + A
. (2.18)

(ii) for a random threshold ũBH, we have

FDRII,BH(b) → α
E[m̃z′γ (U(1))](1− 2cγA)

E[m̃z′γ (U(1))](1− 2cγA) + A
. (2.19)

Theorem 4. Under conditions (C1) − (C3), for the data y(t) containing only Type

I change points, if the number of change points J satisfies J/L → A as L → ∞, then

(i) for a fixed threshold u, we have

PowerII(u; b) =
1

J

J/

j=1

PowerII(j, u; b) → 1. (2.20)

(ii) for a random threshold ũBH, we have

PowerII,BH(b) =
1

J

J/

j=1

PowerII,BH(j; b) → 1. (2.21)

2.2.3 Mixture of Type I and Type II Change Point Detection

Type I change points can be detected through the peaks in the second derivative

of yγ(t) (see algorithm 1), and Type II change points can be detected via finding

significant peaks in y′γ(t) (see algorithm 2). However, it is very common that the

real signal-plus-noise data contains both Type I and Type II change points. How to

distinguish a Type I and Type II change point is the key problem. Our method for

detecting change points of the signals in scenario 3 is based on the following features

of µ′
γ(t) and µ′′

γ(t):
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1. A Type II change point will generate a peak in µ′
γ(t) (see Fig 1.1 (h)), but a

Type I change point does not generate. Therefore, a detected change point in

y′γ(t) can only be Type II.

2. Both Type I and Type II will generate peaks in µ′′
γ(t) (see Fig 1.1 (i)).

Thus, our method is to detect all the Type II change points in y′γ(t) using algorithm

1, then we perform mSTEM procedure to find all the change points (includes both

Type I and Type II), by removing the set of Type II change points in y′γ(t), we can

obtain the Type I change points.

For the detection of mixture of Type I and Type II change points, the main idea

is to detect Type II change points in the first derivatives (note that Type I change

points do not generate local extrema of first derivative) and then detect Type I change

points in the second derivatives by removing those peaks generated by Type II. The

following algorithm shows the specific procedure of detecting Type I and II change

points in the mixture case.

Algorithm 3 (mSTEM algorithm for mixture of Type I and II breaks detection).

1. Estimate Type II breaks: Perform the algorithm 2 to obtain the estimate of Type

II breaks, say MII = {v̂II,i} for i = 1, 2, . . . . We use a larger γ (compared to the

signal in scenario 2) such that we can obtain better estimate for the piecewise

slope, especially for the peaks in y′′γ(t) generated by Type I breaks.

2. Candidate Type I peaks: Find the set of local maxima and minima of y′′γ(t) in

U(L), denoted by T̃I = T̃+
I ∪ T̃−

I . As T̃I contains the local extrema generated by

both Type I and Type II breaks, to detect Type I breaks, it is necessary to remove

the peaks generated by Type II breaks. Thus, the set of candidate peaks of Type
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I breaks is defined as T̃I\II = T̃+
I\II ∪ T̃−

I\II, where

T̃+
I\II = T̃+

I \ ∪i=1(v̂II,i − 2γ, v̂II,i + 2γ),

T̃−
I\II = T̃−

I \ ∪i=1(v̂II,i − 2γ, v̂II,i + 2γ).

3. P-values: For each t ∈ T̃+
I\II, compute the p-value pI\II(t) for testing the (condi-

tional) hypotheses

H0(t) : {µ′′
γ(s) = 0 for all s ∈ (t− b, t+ b)} vs.

HA(t) : {µ′′
γ(s) > 0 for some s ∈ (t− b, t+ b)};

and for each t ∈ T̃−
I\II, compute the p-value pI\II(t) for testing the (conditional)

hypotheses

H0(t) : {µ′′
γ(s) = 0 for all s ∈ (t− b, t+ b)} vs.

HA(t) : {µ′′
γ(s) < 0 for some s ∈ (t− b, t+ b)},

where b > 0 is an appropriate location tolerance.

4. Multiple testing: Apply a multiple testing procedure on the set of p-values

{pI\II(t), t ∈ T̃I\II}, and declare significant all local extrema whose p-values are

smaller than the significance threshold, then the set of Type I breaks can be

obtained as MI = {v̂I,i} for i = 1, 2, . . . .

In the first step, Type I change points will generate some extra segments when

estimating the piecewise slope, but it does not affect the estimate of Type II breaks

as Type I breaks do not generate local maxima or local minima in y′γ(t).

Asymptotic FDR control and Power consistency

Theorem 5. Under conditions (C1)− (C3), assume y(t) contains J1 Type I change

points and J2 Type II change points with the constrains J1/L → A1 and J2/L → A2

as L → ∞.
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(i) suppose that Algorithm 3 is applied with a fixed threshold u1 and u2 for Type I

and Type II change point detection respectively, then

lim supFDRIII(u1, u2; b) ≤
E[m̃z′′γ (U(1), u1)](1− 2cγA1) + E[m̃z′γ (U(1), u2)](1− 4γA2)

E[m̃z′′γ (U(1), u1)](1− 2cγA1) + E[m̃z′′γ (U(1), u2)](1− 4γA2) + A
,

(2.22)

where A = A1 + A2.

(ii) Suppose Algorithm 3 is applied with the random threshold ũBH. Then

lim supFDRI,BH(b) ≤ α. (2.23)

limFDRII,BH(b) = α
E[m̃z′γ (U(1)](1− 2cγA2)

E[m̃z′γ (U(1))](1− 2cγA2) + A2

≤ α. (2.24)

lim supFDRIII,BH(b) ≤ α. (2.25)

Theorem 6. Under conditions (C1)− (C3), assume y(t) contains J1 Type I change

points and J2 Type II change points with the constrains J1/L → A1 and J2/L → A2

as L → ∞.

(i) suppose that Algorithm 3 is applied with a fixed threshold u1 and u2 for Type I

and Type II change point detection respectively, then

PowerIII(u1, u2; b) =
1

J

J/

j=1

PowerIII(j, u1, u2; b) → 1. (2.26)

(ii) suppose that Algorithm 3 is applied with the random threshold ũBH, then

PowerIII,BH(b) =
1

J

J/

j=1

PowerIII,BH(j; b) → 1. (2.27)

2.2.4 Gaussian Auto-correlation Model and Its Peak Height Distribution

Let X(t) be a smoothed stationary Gaussian process with zero-mean and variance,

σ2. Define η = Var(X′)√
Var(X)Var(X′′)

(we omit t here because X(t) is stationary), let FX(x)

denote the right tail probability of X(t) at the local maximim, that is,
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FX(x) = P (X > x | x is a local maximum of X),

then

FX(x) = 1− Φ

1
x

σ
7

1− η2

4
+
√
2πηφ

8
x√
σ

9
Φ

1
ηx

√
σ
7

1− η2

4
. (2.28)

Note that (2.28) is a general version of the peak height distribution in Schwartzman

et al. [61].

We consider a simple example of X(t). Let the noise z(t) be

z(t) =

!

R

1

ν
φ

8
t− s

ν

9
dB(s), ν > 0, (2.29)

where φ is the standard Gaussian density, dB(s) is Gaussian white noise (z(t) is

regarded by convention as Gaussian white noise when ν = 0). Convolving with a

Gaussian kernel wγ(t) = (1/γ)φ(t/γ) with γ > 0 produces a zero-mean infinitely

differentiable stationary ergodic Gaussian field

zγ(t) =

!

R
wγ(t− x)z(x)dx =

!

R

1

ξ
φ

8
t− s

ξ

9
dB(s), ξ =

7
γ2 + ν2. (2.30)

Lemma 3. For the smoothed stationary Gaussian process zγ(t), defined in (2.30), the

variance of its derivatives are

Var(z′γ(t)) =
1

4
√
πξ3

, Var(z′′γ(t)) =
3

8
√
πξ5

,

Var(z(3)γ (t)) =
15

16
√
πξ7

, Var(z(4)γ (t)) =
105

32
√
πξ9

.

Combining Lemma 3 and (2.28), we immediately have the following proposition:

Proposition 2. Let zγ(t) be defined in (2.30). The peak height distribution of z′γ(t)

is

Fz′γ (x) = 1− Φ

1
x

σ1

7
1− η21

4
+
√
2πη1φ

8
x

√
σ1

9
Φ

1
η1x

√
σ1

7
1− η21

4
, (2.31)

29



where η1 =
√
3√
5

and σ2
1 = 1

4
√
πξ3

.

The peak height distribution of z′′γ(t) is

Fz′′γ (x) = 1− Φ

1
x

σ2

7
1− η22

4
+
√
2πη2φ

8
x

√
σ2

9
Φ

1
η2x

√
σ2

7
1− η22

4
, (2.32)

where η2 =
√
5√
7

and σ2
2 = 3

8
√
πξ5

.

2.2.5 SNR

Smoothing the data can not only make it differentiable at vj, but also can increase

the SNR. Additionally, the asymptotic assumptions (C3) and (C4) are in fact to make

SNR go to infinity.

Lemma 4. For a Type I change point, the SNR at vj is

SNRI(vj) =
µ′′
γ(vj)'

Var(z′′γ(vj))
=

kj+1−kj√
2πγ'
3

8
√
πγ5

=
2γ3/2

√
3π1/4

(kj+1 − kj). (2.33)

For a Type II change point, the SNR at vj is

SNRII(vj) =
µ′
γ(vj)'

Var(z′γ(vj))
=

aj√
2πγ

+
kj+kj+1

2'
1

4
√
πγ3

=

√
2aj

π1/4

√
γ + (kj + kj+1)π

1/4γ3/2.

(2.34)
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Chapter 3

NUMERICAL STUDIES ON MULTIPLE CHANGE POINT DETECTION

3.1 Simulation Studies

3.1.1 Simulation Settings

In this section, we study the performance of our method for signals µ(t) = cj+kjt,

where t = 1, . . . , L, L = 15, 000, and the true change point locations are vj = jd for

j = 1, . . . , ⌊L/d⌋− 1, and d = 150 is the distance between consecutive change points.

In addition, the signals have 4 different scenarios: (1) piecewise linear mean with

continuous change points (Type I); (2) piecewise constant mean with jumps (special

case of Type II); (3) piecewise linear mean with discontinuous change points (Type

II); (4) mixture of Type I and Type II change points. The noise is generated from

a zero-mean stationary ergodic Gaussian process (see (2.29)). Note that the random

error is white noise when ν = 0, and is correlated when ν > 0. The smoothing kernels

are wγ(t) = (1/γ)φ(t/γ) (t ∈ [−6γ, 6γ]). The BH procedure was applied at FDR

level α = 0.05. Results were averaged over 2,000 replications.

3.1.2 Performance of Our Method

In this section, we further verify the properties of our method via numerical stud-

ies. Figure 3.1 and figure 3.2 show the excellent performance of our method for the 4

scenarios of signals. We see that as SNR increases FDR converges to its asymptotic

limit which is under the FDR control level α = 0.05, and Power converges to 1. The

conditions (C2)-(C3) require SNR should be infinity, However, our examples show

both FDR and Power have already converged when SNR is around 10.
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Figure 3.1: FDR and Power versus SNR for Type I and Type 2 change point detection.

In this example, the kernel bandwidth γ = 10 and location tolerance b = 10. The red

dashed lines indicate the theoretical limit of FDR and Power.

Choice of bandwidth γ

Fig 3.3 and Fig 3.4 show the results of FDR and Power as the kernel bandwidth γ

increases. SNR is monotonically increasing with respect to γ, i.e., a larger γ indicates

a larger SNR. Thus when γ is not large enough, the performance of FDR and Power

get better as γ increases. However, a too large γ brings the issue of overlap, i.e.,

when the kernel region 12γ is longer than span of neighboring change points vj and
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Figure 3.2: FDR and Power versus SNR for mixture of Type I and Type 2 change

point detection. The ratio here is defined as the ratio of number of Type I change

points to the numer of Type II (piecewise linear) change points. In this example, the

kernel bandwidth γ = 10 and location tolerance b = 10. The red dashed lines indicate

the theoretical limit of FDR and Power.
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Figure 3.3: FDR and Power versus bandwidth γ for mixture of Type I and Type 2

change point detection. In this example, the kernel bandwidth γ varies from 3 to 15

and location tolerance b = 10. The blue dash lines indicate the FDR control level

α = 0.05 and the red dash lines indicate the theoretical limit of Power.
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Figure 3.4: FDR and Power versus bandwidth γ for mixture of Type I and Type

2 change point detection. The ratio here is defined as the ratio of number of Type

I change points to the number of Type II (piecewise linear) change points. In this

example, the kernel bandwidth γ varies from 3 to 10 and location tolerance b = 10.

The blue dash lines indicate the FDR control level α = 0.05 and the red dash lines

indicate the theoretical limit of Power.
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vj+1, then the kernel smoothing will affect not only the region [vj, vj+1), but also the

regions [vj−1, vj) and [vj+1, vj+2).

3.1.3 Comparison with Other Methods

For each scenario, we study the long-term data (the number of change points is

large) and short-term data (only contains few change points). The long-term data is

generated by just repeating the short-term data 10 times, thus the patterns of the

long-term and short-term datas are the same. We compare our method with BP [7],

NOT [10] and NSP [30] based on change point detection accuracy and computing time.

As BP method takes too much time, we do not consider this method in the long-term

data. To calculate FDR and Power, we let b = γ. v̂j is defined as the estimation of its

nearest true change point vj, The distance |v̂j − vj| measures accuracy of detection.

Table 3.1 shows NOT and our method have excellent performance in short-term data

and our method is the fastest algorithm. In Table 3.2, we see only our method has the

best performance smallest computing time while other two methods can not control

the FDR and perform not as well as in short-term data.

For the long-term datasets, NOT and NSP are not a good choice for detection

of change points. However, our method still keeps the excellent performance, even

performs better in some cases.

3.2 Data Examples

In this section, we consider to apply our method to real applications and compare

with NOT and NSP (B&P method was not included due to its weak performance

and large computation). To have a better understanding of our method and com-

paration with other methods, a short-term dataset (has few change points) and a

long-term dataset (has many change points) are used to evaluate the performance for

36



Table 3.1: Accuracy of estimation for change points in short-term data sequence

Signal Type Method
Proportion of |v̂j − vj | within

FDR Power Time (s)
[0, 1

3
γ) [ 1

3
γ, γ) [γ, 2γ) [2γ, 4γ) ≥ 4γ

Type I

mSTEM 0.8400 0.1533 0.0217 0.0267 0.0483 0.0125 0.9933 0.1370

NOT 0.9883 0.0117 0.0000 0.0017 0.0000 0.0572 1.0000 1.3550

NSP 0.6183 0.1900 0.1617 0.0300 0.0000 0.0458 0.9999 3.2417

B&P 0.4700 0.5083 0.0217 0.0000 0.0000 0.1632 0.9783 87.4562

Type II

Piecewise Constant

mSTEM 0.9617 0.0383 0.0000 0.0367 0.0333 0.0227 1.0000 0.0290

NOT 0.9833 0.0183 0.0017 0.0000 0.0017 0.0558 1.0000 0.2863

NSP 0.6767 0.3133 0.2117 0.0867 0.0100 0.0517 0.9001 1.9430

B&P 0.4117 0.0233 0.0467 0.2050 0.0000 0.1260 0.4350 71.0924

Type II

Piecewise Linear

mSTEM 0.9983 0.0017 0.0000 0.0067 0.0233 0.0348 1.0000 0.0839

NOT 0.8833 0.0933 0.0233 0.0000 0.0000 0.0727 0.9766 0.4524

NSP 0.6967 0.2417 0.0333 0.0283 0.0000 0.0626 0.9384 2.8013

B&P 0.3333 0.0000 0.3015 0.3333 0.0745 0.1633 0.3333 68.3345

Table 3.2: Accuracy of estimation for change points in long-term data sequence (with

many change points)

Signal Type Method
Proportion of |v̂j − vj | within

FDR Power Time (s)
[0, 1

3
γ) [ 1

3
γ, γ) [γ, 2γ) [2γ, 4γ) ≥ 4γ

Type I

mSTEM 0.7616 0.2241 0.0295 0.0244 0.0135 0.0127 0.9963 0.2469

NOT 0.1358 0.1712 0.2475 0.5028 0.2369 0.0853 0.8732 112.5007

NSP 0.3512 0.4607 0.1692 0.0086 0.0000 0.0792 0.8362 433.6193

Type II

Piecewise Constant

mSTEM 0.9702 0.0000 0.000 0.0154 0.0161 0.01463 1.0000 0.1188

NOT 0.8633 0.0037 0.007 0.0177 0.0090 0.0735 0.9164 48.4487

NSP 0.6398 0.3202 0.030 0.0000 0.0000 0.08011 0.9228 213.0398

Type II

Piecewise Linear

mSTEM 0.9899 0.0000 0.0000 0.0065 0.0133 0.0237 0.9992 1.0627

NOT 0.8748 0.0002 0.0009 0.0032 0.0025 0.1217 0.8012 10.6064

NSP 0.6059 0.3543 0.0298 0.0000 0.0000 0.1383 0.8255 400.6633

all methods. Moreover, our method can detect Type I and Type II change points

simultaneously within one running, while NOT and NSP can not distinguish these

two type of change points. For the NSP method, the change points are estimated as

confidence intervals. To compare with other methods, we use the midpoints of the

intervals as point estimate.
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3.2.1 Covid-19 Deaths in UK

To compare the performance of our method with other methods for short-term

data, we considered the same dataset in Fryzlewicz [30]. The dataset recorded the

daily covid-19 associated deaths in UK from March 12, 2020 to July 23, 2020. In

addition, same Anscombe transform (see Fryzlewicz [30]) was used to eliminate the

weekly seasonality and make the data distribution closer to Gaussian with constant

variance.

Covid19 Death in UK

Time (days starting from March 12th 2020)

0 20 40 60 80 100 120

10
20

30
40

50
60 dSTEM (type I)

dSTEM (type II)
NOT
NSP

Figure 3.5: Covid-19 associated deaths in UK (March 12, 2020 – July 23, 2020). The

change points estimate of our method are {10, 29, 53, 99}, {12, 29, 41, 65 99} for

NOT and {12, 30, 44, 67, 100} for NSP.

Figure 3.5 shows the change points estimate of the three methods. Our method

detected three Type I change points (10,29,99) and one Type II change point (55).

According to the results of our method, we can split the time interval into five phases:

Phase I (1 – 10 days after March 12, 2020): Covid-19 virus began to spread out and

the associated deaths increased slowly during this time period.

Phase II (11 – 29): The growth rate of this phase is much larger than that of phase
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I. The rapid expanding number of infected population resulted in explosive growth in

deaths which attain the peak in this phase.

Phase III (30 – 53): The covid-19 pandemic got controlled and the deaths began to

decrease slowly. The shut down policies of pubic areas which was deployed in phase

II began to take effect.

Phase IV (54 – 99): The deaths decreased faster than that in phase III due to hys-

teresis of restrictions and shut down policies.

Phase V (100 – 134): The pandemic was completely under control and the deaths

decreased stably and slowly. Moreover, the deaths was controlled under a low level.

NOT and NSP have very similar estimate results and both detected five change

points. Compared to our method, the main difference is NOT and NSP fitted phase

II and phase III by three stages: The deaths kept its highest level in the first stage (30

– 44), then decreased rapidly in the second stage (45 – 67), and in the last stage the

deaths decreased slowly. Our purpose is not to judge which method gave the correct

or best results, all of the three methods’ results make sense and have reasonable

interpretation.

3.2.2 Stock Price of Host Hotel & Resorts

For a long-term time series, we studied the daily stock price (close) of Host Hotel

& Resorts, Inc. (HST) from the period from January 1,2018 to November 5, 2021.

Host Hotel & Resorts, Inc. is the world’s largest lodging and real estate investment

trust (REIT). Our interest in the company is because of its leading positions in the

industry and eventful history during the last four years (since 2018) in hotel industry.

The historical data for HST stock price is available at https://finance.yahoo.com.

Our method was applied to detect the change points and then compared with other

two methods (NOT and NSP).
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Figure 3.6: HST daily stock price (January 1, 2018 – November 5, 2020).

From Figure 3.6, we see NOT is very sensitive to variations in the dataset. It

tended to detect more local peaks which might result from noise and thus will give

a large FDR. Conversely, NSP tended to detect only few change points which might

miss some true change points and result in small TPR. But the results of our method

can be interpreted reasonably. For example, the change points in 2018 – 2019 were

consistent with its large-cap stock S&P 500 due to the trade war between USA and

China. And the change points after 2020 were consistent with the timeline of Covid-19

outbreak.
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Figure 3.7: Covid-19 associated deaths in USA (March 26, 2020 – December 31,

2021).
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Chapter 4

SUMMARY AND DISCUSSION

In this project, we combined both local maxima and minima of the derivative

as candidate peaks, and then applied a multiple testing procedure to find a uniform

threshold (in absolute value) for detecting all change points. This approach is sensible

when the distributions (number and height) of true increasing and decreasing change

points are about the same. Alternatively, different thresholds for detecting increasing

and decreasing change points could be found by applying separate multiple testing

procedures to the sets of candidate local maxima and local minima. While we applied

the BH algorithm to control FDR, in principle other multiple testing procedures may

be used to control other error rates.

A natural and important question is how to choose the smoothing bandwidth

γ. We can see that either a small γ (if the noise is highly autocorrelated) or a

relatively large γ (if the noise is less autocorrelated) is preferred in order to increase

power, but only to the extent that the smoothed signal regions have little overlap

and that detected change points are not displaced by more than the desired tolerance

b (recall that the value of b is not used in the dSTEM algorithm itself, but it may

be determined by the needs of the specific scientific application). Considering the

Gaussian kernel to have an effective support of ±cγ, a good value of γ may be about

min(b, d/(2c)), where d is the separation between change points. For example, if we

consider the Gaussian kernel to have an effective support of ±4γ and the separation

between change points is d = 100, we may choose γ to be no larger than γ = 10. Since

the location of the change points is unknown, a more precise optimization of γ may

require an iterative procedure. Moreover, if some change points are close together
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and others are far apart, an adaptive bandwidth may be preferable. We leave these

as problems for future research.

We have assumed stationary Gaussian noise in our model for simplicity. The

stationarity assumption allowed us to use an explicit formula for the height distribu-

tion of local extrema [19, 21]. However, in many applications, nonstationary noise

is more realistic. To our knowledge, there are no existing methods for change point

detection with nonstationary noise. Our work here provides a promising approach to

solving this problem. To compute p-values, the height distribution of local extrema

for smooth nonstationary Gaussian processes can be computed explicitly as long as

the covariance function of the process is known [19, 21]. Otherwise, p-values could

be approximated using the approximate overshoot distribution. However, challenges

include how to estimate the covariance function and to prove FDR control and power

consistency in this setting.
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Chapter 5

TECHNICAL DETAILS OF MULTIPLE CHANGE POINT DETECTION

5.1 Proofs in Chapter 2.1

Proof of Lemma 1. For t ∈ (vj − cγ, vj + cγ),

µγ(t) = wγ(t) ∗ µ(t) =
! t+cγ

t−cγ

wγ(t− s)µ(s)ds

=

! vj

t−cγ

1

γ
φ(

t− s

γ
)(cj + kjs)ds+

! t+cγ

vj

1

γ
φ(

t− s

γ
)(cj+1 + kj+1s)ds

= [cj + kjt− (cj+1 + kj+1t)]Φ(
vj − t

γ
) + [cj + kjt+ (cj+1 + kj+1t)]Φ(c)

− (cj + kjt) + (kj − kj+1)γφ(c) + (kj+1 − kj)γφ(
vj − t

γ
).

(5.1)

For t ∈ (vj + cγ, vj+1 − cγ),

µγ(t) = wγ(t) ∗ µ(t) =
! t+cγ

t−cγ

1

γ
φ(

t− s

γ
)(cj+1 + kj+1s)ds

= (cj+1 + kj+1t)[2Φ(c)− 1].

(5.2)

For t ∈ (vj−1 + cγ, vj − cγ),

µγ(t) = wγ(t) ∗ µ(t) =
! t+cγ

t−cγ

1

γ
φ(

t− s

γ
)(cj + kjs)ds

= (cj + kjt)[2Φ(c)− 1].

(5.3)

Note that µγ(t) is noncontinuous at vj − cγ and vj + cγ. Take the first and second

derivatives of µγ(t) in (5.1), (5.2) and (5.3) respectively, we have

µ′
γ(t) =

"
######$

######%

kj[2Φ(c)− 1] t ∈ (vj−1 + cγ, vj − cγ),

kj+1[2Φ(c)− 1] t ∈ (vj + cγ, vj+1 − cγ),

aj
γ
φ(

vj−t

γ
) + (kj − kj+1)Φ(

vj−t

γ
) + (kj + kj+1)Φ(c)− kj otherwise.
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And

µ′′
γ(t) =

"
##$

##%

aj(vj−t)+(kj+1−kj)γ
2

γ3 φ(
vj−t

γ
) t ∈ (vj − cγ, vj + cγ),

0 otherwise.

Proof of Lemma 2. To find the local maxima/minima in µ′
γ(t), by letting µ′′

γ(t) = 0,

we have

t =

"
##$

##%

does not exist aj = 0,

vj + γ2qj aj ∕= 0.

To find the local maxima/minima in µ′′
γ(t), by letting µ′′′

γ (t) = 0, we have

t =

"
##$

##%

vj aj = 0,

vj −
γ2qj±γ

√
4+q2j

2
aj ∕= 0.

5.2 Peak Height Distribution for z′γ(t) and z′′γ(t)

Proof of Lemma 3. Note that, due to the stationarity of zγ(t), for simplicity, we only

consider the case of t = 0. We can compute the variances of z(d)γ (t), d = 0, . . . , 4 as

follows.

Var(z′γ(0)) =

!

R

s2

ξ6
φ2

8
s

ξ

9
ds

=
1

ξ6
ξ

2
√
π

!

R
s2
√
2

ξ
φ

8
s

ξ/
√
2

9
ds

=
1

ξ6
ξ

2
√
π

ξ2

2
=

1

4
√
πξ3

.
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Var(z′′γ(0)) =

!

R

1

ξ6
φ2

8
s

ξ

9
ds− 2

!

R

s2

ξ8
φ2

8
s

ξ

9
ds+

!

R

s4

ξ10
φ2

8
s

ξ

9
ds

=
1

ξ4
1

2
√
πξ

− 2

ξ2
1

4
√
πξ3

+
1

ξ10
ξ

2
√
π

!

R
s4

ξ√
2
φ

8
s

ξ/
√
2

9
ds

=
1

ξ10
ξ

2
√
π

3ξ4

4
=

3

8
√
πξ5

.

Var(z′′′γ (0)) = 9

!

R

s2

ξ10
φ2

8
s

ξ

9
ds− 6

!

R

s4

ξ12
φ2

8
s

ξ

9
ds+

!

R

s6

ξ14
φ2

8
s

ξ

9
ds

=
9

ξ4
1

4
√
πξ3

− 6

ξ2
3

8
√
πξ5

+
1

ξ14
ξ

2
√
π

!

R
s6
√
2

ξ
φ

8
s

ξ/
√
2

9
ds

=
1

ξ14
ξ

2
√
π

15ξ6

8
=

15

16
√
πξ7

.

Var(z(4)γ (0)) = 9

!

R

1

ξ10
φ2

8
s

ξ

9
ds− 36

!

R

s2

ξ12
φ2

8
s

ξ

9
ds+ 42

!

R

s4

ξ14
φ2

8
s

ξ

9
ds

− 12

!

R

s6

ξ16
φ2

8
s

ξ

9
ds+

!

R

s8

ξ18
φ2

8
s

ξ

9
ds

=
1

ξ9

8
9

2
√
π
− 36× 1

4
√
π
+ 42× 3

8
√
π
− 12× 15

16
√
π
+

1

2
√
π
× 105

16

9

=
105

32
√
πξ9

.

5.3 FDR Control and Power Consistency for Type I Change Points

5.3.1 Supporting Results for FDR Control and Power Consistency

To prove the FDR control and power consistent of our method, we need the theo-

retical results in this section, in which we borrow the notations defined in Schwartz-

man et al. [61].

Lemma A1. Assume that there exist a universal δ such that Imode
j := {t ∈ U(L) :

|t− vj| ≤ δ ≪ γ} ⊂ Sj for all j. Suppose that q = supj |qj| is sufficiently small, then
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(1) Mγ = infMj,γ > 0 where Mj,γ =
µ′
γ(τj,γ)−k(τj,γ)

aj
.

(2) Cγ = infj Cj,γ > 0 and Dγ = infj Dj,γ > 0, where Cj,γ = 1
|aj | infIsidej

|µ′′
γ(t)|,

Isidej = Sj,γ \ Imode
j , and Dj,γ = 1

|aj | infImode
j

|µ′′′
γ (t)|.

Proof.

Mj,γ =
µ′
γ(τj,γ)− k(τj,γ)

aj

=
1

aj
[
aj
γ
φ(

vj − t

γ
)− (kj+1 − kj)Φ(

vj − t

γ
) + kj+1]−

k(τj,γ)

aj

≥ 1

γ
φ(

vj − t

γ
) + qj[ qj≤0 − Φ(

vj − t

γ
)].

As q is sufficiently small and t ∈ Sj,γ = (vj − cγ, vj + cγ), thus there exist a very

small universal ε1 > 0 such that Mj,γ ≥ φ(c)
γ

− ε1 > 0. Therefore, Mγ = infMj,γ ≥
φ(c)
γ

− ε1 > 0.

Cj,γ =
1

|aj|
inf
Isidej

|µ′′
γ(t)|

= inf
Isidej

|(vj − t) + qjγ
2

γ3
|φ(vj − t

γ
).

As t ∈ Isidej = (vj − cγ, vj − δ) ∪ (vj + δ, vj + cγ), then δ < |vj − t| < cγ, thus there

exist a universal ε2 > 0 and ε2 < δ such that Cj,γ ≥ δ−ε2
γ3 φ(c) 1

2Φ(c)−1
> 0. Therefore,

Cγ = infj Cj,γ > 0.

In addition,

Dj,γ =
1

|aj|
inf
Imode
j

|µ′′′
γ (t)|

= inf
Imode
j

|(vj − t)2 + qjγ
2 − γ2

γ5
|φ(vj − t

γ
).

As 0 < δ ≪ γ and t ∈ Imode
j = [vj − δ, vj + δ], then |vj − t| ≤ δ, thus there exist

a very small universal ε3 > 0 such that Dj,γ ≥ γ2−δ2−ε3
γ5 φ( δ

γ
) 1
2Φ(c)−1

> 0. Therefore,

Dγ = infj Dj,γ > 0.
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Lemma A2. Suppose that q = supj |qj| is sufficiently small,

then τj,γ = vj + γ2qj ∈ Imode
j for all j. Let

τj,γ =

"
##$

##%

τ+j,γ if µ′
γ(τj,γ) is a local maximum

τ−j,γ if µ′
γ(τj,γ) is a local minimum,

Imode
j =

"
##$

##%

Imode+
j if τj,γ = τ+j,γ

Imode−
j if τj,γ = τ−j,γ.

Define σ1 = sd(z′γ(t)), σ2 = sd(z′′γ(t)) and σ3 = sd(z′′′γ (t)), then for any threshold u,

(1)

P (#{t ∈ T̃ ∩ Isidej } = 0) ≥ 1− exp(−
a2jC

2
j,γ

2σ2
2

).

(2)

P (#{t ∈ T̃ ∩ Imode
j } = 1) ≥ −1 + 2Φ(

|aj|Cj,γ

σ2

)− 2 exp(−
a2jD

2
j,γ

2σ2
3

).

(3)

P (#{t ∈ T̃+
1 ∩ Imode+

j : y′γ(t)− k(t) > u} = 1) ≥ 1− exp(−
a2jD

2
j,γ

2σ2
3

)− Φ(
u− |aj |Mj,γ

σ1
),

P (#{t ∈ T̃−
1 ∩ Imode−

j : y′γ(t)− k(t) < −u} = 1) ≥ 1− exp(−
a2jD

2
j,γ

2σ2
3

) + Φ(
u− |aj |Mj,γ

σ1
),

P (#{t ∈ T̃+
1 ∩ Imode−

j : y′γ(t)− k(t) > u} = 0) ≥ 1− exp(−
a2jD

2
j,γ

2σ2
3

),

P (#{t ∈ T̃−
1 ∩ Imode+

j : y′γ(t)− k(t) < −u} = 0) ≥ 1− exp(−
a2jD

2
j,γ

2σ2
3

).

Proof. (1). As the probability that there are no local extrema of y′γ(t) in Isidej is

greater than the probability that |y′′γ(t)| > 0 for all t ∈ Isidej , thus

P (#{t ∈ T̃ ∩ Isidej } = 0) ≥ P ( inf
Isidej

|y′′γ(t)| > 0)

≥ P (sup
Isidej

|z′′γ(t)| < inf
Isidej

|µ′′
γ(t)|)

= 1− P (sup
Isidej

|z′′γ(t)| > inf
Isidej

|µ′′
γ(t)|)

≥ 1− exp(−
a2jC

2
j,γ

2σ2
2

).

(5.4)
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The last line follows from Borell-TIS ineuqality.

(2). The probability that y′γ(t) has no local maxima in Imode
j is less than the

probability that y′′γ(vj − δ) ≤ 0 or y′′γ(vj + δ) ≥ 0. Thus the probability of no local

maxima in Imode+
j is bounded above by

P (#{t ∈ T̃+ ∩ Imode+
j } = 0) ≤ P (y′′γ(vj − δ) ≤ 0 ∪ y′′γ(vj + δ) ≥ 0)

≤ P (y′′γ(vj − δ) ≤ 0) + P (y′′γ(vj + δ) ≥ 0)

= Φ(−
µ′′
γ(vj − δ)

σ2

) + Φ(
µ′′
γ(vj + δ)

σ2

)

= 1− Φ(
µ′′
γ(vj − δ)

σ2

) + 1− Φ(−
µ′′
γ(vj + δ)

σ2

)

≤ 2− 2Φ(
|aj|Cj,γ

σ2

).

The last line holds because y′′γ(t) ∼ N(µ′′
γ(t), σ

2
2) and for t ∈ Imode+

j , µ′′
γ(vj − δ) >

|aj|Cj,γ > 0 and −µ′′
γ(vj + δ) > |aj|Cj,γ > 0. Similarly, P (#{t ∈ T̃− ∩ Imode−

j } = 0) ≤

2− 2Φ(
|aj |Cj,γ

σ2
).

The probability that y′γ(t) has no local minima in Imode+
j is greater than the

probability that y′′′γ (t) < 0 for all t ∈ Imode+
j . Thus,

P (#{t ∈ T̃− ∩ Imode+
j } = 0) ≥ P ( sup

Imode+
j

y′′′γ (t) < 0)

≥ P ( sup
Imode+
j

z′′′γ < − sup
Imode+
j

µ′′′
γ (t))

= 1− P ( sup
Imode+
j

z′′′γ (t) ≥ inf
Imode+
j

−µ′′′
γ (t))

≥ 1− P (| sup
Imode+
j

z′′′γ (t)| ≥ inf
Imode+
j

−µ′′′
γ (t))

≥ 1− exp(−
a2jD

2
j,γ

2σ2
3

).

The last line holds because µ′′′
γ (t)) < 0 for all t ∈ Imode+

j . Similarly, P (#{t ∈

T̃+ ∩ Imode−
j } = 0) ≥ 1− exp(−a2jD

2
j,γ

2σ2
3
).
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On the other hand, the probability that y′γ(t) has at least two local maxima in

Imode
j is less than the probability that y′′′γ (t) > 0 for some t ∈ Imode

j and y′′′γ (t) < 0 for

some other t ∈ Imode
j . Thus

P (#{t ∈ T̃+ ∩ Imode
j } ≥ 2)

≤ P ( sup
Imode
j

y′′′γ (t) > 0 ∩ inf
Imode
j

y′′′γ (t) < 0)

≤ P ( sup
Imode+
j

y′′′γ (t) > 0) ∧ P ( inf
Imode−
j

y′′′γ (t) < 0)

≤ P ( sup
Imode+
j

z′′′γ (t) > inf
Imode+
j

−µ′′′
γ (t)) ∧ P ( sup

Imode−
j

z′′′γ (t) > inf
Imode−
j

µ′′′
γ (t))

≤ exp(−
a2jD

2
j,γ

2σ2
3

).

The last line holds because µ′′′
γ (t) < 0 for all t ∈ Imode+

j and µ′′′
γ (t) > 0 for all

t ∈ Imode−
j . Similarly, P (#{t ∈ T̃− ∩ Imode

j } ≥ 2) ≤ exp(−a2jD
2
j,γ

2σ2
3
). Therefore,

P (#{t ∈ T̃ ∩ Imode
j } ≥ 2) ≤ exp(−

a2jD
2
j,γ

2σ2
3

).

The probability that y′γ(t) has only one local maximum in Imode+
j is calculated as

P (#{t ∈ T̃+ ∩ Imode+
j } = 1)

= 1− P (#{t ∈ T̃+ ∩ Imode+
j } = 0)− P (#{t ∈ T̃+ ∩ Imode+

j } ≥ 2)

≥ −1 + 2Φ(
|aj|Cj,γ

σ2

)− exp(−
a2jD

2
j,γ

2σ2
3

).

Similarly, P (#{t ∈ T̃− ∩ Imode−
j } = 1) ≥ −1 + 2Φ(

|aj |Cj,γ

σ2
)− exp(−a2jD

2
j,γ

2σ2
3
).
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The probability that y′γ(t) has only one local extreme in Imode+
j is greater than

the probability that y′γ(t) has only one local maximum and zero local minimum.

P (#{t ∈ T̃ ∩ Imode+
j } = 1)

≥ P (#{t ∈ T̃+ ∩ Imode+
j } = 1 ∩#{t ∈ T̃− ∩ Imode+

j } = 0)

≥ P (#{t ∈ T̃+ ∩ Imode+
j } = 1) + P (#{t ∈ T̃− ∩ Imode+

j } = 0)− 1

≥ −1 + 2Φ(
|aj|Cj,γ

σ2

)− 2 exp(−
a2jD

2
j,γ

2σ2
3

).

Similarly, P (#{t ∈ T̃ ∩ Imode−
j } = 1) ≥ −1 + 2Φ(

|aj |Cj,γ

σ2
)− 2 exp(−a2jD

2
j,γ

2σ2
3
). There-

fore,

P (#{t ∈ T̃ ∩ Imode
j } = 1) ≥ −1 + 2Φ(

|aj|Cj,γ

σ2

)− 2 exp(−
a2jD

2
j,γ

2σ2
3

).

(3). The probability that at least two local maxima of y′γ(t) in Imode
j is exceed

u+ k(t) is less than the probability that y′γ(t) has at least two maxima in Imode
j .

P (#{t ∈ T̃+ ∩ Imode
j : y′γ(t)− k(t) > u} ≥ 2)

≤ P (#{t ∈ T̃+ ∩ Imode
j } ≥ 2)

≤ exp(−
a2jD

2
j,γ

2σ2
3

).

Similarly, P (#{t ∈ T̃− ∩ Imode
j : y′γ(t)− k(t) < −u} ≥ 2) ≤ exp(−a2jD

2
j,γ

2σ2
3
).

On the other hand, the probability that no local maxima of y′γ(t) in Imode
j is exceed

u + k(t) is less than the probability that y′γ(t) − k(t) is below u anywhere in Imode
j ,

that is,

P (#{t ∈ T̃+ ∩ Imode+
j : y′γ(t)− k(t) > u} = 0)

≤ P (y′γ(t)− k(t) ≤ u for ∀t ∈ Imode+
j )

≤ Φ(
u+ k(τ+j,γ)− µ′

γ(τ
+
j,γ)

σ1

)

= Φ(
u− |aj|Mj,γ

σ1

).
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The last line holds because ajMj,γ = µ′
γ(τ

+
j,γ) − k(τ+j,γ) > 0 as aj > 0 for µ′

γ(τj,γ) is

the local maximum. Similarly, P (#{t ∈ T̃− ∩ Imode−
j : y′γ(t) − k(t) < −u} = 0) ≤

Φ(
u−|aj |Mj,γ

σ1
).

Therefore, the probability that only one local maximum of y′γ(t) in Imode+
j is exceed

u+ k(t) is

P (#{t ∈ T̃+ ∩ Imode+
j : y′γ(t)− k(t) > u} = 1)

= 1− P (#{t ∈ T̃+ ∩ Imode+
j : y′γ(t)− k(t) > u} = 0)

− P (#{t ∈ T̃+ ∩ Imode+
j : y′γ(t)− k(t) > u} ≥ 2)

≥ 1− Φ(
µ− |aj|Mj,γ

σ1

)− exp(−
a2jD

2
j,γ

2σ2
3

).

(5.5)

Similarly, P (#{t ∈ T̃− ∩ Imode−
j : y′γ(t) − k(t) < −u} = 1) ≥ 1 − Φ(

µ−|aj |Mj,γ

σ1
) −

exp(−a2jD
2
j,γ

2σ2
3
).

The probability that no local maxima of y′γ(t) in Imode−
j is exceed u+k(t) is greater

than the probability that y′γ(t) has no local maxima in Imode−
j , that is,

P (#{t ∈ T̃+ ∩ Imode−
j : y′γ(t)− k(t) > u} = 0) ≥ P (#{t ∈ T̃+ ∩ Imode−

j } = 0)

≥ 1− exp(−
a2jD

2
j,γ

2σ2
3

).
(5.6)

Similarly, P (#{t ∈ T̃− ∩ Imode+
j : y′γ(t)− k(t) < −u} = 0) ≥ 1− exp(−a2jD

2
j,γ

2σ2
3
).

Lemma A3. Let W1,γ = #{t ∈ T̃1∩S1,γ} be the number of local extrema in the set S1,γ

and W1,γ(u) = W+
1,γ(u)+W−

1,γ(u), where W̃+
1,γ(u) = #{t ∈ T̃+

1 ∩S1,γ : yγ(t)−k(t) > u}

and W̃−
1,γ(u) = #{t ∈ T̃−

1 ∩ S1,γ : yγ(t) − k(t) < −u}. Under conditions (C1)–(C3),

there exists some η > 0 such that

(1)

P (#{t ∈ T̃1 ∩ T1,γ} ≥ 1) = o(exp(−ηa2)).
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(2)

P (W1,γ = J) = P (#{t ∈ T̃1 ∩ S1,γ} = J) = 1− o(exp(−ηa2)).

(3)

P (W1,γ(u) = J) = P (m̃+
1,γ(u) + m̃−

1,γ(u) = J) = 1− o(exp(−ηa2)).

(4)

W1,γ/L = A1 + op(1).

(5)

W1,γ(u)/W1,γ = 1 + op(1).

Proof. (1). As the transition region for peak j, Tj,γ = Sj,γ \ Sj, is a subset of Isidej ,

thus Tγ = ∪J
j=1Tj,γ ⊂ ∪J

j=1I
side
j . Then for some η > 0,

P (#{T̃ ∩ Tγ ≥ 1) ≤ P (#{t ∈ T̃ ∩ ∪J
j=1I

side
j } ≥ 1)

= P (∪J
j=1#{t ∈ T̃ ∩ Isidej } ≥ 1)

≤
J/

j=1

[1− P (#{t ∈ T̃ ∩ Isidej } = 0)]

≤
J/

j=1

exp(−
a2jC

2
j,γ

2σ2
2

) ≤
J/

j=1

exp(−
a2C2

γ

2σ2
2

)

=
J

L
L exp(−

a2C2
γ

2σ2
2

) = o(exp(−ηa2)).

(5.7)

The last line holds as long as η >
C2

γ

2σ2
2
,

L exp(−
a2C2

γ

2σ2
2

) = exp{a2( logL
a2

−
C2

γ

2σ2
2

)} = O(exp(−
a2C2

γ

2σ2
2

)) = o(exp(−ηa2)).
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(2).

P (#{t ∈ T̃ ∩ S1,γ = J) ≥ P [∩J
j=1(#{t ∈ T̃ ∩ Imode

j } = 1 ∩#{t ∈ T̃ ∩ Isidej } = 0)]

≥ 1−
J/

j=1

[1− P (#{t ∈ T̃ ∩ Imode
j } = 1 ∩#{t ∈ T̃ ∩ Isidej } = 0)]

≥ 1−
J/

j=1

[2− P (#{t ∈ T̃ ∩ Imode
j } = 1)− P (#{t ∈ T̃ ∩ Isidej } = 0)]

= 1−
J/

j=1

[2− 2Φ(
|aj|Cj,γ

σ2

) + exp(−
a2jD

2
j,γ

2σ2
3

) + exp(−
a2jC

2
j,γ

2σ2
2

)]

≥ 1− J

L
{2L[1− Φ(

aCγ

σ2

)] + L exp(−
a2C2

γ

2σ2
2

) + L exp(−
a2D2

γ

2σ2
3

)}

= 1− o(exp(−ηa2)).

(5.8)

As L[1−Φ(Ka)] ≤ Lφ(Ka)/(Ka) for any K > 0, the last line holds as long as η >
C2

γ

2σ2
2

and η >
D2

γ

2σ2
3
.

(3). Define the index set of breaks as J = {1, 2, . . . , J}. Let J+ = {j ∈ J :

µ′
γ(τj,γ) is a local maximum} and J− = {j ∈ J : µ′

γ(τj,γ) is a local minimum}. Note

that J = J+ ∪ J−. Let

Bj,0 : #{t ∈ T̃ ∩ Imode
j } = 0,

Bj,1 : #{t ∈ T̃+ ∩ Imode+
j : y′γ(t)− k(t) > u} = 1,

Bj,2 : #{t ∈ T̃− ∩ Imode+
j : y′γ(t)− k(t) < −u} = 0,

Bj,3 : #{t ∈ T̃+ ∩ Imode−
j : y′γ(t)− k(t) > u} = 0,

Bj,4 : #{t ∈ T̃− ∩ Imode−
j : y′γ(t)− k(t) < −u} = 1.
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P (m̃1,γ(u) = J) ≥ P{[∩j∈J+(Bj,1 ∩Bj,2 ∩Bj,0)] ∩ [∩j∈J−(Bj,3 ∩Bj,4 ∩Bj,0)]}

≥ P (∩j∈J+(Bj,1 ∩Bj,2 ∩Bj,0)) + P (∩j∈J−(Bj,3 ∩Bj,4 ∩Bj,0))− 1

≥ 1−
!

j∈J+
[1− P (Bj,1 ∩Bj,2 ∩Bj,0)]−

!

j∈J−
[1− P (Bj,3 ∩Bj,4 ∩Bj,0)]

≥ 1−
!

j∈J+
[exp(−

a2jC
2
j,γ

2σ2
2

) + 2 exp(−
a2jD

2
j,γ

2σ2
3

) + Φ(
u− |aj |Mj,γ

σ1
)]

+ 1−
!

j∈J−
[exp(−

a2jC
2
j,γ

2σ2
2

) + 2 exp(−
a2jD

2
j,γ

2σ2
3

) + Φ(
u− |aj |Mj,γ

σ1
)]− 1

= 1−
!

j∈J
[exp(−

a2jC
2
j,γ

2σ2
2

) + 2 exp(−
a2jD

2
j,γ

2σ2
3

) + 1− Φ(
−u+ |aj |Mj,γ

σ1
)]

= 1− o(exp(−ηa2)).

The last line holds for any η >
C2

γ

2σ2
2

and η >
D2

γ

2σ2
3
.

As µ′
γ(t) is piecewise constant, the detection of type I breaks is the same as the

detection of change points in piecewise constant signal ([18]). For the proofs of the

FDR control and power consistency for type I breaks, one can see the arguments in

[18].

5.4 FDR Control and Power Consistency for Type II Change Points

In this section, we consider the case that the linear model contains only the type

II change points. For simplicity, we omit the subscript II for all the related notations.

5.4.1 FDR Control

Proof of Theorem 5. Let V (u) = #{t ∈ T̃ (u) ∩N} and W (u) = #{t ∈ T̃ (u) ∩ S}, by

the definition of FDR and Lemma 12 in [61], for any fixed u,

FDR(u) = E[
V (u)

V (u) +W (u)
] = E[

V (u)/L

V (u)/L+W (u)/L
]. (5.9)
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Notice that

P (Vγ(u) = V (u)) = 1− P (Vγ(u) ∕= V (u))

= 1− P (#{t ∈ Tγ(u) ∕= 0})

= 1− o(exp(−ηa2)) → 1.

Similarly, W (u) = W̃γ(u) + op(1). Then we have

V (u)

L
=

V (u)

V1,γ(u)

Vγ(u)

L
= (1 + 2cγA)E[m̃γ(U(1), u)] + op(1),

W (u)

L
=

W1(u)

Wγ(u)

Wγ(u)

L
= A+ op(1).

Hence,

V (u)/L

V (u)/L+W (u)/L
=

(1 + 2cγA)E[m̃γ(U(1), u)]

A+ (1 + 2cγA)E[m̃γ(U(1), u)]
+ op(1) ≤ 1.

By the Dominated Convergence Theorem (DCT),

limE[
V (u)/L

V (u)/L+W (u)/L
] = E[lim

V (u)/L

V (u)/L+W (u)/L
]

=
(1 + 2cγA)E[m̃γ(U(1), u)]

A+ (1 + 2cγA)E[m̃γ(U(1), u)]
.

That is, lima,L→∞ FDR(u) = (1+2cγA)E[m̃γ(U(1),u)]

A+(1+2cγA)E[m̃γ(U(1),u)]
, completing the part (i) in Theo-

rem 3.

Let G̃(u) = #{t ∈ T̃ (u)}/#{t ∈ T̃} be the empirical marginal right cdf of yγ(t)

given t ∈ T̃ . Then the BH threshold ũBH satisfies αG̃(ũBH) = kα/m̃ = Fγ(ũBH), so

ũBH is the largest u that solves the equation

αG̃(u) = Fz′′γ (u). (5.10)

We first find the limit of G̃(u).

G̃(u) =
V1,γ(u) +Wγ(u)

Vγ +Wγ

=
Vγ(u)

Vγ

Vγ

Vγ +Wγ

+
Wγ(u)

Wγ

Wγ

Vγ +Wγ

(5.11)
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By Lemma 8 in [61],
Vγ(u)/L

Vγ/L

P−→ E[Vγ(u)]

E[Vγ]
= Fz′′γ (u).

In addition,

Vγ

Vγ +Wγ

=
Vγ/L

Vγ/L+Wγ/L

P−→ E[m̃γ(U(1))](1− 2cγA)

E[m̃γ(U(1))](1− 2cγA) + A
,

and
Wγ

Ṽγ +Wγ

=
Wγ/L

Vγ/L+W1,γ/L

P−→ A

E[m̃1,γ(U(1))](1− 2cγA) + A
.

Combined with the part (4) in Lemma A3, we obtain

G̃(u)
P−→ Fγ(u)E[m̃γ(U(1))](1− 2cγA) + A

E[m̃γ(U(1))](1− 2cγA) + A
.

Plugging G̃1(u) by its limit in (5.10) and solving for u gives the deterministic solution

Fγ(u
∗
BH) =

αA

A+ E[m̃1,γ(U(1))](1− 2cγA)(1− α)
. (5.12)

Note that ũBH is the solution of αG̃(u) = Fγ(u) and u∗
BH is the solution of

limαG̃(u) = Fγ(u), as F−1
γ (·) is monotonic, ũBH

P−→ u∗
BH, i.e., for any δ > 0,

P (|ũBH − u∗
BH| ≤ δ) = 1.

For the random threshold ũBH,

FDR(ũBH) = E[
V (ũBH)

V (ũBH) +W (ũBH)
]

= E[
V (ũBH)

V (ũBH) +W (ũBH)
(|ũBH − u∗

BH| ≤ δ)]

+ E[
V (ũBH)

V (ũBH) +W (ũBH)
(|ũBH − u∗

BH| > δ)]

= E[
V (ũBH)

V (ũBH) +W (ũBH)
(|ũBH − u∗

BH| ≤ δ)] + o(1).

For V (ũBH)
V (ũBH)+W (ũBH)

(|ũBH − u∗
BH| ≤ δ), we have a lower bound:

V (ũBH)

V (ũBH) +W (ũBH)
(|ũBH − u∗

BH| ≤ δ) ≥

V (u∗
BH + δ)

V (u∗
BH − δ) +W (u∗

BH − δ)
(|ũBH − u∗

BH| ≤ δ),

57



and an upper bound:

V (ũBH)

V (ũBH) +W (ũBH)
(|ũBH − u∗

BH| ≤ δ) ≤ V (u∗
BH − δ)

V (u∗
BH + δ) +W (u∗

BH + δ)
.

As

V (u∗
BH + δ)/L → (1 + 2cγA)E[m̃0,γ(U(1), u∗

BH + δ)],

V (u∗
BH − δ)/L → (1 + 2cγA)E[m̃0,γ(U(1), u∗

BH − δ)],

by Kac-Rice formula, E[m̃0,γ(U(1), u] is continuous, thus E[m̃0,γ(U(1), u∗
BH + δ)] =

E[m̃0,γ(U(1), u∗
BH − δ)] → E[m̃0,γ(U(1), u∗

BH)].

As

E[
V (u∗

BH + δ)

V (u∗
BH − δ) +W (u∗

BH − δ)
(|ũBH − u∗

BH| ≤ δ)]

= E[
V (u∗

BH + δ)

V (u∗
BH − δ) +W (u∗

BH − δ)
]P (|ũBH − u∗

BH| ≤ δ)

= E[
V (u∗

BH + δ)

V (u∗
BH − δ) +W (u∗

BH − δ)
]

→ E[
V (u∗

BH)

V (u∗
BH) +W (u∗

BH)
],

then by DCT,

limFDR(ũBH) = limE[
V (ũBH)

V (ũBH) +W (ũBH)
]

= E[lim
V (ũBH)

V (ũBH) +W (ũBH)
] = E[

V (u∗
BH)

V (u∗
BH) +W (u∗

BH)
].

On the other hand,

W (u∗
BH + δ)/L = A+ op(1),

W (u∗
BH − δ)/L = A+ op(1).
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Similar as the arguments in part (i), we have

V (u∗
BH)

V (u∗
BH) +W (u∗

BH)
=

V (u∗
BH)/L

V (u∗
BH)/L+W (u∗

BH)/L

=
m̃0,γ(u

∗
BH)/L

m̃0,γ(u∗
BH)/L+ m̃1,γ(u∗

BH)/L

→ E[m̃0,γ(u
∗
BH)]/L

E[m̃0,γ(u∗
BH)]/L+ A

=
Fγ(u

∗
BH)E[m̃0,γ(U(1))](1− 2cγA)

Fγ(u∗
BH)E[m̃0,γ(U(1))](1− 2cγA) + A

= α
E[m̃0,γ(U(1)](1− 2cγA)

E[m̃0,γ(U(1))](1− 2cγA) + A
.

(5.13)

Therefore, by DCT,

limFDR(ũBH) → E[lim
V (u∗

BH)

V (u∗
BH) +W (u∗

BH)
] = α

E[m̃0,γ(U(1)](1− 2cγA)

E[m̃0,γ(U(1))](1− 2cγA) + A
.

5.4.2 Power Consistency

Proof of Theorem 6. By Lemma A2, for any fixed u,

Powerj,γ(u) = P (#{t ∈ T̃ (u) ∩ Sj} ≥ 1) ≥ P (#{t ∈ T̃ (u) ∩ Imode
j } ≥ 1)

≥ 1− exp(−
a2jD

2
j,γ

2σ3
) + Φ(

u− |aj|Mj,γ

σ1

) → 1.

Therefore,

Powerγ(u) =
1

J

J/

j=1

Powerj,γ(u) → 1.

For the random threshold ũBH and arbitrary δ > 0, we have

P (#{t ∈ T̃ (ũBH) ∩ Sj} ≥ 1)

= P (#{t ∈ T̃ (ũBH) ∩ Sj} ≥ 1, |ũBH − u∗
BH| ≤ δ)

+ P (#{t ∈ T̃ (ũBH) ∩ Sj} ≥ 1, |ũBH − u∗
BH| > δ)

(5.14)

As

P (#{t ∈ T̃ (ũBH) ∩ Sj} ≥ 1, |ũBH − u∗
BH| > δ) ≤ P (|ũBH − u∗

BH| > δ) = 0,
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then

P (#{t ∈ T̃ (ũBH) ∩ Sj} ≥ 1)

= P (#{t ∈ T̃ (ũBH) ∩ Sj} ≥ 1, |ũBH − u∗
BH| ≤ δ)

≥ P (#{t ∈ T̃ (u∗
BH + δ) ∩ Sj} ≥ 1, |ũBH − u∗

BH| ≤ δ)

= P (#{t ∈ T̃ (u∗
BH + δ) ∩ Sj} ≥ 1).

The last line holds because P (#{t ∈ T̃ (u∗
BH + δ) ∩ Sj} ≥ 1, |ũBH − u∗

BH| > δ) = 0.

On the other hand, similarly

P (#{t ∈ T̃ (ũBH) ∩ Sj} ≥ 1)

≤ P (#{t ∈ T̃ (u∗
BH − δ) ∩ Sj} ≥ 1, |ũBH − u∗

BH| ≤ δ)

= P (#{t ∈ T̃ (u∗
BH − δ) ∩ Sj} ≥ 1).

As δ > 0 is arbitrary, let δ → 0, by the part (3) in Lemma A3,

P (#{t ∈ T̃ (u∗
BH + δ) ∩ Sj} ≥ 1) → 1,

P (#{t ∈ T̃ (u∗
BH − δ) ∩ Sj} ≥ 1) → 1.

Therefore,

Powerj,γ(ũBH) → 1.

Then

Powerγ(ũBH) =
1

J

J/

j=1

Powerj,γ(ũBH) → 1.
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Chapter 6

STATISTICAL INFERENCE FOR IMPLICIT NETWORK STRUCTURES

USING HUB MODELS

6.1 Hub Model and Variants

6.1.1 Model Setup

First, we review the grouped data structure and then propose a modified version

of the hub model, called the asymmetric hub model. For a set of n individuals,

V = {1, . . . , n}, we observe T subsets, called groups.

In this paper, groups are treated as a random sample of size T with each group

being an observation. Each group is represented by an n length row vector G(t), where

G
(t)
i =

"
#$

#%

1 if node i appears in group t,

0 otherwise,

for i = 1, . . . , n and t = 1, . . . , T . The full dataset is a T × n matrix G with G(t)

being its rows.

Let V0 be the set of all nodes which can serve as a hub and let nL = |V0|. We

refer to V0 as the hub set and call the nodes in this set hub set member. In contrast

to the setup in [76] where the hub set contains all nodes, we assume that the hub set

contains fewer members than the whole set of nodes, i.e., nL < n. We assume in this

section that V0 is known and consider the problem of estimating V0 in Section 6.2.

For simplicity of notation, we further assume V0 = {1, . . . , nL} in this section. We

refer to nodes from nL+1 to n as followers. Given this notation, the true hub of G(t)

is represented by z
(t)
∗ which takes on values from 1, . . . , nL.
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Under the hub model, each group G(t) is independently generated by the following

two-step process:

1. The hub is sampled from a multinomial trial with parameter ρ = (ρ1, . . . , ρnL
),

i.e., P(z(t)∗ = i) = ρi, with
:nL

i=1 ρi = 1.

2. Given the hub node i, each node j appears in the group independently with

probability Aij, i.e., P(G(t)
j = 1|z(t)∗ = i) = Aij.

Note that multiple hub set members may appear in the same group although only

one of them will be the hub of that group.

A key assumption from [76] which we adopt in this paper is that a hub node must

appear in any group that it forms (i.e., Aii ≡ 1, for i = 1, . . . , nL). The parameters

for the hub model are thus

ρ = (ρ1, . . . , ρnL
),

AnL×n =

;

<<<<<<<=

1 A12 · · · A1,nL
A1,nL+1 · · · A1,n

A21 1 · · · A2,nL
A2,nL+1 · · · A2,n

...
... . . . ...

... . . . ...

AnL,1 AnL,2 . . . 1 AnL,nL+1 · · · AnL,n

>

???????@

.

As in [76], we interpret Aij as the strength of the relationship between node i and j.

We differ from [76] in that A is a non-square matrix and Aij is not necessarily equal

to Aji. The setting in this article is more natural. Social relationships are usually

non-reciprocal and in most organizations there are members who do not have the

authority or willingness to initiate groups.

We begin with the case where both G and z∗ = (z
(1)
∗ , . . . , z

(T )
∗ ) are observed. The

likelihood function is

P(G, z∗|A, ρ) =
TA

t=1

nLA

i=1

nA

j=1

B
A

G
(t)
j

ij (1− Aij)
(1−G

(t)
j )

C1(z(t)∗ =i)
nLA

i=1

ρ
1(z

(t)
∗ =i)

i ,
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where 1(·) is the indicator function. With both G and z∗ being observed, it is

straightforward to estimate A and ρ by their respective maximum likelihood esti-

mators (MLEs):

Âz∗
ij =

:
t G

(t)
j 1(z

(t)
∗ = i)

:
t 1(z

(t)
∗ = i)

, i = 1, . . . , nL, j = 1, . . . , n,

ρ̂z∗i =

:
t 1(z

(t)
∗ = i)

T
, i = 1, . . . , nL.

When the hub node of each group is latent, i.e., when z∗ is unobserved, the

estimation problem becomes challenging. Integrating out z∗, the marginal likelihood

of G is

P(G|A, ρ) =
TA

t=1

nL/

i=1

ρi

nA

j=1

A
G

(t)
j

ij (1− Aij)
1−G

(t)
j , (6.1)

which has the form of a Bernoulli mixture model. Hereafter the term hub model

refers to the case where z∗ is unobserved, unless otherwise specified.

Although less stringent than the original symmetric hub model, the asymmetric

hub model has a significant limitation: it cannot naturally transition to a null model.

In general, a null model generates data that match the basic features of the observed

data, but which is otherwise a random process without structured patterns. In other

words, a null model is the degenerate case of the model class being studied. The null

model for grouped data, naturally, generates each group by independent Bernoulli

trials. That is, if the grouping behavior is not governed by a network structure then

every node is assumed to appear independently in a group. The likelihood of G(t)

under the null model is

P(G(t)) =
nA

j=1

π
G

(t)
j

j (1− πj)
1−G

(t)
j ,

where πj is the probability that node j appears in a group.

The asymmetric hub model needs generalization to accommodate the null model

because if there is only one component in (6.1), say, node i is the only hub set member,
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the likelihood of G(t) becomes

P(G(t)) =
nA

j=1

A
G

(t)
j

ij (1− Aij)
1−G

(t)
j ,

which is not a proper null model because the assumption Aii ≡ 1 forces node i to

appear in every group.

To allow the hub model to degenerate to the null model, we add the null compo-

nent. This null component allows groups without hubs where nodes independently

appear in such groups. We call this model the hub model with the null component.

We use z
(t)
∗ = 0 to represent a hubless group.

The parameters for the hub model with the null component are ρ = (ρ0, ρ1, . . . , ρnL
),

A(nL+1)×n = [Aij]i=0,1,...,nL,j=1,...,n. Here the row indices of A start from 0, i.e., A0j ≡ πj

for j = 1, . . . , n. We will use A0j and πj interchangeably below. As before we assume

Aii ≡ 1 for i = 1, . . . , nL. The marginal likelihood of G under the new model is

P(G|A, ρ) =
TA

t=1

nL/

i=0

ρi

nA

j=1

A
G

(t)
j

ij (1− Aij)
1−G

(t)
j . (6.2)

The above model degenerates to the null model when ρ0 = 1. For simplicity of

notation, we use the same notation such as ρ and A for both the hub model with and

without the null component when the meaning is clear from context.

The new model has an advantage in data analysis in addition to the theoretical

benefit. Grouped data usually contain a number of tiny groups such as singletons and

doubletons. When fitting the asymmetric hub model to such a dataset, one sometimes

has to include these nodes in the hub set due to the one-hub restriction. Doing

so may result in an unnecessarily large hub set (see Section 4 in the Supplemental

Materials). In the hub model with the null component, these small groups can be

treated as hubless groups and the corresponding nodes may be removed from the hub

set. Therefore, the model complexity is significantly reduced.
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6.1.2 Model Identifiability

Before considering estimation of ρ and A under (6.1) and (6.2), we need to establish

the identifiability of parameters ρ and A. [76] proved model identifiability under the

symmetry condition. We seek a new set of identifiability conditions as the new models

do not assume symmetry of A.

To precisely define identifiability, let P be the parameter space of the hub model

with the null component, where P = {(ρ, A)|0 < ρi < 1, i = 0, . . . , nL;Aii = 1, i =

1, . . . , nL; 0 ≤ Aij ≤ 1, i = 0, . . . , nL, j = 1, . . . , n, i ∕= j}. The parameter space of

the hub model without the null component is similar except that the index i always

begins with 1. Let g = (g
(t)
j )t=1,...,T,j=1,...,n be any realization of G under the hub

model.

Definition 2. The parameters (ρ, A) within the parameter space P are identifiable

(under the hub model with or without the null component) if the following holds:

∀g, ∀(ρ̃, Ã) ∈ P(G = g|ρ, A) = P(G = g|ρ̃, Ã) ⇐⇒ (ρ, A) = (ρ̃, Ã).

We define identifiability in the strictest sense and the above definition does not

allow label swapping of latent classes. In cluster analysis label swapping refers to

the fact that nodes can be successfully partitioned into latent classes, but individ-

ual classes cannot be uniquely identified. For example, community detection may

correctly partition voters into communities based on their political preferences, but

cannot identify which political party each community prefers. This is not an issue in

the hub model due to the constraint Aii = 1. In addition, note that we only need to

consider identifiability for the distribution of a single observation, i.e., T = 1 because

the data are independently and identically distributed. Let g be a realization of a

single observation hereafter.

We now give the identifiability result for the asymmetric hub model.
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Theorem 7. The parameters (ρ, A) of the asymmetric hub model are identifiable

under the following conditions:

1. Aij < 1, for i = 1, . . . , nL, j = 1, . . . , n, i ∕= j;

2. for all i = 1, . . . , nL, i′ = 1, . . . , nL, i ∕= i′, the vectors (Ai,nL+1, Ai,nL+2, . . . , Ai,n)

and (Ai′,nL+1, Ai′,nL+2, . . . , Ai′,n) are not identical.

Condition (ii) implies that for any pair of nodes in the hub set, there exists a

follower with different probability of being included in groups formed by the two

hubs, respectively. All proofs are given in the Supplementary Materials.

Identifiability under the model with the null component is more difficult to prove

than the case of the asymmetric hub model due to the extra null component in the

model. In particular, there is no constraint such as πi = 1 on parameters of the null

component. The conditions for identifiability in the following theorem are; however,

as natural as those in Theorem 7.

Theorem 8. The parameters (ρ, A) of the hub model with the null component are

identifiable under conditions (i) and (ii) in Theorem 7 (index i begins with 0 in (i)),

and

3. for any i = 1, . . . , nL, the vectors (Ai,nL+1, Ai,nL+2, . . . , Ai,n) and

(πnL+1, πnL+2, . . . , πn) are different by at least two entries.

Condition (iii) adds the requirement that for any hub i, there exist two followers

which each has different probabilities of appearing in a group led by hub i than of

appearing in a hubless group. This condition implies that there should exist at least

two more nodes in the node set than in the hub set. This condition is natural if one

compares it to condition (ii), as both imply that there exists at least one more column

than rows in A.
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6.1.3 Consistency of the Maximum Profile Likelihood Estimator

We consider the asymptotic consistency for the hub model in the most general

setting. That is, we allow the number of groups (T ), the size of the node set (n),

and the size of the hub set (nL) to grow. As mentioned in Section 1, we reformulate

the problem as a clustering problem where a cluster is defined as the groups formed

by the same hub node. We borrow the techniques from the community detection

literature to prove the consistency of class labels, i.e., the consistency of hub labels.

The consistency of parameter estimation then holds as a corollary. Note that n is

necessarily to go to infinity for proving the consistency of hub labels because when n

is fixed, the posterior probability of the hub label of a group given the data cannot

concentrate on a single node. If one is only interested in the consistency of parameter

estimation, it is possible to allow n fixed. The problem degenerates to the classical

case, that is, estimating a non-growing number of parameters, and the classical theory

of MLE is expected to be applicable.

We first consider the asymmetric hub model without the null component. Let

z = (z(t))t=1,...,T be an assignment of hub labels. Given z, the log-likelihood of the

full dataset G is

LG(A|z) =
T/

t=1

n/

j=1

G
(t)
j logAz(t),j + (1−G

(t)
j ) log(1− Az(t),j). (6.3)

For i = 1, . . . , nL, let ti =
:

t 1(z
(t) = i) be the number of groups with hub i. Given

z, the MLE of A is

Âz
ij =

:
t G

(t)
j 1(z(t) = i)

ti
, for ti > 0.
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If ti = 0, define Âz
ij = 0. We will omit the upper index z when it is clear from the

context. Plugging Âij back into (6.3), we obtain the profile log-likelihood

LG(z) = max
A

LG(A|z) =
/

t

/

j

G
(t)
j log Âz(t),j + (1−G

(t)
j ) log(1− Âz(t),j).

Furthermore, let

ẑ = argmax
z

LG(z).

The framework of profile likelihoods are adopted from the community detection lit-

erature [11, 22], where z is treated as an unknown parameter and we search for the z

that optimizes the profile likelihood.

Recall that z∗ is the true class assignment. We will treat z∗ as a random vector

to maintain continuity with the previous sub-section.

Let P
(t)
j = P(G(t)

j = 1|z(t)∗ ) = A
z
(t)
∗ ,j

. Then by replacing G
(t)
j by P

(t)
j , we obtain a

”population version” of LG(z):

LP (z) =
/

t

/

j

P
(t)
j log Āz(t),j + (1− P

(t)
j ) log(1− Āz(t),j),

where

Āij =

:
t P

(t)
j 1(z(t) = i)

ti
, for ti > 0. (6.4)

Otherwise, define Āij = 0. Let Te =
:

t 1(z
(t)
∗ ∕= ẑ(t)) be the number of groups with

incorrect hub labels. As discussed previously, we do not allow label swapping in the

definition of Te. Our aim is to prove

Te/T = op(1), as nL → ∞, n → ∞, T → ∞.

We make the following assumptions throughout the proof of consistency under the

asymmetric hub model:
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H1: Tcmin/nL ≤ ti∗ ≤ Tcmax/nL for i = 1, . . . , nL, where ti∗ =
:

t 1(z
(t)
∗ = i) and

cmin and cmax are constants.

H2: Aij = sijd for i = 1, . . . , nL, j = 1, . . . , n and i ∕= j where sij are unknown

constants satisfying 0 < smin ≤ sij ≤ smax < ∞ while d goes to zero as n goes

to infinity.

H3: There exists a set Vi ⊂ {nL + 1, . . . , n} for i = 1, . . . , nL with 1 |Vi| ≥ vn/nL

such that τ = mini,i′=1,...,nL,i ∕=i′,j∈Vi
(sij − si′j) is bounded away from 0.

H4: Aii′ ≤ c0/nL for i = 1, . . . , nL, i′ = 1, . . . , nL, i ∕= i′, where c0 is a positive

constant.

H1 ensures that no hub set members appear too infrequently. The assumption in

fact automatically holds with high probability if (n2
L log nL)/T = o(1), which can be

proved by applying Hoeffding’s inequality. Here we directly assume the condition

for simplicity. H2 allows the expected density of A to shrink as n grows, which is

a common setup in the community literature. H3 implies that for every hub set

member there exists a set of nodes that are more likely to join groups initiated by

this particular hub set member than others. The size of this set is influenced by v

and the magnitude of this preference is influenced by d (since Aij = dsij). The decay

rates of d and v, as well as the growth rates of nL, n and T , will be specified in

the following consistency results. H4 is a technical assumption that prevents label

swapping from influencing the consistency results.

Now we state a lemma that Te/T is bounded by LP (z∗)− LP (ẑ). That is, z∗ is a

well-separated point of maximum of LP . The reader is referred to Section 5.2 in [66]

for the classical case of this concept.
1| · | is the cardinality of a set.

69



Lemma 5. Under H1 – H4, for some positive constant δ,

P
8

δnL

dvnT
(LP (z∗)− LP (ẑ)) ≥

Te

T

9
→ 1, as nL → ∞, n → ∞, T → ∞.

We consider the most general setup in which nL, n, and T all go to infinity in the

main text. For the easier case of nL being fixed, we give the corresponding results

(Theorem 3′ and 4′ for the asymmetric hub model and Theorem 5′ and 6′ for the hub

model with the null component) in the Supplementary Materials. Based on Lemma

5, we establish label consistency:

Theorem 9. Under H1 – H4, if n2
L log T/(dTv) = o(1), (log d)2n2

L log nL/(dnv
2) =

o(1), and (log T )2n2
L log nL/(dnv

2) = o(1), then

Te/T = op(1), as nL → ∞, n → ∞, T → ∞.

The next result addresses the consistency for parameter estimation of A, which is

based upon a faster decay rate of Te/T than Theorem 9 (see the proof of Theorem 10

in the Supplemental Materials for details).

Theorem 10. Under H1 – H4, if nL log n/T = o(1), n3
L log T/(dTv) = o(1),

(log d)2n4
L log nL/(dnv

2) = o(1), and (log T )2n4
L log nL/(dnv

2) = o(1), then

max
i∈{1,...,nL},j∈{1,...,n}

+++Âẑ
ij − Aij

+++ = op(1), as nL → ∞, n → ∞, T → ∞.

We now establish the consistency for the hub model with the null component. The

proofs are more challenging due to the extra null component. We make the following

assumptions throughout the proofs, parallel to H1 – H4:

H∗
1 : Tcmin/nL ≤ ti∗ ≤ Tcmax/nL for i = 0, . . . , nL, where ti∗ =

:
t 1(z

(t)
∗ = i) and

cmin and cmax are constants.
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H∗
2 : Aij = sijd for i = 0, . . . , nL, j = 1, . . . , n and i ∕= j where sij are unknown

constants satisfying 0 < smin ≤ sij ≤ smax < ∞ while d goes to zero as n goes

to infinity.

H∗
3 : There exists a set Vi ⊂ {nL+1, . . . , n} for i = 1, . . . , nL with |Vi| ≥ vn/nL such

that τ = mini=1...,nL,i′=0,...,nL,i ∕=i′,j∈Vi
(sij − si′j) is bounded away from 0.

H∗
4 : Aii′ ≤ c0/nL for i = 0, . . . , nL, i′ = 1, . . . , nL, i ∕= i′, where c0 is a positive

constant.

The main difference between the two sets of assumptions is on the range of the indices.

For example, index i is from 0 to nL in H∗
1 . In particular, t0∗ is the true number of

hubless groups. Index i starts from 1 in H∗
3 because we only define the set Vi for each

hub set member i but not for the hubless case.

We need a result on the separation of LP (z∗) from LP (ẑ) which is similar to Lemma

5. However, the technique in the original proof cannot be directly applied to the new

model. A key step in the proof of Lemma 5 relies on the fact that we can obtain a

non-zero lower bound for the number of correctly classified groups with node i as the

hub node in the asymmetric hub model. Specifically, let tii′ =
:

t 1(z
(t)
∗ = i, ẑ(t) = i′)

for i = 0, . . . , nL, i′ = 0, . . . , nL. Thus, tii is the number of correctly classified groups

where node i is the hub node. For the asymmetric hub model, we obtain a lower

bound for tii/ti∗ (i = 1, . . . , nL) from the fact that a node cannot be labeled as the

hub of a particular group if the node does not appear in the group. This is due to the

assumption Aii ≡ 1 for i = 1, . . . , nL. For the hub model with the null component,

the lower bound for tii/ti∗ cannot be proved by the same technique because all groups

can be classified as hubless groups without violating the assumption Aii ≡ 1.

We take a different path in the proof to overcome this issue and other technical

difficulties due to the null component. We first bound ti0/ti∗ for i = 1, . . . , n.
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Lemma 6. Under H∗
1 – H∗

4 , if n4
L log T/(dTv) = o(1), (log d)2n6

L log nL/(dnv
2) = o(1)

and (log T )2n6
L log nL/(dnv

2) = o(1), then for all η > 0,

ti0
ti∗

≤ η, i = 1, . . . , nL,

with probability approaching 1.

Based on the result in Lemma 6, we establish the label consistency for the hub

model with the null component.

Theorem 11. Under the conditions of Lemma 6,

Te

T
= op(1), as nL → ∞, n → ∞, T → ∞.

We conclude this section by the result on consistency for parameter estimation of

A under the hub model with the null component.

Theorem 12. Under H∗
1 – H∗

4 , if nL log n/T = o(1), n5
L log T/(dTv) = o(1),

(log d)2n8
L log nL/(dnv

2) = o(1) and (log T )2n8
L log nL/(dnv

2) = o(1), then

max
i∈{0,...,nL},j∈{1,...,n}

+++Âẑ
ij − Aij

+++ = op(1), as nL → ∞, n → ∞, T → ∞.

6.2 Hub Model with the Null Component and Unknown Hub Set

6.2.1 Model Setup

The asymmetric hub model (with or without the null component) assumes that

the hub set is a subset of the nodes. The previous section addressed the estimation

problem when the hub set is known, but in practice, the hub set is usually not known

a priori. In this section, we study the selection of the hub set under the hub model

with the null component.

Recall that V0 denotes the hub set with |V0| = nL. In the following, we no

longer assume V0 = {1, . . . , nL} and the goal is to estimate V0. We begin with a
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known potential hub set, denoted by V̄0, which is subset containing all nodes that can

potentially serve as hub set members. One might assume that the ideal V̄0 would

be the same as the entire node set V ; however, to prove identifiability of parameters

when the hub set is unknown (see Theorem S1 in the Supplemental Materials), we

require the potential hub set V̄0 to be smaller than V . In practice, this means we have

prior knowledge that certain nodes do not play an important role in group formation

and are therefore not included in the hub set. Let M = |V̄0| with nL < M < n.

Without loss of generality, assume V̄0 = {1, . . . ,M}.

The data generation mechanism is the same as the hub model with the null com-

ponent. The parameters are ρ = (ρ0, ρ1, . . . , ρM), A(M+1)×n = [Aij]i=0,1,...,M,j=1,...,n.

For i = 1, . . . ,M , ρi = 0 if i /∈ V0. The corresponding {Aij}j=1,...,n therefore do not

play a role in the model and will not be estimated. If all ρi = 0, i = 1, . . . ,M ,

the model degenerates to the null model in which nodes appear independently in all

groups. The marginal likelihood of G is

P(G|A, ρ) =
TA

t=1

M/

i=0

ρi

nA

j=1

A
G

(t)
j

ij (1− Aij)
1−G

(t)
j .

6.2.2 Penalized Likelihood

We propose to maximize the following penalized log-likelihood function to estimate

V0:

L(A, ρ)− Tλ
M/

i=1

[log(ε+ ρi)− log ε], (6.5)

subject to ρi ≥ 0, i = 0, 1, . . . ,M,

M/

i=0

ρi = 1,

where

L(A, ρ) = logP(G|A, ρ) =
T/

t=1

log

0
M/

i=1

ρi

nA

j=1

A
G

(t)
j

ij (1− Aij)
1−G

(t)
j

5
.

73



λ is the tuning parameter which controls the penalty on the mixing weights. ε is a

small positive number. We use ε = 10−8 in all numerical studies. The estimated hub

set V0 includes node i (i = 1, . . . ,M) if and only if ρ̂i ∕= 0 in the maximizer of (6.5).

The penalty function in (6.5) was inspired by a similar penalty function proposed

by Huang et al. [41] for selecting the number of components in Gaussian mixture

models. However, our penalty function has a subtle but substantial difference: the

hub node index m in the penalty function begins with 1 instead of 0 – that is, we

do not penalize the coefficient of the null component ρ0. The model is therefore

penalized toward the null model, i.e., the independent Bernoulli model, when λ is

sufficiently large. The penalty function uses log(ε + ρi) instead of log ρi as in [41],

because log(ε+ρi) will not go to infinity when ρi goes to zero, which makes it possible

for ρ̂i to reach exactly zero.

Maximizing the Lagrangian form of the penalized log-likelihood function (6.5) is

equivalent to maximizing L(A, ρ) under the following constraints

ρi ≥ 0, i = 0, 1, . . . ,M,
M/

i=0

ρi = 1,
M/

i=1

[log(ε+ ρi)− log ε] ≤ t.

To show how the constraints can result in sparse solutions, we consider a toy model

containing only two nodes, both of which are potential hub set members, that is,

M = 2. The constraints become

ρ1 ≥ 0, ρ2 ≥ 0, ρ1 + ρ2 ≤ 1, (6.6)

log(1 +
ρ1
ε
) + log(1 +

ρ2
ε
) ≤ t.

Figure 6.1 shows the feasible regions of the log penalties for t = 3, 4, 5 and ε = 0.01,

where the crosses mark the intersection of log(1 + ρ1/ε) + log(1 + ρ2/ε) = t and the

axes, and the dashed line indicates ρ1 + ρ2 = 1. For t = 3 and 4, ρ̂1 (resp. ρ̂2) can

potentially reach 0 with ρ̂2 (resp. ρ̂1) being non-zero, indicated by the cross markers
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Figure 6.1: Feasible regions of the log penalty with different values of t.

within the region defined by (6.6). For t = 5 (corresponding to a smaller λ), this

cannot happen because log(1 + ρ1/ε) + log(1 + ρ2/ε) = 5 intersects with the axes

outside of the region defined by (6.6).

6.2.3 Algorithm

We propose a modified expectation-maximization (EM) algorithm for optimizing

(6.5).

Modified EM Algorithm

Iteratively update Â and ẑ by the following E-step and M-step until convergence.

Define hti = P(z(t) = i|G, A) for t = 1, . . . , T and i = 0, . . . ,M .

E-step: Given Â and ρ̂,

ĥti =
ρ̂iP(G(t)|z(t) = i, Â)

:M
i=0 ρ̂iP(G(t)|z(t) = i, Â)

, for i = 0, . . . ,M.

M-step: For i such that ρ̂i ∕= 0, given ĥti,

Âij =

:T
t=1 ĥtiG

(t)
j:T

t=1 ĥti

, for j = 1, . . . , n.

75



Update ρ̂ by solving the following optimization problem:

ρ̂ = argmax
ρ

L(Â, ρ)− Tλ

M/

i=1

log(ε+ ρi), (6.7)

subject to ρi ≥ 0, i = 0, . . . ,M,

M/

i=0

ρi = 1.

The only difference between modified EM and the standard EM algorithm is the up-

date of ρ̂ in the M-step. In the standard EM algorithm for the likelihood without the

penalty term, ρ̂i has a closed-form solution, that is, ρ̂i =
:T

t=1 ĥti/T, i = 0, . . . ,M .

By contrast, (6.7) is a non-linear optimization problem with inequality constraints,

which we use a numerical technique – the augmented Lagrange multiplier ([33])

method to solve the problem. In addition, since (6.5) is a non-convex optimiza-

tion problem, we use multiple different initial values (20 random initial values are

used in this paper) to help guard against local maxima.
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Chapter 7

NUMERICAL STUDIES ON HUB MODELS

7.1 Numerical Studies

7.1.1 Numerical Studies When the Hub Set is Known

In this sub-section, we examine the performance of the estimators for the asym-

metric hub model and the hub model with the null component when the hub set is

known, under varying nL, n and T . Hub set selection will be considered in the next

sub-section. The parameters are estimated by the standard EM algorithm and the

estimated hub labels are determined according to the largest posterior probabilities.

For the asymmetric hub model, let ρi be generated independently from U(0, 1) and

renormalize ρi such that
:nL

i=1 ρi = 1. Let the size of the node set, n, be 100 or 500.

We partition the follower set {nL+1, . . . , n} into nL non-overlapping sets V1, . . . , VnL
.

Each set Vi is the set of followers with a preference for hub set member i over other

hub set members. As in Theorem 5, we assume different ranges of probabilities of

joining a group for followers that prefer a specific hub set member than for followers

which do not prefer that member. Specifically, for j ∈ Vi, the parameters Aij are

generated independently from U(0.2, 0.4), and for j /∈ Vi, the parameters Aij are

generated independently from U(0, 0.2). The numerical results for sparser A will be

given in Section 4 of the Supplemental Materials. For clarification, we will not use

prior information about how A was generated in the estimating procedure. That

is, we still treat A as unknown fixed parameters in the estimation. We generate

these probabilities from uniform distributions for the sole purpose of adding more

variations to the parameter setup. In each setup, we consider four different sample
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sizes, T = 500, 1000, 1500 and 2000, and two different values of the size of hub set,

nL = 10 and 20.

For the hub model with the null component, let the probability of hubless groups

ρ0 = 0.2, and let ρi be generated independently from U(0, 1) and renormalize ρi

such that
:nL

i=1 ρi = 0.8 for i = 1, . . . , nL. For a hubless group, each node will

independently join the group with probability πj ≡ 0.05 for j = 1, . . . , n. The setups

on nL, n, {V1, . . . , VnL
}, A, nL and T are identical to the asymmetric hub model case.

Table 7.1: Asymmetric hub model results. Mis-labels: the fraction of groups with

incorrect hub labels. RMSE(Âij): average RMSEs when the hub labels are unknown.

RMSE*: average RMSEs when the hub labels are known.

nL = 10 n = 100 n = 500

Mis-labels RMSE(Âij) RMSE* Mis-labels RMSE(Âij) RMSE*

T = 500 0.0479 0.0501 0.0475 0.0011 0.0483 0.0483

T = 1000 0.0335 0.0344 0.0332 0.0000 0.0337 0.0337

T = 1500 0.0295 0.0280 0.0272 0.0000 0.0274 0.0274

T = 2000 0.0262 0.0243 0.0236 0.0000 0.0235 0.0235

nL = 20 n = 100 n = 500

Mis-labels RMSE(Âij) RMSE* Mis-labels RMSE(Âij) RMSE*

T = 500 0.2396 0.0791 0.0662 0.0605 0.0686 0.0673

T = 1000 0.1528 0.0548 0.0463 0.0096 0.0466 0.0463

T = 1500 0.1186 0.0433 0.0375 0.0029 0.0380 0.0379

T = 2000 0.0998 0.0366 0.0325 0.0013 0.0328 0.0328

Table 7.1 and 7.2 show the performance of the estimators for the asymmetric hub

model and the hub model with the null component, respectively. The first measure of
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Table 7.2: Hub model with null component results. Mis-labels: the fraction of groups

with incorrect hub labels. RMSE(Âij): average RMSEs when the hub labels are

unknown. RMSE*: average RMSEs when the hub labels are known.

nL = 10 n = 100 n = 500

Mis-labels RMSE(Âij) RMSE* Mis-labels RMSE(Âij) RMSE*

T = 500 0.0842 0.0542 0.0511 0.0058 0.0516 0.0516

T = 1000 0.0595 0.0376 0.0357 0.0006 0.0362 0.0362

T = 1500 0.0512 0.0308 0.0294 0.0001 0.0292 0.0292

T = 2000 0.0489 0.0264 0.0253 0.0001 0.0253 0.0253

nL = 20 n = 100 n = 500

Mis-labels RMSE(Âij) RMSE* Mis-labels RMSE(Âij) RMSE*

T = 500 0.3206 0.0839 0.0734 0.1146 0.0732 0.0719

T = 1000 0.2102 0.0607 0.0506 0.0229 0.0510 0.0509

T = 1500 0.1598 0.0488 0.0411 0.0076 0.0418 0.0416

T = 2000 0.1419 0.0414 0.0355 0.0022 0.0359 0.0359

performance we are interested in is the proportion of mislabeled groups, Te/T . As the

proportion of mislabeled groups approaches zero, we expect the parameter estimates

to approach the accuracy achievable if the hub nodes are known. The second measure

of performance is the RMSE(Âij). As a reference point, we also provide the RMSE

achieved when we treat the hub nodes as known, RMSE*. All results are averaged

by 1000 replicates.

From the tables, the estimators for the asymmetric hub model generally outper-

form those for the hub model with the null component as the latter is a more complex

model. The patterns within the two tables are, however, similar. First, the perfor-
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mance becomes better as the sample size T grows, which is in line with common

sense in statistics. Second, the performance becomes worse as nL grows because nL

is the number of components in the mixture model, and thus a larger nL indicates

a more complex model. Third, the effect of n is more complicated: the RMSE* for

the case that hub labels are known slightly increases as n grows because the model

contains more parameters. What we are interested in is the case where hub labels

are unknown, and this is what our theoretical studies focused on. In this case, the

RMSE(Âij) significantly improves as n grows. This is because the clustered pattern

becomes clearer as the number of followers increases, which is in line with the label

consistency results.

7.1.2 Numerical Results for Hub Set Selection

We study the performance of hub set selection by the penalized log-likelihood

(6.5), which is optimized by the modified EM algorithm (Algorithm 1). We use the

same settings as the hub model with the null component in the previous sub-section.

The only difference is we need to specify the potential hub set V̄0 = {1, . . . ,M}: we

consider M = 80 for n = 100 and M = 80, 200 and 300 for n = 500. In each setup,

AIC and BIC are used to select the tunning parameter, λ. Let DV0 be the estimate of

V0. The performance of hub set selection is evaluated by the true positive rate (TPR)

and the false positive rate (FPR), where

TPR =

:M
i=1 1(i ∈ V0, i ∈ DV0)

nL

, FPR =

:M
i=1 1(i /∈ V0, i ∈ DV0)

M − nL

.

Table 7.3 shows the TPR and FPR for hub set selection under various settings.

The patterns in the table with respect to nL, n and T are similar to Table 7.1 and

7.2. That is, the performance of hub set selection is better for smaller nL, larger n,

and/or larger T . Among all settings, the model with nL = 10, T = 2000 and n = 500
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Table 7.3: TPR and FPR for hub set selection.

nL T Criteria

n = 100 n = 500

M = 80 M = 80 M = 200 M = 300

TPR FPR TPR FPR TPR FPR TPR FPR

10 1000
AIC 0.6438 0.0719 0.9460 0.0128 0.7338 0.0081 0.6986 0.0128

BIC 0.5787 0.0283 0.9381 0.0127 0.6831 0.0042 0.6472 0.0081

20 1000
AIC 0.5140 0.1410 0.6972 0.0249 0.4831 0.0229 0.4780 0.0370

BIC 0.5100 0.1350 0.6859 0.0239 0.4494 0.0132 0.4673 0.0318

10 2000
AIC 0.8613 0.0187 0.9909 0.0010 0.9130 0.0018 0.8585 0.0015

BIC 0.7675 0.0043 0.9883 0.0005 0.8956 0.0007 0.8400 0.0004

20 2000
AIC 0.6560 0.1050 0.8551 0.0074 0.6770 0.0155 0.6250 0.0140

BIC 0.4438 0.0344 0.7884 0.0034 0.5848 0.0058 0.5519 0.0056

is the simplest for hub set selection purpose, which has the largest TPR and smallest

FPR with λ selected by either AIC or BIC. Furthermore, the selection performance

becomes worse as M grows because a larger M corresponds to a larger potential hub

set and hence a larger candidate set of models.

7.1.3 Additional Simulation Results

To further study the performance of the estimates under the setting of sparse A, we

introduce a scale factor α to control the density of A. Specifically, Aij ∼ U(0.2α, 0.4α)

for j ∈ Vi and Aij ∼ U(0, 0.2α) for j /∈ Vi, where α = 0.1, 0.2, . . . , 1. We study how

the ratios of the RMSEs when the hub labels are unknown to those when the hub

labels are known i.e., RMSE(Âij)/RMSE∗, change with the degree of sparsity. We

present the results for the case when n = 100. Other simulation settings are the same

with those in Section 4.1.
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Figure 7.1: The asymmetric hub model results. The ratio is RMSE(Âij)/RMSE∗.

Figure 7.1 and 7.2 show the results of ratio versus α for the asymmetric hub model

and the hub model with the null component, respectively. The overall ratio typically

first increases and then decreases as α decreases. This implies that estimators for both

models perform well when A is dense, and then the problem becomes more difficult

for the estimator with unknown hub labels as A becomes sparse, but eventually when

A becomes too sparse, the matrix A cannot be well estimated even for the case of

known hub labels (i.e., the baseline).

Moreover, Figure 7.1 and 7.2 show that the turning point, i.e., the maximizer of

the ratio, comes earlier when A is more difficult to estimate, which corresponds to

the cases with larger nL, smaller T , and the hub model with the null component.

The turning point corresponds to the α value that gives the largest gap between the

RMSE for the estimator with unknown hub labels and the baseline, and when the
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Figure 7.2: The hub model with the null component results. The ratio is

RMSE(Âij)/RMSE∗.

settings become more difficult, the estimator with unknown hub labels starts to face

challenges on a denser graph.

7.1.4 Analysis of Extended Bakery Data

We apply the hub model with the null component to the extended bakery dataset

(http://wiki.csc.calpoly.edu/datasets/wiki/ExtendedBakery) to find the hub

items and relationships among all the items. The dataset is a collection of purchases

in a chain of bakery stores. The stores provide 50 items including 40 bakery goods

(1-40) and 10 drinks (41-50). The goods can be divided into five categories: cakes

(1-10), tarts (11-20), cookies (21-30) and pastries (31-40). Each purchase contains a

collection of items bought together.
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The extended bakery data was used as a benchmark dataset to test certain machine

learning methods. For example, [2] used association rule mining to extract the hidden

relationships of items and [55] applied a multinomial logit (MNL) model to address

the problem of collaboratively learning representations of the users and the items in

recommendation systems.

In our experiment, we use the 5,000 receipts in the dataset. Since drinks are typi-

cally purchased as affiliated items of food, we use the 40 bakery goods as the potential

hub set, i.e., V̄0 = {1, . . . , 40}. We use λ = 0.025, 0.030, . . . , 0.045 to estimate the hub

set.

Table 7.4: Estimated hub set for extended bakery data

λ Selected hub nodes

0.025 1 4 5 6 12 13 25 29 33

0.030 1 4 5 15 23 29 33

0.035 5 15 23 29 34

0.040 15 16 23 29 34

0.045 15 23 29 34

Table 7.4 shows the estimated hub sets. As λ increases, nodes are removed gradu-

ally from the hub set. According to the BIC criteria, the optimal λ is 0.045, at which

the estimated hub set contains v15, v23, v29 and v34, where v15 is tart, v23 and v29 are

cookies, and v34 is pastry.

In addition, if the data was fitted by the hub model without the null component,

then the entire node set has to be used as the hub set. In fact, each of the 50 items

was purchased individually for at least once, and therefore must serve as a hub if

the hubless groups are not assumed. When the hub model with the null component
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is used, the corresponding items may be removed from the hub set, which greatly

reduces the model complexity.

7.2 Analysis of Passerine Data

We apply the hub model with the null component to analyze a dataset on grouping

behavior of passerines [62]. The dataset includes 63 color-marked passerines in Aus-

tralia for daily observations, which are 2 scarlet robins (Petroica boodang), 13 striated

thornbills (Acanthiza lineata), 26 buff-rumped thornbills (Acanthiza reguloides), 14

yellow-rumped thornbills (Acanthiza chrysorrhoa), 4 speckled warblers (Chthonicola

sagittatus), 2 white-throated treecreepers (Cormobates leucophaea), one white-eared

honeyeater (Lichenostomous leucotis), and one unkown bird. A group is defined as in-

dividuals observed together in a flock, and in total there are 109 groups, i.e., T = 109.

Species information is summarized in Table 7.5.

Table 7.5: Summary of passerine species

Species Binomial Nomenclature Number Label

scarlet robin Petroica boodang 2 v1 − v2

striated thornbill Acanthiza lineata 13 v3 − v15

buff-rumped thornbill Acanthiza reguloides 26 v16 − v41

yellow-rumped thornbill Acanthiza chrysorrhoa 14 v42 − v55

speckled warbler Chthonicola sagittatus 4 v56 − v59

white-throated treecreeper Cormobates leucophaea 2 v60 − v61

white-eared honeyeater Lichenostomus leucotis 1 v62

unknown unknown 1 v63

In the following analysis, we set the potential hub set V̄0 with M = 55 as the col-

lection of birds in the first four species (Table 7.5) and the other eight birds belonging

to small-scale species as followers 1 . Table 7.6 shows the estimated hub set under
1Nodes v1 and v2 appear frequently so we include them in the poential hub set
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Table 7.6: Estimated hub set for passerine data

λ v7 v9 v10 v20 v30 v33 v37 v42 v46

0.045

0.050

0.055

0.060

0.065

various λ values where a grey block indicates that a node is included in the hub set.

As λ increases, nodes are removed gradually from the hub set and at λ = 0.065, the

hub model degenerates to the null model where the hub set is empty. The BIC selects

λ = 0.055, where the estimated hub set includes v9, v30 and v42, each belonging to

one of the three large-scale species.

In addition, we bootstrap 1,000 samples from the original data to evaluate the

stability of the proposed hub set selection method. Specifically, we perform our

method on each bootstrapped sample under λ from 0.045 to 0.065 and compute the

proportion of each node being selected as a hub set member. Table 7.7 demonstrates

the stability of the proposed method: the majority of the birds are not selected as a

hub set member in any bootstrap sample, and v9, v30 and v42, the three birds identified

from the original data dominate in the selection proportions across the bootstrapped

samples.
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Table 7.7: Selection proportion from bootstrap

λ v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

0.045 0 0 0 0.045 0 0 0.81 0 0.995 0.870 0 0 0 0 0

0.050 0 0 0 0.050 0 0 0 0 1 0.600 0 0 0 0 0

0.055 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0.060 0 0 0 0.005 0 0 0 0 0.965 0 0 0 0 0 0

0.065 0 0 0 0 0 0 0 0 0 0.005 0 0 0 0 0

λ v16 v17 v18 v19 v20 v21 v22 v23 v24 v25 v26 v27 v28 v29 v30

0.045 0.01 0 0 0 0.810 0 0 0 0.010 0.095 0.115 0.025 0 0 0.890

0.050 0 0 0 0 0.600 0 0 0 0.015 0.075 0.100 0.015 0 0 0.625

0.055 0 0 0 0 0.005 0 0 0 0 0.005 0 0.005 0 0 0.945

0.060 0 0 0 0 0.025 0 0 0 0 0 0.015 0.005 0 0 0.830

0.065 0 0 0 0 0.010 0 0 0 0 0 0.005 0 0 0 0.015

λ v31 v32 v33 v34 v35 v36 v37 v38 v39 v40 v41 v42 v43 v44 v45

0.045 0 0 0.825 0 0 0 0.830 0 0 0 0 0.965 0 0.005 0

0.050 0 0 0.625 0 0 0 0.105 0 0 0 0 0.935 0 0 0

0.055 0 0 0.010 0 0 0 0.015 0 0 0 0 0.985 0 0 0

0.060 0 0 0.040 0 0 0 0.020 0 0 0 0 0.910 0 0 0

0.065 0 0 0.045 0 0 0 0.050 0 0 0 0 0.080 0 0 0

λ v46 v47 v48 v49 v50 v51 v52 v53 v54 v55

0.045 0.845 0 0 0 0 0 0 0 0 0

0.050 0.235 0 0 0 0 0 0 0 0 0

0.055 0 0 0 0 0 0 0 0 0 0

0.060 0 0 0 0 0 0 0 0 0 0

0.065 0 0 0 0 0 0 0 0 0 0
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Chapter 8

CONCLUSION AND DISCUSSION

In this project, we studied the theoretical properties of the hub model and its variants

from the perspective of Bernoulli mixture models. The contributions of the paper are

four-fold. First, we proved the model identifiability of the hub model. Bernoulli

mixture models are a notoriously difficult model to prove identifiability on, especially

under mild conditions. Second, we proved the label consistency and estimation con-

sistency of the hub model. Third, we generalized the hub model by adding the null

component that allows nodes to independently appear in hubless groups. The new

model can naturally degenerate to the null model – the Bernoulli product. We also

proved identifiability and consistency of the newly proposed model. Finally, we pro-

posed a penalized likelihood method to select the hub set, which estimates not only

the size of the hub set, nL, but also which nodes belong to the set. The new method

can handle data with no prior knowledge of the hub set and hence greatly expands

the domain of the applicability of the hub model.

A natural constraint from [76] that we apply in this paper is Aii = 1 (i =

1, . . . , nL), which turns out to be a key condition for ensuring model identifiabil-

ity and avoiding the label swapping issue in the proof of consistency. On the other

hand, this constraint prevents the asymmetric hub model from naturally degenerating

to the null model because one node always appear in every group when there is only

one component in the hub model, which motivated adding the null component to the

model.

We consider the profile likelihood estimator in the proofs of consistency. The

marginal likelihood MLE could also be studied using a different framework. [12] and
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[13] proved the consistency of the marginal likelihood MLE under the block models for

undirected and directed networks, respectively. Their approach is to first prove the

consistency of the MLE under the complete data likelihood and to further show that

the marginal likelihood is asymptotically equivalent to the complete data likelihood,

which implies the consistency of the MLE under the marginal likelihood. We plan to

extend the above framework to the hub model for future works. Moreover, we plan

to study the model selection consistency of the proposed hub set selection method,

especially when nL, n and T are all allowed to grow. What we would also like to

explore is to go beyond the independence assumption and to develop theories and

model selection methodologies for correlated or temporally dependent groups [75].

Finally, we briefly review other work on Bernoulli mixture models. [36] first showed

that finite mixtures of Bernoulli products are not identifiable. [3] introduced and stud-

ied the concept of generic identifiability, which means that the set of non-identifiable

parameters has Lebesgue measure zero. Identifiability under another class of mix-

ture Bernoulli models has been recently studied [71, 35]. This class of models, for

example, the DINA (Deterministic Input, Noisy “And” gate) model, has applications

in psychological and educational research. The motivation, the model setup, and the

proof techniques presented in this paper are all different from previous research, and

the result of neither implies the other.
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Chapter 9

TECHNICAL DETAILS OF STATISTICAL INFERENCE FOR IMPLICIT

NETWORK STRUCTURES

9.1 Proofs in Chapter 6.1.2

Proof of Theorem 7. Let (ρ̃, Ã) ∈ P be a set of parameters such that P(g|ρ, A) =

P(g|ρ̃, Ã) for all g. For all i = 1, . . . , nL, k = nL + 1, . . . , n, consider the probability

that only i appears under parameterizations (ρ, A) and (ρ̃, Ã), respectively

ρ̃i(1− Ãik)
A

j=1,...,n,j ∕=i,j ∕=k

(1− Ãij) = ρi(1− Aik)
A

j=1,...,n,j ∕=i,j ∕=k

(1− Aij),

and the probability that only i and k appear

ρ̃iÃik

A

j=1,...,n,j ∕=i,j ∕=k

(1− Ãij) = ρiAik

A

j=1,...,n,j ∕=i,j ∕=k

(1− Aij).

As Aij < 1 in condition (i), dividing the second equation by the first, we obtain

Ãik/(1−Ãik) = Aik/(1−Aik) and hence Ãik = Aik for i = 1, . . . , nL, k = nL+1, . . . , n.

For any i = 1, . . . , nL, i′ = 1, . . . , nL, i ∕= i′, suppose that k is the follower such

that Aik ∕= Ai′k. Consider the probability that only i and i′ appear

ρ̃iÃii′(1− Ãik)
A

j ∕=i,j ∕=i′,j ∕=k

(1− Ãij) + ρ̃i′Ãi′i(1− Ãi′k)
A

j=1,...,n,j ∕=i,j ∕=i′,j ∕=k

(1− Ãi′j)

=ρiAii′(1− Aik)
A

j ∕=i,j ∕=i′,j ∕=k

(1− Aij) + ρi′Ai′i(1− Ai′k)
A

j=1,...,n,j ∕=i,j ∕=i′,j ∕=k

(1− Ai′j),

and the probability that i, i′ and k appear

ρ̃iÃii′Ãik

A

j=1,...,n,j ∕=i,j ∕=i′,j ∕=k

(1− Ãij) + ρ̃i′Ãi′iÃi′k

A

j=1,...,n,j ∕=i,j ∕=i′,j ∕=k

(1− Ãi′j)

=ρiAii′Aik

A

j=1,...,n,j ∕=i,j ∕=i′,j ∕=k

(1− Aij) + ρi′Ai′iAi′k

A

j=1,...,n,j ∕=i,j ∕=i′,j ∕=k

(1− Ai′j).
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As Ãik = Aik for i = 1, . . . , nL, k = nL + 1, . . . , n, the above two equations become

ρ̃iÃii′(1− Aik)
A

j ∕=i,j ∕=i′,j ∕=k

(1− Ãij) + ρ̃i′Ãi′i(1− Ai′k)
A

j=1,...,n,j ∕=i,j ∕=i′,j ∕=k

(1− Ãi′j)

=ρiAii′(1− Aik)
A

j ∕=i,j ∕=i′,j ∕=k

(1− Aij) + ρi′Ai′i(1− Ai′k)
A

j=1,...,n,j ∕=i,j ∕=i′,j ∕=k

(1− Ai′j),

(9.1)

ρ̃iÃii′Aik

A

j ∕=i,j ∕=i′,j ∕=k

(1− Ãij) + ρ̃i′Ãi′iAi′k

A

j=1,...,n,j ∕=i,j ∕=i′,j ∕=k

(1− Ãi′j)

=ρiAii′Aik

A

j ∕=i,j ∕=i′,j ∕=k

(1− Aij) + ρi′Ai′iAi′k

A

j=1,...,n,j ∕=i,j ∕=i′,j ∕=k

(1− Ai′j). (9.2)

(9.1) and (9.2) can be viewed as a system of linear equations with unknown variables

ρ̃iÃii′

A

j=1,...,n,j ∕=i,j ∕=i′,j ∕=k

(1− Ãij),

and

ρ̃i′Ãi′i

A

j=1,...,n,j ∕=i,j ∕=i′,j ∕=k

(1− Ãi′j).

By condition (ii), as Aik ∕= Ai′k, the system has full rank and hence has one and only

one solution:

ρ̃iÃii′

A

j=1,...,n,j ∕=i,j ∕=i′,j ∕=k

(1− Ãij) = ρiAii′

A

j=1,...,n,j ∕=i,j ∕=i′,j ∕=k

(1− Aij),

ρ̃i′Ãi′i

A

j=1,...,n,j ∕=i,j ∕=i′,j ∕=k

(1− Ãij) = ρi′Ai′i

A

j=1,...,n,j ∕=i,j ∕=i′,j ∕=k

(1− Ai′j). (9.3)

Combining (9.3) with

ρ̃i(1− Ãii′)
A

j=1,...,n,j ∕=i,j ∕=i′,j ∕=k

(1− Ãij) = ρi(1− Aii′)
A

j=1,...,n,j ∕=i,j ∕=i′,j ∕=k

(1− Aij),

we obtain Ãii′ = Aii′ for i = 1, . . . , nL, i
′ = 1, . . . , nL by a similar argument to that at

the beginning of the proof. It follows immediately that ρ̃i = ρi for i = 1, . . . , nL.
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Remark 3. Neither conditions in Theorem 1 can be removed. That is, if either

condition is removed, then there exists (ρ, A) ∈ P such that (ρ, A) is not identifiable.

In fact,

ρ = (1/2, 1/2), A =

;

<=
1 1/2 0

1 1 1/2

>

?@

and

ρ = (1/4, 3/4), A =

;

<=
1 0 0

1 1 1/3

>

?@

give the same probability distribution, which implies condition (i) – that is, Aij < 1,

for i = 1, . . . , nL, j = 1, . . . , n, i ∕= j, is necessary.

Moreover,

ρ = (1/2, 1/2), A =

;

<=
1 1/2 1/2

1/2 1 1/2

>

?@

and

ρ = (1/4, 3/4), A =

;

<=
1 0 1/2

2/3 1 1/2

>

?@

give the same probability distribution, which implies condition (ii) – that is, for all

i = 1, . . . , nL, i′ = 1, . . . , nL, i ∕= i′, there exists k ∈ {nL + 1, . . . , n} such that

Aik ∕= Ai′k, is necessary.

Proof of Theorem 8. Let (ρ̃, Ã) ∈ P be a set of parameters of the hub model with the

null component such that P(g|ρ, A) = P(g|ρ̃, Ã) for all g. Consider the probability

that no one appears:

ρ̃0

nA

j=1

(1− π̃j) = ρ0

nA

j=1

(1− πj).
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For k = nL + 1, . . . , n, consider the probability that only k appears:

ρ̃0π̃k

A

j=1,...,n,j ∕=k

(1− π̃j) = ρ0πk

A

j=1,...,n,j ∕=k

(1− πj).

From the above equations, we obtain

π̃k = πk, k = nL + 1, . . . , n,

ρ̃0

nLA

j=1

(1− π̃j) = ρ0

nLA

j=1

(1− πj). (9.4)

By condition (iii), for i = 1, . . . , nL, let k and k′ be the nodes from {nL+1, . . . , n}

such that πk ∕= Aik and πk′ ∕= Aik′ .

Consider the probability that i appears but no other nodes from {1, . . . , nL} ap-

pears (the rest do not matter)

ρ̃0π̃i

A

j=1,...,nL,j ∕=i

(1− π̃j) + ρ̃i
A

j=1,...,nL,j ∕=i

(1− Ãij)

=ρ0πi

A

j=1,...,nL,j ∕=i

(1− πj) + ρi
A

j=1,...,nL,j ∕=i

(1− Aij); (9.5)

the probability that i and k appear but no other nodes from {1, . . . , nL} appears (the

rest do not matter)

ρ̃0π̃i

A

j=1,...,nL,j ∕=i

(1− π̃j)πk + ρ̃i
A

j=1,...,nL,j ∕=i

(1− Ãij)Ãik

=ρ0πi

A

j=1,...,nL,j ∕=i

(1− πj)πk + ρi
A

j=1,...,nL,j ∕=i

(1− Aij)Aik; (9.6)

the probability that i and k′ appear but no other nodes from {1, . . . , nL} appears (the

rest do not matter)

ρ̃0π̃i

A

j=1,...,nL,j ∕=i

(1− π̃j)πk′ + ρ̃i
A

j=1,...,nL,j ∕=i

(1− Ãij)Ãik′

=ρ0πi

A

j=1,...,nL,j ∕=i

(1− πj)πk′ + ρi
A

j=1,...,nL,j ∕=i

(1− Aij)Aik′ ; (9.7)
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and the probability that i, k and k′ appear but no other nodes from {1, . . . , nL}

appears (the rest do not matter)

ρ̃0π̃i

A

j=1,...,nL,j ∕=i

(1− π̃j)πkπk′ + ρ̃i
A

l=1,...,nL,j ∕=i

(1− Ãij)ÃikÃik′

=ρ0πi

A

j=1,...,nL,j ∕=i

(1− πj)πkπk′ + ρi
A

l=1,...,nL,j ∕=i

(1− Aij)AikAik′ . (9.8)

Note that the above equations are not probabilities of a single realization g but are

sums of multiple P(g). Moreover, we put πk, πk′ instead of π̃k, π̃k′ on the LHS of the

equations, since we have proved π̃k = πk, k = nL + 1, . . . , n.

Let

x = ρ0πi

A

j=1,...,nL,j ∕=i

(1− πj),

x̃ = ρ̃0π̃i

A

j=1,...,nL,j ∕=i

(1− π̃j),

y = ρi
A

j=1,...,nL,j ∕=i

(1− Aij),

ỹ = ρ̃i
A

l=1,...,nL,j ∕=i

(1− Ãij).

Then (9.5), (9.6) (9.7) and (9.8) become

x̃+ ỹ = x+ y,

x̃πk + ỹÃik = xπk + yAik,

x̃πk′ + ỹÃik′ = xπk′ + yAik′ ,

x̃πkπk′ + ỹÃikÃik′ = xπkπk′ + yAikAik′ .

Plugging x̃− x = y − ỹ into the last three equations, we obtain

ỹÃik = ỹπk + y(Aik − πk), (9.9)

ỹÃik′ = ỹπk′ + y(Aik′ − πk′), (9.10)

yπkπk′ + ỹÃikÃik′ = ỹπkπk′ + yAikAik′ . (9.11)
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Multiplying (9.11) by ỹ, and plugging the right hand sides of (9.9) and (9.10) into

the resulting equation, we obtain

yỹπkπk′ + ỹ2πkπk′ + ỹπky(Aik′ − πk′) + ỹπk′y(Aik − πk) + y2(Aik − πk)(Aik′ − πk′)

= ỹ2πkπk′ + yỹAikAik′ ,

⇒y(Aik − πk)(Aik′ − πk′) = ỹ(Aik − πk)(Aik′ − πk′).

Therefore, ỹ = y since πk ∕= Aik and πk′ ∕= Aik′ . It follows that x̃ = x, i.e.,

ρ̃0π̃i

A

j=1,...,nL,j ∕=i

(1− π̃j) = ρ0πi

A

j=1,...,nL,j ∕=i

(1− πj), i = 1, . . . , nL.

Combining the above equation with (9.4), we obtain

π̃i = πi, i = 1, . . . , nL,

ρ̃0 = ρ0.

Note that P(g) = P(g|z = 0)P(z = 0)+P(g|z ∕= 0)P(z ∕= 0). So far we have proved

parameters of P(g|z = 0) and P(z = 0) are identifiable. We only need to prove the

identifiability of P(g|z ∕= 0), which is the case of the asymmetric hub model and has

been proved by Theorem 1.

Remark 4. No conditions in Theorem 2 can be removed. Here we only give a

counterexample when condition (iii), that is, for any i = 1, . . . , nL, there exist k ∈

{nL + 1, . . . , n} and k′ ∈ {nL + 1, . . . , n} such that πk ∕= Aik and πk′ ∕= Aik′, is not

satisfied since the other two are similar to the case of Theorem 1. In fact,

ρ = (1/2, 1/2), A =

;

<=
1/2 0 1/2

1 1/2 1/2

>

?@

and

ρ = (1/4, 3/4), A =

;

<=
0 0 1/2

1 1/3 1/2

>

?@

give the same probability distribution.
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9.2 Proofs in Chapter 6.1.3

We start by recalling notations defined in the main text. Recall that z∗ is the true

label assignment, z is an arbitrary label assignment, and ẑ is the maximum profile

likelihood estimator. Furthermore, ti∗ =
:

t 1(z
(t)
∗ = i), and ti =

:
t 1(z

(t) = i), tii′ =

:
t 1(z

(t)
∗ = i, ẑ(t) = i′).

Proof of Lemma 5. We first prove a fact: under H1 and H4, for 0 < δ1 < e−c0 ,

P

1
nLE

i=1

-
tii
ti∗

≤ δ1

.4
→ 0.

Note that ẑ must be feasible (the estimated hub must appear in the group as we

assume Aii ≡ 1), we have

P
8
tii
ti∗

≤ δ1

++++ z∗
9

≤P

;

= 1

ti∗

T/

t=1

1(z(t)∗ = i)
A

k∈{1,...,nL},k ∕=i

(1−G
(t)
k ) ≤ δ1

++++++
z∗

>

@ . (9.12)

Now since

E

F

G
A

k∈{1,...,nL},k ∕=i

(1−G
(t)
k )

++++++
z(t)∗ = i

H

I =
A

k∈{1,...,nL},k ∕=i

(1− Aik) ≥ (1− c0/nL)
nL ≥ e−c0 ,

by Hoeffding’s inequality,

(9.12) ≤P

"

# 1

ti∗

T!

t=1

1(z
(t)
∗ = i)

$

%
&

k∈{1,...,nL},k ∕=i

(1−G
(t)
k )−

&

k∈{1,...,nL},k ∕=i

(1−Aik)

'

( ≤ δ1 − e−c0

))))))
z∗

*

+

≤ exp{−2ti∗(e
−c0 − δ1)

2}.
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Hence

P

1
nLE

i=1

-
tii
ti∗

≤ δ1

.+++++ z∗

4

=P

1
nLE

i=1

-
tii
ti∗

≤ δ1

.
, {ti∗ ≥ cminT/nL, for all i}

+++++ z∗

4

+ P

1
nLE

i=1

-
tii
ti∗

≤ δ1

.
, {ti∗ < cminT/nL, for some i}

+++++ z∗

4

≤
nL/

i=1

P
8
tii
ti∗

≤ δ1

++++ z∗
9
1(ti∗ ≥ cminT/nL)

+ 1(ti∗ < cminT/nL, for some i)

≤nL exp{−2cminT/(nL)(e
−c0 − δ1)

2}+ 1(ti∗ < cminT/nL, for some i).

It follows that

P

1
nLE

i=1

-
tii
ti∗

≤ δ1

.4

=Ez∗

0
P

1
nLE

i=1

-
tii
ti∗

≤ δ1

.+++++ z∗

45

≤nL exp{−2cminT/(nL)(e
−c0 − δ1)

2}+ P(ti∗ < cminT/nL, for some i) → 0.

Therefore, tii
ti∗

≥ δ1 for i = 1, . . . , nL with probability approaching 1.

Let E = { tii
ti∗

≥ δ1 and ti∗ ≥ cminT/nL, i = 1, . . . , nL}. We have shown P(E) → 1.

The inequalities below are proved within the set E , and thus hold with probability

approaching 1.

For i = 1, . . . , nL, k = 1, . . . , nL, k ∕= i,

tik
tk

=
tik:nL

k′=1 tk′k
≤ tik

tik + tkk
=

tik/ti∗
tik/ti∗ + tkk/tk∗ · tk∗/ti∗

≤ 1

1 + δ1 · cmin/cmax
= δ2 < 1.
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Under H2 and H3, mini,i′=1,...,nL,i ∕=i′,j∈Vi
Aij − Ai′j = τd, where τ is bounded away

from 0. Now we give a lower bound for Aij − Ākj for j ∈ Vi and k ∕= i,

Aij − Ākj =

:
t(Aij − P

(t)
j )1(ẑ(t) = k)

tk

=

:nL

k′=1(Aij − Ak′j)tk′k
tk

≥
τd

:
k′ ∕=i tk′k

tk
≥ τ(1− δ2)d. (9.13)

Next, we show the following fact: if p = ρ1d, q = ρ2d where ρ1 > ρ2 are fixed

positive numbers, then there exists δ3 > 0 such that KL(p, q) ≥ δ3d.

KL(p, q) = p log
p

q
+ (1− p) log

1− p

1− q

= p log
p

q
+ log(1− p− q

1− q
) + p log

1− p

1− q

= −p log
q

p
+

p− q

1− q
+ o(d) + ρ1d o(1)

≥ −p log
q

p
+ (q − p) + o(d)

= p

J
q − p

p
− log

8
1 +

q − p

p

9K
+ o(d)

≥ δ3d.

The last line holds for sufficiently small δ3 because q−p
p

− log(1 + q−p
p
) = cρ1,ρ2 > 0

where q−p
p

∈ (−1, 0) and cρ1,ρ2 is a constant depending on ρ1 and ρ2.
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As Ākj =
!

t P
(t)
j 1(z(t)=j)

ti
= [

:
t Az

(t)
∗ ,j

1(z(t) = j)]/ti ≍ d, combining the above fact

and (9.13), we have

LP (z∗)− LP (ẑ) =
/

t

/

j

KL(P (t)
j , Āẑ(t),j)

≥
nL/

i=1

/

k ∕=i

/

t:z
(t)
∗ =i,ẑ(t)=k

/

j∈Vi

KL(Aij, Āẑ(t),j)

≥
nL/

i=1

/

k ∕=i

/

t:z
(t)
∗ =i,ẑ(t)=k

/

j∈Vi

τ(1− δ2)δ3d

≥ τ(1− δ2)δ3dvnTe/nL.

Letting δ = 1/[τ(1− δ2)δ3],

δnL

dvnT
(LP (z∗)− LP (ẑ)) ≥

Te

T
,

with probability approaching 1.

To prove Theorem 10, we need the following lemma.

Lemma S1.

P(max
z

|LG(z)− LP (z)| ≥ 2η) ≤

nT
L(T/nL + 1)nLne−η + 2nT

L exp

,
− η2/4
-

t

-
j(log Āij)2Var(G(t)

j ) + maxij | log Āij |η/6

.

+ 2nT
L exp

/
0

1− η2/4
-

ij:Āij<1

2
(log(1− Āij))2

-
t:z(t)=i Var(G(t)

j )
3
+maxij:Āij<1 | log(1− Āij)|η/6

4
5

6 .
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Proof of Lemma S1.

LG(z)− LP (z) =

1
nL/

i=1

ti
/

j

Âij log Âij + (1− Âij) log(1− Âij)

4

−
1

nL/

i=1

ti
/

j

Âij log Āij + (1− Âij) log(1− Āij)

4

+

1
nL/

i=1

ti
/

j

Âij log Āij + (1− Âij) log(1− Āij)

4

−
1

nL/

i=1

ti
/

j

Āij log Āij + (1− Āij) log(1− Āij)

4

=

nL/

i=1

ti
/

j

D(Âij|Āij) +BnL,n,T .

To bound
:nL

i=1 ti
:

j D(Âij|Āij), we adopt the approach in [22], which is based on a

heterogeneous Chernoff bound in [25]. Let ν be any realization of Â.

P(Âij = νij|z∗) ≤ e−tiD(νij |Āij).

By the independence of Âij conditional on z∗,

P(Â = ν|z∗) ≤ exp

&
−

nL/

i=1

/

j

tiD(νij|Āij)

L
.

Let Â be the range of Â for a fixed z. Then |Â| ≤
MnL

i=1(ti + 1)n ≤
MnL

i=1(ti + 1)n ≤

(T/nL + 1)nLn, as Âij can only take values from 0/ti, 1/ti, . . . , ti/ti.

For all η > 0,

P

1
nL/

i=1

/

j

tiD(Âij|Āij) ≥ η

+++++ z∗

4

=
/

ν∈Â

P

1
Â = ν,

nL/

i=1

/

j

tiD(νij|Āij) ≥ η

+++++ z∗

4

≤
/

ν∈Â

exp

&
−

nL/

i=1

/

j

tiD(νij|Āij)

L
1

&
−

nL/

i=1

/

j

tiD(νij|Āij) ≤ −η

L

≤
/

ν∈Â

e−η ≤ |Â|e−η ≤ (T/nL + 1)nLne−η,
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and then

P

1
max

z

nL/

i=1

/

j

tiD(Â|Āij) ≥ η

4
≤ nT

L(T/nL + 1)nLne−η. (9.14)

Next, we bound BnL,n,T . Let BnL,n,T = B1,nL,n,T +B2,nL,n,T , where

B1,nL,n,T =
/

i

1
/

j

/

t:z(t)=i

(G
(t)
j − P

(t)
j ) log Āij

4
,

B2,nL,n,T =
/

i

1
/

j

/

t:z(t)=i

(G
(t)
j − P

(t)
j ) log(1− Āij)

4
.

As
+++(G(t)

j − P
(t)
j ) log Āij

+++ ≤ | log Āij|, by Bernstein’s inequality, we have

P(|B1,nL,n,T | ≥ η/2) ≤ 2 exp

,
− η2/4
-

t

-
j(log Āij)2Var(G(t)

j ) + maxij | log Āij |η/6

.
,

P(max
z

|B1,nL,n,T | ≥ η/2) ≤ 2nT
L exp

,
− η2/4
-

t

-
j(log Āij)2Var(G(t)

j ) + maxij | log Āij |η/6

.
.

In addition, if Āij = 1,
:

t:z(t)=i(G
(t)
j −P

(t)
j ) ≡ 0, which implies the term

:
t:z(t)=i(G

(t)
j −

P
(t)
j ) log(1−Āij) in B2,nL,n,T can be dropped. As

+++(G(t)
j − P

(t)
j ) log(1− Āij)

+++ ≤ | log(1−

Āij)|, by Bernstein’s inequality,

P(|B2,nL,n,T | ≥ η/2)

≤ 2 exp

/
0

1− η2/4
-

ij:Āij<1

2
(log(1− Āij))2

-
t:z(t)=i Var(G(t)

j )
3
+maxij:Āij<1 | log(1− Āij)|η/6

4
5

6 ,

P(max
z

|B2,nL,n,T | ≥ η/2)

≤ 2nT
L exp

/
0

1− η2/4
-

ij:Āij<1

2
(log(1− Āij))2

-
t:z(t)=i Var(G(t)

j )
3
+maxij:Āij<1 | log(1− Āij)|η/6

4
5

6 .

Finally, combining (9.14), (9.2) and (9.2), we obtain

P(max
z

|LG(z)− LP (z)| ≥ 2η)

≤ P

"

#max
z

nL!

i=1

!

j

tiD(Â|Āij) ≥ η

*

++ P(max
z

|B1,nL,n,T | ≥ η/2) + P(max
z

|B2,nL,n,T | ≥ η/2)

≤ nT
L(T/nL + 1)nLne−η + 2nT

L exp

,
− η2/4
-

t

-
j(log Āij)2Var(G(t)

j ) + maxij | log Āij |η/6

.

+ 2nT
L exp

/
0

1− η2/4
-

ij:Āij<1

2
(log(1− Āij))2

-
t:z(t)=i Var(G(t)

j )
3
+maxij:Āij<1 | log(1− Āij)|η/6

4
5

6 .
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Proof of Theorem 3. First we show the following fact: under H1 −H4, if

n2
L log T/(dTv) → 0, (log d)2n2

L log nL/(dnv
2) → 0 and (log T )2n2

L log nL/(dnv
2) → 0,

then

max
z

nL

dvnT
|LP (z)− LG(z)| = op(1), as nL → ∞, n → ∞, T → ∞. (9.15)

Letting η = dvnT ε/nL, the LHS in Lemma S1 becomes P(maxz
nL

dvnT
|LG(z)−LP (z)| ≥

2ε). To prove the above fact, we need to show each term in the RHS of Lemma S1

goes to 0.

For the first term, it is easy to check that if

nL log nL/(dvn) → 0 and n2
L log T/(dvT ) → 0, then

nT
L(T/nL)

nLne
− dvnT ε

nL → 0.

Under H2, Aij ≍ d and | log Āij| = O(| log d|) for i ∕= j. We can therefore find a

constant C1 such that

P(|B1,nL,n,T | ≥ dvnT ε/(2nL)) ≤ 2 exp

-
− d2v2n2T 2ε2/(4n2

L)

C2
1Tn(log d)

2d+ C1| log d|dvnT ε/(6nL)

.
,

and

P(max
z

|B1,nL,n,T | ≥ dvnT ε/(2nL)) ≤ 2nT
L exp

-
− d2v2n2T 2ε2/(4n2

L)

C2
1Tn(log d)

2d+ C1| log d|dvnT ε/(6nL)

.
.

Then if (log d)2n2
L log nL/(dnv

2) → 0,

P(max
z

|B1,nL,n,T | ≥ dvnT ε/(2nL)) → 0.

For the third term, when Āij < 1, we have

Āij ≤
(ti − 1) + P

(t)
j

ti
,

1− Āij ≥
1− P

(t)
j

ti
≥

1− P
(t)
j

T
,
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which imply | log(1− Āij)| ≤ C2 log T for some constant C2 > 0. Therefore,

P (maxz |B2,nL,n,T | ≥ dvnT ε/(2nL)) ≤ 2nT
L exp

N
− d2v2n2T 2ε2/(4n2

L)

C2
2 (log T )2Tnd+C2(log T )dnvT ε/(6nL)

O
.

Furthermore, if (log T )2n2
L log nL/(dnv

2) → 0,

P(max
z

|B2,nL,n,T | ≥ dvnT ε/(2nL)) → 0.

Combining the inequalities of the above three terms, we have proved (9.15).

Finally, for all ε > 0,

P
8
Te

T
≥ ε

9

=P
8
Te

T
≥ ε,

δnL

dvnT
(LP (z∗)− LP (ẑ)) ≥

Te

T

9

+ P
8
Te

T
≥ ε,

δnL

dvnT
(LP (z∗)− LP (ẑ)) <

Te

T

9

=P
8

δnL

dvnT
(LP (z∗)− LP (ẑ)) ≥ ε

9
+ o(1) (by Lemma 1)

=P
8

δnL

dvnT
[(LP (z∗)− LG(z∗)) + (LG(z∗)− LG(ẑ)) + (LG(ẑ)− LP (ẑ))] ≥ ε

9
+ o(1)

≤P
8

δnL

dvnT
(|LP (z∗)− LG(z∗)|+ |LG(ẑ)− LP (ẑ)|) ≥ ε

9
+ o(1)

→ 0.

We now give the result of label consistency for fixed nL. We make the following

assumptions similar to H1 – H4.

H ′
1: cminT ≤ ti∗ ≤ cmaxT for i = 1, . . . , nL.

H ′
2: Aij = sijd for i = 1, . . . , nL,j = 1, . . . , n and i ∕= j where sij are unknown

constants satisfying 0 < smin ≤ sij ≤ smax < ∞ while d goes to 0 as n goes to

infinity.
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H ′
3: There exists a set Vi ⊂ {nL + 1, . . . , n} for i = 1, . . . , nL with |Vi| ≥ vn such

that τ = mini,i′=1,...,nL,i ∕=i′,j∈Vi
(sij − si′j) is bounded away from 0.

H ′
4: Aii′ is bounded away from 1 for i = 1, . . . , nL,i′ = 1, . . . , nL and i ∕= i′.

Theorem 3′. Under H ′
1 − H ′

4, if log T/(dTv) = o(1), (log d)2/(dnv2) = o(1) and

(log T )2/(dnv2) = o(1), then

Te/T = op(1), as n → ∞, T → ∞.

We omit all the proofs for fixed nL because they are trivial corollaries of the results

for growing nL.

Proof of Theorem 4. First we show the following fact: under the conditions in Theo-

rem 4,

nLTe/T = op(1), as nL → ∞, n → ∞, T → ∞.

According to the proof in Theorem 3, we need

P
8

δn2
L

dvnT
(|LP (z∗)− LG(z∗)|+ |LG(ẑ)− LP (ẑ)|) ≥ ε

9
→ 0,

which holds if we can show

max
z

n2
L

dvnT
|LG(z)− LP (z)| = op(1).

As in the proof of Lemma S1, this holds by letting η = dvnT ε/n2
L.

Then we bound
+++Âẑ

ij − Âz∗
ij

+++:

|Âẑ
ij − Âz∗

ij | =

+++++

:
t G

(t)
j 1(ẑ(t) = i)

ti
−

:
t G

(t)
j 1(z

(t)
∗ = i)

ti∗

+++++

≤

+++++

:
t G

(t)
j 1(ẑ(t) = i)

ti
−

:
t G

(t)
j 1(ẑ(t) = i)

ti∗

++++++

+++++

:
t G

(t)
j 1(ẑ(t) = i)

ti∗
−

:
t G

(t)
j 1(z

(t)
∗ = i)

ti∗

+++++

≤
++++
ti∗ − ti
ti∗

+++++

:
t

+++1(ẑ(t) = i)− 1(z
(t)
∗ = i)

+++
ti∗

≤ δnLTe/T,
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where δ is a constant. The last line holds by H ′
1.

Furthermore,

P
8
max
ij

+++Âẑ
ij − Aij

+++ ≥ ε

9

≤P
8
max
ij

+++Âẑ
ij − Âz∗

ij

+++ ≥ ε/2

9
+ P

8
max
ij

+++Âz∗
ij − Aij

+++ ≥ ε/2

9

≤P (δnLTe/T ≥ ε) + P

8
max
ij

+++Âz∗
ij − Aij

+++ ≥ ε/2

9
.

The second term vanishes by Hoeffding’s inequality: for all ε > 0,

P
2+++Âz∗

ij − Aij

+++ ≥ ε/2
+++ z∗

3

=P

1+++++
/

t

1(z(t)∗ = i)(G
(t)
j − Aij)

+++++ ≥ εti∗/2

+++++ z∗

4

≤2 exp{−ε2ti∗/2}.

Therefore, if nL log n/T → 0,

P
8
max
ij

+++Âz∗
ij − Aij

+++ ≥ ε/2

9

≤2nnL exp{−ε2cminT/(2nL)}+ P(ti∗ < cminT/nL, for some i) → 0.

The following theorem is on estimation consistency for fixed n.

Theorem 4′. Under H ′
1−H ′

4, if log n/T = o(1), log T/(dTv) = o(1), (log d)2/(dnv2) =

o(1) and (log T )2/(dnv2) = o(1), then

max
i∈{1,...,nL},j∈{1,...,n}

+++Âz∗
ij − Aij

+++ = op(1), as n → ∞, T → ∞.

Finally, we give the simplest version of the estimation consistency result, which

only considers the rates of n and T but treats nL, d, and v as fixed.
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Theorem 4′′. Under H ′
1 −H ′

4, for fixed d and v, if log n/T = o(1) and (log T )2/n =

o(1), then

max
i∈{1,...,nL},j∈{1,...,n}

+++Âz∗
ij − Aij

+++ = op(1), as n → ∞, T → ∞.

The first condition means n can grow faster than T as long as log n/T → 0. Such

a condition is common in the literature of high-dimensional statistics. The second

condition is more of a technical one: for proving the label consistency, we need an

upper bound of the growth rate of T due to the concentration bound in Lemma S1.

Proof of Lemma 2. By the proof of Lemma 1, there exists δ1 > 0 such that

tii + ti0 ≥ δ1ti∗, i = 1, . . . , nL, (9.16)

t00 ≥ δ1t0∗, (9.17)

with probability approaching 1.

Therefore 1 , for i = 1, . . . , nL, j ∈ Vi,

Aij − Ā0j =

:
t(Aij − P

(t)
j )1(ẑ(t) = 0)

t0

=

:nL

k=0(Aij − Akj)tk0
t0

≥ (Aij − A0j)t00
t0

≥ τd
t00
T

≥ τd
t00

(nL + 1)t0∗/cmin
≥ τdcminδ1

nL

.

1Some inequalities below hold with probability approaching 1. We omit this sentence occasionally.
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Using the same argument in Lemma 1, it follows that

LP (z∗)− LP (ẑ) =
/

t

/

j

KL(P (t)
j , Āẑ(t),j)

≥ max
i=1,...,nL

/

t:z
(t)
∗ =i,ẑ(t)=0

/

j∈Vi

KL(Aij, Ā0j)

≥ max
i=1,...,nL

τdcminδ1δ3
nL

vn

nL

ti0

≥ max
i=1,...,nL

τdcminδ1δ3
nL

vn

nL

ti0
ti∗

cminT

nL

≥ max
i=1,...,nL

τε
dvnT

n3
L

ti0
ti∗

, (9.18)

where ε is a positive constant and τ is bounded away from 0.

Next, we show the following fact: under the conditions in Lemma 2,

max
z

n3
L

dvnT
|LG(z)− LP (z)| = op(1).

As in the proofs of Lemma S1 and Theorem 3, the above statement holds by letting

η = dvnT ε/n3
L. Combining (9.18) and the above fact, by the same argument in

Theorem 3, we have

P
8

max
i=1,...,nL

ti0
ti∗

≤ η

9
→ 1. (9.19)

Proof of Theorem 5. Due to (9.16) and (9.19), there exists δ2 > 0 such that

tii ≥ δ2ti∗ for i = 0, . . . , nL,

with probability approaching 1. By the same argument in Lemma 1,

LP (z∗)− LP (ẑ) =
T/

t=1

n/

j=1

KL(P (t)
j , Āẑ(t),j)

≥
nL/

i=1

/

0≤k≤nL,k ∕=i

/

t:z
(t)
∗ =i,ẑ(t)=k

/

j∈Vi

KL(Aij, Ākj)

≥vn

nL

nL/

i=1

/

0≤k≤nL,k ∕=i

tikτ(1− δ2)δ3d,
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which implies that there exists δ > 0 such that with probability approaching 1,

δnL

dvnT
(LP (z∗)− LP (ẑ)) ≥

nL/

i=1

/

0≤k≤nL,k ∕=i

tik
T
. (9.20)

By the same argument in Theorem 3, this further implies

nL/

i=1

/

0≤k≤nL,k ∕=i

tik
T

= op(1), as nL → ∞, n → ∞, T → ∞, (9.21)

if n2
L log T/(dvT ) = o(1), n2

L(log T )
2 log nL/(dnv

2) = o(1) and

n2
L(log d)

2 log nL/(dnv
2) = o(1).

As in the proof of Theorem 4,

nL/

i=1

/

0≤k≤nL,k ∕=i

(nL + 1)
tik
T

= op(1), as nL → ∞, n → ∞, T → ∞, (9.22)

if n3
L log T/(dvT ) = o(1), n4

L(log T )
2 log nL/(dnv

2) = o(1) and

n4
L(log d)

2 log nL/(dnv
2) = o(1).

Now we bound t0i, i = 1, . . . , nL. From (9.22),
:

1≤k≤nL,k ∕=i tki = op(T/(nL + 1)).

And from δ2Tcmin/(nL + 1) ≤ δ2ti∗ ≤ tii,
:

1≤k≤nL,k ∕=i tki ≤ tii, with probability

approaching 1. Moreover, from (9.17), t0i ≤ (1− δ1)t0∗.

Therefore, there exists δ4 > 0 such that for i = 1, . . . , nL, j ∈ Vi,

Aij − Āij =

:
t(Aij − P

(t)
j )1(ẑ(t) = i)

ti

≥ (Aij − A0j)t0i
ti

≥ τdt0i
t0i + tii +

:
1≤k≤nL,k ∕=i tki

≥ τdt0i
(1− δ1)t0∗ + 2tii

≥ τdt0i
(1− δ1)t0∗ + 2ti∗

≥ τdnLt0i
δ4T

.
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It follows that

LP (z∗)− LP (ẑ) ≥ max
i=1,...,nL

/

t:z
(t)
∗ =i,ẑ(t)=i

/

j∈Vi

KL(Aij, Āij)

≥ max
i=1,...,nL

τdnLt0iδ3
δ4T

vn

nL + 1
tii

≥ max
i=1,...,nL

d

δ4

nLt0i
T

vn

nL + 1
τδ2δ3ti∗

≥ max
i=1,...,nL

d

δ4

nLt0i
T

vn

nL + 1
τδ2δ3T

cmin

nL + 1

≥ max
i=1,...,nL

dvnT

n2
L

nLt0i
T

δ, (9.23)

where δ = τδ2δ3cmin/δ4 is positive constant.

By using the same argument in Theorem 3,

max
i=1,...,nL

nLt0i
T

= op(1), (9.24)

if n4
L log T/(dvT ) = o(1), (log T )2n6

L log nL/(dnv
2) = o(1) and

n6
L(log d)

2 log nL/(dnv
2) = o(1). It follows that

nL/

i=1

t0i
T

= op(1).

Combining (9.21) and (9.24),

Te

T
= op(1), as n → ∞, T → ∞.

For label consistency under the hub model with the null component with fixed

nL, we make the following assumptions:

H∗′
1 : Tcmin/nL ≤ ti∗ ≤ Tcmax/nL for i = 0, . . . , nL.

H∗′
2 : Aij = sijd for i = 0, . . . , nL,j = 1, . . . , n and i ∕= j where sij are unknown

constants satisfying 0 < smin ≤ sij ≤ smax < ∞ while d goes to 0 as n goes to

infinity.
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H∗′
3 : There exists a set Vi ⊂ {nL + 1, . . . , n} for i = 1, . . . , nL with |Vi| ≥ vn such

that τ = mini=1,...,nL,i′=0,...,nL,i ∕=i′,j∈Vi
(sij − si′j) is bounded away from 0.

H∗′
4 : Aii′ is bounded away from 1 for i = 0, . . . , nL,i′ = 1, . . . , nL and i ∕= i′.

Theorem 5′. Under H∗′
1 − H∗′

4 , if log T/(dTv) = o(1), (log d)2/(dnv2) = o(1) and

(log T )2/(dnv2) = o(1), then

Te/T = op(1), as n → ∞, T → ∞.

Proof of Theorem 6. By the same argument in Theorem 4, it is sufficient to show

(nL + 1)Te

T
= op(1), as nL → ∞, n → ∞, T → ∞. (9.25)

From (9.22), we have shown

nL/

i=1

/

0≤k≤nL,k ∕=i

(nL + 1)tik
T

= op(1), as nL → ∞, n → ∞, T → ∞.

From (9.23), there exists δ′ > 0 such that

LP (z∗)− LP (ẑ) ≥ max
i=1,...,nL

dvnT

δ′n3
L

nL(nL + 1)t0i
T

,

which further implies

max
i=1,...,nL

nL(nL + 1)t0i
T

= op(1),

if n5
L log T/(dTv) = o(1), (log d)2n8

L log nL/(dnv
2) = o(1) and

(log T )2n8
L log nL/(dnv

2) = o(1).

It follows that

nL/

i=1

(nL + 1)t0i
T

= op(1).

Eq. (9.25) is therefore proved and so is the theorem.
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Finally, we give the result for estimation consistency under the hub model with

the null component with fixed nL:

Theorem 6′. Under H∗′
1 −H∗′

4 , if log n/T = o(1), log T/(dTv) = o(1), log T/(dTv) =

o(1), (log d)2/(dnv2) = o(1) and (log T )2/(dnv2) = o(1), then

max
i∈{0,...,nL},j∈{1,...,nL}

|Âẑ
ij − Aij| = op(1), as n → ∞, T → ∞.

9.3 Identifiability Under Hub Model with the Null Component and Unknown Hub

Set

We give a new identifiability result for the hub model with the null component

and unknown hub set. Recall that V0 is the true hub set with |V0| = nL. Let Ṽ0 be

another potential hub set with the corresponding parameters (ρ̃, Ã) ∈ P such that

P(g|ρ, A) = P(g|ρ̃, Ã).

Theorem S1. The parameters (ρ, A) of the hub model with the null component and

unknown hub set are identifiable under the following conditions:

(i′) Aij < 1 for i ∈ V0 ∪ {0} and Ãij < 1 for i ∈ Ṽ0 ∪ {0}, j = 1, . . . , n, j ∕= i;

(ii′) for all i ∈ V0, i
′ ∈ V0, i ∕= i′, there exists k ∈ V \ V0 such that Aik ∕= Ai′k;

(iii′) for all i ∈ V0, there exist k, k′ ∈ V \ V0 and k ∕= k′ such that πk ∕= Aik and

πk′ ∕= Aik′;

(iv′) there exists k /∈ V0 ∪ Ṽ0 such that for any i ∈ V0, πk ∕= Aik, and for any l ∈ Ṽ0,

π̃k ∕= Ãlk.

Conditions (i′) - (iii′) are identical to those in Theorem 1 and Theorem 2. Con-

dition (iv′) requires there exists at least one node that can only play a role as a

follower.
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Proof of Theorem S1. Theorem 2 shows when V0 = Ṽ0, the parameters in the hub

model with null component are identifiable. Therefore, we only need to show V0 = Ṽ0

if P(g|ρ, A) = P(g|ρ̃, Ã) for all g.

Suppose there exist (ρ̃, Ã) ∕= (ρ, A) such that P(g|ρ, A) = P(g|ρ̃, Ã) for any g. Let

B1 = Ṽ0 \ V0 and B2 = V \ (V0 ∪ Ṽ0). First, we consider the probability that no node

appears

ρ0

nA

j=1

(1− A0j) = ρ̃0

nA

j=1

(1− Ã0j), (9.26)

and the probability that only k ∈ B2 appears,

ρ0A0k

nA

j ∕=k

(1− A0j) = ρ̃0Ã0k

nA

j ∕=k

(1− Ã0j). (9.27)

Dividing (9.27) by (9.26), since A0k < 1, we have A0k = Ã0k for any k ∈ B2.

Next we show that B1 = Ṽ0 \ V0 = ∅. Suppose B1 ∕= ∅. By condition (iv’), for

any i ∈ B1, there exists a k ∈ B2 such that Ã0k ∕= Ãik. Consider the probability that

only i appears,

ρ̃0Ã0i

A

j=1,...,n,j ∕=i

(1−Ã0j)+ ρ̃i
A

j=1,...,n,j ∕=i

(1−Ãij) = ρ0A0i(1−A0k)
A

j=1,...,n,j /∈{i,k}

(1−A0j),

(9.28)

and the probability that only i and k appear

ρ̃0Ã0iA0k

A

j=1,...,n,j /∈{i,k}

(1− Ã0j) + ρ̃iÃik

A

j /∈{i,k}

(1− Ãij) = ρ0A0iA0k

A

j /∈{i,k}

(1− A0j).

(9.29)

Let

x̃ = ρ̃0Ã0i

A

j=1,...,n,j /∈{i,k}

(1− Ã0j),

ỹ = ρ̃i
A

j=1,...,n,j /∈{i,k}

(1− Ãij).
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Then (9.28) and (9.29) can be viewed as a system of linear equations with unknown

variables x̃ and ỹ:
;

<=
A0k Ãik

1− A0k 1− Ãik

>

?@

;

<=
x̃

ỹ

>

?@ =

;

<=
ρ0A0iA0k

M
j=1,...,n,j /∈{i,k}(1− A0j)

ρ0A0i(1− A0k)
M

j=1,...,n,j /∈{i,k}(1− A0j)

>

?@ .

Since A0k = Ã0k ∕= Ãik, the system is full rank and hence has a unique solution:

ρ̃0Ã0i

A

j=1,...,n,j /∈{i,k}

(1− Ã0j) = ρ0A0i

A

j=1,...,n,j /∈{i,k}

(1− A0j),

ρ̃i
A

j=1,...,n,j /∈{i,k}

(1− Ãij) = 0.

Combining with (9.26), we have

ρ̃0(1− Ã0i)
A

j=1,...,n,j /∈{i,k}

(1− Ã0j) = ρ0(1− A0i)
A

j=1,...,n,j /∈{i,k}

(1− A0j).

As Ãij < 1, A0i = Ã0i for any i ∈ B1 ⊂ Ṽ0 and ρ̃i = 0, which contradicts the

assumption that 0 < ρ̃i < 1 for any i ∈ Ṽ0. Therefore, Ṽ0 \ V0 = ∅ implies that Ṽ0

does not contain any redundant component.

By the same argument, we obtain A0i = Ã0i for any i ∈ V0 \ Ṽ0 and ρi = 0, which

contradicts the assumption 0 < ρi < 1 for i ∈ V0. Therefore, V0 \ Ṽ0 = ∅. Hence,

V0 = Ṽ0. By Theorem 2, we have (ρ̃, Ã) = (ρ, A).
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