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ABSTRACT

Synthetic biology (SB) has become an important field of science focusing on de-

signing and engineering new biological parts and systems, or re-designing existing

biological systems for useful purposes. The dramatic growth of SB throughout the

past two decades has not only provided us numerous achievements, but also brought

us more timely and underexplored problems. In SB’s entire history, mathematical

modeling has always been an indispensable approach to predict the experimental

outcomes, improve experimental design and obtain mechanism-understanding of the

biological systems.

Escherichia coli (E. coli) is one of the most important experimental platforms,

its growth dynamics is the major research objective in this dissertation. Chapter 2

employs a reaction-diffusion model to predict the E. coli colony growth on a semi-solid

agar plate under multiple controls. In that chapter, a density-dependent diffusion

model with non-monotonic growth to capture the colony’s non-linear growth profile

is introduced. Findings of the new model to experimental data are compared and

contrasted with those from other proposed models. In addition, the cross-sectional

profile of the colony are computed and compared with experimental data.

E. coli colony is also used to perform spatial patterns driven by designed gene cir-

cuits. In Chapter 3, a gene circuit (MINPAC) and its corresponding pattern formation

results are presented. Specifically, a series of partial differential equation (PDE) mod-

els are developed to describe the pattern formation driven by the MINPAC circuit.

Model simulations of the patterns based on different experimental conditions and nu-

merical analysis of the models to obtain a deeper understanding of the mechanisms

are performed and discussed. Mathematical analysis of the simplified models, includ-

ing traveling wave analysis and local stability analysis, is also presented and used to

explore the control strategies of the pattern formation.
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The interaction between the gene circuit and the host E. coli may be crucial and

even greatly affect the experimental outcomes. Chapter 4 focuses on the growth

feedback between the circuit and the host cell under different nutrient conditions.

Two ordinary differential equation (ODE) models are developed to describe such

feedback with nutrient variation. Preliminary results on data fitting using both two

models and the model dynamical analysis are included.
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Chapter 1

INTRODUCTION

1.1 Brief Introduction of Synthetic Biology

What is life? How does life evolve? These fundamental philosophical questions

are also scientifically important. The curiosity about life inspired people to under-

stand, transform and even redesign biological systems, which can be traced to the

study of domestication and selective breeding by Charles Darwin in the 19th century.

Meanwhile, biologists were recognizing the significance of cell theory due to the ad-

vances in microscopy. And later in the 20th century, some remarkable work has been

made on cellular and molecular networks. The study of Francois Jacob and Jacques

Monod on the lactose operon in E. coli led to a landmark publication in synthetic

biology in 1961, which posited the existence of regulatory circuits that underpin the

response of a cell to its environment (Monod and Jacob, 1961; Cameron et al., 2014).

In the early 2000s, more powerful genetic engineering capabilities and decreased ex-

perimental costs enabled scientists to study, redesign and build complex biological

entities and systems, which forms a more clear area of synthetic biology. And during

the past two decades, synthetic biology has undergone considerable growth in many

directions, including synthetic gene circuit (Hasty et al., 2002; Potvin-Trottier et al.,

2016), metabolic engineering (Martin et al., 2003), multicellular pattern formation

(Basu et al., 2005; Asllani et al., 2020) and synthesized genome (Gibson et al., 2010).

Such growth also greatly filled the gap between synthetic biology and biotechnology

applications.

With the advances in technologies, scientists can now ask, study and examine
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questions that directly come from real life. For example, immunotherapies, as one

of the most important cell-based therapies for fighting cancers, are mostly rely on

engineering T cells. Recent studies showed that gene switches could enhance the

safety of the treatment by terminating the therapy when severe side effects were

detected (Jones et al., 2014), or reactivating the system when needed (Wei et al.,

2012). Meanwhile, more and more companies were putting efforts into turning the

experimental achievements into civil technologies. Seven years after the success of

synthesizing 9.6 kbp (kilobase pairs) Hepatitis C virus genome in 2000 (Blight et al.,

2000), several companies developed the ability to synthesize up to 2000 bp genetic

sequences in two weeks with affordable prices (Pollack, 2007).

As a highly multidisciplinary area, synthetic biology is also dependent on ap-

proaches that come from various subjects such as chemistry, mathematics, and com-

puter science. And mathematical modeling has always been an indispensable way to

study the mechanisms behind phenomena (Menn and Wang, 2019; Tian et al., 2019;

Zheng and Sriram, 2010). Models that are able to correctly predict the behavior of

a system allow engineers to program new cellular behavior without having to per-

form large numbers of trial-and-error experiments (Chandran et al., 2008). Many

mathematical models have been published that are capable of reasonably describing

biological systems and providing comparable simulation results to experimental obser-

vations, especially in the study of pattern formation. Basu et al. (2005) introduced an

ordinary differential equation-based mathematical model to describe a synthetic mul-

ticellular system that could form ring-like patterns through fluorescent proteins. The

model presented the oscillated expression of specific genes and ring formation dynam-

ics with different sets of parameters. Liu et al. (2011) developed a reaction-diffusion

model with chemotactic movement to present sequential strip patterns generated by

E. coli colony. For more complicated patterns, reaction-diffusion models are always

2



considered a powerful way to simulate and analyze the mechanisms, such as modeling

the generation of flower-like bacteria colonies (Kawasaki et al., 1997).

Although the modeling approach has become a significant way to improve our

understanding of biological phenomena and reveal the mechanisms, there are still

numerous underexplored problems. Our work is focused on the areas of bacteria pat-

tern formation and circuit-host interactions. We continue to pursue the mechanisms

of pattern formation by modeling and comparing engineered gene circuits. We also

aim for providing a modeling framework for the circuit-host interactions with the

understanding that the future results will help the experimental design and control.

We believe that the data-verified mathematical model with a reasonable description

of the biological system can provide a significant contribution to synthetic biology

while targeting both the experimental design and the mechanisms.

1.2 Mathematics in Synthetic Biology

1.2.1 Cell Dynamics in Escherichia coli

Escherichia coli (E. coli) is a common bacteria abundant in human intestine. It is

also one of the most studied bacteria and has been an excellent platform for biological

research due to its simplicity and relatively low-cost in experiment. E. coli can move

itself by rotating its flagella counter-clockwise or clockwise (Block et al., 1983). More

particularly, the bacterium “runs” in a straight line at constant velocity when all

the flagellar motors rotate counterclockwise, and the bacterium “tumbles” without

advancing when one or several or these motors change direction (Saragosti et al.,

2012). Since this process has high randomness, the movement of a large population

of bacteria can be modeled by heat equation:

∂N

∂t
= D∇2N, (1.1)
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where N represents the bacterial density and D is the diffusion coefficient.

In a nutrient gradient, movement of a bacterium can be more complicated since

it will move preferentially towards higher concentration of the nutrient (Sourjik and

Wingreen, 2012). For bacteria growing on an agar plate, this can be presented math-

ematically by introducing a chemotactic flux term (Leyva et al., 2013):

Jc = σnb2χ(n)∇n, (1.2)

where n = n(x, y, t) and b = b(x, y, t) represent the nutrient concentration and bacte-

rial density, respectively. Parameter σ can be regarded as a constant measuring the

hardness of the agar medium and χ(n) is the chemotactic sensitivity function with

the form introduced by Lapidus and Schiller (1976):

χ(n) =
χ0Kd

(Kd + n)2
, (1.3)

where χ0 > 0 is a constant measuring the strength of the chemotaxis, and Kd > 0 is

the receptor-ligand binding dissociation constant.

The combination of random walk-based diffusion and chemotaxis provides a com-

phrehensive discription of bacterial movement, and has already been widely used in

the research of bacterial pattern formation (Brenner et al., 1998; Leyva et al., 2013;

Li et al., 2020). However, bacterial chemotaxis is more common in liquid or other soft

media, where both the outermost and inner bacteria can move actively. When growth

is occuring on a harder agar surface, only the outermost part of the colony grows by

cell division and population mass increases, the inner bacteria cells are inactive (Ohgi-

wari et al., 1992). Therefore, when considering bacterial growth on semi-solid agar

, chemotaxis becomes negligible while the colony growth can still be appropriately

presented (Kawasaki et al., 1997; Satnoianu et al., 2001).

As an important research objective and experiment platform, the dynamics of E.

coli, including cell growth and colony morphogenesis, have always been a fundamen-
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tal but pivotal topics. Mathematical models with solid theoretical foundation and

testable hypotheses are useful tools to further our understanding on this area.

1.2.2 Modeling Synthetic Gene Circuit

Inspired from computer science and electronics, synthetic gene circuits have been

designed to exhibit control over the flow of information in biological systems (Bala-

gaddé et al., 2008; Xiang et al., 2018). This application uses specific genes with de-

signed topology to perform logical functions, and has become an important method to

modify cellular functions (Ausländer and Fussenegger, 2016), create cellular responses

to environmental conditions (Antunes et al., 2006), or influence cellular development

(Prochazka et al., 2017). Synthetic gene networks have evolved from simple proof-of-

concept circuits to complex therapy-oriented networks over the past 20 years, and will

accelerate the process towards broad practical applications (Wu and Wang, 2015).

Mathematical modeling complements the toolbox of synthetic biology by predict-

ing and exploring the behavior of unbuilt gene circuits and multicellular systems

(Klumpp et al., 2009; Wang et al., 2016). A representative modeling work is intro-

duced by Gierer and Meinhardt (1972), which contains a short-range activator and

a long-range inhibitor (Figure 1.1). This topology appears to be crucial for many

important types of pattern formation and morphogenesis:

∂a

∂t
= ρ

a2

h
− µaa+Da

∂2a

∂x2
+ ρa, (1.4a)

∂h

∂t
= ρa2 − µhh+Dh

∂2h

∂x2
+ ρh. (1.4b)

Here a(x, t) and h(x, t) represent the concentration of activator and inhibitor at po-

sition x and time t, respectively, where {(x, t) : x ∈ R, t ∈ R+}. Parameters µa and

µh are the decay rates, while ρa and ρh are the self-activation rates. The first term on

the right of (1.4a) describes the poduction of the activator which is also slowed down
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Figure 1.1: Topology of the gene circuit introduced by Gierer and Meinhardt (1972),
which contains a short-range activator and a long-range inhibitor.

by the inhibitor, and the first term on the right of (1.4b) describes the production of

inhibitor as a function of the activator concentration. This model also assumes that

both the activator and inhibitor have constant diffusion rates Da and Dh.

The Gierer-Meinhardt model is a fundamental work in modeling biological pattern

formation. It provides us a bridge between the experimental observations and the

molecular-genetic mechanisms and its rich dynamic properties have been well studied

(Ruan, 1998; Song et al., 2017). However, it is certainly a minimal model which

described a very simple topology; either the gene circuit or the interactions between

circuit components could be a lot more complicated.

The high complexity and sensitivity of the gene circuit make remaining experi-

mental research challenging; thus developing suitable mathematical models can allow

systematic description and analysis of such biological systems and greatly deepen our

understanding on circuit functions and control strategies.

1.3 Two Modeling Approaches

A mathematical model in synthetic biology reseach which can be regarded as “a

good model” always comes with the following two characteristics:
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• The model can systematically describe the biological system and provide com-

parable simulation results.

• Dynamical properities can be explored via mathematical analysis of the model,

which can help us understand the mechanisms.

However, accomplishing the above two requirements is challenging because numer-

ical simulation and mathematical analysis are opposite in some sense. For example, a

simple model with fewer equations and parameters will certainly be easier to analyze

its dynamical properties, but may not be able to simulate experimental observations.

On the other hand, a model with high complexity will be more powerful on numerical

simulations while its mathematical analysis becomes rather difficult (Figure 1.2).

Admittedly, there is no universal way to solve such a dilemma and we need to

trade-off based on specific questions we are facing. When modeling the expression

of a synthetic gene circuit, we should systematically present the whole circuit which

could lead to a high-complexity model. Then the mathematical analysis can proceed

with reasonable simplifications. Otherwise, when we are not clear about the biological

principles, such as the interactions between gene circuit and the host cell, we may

start from a preliminary model which can capture experimental observations before

taking other factors into account.

Even so, there are still many questions that need to be answered when under-

standing pattern formation. What are the necessary conditions for the gene circuit

to generate stipe patterns? Will the bacteria colony expanding rate affect pattern

formation? Does the interaction between the gene circuit and host cell play an im-

portant role during the generation of patterns? If appropriate models can be built

to address these questions, they can also be used to improve our experimental design

and predict results.
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Figure 1.2: Schematics of the challenge of balancing the model complexity and
simplicity.

Since some parts of my thesis have already been published, or are in the process of

being published, and in accordance with Arizona State University policy, I will provide

a detailed introduction about the contributions I made in each of these papers and

projects. In addition, I will discuss the contributions made by each co-author and

the unique attributes I made as well as my interpretation of the results.

1.4 A modeling framework on predicting E. coli colony growth

The article published in this section (He et al., 2020), is an article in which I

am the first author. This project concerns how bacterial colony growth is affected

by multiple control factors such as temperature and amino acid concentration. The

initial questions about why bacterial colonies will always reach a stable size and how

they can be controlled were raised by Dr. Xiao Wang based on previous experimental

observations. The corresponding experiments were designed and performed by Samat

Bayakhmetov and Dr. Xiao Wang, which also verified that bacterial colony does not

have a linear growth profile under different temperature or amino acid concentration.

Previous mathematical models either only consider one control factor or not be able to
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capture the nonlinear growth profile. Our paper introduced a modeling framework for

describing bacterial colony growth with multiple control factors. The one-dimensional

reaction-diffusion-based model, which we introduced in this paper, is modified from

Fisher’s equation. Dr. Yang Kuang suggested that the density-dependent diffusion

rate could be plausible to model the colony expansion. We considered a nonmonotonic

density-dependent diffusion rate based on experimental observations, which showed

that cells have low mobility when cell density is either too low or too high. We also

introduced a density-dependent inhibition to the reaction term which mainly affects

the low-density region, which was also inspired from the experimental observations

that cell may not reach its maximum reproduction rate right after seeding on the

agar plate. We then numerically analyze the model by fitting the experimental data

on both colony radius and cross-sectional profiles. Our model provided much better

fitting results for most of the cases compared to Fisher’s equation and captured the

general shape of the colony edge at different time points.

My part in this project was the model establishment, image processing, and part

of numerical analysis. I developed a model with density-dependent diffusion rate and

nutrient-dependent reaction rate according to Dr. Kuang’s suggestions. And then Dr.

Xiao Wang pointed out that there was sufficient nutrient throughout the experiment,

and we were not clear about how the nutrient distribution would change, so I revised

the model by replacing the nutrient limitation with a density-dependent inhibition,

and only the revised model was included in the paper. I also used MATLAB to process

the experimental images such as measuring the radius of the colony and plotting its

cross-sectional profile based on the greyscale data. Duane Harris and I also estimated

the parameters of our model in order to generate the best fit for the experimental

data.

I wrote the majority of the paper, excepting the sections on experimental set-
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up, imaging and microscopy (both written by Samat Bayakhmetov), and parameter

estimations (written by Duane Harris). All authors assisted in proofreading and

improving the paper.

1.5 Reaction-diffusion-based Mathematical Modeling on Circuit-driven Bacterial

Patterning

The article in this section is an article in which I will be the second author, cur-

rently in preparation for submission. This multidisciplinary project included design-

ing a synthetic gene circuit (MINPAC) and performing corresponding circuit-driven

pattern formation experiments, processing the experimental microscopy images and

developing mathematical models to describe the system, simulating the pattern for-

mation process using our model, and quantitatively analyzing the system behaviors.

Because this work includes multidiscipline, there are many co-authors involved in

this paper. I will specifically highlight the aspects of this project that I performed.

For the experimental side, Dr. Fuqing Wu and Dr. Xiao Wang designed the MINPAC

gene circuit and Dr. Fuqing Wu performed the experiments and collected microscopy

images. Thai Ohnmacht, Qi Zhang, Xingwen Chen, performed the early testing of

pattern formation using different agar concentrations; Dr. Kyle Allison, supervised

single-cell imaging work for pattern formation. Dr. Fuqing Wu also performed control

experiments for the modified MINPAC circuit in order to compare the function of the

circuits. Samat Bayakhmetov repeated the experiments and Xingwen Chen performed

the experiments estimating the diffusion rates of autoinducers. Dr. Xiao Wang

oversaw the experimental portion of this project. I was involved in the processing

of microscopy images, developing mathematical models, performing the simulations,

and analyzing the model both numerically and mathematically.

In the image processing part, I measured the colony size via MATLAB and es-
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timated the concentrations of fluorescent proteins within the colony. With the help

of Duane Harris, we also measured the ring width via MATLAB to determine the

number of rings.

Dr. Yang Kuang, Dr. Javier Baez, and Dr. Fuqing Wu initially proposed a

reaction-diffusion-based model for the MINPAC system. I modified the solver which

was initially written by Dr. Javier Baes in MATLAB and performed simulations for

all sets of experiments, which agreed well with observations. I then numerically solve

the system and compared the wave speed with the experimental colony expansion

speed. Since the number of rings varied even with the same experimental conditions,

Dr. Yang Kuang and Dr. Xiao Wang suggested that the randomness of the initial

conditions could be the key factor. I then numerically analyzed the model dynamics

and showed that the variation of a number of rings could be explained by the differ-

ence of the Poincare return time which depends on the initial points. Furthermore,

Dr. Xiao Wang pointed out that the MINPAC circuit is composed of two topo-

logically equivalent motifs. According to Dr. Xiao Wang’s suggestion, I performed

model-comparison simulation results showing that the MINPAC circuit harbors a

greater robustness and amplitude against parameter perturbations to generate tem-

poral oscillation. We then modified the model according to the control experiments.

And similarly, I provided corresponding simulations which show that our models are

plausible for all the control systems with reasonable modifications.

Since the model contains six equations, reasonable simplification is necessary be-

fore analyzing the model. Based on the experimental data, we assumed that the

diffusion process of autoinducers through the membrane is much faster than the cir-

cuit expression and pattern formation. Thus we obtained a reduced model with four

equations, and I then analyzed the equilibrium points and local stability of the sys-

tem. With further simplification via quasi-steady-state assumption, I was able to
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provide traveling wave analysis for the reaction-diffusion system. Dr. Yang Kuang

assisted me with the mathematical analysis part and noting that it was not included

in the paper.

Overall, I initially wrote the majority of the mathematical modeling section in the

supplementary material of the paper. All authors proofread and edited the paper as

necessary.

1.6 Nutrient-modulating E. Coli Growth Feedback in Multi-nutrient Culture

The article published in this section (Melendez-Alvarez et al., 2021), is an article in

which I am the second author. This project studied the nutrient-modulating growth

feedback from the gene circuit to the host cell. We first reported an unexpected

damped oscillatory behavior of a self-activation gene circuit induced by nutrient-

modulating growth feedback, then we developed a molecular mathematical model

with nonmonotonic growth-rate regulation on gene production rate to describe such

dynamics. The corresponding experiments were designed and performed by Juan

Melendez-Alvarez, Dr. Rong Zhang, and Dr. Xiaojun Tian. The mathematical model

was modified based on a previous paper (Zhang et al., 2020). We used our model

to fit experimental data and mathematically analyzed the rationality of the model.

In addition, a model that includes the ribosome allocation toward gene production,

cell growth, and cell maintenance was introduced and analyzed by Juan Melendez-

Alvarez. Since I was not involved in this part, I did not include this portion of the

work in my thesis.

My part in this project was the numerical and mathematical analysis of the model.

I modified the program which was originally written by Juan Melendez-Alvarez.

Inspired by the experimental data, Dr. Yang Kuang suggested that the nutrient-

modulating growth feedback can be described by a growth-dependent nonlinear func-
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tion. I then numerically tested and tuned the model, finding that the model could

provide comparable fitting results of the experimental data by considering a non-

monotonic growth-rate regulation. I then mathematically analyzed the model and

showed that there were certain requirements for modeling the growth feedback.

Overall, I initially wrote the mathematical analysis part in supporting the infor-

mation of the paper. All authors proofread and edited the paper as necessary.

1.7 Overview of the Thesis

In the following chapters, I will explore the spatiotemporal patterning and dy-

namics of E. coli growth through mathematical modeling and relevant analysis. By

comparing our modeling results with experimental data, we will once more see the

significance of a modeling approach. Chapter 2 introduces a modeling framework for

describing E. coli colony growth under multiple control factors, which provides us

a potential path to further investigate which are the most important control factors

and how to mathematically describe the impact. Chapter 3 contains a detailed study

on circuit-driven bacterial pattern formation. Our modeling approach shows that

a plausible mathematical model can not only systematically describe the biological

system and predict the experimental results, but also be a great platform to explore

and explain the mechanisms. Meanwhile, the interaction between the synthetic gene

circuit and the host cell can also be crucial and have direct impact on cell dynamics

as well as circuit function. The corresponding work is included in Chapter 4. And

the overall conclusions and discussion are reserved for Chapter 5.
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Chapter 2

A MODELING FRAMEWORK ON PREDICTING E. COLI COLONY GROWTH

2.1 Abstract

Bacterial colony formations exhibit diverse morphologies and dynamics. A mech-

anistic understanding of this process has broad implications to ecology and medicine.

However, many control factors and their impacts on colony formation remain underex-

plored. Here we propose a reaction-diffusion-based dynamic model to quantitatively

describe cell division and colony expansion, where control factors of colony spreading

take the form of nonlinear density-dependent function and the intercellular impacts

take the form of density-dependent hill function. We validate the model using exper-

imental E.coli colony growth data and our results show that the model is capable of

predicting the whole colony expansion process in both time and space under different

conditions. Furthermore, the nonlinear control factors can predict colony morphology

at both center and edge of the colony.

2.2 Introduction

The process of bacterial colony formation provides an excellent experimental plat-

form to study a broad range of biological phenomena such as biofilm (Hoffman et al.,

2005), multicellular interactions (Shapiro, 1995), and pattern formation (Basu et al.,

2005; Liu et al., 2019). All of these processes are intimately intertwined with bacte-

rial growth, so its control is an essential tool in regulating other processes within the

colony. The formation of a bacterial colony cannot be simply regarded as the outcome

of cell reproduction. The mechanisms behind it can be rather complicated and sev-
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eral recent works have provided us with valuable insights. For instance, Warren et al.

(2019) thoroughly explained all of the forces and provided quantitative data on key

elements that affect the spatiotemporal establishment of bacterial colonies on hard

agar. They also were the first to emphasize the role of surface tension in radial cell

expansion. In another study, Su et al. (2012) points out that the balance in interplays

of the forces has a profound impact on the overall morphology of the colony.

All these control factors will influence the colony formation process and it can

be difficult to determine which is the dominated one, since the dominated control

factor may vary under different experiment conditions, during different formation

stages, or even at different locations within the colony. Although under ideal growing

conditions, some control factors may not play a drastic impact in a short period of

time (such as nutrient limitation), they usually become unneglectable in long-term

experiments. Therefore, focusing on one single control factor may not provide us a

comprehensive analysis of the whole process. We shall be aware of the overall impact

on the bacterial colony formation and start from a plausible, basic mathematical

model before modeling multiple factors at the same time.

In this paper, I proposed a novel mathematical model with nonlinear density-

dependent diffusion rate and growth rate to describe the colony growth under different

control strategies. Corresponding experiments of E. coli colony growth on semi-solid

agar under different conditions were designed and operated by Samat Bayakhmetov

(Xiao Lab). The model is capable of describing the non-constant diffusion of the

cells and the non-monotonic relationship between cell reproduction rate and cell den-

sity. Using this dynamic model, I not only compared the quantitative results with

experimental data under different control strategies but also examined how the model

performs on capturing the colony side spatial profile. Some of the work contained in

this chapter has been previously published.
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2.2.1 Previous Models

Although the morphology of bacterial colonies can be clearly observed in the

experiments and certain control factors, including temperature and nutrient concen-

trations have been proposed (Shapiro, 1995; Basu et al., 2005; Warren et al., 2019;

Su et al., 2012), determining the key factors and study the mechanisms remain chal-

lenging. During the past two decades, many mathematical models were developed to

describe bacterial colony growth and formation, and most of them were established

based on Fishers equation (Mimura et al., 2000; Kawasaki et al., 1997; Leyva et al.,

2013).

Wakita et al. (1994) first used Fisher’s equation to describe the colony formation:

∂b

∂t
= Db∇2b+ (ε0 − µb)b (2.1)

here b = b(r, t) represent the bacterial population density at time t at the spatial po-

sition r, ε0 is the maximum growth rate, Db is the diffusion coefficient and µ presents

the competition among bacterial cells. The authors concluded that Fisher’s equation

is suitable for describing simple and homogeneously spreading colony patterns, which

usually refers to soft agar medium with rich nutrients (Mimura and Tsujikawa, 1996).

Later in 2000, Mimura et al. (2000) introduced another reaction-diffusion model

with the assumption that bacteria consist of active cells and inactive cells when mod-

eling bacterial colony patterns on a semi-solid agar medium. Here the active cells will

move, grow and perform cell division while inactive cells do nothing at all. Mean-

while, the authors also considered nutrient concentration as another variable. If we

let u(x, t) and v(x, t) represent the density of active cells and nutrient concentration
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at time t and position x, respectively, then the model is:

∂u

∂t
= d

∂

∂x

(
∂u

∂x

)
+ uv − a(u, v)u (2.2a)

∂v

∂t
=

∂

∂x

(
∂v

∂x

)
− uv (2.2b)

where d is the diffusion coefficient of bacteria and a(u, v) can be regarded as the

conversion rate from active cells to inactive cells, which is depend on both the active

bacterial density and nutrient concentration.

Furthermore, a chemotaxis model to describe the two-dimensional colony pattern

formation was developed by Leyva et al. (2013).

nt = Dn M n− κnb (2.3a)

bt = ∇(σnb∇b) + θκnb−∇
(
θnb2

χ0Kd

(Kd + n)2
∇n
)

(2.3b)

where n = n(x, y, t) and b = b(x, y, t) represent the concentration of the nutrient

and the density of the bacterial cells, respectively. Dn is the diffusion coefficient

of nutrient, κ is the nutrient consumption rate and θ is the nutrient intake rate.

σ = σ0(1 + ∇) represents the combine effect of agar hardness (σ0) and random

diffusion of the cell (∇). Moreover, the chemotactic sensitivity function χ(n) takes

the form of “receptor law” proposed by Lapidus and Schiller (1976):

χ(n) =
χ0Kd

(Kd + n)2
(2.4)

where χ0 > 0 is a constant measuring the strength of the chemotaxis and Kd > 0

is the receptor-ligand binding dissociation constant and represents the nutrient level

needed for half of the receptor to be occupied. The authors analyzed the impact from

both the nutrient concentration and the chemotactic sensitivity and presented model

prediction of different colony patterns growing under different chemotactic sensitivity.

It is worthy to point out that although the above models are well-known and

widely used, they do have their own limitations. Firstly, these models are mainly

17



used to predict the colony patterns, which focus on predicting the final shape of the

colony rather than the colony growth process. Secondly, both Wakita et al. (1994)

and Mimura et al. (2000) assumed constant bacterial diffusion rate when modeling

colony formation on semi-solid agar medium, which is not consistent with our experi-

mental data showing that the colony grows at a faster speed in the first 48 hours and

slows down afterward (Figure 2.1). Thirdly, neither the Logistic-form growth term

introduced by Wakita et al. (1994) nor the linear growth term presented by Mimura

et al. (2000) and Leyva et al. (2013) may not be the best way to describe cell repro-

duction. Based on experimental observations, the cell barely grows in the first couple

hours after seeding on the agar plate, which indicates that the cell reproduction rate

may not be a monotonic function of cell density. Detailed discussion will be provided

in section 2.4. In addition, the model developed by Leyva et al. (2013) is a good

example to predict the colony shape but may overestimate the impact of chemotactic

and did not consider other possible factors that can affect cell reproduction rate, such

as temperature.

Figure 2.1: Experimental data of colony radius at different time with different AA.
Red and blue colors represent normal (0.01%), and high (0.1%) AA, respectively.
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2.3 Experimental Design

2.3.1 Experiment Introduction

Figure 2.2: Schematics and experimental observations of the growth and morphology
of a bacterial colony - Figure taken from He et al. (2020). (A) Schematics of a
bacterial colony growth and its cross-sectional profile. Cells are indicated by small
green bars and black circles indicate the edges of an agar plate. Left column: cross-
sectional profiles of a bacterial colony at various time. (B) Phase contrast images
of an E. coli colony growing on a semi-solid agar plate taken every 24 hours after
seeding (t = 0). Darker color implies higher cell density and the pink trace at 96h
colony indicates the edge detected by computer program.

To describe the morphology and dynamics of a growing bacterial colony, we fo-

cus on its radial and vertical growth as illustrated by schematics in Figure 2.2A.

The colony begins to grow after seeding, eventually taking on a circular shape when

viewed from above and resembling a semielliptical arch when viewed from the side.

Microscopy images (Figure 2.2B) show that a clear circular pattern can usually be

observed 24 hours after seeding. From here, a colony continues to grow in size while

maintaining its circular shape, which is consistent with previous findings (Warren

et al., 2019). We observe that a colony usually has a grey edge and a dark core

in the earliest images, which are taken at the 24th hour. As the colony grows, the

grey edge becomes barely visible as the size of the dark core increases. The strong
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contrast between the colonies and the agar surfaces indicates that the colonies have

sharp edges.

There are two sets of experiments performed by Samat Bayakhmetov (Xiao Lab).

The first set of experiments were performed at two different T, 30◦C and 37◦C. Each

colony was inoculated as a single cell growing on a semi-solid agar plate for up to 4

days. The second set of experiments was performed with two different AA, 0.01%

and 0.1% with similar procedures. The clear circular patterns could be observed

after 24 hours, so the first data point in each experiment was collected at the 24th

hour and then every 24 hours. There were four colonies collected in the first set

experiment (with different T) and six colonies collected in the second set experiment

(with different AA concentrations).

2.3.2 Image Processing

A MATLAB program was created to detect the colony edge (Figure 2.3 Step 1)

using these phase contrast images. Cropping and adjusting the contrast of the images

may need to be denoise. Then the colony center and the radius were found by fitting

the detected colony edge with a circle function (Figure 2.3 Step 2). This provides

an efficient and accurate method to measure its size. In each set of experiments, the

average radii of all colonies were considered as the final data point. In addition, since

the greyscale data can be used as a reporter of the cell density, the cross-sectional

profile of the colony can be presented by plotting the greyscale data from the colony

center 2.3 Step 3 and 4).
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Figure 2.3: Schematics of the image processing. Step 1: Detecting the colony edge by
using the MATLAB Image Processing Toolbox. The pink trace indicates the detected
colony edge. Step 2: Fitting the pink trace by a circle function, which can determine
the radius and center of the colony. Step 3 and 4: Plotting the grayscale data of
the phase contrast image starting from colony center to the edge, which provides the
cross-sectional profile of the colony.

2.4 Model Introduction

2.4.1 Fisher’s Equation

The growth of E. coli colonies on homogenous semi-solid agar consist of reproduc-

tion and expansion, which always presents circular patterns and can be systematically

modeled by one-dimensional reaction-diffusion equations. Many mathematical mod-

els were developed upon Fishers equation during the past two decades, which takes

the following form:

∂N

∂t
=

∂

∂x

(
D
∂N

∂x

)
+ µ

(
1− N

K

)
N (2.5)
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where N = N(x, t) is the cell density at time t and spatial position x (distance to

colony center), which can also be regarded as the colony height. D is diffusion coeffi-

cient which describe the speed of colony expansion, µ is the maximum reproduction

rate and K is the maximum cell density.

2.4.2 Model with Nutrient

The bacteria colony growth is controlled by heterogeneous factors coming from

a cells metabolism and external environment. Recent research shows that cell re-

production can be affected by nutrient concentration (Matz and Jürgens, 2003) and

acetate accumulation (Shiloach and Fass, 2005), while colony expansion on the agar

surface can be slowed down by physical friction (Warren et al., 2019), especially when

cell density is high. Based on experimental observations, an E. coli colony grows at a

non-constant speed, which is consistent with previous findings that colony expansion

of mobile cells is density-dependent (Liu et al., 2011; Fu et al., 2012). Particularly,

the diffusion process of E. coli is very slow at the beginning since they have plenty

of space and nutrients, and a colony always has a faster expansion rate during the

24th to 72nd hour (Figure 2.1), which implies that treating cell diffusion rates as con-

stant may be an oversimplification and misleading since constant diffusion rate will

lead to a linear colony growth profile. Therefore, presenting the diffusion rate as a

non-monotonic function of cell density N becomes reasonable, noticing that density-

dependent diffusion has been introduced and validated in relevant fields such as mod-

eling Glioblastoma growth (Stepien et al., 2015) and modeling E. coli growth (Liu

et al., 2011). Here we describe the diffusion rate using a nonlinear density-dependent

function:

D(N) =
a1N

m1

Nm2 + 1
(2.6)
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with the assumption 0 < m1 < m2 which ensures the diffusion is slow when the cell

density is either too low or too high.

We assume phosphorous (denoted as P ) to be the most limiting nutrient with an

initial concentration P (0) = P0, and g represents the cell quota. The concentration of

phosphorous will constantly decrease and evert adverse influence on a cell’s reproduc-

tion, which is modeled by P n1/(P n2 +h) and h is the Michaelis constant. Meanwhile,

since the larger colony and higher cell density will result in stronger physical friction

and lower nutrient uptake rate, we propose a function

f(x) =
1

1 + c1x
(2.7)

to describe the inhibition of cell growth caused by this interaction where x is the

distance to the colony center. Based on the Logistic growth model with maximum

cell density K, we can derive the following reaction-diffusion equation:

∂N

∂t
=

∂

∂x

(
a1N

m1

Nm2 + 1

∂N

∂x

)
︸ ︷︷ ︸

cell diffusion

+
P n1

P n2 + h︸ ︷︷ ︸
nutrient

limitation

1

1 + c1x︸ ︷︷ ︸
physical

friction

µ

(
1− N

K

)
N︸ ︷︷ ︸

Logistic growth

(2.8a)

P = P0 − gN︸︷︷︸
nutrient

uptake

(2.8b)

This model provides a reasonable approximation of the non-constant spreading

of an E. coli colony incorporating several control factors such as cell density and

nutrient limitation.
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2.4.3 Revised Model

Firstly, without losing the non-monotonicity, we simplify the diffusion function

D(N) by assuming m1 = 1 and m > 1 as follow:

D(N) =
a1N

Nm + 1
(2.9)

the profile of (2.9) is presented in (Figure 2.4), which shows that the diffusion rate is

low when cell density is either too low or too high.

Meanwhile, the greyscale data of a phase contrast image can be used to estimate

the cell density. With assumptions that the whole colony surface is a calotte and

the distribution of the cell inside the colony is uniform (Warren et al., 2019), we can

compare the total population of the cell by calculating the area of the colonys half-

side profile. Furthermore, we can estimate the relative reproduction rate of a bacteria

colony at different time points. Based on the experimental data, we found out that

the total population of the cell shared a similar profile of the colony size, as it grew

slowly during the first 24 hours after seeding, then reached a much higher growth rate

in the next 24 hours (Figure 2.5B). Such profile indicates that the reproduction rate

may not be a monotone function of cell density N .

Based on the above analysis, we modified the Logistic growth by considering a

density-dependent inhibition described by Michaelis-Menten kinetics, which takes the

following form:

F (N) =
N

K1 +N
(2.10)

where K1 is the Michaelis constant. Note that this inhibition effect is strong when

cell density is low and weak when cell density is high, this profile shows that such

inhibition mainly affects at the early stage of bacterial colony growth (Figure 2.4).
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Combining the two regulations, our revised model takes the following form:

∂N

∂t
=

∂

∂x

(
D(N)

∂N

∂x

)
+ µF (N)

(
1− N

K2

)
N (2.11)

where the first term on the right side of (2.11) describes cell diffusion as well as

colony expansion, with a density-dependent diffusion rate; the second term modeled

cell growth with a non-monotonic growth rate about the density N .

By comparing the simulation results of Fisher’s equation and our revised model,

we can conclude that our model can capture the bacterial colony’s non-linear growth

profile, while Fisher’s equation can only present a linear growth profile which is mainly

due to the constant diffusion rate.

Figure 2.4: An example of density-dependent diffusion rate (D(N)) and growth rate
per capita (µF (N)(1−N/K2)), showing the nonlinearity of the rates. The ranges of
low density and high density are randomly picked. X-axis represents the cell density
and Y-axis refers to the rates. Parameters values are: a1 = 1.8, m = 4, K1 = 2,
K2 = 4, µ = 2.6.
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Figure 2.5: Comparison of Fishers equation and our new model via simulations
from He et al. (2020). (A) Comparison of Fishers equation and our new model via
simulations. Y-axis represents colony radius in micrometer, while X-axis is time points
starting from 0h to 96h. The dashed curves show the change of a colony radius at
various times with different diffusion rates D. The solid curves represent the change
of a colony radius at various times with different values of a1. (B) Normalized colony
volumes under different experimental conditions at various times. Y-axis represents
normalized colony volumes computed from experimental data, while X-axis is time
points at which colony was imaged, starting from 0h to 96h. One colony copy was
randomly picked in each set of experiments, and the normalized colony volume was
computed based on the greyscale.

2.5 Simulation

With the comprehensive discussion of the model derivation, the numerical analysis

of the model becomes indispensable. Fitting the experimental data can help us to

know if the model is capable of predicting colony growth under different conditions.

Noting that our control strategies are tuning of culture temperature (T) and amino

acid concentration (AA) in the growth media, respectively. Although we did not use

any parameters or functions to represent temperature nor amino acid concentration,

we still know that the change of these conditions will affect both cell diffusion and

reproduction, and based on earlier findings (Toennies, 1964; Naganuma et al., 2018;

Ratkowsky et al., 1982), both factors are modeled to be directly proportional to the

growth rate and thus can be represented by a1 and µ in (2.11) in our model. Thus we
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are fitting a1 and µ in our simulations. Based on the experimental observations, the

cell density at the colony center is stable at the end of the experiment, even under

different conditions. This implies that the maximum cell density K2 can be regarded

as a constant. Moreover, since K1 is the Michaelis constant and m determines the

profile of function D(N), they are all fixed in the simulations. Parameters m = 2.0,

K1 = 63.0, and K2 = 189.0 are fixed.

For comparison, we also present experimental data fitting of Fishers equation by

varying the parameters D and µ, in (2.5) via MATLAB. Despite the simplicity of

Fishers equation, it is still an appropriate example for comparison because of several

reasons: (1). Fisher’s equation maintains the linear growth profile of bacterial colony

and Logistic growth term with are two representative characteristics of many previous

models. (2). The complexity of Fisher’s equation and the new model is close compared

to other models with nutrient concentration or chemotactic. Although the new model

has two more parameters than Fisher’s equation, we only fit two parameters for both

of them. (3). Since we are trying to describe the colony growth under multiple

control factors by using a preliminary model, it is better to choose a basic model for

comparison rather than a complicated mode.

Here we first presented the fitting results of the colony radii data, which shows that

our model can produce the simulation results that agree well with the experimental

data and are much better than the results of Fisher’s equation. We then provided the

simulation results of the colony’s cross-sectional profile and compared them with the

experimental data, which also shows that our model can capture the general shape

of the colony edge at different time points.
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2.5.1 Radii Date Fitting

The first set of experiments were performed at two different T, 30◦C and 37◦C.

The clear circular patterns could be observed after 24 hours, so the first data point of

this experiment is t = 24h and experimental data was collected every 24 hours. Four

colonies were recorded at each T, and the average radii of all colonies were computed

at every time point for the purposes of data fitting. We set the initial radius for each

colony smaller than its first data point and fit the experimental data with the new

model by varying the parameters a1 and µ, in (2.11) via MATLAB. These results are

shown in Figure 2.6 Left. At 37◦C, the colony radius shares a non-constant increasing

speed while the colony radius increases at an approximately constant speed at 30◦C.

At each phase, the colonies at 37◦C always have higher colony expansion rates than

colonies at 30◦C. Here, our model provides comparable fitting results and captures

both the non-constant increase of the colony radius at 37◦C and constant increase at

30◦C. This is because under lower T, the bacterial colony will grow slower and have a

more linear growth profile Pipe and Grimson (2008). Note that Fishers equation can

only capture the constant increase profile in low T cases, but has much higher fitting

errors in high T cases. The insert box of Figure 2.6A presents a comparison of the

simulations and experimental data for the 37◦C case at time t = 48h, showing that

the experimental results are stable and the simulation results are reasonably accurate.

The second set of experiments was performed with two different AA, 0.01% and

0.1%. In both cases, the first data point was at t = 24h and the experimental data

was collected every 24 hours. There were six colonies for each case and the average

radius of all colonies for each case was computed at each time point for the purposes

of data fitting. Similar simulations were performed via MATLAB and are shown in

Figure 2.6 Right.
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Surprisingly, colonies with higher AA always have a lower colony expansion rate

when compared at the same time period to colonies with lower AA. The key reason

for this could be that colonies with higher AA grow much faster in the first 24 hours,

which leads to larger colony size and a higher cell density, which subsequently slows

down the growth. Based on the experimental data, AA may only change the speed

at which an E. coli colony grows. Thus, both cases show a non-constant increasing

speed of the colony radius. Our model captures this profile and presents comparable

fitting results with a much smaller fitting error than Fisher’s equation (Table 2.1),

which only presents a linear increase of the colony radius. Noting that the fitting

results of the two models are comparable for the colony growing under 30◦C, which

has the lowest expanding rate and linear-like growth profile. This implies that Fisher’s

equation can only capture the linear growth profile which may only occur in some

specific cases.

Fitting error T:30◦C T:37◦C AA:0.01% AA:0.1%

Fisher 53.42 288.76 223.92 301.83

New model (revised) 86.28 105.68 24.23 88.22

Table 2.1: Fitting errors of two models under different conditions.

To compare and contrast the data fitting performance of the above two models, we

also included two standard model selection criteria: the Akaike information criterion

(AIC) (Akaike, 1998) and the Bayesian information criterion (BIC) (Schwarz et al.,

1978). Both AIC and BIC are very important estimators of the goodness of fit (Miao

et al., 2009, 2012), and deal with the trade-off between the goodness of fit and the

model simplicity, while the model with the lowest AIC or BIC is preferred. Under the
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assumption that the model error is independent and normally distributed, the above

criteria can be written as follow:

AIC = n ln(
RSS

n
) + 2K (2.12a)

BIC = n ln(
RSS

n
) +K ln(n) (2.12b)

where RSS refers to the residual sum of squares, K is the number of parameters, and

n is the sample size. More importantly, for small sample size, a variation of AIC

which contains a bias correction term may be more appropriate:

AICc = n ln(
RSS

n
) +

2nK

n−K − 1
(2.13)

where AICc represents “corrected Akaike information criterion”.

Here we have two parameters for both Fisher’s equation and our revised model,

for each set of experiments we have four data points, which means n = 2 and K = 4.

Since K > n/40 in our case, the AICc instead of AIC should be used (Miao et al.,

2009). And recall the formula of RSS:

RSS =
K∑
i=1

(ri − r̂i)2 (2.14)

where K is the total number of data points, ti is the time of the ith data point. Here

ri represent the radii values at time ti produced from the model, and r̂i correspond to

the experimental observations at time ti. By comparing the AICc of both two models,

which are shown in Table 2.2, we can conclude that our new model has better fitting

quality in most cases with lower AICc scores.

2.5.2 Cross-sectional Profile

In addition to radial colony growth, we also quantitatively analyzed the spatial

profile of the colonies. We estimated the cell density by using the greyscale data
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AICc T:30◦C T:37◦C AA:0.01% AA:0.1%

Fisher 29.14 35.89 34.87 36.07

New model (revised) 31.06 31.87 25.98 31.15

Table 2.2: AICc scores of two models under different conditions.

Figure 2.6: Fitting results of two models under different conditions from He et al.
(2020). Y-axis represents colony radius in micrometer, while X-axis is time points at
which colony was imaged, starting from 24h to 96h. Blue and red curves represent
simulated results of the new model, dashed lines show the results of Fishers equa-
tion, the dots are averaged experimental data while error bars indicate the standard
error between exact data and their averages. Left: Fitting results of two models
under different T. Red and blue colors represent low (30◦C), and normal (37◦C) T,
respectively. In the box, blue circle is the fitted simulation, while purple circles are
the circumference of the colonies taken from the raw images. Right: Fitting results
of two models with different AA. Red and blue colors represent normal (0.01%), and
high (0.1%) AA, respectively.

of a phase contrast image. Since cell densities can be viewed as the colony height

(from colony surface to agar plate), the greyscale data can be used as a reporter of

experimental density, so plotting the greyscale data ranging from the colony center

to the edge can be regarded as an approximation of the spatial profile. To minimize

the background noise, we exported the greyscale data ranging from the center to

the leftward edge and flip the image along the vertical axis. In this paper, we have
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chosen one of the colonies growing at 30◦C and have plotted its profiles at t = 72h and

t = 96h. Note that due to different noise levels, the threshold for the colony edge may

vary. The corresponding simulation results of Figure 2.7 are also presented. Rather

than aiming at predicting the exact shape of the colony edge, we are focusing on

developing a framework to capture the general shape of the colony boundary. Since

the exact profile of a bacterial colony may vary in different experiments, the exact

fitting would likely require much more detailed modeling of the internal mechanics of

colony formation and is left for future explorations.

Figure 2.7: Comparison of quantified temporal and spatial greyscale of experimental
observations and simulated cross-sectional colony profiles - Figure taken from He
et al. (2020). Dashed curves represent the greyscale of a bacterial colony (T: 30◦C)
starting from the colony center (detected by computer program) at different times.
The simulated colony profiles starting from colony center of the corresponding time
are shown in solid curves. Black dashed lines indicate the location of colony edges
and grey arrows indicated the colony spreading direction.
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2.5.3 Parameter Estimation Methods

The two control factors we focus on are T and AA. It is clear that the E. coli cell

will obtain both a higher diffusion rate and higher reproduction rate if growing under

higher T or AA, which will result in higher values of a1 and µ in our model. Therefore

a1 and µ will be the fitting parameters. Noting that although the new model has two

more parameters, we are only fitting two of them which is the same with Fisher’s

equation.

We first solve the model by using the pdepe package, a visible threshold is a setup

based on the threshold used in processing the phase contrast image to determine the

radius of the simulation result.

Then to find the values of a1 and µ that best fit the observed radii data, we use

the simplex method from Lagarias et al. (1998), which is implemented in MATLAB

(version 2018b) function fminsearch. The objective function begins by performing a

simulation assuming radial symmetry on an infinite domain. The initial condition is

created by looking at the initially observed colony radius and we define the no-flex

boundary condition in our simulations. Any spatial nodes that are closer to the colony

center than this initial radius receive a cell density value equal to the carrying capacity,

while all other spatial nodes are set to zero. Next, the colony radius generated by

the model is found by taking the radius of the farthest spatial node from the center

that has a cell density greater than the visibility threshold, equal to 0.03 in this case.

Finally, the error is calculated using the least-square formula given by:

Error =
1

2

K∑
i=1

(ri − r̂i)2 (2.15)

where K is the total number of data points, ti is the time of the ith data point. Here

ri represent the radii values at time ti produced from the model, and r̂i correspond

to the experimental observations at time ti.
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2.6 Dicsuccion and Conclusion

In this study, we proposed a partial differential equation model describing the

growth of E. coli colonies on semi-solid agar starting from a single cell with multiple

control factors. For each set of conditions, we compared the model simulations with

corresponding experimental results. E. coli are common bacteria that can reproduce

on semi-solid agar surfaces and after a certain period of time, form a circular colony.

They can also propel themselves by means of long hair-like appendages known as

flagella. Our experiments show that as E. coli colonies grow, their profiles evolve in

a qualitatively similar way despite being subjected to differing T or AA. In the first

24 hours, the radial growth is slow in comparison to the vertical growth. However,

over the course of the next 48 to 72 hours, the radial growth speeds up before it slows

down. The key factors that control colony growth include physical friction among

cells and between the cells and the agar surface and inhibition of cell reproduction

potentially caused by agar dehydration. Also, cell colonies present similar growth

profiles throughout the experiments, but there are notable differences in colony ra-

dius. However, when changing the AA, the final sizes of all colonies were very close.

This phenomenon might imply that T affects both the growth speed and final size

of a colony, while nutrient concentration mainly affects the growth speed. Mean-

while, it is necessary to point out that although T and AA are independent variables,

the mechanisms of how they will affect cells metabolism and movement are still un-

clear. Fortunately, the outcomes of tuning these variables are predictable and can be

described via cell density. The density-dependent functions presented in our reaction-

diffusion-based model can be a possible approach. Furthermore, our model can not

only capture these characteristics but also produce simulation results comparable to

the experimental data, which shows that the interactions of these control factors can
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be well-described by nonlinear density-dependent functions. Moreover, the model can

provide comparable simulation results on a colonys spatial (cross-sectional) profile at

various times.

To focus only on radial expansion, it is worth noting that here we have omitted

vertical growth because recent studies have shown that these two processes are in-

dependent (Farrell et al., 2013). Moreover, the forces that govern each propagation

factor are distinct and can be incorporated separately. Key parameters that were

tested are AA and T (Toennies, 1964; Naganuma et al., 2018). These factors are

tunable and have dramatic effects on colony expansion (Ratkowsky et al., 1982). The

default settings for T and AA were 37◦C and 0.01%g/mL respectively. By varying

these key parameters, we were able to either accelerate or decelerate the growth rate.

Specifically, we found that decreasing the T to 30◦C doubles the time it takes for the

colony to proliferate. On the other hand, increasing AA by a factor of 10 leads to

an escalated initial growth rate (Figure 2.6 Right). After 24 hours, we see that the

colony with a high AA has a diameter that is twice as large as the control. However,

this difference diminishes as both colonies look similar in size by the end of 4th day.

There are many mechanisms contributing to these visible changes, including nutrient

availability, cell-agar friction, surface tension, and adhesion, as well as dehydration

(Ratkowsky et al., 1982; Jayathilake et al., 2017; Grant et al., 2014; Cole et al., 2015).

Most of these points were taken into consideration while designing our experiments.

For instance, to decrease mechanical forces between agar and cells, we prepared a

semi-solid agar with 0.3% agarose by weight, so that the colony could grow with less

friction and adhesion, but still maintains a proper shape. Also, water tanks were

placed inside the incubators to minimize evaporation from the surfaces of the plates.

The model we propose here, which produces quantitative results that are compa-

rable to the experimental data, is not only a reasonable example of integrating E. coli
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colony expansion with multiple control factors, but also a potentially powerful tool

that can be used to help develop strategies for controlling colony growth under dif-

ferent conditions and for interpreting the mechanisms of other biological phenomena

such as spatial pattern formation. In future studies, parameters for the experimental

variables (T and AA) in the model could be included explicitly, and impacts to other

density-dependent factors besides the maximum growth rate and diffusion rate could

be considered, both would require additional experimental validation. With consider-

ation of more complex effects of cell growth and metabolism as well as environmental

factors, the model can be used to depict both the radial and vertical growth of other

microbe colonies. This will provide valuable mathematical insight and help improve

experimental designs. Furthermore, this model can be a framework to systematically

present spatial pattern formation. The growth of a bacterial colony will not only

interact with circuit expression (Wu et al., 2018, 2017) and pattern formation (Basu

et al., 2005; Cao et al., 2016), but will also control the pattern boundary. Developing

a mechanistic model that builds on this colony growth model can be an interesting

way to study the variable boundary problem seen in pattern formation.
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Chapter 3

REACTION-DIFFUSION-BASED MATHEMATICAL MODELING ON

CIRCUIT-DRIVEN BACTERIAL PATTERNING

3.1 Abstract

The reaction-diffusion-based (RD-based) clock and wavefront model has long been

proposed as the mechanism underlying biological pattern formation of repeated and

segmented structures including somitogenesis. However, systematic molecular-level

understanding of the mechanism remains elusive, largely due to the lack of suitable

experimental systems to probe RD quantitatively in vivo. Here we design a synthetic

gene circuit that couples gene expression regulation (reaction) with quorum sensing

(diffusion) to guide bacterial cells self-organizing into stripe patterns at both micro-

scopic and colony scales. An experimentally verified mathematical model confirms

that these periodic spatial structures are emerged from the integration of oscillatory

gene expression as the molecular clock and the outward expanding diffusions as the

propagating wavefront. Furthermore, our paired model-experiment data illustrate

that the RD-based patterning is sensitive to initial conditions and can be modulated

by external inducers to generate diverse patterns, including multiple-stripe patterns,

target-like patterns, and ring patterns with reversed fluorescence. Powered by our

synthetic biology setup, we also test different topologies of gene networks and show

that network motifs enabling robust oscillations are foundations of sequential stripe

pattern formation. These results verified close connections between gene network

topology and resulting RD-driven pattern formation, offering an engineering approach

to help understand biological development.
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3.2 Introduction

3.2.1 Somitogenesis in Vertebrates

Somitogenesis is one of the significant developmental features during embryonic de-

velopment, which forms a series of repetitive segments (or somites) along the anterior-

posterior axis. Somites are bilateral pairs of mesoderm, which refers to the middle

layer of an early-development embryo. Somites of vertebrates will subdivide into scle-

rotomes, myotomes, and dermatomes which contribute to the formation of vertebrae,

rib cage, skeletal muscle, dermis, and skin. More interestingly, the somitogenesis oc-

curs with a certain periodicity, for example, the average somite formation rate of a

corn snake is one pair every 100 min, compared to rates of one pair every 30, 90, and

120 min in zebrafish, chicken and mouse (Gomez et al., 2008). This periodicity comes

from the oscillatory expression of particular genes which has been known as the “seg-

mentation clock”, while the wavefront progresses slowly in an anterior-to-posterior

direction. Thus, the somitogenesis process is coordinated by a “clock and wavefront”

mechanism.

The introduction of the clock and wavefront mechanism can be traced back to

Cooke and Zeeman (1976), and great progress has been made during the past 40 years

on understanding somitogenesis from different aspects. Haddon et al. (1998) exam-

ined the functions of multiple delta genes in somite development by gene expression

experiments, Vermot and Pourquié (2005) reported the effect of retinoic acid on somi-

togenesis in chick embryos, and Naiche et al. (2011) concluded that specific fibroblast

growth factors (Fgf4 and Fgf8 ) comprise the wavefront activity based on experimen-

tal observations. And during the past several years, lots of relevant work has brought

us valuable insights into this mechanism (Yabe and Takada, 2016; Diaz-Cuadros et al.,

2020) as well as modeling approaches (Lewis, 2003; Cotterell et al., 2015). Meanwhile,
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having a systematic molecular-level understanding of the mechanism can provide us

valuable insights into the key factors of gene oscillatory expression and the control

of wavefront. However, due to the lack of suitable experimental systems and mathe-

matical models to probe the clock and wavefront mechanism quantitatively in vivo,

this area remains elusive.

The study of somitogenesis on a systematic molecular level requires appropriate

biological systems which are capable of generating repeated patterns. The bacterial

stripe patterning which is guided by synthetic gene circuits has become a suitable

platform to study the clock and wavefront mechanism. In the experiments, designed

gene circuits with fluorescent proteins were transformed into bacteria cells before

seeding on the agar plates, and due to the difference of fluorescent protein concentra-

tions, the stripe patterns can be observed via live single-cell time-lapse fluorescence

microscopy. Although we have already known that the cause of sequential stripe

patterns is the oscillatory expression of certain genes, we are still not clear what is

the key factor for the synthetic circuit to have this oscillatory expression and how

to control it. Therefore, developing an appropriate mathematical model is pivotal in

studying the mechanism of sequential stripe patterning, which can also be a valuable

platform to study pattern formation in a more complicated environment.

3.2.2 Reaction-diffusion-based Pattern Formation

Turing’s seminal work first proposed reaction-diffusion (RD) as the ”chemical ba-

sis of morphogenesis” over six decades ago (Turing, 1990). It provides a general

theoretical foundation of pattern formation via RD mechanisms. Two decades later,

RD-driven clock and wavefront (CW) mechanism was hypothesized as the mecha-

nism underlying the formation of repeated and segmented structures such as somites

in development (Cooke and Zeeman, 1976). Since then, although RD-driven pattern
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formation has been demonstrated or identified in chemical, physical, and ecological

systems (Lengyel and Epstein, 1992; Kondo and Miura, 2010), its much-hypothesized

role in multicellular pattern formation hasn’t been fully studied biologically nor math-

ematically. This is largely due to the lack of suitable model systems to test such

hypotheses. For example, somite development requires precise temporal and spatial

coordination between a heterogeneous web of intracellular responses and intercellular

communications, both under the control of complex gene regulation networks and

influences of universal gene expression stochasticity. Such complexity poses a great

challenge to fully understand the mechanistic basis of somite formation in vivo. Engi-

neered microbes carrying rationally designed gene circuits provide an effective venue

to study this problem from the bottom up. Previous studies using synthetic cir-

cuits have demonstrated the formation of the predefined patterns, cell motility-based

stripe formation, and scale-invariant ring pattern formation (Basu et al., 2005; Liu

et al., 2011). However, gene network directed RD based clock and wavefront pattern

formation, despite its importance in developmental biology and extensive theoretical

studies (Gomez and Arcak, 2017; Chen et al., 2014; Baker et al., 2006), has not been

experimentally realized.

Meanwhile, the reaction-diffusion model is widely used in modeling colony forma-

tion and multicellular pattern formation. However, mathematical modeling which is

based on the gene circuit topology to demonstrate the circuit-driven pattern formation

is rarely discussed. Having a dynamical model developed from the circuit topology

to study the pattern formation will bring us huge advantages in understanding the

mechanisms of the oscillatory gene expression.
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3.3 Experimental Design

3.3.1 Circuit Introduction

Past studies have suggested that nonlinear multistable systems could also direct

spatiotemporal pattern formation when coupled with external diffusion process (Ca-

passo et al., 2012; Leppänen et al., 2004; Tuszyński et al., 1991). Following this

strategy to achieve a multicellular pattern formation, Wang et al. designed and

constructed a mutually inhibitory network with positive autoregulation and commu-

nications (MINPAC) (Wu et al., 2019) by expanding their previously demonstrated

quadra-stable gene circuit Wu et al. (2017) with added quorum-sensing modules to

enable intercellular communications.

Figure 3.1: Experimental design of the MINPAC network - Figure taken from Wu
et al. (2019).

Specifically, the MINPAC topology (Figure 3.1) is built upon two hybrid promoters

Plas/tet and Plux/lac, which harbor high nonlinearity and inducibility. Protein group

1 contains three different proteins LasR, LacI, LuxI and Protein group 2 contains

LasI, LuxR, TetR. Plas/tet drives LasR, LacI and LuxI expression whereas Plux/lac

regulates transcription of LuxR, LasI and TetR. LasI and LuxI are synthases that

catalyze the synthesis of autoinducer 3-oxo-C12-HSL (C12) and 3-oxo-C6-HSL (C6),
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respectively. The two small autoinducers can diffuse out of and into cells to mediate

cell-cell communication and coordinate population behaviors on a spatial domain.

LasR and LuxR activate Plas/tet and Plux/lac in the presence of C12 and C6, re-

spectively, forming positive autoregulations. IPTG inhibits the repressive effect of

LacI on Plux/lac, and aTc counteracts TetR inhibition on Plas/tet, forming the mu-

tual inhibitions. Green fluorescent protein (GFP) and mCherry protein serve as the

corresponding reporters of Plux/lac and Plas/tet activities in living cells.

To help us understand the circuit topology, we can simplify the MINPAC network

by denoting the two hybrid promoters as Promoter 1 and Promoter 2, respectively.

Meanwhile, LasR, LacI, LuxI are produced from the same promoter Plas/tet and

have similar production terms. We assume the three proteins have similar degradation

rates and similar dynamics and use LuxI to represent the rest two and denoted by

U . Similarly, we use LasI to represent LuxR and TetR expression dynamics from

Plux/lac and denoted by A. In addition, since the two small autoinducers can diffuse

out of and into cells, we use Ci and Ce to represent internal C6 and external C6,

respectively. Similarly, Hi and He refer to internal C12 and external C12, respectively.

The simplified MINPAC network is shown in Figure 3.2.

3.3.2 Experiment Introduction

To investigate whether MINPAC could direct single cells to self-organize into spa-

tial patterns, Wang et al. transformed the circuit into E. coli cells and serially diluted

cell cultures into single cells before seeding on a semi-solid minimal M9 medium. The

first microscopy image was taken at the 15th hour, when a light, a small colony can

be observed, the second picture was taken at the 24th hour and then every 24 hours.

The phase contrast images (Figure 3.3 Last row) were taken without any filters while

GFP and mCherry images (Figure 3.3 First and second row) were taken with corre-
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Figure 3.2: A simplified MINPAC network - Figure adapted from Wu et al. (2019).
(A). Abstract diagram of MINPAC topology where U and A mutually inhibit each
other (T-bars) and auto-activate (arrowheads) itself, meanwhile U and A can mutu-
ally activate through small autoinducer mediated intercellular communication (dashed
arrowheads). (B). Promoter 1 can be activated by U and repressed by A. U synthe-
sizes Ci (internal C6) binding with A to activate Promoter 2, while A synthesizes Hi

(internal C12) binding with U to activate Promoter 1. The C6 and C12 which diffuse
out of the cell are denoted Ce (external C6) and He (external C12), respectively. GFP
and mCherry serve as reporters for Promoter 1 and Promoter 1, respectively.

sponding filters. After merging the GFP and mCherry images together we obtained

the colored images with the ring patterns observed (Figure 3.3 Third row). Time-

lapse colony imaging results show that the single colony has no obvious pattern at

15 hr and exhibits a weak yellow flat disk, suggesting cells express either GFP or

mCherry are distributed without order (Figure 3.3). After 24 hr, cells in the colony

started to differentially and orderly express GFP and mCherry and self-organize into

a stable double-ring pattern of an outer GFP-ring and inner mCherry disk at 48 hr

(Figure 3.3), with a small temporary yellow ring between these two rings. The double-

ring pattern is stable with time. Fluorescence quantification also confirms higher GFP

expression for cells on the edge of the colony and higher mCherry expression for cells

in the center.
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Figure 3.3: MINPAC cells self-organized double-ring pattern at colony scale. The
first microscopy image was taken at the 15th hour, while a weak circular colony can
be observed. The second microscopy image was taken at the 24th hour and then
every 24 hours. The fourth row are phase contrast images without any filters. The
first two rows are images with corresponding filters to indicate the intensity of GFP
and mCherry. The third row refers to the images merged by the first two rows. Scale
bar represents 100µm. Magnification: 2x. - Figure taken from Wu et al. (2019).

3.4 Full System

3.4.1 Model Introduction

To develop a quantitative and mechanistic understanding of the MINPAC-directed

ring patterning process, we developed a partial differential equation (PDE) model

based on the reaction-diffusion process involving the regulation, production, and dif-

fusion of morphogens C6 and C12.

Firstly, we notice that Plux/lac activity is determined by the relative concentra-

tions of LacI and LuxR-C6, which is a complex of LuxR protein and intracellular

C6 (Ci). Similarly, Plas/tet dynamics is determined by the relative concentrations
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of TetR and LasR-C12, which is a complex of LasR protein and intracellular C12

(Hi). Based on the simplified topology, the Plux/lac activity can be presented as a

hill function of A and Ci, while Plas/tet dynamics can be described as a hill function

of U and Hi. Meanwhile, we use hill functions to describe the repressions. Including

the self-activation terms and degradation terms, the differential equations modeling

the dynamics of U and A are (3.1a) and (3.1b), respectively.

Secondly, the biosynthesis of Ci and Hi primarily depends on U and A, respec-

tively. And both Ci and Hi can diffuse out of and into cells, and bacterial cells further

respond to the autoinducers when their concentrations exceed a certain threshold.

Based on this, we described the Ci and Hi dynamics by (3.1c) and (3.1d), respec-

tively.

Finally, since the external C6 (Ce) and C12 (He) can diffuse across the cell colony

on the M9 agarose medium, we use (3.1e) and (3.1f) describe Ce and He dynamics.

The full system can be written as following and the biological meaning of the
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parameters are included in Table 3.1:

∂U

∂t
= β1︸︷︷︸

self-activation

+
k1(UHi)

n1

1 + (UHi)n1︸ ︷︷ ︸
expression in the

presence of Hi

1

1 + Am1︸ ︷︷ ︸
inhibition

− d1U︸︷︷︸
degradation

(3.1a)

∂A

∂t
= β2︸︷︷︸

self-activation

+
k2(ACi)

n2

1 + (ACi)n2︸ ︷︷ ︸
expression in the

presence of Ci

1

1 + Um2︸ ︷︷ ︸
inhibition

− d2A︸︷︷︸
degradation

(3.1b)

∂Ci
∂t

=
k3U

n3

Kn3
c + Un3︸ ︷︷ ︸

expression gov-

erned by U

− d3Ci︸︷︷︸
degradation

+ Dc(Ce − Ci)︸ ︷︷ ︸
intercellular diffusion

(3.1c)

∂Hi

∂t
=

k4A
n4

Kn4
h + An4︸ ︷︷ ︸

expression gov-

erned by U

− d4Hi︸︷︷︸
degradation

+ Dh(He −Hi)︸ ︷︷ ︸
intercellular diffusion

(3.1d)

∂Ce
∂t

= −Dc(Ce − Ci)︸ ︷︷ ︸
intercellular diffusion

− d5Ce︸︷︷︸
degradation

+ D1
∂2Ce
∂x2︸ ︷︷ ︸

outer diffusion

(3.1e)

∂He

∂t
= −Dh(He −Hi)︸ ︷︷ ︸

intercellular diffusion

− d6He︸ ︷︷ ︸
degradation

+ D2
∂2He

∂x2︸ ︷︷ ︸
outer diffusion

. (3.1f)

It is noteworthy that although Plux/lac activity is activated by the complex of

LuxR and internal C6, the quorum-sensing mechanism is cell population density-

dependent. In other words, Plux/lac can be activated only when the local environ-

mental C6 reaches a certain threshold. Thus, it is the external C6 (Ce) and C12 (He)

that determine the dynamics of MINPAC as well as the patterning process. Further-

more, since mCherry and GFP are two reporters of the hybrid promoters Plas/tet

and Plux/lac, so we can use external C6 (Ce) and C12 (He) to equivalently simulate

mCherry and GFP dynamics.
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Symbol Definition

β1, β2 Basal expression rates from Plas/tet and Plux/lac,

respectively

k1, k2, k3, k4 Maximum production rates

Kc, Kh Half maximal effective concentrations for C6 and

C12 productions, respectively

Dc, Dh Diffusion rates of the diffusion through the cell

membrane

D1, D2 Diffusion rates of the diffusion across the colony

on the medium

n1, n2, n3, n4, m1, m2 Hill coefficients

d1, d2, d3, d4, d5, d6 Degradation rates

Table 3.1: Parameter Explanations of the Model (3.1).

3.4.2 Simulation Results

Since multiple programming platforms have been used to simulate pattern for-

mation under different conditions, a detailed introduction of the numerical methods

will be provided in Section 3.11. Noting that there are many parameters, some are

fixed throughout all simulations included in this chapter. Here we fixed all the Hill

coefficients to m1 = 4, m2 = 4, n1 = 2, n2 = 4, n3 = 3 and n4 = 2, which model the

nonlinearity of the network interactions. We also fixed all the degradation rates to

d1 = 1.19, d2 = 1.19, d3 = 0.56, d4 = 0.8, d5 = 20, d6 = 20. The higher degradation
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rates of external C6 and C12 are due to the possibility that autoinducers can diffuse

out of the colony which will not be considered anymore. Furthermore, it is well known

that the two diffusible signaling molecules with different diffusion constants are one

of the fundamental requirements to generate Turing patterns. In our system, we use

C6 and C12 to mediate the intercellular communication by diffusing in the colony

and semi-solid medium. Previous studies indicate that the diffusion rates for C6 and

C12 are very similar (less than 1.5 fold difference) (Basu et al., 2005; Liu et al., 2011)

and given that their similar chemical structures (C12 only has six more carbons than

C6), we here assume they have the same diffusion coefficient D1 = D2.

The first set of simulations is generated from both NetLogo and MATLAB (Fig-

ure 3.4). We used NetLogo to simulate E. coli cell’s reproduction and random move-

ment, coupling with the reaction part of the model (3.1) to describe the circuit expres-

sion and MATLAB to plot the average data of three rounds of NetLogo simulations.

The color of a cell is determined by the concentration of C6 and C12 and the whole

process starts from one single cell with a random color. Our simulation shows that

there is no obvious ring patterns in the early-stage colony while the ring patterns

will finally be presented (Figure 3.4 Top and bottom left). And the average result

of three rounds of simulations (Figure 3.4 Bottom right) shows that the colony will

always have a mCherry core and GFP outer-ring. These results illustrated that E.

coli cell transformed with MINPAC circuit can be a robust platform generating ting

patterns. In the NetLogo simulations, we assume the cell moves every 10 units of time

and divide every 20 units of time, while the rest parameters are b1 = 0.8, b2 = 0.5,

k1 = 640, k2 = 700, k3 = 80, k4 = 105, Kc = 70 and Kh = 82. We also regarded

this set of parameters as the “standard set” for comparing with parameters in other

simulations.

The experimental observations show that there were different ring patterns under
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Figure 3.4: Simulation results at different time points by NetLogo and the average
results. Red cell indicates higher mCherry concentration and green cell indicates
higher GFP concentration, while yellow cell indicates close concentrations of both
two fluorescent proteins. Top and bottom right: Simulation of colony growth and
circuit expression starting from a single cell with cell’s random walk at different time
points. Bottom right: Average results of three rounds of simulations via NetLogo.

the same conditions without any inductions (Figure 3.5 First column). We hypoth-

esize that it is due to random variations of the initial concentrations of intracellular

proteins and autoinducers (detailed discussion is provided in Section 3.6), which is

corresponding to the initial condition of the model. Taking the parameters used in

(Figure 3.4) with different initial conditions and set the diffusion rates Dc = Dh = 4

and D1 = D2 = 800, our simulations presented comparable results for both two

cases, showing that our model can capture such variation by only changing the initial

conditions.

To further examine the patterns controllability, we applied external inducers to

perturb the regulations of MINPAC and hence pattern formation. C6, when applied
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Figure 3.5: Two observations generated by MINPAC circuit and the corresponding
simulation results - Figure taken from Wu et al. (2019). Top: a ring pattern with
a GFP core and a mCherry outer ring; bottom: a multi-ring pattern with mCherry
core. Middle: mean fluorescence intensities across the center of the corresponding
colonies. Right: Model simulations recapitulate experimental patterns.

externally (at the beginning of the experiment), would promote GFP expression and

also LasI and TetR production, which could both activate and inhibit mCherry ex-

pression. So the net impact of C6 induction is nonlinear and nontrivial. We also

assumed that the application of external inducers would influence the original diffu-

sion rates of C6 and C12 going through the cell membrane to some extent (owning to

the limitation of the cell membranes molecule transport). For example, C6 addition

on the medium leads to a slight decrease in the diffusion rate of C12 through the cell

membrane (Dh). Using the PDE model to simulate C6 application, it is predicted

that we can expect a multiple GFP-mCherry ring pattern when MINPAC is induced

with external C6 (Figure 3.6 Top). Comparing with the “standard set”, the only

changed parameter is Dh = 3.5.
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On the other hand, the IPTG (which inhibits the repressive effect of LacI on

Plux/lac) induction can modulate the strength of mutual inhibition in the circuit.

IPTG counteracts LacI s inhibition on Plux/lac, leading to more LasI expression and

intracellular C12 production. Simulating these changes by perturbing corresponding

parameters, the model predicts a target-like mCherry ring with an outer GFP ring

pattern, which is further verified by the experimental data (Figure 3.6 Bottom).

Comparing with the “standard set”, we set Dc = Dh = 3.5, and k4 = 128 which

represented the higher C12 production rate, while b1 = 0.4 and b2 = 0.45 indicated

slightly lower self-activation rates due to the induction.

Figure 3.6: Two observations generated by MINPAC circuit and the corresponding
simulation results - Figure taken from Wu et al. (2019). Top: a multi-ring pattern with
mCherry core under external inducers C6; bottom: a multi-ring pattern with mCherry
core under external IPTG. Middle: mean fluorescence intensities across the center
of the corresponding colonies. Right: Model simulations recapitulate experimental
patterns.
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The above simulations and experiment results suggest that the ring patterns we

observed are the outcomes of the spatiotemporal interaction of oscillatory dynam-

ics owing to the network topology and the movement stemming from the diffusion

process. After a short time, the solution of the reaction-diffusion system approaches

the form of a traveling wave. The traveling-wave-like solution will move forward at

a speed asymptotically constant. If the speed is about one unit of length per unit

of time, then the wavefront resembles the mirror image of an oscillatory trajectory

of the reaction system with a small initial value. A faster wave speed will stretch

such oscillatory trajectory while a slower wave speed will compact it. The multiple

peaks of such oscillatory trajectories give rise to the observed ring patterns. With

our PDE model, we simulated the temporal dynamics of C12 on the spatial scale and

new peaks emerged periodically at the wavefront (Figure 3.7 B) Experimentally, ring

patterns with multiple stripes were also observed sequentially by time-lapse imaging

of large colonies (Figure 3.7 A), as the model predicted. Collectively, these results

suggest that the ring patterns we observed are the outcomes of the spatiotemporal

interaction of oscillatory dynamics owing to the network topology and the movement

stemming from the diffusion process.

3.5 Control Systems

The above study gives the following naive question: what is the necessary condi-

tion for circuit topology to generate the sequential ring patterns?

Although it is still challenging for us to find and verify the necessary condition

experimentally, we can still argue whether MINPAC has a relatively concise topol-

ogy that can drive the sequential ring patterns by comparing it with other modified

circuits, which are called “control systems”.
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Figure 3.7: A. Quantified temporal and spatial fluorescence intensities of the mul-
tiple GFP ring-forming colony. B. Normalized external C12 concentration, directly
correlated with experimental GFP intensities, of a pattern-growing colony with time
and space from the PDE model simulation. Starting from the center of a colony,
colored curves represent C12 concentrations along the colony radius at different time
points. Grey arrows indicate the traveling direction of the wavefront - Figure taken
from Wu et al. (2019).

3.5.1 Model Introduction

Since the circuit directed cell-cell communication is established as a viable strategy

to generate RD-based and tunable patterns, we employ this method to study the

fundamental question of relationship between gene network topology and resulting

multicellular pattern. Wu et al. (2019) first designed a perturbed MINPAC topology,

where the intercellular U − A communication modules are replaced by intercellular

auto-activations of U and A (Figure 3.8 A). Thus we only need to change the reaction
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Figure 3.8: Three control circuits abstract diagrams (left column) and topology
(right column) - Figure adapted from Wu et al. (2019). A. The intercellular U − A
communications are replaced by intercellular auto-activation of U and A. No specific
pattern is observed experimentally. B. The mutual inhibition is further removed. C.
The mutual inhibition is removed but keeping the other regulatory edges.

parts for U and A based on specific circuit topology which takes the following form:

∂U

∂t
= β1 +

k1(UCi)
n1

1 + (UCi)n1︸ ︷︷ ︸
intercellular

auto-activations

1

1 + Am1
− d1U (3.2a)

∂A

∂t
= β2 +

k2(AHi)
n2

1 + (AHi)n2︸ ︷︷ ︸
intercellular

auto-activations

1

1 + Um2
− d2A (3.2b)

In the second control circuit, the mutual inhibition module is removed compared to
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the first control circuit, namely a circuit with two positive feedback motifs (Figure 3.8

B). So the model can be written as:

∂U

∂t
= β1 +

k1(UCi)
n1

1 + (UCi)n1
− d1U (3.3a)

∂A

∂t
= β2 +

k2(AHi)
n2

1 + (AHi)n2
− d2A (3.3b)

The third control is a sub-network of MINPAC, where the mutual inhibition is

removed but having all the other regulatory edges (Figure 3.8 C). So the model can

be described as:

∂U

∂t
= β1 +

k1(UHi)
n1

1 + (UHi)n1
− d1U (3.4a)

∂A

∂t
= β2 +

k2(ACi)
n2

1 + (ACi)n2
− d2A (3.4b)

It is worth noting that although the parameter symbols in the three control circuits

are the same to MINPAC model, their values may be different, especially for the

production rates of U (k1) and A (k2) and promoter leakages (β1 and β2) because of

the distinct architectures and molecular regulations on the promoters. For example,

the basal expression in the second circuit (Figure 3.8 B) should be larger than in

the first circuit (Figure 3.8 A) and MINPAC circuit (Figure 3.2) owning to a lack of

repressors and direct positive autoregulation from U and A.

3.5.2 Simulation Results

The experimental result of the first control circuit (Figure 3.9 A) shows that

although there is still autoinducer diffusion, this circuit mitigates the interactions and

dependency between U and A and would remarkably change the intrinsic dynamics.

Our model simulation shows that there is no specific pattern but a reddish colony,

which is consistent with the microscopy image (Figure 3.9 A, third column). In the

second control circuit (Figure 3.9 B), since the mutual inhibition module is removed,
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Figure 3.9: Three control circuits topology and directed patterns - Figure adapted
from Wu et al. (2019). All the circuits are constructed with the same molecular
components in MINAPC. First column: abstract diagrams of three control circuits.
Second column: microscopy images taken at 72 hr. Third column: Mean fluorescence
intensities across the center of the ring patterns. Fourth column: Model simulations
of the three control circuits show consistency to experimental results. A. No specific
pattern is observed experimentally. B. Strong GFP and mCherry are simultaneously
expressed and merged fluorescence is yellow. C. A weak yellow core and the outer
ring is observed.

the circuit consists of two positive feedback motifs. Our model shows that both C6

and C12 expressions are very strong and close (Figure 3.9 A, fourth column), which is

verified by the experimental data showing strong GFP and mCherry expression, and a

yellow fluorescent colony was observed. Lastly, in the third control circuit (Figure 3.9

C), which has a mutual-activation topology, provided a weak yellow target-like ring

pattern with low GFP and mCherry expression. The corresponding model confirms

the observation by showing that the system has low-C6 and low-C12 expression. This

result is consistent with previous theoretical studies that demonstrated that a mutual-
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activation circuit with autoregulation is multistable, and harbors a big parameter

space for low-low state (Guantes and Poyatos, 2008; Del Vecchio et al., 2017). Taken

together, our model can provide a systematic description of these three control circuits

under corresponding modifications. It is also necessary to point out that we only

changed the production rates of U (k1) and A (k2) and promoter leakages (β1 and β2)

in simulations due to the distinct architectures and molecular regulations, all other

parameters are consistent with previous simulations.

3.6 Quantitative Analysis

The comparison with different control models implies that MINPAC topology

contains the necessary structure of generating ring patterns, which has also been nu-

merically verified and mathematically modeled. To further investigate how MINPAC

directs the generation of ring patterns, we carried out the following study about two

naive questions based on our observations: 1. Is MINPAC a robust topology that can

generate ring patterns? 2. With same experimental conditions, why does the number

of ring varies? Corresponding analysis based on system dynamics will deepen our

understanding of controlling the circuit function.

3.6.1 Balance Test

Figure 3.10: Illustration of the MINPAC composition of two symmetric positive-
plus-negative oscillator motifs. Parameter τ is used to describe the strength of one
negative feedback (node U inhibits node A). - Figure adapted from Wu et al. (2019)

From a network topology point of view, MINPAC is composed of two topologically

57



equivalent motifs where a self-activating node activates the other node and it, in turn,

inhibits the self-activating node (Figure 3.10), each forming a robust positive-plus-

negative oscillator topology (Tsai et al., 2008; Danino et al., 2010; Chen et al., 2015).

Here, we compared their capability in generating ring patterns by examining the

robustness of their oscillating reaction part (i.e. the ODE part), which could drive

an organized pattern formation across the expanding colony. It is easy to know

that a fully symmetric MINPAC topology would rapidly go to stable steady states

without oscillation and to numerically describe an asymmetric MINPAC topology, we

introduce a new parameter τ to control the strength of the negative feedback from A

to U (Figure 3.10), which also models the imbalance between the two motifs:

∂U

∂t
= β1 +

k1(UHi)
n1

1 + (UHi)n1

1

1 + τAm1
− d1U (3.5)

Since C6 and C12 are small molecules that diffuse fast comparing to the colony

expansion, and the volume of the autoinducer is very small comparing to the E. coli

cell. Therefore we can regard the intercellular diffusion (diffusion through the cell

membrane) as a transient process comparing to pattern formation. We apply this

approximation by assuming C := Ci = Ce, H := Hi = He. Thus, the reaction part

of the simplified full system with parameter τ takes the following form:

∂U

∂t
= β1 +

k1(UH)n1

1 + (UH)n1

1

1 + τAm1
− d1U (3.6a)

∂A

∂t
= β2 +

k2(AC)n2

1 + (AC)n2

1

1 + Um2
− d2A (3.6b)

∂C

∂t
=

k3U
n3

Kn3
c + Un3

− d3C (3.6c)

∂H

∂t
=

k4A
n4

Kn4
h + An4

− d4H (3.6d)
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while the simplified model of motif 1 (Figure 3.10) is:

∂U

∂t
= β1 +

k1(UH)n1

1 + (UH)n1

1

1 + τAm1
− d1U (3.7a)

∂A

∂t
= β2 +

k2C
n2

1 + Cn2
− d2A (3.7b)

∂C

∂t
=

k3U
n3

Kn3
c + Un3

− d3C (3.7c)

∂H

∂t
=

k4A
n4

Kn4
h + An4

− d4H (3.7d)

we then comparing their capability of generating ring patterns by simulating the

oscillatory expression of C6 and C12 with different values of τ . To maintain the

parameter consistency, we used the parameters in Figure 3.5, and kept both initial

boundary conditions the same for (3.6) and (3.7). Our model-comparison results

show that oscillation from one-motif topology is highly dependent on the strength

of its negative feedback (τ) and more importantly, the two-motif MINPAC harbors

greater robustness and amplitude against parameter perturbations to generate tem-

poral oscillation (Figure 3.11). Such robustness enhances the likelihood of observing

our desired phenotypic outputs from the synthetic gene circuit.

3.6.2 Limit Cycle

Meanwhile, even a macroscopic reaction-diffusion system could still be highly sen-

sitive to initial conditions due to the nonlinearity of the network interactions, evi-

denced by diverse patterns shown in Figure 3.5, some colonies self-organize into a

reversed double-ring pattern with GFP accumulating in the inner ring and mCherry

on the outer ring (top). A more complicated pattern is also observed, in which two

GFP rings alternating with two mCherry rings, forming a multiple GFP-mCherry ring

pattern (bottom). Given that these different patterns emerge from the same MINPAC

circuit operating in the same cells and under the same conditions, we hypothesize that

it is due to random variations of the initial concentrations of intracellular proteins
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Figure 3.11: Simulation results of the full system (A) and motif 1 (B) with different
values of parameter τ . The X-axis represents the distance to colony center, while Y-
axis refers to parameter τ values. The color is corresponding to the concentration of
C6 and C12.

and autoinducers. To computationally test this hypothesis, we tested various initial

conditions of the PDE but kept all the parameters the same. The model indeed re-

produces the experimental patterns (Figure 3.5). Furthermore, these differences in

the patterns suggest the system is not at a steady state and, instead, is evolving

towards a steady state. The initial condition determines the starting point of the

MINPAC system, which will go through a temporal non-oscillating spiral (blue line

in Figure 3.12) and finally approach oscillation periods (starting from the red curve in

Figure 3.12). The choice of the initial point (i.e. initial conditions) can significantly

affect the length of the temporal non-oscillating spiral, and quantitative simulations

show that the oscillatory system, with different initial points, could require signifi-

cantly different times, so-called Poincaré return time, to approach the first stable limit

cycle (Figure 3.12). Thus, the initial condition and resulting approach-time variances

lead to diverse patterns with different stripes (besides colony size). These results

illustrate that initial conditions play an important role in shaping the formation of
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biological patterns, which is consistent with recent theoretical analysis (Gomez and

Arcak, 2017; Salazar-Ciudad et al., 2000).

Figure 3.12: Limit cycle of the system. - Figure taken from Wu et al. (2019).
A. A trajectory of a random initial point (black arrow) going to oscillation periods
(red, green and yellow curves) simulated from MINPAC reaction term. The grey
“butterfly” curve illustrates the limit cycle. B. Approaching time for different initial
conditions. Colored curve shows the trajectory before stable oscillations and the
approaching time is calculated for the solution going from its starting point to the
stable limit cycle (grey curve).

3.7 Traveling Wave Analysis of a Simplified Two-dimensional Model

3.7.1 Simplification

Since C6 and C12 are small molecules that diffuse fast comparing to the colony

expansion, and the volume of the autoinducer is very small comparing to the E. coli

cell. Therefore we can regard the intercellular diffusion (diffusion through the cell

membrane) as a transient process comparing to pattern formation. We reapply the

approximation that C := Ci = Ce, H := Hi = He, which leads to the following
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simplified model:

∂U

∂t
= β1 +

k1(UH)n1

1 + (UH)n1

1

1 + Am1
− d1U (3.8a)

∂A

∂t
= β2 +

k2(AC)n2

1 + (AC)n2

1

1 + Um2
− d2A (3.8b)

∂C

∂t
=

k3U
n3

Kn3
c + Un3

− d3C +D1
∂2C

∂x2
(3.8c)

∂H

∂t
=

k4A
n4

Kn4
h + An4

− d4H +D2
∂2H

∂x2
. (3.8d)

Furthermore, based on the experimental results (Figure 3.3), there was no obvi-

ous ring pattern observed until 24 hours, while a clear circular bacterial colony was

observed since 15 hours. The time gap between these two observations suggests that

the pattern formation process will take longer time than the cell reproduction and

colony formation, which makes the quasi-steady state assumption plausible. Here we

assume:

0 = β1 +
k1(UH)n1

1 + (UH)n1

1

1 + Am1
− d1U (3.9a)

0 = β2 +
k2(AC)n2

1 + (AC)n2

1

1 + Um2
− d2A (3.9b)

Therefore, we can solve U and A as functions of C and H: denote U = g1(C,H)

and A = g2(C,H). And (3.8c)-(3.8d) can be rewrite as follow:

∂C

∂t
=

k3g
n3
1

Kn3
c + gn3

1

− d3C +D1
∂2C

∂x2
(3.10a)

∂H

∂t
=

k4g
n4
2

Kn4
h + gn4

2

− d4H +D2
∂2H

∂x2
(3.10b)

noticing that n3 and n4 are hill coefficients and without lossing the nonlinearity, we

take n3 = n4 = 1. And for simplicity, we denote C := u, H := v, then (3.10) will

take the following form:

∂u

∂t
=

k3g1(u, v)

Kc + g1(u, v)
− d3u+D1

∂2u

∂x2
(3.11a)

∂v

∂t
=

k4g2(u, v)

Kh + g2(u, v)
− d4v +D2

∂2v

∂x2
(3.11b)
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With the given assumptions, we can now discuss the above reduced model that

focuses on the spatial dynamics of two autoinducers, which are the key factors of pat-

tern formation. In addition, all parameters are positive to keep the model biologically

realistic.

We then nondimensionlize the system using the characteristic length
√
D1/d3 and

the characteristic time 1/d1 so that x =
√
D1/d3x̂ and t = t̂/d3, which leads to:

∂u

∂t̂
=

K3 · g1(u, v)

Kc + g1(u, v)
− u+

∂2u

∂x̂2
(3.12a)

∂v

∂t̂
=

K4 · g2(u, v)

Kh + g2(u, v)
− dv +D

∂2v

∂x̂2
(3.12b)

where K3 = k3/d3, K4 = k4/d3, d = d4/d3 and D = d3D2/D1.

3.7.2 A Special Case

Since the expression of U governs the production of Ci, higher Ci concentration

will corresponding to higher U concentration. Meanwhile, higher U concentration

will result in stronger inhibition to A. Therefore we can assume that g1(u, .) is an

increasing function and g2(u, .) is a decreasing function. Similarly, we assume that

g1(., v) is a decreasing function and g2(., v) is an increasing function. Without losing

the biologically realistic meaning of the model, g1(u, v) and g2(u, v) are all positive

and bounded for u, v ∈ (0,+∞) and g1(0, v) = g2(u, 0) = 0.

Here we consider the following g1 and g2 functions which satisfiy the above con-

ditions and also maintain the nonlinearity:

g1(u, v) =
u

r1u+ v + r3
(3.13a)

g2(u, v) =
v

r2v + u+ r4
(3.13b)
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substituting (3.13) into (3.12) and drop the hat gives the following system:

∂u

∂t
=

k5u

k7u+ v + r3
− u+

∂2u

∂x2
(3.14a)

∂v

∂t
=

k6v

k8v + u+ r4
− dv +D

∂2v

∂x2
(3.14b)

noticing that for convenience, we denote K3/Kc = k5, K4/Kh = k6, (Kcr1 + 1)/Kc =

k7 and (Khr2 + 1)/Kh = k8. Since k5/r3 and k6/r4 refer to the maximum expression

rates of C6 and C12, the positivity of (k5 − r3) and (k6 − dr4) avoids C6 and C12

to have an exponential-decay profile, which is not consistent with the experimental

results, it is necessary to assume that (k5 > r3) and (k6 > dr4).

It is worthy to point out that the above reaction-diffusion system can be regarded

as a plausible simplification of the original model, and its dynamical behavior can

still demonstrate the biological mechanism.

3.7.3 Minimal Wave Speed

We seek a traveling wave solution of the form:

u(ξ) = u(x− ct), v(ξ) = v(x− ct), ξ = x− ct

where c ≥ 0 is the wave speed of the traveling wave, functions u and v are defined on

the interval (−∞,+∞). Substitution of above forms into (3.14) gives the following

system:

0 =
k5u

k7u+ v + r3
− u+

d2u

dξ2
+ c

du

dξ
(3.15a)

0 =
k6v

k8v + u+ r4
− dv +D

d2v

dξ2
+ c

dv

dξ
(3.15b)
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Then linearising the system ahead of the wave (about u = v = 0) and assuming

u(ξ) = Ae−rξ, v(ξ) = Be−rξ to leading order, leads to:(
r2 − cr +

k5
r3
− 1

)
A = 0 (3.16a)(

Dr2 − cr +
k6
r4
− d
)
B = 0 (3.16b)

since u, v must be positive, we require A, B to be positive and r to be real, so that

c ≥ 2
√
k5/r3 − 1 and c ≥ 2

√
D(k6/r4 − d). By giving the condition that (k5 − r3)

and (k6 − dr4) are all positive, the minimum speed of the wave is:

cmin = min

(
2

√
k5
r3
− 1, 2

√
D(

k6
r4
− d)

)
(3.17)

The comparison of the theoretical minimal wave speed and simulated wave speed

is shown in Figure 3.13, which illustrated the theoretical minimal wave speed as a

reasonable lower bound.

To obtain an approximate wave profile, we use the method introduced by Canosa

(1973). Rescaling the wave coordinate as z = −ξ/c, which leads to:

k5u

k7u+ v + r3
− u+

1

c2
d2u

dz2
− du

dz
= 0 (3.18a)

k6v

k8v + u+ r4
− dv +

D

c2
d2v

dz2
− dv

dz
= 0 (3.18b)

we can further simplify the above system by assuming that 1/c2 is very small and

obtain the reduced system:

du

dz
=

k5u

k7u+ v + r3
− u (3.19a)

dv

dz
=

k6v

k8v + u+ r4
− dv (3.19b)
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Figure 3.13: Comparison of simulated wave speed and theoretical minimum wave
speed when varying parameter k5 and k6 with all other parameters values fixed. The
simulated wave speed is shown in the circles while the theoretical minimum wave
speed is shown in the solid dots. The fixed parameters are: r3 = 1, r4 = 1, d = 0.5,
D1 = 1, and D2 = 0.8. Left case: k6 = 8, k7 = 6, k8 = 10. Right case: k5 = 11,
k7 = 12, k8 = 5.

3.7.4 Equilibrium Points and Nullclines of the Reduced System

Similar to Stepien et al. (2018), we discuss the equilibrium points and nullclines

of the reduced system (3.19). The components of its Jacobian are:

J11(u, v) =
k5(v + r3)

(k7u+ v + r3)2
− 1 (3.20a)

J12(u, v) = − k5u

(k7u+ v + r3)2
(3.20b)

J21(u, v) = − k6v

(k8v + u+ r4)2
(3.20c)

J22(u, v) =
k6(u+ r4)

(k8v + u+ r4)2
− d (3.20d)

and thus at the equilibrium point (u∗1, v
∗
1) = (0, 0), the Jacobian is

J(u∗1, v
∗
1) = J(0, 0) =


k5−r3
r3

0

0 k6−dr4
r4

 (3.21a)
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the eigenvalues of J(0, 0) are positive,

λ11 =
k5 − r3
r3

> 0, λ21 =
k6 − dr4

r4
> 0 (3.22)

implying that the equilibrium point (0, 0) is a source.

With the following condition

k5 − r3 >
k6 − dr4
k8d

(3.23)

k6 − dr4
d

>
k5 − r3
k7

(3.24)

we can determine the existence and local stability of the other three equilibrium points

by computing their Jacobian:

J(u∗2, v
∗
2) = J

(
0,
k6 − dr4
k8d

)
=


k5

v∗2+r3
− 1 0

−d v∗2
k8v∗2+r4

dr4
k8v∗2+r4

− d

 (3.25)

J(u∗3, v
∗
3) = J

(
k5 − r3
k7

, 0

)
=


r3

k7u∗3+r3
− 1 − u∗3

k7u∗3+r3

0 k6
u∗3+r4

− d

 (3.26)

J(u∗4, v
∗
4) = J

(
k8(k5 − r3)− 1

d
(k6 − dr4)

k7k8 − 1
,
k7
d

(k6 − dr4)− (k5 − r3)
k7k8 − 1

)

=


− k7u∗4
k7u∗4+v

∗
4+r3

− u∗4
k7u∗4+v

∗
4+r3

− dv∗4
k8v∗4+u

∗
4+r4

− dk8v∗4
k8v∗4+u

∗
4+r4


(3.27)

from (3.23)-(3.24) we know that the eigenvalues of J(u∗2, v
∗
2) are:

λ12 =
k5

v∗2 + r3
− 1 =

1

v∗2 + r3

(
k5 − r3 −

k6 − dr4
k8d

)
> 0,

λ22 =
dr4

k8v∗2 + r4
− d = − k8v

∗
2

k8v∗2 + r4
< 0 (3.28)
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and similarly, the eigenvalues of J(u∗3, v
∗
3) are:

λ13 =
r3

k7u∗3 + r3
− 1 = − k7u

∗
3

k7u∗3 + r3
< 0,

λ23 =
k6

u∗3 + r4
− d =

1

u∗3 + r4

(
k6 − dr4 −

d(k5 − r3)
k7

)
> 0 (3.29)

meanwhile, since k7k8 > 1 we have tr(J(u∗4, v
∗
4)) < 0, det(J(u∗4, v

∗
4)) < 0, which

implies that J(u∗4, v
∗
4) has two negative eigenvalues λ1,24 < 0.

Based on above discussion, we can conclude that the equilibrium point (0, 0) is a

source, while two equilibrium points (u∗2, v
∗
2) and (u∗3, v

∗
3) are saddle, and the interior

equilibrium point (u∗4, v
∗
4) is a sink.

Next, we derive the nullclines of the system. The vertical motion nullclines are

given by the condition

k5u

k7u+ v + r3
− u = 0 (3.30)

thus we have two vertical motion nullclines:

l1 : u = 0 and l2 : v = −k7u+ (k5 − r3) (3.31)

similarly we can derive the horizontal motion nullclines:

l3 : v = 0 and l4 : v = − 1

k8
u+

k6 − dr4
dk8

(3.32)

and it is easy to show that the intersection of l2 and l4 is (u∗4, v
∗
4).

3.7.5 Positively Invariant Region and Phase Portrait

Lemma 3.7.1. If k5 > r3 and k6 > dr4, let Ω be the open region bounded by the lines

{(u, v) : u = 0}, {(u, v) : v = 0} and {(u, v) : v = −d(k5−r3)
k6−dr4 u+(k5−r3)} (Figure 3.14.

Dashed line). Then Ω is positively invariant.
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Figure 3.14: Phase portrait of the system. The red line refers to l2 and blue line
refers to l4.

Proof. Along the line {(u, v) : u = 0} we have du/dz = 0 and

dv

dz
> 0 when v ∈ (0,

k6 − dr4
dk8

),
dv

dz
< 0 when v ∈ (

k6 − dr4
dk8

,∞) (3.33)

thus the vertical motion along this axis will move towards the equilibrium point

(u∗2, v
∗
2) and no flow will across the line.

Along the line {(u, v) : v = 0} we have dv/dz = 0 and

du

dz
> 0 when u ∈ (0,

k5 − r3
k7

),
du

dz
< 0 when u ∈ (

k5 − r3
k7

,∞) (3.34)

thus the vertical motion along this axis will move towards the equilibrium point

(u∗3, v
∗
3), and no flow will across the line.
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Along the line {(u, v) : v = −d(k5−r3)
k6−dr4 u+ (k5 − r3)} we have:

du

dz
=

u

k7u+ v + r3

(
(k5 − r3)− k7u+

d(k5 − r3)
k6 − dr4

u− (k5 − r3)
)

=
u

k7u+ v + r3

dk7u

k6 − dr4

(
−k6 − dr4

d
+
k5 − r3
k7

)
< 0

(3.35a)

dv

dz
=

v

k8v + u+ r4

(
(k6 − dr4)− dk8v +

k6 − dr4
k5 − r3

v − (k6 − dr4)
)

=
u

k7u+ v + r3

dk8v

k5 − r3

(
k6 − dr4
dk8

− (k5 − r3)
)
< 0

(3.35b)

so the flow is down and to the left across the line. Also notice that here is no motion

at (u∗2, v
∗
2) , (u∗3, v

∗
3) nor (0, 0). At the corner (0, k5−r3), the flow is directly downward

and at the corner ((k6 − dr4)/d, 0) the flow is directly leftward. Thus Ω is positively

invariant.

In order to determine the phase portrait of the system, we discuss the motion

along the line l2 (Figure 3.14 Red line) and l4 (Figure 3.14 Blue line). Along the line

l4, we have dv/dz = 0 and:

du

dz
=

u

k7u+ v + r3
((k5 − r3)− k7u− v)

=
u

k7u+ v + r3

(
(k5 − r3)−

k6 − dr4
k8d

− k7k8 − 1

k8
u

)
=

u

k7u+ v + r3

k7k8 − 1

k8
(u∗4 − u)

(3.36a)

so on the top left part (u ∈ (0, u∗4)), the flow across l4 from the left, and on the bottom

right part (u ∈ (u∗4, (k6 − dr4)/d)), the flow across l4 from the right. Similarly we

know that the flow across l2 from the left when (u ∈ (0, u∗4)), and across l2 from the

right when (u ∈ (u∗4, u
∗
3))
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3.7.6 No Periodic Orbits

Let f1(u, v) be the right-hand side of (3.19a) and f2(u, v) be the right-hand side

of (3.19b). If we define

B(u, v) =
1

uv
, (3.37)

where u, v ∈ Ω \ ({u : u = 0} ∪ {v : v = 0}). Then

∂(Bf1)

∂u
+
∂(Bf2)

∂v
= − k5k7

v(k7u+ v + r3)2
− k6k8
u(k8v + u+ r4)2

< 0, (3.38)

so the expression does not change sign in almost everywhere of the invariant region

Ω. Based on the Dulac’s criterion, we can conclude that there are no periodic orbits

within the closed positively invariant region Ω.

Recall that there is an interior sink point (u∗4, v
∗
4) within the positively invariant

region Ω, there is a traveling wave solution connecting the (0, 0) and (u∗4, v
∗
4).

3.8 Traveling Wave Analysis of a Simplified Four-dimensional Model

Model (3.8) is a plausible description of the MINPAC circuit, which may provide

us reasonable mathematical explanations of some experimental observations. In this

section, we first simplified (3.8), which maintains the nonlinearity and the system-

atical description of MINPAC, and then we present some preliminary results of its

traveling wave analysis.
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3.8.1 Simplification

Since ni (i = 1, 2, 3, 4) and mj (j = 1, 2) are all hill coefficients and without lossing

the nonlinearity, we take ni = 1 (i = 1, 2, 3, 4) and mj = 1 (j = 1, 2), which lead to:

∂U

∂t
= β1 +

k1UH

1 + UH

1

1 + A
− d1U (3.39a)

∂A

∂t
= β2 +

k2AC

1 + AC

1

1 + U
− d2A (3.39b)

∂C

∂t
=

k3U

Kc + U
− d3C +D1

∂2C

∂x2
(3.39c)

∂H

∂t
=

k4A

Kh + A
− d4H +D2

∂2H

∂x2
. (3.39d)

Next, we nondimensionlize the system by denoting x =
√
D1/d3x̂ and t = t̂/d3,

and the above system can be rewritten as follow:

∂U

∂t̂
= b1 +

K1UH

1 + UH

1

1 + A
− d5U (3.40a)

∂A

∂t̂
= b2 +

K2AC

1 + AC

1

1 + U
− d6A (3.40b)

∂C

∂t̂
=

K3U

Kc + U
− C +

∂2C

∂x̂2
(3.40c)

∂H

∂t
=

K4A

Kh + A
− d7H +D

∂2H

∂x̂2
, (3.40d)

where bi = βi/d3, Ki = ki/d3 i = (1, 2), d5 = d1/d3, d6 = d2/d3, d7 = d4/d3 and

D = d3D2/D1 are all positive.

3.8.2 Minimal Wave Speed

Assuming the traveling wave solution has variable ξ = x̂− ct̂, where c ≥ 0 is the

wave speed of the traveling wave, and solutions are defined on the interval (−∞,+∞).
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Substituting ξ = x̂− ct̂ into (3.40) gives the following system:

0 = b1 +
K1UH

1 + UH

1

1 + A
− d5U + c

∂U

∂ξ
(3.41a)

0 = b2 +
K2AC

1 + AC

1

1 + U
− d6A+ c

∂A

∂ξ
(3.41b)

0 =
K3U

Kc + U
− C +

∂2C

∂ξ2
+ c

∂C

∂ξ
(3.41c)

0 =
K4A

Kh + A
− d7H +D

∂2H

∂ξ2
+ c

∂H

∂ξ
, (3.41d)

We linearising the system ahead of the wave, which refers to the steady state

(U∗, A∗, C∗, H∗) = (b1/d5, b2/d6, 0, 0), and the following linearized system can be de-

rived:

c
∂U

∂ξ
= d5(U −

b1
d5

)−B1H (3.42a)

c
∂A

∂ξ
= d6(A−

b2
d6

)−B2C (3.42b)

∂2C

∂ξ2
+ c

∂C

∂ξ
= −B3(U −

b1
d5

) + C (3.42c)

D
∂2H

∂ξ2
+ c

∂H

∂ξ
= −B4(A−

b2
d6

) + d7H, (3.42d)

where

B1 =
K1U

∗

1 + A∗
=
d6
d5

K1b1
b2 + d6

(3.43a)

B2 =
K2A

∗

1 + U∗
=
d5
d6

K2b2
b1 + d5

(3.43b)

B3 =
K3Kc

(Kc + U∗)2
=

K3Kc

(Kc + b1
d5

)2
(3.43c)

B4 =
K4Kh

(Kh + A∗)2
=

K4Kh

(Kh + b2
d6

)2
, (3.43d)
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and we assume the solutions take the form:

U(ξ) = x1e
−γξ +

b1
d5

(3.44a)

A(ξ) = x2e
−γξ +

b2
d6

(3.44b)

C(ξ) = x3e
−γξ (3.44c)

H(ξ) = x4e
−γξ, (3.44d)

substiting (3.44) into (3.42) will derive the following system:

0 = (d5 + cγ)x1 −B1x4 (3.45a)

0 = (d6 + cγ)x2 −B2x3 (3.45b)

0 = −B3x1 + (−γ2 + cγ + 1)x3 (3.45c)

0 = −B4x2 + (−Dγ2 + cγ + d7)x4. (3.45d)

(3.45) is a linear equations system which can be written as M~x = ~0, where ~x =

(x1, x2, x3, x4)
T and

M =



cγ + d5 0 0 −B1

0 cγ + d6 −B2 0

−B3 0 −cγ2 + cγ + 1 0

0 −B4 0 −Dcγ2 + cγ + d7


(3.46)

knowing that for any c ≥ 0, rank(M) = 4, so system (3.45) always has real solutions.

Since xi (i = 1, 2, 3, 4) are all positive, the following two conditions mush hold:

−cγ2 + cγ + 1 > 0 (3.47a)

−Dcγ2 + cγ + d7 > 0. (3.47b)
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Meanwhile, in order to have a traveling wave solution, we shall find conditions

to ensure (U∗, A∗, C∗, H∗) is a stable steady state. For simplification we first define

Û = U − b1
d5

and Â = A − b2
d6

, and denote U := x1, A := x2, C := x3, H := x4, we

then introduce ∂C
∂ξ

:= x3 and ∂H
∂ξ

:= x6, then (3.42) can be rewrite as following:

∂x1
∂ξ

=
d5
c
x1 −

B1

c
x4 (3.48a)

∂x2
∂ξ

=
d6
c
x2 −

B2

c
x3 (3.48b)

∂x3
∂ξ

= x5 (3.48c)

∂x4
∂ξ

= x6 (3.48d)

∂x5
∂ξ

= −B3x1 + x3 − cx5 (3.48e)

∂x6
∂ξ

= −B4

D
x2 +

d7
D
x4 −

c

D
x6. (3.48f)

The Jacobian matrix of (3.48) is:

J =



d5
c

0 0 −B1

c
0 0

0 d6
c
−B2

c
0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−B3 0 1 0 −c 0

0 −B4

D
0 d7

D
0 − c

D



(3.49)

by computing the eigenvalue of J we can derive the conditions for stability and the

upper bound of γ, since it is bounded by the spectral radius of J :

γ ≤ max{| λi |, i = (1, 2, 3, 4, 5, 6)}. (3.50)
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3.9 Local Stability Analysis of the Linearized Systems

Based on system (3.8), we assume n1 = n2 = n3 = n4 = m1 = m2 = 1, which will

not lose the nonlinearity. In addition, we assume that the self-activate rates are very

small, which means β1 = β2 = 0. Thus we can derive following linearization:

k1(UH)n1

1 + (UH)n1
=

k1(UH)

1 + (UH)
.
= γ(UH). (3.51a)

k2(AC)n2

1 + (AC)n2
=

k2(AC)

1 + (AC)
.
= µ(AC). (3.51b)

k3U
n3

Kn3
c + Un3

=
k3U

Kc + U
.
= αU. (3.51c)

k4A
n4

Kn4
h + An4

=
k4A

Kh + A
.
= βA. (3.51d)

where α, β, γ and µ are all positive constants.

3.9.1 Full System

The linearized full system model takes the following form:

∂U

∂t
=
γ(UH)

1 + A
− d1U (3.52a)

∂A

∂t
=
µ(AC)

1 + U
− d2A (3.52b)

∂C

∂t
= αU − d3C +D1

∂2C

∂x2
(3.52c)

∂H

∂t
= βA− d4H +D2

∂2H

∂x2
. (3.52d)
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then we can study the equilibrium points of system (3.52) by considering the reduced

ODEs system:

∂U

∂t
=
γ(UH)

1 + A
− d1U (3.53a)

∂A

∂t
=
µ(AC)

1 + U
− d2A (3.53b)

∂C

∂t
= αU − d3C (3.53c)

∂H

∂t
= βA− d4H. (3.53d)

To make the system biological realistic, we have the condition that min{γ, µ, α, β} ≤

max{d1, d2, d3, d4} which ensures the positive equilibrium point E∗ = (U∗, A∗, C∗, H∗)

where

U∗ =
d2d3

αµ− d2d3
(3.54a)

A∗ =
d1d4

γβ − d1d4
(3.54b)

C∗ =
αd2

αµ− d2d3
(3.54c)

H∗ =
βd1

βγ − d1d4
. (3.54d)

the Jacobian matrix at E∗ is

J(E∗) =



0 − d1U∗

1+A∗ 0 d1d4
β

U∗

A∗

− d2A∗

1+U∗ 0 d2d3
α

A∗

U∗ 0

α 0 −d3 0

0 β 0 −d4


(3.55)
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And the characteristic polynomial F (λ) is:

F (λ) = λ4 + (d3 + d4)λ
3 +

(
d3d4 −

d1d2U
∗A∗

(1 + A∗)(1 + U∗)

)
λ2

+
D
(
A∗

d4
+ U∗

d3

)
(1 + A∗)(1 + U∗)

λ− D

(1 + A∗)(1 + U∗)

(3.56)

where D = d1d2d3d4.

We can show that the Jacobian matrix of this system at steady state has a unique

positive (real) eigenvalue and at least one negative (real) eigenvalue. And the system

will cause transitional oscillation if there exists complex eigenvalues.

3.9.2 Control System 1

Similarly, we can derive the reduced ODEs system:

∂U

∂t
= γ(UH)− d1U (3.57a)

∂A

∂t
= µ(AC)− d2A (3.57b)

∂C

∂t
= αU − d3C (3.57c)

∂H

∂t
= βA− d4H. (3.57d)

The positive equilibrium point E∗1 can be easily calculated:

E∗1 = (U∗, A∗, C∗, H∗) = (
d2d3
αµ

,
d1d4
γβ

,
d2
µ
,
d1
γ

) (3.58)

the Jacobian matrix at E∗1 is

J(E∗1) =



0 0 0 γd2d3
αµ

0 0 µd1d4
γβ

0

α 0 −d3 0

0 β 0 −d4


(3.59)

78



And the characteristic polynomial F1(λ) is:

F1(λ) = λ4(λ+ d3)(λ+ d4)−D (3.60)

where D = d1d2d3d4.

By assuming that d1 = d2 = s > 0, d3 = d4 = t > 0, the above equation has the

following solutions:

λ1,2 =
1

2
(−t±

√
t(4s+ t)) (3.61a)

λ3,4 =
1

2
(−t±

√
t2 − 4st)) (3.61b)

which means the Jacobian matrix of this system at steady state will have four real

eigenvalues (one positive and three negative) when t > 4s, otherwise it will have two

real eigenvalues (one positive and one negative) and two complex eigenvalues with

negative real part when t < 4s.

3.9.3 Control System 2

The reduced ODEs model for the second control system is:

∂U

∂t
= γ(UC)− d1U (3.62a)

∂A

∂t
= µ(AH)− d2A (3.62b)

∂C

∂t
= αU − d3C (3.62c)

∂H

∂t
= βA− d4H. (3.62d)

The positive equilibrium point E∗2 can be easily calculated:

E∗2 = (U∗, A∗, C∗, H∗) = (
d1d3
αµ

,
d2d4
γβ

,
d1
µ
,
d2
γ

) (3.63)
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the Jacobian matrix at E∗2 is

J(E∗2) =



0 0 γd1d3
α

0

0 0 0 µd2d4
β

α 0 −d3 0

0 β 0 −d4


(3.64)

And the characteristic polynomial F2(λ) is:

F2(λ) = λ4 + (d3 + d4)λ
3 + (d3d4 − d2d4 − d1d3)λ2 − (

D

d1
+
D

d2
)λ+D (3.65)

where D = d1d2d3d4. And the above equation has the following solutions:

λ1,2 =
1

2
(−d3 ±

√
d3(4d1 + d3)) (3.66a)

λ3,4 =
1

2
(−d4 ±

√
d4(4d2 + d4)) (3.66b)

which means the jaccobian matrix of this system at steady state will always have four

real eigenvalues. And the steady state will be either node or saddle, which will not

cause transitional oscillation.

3.9.4 Control System 3

The reduced ODEs model for the third control system is:

∂U

∂t
=
γ(UC)

1 + A
− d1U (3.67a)

∂A

∂t
=
µ(AH)

1 + U
− d2A (3.67b)

∂C

∂t
= αU − d3C (3.67c)

∂H

∂t
= βA− d4H (3.67d)
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To make the system biological realistic, we have the condition that E = γµαβ >

D = d1d2d3d4 which ensures the positive equilibrium point E∗3 = (U∗, A∗, C∗, H∗)

where

U∗ =
µβd1d3 +D

E −D
(3.68a)

A∗ =
αγd2d4 +D

E −D
(3.68b)

C∗ =
α

d3

µβd1d3 +D

E −D
(3.68c)

H∗ =
β

d4

αγd2d4 +D

E −D
(3.68d)

and the Jacobian matrix at E∗3 is

J(E∗3) =



0 −d21d3
αγ

d1d3
α

0

−d22d4
βµ

0 0 d2d4
β

α 0 −d3 0

0 β 0 −d4


(3.69)

And the characteristic polynomial F3(λ) is:

F3(λ) = λ4 + (d3 + d4)λ
3 + (d3d4 − d2d4 − d1d3 −

D

E
d1d2)λ

2

− (d2d3d4 + d1d3d4 +
D

E
(d1d2d4 + d1d2d3))λ+D − D2

E
,

(3.70)

and the eigenvalues are the solutions of the following equation:

λ4 + a1λ
3 + a2λ

2 + a3λ+ a4 = 0, (3.71)
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where

a1 = d3 + d4 > 0 (3.72a)

a2 = d3d4 − d2d4 − d1d3 −
D

E
d1d2 (3.72b)

a3 = −(d2d3d4 + d1d3d4 +
D

E
(d1d2d4 + d1d2d3)) < 0 (3.72c)

a4 = D − D2

E
> 0. (3.72d)

Noting that the values of di (i = 1, 2, 3, 4) were all fixed in our simulations:

(d1, d2, d3, d4) = (1.19, 1.19, 0.56, 0.8), (3.73)

we take this parameter set as an example and set D = 3 and E = 6, we can compute

the eigenvalues: λ1,2 = −1.4975± 0.3849i, λ3 = 1.0194, and λ4 = 0.6155.

This result also shows that the system with above given parameter values will

cause transitional oscillation.

3.10 Numerical Methods

According to the previous discussion, the simulations were generated by different

programs or even different platforms. In this section, we will introduce the numerical

methods based on each simulation plot.

Part of Figure 3.4 (top and the bottom left) was generated by NetLogo (a program-

ming language and integrated development environment for agent-based modeling).

The simulation starts with one single cell at the center of the domain while cells were

set to move every 10 units of time and divide every 20 units of time. The “movement”

of the cell, which also represented the diffusion of the C6 and C12, was defined by the

following two steps: “turning head at a random degree” and “moving forward one

step”. The reaction part of the model (3.1) was used to compute the concentration

of C6 and C12 inside the cell and determine the cell’s color. Other parameters were
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fixed beforehand. The whole process included circuit expression (which determined

the cell’s color) and cell movement (diffusion). Multiple rounds of simulations were

performed and the average results were provided by MATLAB (Figure 3.4 Bottom

right). In this part, the computational domain was the uniform grid, the location of

each cell was determined by its center. The color of each grid block was determined

by the most color cell.

Figure 3.5, Figure 3.6 and Figure 3.9 were generated from similar programs via

MATLAB, thus we only discuss Figure 3.5 as an example. We first numerically solved

the PDE model (3.1) with Pdepe package in MATLAB, which has been used to solve

initial-boundary value problems for systems of parabolic and elliptic PDEs in the one

spatial variable x and time t. The model contains two parts, ODE part (3.1a)-(3.1d)

and PDE part (3.1c)-(3.1f). We first used ode45 package to solve the ODE term

(U, A, Ci, Hi) with defined initial conditions and given parameter sets. Then we use

the solutions of U and A to solve the PDE part (Ci, Hi, Ce, He) by using the bvp5c

package. Here we assume that the range of X-axis is large enough so that all variables

are 0 at the boundary, thus the initial condition for the PDE part is [1, 1, 0, 0].

Figure 3.7 B was generated by MATLAB, we solved model (3.1) by using the Pdepe

package with zero boundary conditions, given initial conditions and parameter sets.

Then we selected multiple time points and ploted the normalized C12 concentration.

Figure 3.11 was generated by MATLAB. We solved the reaction part of the model

by using ode45 package with given initial conditions and parameter values. Let the

X-axis represents the distance to the colony center, we determined the color at each

point by comparing the concentrations of Ci and Hi. Then we plotted the results

under different values of parameter τ . Therefore we could compare the robustness of

the oscillation presented by each model.

Figure 3.12 was generated by MATLAB. We solved the reaction part of the model
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by using ode45 package with given initial conditions and parameter values. By run-

ning the simulation long enough, we obtained the limit cycle of the system. For a

random initial point, we first found the time point that the solution reaches (i.e. close

enough to) the limit cycle and then the Poincaré return time was also recorded. For

different initial points, we compared their corresponding Poincare return time and

illustrated that the longer Poincare return time will lead to later oscillation which

can result in fewer rings.

3.11 Dicsuccion and Conclusion

Biological pattern formation requires complex gene regulation networks and accu-

rate cell-cell coordination. Indeed, coordinated cell population behavior in response to

self-regulated morphogen kinetics is a common phenomenon in development (Kondo

and Miura, 2010; Kicheva et al., 2012; Scholes and Isalan, 2017). Here, we intro-

duced a novel synthetic gene network MINPAC which is capable of directing engi-

neered single cells to form self-organized tunable patterns with multiple rings. A

reaction-diffusion-based mathematical model (the full-system model) was developed

to describe the gene expression and autoinducers’ diffusion, in order to simulate the

pattern formation process. The model simulations showed that we were able to predict

the ring patterns for bacterial colonies growing under different experimental condi-

tions by tuning the corresponding parameters or initial conditions. By comparing the

traveling wave profile of the solution with the experimental data, we confirmed that

our model is able to simulate the wave profile of the autoinducers’ concentrations at

different time points, which directly causes the ring patterns.

To further investigate the mechanisms of how MINPAC drives the pattern forma-

tion, three control circuits were designed and their mathematical models were also

established by modifying the full-system model. All of the control models provided
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simulations that agreed well with our experimental observations. These results show

that our model can not only systematically describe the whole gene network topology,

but is also plausible to be applied to similar circuits with reasonable modifications,

which implies that this modeling work can potentially be a significant tool for study-

ing the mechanisms and control of synthetic gene circuits.

Besides simulating the pattern formation process, the model also provided valuable

insights into the system dynamics. Since MINPAC is composed of two topologically

equivalent motifs, and each forming a robust positive-plus-negative oscillator topol-

ogy. By comparing the model simulations of the full-system with one sub-motif with

parameter perturbations, it is clear that MINPAC is a much more robust topology to

generate temporal oscillation than the sub-motif. Furthermore, we noticed that the

number of rings varied in different sets of experiments with the same growing condi-

tions, which could also be biologically interesting. By examining the system’s phase

portrait, we found that this variation can be explained by the change of Poincare

return time, which mainly depends on the location of the initial point.

In addition, we also provided mathematical analysis of the model with reasonable

simplifications. Although we haven’t done a full-system analysis yet, we were still

able to perform the traveling wave analysis of the reduced reaction-diffusion model,

and local stability analysis of all models’ reaction parts. This analysis work showed

the connections between pattern formation and circuit topology and could shed light

on the molecular mechanisms of somitogenesis and biological pattern formation.

Since the MINPAC circuit is novel and the mechanism of circuit-driven pattern

formation is still underexplored, our work in this project is unique and can be re-

garded as a modeling framework for studying spatial pattern formation. Our PDE

model simulations and experimental measurements strongly support that the observed

ring patterns are driven by a reaction-diffusion-based oscillatory gene network with
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propagating wavefront, the so-called clock and wavefront mechanism. It is notewor-

thy to point out that we used one single PDE model to recapitulate and predict all

the MINPAC-directed biological patterns. Furthermore, we maintained the param-

eter consistency in all the simulations, including different sets of experiments and

different circuit topologies, as well as for the quantitative analysis. This could be

extremely challenging due to the complexity of the model and the randomness of the

experimental results. The success of doing so also demonstrated the rationality of our

modeling approach, which could be applied to broad topics and contribute to a better

understanding of the natural developmental processes, and facilitate the engineering

of synthetic tissues in the future.

Synthetic gene circuit has become one of the most important applications in syn-

thetic biology research, and due to its complexity, the progress in modeling the gene

network and predicting the circuit function is still not enough for us to obtain full

control of the system. There are lots of underexplored topics such as the interactions

between the gene circuit and the host cell, which could exert a non-neglectable impact

on the system. In the next chapter, I will introduce my work on nutrient-modulating

growth feedback from the host cell to circuit expression.
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Chapter 4

NUTRIENT-MODULATING E. COLI GROWTH FEEDBACK IN

MULTI-NUTRIENT CULTURE

4.1 Abstract

The study of circuit-host interaction has always been fundamental and crucial

throughout the development of synthetic biology. The unwanted interactions can

exert an adverse effect on gene circuits and sometimes may cause the circuit failure

to function as expected. Meanwhile, how to systematically present the interaction

by the mathematical model is still underexplored. In this paper, we focus on the

growth-mediated feedback between E. coli and synthetic gene circuit in different

growth environments. We first introduced our previous dynamical model with a non-

monotonous function presenting the interaction. Our results showed that the model

can predict the oscillatory expression of the circuit. Furthermore, we modify the

model with a multi-nutrient Droop equation to describe the cell’s response to different

nutrient components. And the model is capable of capturing both the behaviors of the

circuit and host. In addition, some dynamical analysis of the model is also provided.

Our study suggests that the growth-mediated feedback can be represented by non-

monotonous function and the host organism’s behavior in multi-nutrient environments

can be described by the extended Droop model.
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4.2 Introduction

4.2.1 Circuit-cell Interaction

During the study of engineered biology systems, understanding and predicting

their behaviors become critical but essential (Blanchard et al., 2018). One of the

major challenges is the underexplored circuit-host interactions, which may occur in

different ways including cell growth, nutrient competition, metabolic burden, and

can potentially impact the circuit behaviors. Understanding how the interactions

are established and affect the gene circuit will largely help us to design and control

robust gene circuits. Recent studies have provided many valuable insights into the

circuit-host interactions for both controlling them in the experiments and predicting

the impact quantitatively. For example, available tools and principles for avoid-

ing unwanted interactions when engineer microbial gene circuits have been reviewed

by Bradley et al. (2016). And a combination of deterministic modeling, stochastic

simulation, and Fokker-Planck equation formalism has been applied in studying the

roles of circuit-host coupling in shaping circuit dynamics by Blanchard et al. Blan-

chard et al. (2018). Nevertheless, in practice, studying the quantitative behaviors

and mechanisms of the interactions usually have higher operability than eliminating

them when engineering the circuits. Thus, mathematical modeling has become an

important methodology, due to its power of systematic representing and quantitative

predicting of biological systems (Lee et al., 2007). Recent studies of Zhang et al.

(2020) and Melendez-Alvarez et al. (2021) on how growth-mediated feedback affects

the behavior of gene circuits are good examples.

However, the experimental data (which provided by Tian’s lab) also shows that if

the liquid culture is the mixture of two different nutrient mediums (which refer to LB

and M9 in this paper), the two-stage growth profile of the cell is observed (Figure 4.4
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blue dots). Differs to the cell growth in multiple limiting nutrients, this two-stage

growth profile may cause by the cell’s nutrient preference since the cells have a higher

growth rate during the first growth stage. Meanwhile, the mixture of the two different

cultures makes it almost impossible to model the consumption of these two cultures

separately. In all, this is a rarely considered problem that can be clearly observed

from experiments and could lead to very interesting mathematical problems. Also,

the study of the nutrient preference can help us understand the cell’s dynamics in the

multi-nutrient environment and hence improve the experimental design on controlling

the cell’s growth rate.

In this study, we first consider nonlinear growth feedback and propose a modified

model based on Zhang et al. (2020). This modified model is capable of capturing both

the circuit and host behaviors under different nutrient conditions, and the following

analysis provides fair explanations of the mechanisms and long-term behavior of the

system. Thus we conclude that the growth feedback between circuit and host is more

likely to be a nonlinear function. Furthermore, we proposed a modified model based

on the model introduced by Melendez-Alvarez et al. (2021). In the new model, we

considered an instantaneous trade-off of E. coli cells in the multi-nutrient environ-

ment, which consists of two different media LB and M9. We assumed that the E.

coli cells would consume LB first before the instantaneous trade-off occur. Since LB

is a higher quality media comparing to M9, but they are not completely different,

we used a single nutrient equation with two different cell quotas representing the

cell growth with LB and M9 respectively. Using this dynamical model, we look at

how different nutrient conditions affect this biological system, and how the growth

feedback performs when the LB to M9 proportion varies.
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Figure 4.1: Diagram of interactions between the self-activation (SA) gene circuit
and the host cell growth, which is modulated by the nutrient. In the SA circuit,
transcriptional factor AraC forms a dimer and binds to promoter PBAD in the presence
of stimulus L-ara, and thus activates the expression of itself. Here GFP is used as
the reporter. - Figure taken from Melendez-Alvarez et al. (2021).

4.2.2 Introducrion of the Self-activated Circuit (SA circuit) and Experiment

A simple synthetic self-activation (SA) gene circuit was built by Zhang et al.

(2020) and also the research objective in Melendez-Alvarez et al. (2021), in which the

transcription factor AraC activates the expression of itself by binding to its promoter

PBAD. Reporter gene green fluorescent protein (GFP) was used to visualize the

dynamics of AraC (Figure 4.1). The design is similar to the previously reported

positive feedback synthetic gene circuit (Becskei et al., 2001).

Before the cells were transferred into varied nutrient culture media they were

cultured with LB broth (LuriaBertani broth, Sigma-Aldrich). The experimental pro-

cedure for each biological replicate of the self-activated circuit (SA circuit) induction

was carried out in the following way: On day one, SA circuit plasmid was trans-

formed into E. coli cells which were grown on LB plate e with 50 µg/mL kanamycin

overnight at 37◦C. On day two in the morning, one colony was picked and inoculated

into 400 µL LB medium with 25 g/mL chloramphenicol and was grown to OD 1.0

(measured in 200 µL volume in 96-well plate by plate reader for absorbance at 600
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nm) in a 5 mL culture tube in the shaker. The cells were then diluted 1000 folds

into 2 mL fresh LB medium supplemented with 1.25 × 10−3% of L-ara, and grew in

a 15 mL culture tube with 250rpm at 37◦C for 16h. On day three, cells inducted in

the last step were 100-fold diluted into each culture medium of the varied nutrient

levels supplemented with the desired concentration of L-ara and antibiotics. Then,

three technical replicates of 200 µL culture mix for each culture medium of the varied

nutrient levels were load onto a 96-well plate, which was immediately placed onto the

plate-reader to start the measurement.

4.2.3 Previous Model

A dynamic model of self-activation switch circuit with linear growth feedback is

recently introduced by Zhang et al. (2020). This model successfully incorporates the

growth feedback into the system and takes the experimental data into account, which

is an important achievement in establishing a powerful method for studying circuit-

host interactions. In this model, AraC is the transcriptional factor that activates the

expression of itself and the reporter green fluorescent protein (GFP) in the presence

of stimulus L-ara. A represents the concentration of AraC, which is co-expressed with

GFP. Without the growth feedback, this self-activation switch can be modeled as

dA

dt
= f(A)︸ ︷︷ ︸

expression

− dA︸︷︷︸
dilution

(4.1)
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Symbol Definition

k0 baisc production rate of the gene circuit

k1 L-ara induced production rates

d dilution rate of AraC

Cmax, Cmin the maximum and minimum affinities of AraC dimers

binding on the promoter, respectively

Lara concentration of L-ara

n Hill coefficient

K Michaelis constant

Table 4.1: Parameter explanations of the model (4.1).

here the expression function f(A) takes the following form:

f(A) = k0︸︷︷︸
basic pro-

duction

+ k1

(
SaA

2

SaA2 + 1

)
︸ ︷︷ ︸

L-ara induced produc-

tion

(4.2a)

Sa = Cmin + (Cmax − Cmin)

(
Laran

Laran +Kn

)
︸ ︷︷ ︸

activation rate of promoter

(4.2b)

The definition of parameters are provided in 4.1. Here
(

Laran

Laran+Kn

)
describes the

activation rate of promoter by Lara. dA measures the dilution process of AraC.

Furthermore, since AraC and E. coli have a potential competitive relationship, a

higher growth rate of E. coli will result in less available nutrients for AraC. So the

authors consider the growth of E. coli will directly cause dilution of AraC, and the
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mathematical model is revised by coupling cell growth.

dA

dt
= f(A)− dA− dN

dt

1

N
A︸ ︷︷ ︸

dilution caused

by cell growth

(4.3a)

dN

dt
= kg

(
1

A/J + 1

)(
1− N

Nmax

)
︸ ︷︷ ︸

cell growth rate

N (4.3b)

where N(t) is the E. coli cell density at time t and kg, Nmax represents the maximum

growth rate and maximum cell density, respectively. The growth rate of E. coli is

dependent on the circuit expression and J is defined as the overload parameter of the

gene circuit to the growth rate. Notice that the important assumption of this model

is the growth of E. coli will directly cause dilution of AraC, which will take the form

of
(
dN
dt

1
N
A
)
. This may be true in single-nutrient culture such as M9, where either the

cell or the circuit can reach a high growth/expression rate, and the dynamics of the

system is relatively simple. In a more complicated environment, with well-mixed M9

and LB culture solutions, the interplay between E. coli growth and gene circuit may

act nonlinearly, and this will aid directly in the development of our model.

4.3 Model Formulations

4.3.1 Growth-mediated Feedback Model (Model I)

Based on the observation during the experiments, we find the growth of the host

does not always exert an adverse influence on the gene circuit expression. When the

E. coli grow fast, they will consume most of the available nutrients inside the cell

and may leave insufficient nutrients for the gene circuit. On the other hand, once

the cell density reaches the maximum, the growth rate will maintain close to zero

and cells are quiescent which implies that not enough promoters are produced by
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Figure 4.2: The diagram of the model by considering the regulation of the produc-
tion rate of the circuit by growth rate. - Figure adapted from Melendez-Alvarez et al.
(2021).

the cell. Otherwise the growth of E. coli will promote the expression of gene circuit

via high available nutrient concentration and promoter production. However, the

model introduced by Zhang et al. (2020) may not be flexible enough to allow for such

dynamics, and a system with non-monotonous growth feedback is perhaps optimal

because such a system can reproduce the complexity of circuit dynamics responding

to the cell growth. Upon this consideration, we propose nonlinear function F (GR)

about cell growth rate per capita GR = dN
dt

1
N

to describe the interference. Thus a

mathematical model was developed by Melendez-Alvarez et al. (2021) to describe the

circuit expression with the feedback which depends on the host cell’s growth rate per

capita, which takes the following form:

dA

dt
=

(
k0 + k1

SaA
2

SaA2 + 1

)
︸ ︷︷ ︸

circuit expression

F (GR)︸ ︷︷ ︸
growth feedback

function

−(d+GR)A (4.4a)

dN

dt
= kg

(
1

A/J + 1

)(
1− N

Nmax

)
N. (4.4b)

where the parameter definitions are the same as (4.3).

This mechanistic model provides us another tool to study the circuit-host in-

teraction in a more precise way, especially the circuit dynamics in different phases.
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However, when the M9-based culture solution is mixed with a small proportion of LB

solution, E. coli will appear two-stage growth profile, which may not be correlated to

our current model. The two-stage growth profile implies that E. coli cell will respond

to the different nutrient environments when growing, and the quasi-steady-state ar-

gument could lead to the negligence of this change. As a result, taking the nutrient

concentration as a variable and presenting the cell’s response to different cultures

become necessary for establishing a more comprehensive model.

4.3.2 Growth-mediated Feedback Model in Multinutrient Environment (Model II)

In a variable environment, cells will respond to the changes and can present com-

plicated dynamics. Recent studies show that both microbes and bacteria will regu-

late their nutrient uptake mechanisms in order to adapt to the change of available

resources, which can be presented by the extended Droop growth model (Klausmeier

et al., 2007; Grover, 2003). Hwa’s recent work shows that the use of regulatory func-

tions can describe the status shift (Erickson et al., 2017). And Klausmeier points out

that very fast or very slow acclimation of the cell may be better than intermediate

speed acclimation (Klausmeier et al., 2007). Since each one of our experiments is

done within 24 hours and cell growth is relatively fast, we assume the responsibility

to be instantaneous.

Although the main ingredients of M9 and LB cultures are fixed, at what speeds

they are consumed during the experiments, or are there any specific ingredient’s

concentration that can reflect the response of the cells still remain unclear. Here we

use variable P representing the nutrient concentration related to LB culture solutions

and a higher initial value P (0) means a higher proportion of LB solution. About the

cell’s response to the change of nutrient concentration, we assume that the adaptation

to a lower P level can be described as changing of minimal cell quota. Thus a double-
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Droop growth model with different cell quotas and different maximum growth rates is

considered in our model. Moreover, the regulatory functions w1(P ) and w2(P ), which

depend on the nutrient concentration, are considered to be instantaneous. Based upon

these assumptions, a system of three ODEs is proposed as follow:

dA

dt
=

(
k0 + k1

SaA
2

SaA2 + 1

)
F (GR)− (d+GR)A (4.5a)

dN

dt
= kg

(
1

A/J + 1

)
(w1(P )g1(P ) + w2(P )g2(P ))N (4.5b)

dP

dt
= −γ(P − q2)N. (4.5c)

where −γ(P−q2) describes the nutrient uptake by E. coli with maximum uptake rate

γ. Here P (0) = P0 > q1 > q2 > 0 and r1 > r2, and the growth terms are functions of

nutrient level:

g1(P ) = r1

(
1− q1

P

)
, (4.6)

g2(P ) = r2

(
1− q2

P

)
. (4.7)

Meanwhile, the regulatory functions should be continuous and differentiable with

following conditions: w′1(P ) ≥ 0, w1(P0) = 1, and

w1(P ) = 0, P ∈ [q2, q1], (4.8a)

w2(P ) = 1− w1(P ). (4.8b)

and here we consider the feedback function as the following form:

F (GR) = w1(P )F1(GR) + w2(P )F2(GR), (4.9)

where F1(GR) and F2(GR) are positive and bounded for all GR ≥ 0, and F1(0) =

F2(0) = 1 ensures that there is no growth feedback if the host cells are not growing.
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4.4 Simulation

4.4.1 Growth-mediated Feedback Model (Model I)

Several functions of F (GR) were tested to fit the experimental data and to find the

correct phenomenological dependence of the synthetic gene production rate on growth

rate. The function F (GR) represents the regulation of synthesis rate of AraC by the

growth rate. We concluded that the nonmonotonic function F (GR) = (aGRn1 +

b)/(cGRn2 + 1) where n1 < n2 provided the best fitting results compared to linear

function and monotonic function (Figure 4.1). The best fitted parameters with this

model, unless otherwise mentioned, are: a = 0.0079, b = 1, k0 = 0.4488, k1 = 8.9770,

Sa = 1, d = 4.4885, kg = 0.9634, J = 2.8066 for the linear case. While for the

monotonic case, the best fitted parameters are a = 727.7, b = 1, c = 277.5, k0 =

0.0289, k1 = 0.5779, Sa = 1, d = 0.2889, kg = 0.9065, J = 8.1291. And for the

nonmonotonic case are: a = 7.549, b = 1, c = 6.7002, n1 = 0.5, n2 = 2, k0 = 0.0514,

k1 = 1.0288, Sa = 1, d = 0.5144, kg = 1.2540, J = 2.1230.

4.4.2 Growth-mediated Feedback Model in Multinutrient Environment (Model II)

To describe the instantaneous nutrient switch, here we define the regulatory func-

tions w1 and w2 as following:

w1(P ) = 0.5(sign(P − p1) + 1) (4.10)

w2(P ) = 0.5(sign(p1 − P ) + 1), (4.11)

which explain that in high-quiality nutrient environment (q1 < P < P0), w1(P ) = 1

and w2(P ) = 0, otherwise when q2 < P < q1, w1(P ) = 0 and w2(P ) = 1.

Also, in high-quality nutrient environment, the host cells are growing very fast

which may cause negative feedback to circuit expression. Thus we introduce the
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Figure 4.3: Fitting of the model to the dynamics of the host cell growth (A) and
the circuit gene expression (B). Linear (yellow lines), monotonic (orange lines), and
nonmonotonic (blue lines) functions were used to test the regulation of the production
rate of the gene circuit by growth rate (F (GR)) and only the nonmonotonic function
enable the models to fit the experimental data perfectly - Figure taken from Melendez-
Alvarez et al. (2021).

following feedback functions F1 and F2:

F1(GR) =
1

K ·GR + 1
(4.12)

F2(GR) =
aGRn1 + b

cGRn2 + 1
. (4.13)

The simulation results are shown in Figure 4.4, while two different data sets are

used to represent different nutrient conditions. The model is capable of providing

comparable fitting results with the following parameter values: J = 2.123, k0 =

0.0514, kg = 1.2540, Sa = 1, d = 0.4813, c = 6.7, n1 = 0.5, n2 = 2, q2 = 0.25, which

were fixed in both two simulations. For case 1 (LB proportion is 20%), k1 = 1.7678,

a = 10.6323, γ = 2.2911, q1 = 0.7234, K = 0.0862, r1 = 4.6700, r2 = 1.6330, and

for case 2 (LB proportion is 40%), k1 = 1.5842, a = 5.3552, γ = 1.3008, q1 = 0.7247,

K = 0.0918, r1 = 4.6606, r2 = 1.0499.
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Figure 4.4: Fitting results of two different nutrient proportion. Right Y-axis repre-
sents optical density which can also be understood as cell density, while left Y-axis
represents average GFP level, and X-axis is time points. Blue and red curves rep-
resent simulated results of the model and the dots are averaged experimental data.
(A) LB proportion is 20%. (B) LB proportion is 40%.

4.5 Numerical Method

We used similar methods in performing data fitting for the above two models

so here we take Figure 4.3 as an example. Since the self-activated circuit plasmid

was transformed into E. coli which were grown on LB plate one day before being

inoculated into the liquid culture, we deduced that the circuit expression had already

reached the steady state. Thus we first used ode23 (an ODE solver in MATLAB) to

solve the model, the initial value of A was set to be a positive random value around

the first data point of GFP/OD while the initial value of N was the first data point of

OD (optical density). This step helped us finding the steady state of the circuit gene

expression. Then we again solved the system by using ode23, this time the initial

value of A was set to be its steady state while the initial value of N was still the first

data point of OD. After solving the system we used the fminsearch search function to

find parameter values that best fit the experimental data. Here the error is calculated
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using the least-square formula given by:

Error =
M∑
i=1

(
(Ni − N̂i)

N̂i

)2

+
M∑
i=1

(
(Ai − Âi)

Âi

)2

(4.14)

where M is the total number of data points, N̂i is the ith data point of OD and Âi is

the ith data point of GFP/OD. Here Ni and Ai are generated by the model.

4.6 Analysis

4.6.1 Exploring the Growth-mediated Feedback Function (Model I)

For simplification, we introduce following notations: A := u, N := v and Nmax :=

vm. Thus model (4.4) can be written as:

du

dt
=

(
k0 + k1

Sau
2

Sau2 + 1

)
F (GR)− (d+GR)u, (4.15a)

dv

dt
= kg

(
1

u/J + 1

)(
1− v

vm

)
v. (4.15b)

Proposition 1. There is no peak of AraC (i.e. no local maximum point of u with

t ∈ (0, T ), where T is the ending time) when F (GR) = 1.

Proof. Prove by contradiction. Assuming there is at least one local maximum point

up = u(tp) with tp ∈ (0, T ), which leads to du
dt
|t=tp= 0. Thus, there exist t1, t2 close

to tp such that t1 < tp < t2 and u1 = u2 < up (notice that we denote u(ti) := ui and

v(ti) := vi for i = 1, 2) and

du

dt
|t=t1> 0 >

du

dt
|t=t2 , (4.16)

which is equivalent to

f(u1)− (d+GR |t=t1)u1 > 0 > f(u2)− (d+GR |t=t2)u2. (4.17)

Since f(u) and du are monotonous about u, we have f(u1) = f(u2) and du1 = du2,

which means the following inequality should also hold:

GR |t=t1< 0 < GR |t=t2 , (4.18)
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On the other hand, since GR is non-negative and v is non-decreasing over time,

and v1 ≤ v2 holds, which bring us

GR |t=t1 = kg

(
1

1 + u1/J

)(
1− v1

vm

)
= kg

(
1

1 + u2/J

)(
1− v1

vm

)
≥ kg

(
1

1 + u2/J

)(
1− v2

vm

)
= GR |t=t2

(4.19)

which conflicts with (4.18).

This proposition is corresponding to the previous model (Zhang et al., 2020),

where the regulation of the production rate by the growth rate per capita is not

considered.

Proposition 2. There is no peak of AraC when F (GR) is amonotonous decreasing

function.

Proof. Similarly, we assume that there is at least one local maximum point up = u(tp)

with tp ∈ (0, T ), du
dt
|t=tp= 0 and we prove by contradiction. Thus, there exist t1, t2

close to tp such that t1 < tp < t2 and u1 = u2 < up. And also we have:

du

dt
|t=t1> 0 >

du

dt
|t=t2 . (4.20)

However, since v1 � v2 we have

GR |t=t1≥ GR |t=t2 , (4.21)

so

F (GR) |t=t1≥ F (GR) |t=t2 , (4.22)

which provided us

du

dt
|t=t1≤

du

dt
|t=t2 , (4.23)

and this is conflicting with (4.23).
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Proposition 3. If F (GR) = aGR+ 1 where a is a positive constant (i.e. the grouth

feedback function is a linear increasing function of the cell growth rate per capita).

Then the following two situations will not occur at the same time:

• There is a local minimum umin with tmin ∈ (0, T ) and umin < u0.

• There is a local maximum umax with tmax ∈ (0, T ) and umax > u0.

here u0 = u(0) is the initial concentration.

Proof. We prove this proposition by contradiction. Assuming the above two situations

both hold, which means there is at least one local minimum point and one local

maximum point. We then assume that among all these extrema, the first one is a

local minimum which is denoted as uv = u(tv) with tv ∈ (0, T ) and uv < u0 (Noting

that the proof will be similar if the first one is a local maximum point). And we

denote the local maximum (which following uv) as up with tp ∈ (0, T ) and up > u0.

Thus, we have 0 < tv < tp < T and uv < u0 < up.

So there exists a time t∗ where t∗ ∈ (tv, tp) such that u(t∗) := u∗ = u0 and

du

dt
|t=t∗ = f(u∗)(a ·GR |t=t∗ +1)− (d+GR |t=t∗)u∗

= (af(u∗)− u∗) ·GR |t=t∗ +(f(u∗)− du∗)

= (af(u0)− u0) ·GR |t=t∗ +(f(u0)− du0)

> 0.

(4.24)

Since u0 is a steady state of the system without growth-mediated feedback (i.e.

GR = 0), we have f(u0)− du0 = 0, which leads to:

(af(u0)− u0) ·GR |t=t∗> 0. (4.25)

Meanwhile, since the local minmum point uv is also the first local extremum, we
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have

du

dt
|t=0 = f(u0)(a ·GR |t=t∗ +1)− (d+GR |t=0)u0

= (af(u0)− u0) ·GR |t=t0 +(f(u0)− du0)

< 0,

(4.26)

and this is conflicting with (4.25).

Based on the above discussion we know that, the following forms of growth feed-

back function F (GR) can not capture the experimental data:

• F (GR) is a constant function.

• F (GR) is a linear function.

• F (GR) is a monotonic decreasing function.

4.6.2 Equilibrium Points and Local Stability (Model II)

Before the analysis, we shall make the following assumptions:

• Since the base expression rate k0 is very low, we assume that k0 = 0.

• The nutrient level refers to normalized concentration and P (0) = P0 > q2.

• We set Sa = 1, since it was fixed in previous simulations.

And model (4.5) can be rewrite as following:

dA

dt
= k1

A2

A2 + 1
(w1(P )F1(GR) + w2(P )F2(GR))− (d+GR)A (4.27a)

dN

dt
= kg

(
1

A/J + 1

)
(w1(P )g1(P ) + w2(P )g2(P ))N (4.27b)

dP

dt
= −γ(P − q2)N. (4.27c)
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Theorem 4.6.1. If A(0) ≥ 0, N(0) ≥ 0, and P (0) > q2, then A, N , and P will

remain nonnegative for t > 0.

Proof. Firstly, it is easy to know that P with P (0) > q2 is bounded below by q2 and

bounded above by P (0). Then since gi(P ) and wi(P ) i = (1, 2) are all nonnegative

with q2 < P < P (0), we have dN/dt ≥ 0 and N(t) ≥ 0 for all t > 0. Thirdly, since

A(0) ≥ 0 and dA/dt |A=0= 0, we have A(t) ≥ 0 for all t > 0.

Theorem 4.6.2. The system is bounded if A(0) ≥ 0, N(0) ≥ 0, and P (0) > q2.

Proof. From Theorem 4.6.2 we know that P is bounded. Because P is strictly de-

creasing and will finally reach and stay at the minimum q2, so there exist time tq > 0

such as P (t) > q2 for 0 ≤ t < tq and P (t) = q2 for all t ≥ tq. Also from (4.27b) we

know that

w1(q2)g1(q2) + w2(q2)g2(q2) = 0, (4.28)

which leads to dN/dt = 0 for all t ≥ tq. Since N(t) is continous, N(t) is bounded

above by N(tq).

Meanwhile, GR = 0 for all t ≥ tq will lead to

w1(P )F1(0) + w2(P )F2(0) = 1, (4.29)

so for t ≥ tq, (4.27a) is equivalent to

dA

dt
= k1

A2

A2 + 1
− dA, (4.30)

so that A(t) is bounded for t ≥ tq. Also since A(t) is continous and A(0) ≥ 0, it is

bounded for 0 ≤ t < tq, thus A(t) is bounded for t ≥ 0.

Noting that N(t) represents the host cell density at time t, and N(0) = 0 means

there is no cell in the liquid culture, thus N(t) = 0 will hold for all t > 0. In this

104



case there will be no circuit expression (A(t) = 0 for all t ≥ 0) and P (t) = P (0) for

all t ≥ 0. To keep the system biologically realistic, we only consider the steady state

with N∗ > 0 (N -positive equilibira).

Theorem 4.6.3. In this theorem, we only discuss the equilibrium (A∗, N∗, P ∗) with

N∗ > 0, while P ∗ = q2 is the only equilibrium for P , and the value of N∗ is also the

maximum of N which means N∗ = N(t) for t ≥ tq (tq is defined in Theorem 4.6.2).

And for A∗ we have following conclusions:

• When d > k1/2, there is a unique N-positive equilibrium A∗0 = 0.

• When d = k1/2, there are two N-positive equilibria A∗0 = 0, A∗1 = 1.

• When d < k1/2, there are three N-positive equilibria A∗0 = 0, A∗1,2 =
1

2d
(k1 ±√

k21 − 4d2).

Proof. The steady state (A∗, N∗, P ∗) can be solved from the following system:

0 = k1
A2

A2 + 1
(w1(P )F1(GR) + w2(P )F2(GR))− (d+GR)A (4.31a)

0 = kg

(
1

A/J + 1

)
(w1(P )g1(P ) + w2(P )g2(P ))N (4.31b)

0 = −γ(P − q2)N. (4.31c)

With the condition that N∗ > 0, we have P ∗ = q2, and GR = 0. So (4.31a) is

equivalent to:

0 = k1
A2

A2 + 1
− dA

=
A

A2 + 1
(−dA2 + k1A− d),

(4.32)

noting that k1 and d are positive, so if d > k1/2, −dA2 + k1A − d < 0 always holds

and A∗0 = 0 will be the only solution of (4.32). And if d = k1/2, −dA2 + k1A− d = 0
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will have a unique positive solution A∗1 = 1 and A∗0 = 0, A∗1 = 1 are the solutions

of (4.32). If d < k1/2, −dA2 + k1A − d = 0 will have two positive solutions A∗1,2 =

1

2d
(k1 ±

√
k21 − 4d2) and there will be three positive equilibria for A: A∗0 = 0, and

A∗1,2 =
1

2d
(k1 ±

√
k21 − 4d2).

We then derive the Jacobian matrix of (4.27). Since F (GR) = w1(P )F1(GR) +

w2(P )F2(GR) and GR = (1/N)(dN/dt), we have GR = GR(A,P ) and F (GR) =

F (A,P ). Knowing that P ∗ = q2 holds for all N -positive equilibria, so GR(A,P ∗) = 0

and F (A,P ∗) = F (0) = 1. Futhermore,

dGR(A,P )

dA

∣∣∣∣
P=q2

= kg(w1(P )g1(P ) + w2(P )g2(P ))
d

dA

(
1

A/J + 1

) ∣∣∣∣
P=q2

= 0

(4.33)

dF (A,P )

dA

∣∣∣∣
P=q2

= w1(P )
dF1(GR)

dGR

dGR

dA

∣∣∣∣
P=q2

+ w2(P )
dF2(GR)

dGR

dGR

dA

∣∣∣∣
P=q2

= 0,

(4.34)

and the Jacobian matrix of N -positive equilibria can be written as following:

J(A∗, N∗, P ∗) =



k1
2A∗

(A∗2+1)2
− d 0 df1

dP
|(A∗,N∗,P ∗)

0 0 df2
dP
|(A∗,N∗,P ∗)

0 0 −γN∗


(4.35)

so the eigenvalues are: λ1 = k1
2A∗

(A∗2+1)2
− d, λ2 = 0, and λ3 = −γN∗.

Theorem 4.6.4. With the initial conditions A(0) ≥ 0, N(0) ≥ 0, and P (0) > q2, the

stability of N-positive equilibria can be conluded as following:

• When d > k1/2, A∗0 = 0 is a globally stable N-positive equilibrium.
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• When d = k1/2, there are two positive N-positive equilibria A∗0 = 0, A∗1 = 1 and

A∗0 is locally asymptotically stable.

• When d < k1/2, there are three positive N-positive equilibria A∗0 = 0, A∗1,2 =

1

2d
(k1 ±

√
k21 − 4d2) and A∗0,2 are locally asymptotically stable.

Proof. Recall tq which was defined in Theorem 4.6.2, we know that N(t) = N∗ and

P (t) = P ∗ = q2 for all t ≥ tq, so the stability of the N -positive equilibria can be

determined by the stability of A.

When d > k1/2, A∗0 = 0 is the only N -positive equilibrium and the corresponding

eigenvalue is k1
2A∗

0

(A∗2
0 +1)2

− d = −d < 0. So (A∗0, N
∗, P ∗) = (0, N∗, q2) is a globally

stable N -positive equilibrium.

When d = k1/2, there are two positive N -positive equilibria A∗0 = 0, A∗1 = 1

and the corresponding eigenvalues are −d and 0, respectively. So (A∗0, N
∗, P ∗) =

(0, N∗, q2) is locally asymptotically stable.

When d < k1/2, there are three positive N -positive equilibria A∗0 = 0, A∗1,2 =

1

2d
(k1 ±

√
k21 − 4d2), and the signs of corresponding eigenvalues are negative, pos-

itive, and negative, respectively. So (A∗0, N
∗, P ∗) = (0, N∗, q2) and (A∗2, N

∗, P ∗) = 1

2d
(k1 −

√
k21 − 4d2), N∗, q2

 are locally asymptotically stable.

4.7 Dicsuccion and Conclusion

Growth-mediated feedback between the host cell and gene circuits is almost ine-

liminable during the experiments and will potentially affect the system’s behaviors.

Meanwhile, the multi-nutrient environment can also interfere the host cell growth.

Although recent research works yielded insights into the circuit-host interactions and

some mathematical models were developed, there is still a lack of a model that de-
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scribed the growth-mediated feedback in the multi-nutrient environment.

Here we introduced a modified model based on the work of Melendez et al. Melendez-

Alvarez et al. (2021). The models we propose here, are not only examples of modeling

growth-mediated feedback with nutrient factor, but also allow for a broader range of

circuit-host interactions. This framework can potentially raise new questions that are

rarely discussed via mathematical models.
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Chapter 5

CONCLUSIONS AND FURTHER DIRECTIONS

This thesis attempts to deepen our understanding of circuit-driven bacterial pattern

formation and the connection between E. coli growth and synthetic gene circuit under

different conditions using a mathematical modeling approach. In this chapter, I will

summarize the conclusions of each of the projects included in previous chapters.

Additionally, I will discuss how this research work has shaped and will shape my

future research, thoughts, and ideas.

In Chapter 2, we focused on E. coli colony growth and studied the colony growth

process under different experimental conditions. As one of the most common biologi-

cal phenomena, colony growth can be affected by multiple control factors and presents

a nonlinear growth profile that has been rarely discussed. Since the mechanisms of

these control factors are unclear and current models may not be able to capture the

growth profile, we developed a modeling framework by introducing a one-dimensional

reaction-diffusion model, to describe the colony growth under multiple control fac-

tors which will affect both cell movement and reproduction. Our simulations showed

that the model is capable of capturing this nonlinear growth profile under different

growing conditions with much lower fitting errors when compared with Fisher’s equa-

tion. Furthermore, the model provided comparable results on simulating the colony’s

cross-sectional profile.

Despite the insights that this model has afforded us, there is still much to be

done. Future work may include traveling wave analysis of the model. This will

allow us to determine the minimal wave speed and how the wave speed will change if

parameters vary. The density-dependent diffusion function may generate singularities
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which means that approximation of the diffusion function may be needed.

Although the model did not directly measure any specific control factors such as

temperature or nutrient concentration, it provided an important framework to start

with. Based on this model, we can introduce other variables such as nutrient level,

or experimentally verified functions to measure any specific control factors. Such a

modeling approach is a significant way to study underexplored topics with minimal

hypotheses.

In Chapter 3, we performed a multi-perspective analysis of circuit-driven pattern

formation. Bacterial stripe patterning is commonly used to study somitogenesis at

a molecular level, and the latter can also be explained by the clock and wavefront

mechanism. Here we first introduced a novel synthetic gene circuit (MINPAC), which

can direct spatiotemporal pattern formation within the bacterial colony. A reaction-

diffusion-based model was developed to describe the circuit topology and external

diffusion process (full-system model). The model demonstrated oscillatory expression

of the autoinducers that mimic pattern formation progression. With the change of

corresponding parameters and initial conditions, the model was capable of simulating

ring patterns under different conditions, which agreed well with the experimental

data.

To investigate the relationship between gene network topology and the resulting

multicellular pattern, several perturbed MINPAC topologies were introduced (control

systems). And to match these control systems, the control models were modified from

the full-system model. Without loss of parameter consistency, all the control models

provided comparable simulation results with the experimental observations, which

showed that none of the control systems could generate obvious ring patterns. These

results indicated that the multiple-ring pattern is unique to MINPAC circuit.

We then presented a quantitative analysis to explain several important questions
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based on the experimental results. Firstly, the MINPAC topology can be regarded

as a composition of two topologically equivalent sub-motifs, and each of them forms

a robust positive-plus-negative oscillator topology. We wanted to determine how this

coupling affects the robustness of oscillations. We then performed model-comparison

simulations showing that the two-motif MINPAC harbors greater robustness and

amplitude against parameter perturbations to generate temporal oscillation which

enhances the likelihood of observing our desired phenotypic outputs from the synthetic

gene circuit. Secondly, the cause of why does the total number of the ring varies even

with the same experimental settings was also discussed. We hypothesized that this

phenomenon is due to random variations of the initial concentrations of intracellular

proteins and autoinducers. This hypothesis was supported by the phase portrait of

the system which pointed out that such randomness could change the location of the

initial point then change the Poincare return time.

Besides the above study, I also analyzed the reduced reaction-diffusion system

and derived the theoretical minimal wave speed. The reaction part of the model was

used to analyze the local stability at equilibrium points. The theoretical results also

supported the experimental observations.

An ongoing aspect of this research of this project, which will improve the model, is

combining our pattern formation model with the colony growth model we introduced

in Chapter 2. This will allow us to simulate the pattern formation process with the

moving boundary which mimics the colony growth. The new model will be able to

capture the color differences between each ring rather than providing the oscillation

with the same amplitude. Further investigation is required to analyze model behavior.

This project forced me to study a biological question from different aspects, which

also shows the power of a modeling approach. Systematically describing the biological

system and providing comparable simulation results can be regarded as the first step
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of such an approach. Using mathematical models to explain the phenomena observed

during experiments and verify the hypotheses are also very important. Because of this

project, I have now reached the point where I will raise questions from experimental

observations and formulate corresponding analyses based on the model.

In Chapter 4, which differs from previous research work, we used mathematical

models to describe the impact of host cell’s growth on circuit expression, which is

unneglectable and can significantly change circuit function. This work can be re-

garded as an extension of previous work (Zhang et al., 2020), in which a simple

self-activation circuit was transformed into E. coli cell and grew in liquid culture. An

ODE model was first introduced by Zhang et al. (2020) with negative feedback which

drives the protein degradation rate. However, more recent experiments showed an

unexpected damped oscillatory behavior of a self-activation gene circuit induced by

nutrient-modulating growth feedback in a multi-nutrient environment, which cannot

be described using previous models. Here we modified a previous ODE model by

introducing a growth feedback function that governs circuit expression. We compu-

tationally tested different types of functions and concluded that the non-monotonic

function provided the best fits for the experimental data. I further analyzed the

model, and the necessary conditions for the feedback function to fit the experimental

data were proved.

Furthermore, changing the proportion of nutrient components will also affect a

cell’s growth profile, which can be observed as “two-stage” growth. Then a modified

ODE model was also presented; here we used the Droop model with regulatory func-

tions to describe the “trade-off” process of E. coli. The new model not only captured

the oscillatory behavior of the gene circuit but also showed the “two-stage” growth

profile of the host cell under different nutrient conditions. Further analysis of the

model was also presented including local stability of the equilibrium points, which
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supported the existence of the oscillatory behavior.

Of course, the second model is still only an approximation of the “trade-off” pro-

cess with several hypotheses that need to be verified experimentally. Unlike the cell

growth under nutrient limitations, where a minimal function is usually used to model

the nutrient-dependent growth rate, here we assume the existence of the nutrient pref-

erence. Although this is highly possible based on the experimental data, we are still

unclear about what is the key nutrient component that causes such a phenomenon,

or how this “trade-off” process will affect circuit expression. Thus, with further ex-

periments, our model can be improved by specifying the regulatory functions and the

consumption of two different nutrients.

In all, because of the advanced experimental design and engineering technique

and the complexity of cell dynamics coupled with gene circuit expression, more and

more questions shall be raised while mathematics will continue to play a large role in

biological understanding and practice. Mathematical models can not only be used to

describe and explain the biological mechanisms but more importantly, they can be

used to predict experimental outcomes and help to improve the experimental design.

Although there is still a gap between mathematical models to the actual experimental

design, the work performed in this thesis aims to assist the future mathematicians

who strive to achieve this goal.
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Due to limited space, only the main code is listed in Appendix B. However, all code

is available on the author’s Github (https://github.com/Changhan93/Chapter2).

% This code is used to estimate parameter a1 and mu and generate Figure 2.6

% Written by Duane Harris and Changhan He in 2020.

clear;

close all;

clc;

% Importing experimental data data

D = importdata(’Data0820.mat’);

% CHOOSE RADIUS DATA AND SAVE FILE:

% Colony 1_37:

% C = D(1:end-1,2)*0.05;

% S = ’Params_C1_37_Fit.mat’;

% 37 Degrees:

% C = D(2:5,1:4);

% C = 0.1*mean(C)’;

% S = ’Params_37_Degrees_Fit_2.mat’;

S = ’Params_37_Degrees_Fit_2.mat’;

% Choosing fitting model

f = @PDE_Function;

% Setting visibility threshold

v = 0.03;

% Loading parameters

load(’Guess_37D_Params.mat’);

% P(3) and P(24) are a1 and mu, respectively
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I = [3 24];

% Setting optimization options

opt = optimset(’Display’,’Iter’,... % Display Info

’TolFun’,1e-6,... % Error Tolerance for Function

’TolX’,1e-6); % Error Tolerance for Variables

% Set Initial Parameter

P0 = P;

X0 = P(I);

% Find Local Minimum:

[X,F,E,O] = fminsearch(@err,X0,opt,x,t,f,P,I,K,C,v);

P(I) = X;

save(S,’x’,’t’,’P’,’y0’,’K’);

%Visualizing results

close all;

% Solve PDE with Initial Guess X0

Y0 = f(t,x,y0,P0);

U0 = Y0(:,:,5);

% Solve PDE with Minimizer X

Y = f(t,x,y0,P);

%Y = PDE_Function(t,x,y0,P);

U = Y(:,:,5);

% Calculate Radii

R0 = rad(U0,x,v); % Radii for Initial Guess

R = rad(U,x,v); % Radii for Minimizer

% Plotting figures

figure;

plot(t,C,’bx-’,t,R,’ro-’,t,R0,’ro--’,’linewidth’,2)

title(’Parameter Estimation Results (C1L)’);
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legend(’Exact’,’Approx’,’Initial Guess’,’location’,’best’);

xlabel(’Time’); ylabel(’Radius’);

xticks(t); grid on;

% Objective Function:

function E = err(X,x,t,f,P,I,K,C,v)

% Solve PDE

P(I) = X; % Replace Variable Parameters

[~,ind] = min(abs(x-C(1))); % Find Index of Initial Colony Size

y0 = zeros(5,length(x)); % Set Initial Conditions to Zero

y0(5,1:ind) = P(K); % Set Initial Col. Density to K for x<=C(1)

Y = f(t,x,y0,P); % Solve PDE

%Y = PDE_Function(t,x,y0,P); % Solve PDE

N = Y(:,:,5); % Extract Colony Radii

R = rad(N,x,v); % Calculate Radii for Specified Times

E = sum((C-R).^2)/2; % Calculate Least Squares Error

end

function R = rad(u,x,v)

% Given a solution, this function calculates the visible radius of the

% colony at each time step

% INPUT:

% u = Matrix = Solution of the PDE

% x = Vector = Spatial Domain of the PDE

% v = Scalar = Visibility Threshold of the Colony

% OUTPUT:

% R = Vector = Colony Radius at Each Time Step

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

R = zeros(size(u,1),1); % Allocate Memory for Radius Values

for i=1:size(u,1)

R(i) = max(x(u(i,:)>v)); % Calculate Radius at time i

end

end
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Due to limited space, only the main code is listed in Appendix C. However, all code

is available on the author’s Github (https://github.com/Changhan93/Chapter3).

% This code is used to simulate the oscillatory expression of C6 and C12

% without add-on drugs. (Figure 3.5 (Top))

% To generate other simulation results (such as Figure 3.6 and Figure 3.9),

% the user may need to adjust corresponding parameters and system

% equations.

% Written by Changhan He and Javier Baez in 2018.

function [Ce, He] = simulation_pattern_Fig1_Case1(N)

close all;

clear all;

% Setting up the domain size

N=30;

M=1000;ex = 0;

x = linspace(-N,N,M); %

xm = linspace(-N-ex,N,length(x)+ex);

xm2 = linspace(-N,N,M);

% Solving the system with given initial conditions

% Different initial conditions may give different number of rings

[~,x1] = ode45(@odesystem,xm,[1 10 6 10]);

% Global Variables to pass to spatial steady state Patternode

global Ci

global Hi

Ci = @(x) interp1(xm2,x1(ex+1:end,3), x);

Hi = @(x) interp1(xm2,x1(ex+1:end,4), x);

solinit = bvpinit(linspace(-N,N,M),[6 10 0 0]); % [1 1 100 1]

% Now solve the problem with

sol = bvp5c(@Patternode, @Patternbc,solinit);
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% Evaluate the numerical solution at 100 equally spaced points

% Plotting simulation results

y = deval(sol,x);

figure(1)

plot(x,y(1,:),’r’,’LineWidth’,2)

hold on

plot(x,y(3,:),’g’,’LineWidth’,2)

legend(’Ce’,’He’)

xlabel(’x’)

Ce = y(1,:);

He = y(3,:);

% ------------------------------------------------------------

function dydx = Patternode(x,u) % Spatial Steady State

Ce = u(1); He = u(3);

global Ci

global Hi

d4= 20;

d6= 20;

Dh = 4;

Dc = 4;

Dn = 800;

dydx = [u(2);

-(-Dc*(Ce-Ci(x)) - d4*Ce)/(Dn);

u(4);

-(-Dh*(He-Hi(x)) - d6*He)/(Dn)];

% ------------------------------------------------------------

function res = Patternbc(ya,yb) % Boundary Conditions

res = [ ya(1)

yb(1)

ya(3)

yb(3) ];
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% ------------------------------------------------------------

function [s] = odesystem(t,x) % Ode System

I = x(1); A=x(2); Ci = x(3); Hi = x(4);

% Parameters

k1= 640; % production rate of LuxI

k2= 700; % production rate of LasI

k3= 80; % production rate of Ci

k4= 105; % production rate of Hi

k5= 1;

k6= 1;

kc= 70; % inhition efficiency of ATC

kh= 82; % inhition efficiency of IPTG

m1= 4;

m2= 4;

b1= 0.8;

b2= 0.5;

d1= 1.19;

d2= 1.19;

d3= .56;

d5= .8;

n1= 2;

n2= 4;

n3= 3;

n4= 2;

% System of Equations

s = [b1 + k1*(I*Hi).^n1/(1+k5*(I*Hi).^n1)*(1/(1+A.^m1)) - d1*I;...

b2 + k2*(A*Ci).^n2/(1+k6*(A*Ci).^n2)*(1/(1+I.^m2)) - d2*A;...

k3*I.^n3/(kc.^n3 + I.^n3) - d3*Ci;...

k4*A.^n4/(kh.^n4 + A.^n4) - d5*Hi];
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% This code is used to generate traveling wave profiles

% The traveling wave profiles can be used to generate Figure 3.7 B by

% plotting the concentrations at selected time points

% Written by Changhan He in 2019.

function pdex1

m=0;

global k1 k2 k3 k4 kc kh m1 m2 b1 b2 d1 d2 d3 d4 d5 d6 n1 n2 n3 n4 Dh Dc Dn

% Parameters

k1= 580; % production rate of LuxI

k2= 700; % production rate of LasI

k3= 80; % production rate of Ci

k4= 105; % production rate of Hi

kc= 70; % inhition efficiency of ATC

kh= 82; % inhition efficiency of IPTG

m1= 4;

m2= 4;

b1= 0.8;

b2= 0.5;

d1= 1.19;

d2= 1.19;

d3= .56;

d5= .8;

n1= 2;

n2= 4;

n3= 3;

n4= 2;

d4= 20;

d6= 20;

Dh = 4;

Dc = 4;

Dn = 800;

% Setting up the domain size
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x=0:1:240;

t=0:1:100;

sol = pdepe(m,@pdefun,@pdex1ic,@pdex1bc,x,t);

u1=sol(:,:,1);

u2=sol(:,:,2);

u3=sol(:,:,3);

u4=sol(:,:,4);

u5=sol(:,:,5);

u6=sol(:,:,6);

% Plotting figures

figure;

surf(x,t,u1)

title(’I/u1(x,t)’)

xlabel(’Distance x’)

ylabel(’Time t’)

figure;

surf(x,t,u2)

title(’A/u2(x,t)’)

xlabel(’Distance x’)

ylabel(’Time t’)

figure;

surf(x,t,u3)

title(’Ci/u3(x,t)’)

xlabel(’Distance x’)

ylabel(’Time t’)

figure;

surf(x,t,u4)

title(’Hi/u4(x,t)’)

xlabel(’Distance x’)

ylabel(’Time t’)

figure;
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surf(x,t,u5)

title(’Ce/u5(x,t)’)

xlabel(’Distance x’)

ylabel(’Time t’)

figure;

surf(x,t,u6)

title(’He/u6(x,t)’)

xlabel(’Distance x’)

ylabel(’Time t’)

%-------------PDE---------------------

% Systems of equations

function [c,f,s] = pdefun(x,t,u,du)

global k1 k2 k3 k4 kc kh m1 m2 b1 b2 d1 d2 d3 d4 d5 d6 n1 n2 n3 n4 Dh Dc Dn

s1 = b1 + k1*(u(1)*u(4)).^n1/(1+(u(1)*u(4)).^n1)*(1/(1+u(2).^m1)) -

d1*u(1);

s2 = b2 + k2*(u(2)*u(3)).^n2/(1+(u(2)*u(3)).^n2)*(1/(1+u(1).^m2)) -

d2*u(2);

s3 = k3*u(1).^n3/(kc.^n3 + u(1).^n3) - d3*u(3);

s4 = k4*u(2).^n4/(kh.^n4 + u(2).^n4) - d5*u(4);

s5 = -Dc*(u(5)-u(3)) - d4*u(5);

s6 = -Dh*(u(6)-u(4)) - d6*u(6);

c = [1;1;1;1;1;1]; %Ds

f = [0;0;0;0;Dn*du(5);Dn*du(6)];

s = [s1;s2;s3;s4;s5;s6];

%--------------IC-----------------

function u0 = pdex1ic(x)

% global k1 k2 k3 k4 kc kh m1 m2 b1 b2 d1 d2 d3 d4 d5 d6 n1 n2 n3 n4 Dh Dc

Dn

k = IC(x);

u0 = [k;k;k;k;0;0];

%--------------BC-------------------
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function [pl,ql,pr,qr] = pdex1bc(xl,ul,xr,ur,t)

% global k1 k2 k3 k4 kc kh m1 m2 b1 b2 d1 d2 d3 d4 d5 d6 n1 n2 n3 n4 Dh Dc

Dn

pl = [ul(1);ul(2);ul(3);ul(4);ul(5);ul(6)];

ql = [0;0;0;0;0;0];

pr = [ul(1);ul(2);ul(3);ul(4);ul(5);ul(6)];

qr = [0;0;0;0;0;0];

%--------------FIC-------------------

% This initial condition describes the colony growing at the center of the

% domain with a small size

function fic = IC(x)

fic=0.0001*(x>=0&x<59)+100*(x>=59&x<=60)+0.0001*(x>60&x<=120);
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Due to limited space, only the main code is listed in Appendix D. However, all code

is available on the author’s Github (https://github.com/Changhan93/Chapter4).

% This code is used to estimate parameter kr1, a, gama, q1, K, r1, r2.

(Figure 4.4 (Left))

% Written by Changhan He and Juan Melendez-Alvarez in 2021.

clc

clear

global kr0 kr1 dr

global kg J

global c1 c2 c

global a

global gama q1 q2 r1 r2 K

% Fixed parameters

J=2.123;

kr0=0.0514;

kg=1.2540;

c1=1;

c2=0;

c=6.7;

q2=0.25;

dr=0.4813;

% Initial guess for the fiting parameters

% Here we select the best fitted parameters as the initial guess

Para0=[1.76784, 10.6323, 2.2911, 0.7234, 0.0862, 4.67, 1.633];

% Load and scale experimental data

rol=importdata(’M9LB.mat’);

Time_EXP=rol.time;

rol.GFP_Lara(:,6) = rol.GFP_Lara(:,6)*0.001;

rol.OD_Lara(:,6) = rol.OD_Lara(:,6)*1;

GFP_EXP20=(rol.GFP_Lara(:,6))/(rol.GFP_Lara(1,6));

OD_EXP20=rol.OD_Lara(:,6);
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Score_Best=1000000;

Para_best=Para0;

Score0=Score_Best;

%--------------------------------------------------------------------------

% Iteration time = 5000

for step=1:5000

step

pause(.000000000000001)

Para1=Para0.*(.95+.1*rand(size(Para0)));

temp=num2cell(Para1);

[kr1, a, gama, q1, K, r1, r2]=deal(temp{:});

% Solve the system in two steps

% Step 1: solving the system with random AraC initial concentration so

% that the circuit expression will reach its steady state

% Step 2: Setting the steady state of circuit expression as the initial

% condition

sol20=ode23s(@ODESystem_new,[0 20],[0.1 OD_EXP20(1) 1]);

sol20=ode23s(@ODESystem_new,[0 20],[sol20.y(1,end) OD_EXP20(1) 1]);

OD_Sim=deval(sol20,Time_EXP,2);

GFP_Sim=deval(sol20,Time_EXP,1);

GFP_Sim=GFP_Sim/GFP_Sim(1);

% Compute fitting error

Score1=5*sum(((OD_Sim’-OD_EXP20)./OD_EXP20).^2

+1*((GFP_Sim’-GFP_EXP20)./GFP_EXP20).^2);

if Score1<Score0 || rand < .01

Para0=Para1;

Score0=Score1;

end
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if Score1<Score_Best

Score_Best=Score1;

Para_best=Para1;

C20=sol20.y(1,:);

N20=sol20.y(2,:);

P20=sol20.y(3,:);

% Plotting figures

subplot(3,2,3)

plot(sol20.x,N20,’linewidth’,2)

hold on

plot(Time_EXP, OD_EXP20,’o’)

ylabel(’N’)

xlabel(’Time’)

hold off

subplot(3,2,4)

plot(sol20.x,C20/C20(1),’linewidth’,2)

hold on

plot(Time_EXP, GFP_EXP20,’o’)

hold off

ylabel(’AraC’)

xlabel(’Time’)

subplot(3,2,5)

plot(sol20.x,P20)

ylabel(’Nutrient’)

xlabel(’Time’)

end

end
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% This code describes Model II with nutrient preference.

% Written by Changhan He in 2021.

function dy=ODESystem(t,y)

global kr0 kr1 dr

global kg J

global c1 c2 c

global a

global gama q1 q2 r1 r2 K

AarC=y(1);

N=y(2);

P=y(3);

gA = 1/(AarC/J+1)+c2 ;

fA = kr0+kr1*(AarC^2)/(AarC^2+c1);

W1 = 0.5*(sign(P-q1)+1);

W2 = 0.5*(sign(q1-P)+1);

G1 = W1*(r1*(1-q1/P));

G2 = W2*(r2*(1-q2/P));

GR = kg* gA * ( G1 + G2 );

F1 = 1/(K*GR+1);

F2 = (a*GR^0.5+1)/(c*GR^2+1);

dN=GR*N;

dAarC=fA*( W1*F1 + W2*F2 )-(dr+GR)*AarC; %AarC

dP=-gama*N*(P-q2)^1.2;

dy=[dAarC; dN; dP];

end
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