
Distributed RDF Storage and Querying Using In-Memory Processing Engine

by

P M Mahmudul Hassan

A Dissertation Presented in Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Approved April 2021 by the

Graduate Supervisory Committee:

Srividya Bansal, Chair

Ajay Bansal

Hasan Davulcu

Mohamed Sarwat Abdelghany Aly Elsayed

ARIZONA STATE UNIVERSITY

May 2021

i

ABSTRACT

The proliferation of semantic data in the form of RDF (Resource Description

Framework) triples demands an efficient, scalable, and distributed storage along with a

highly available and fault-tolerant parallel processing strategy. There are three open

issues with distributed RDF data management systems that are not well addressed

altogether in existing work. First is the querying efficiency, second is that solutions are

optimized for certain types of query patterns and don’t necessarily work well for all

types, and third is concerned with reducing pre-processing cost. Therefore, the rapid

growth of RDF data raises the need for an efficient partitioning strategy over distributed

data management systems to improve SPARQL (SPARQL Protocol and RDF Query

Language) query performance regardless of its pattern shape with minimized pre-

processing overhead.

In this context, the first contribution of this work is a distributed RDF data

partitioning schema called 3CStore that extends the existing VP (Vertical Partitioning)

approach by using a subset of triples from the VP tables based on different join

correlations. This approach speeds up queries at the cost of additional pre-processing

overhead. To solve this, a relational partitioning schema called VPExp was developed by

splitting predicates based on explicit type information of objects. This approach gains a

significant query performance only for the specific type of query where the object is

bound to a value for a particular predicate. To get efficient query performance on a wide

range of query patterns, an improved solution is proposed by extending the existing

Property Table approach to Subset-Property Table and combined with the VP approach.

Further investigation on distributed RDF processing and querying systems based on

ii

typical use cases led to a novel relational partitioning schema called PTP (Property Table

Partitioning) that further partitions the whole Property Table into the number of unique

properties to minimize query input size and join operations during query evaluation.

Finally, an RDF data management system based on the SPARQL-over-SQL approach

called S3QLRDF is developed that generates the optimal query execution plan using

statistics of PTP tables to provide efficient SPARQL query processing on a distributed

system.

iii

DEDICATION

To my family for their love and support.

iv

ACKNOWLEDGMENTS

I am extremely grateful to my advisor Dr. Srividya Bansal for bringing me into

this challenging but rewarding journey as a Ph.D. student and helping me with valuable

advice in research and support in life. Dr. Srividya Bansal’s objective and comprehensive

way of doing research deeply influenced and taught me how to participate in critical

thinking when confronted with real-world problems. I would also like to mention my

gratitude to my committee member, Dr. Ajay Bansal, Dr. Hasan Davulcu, and Dr.

Mohamed Sarwat for their constructive criticism, helpful suggestions, and support in the

process of my Ph.D. dissertation defense. I am also grateful to Microsoft Azure and

Google Cloud Platform for Research sponsorship to run my experiments using their

Cloud services.

v

TABLE OF CONTENTS

 Page

LIST OF TABLES ... viii

LIST OF FIGURES ...x

CHAPTER

1 INTRODUCTION ..1

 1.1 Motivation ..1

 1.2 Research Objectives ...6

2 LITERATURE REVIEW ...7

 2.1 RDF - The Resource Description Framework ...9

 2.2 SPARQL - SPARQL Protocol and RDF Query Language 11

 2.3 Query Shapes ...13

 2.4 Distributed RDF Processing ..15

 2.4.1 RDF Storage with Indexing ..15

 2.4.2 RDF Storage with Partitioning..18

 2.5 RDF Benchmarks ...21

 2.6 Distributed Data Management Tools ..22

 2.7 Big Data File Formats ...23

3 DISTRIBUTED IN-MEMORY RDF MANAGEMENT27

 3.1 RDF Management with NoSQL Databases ...27

 3.1.1 Data Modeling ...27

 3.1.2 SPARQL Query Translation ..30

 3.1.3 Experimental Setup ...45

vi

CHAPTER Page

 3.1.4 Evaluation ...46

 3.1.5 Conclusion ..49

 3.2 RDF Management with VPExp and 3CStore Data Layouts50

 3.2.1 Data Modeling ...50

 3.2.2 Data Loading and Query Translation ...52

 3.2.3 Experimental Setup ...59

 3.2.4 Evaluation ...60

 3.2.5 Conclusion ..64

 3.3 Mixed RDF Partitioning Strategies ..65

 3.3.1 Modified Property Table ...66

 3.3.2 Subset Property Table ...67

 3.3.3 Combined Property Table & Vertical Partitioning69

 3.3.4 Combined Subset Property Table & Vertical Partitioning 71

 3.3.5 SPARQL to Spark SQL ...71

 3.3.6 Experimental Setup ...74

 3.3.7 Evaluation ...75

 3.3.8 Comparison of Storage Strategies ...77

 3.3.9 Comparison of SPT + VP Approach with Related Systems80

 3.3.10 Conclusion ..84

 3.4 S3QLRDF with Property Table Partitioning Strategy84

 3.4.1 Property Table Partitioning ...85

 3.4.2 SPARQL to Spark SQL ..86

vii

CHAPTER Page

 3.4.3 Experimental Setup ...90

 3.4.4 Evaluation ...93

 3.4.5 Conclusion ..103

 4 BENCHMARKING S3QLRDF UNDER COLUMNAR FILE FORMATS.......104

 4.1 Relational Data Management Using Parquet and ORC104

 4.2 Evaluation ...105

 4.2.1 Experimental Setup ...105

 4.2.2 Analysis of Results ...106

 4.3 Conclusion ...109

 5 ASSESSMENT ON SPARK-BASED RDF MANAGEMENT SYSTEMS110

 5.1 Benchmarked SPARQL Evaluators ..110

 5.2 Evaluation ...112

 5.3 Conclusion ..119

 6 CONCLUSION AND FUTURE WORK ..121

REFERENCES ..124

APPENDIX

 A YAGO2 QUERIES ..129

 B LUBM QUERIES ...132

 C YAGO QUERIES ...134

 D DBLP QUERIES...136

viii

LIST OF TABLES

Table Page

2.1 Sample RDF Data ..8

2.2 Summary of Distributed RDF Systems..20

3.1 An Example of RDF Triples ..28

3.2 Sample Instance in HBase Storage Schema...28

3.3 Sample Instance in Cassandra Storage Schema ...29

3.4 Temporary Views of Predicates p1, p2, p3, and p4 ..30

3.5 Temporary Views of Subject s1 and s2 ...32

3.6 3CStore Table Construction Using Correlations Between Triple Patterns52

3.7 Experimental Setup - Dataset Scale ...60

3.8 Load Times ..61

3.9 Store Sizes ...62

3.10 Query Runtimes ...63

3.11 Modified Property Table ...67

3.12 Subset Property Tables ..69

3.13 Statistics of Subset Property Tables ...69

3.14 Vertical Partitioning ...70

3.15 Experimental Setup - Dataset Scale ...76

3.16 Store Sizes ..76

3.17 PTP Schema ..85

3.18 Experimental Setup - Dataset Scale ...91

3.19 Loading Times and HDFS Sizes of S3QLRDF and Competitors......................94

ix

Table Page

3.20 LUBM Query Runtimes ...96

3.21 WatDiv Query Runtimes..97

3.22 YAGO2 Query Runtimes ...101

4.1 WatDiv and YAGO Loading Times and HDFS Sizes 106

4.2 Stages and Tasks During Dataset Loading Phase ..106

4.3 WatDiv Basic Testing ..108

4.4 YAGO Query Run Times ..108

5.1 Partitioning Strategies of Spark-based RDF Management Solutions110

5.2 Data Access Model of Spark-based RDF Management Solutions111

5.3 Experimental Setup - Dataset Statistics ...111

5.4 Loading Times and HDFS Sizes ...112

5.5 Stages and Tasks During Dataset Loading Phase ..113

5.6 Stages and Tasks During YAGO Query Phase ..116

5.7 Stages and Tasks During DBLP Query Phase ...118

x

LIST OF FIGURES

Figure Page

1.1 Labeled Directed Graph Representation of a Triple ..3

1.2 A SPARQL Query Graph of Q1 ..3

2.1 Semantic Web Stack ..7

2.2 An Example RDF Graph ...10

2.3 An Example SPARQL Query ..12

2.4 SPARQL Query with Prefixes ...12

2.5 An Example Chain Shaped Query ...13

2.6 An Example Star Shaped Query ..13

2.7 An Example Snowflake Shaped Query..14

2.8 The ORC File Format ..25

3.1 SP2Bench Query 3a ..31

3.2 Rewritten SP2Bench Query Triples 3a ...31

3.3 BSBM Query 10 ..34

3.4 Compiler Translation of BSBM Query 10 ...34

3.5 BSBM Query 2 ..35

3.6 Compiler Translation of BSBM Query 2 ...36

3.7 BSBM Query 1 ..37

3.8 Compiler Translation of BSBM Query 1 ...37

3.9 BSBM Query 9 ..42

3.10 Compiler Translation of BSBM Query 7 ...43

3.11 BSBM Query 3 ..44

xi

Figure Page

3.12 Compiler Translation of BSBM Query 3 ...44

3.13 BSBM RDF Dataset Loading Time ...46

3.14 SP2Bench RDF Dataset Loading Time ..47

3.15 Query Runtimes - BSBM Queries [Q1 – Q6] ..47

3.16 Query Runtimes - BSBM Queries [Q7 – Q12] ..47

3.17 Query Runtimes - SP2Bench Queries ..48

3.18 SPARQL to SQL Translation Process ...73

3.19 RDF Data Load Times ...77

3.20 Query Runtimes - LUBM 1000 ...77

3.21 Query Runtimes - LUBM 2000 ..78

3.22a Query Runtimes - WatDiv 1000 ..78

3.22b Query Runtimes - WatDiv 1000 ..79

3.23a Query Runtimes - WatDiv 5000 ..79

3.23b Query Runtimes - WatDiv 5000 ..80

3.24 Query Runtimes - LUBM 1000 ...81

3.25 Query Runtimes - LUBM 2000 ...81

3.26a Query Runtimes - WatDiv 1000 ..81

3.26b Query Runtimes - WatDiv 1000 ..82

3.27a Query Runtimes - WatDiv 5000 ..82

3.27b Query Runtimes - WatDiv 5000 ..82

3.28a Average Querying Time Grouped by Query Type - WatDiv 1000 83

3.28b Average Querying Time Grouped by Query Type - WatDiv 500083

xii

Figure Page

3.29 An Example BGP of a SPARQL Query ..87

3.30 Storage Space Distributions with Datasets ...94

3.31 Time Distributions with Datasets...95

3.32 Performance Comparison for LUBM 10000 ...96

3.33 Performance Comparison for WatDiv SF10000 ...97

3.34 Performance Comparison for YAGO2 ..101

4.1 CPU and RAM Consumptions During Data Loading Phase107

4.2 Total HDFS Bytes Read/Written During Data Loading Phase107

5.1 CPU and RAM Consumptions During Data Loading Phase 114

5.2 Total HDFS Bytes Read/Written During Data Loading Phase114

5.3 YAGO Query Run Times ..115

5.4 Total HDFS Bytes Read During YAGO Query Phase116

5.5 CPU and RAM Consumptions During YAGO Query Phase...........................116

5.6 DBLP Query Run Times ..117

5.7 Total HDFS Bytes Read During DBLP Query Phase118

5.8 CPU and RAM Consumptions During DBLP Query Phase119

1

CHAPTER 1

INTRODUCTION

The Semantic Web introduced by Tim Berners-Lee in 2001 with the goal to

associate meaning with the data on the Web to automate the consumption by machines

for exploiting the wealth of data on the Web through meaningful processing. It uses a

graph data model called Resource Description Framework (RDF1) for data interchange

on the Web and Simple Protocol and RDF Query Language (SPARQL2) for searching

data defined in the RDF format. Every single year RDF data is growing on a web scale,

posing great challenges for efficient storage and query processing that can scale well with

the volume of data.

1.1 Motivation

The Web of linked data, Semantic Web, has evolved from a “Web of Documents”

to an open inter-linked “Web of Data”, provides machine-processable data for the

consumption of software agents to understand the semantics presented by web

documents. The Semantic Web is expressed in the form of RDF data model proposed by

W3C is the standard to represent metadata about Web resources. Recently RDF has

gained the popularity for its flexible data model, which is used for publishing data on the

Web through a number of applications and use cases in many areas such as social

networks, commercial search engines, public knowledge bases, and databases. Top search

engine providers – Google, Bing, Yahoo!, and Yandex have agreed to create a protocol

(schema.org) for a structure data vocabulary in order to define entities, actions, and

relationships through the internet which makes search engines figure out the meanings on

1 https://www.w3.org/TR/rdf11-concepts/
2 https://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/

2

web pages more effectively and serve relevant results based on search queries of the

internet users. The Semantic Web is growing steadily and producing a large amount of

RDF data. The number of Web pages that have markup conforming to the schema.org

format is more than 2.5 billion and is still increasing. To improve the accuracy of

recommendations, recommender companies are increasingly using semantics and

semantic tagging. DBpedia (Auer et al., 2007), YAGO (Hoffart et al., 2013), Bio2RDF

(Callahan et al., 2013), Google’s Knowledge Vault (Dong et al., 2014) , Probase (Wu et

al., 2012), PubChemRDF (Fu et al., 2015), and Universal Protein Resource (UniProtKB)

(Apweiler et al., 2014) consist of billions of facts that are represented as RDF data

contained in the Linked Open Data (LOD) (Bizer et al., 2009) cloud and are queried

through a declarative query language SPARQL (Hartig et al., 2009) recommended by

W3C.

The RDF data model is a directed, labeled, and interlinked graph consisting of a

set of triples (subject, predicate, object) that can be interpreted as a directed edge from

subject (s) to object (o) labeled by predicate (p). Thus, a predicate represents the

relationship between a subject and an object where subjects and objects are the arbitrary

resources.

For example, the statement:

Spielberg was born in 1946.

can be represented as a triple of RDF data:

(s, p, o) = (Spielberg, wasBorn, 1946)

3

And, also can be represented as the labeled directed graph (DG):

 wasBorn

Figure 1.1: Labeled Directed Graph Representation of a Triple

A finite set of RDF triples constitutes an RDF graph. On the other hand, SPARQL

queries have a set of triple patterns similar to RDF triples except that each of the subject,

predicate, and object can be a variable (Pérez et al., 2009). The most basic SPARQL

query contains a group of Basic Graph Pattern (BGP) queries having a SELECT clause

that identifies variables that appear in the result set, and a WHERE clause of a graph

pattern to match against the RDF graph. RDF and SPARQL constitute core layers of

Semantic Web stack, in the next chapter a detailed description about RDF and SPARQL

is presented.

A SPARQL query that returns the year Spielberg was born can be written as:

SELECT ?year WHERE {

 “Spielberg” wasBorn ?year .

}

Q1: An Example SPARQL Query

The SPARQL query graph of Q1 is shown in Figure 1.2.

 “Spielberg” ?year

 wasBorn

Figure 1.2: A SPARQL Query Graph of Q1

The Semantic Web keeps growing rapidly and continues to generate a high

volume of RDF data. Therefore, the sizes of RDF datasets will continue to increase from

hundreds of millions to several billions of triples, which represent large-scale graphs with

Spielberg

1946

v1 v2

4

millions to billions of edges, making RDF data management very difficult. Providing

scalable, highly available and fault-tolerant RDF store with efficient SPARQL query

processing has become the major challenge in RDF data management systems.

Researchers proposed many centralized RDF data management systems during

the past decades to store RDF data and execute SPARQL query. Such system includes:

Jena (McBride, 2001), Sesame (Broekstra et al., 2002), RDF-3X (Neumann & Weikum,

2008), chameleon-db (Ozsu et al., 2013), HexaStore (Weiss et al., 2008), SW-Store

(Abadi et al., 2009), TripleBit (Yuan et al., 2013), BitMat (Atre et al., 2009), and gStore

(Zou et al., 2011). To handle the large-scale RDF data and answer complex queries

efficiently these systems need to increase their resources like storage space, processing

power, and memory, etc. The weaknesses of this approach are the lake of scalability and

vulnerable to hardware failure. To overcome the limitations of centralized single machine

systems researchers have moved towards distributed RDF data management systems, like

4store (Harris et al., 2009), YARS2 (Harth et al., 2007), Virtuoso Cluster (Boncz et al.,

2014). These systems are extended from the centralized system to the nodes of the cluster

for distributed RDF processing. Other distributed systems such as HadoopRDF (Du et al.,

2012) use the HDFS 3 (Hadoop Distributed File System) and MapReduce paradigm

(Dean et al., 2008) for storing and processing RDF data. H2RDF+ (Papailiou et al., 2013)

approach is based on HBase4, column-oriented NoSQL key-value store on top of HDFS.

With this approach, queries can be executed in a single machine as well as on a

computing cluster via MapReduce. Apart from that, a number of NoSQL triple stores

3 https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
4 https://hbase.apache.org/

5

based on the Hadoop 5 ecosystem have been proposed. For instance: Jena-HBase

(Khadilkar et al., 2012), Hive+HBase (Cudr´e-Mauroux1 et al., 2013), CumulusRDF

(Ladwig & Harth, 2011), Couchbase(Cudr´e-Mauroux1 et al., 2013), and so on. Jena-

HBase uses HBase as an RDF triple storage and Jena framework for the SPARQL query

engine. Hive+HBase is also an HBase backed triple store and Hive6 has SQL like query

language (HiveQL) that allows querying using MapReduce. CumulusRDF has Apache

Cassandra7 as storage back-end and Sesame query processor for executing SPARQL

query. Couchbase stores RDF triple as JSON document and it provides API for SPARQL

query. The systems that rely on MapReduce framework suffer from the high latency of

startup and I/O costs for its underlying batch-oriented nature and cannot provide

interactive query runtimes, therefore, researchers are now moving towards in-memory

frameworks like Impala (Kornacker et al., 2015), Spark (Zaharia et al., 2012) for

distributed RDF management system. Distributed in-memory RDF management systems

include: Sempala (Schätzle et al., 2014) a SPARQL-over-SQL approach based on

Hadoop, uses a single Unified Property Table using Parquet columnar storage format that

resides on HDFS, and a Massive Parallel Processing (MPP) SQL query engine Impala.

The advantage of using a Unified Property Table compared to a Triples Table or VP

approach is that it can reduce the number of subject-subject self-joins for star-shaped

query pattern but there is no real benefit for linear-shaped patterns. S2RDF (Schätzle et

al., 2016) is another in-memory SPARQL query processing system that uses the ExtVP

(Extended Vertical Partitioning) scheme for data storage layout and relies on a translation

5 https://hadoop.apache.org/
6 https://hive.apache.org/
7 https://cassandra.apache.org/

6

of SPARQL queries to SQL for being executed using an in-memory SQL framework

called Spark SQL. ExtVP uses a semi-join based preprocessing approach to compute the

possible join relations between partitions of VP tables in order to minimize the input size

for the query. This approach suffers from high preprocessing cost.

1.2 Research Objectives

In distributed RDF systems, both the data and the query processing are highly

distributed. On the other hand, SPARQL workloads are dynamic and structurally diverse

(Ozsu & Daudjee, 2014). Each workload can have queries with different structures with

different degrees of complexity (Ozsu & Daudjee, 2014). A complex SPARQL query

over a large RDF graph in distributed systems requires combining a lot of distributed

pieces of data through join operations. In a distributed system, the query engine

decomposes a SPARQL query into multiple sub-queries, each of which are evaluated by

individual computational nodes independently, and all participating nodes may need to

exchange results during query evaluation. Consequently, a query having large

intermediate results incurs high communication overhead as well as requires expensive

join operations for intermediate results (Huang et al., 2011), which leads to poor

performance of the query. Therefore, designing an efficient data-partitioning scheme and

join strategy to minimize data transfer is the fundamental challenge in distributed RDF

data management systems. The goal of this thesis is to provide a distributed RDF

management system for SPARQL query based on in-memory cluster computing

framework that overcomes the existing limitations.

7

CHAPTER 2

LITERATURE REVIEW

The greatest repository of information, the World Wide Web (aka the Web), is

based mainly on documents that can be seen as a “Web of Documents”. These “Web of

Documents” are primarily designed for human consumption and the structure of the data

in the Web is not in machine-readable format, making the software agents almost

impossible to access and process without human intervention. To overcome this

limitation Tim Berners-Lee et al. proposed their vision of Semantic Web (Berners-Lee et

al., 2001) to turn the Web into a global repository of information from “Web of

Documents” to “Web of Data” by giving the data precise semantics, or well-defined

meaning, in machine-processable format in-order to automate the processing of

information for software agents in the web. Therefore, Semantic Web is viewed as an

evolving extension of the current World Wide Web. The infrastructure of Semantic Web

is a layered architecture consisting of a set of standards and technologies led by the

World Wide Web Consortium (W3C).

Figure 2.1: Semantic Web Stack (Gezer & Bergweiler, 2016)

8

Table 2.1: Sample RDF Data

1.
<http://localhost/publicatio

ns/articles/Article_1>

<http://www.w3.org/1999/02/22−rdf

−syntax−ns#type>

<http://localhost/vocabulary/

bench/Article>

2.
<http://localhost/publicatio

ns/articles/Article_1>
<http://example.org/property/title> “Title One”

3.
<http://localhost/publicatio

ns/articles/Article_1>
<http://example.org/property/author>

<http://localhost/persons/Dav

id_Gary>

4.
<http://example.com/perso

n/David_Gary>

<http://www.w3.org/1999/02/22−rdf

−syntax−ns#type>

<http://xmlns.com/foaf/0.1/P

erson>

5.
<http://localhost/persons/D

avid_Gary>
<http://example.org/property/name> “David Gary”

6. <www.aaa.com/d_g>
<http://example.org/property/website

_of>

<http://localhost/persons/Dav

id_Gary>

7.
<http://localhost/publicatio

ns/articles/Article_2>

<http://www.w3.org/1999/02/22−rdf

−syntax−ns#type>

<http://localhost/vocabulary/

bench/Article>

8.
<http://localhost/publicatio

ns/articles/Article_2>
<http://example.org/property/title> “Title Two”

9.
<http://localhost/publicatio

ns/articles/Article_2>
<http://example.org/property/author>

<http://localhost/persons/Dav

id_Gary>

10.
<http://localhost/publicatio

ns/articles/Article_2>
<http://example.org/property/author>

<http://localhost/persons/Joh

n_Wayne>

11.
<http://localhost/persons/Jo

hn_Wayne>

<http://www.w3.org/1999/02/22−rdf

−syntax−ns#type>

<http://xmlns.com/foaf/0.1/P

erson>

12.
<http://localhost/persons/Jo

hn_Wayne>
<http://example.org/property/name> “John Wayne”

13. <www.bbb.com/j_w>
<http://example.org/property/website

_of>

<http://localhost/persons/Joh

n_Wayne>

14.
<http://localhost/publicatio

ns/articles/Article_3>

<http://www.w3.org/1999/02/22−rdf

−syntax−ns#type>

<http://localhost/vocabulary/

bench/Article>

15.
<http://localhost/publicatio

ns/articles/Article_3>
<http://example.org/property/title> “Title Three”

16.
<http://localhost/publicatio

ns/articles/Article_3>
<http://example.org/property/author>

<http://localhost/persons/Joh

n_Wayne>

9

Figure 2.1 illustrates the different layers of Semantic Web technology stack

according to W3C to create a Web of linked

\ data. The fundamental technologies of Semantic Web are RDF, a data model to

encode machine-readable data and SPARQL, a W3C recommended language to query

RDF data. In the following sections, we describe in more detail about RDF and

SPARQL.

2.1 RDF – The Resource Description Framework

RDF is a schema-free data model recommended by W3C to describe the

information about arbitrary resources on the Web. An RDF dataset consists of a

collection of triples (subject, predicate, object), abbreviated as (s, p, o). In an RDF triple

(aka RDF statement) a subject denotes the entity or a class of resources, a predicate

denotes an attribute or aspect and relationship (aka property) between entities or classes,

and an object denotes an entity, a class, or a literal value. The RDF dataset represents

triples as a directed graph with annotations called RDF graph. Nodes of an RDF graph

represent either subject or object and edges represent the predicate. Each node can be an

Internationalized Resource Identifier (IRI), literal or blank node.

An example of an RDF graph is given in Figure 2.2 of a simple RDF dataset (in

N–triples8 format) of Table 2.1. Table 2.1 is a collection of triples of the form (subject,

predicate, object), where triple components: subject, predicate, and objects are separated

by whitespace and each triple shown in each line of the table is terminated by a dot (.).

Figure 2.2 simulates an RDF graph with 16 edges of a simple publication network of

RDF dataset consists of 16 triples listed in Table 2.1, where eclipse nodes represent

8 https://www.w3.org/TR/n-triples/

10

resources, directed edges represent properties, and rectangular nodes represent literal

values.

Figure 2.2: An Example RDF Graph

Let I, B, and L be infinite sets of IRIs, blank nodes, and literal respectively which

are pairwise disjoint. And suppose V be an infinite set of variables disjoint with I, B, and

L. Assuming furthermore all RDF valid terms are the union of (I  B  L) and denoted

by T.

Definition 2.1 (RDF Triple). A ternary tuple (s, p, o)  (I  B) ☓ I ☓ (I  B  L) is

called an RDF triple where s, p, and o denote subject, predicate, and object respectively.

Definition 2.2 (RDF Graph). An RDF graph G = {t1,…. tn} is a finite set of RDF triples

ti where 1  i  n.

Definition 2.3 (RDF Dataset). An RDF dataset is a collection of RDF graphs D = {G0,

(i1, G1), …. (in, Gn)} with i1, . . . , in  I where 1  i  n. (ii, Gi) are named graphs

11

identified by an IRI and default graph G0 which does not have a name. D(i) denote the

RDF graph in D identified by i.

2.2 SPARQL- SPARQL Protocol and RDF Query Language

SPARQL is the standard query language recommended by W3C for RDF data. A

basic SPARQL query consists of a SELECT clause followed by query variables

represented by the bound variables (variable with specified value) that appear in the

result set and a WHERE clause followed by graph patterns that match against the RDF

graph the query is being run on. A SPARQL query can be one of the four types including

SELECT, ASK, DESCRIBE, and CONSTRUCT. On the other hand, a graph pattern that

defines the query semantics can be one of the following types: Basic Graph Pattern

(BGP), Basic Graph Pattern with Filter Constraint (FGP), Optional Graph Pattern (OGP),

Union Graph Pattern (UGP) or Alternative Graph Pattern (AGP), and Group Graph

Pattern (GGP). Anyone of BGP, FGP, and OGP consists of one or multiple triple

patterns, while a GGP or UGP (aka AGP) consists of one or multiple BGPs, FGPs or

OGPs. Each part of a triple pattern: subject, predicate, and object can be either a bound or

unbound variable. Basically, the result of a SPARQL query is obtained by replacing the

variables of the query graph patterns with the elements of an RDF graph. SPARQL query

has solution modifiers: ORDER BY (sort by defined order), DISTINCT (remove all

duplicates), REDUCED (remove some duplicates), OFFSET (skip the first specified

number of solutions), and LIMIT (upper bound on the number of solutions).

12

A SPARQL query that returns the title of articles John Wayne wrote can be written as:

SELECT ?title WHERE {

?article <http://example.org/property/author> <http://localhost/persons/John_Wayne> .

?article <http://example.org/property/title> ?title .

<http://localhost/persons/John_Wayne> <http://example.org/property/name> “John Wayne” .

}

Figure 2.3: An Example SPARQL Query for RDF Dataset of Table 2.1

This query returns the results:

“Title Two”

“Title Three”

The above query can also be expressed using prefixes (Figure 2.4):

PREFIX : <http://example.org/property/>

PREFIX pn: <http://localhost/persons/>

SELECT ?title WHERE {

 ?article :author pn:John_Wayne .

 ?article :title ?title .

 pn:John_Wayne :name “John Wayne”.

}

Figure 2.4: SPARQL Query with Prefixes

In practice, URIs (Uniform Resource Identifier) are used to uniquely identify

resources, where each URI consists of a preceding namespace and a trailing identifier.

Consider a URI for John Wayne in Table 2.1 (http://localhost/persons/John_Wayne)

that consists of the namespace http://localhost/persons/ and the identifier John_Wayne

with angle brackets. In the above SPARQL query, prefix declarations are used for

abbreviating URIs. Here, we have defined the prefix of resources of Table 2.1 as

PREFIX pn: <http://localhost/persons/>, therefore, we can write the same URI as pn:

John_Wayne.

13

2.3 Query Shapes

A BGP represents the core of the SPARQL query. SPARQL BGPs can have one

of the four following shapes depending on the position of variables in the triple patterns

which can have severe impacts on query performance (Aluç et al., 2014).

1. Chain Shaped Pattern consists of a set of triple patterns that are linked together

as subject-object joins via different unique join variables at the subject or object

positions.

Figure 2.5: An Example Chain Shaped Query

2. Star Shaped Pattern consists of a set of triple patterns that are linked together

via a single join variable at the subject or the object position.

Figure 2.6: An Example Star Shaped Query

3. Snowflake Shaped Pattern consists of several star shapes via different join

variables at the subject or the object positions in the triple pattern.

14

Figure 2.7: An Example Snowflake Shaped Query

4. Complex query structures are the compositions of the above-mentioned

fundamental query patterns.

Definition 2.4 (Query Variables). A query variable is a member of an infinite set V

where V is disjoint from RDF term T (I  L  B) where I, B, and L are IRIs, blank nodes,

and literal respectively.

Definition 2.5 (Triple Pattern). A ternary tuple tp  (I  V) ☓ (I  V) ☓ (I  V  L) is

called a SPARQL triple pattern.

Definition 2.6 (Basic Graph Pattern). A finite set of triple patterns is called a basic

graph pattern (BGP). BGPs are the building block in SPARQL. The empty graph pattern

is a basic graph pattern, which is an empty set.

Definition 2.7 (SPARQL Filter Condition). Let  denote one of the following

comparison operators (<, ≤, !=, =, ≥, >) and func be a SPARQL built-in boolean function.

Let ?x, ?y  V be variables and c  I  L. A SPARQL filter condition can be recursively

defined as follows:

• The expressions (?x  c) and (?x  ?y) are filter conditions.

• The expression func(?x) is a filter condition.

15

• If F1 and F2 are filter conditions, then ¬F1, (F1  F2) and (F1  F2) are filter

conditions.

Definition 2.8 (SPARQL Graph Pattern). A SPARQL graph pattern can be recursively

defined as follows:

• A basic graph pattern is a graph pattern.

• If P1 and P2 are graph patterns, then expressions (P1 . P2), (P1 UNION P2), (P1

OPTIONAL P2) are graph patterns (conjunction graph pattern, optional graph

pattern, and union graph pattern, respectively).

• If P is a graph pattern and x ∈ I ∪ V, then (GRAPH x P) is a graph pattern.

• If P is a graph pattern and F is a filter condition to restrict the solutions of a triple

pattern, then (P FILTER F) is a graph pattern.

Definition 2.9 (Solution Mapping). A solution mapping μ is a partial function that maps

from a set of variables to a set of RDF terms represented by µ : V → T. The domain of µ,

dom(µ), is the subset of V where µ is defined.

2.4 Distributed RDF Processing

Over the past decade, many RDF data management systems have been built based

on distributed storage systems to provide efficient, scalable, highly available and fault

tolerance services. Based on indexing and partitioning schemes on recent distributed RDF

systems relevant to this research work distinguishing into two categories: RDF Storage

with Indexing, and RDF Storage with Partitioning.

2.4.1 RDF Storage with Indexing

Existing works use various indexing strategies on RDF elements to develop RDF

storage layouts.

16

HadoopRDF (Du et al., 2012) uses HDFS files to partition the input RDF data

into multiple smaller files based on two steps. First, the input RDF file is partitioned and

named after predicate values (creating pos index) into multiple smaller files similar to

Vertical Partitioning presented in SWStore (Abadi et al., 2009). The second step works

on the explicit type information of object in the rdf:type file. It splits the rdf:type file into

multiple smaller files based on the number of distinct objects present in the rdf:type

predicate. The pos index created in Hadoop RDF retrieves subject-object combinations

for a given predicate. HadoopRDF uses MapReduce (Dean et al., 2008) jobs to perform

SPARQL query.

H2RDF (Papailiou et al., 2012) is built on top of HBase uses a three-index

scheme (spo, pso, and osp) for input RDF data over the HBase store. H2RDF collects

statistics during data loading and uses Partial Input Join algorithm, which utilizes the

statistics and HBase indexing to find the join containing small input patterns that need to

be executed.

H2RDF+ (Papailiou et al., 2013) is another distributed RDF engine based on

MapReduce (Dean et al., 2008) framework and HBase, which is an extension of H2RDF

maintains all permutations of RDF indexing (SPO, PSO, POS, OPS, OSP, SOP).

Additionally, it also maintains aggregated index statistics to estimate triple pattern

selectivity, join output size and join cost. The indexing scheme is used to answer

efficiently all SPARQL triple patterns using a single index scan on the corresponding

index and every join between triple patterns are done using merge joins that can

effectively exploit the pre-computed orderings in these indices. H2RDF+ can adaptively

decide whether to execute the query in a centralized system over a single machine or a

17

distributed mode using MapReduce Jobs based on the query complexity determined from

the above-mentioned estimations.

CumulusRDF proposed in (Ladwig & Harth, 2011) has been built on top of a

nested key-value store Cassandra (Laksham Avinash & Prashant Malik, 2010) that uses

two different indexing strategies, hierarchical layout and flat layout for storing RDF

triples. The indexing scheme of the hierarchical layout uses super columns to build

indices (SPO, POS, OSP) in-order to answer all eight possible RDF triple patterns. The

second indexing strategy called flat layout uses the standard key-value model of

Cassandra to store the SPO, POS and OSP indices, where keys are sorted according to

their natural order. This secondary index refers to CSPO in CumulusRDF. To evaluate

the SPARQL query, the indices to use are identified according to the fixed parts of the

triple pattern.

Rya (Punnoose et al., 2012) has been implemented on top of a key-value store

Accumulo9 stores RDF triple in the Row ID part of the Accumulo tables and indexes the

triples across three separate tables (spo, pos, and osp) by maintaining the different

ordering of the subject, predicate, object for each table. These three permutations (spo,

pos, and osp) of triple components are sufficient to answer all possible triple patterns by

using range scan on the appropriate index.

AMADA (Aranda-Andújar et al., 2012) uses a distributed file system called

Amazon’s Simple Storage Service (S3) to store RDF datasets and builds its own data

indexes by mapping RDF elements to the RDF datasets containing them using

9 https://accumulo.apache.org/

18

SimpleDB10. In order to answer a query, the query processor module of AMADA first

parse the query and then perform a look up to the indexes in SimpleDB to find out the

relevant indexes for the query.

2.4.2 RDF Storage with Partitioning

This section reviews distributed RDF systems that utilize hashing or graph

partitioning strategies.

CliqueSquare (Kaoudi et al., 2015) uses built-in data replication mechanism of

HDFS to partition the RDF dataset by hashing on all three columns of triples based on

their subject, predicate and object values and creates three replicas by default. The first

replica holds the partitions of triples based on their subject, predicate, and object values.

Second replica stores all subject, predicate, and object partitions of the same value within

the same node. For the third replica, CliqueSquare groups all the subject partitions within

a node by the value of the predicate in their triples. It also groups all object partitions

based on their predicate values. CliqueSquare uses a clique-based algorithm to select the

partitions in such a way that can reduce as much as possible data exchange in the shuffle

phases and minimize the number of MapReduce stages.

PigSPARQL (Schätzle et al., 2011, 2013) stores RDF data using a Vertical

Partitioning schema proposed in (Abadi et al., 2007) and uses an intermediate layer called

Pig11 that translates each SPARQL query into a PigLatin (Schätzle et al., 2011) program

that is executed using MapReduce.

S2X (Schätzle et al., 2016) is a SPARQL query engine that exploits the graph

10 https://aws.amazon.com/simpledb/
11 https://pig.apache.org/

19

parallel abstraction, GraphX 12 , along with the data-parallel computation of Spark to

evaluate SPARQL queries over RDF data on Hadoop. S2X devises a property graph

model for RDF data and uses GraphX 2D hashing to partition the input graph. It applies a

parallel vertex-centric model for basic graph pattern matching of SPARQL.

S2RDF (Schätzle et al., 2016) has been built on top of Spark 13 that uses a

relational partitioning technique called Extended Vertical Partitioning (ExtVP) which is

an extension of Vertical Partitioning (VP) approach used by HadoopRDF (Du et al.,

2012) to store RDF data on the HDFS using Parquet14 columnar storage format. The goal

of ExtVP approach is to minimize the input size for the query by using a semi-join based

preprocessing approach to compute the possible join relations between partitions of VP

tables. S2RDF executes SPARQL queries by translating them into SQL queries, which

are then evaluated using Spark SQL15.

SPARQLGX (Graux et al., 2016) also built on top of Spark uses Vertically

Partitioned approach proposed in (Abadi et al., 2009) to store the RDF dataset into HDFS

and compiles the SPARQL queries into Scala code in order to execute directly into Spark

operations. The system uses its own statistics to optimize the computation with less

intermediate results.

PRoST (Cossu et al., 2018) is a Spark based distributed system for RDF storage

and SPARQL querying that stores data twice using Vertical Partitioning and Property

Table. PRoST translates SPARQL queries into the Join Tree format where every node

represents either the Vertical Partitioning table or Property Table. The triple patterns with

12 https://spark.apache.org/graphx/
13 https://spark.apache.org/
14 https://parquet.apache.org/
15 https://spark.apache.org/docs/latest/sql-programming-guide.html

20

the same subject in a unique basic graph pattern are grouped to form a single node where

the Property Table is used. All the other groups with a single triple pattern are translated

to nodes that use the Vertical Partitioning tables.

Table 2.2: Summary of Distributed RDF Systems

System Storage Strategy
Storage

Backend
Execution Framework

HadoopRDF

(Du et al., 2012)

Vertical Partitioning and

Property-based Files

Distributed File

System
MapReduce

H2RDF

(Papailiou et al., 2012)
3 Indices (SPO, POS, OSP)

Key-Value

Store
MapReduce

H2RDF+

(Papailiou et al., 2013)

6 Indices (SPO, PSO, POS,

OPS, OSP, SOP)

Key-Value

Store
MapReduce

CumulusRDF

(Ladwig & Harth, 2011)
3 Indices (SPO, POS, OSP)

Key-Value

Store

Sesame Query

Processor

Rya

(Punnoose et al., 2012)
3 Indices (SPO, POS, OSP)

Key-Value

Store

OpenRDF Sesame

Framework

AMADA

(Aranda-Andújar et al.,

2012)

3 Indices (SPO, POS, OSP)
Key-Value

Store

SimpleDB Query

Processor

CliqueSquare

(Kaoudi et al., 2015)

Hash and Vertical

Partitioning

Distributed File

System
MapReduce

PigSPARQL

(Schätzle et al., 2011, 2013)
Vertical Partitioning

Distributed File

System
SPARQL to PigLatin

S2X

(Schätzle et al., 2016)
Graph-based Partitioning

Distributed File

System

Vertex-Centric BGP

Matching

S2RDF

(Schätzle et al., 2016)

Vertical Partitioning and

Extended Vertical

Partitioning

Distributed File

System
SPARQL to SQL

SPARQLGX

(Graux et al., 2016)
Vertical Partitioning

Distributed File

System
SPARQL to Scala Code

PRoST

(Cossu et al., 2018)
Vertical Partitioning

Distributed File

System
SPARQL to SQL

Distributed systems typically index and partition RDF data using various indexing

and partitioning strategies. Table 2.2 summarizes the storage layout schemes used by the

21

existing distributed RDF systems.

2.5 RDF Benchmarks

RDF benchmarks are used to identify the strengths and weakness of SPARQL

evaluators. These benchmarks are usually made of two parts: the first one is the dataset

generator, and the second part is the set of standard queries that should be evaluated on

those datasets to assess the performance of RDF systems. It is hard to choose a right

benchmark that will cover all the use cases of RDF systems. Following are the most

commonly used benchmarks to tune the performance of RDF systems.

• Lehigh University Benchmark (LUBM) (Guo et al., 2005) was proposed in

2005 that features an ontology for the university domain, synthetic OWL data

scalable to an arbitrary size, fourteen standard queries representing a variety of

properties, and several performance metrics. This benchmark was originally

designed to test the inference capabilities of Semantic Web repositories.

• SPARQL Performance Benchmark (SP2Bench) uses DBLP16 as its domain and

generates the synthetic dataset mimicking the original DBLP data in RDF format.

SP2Bench was presented in (Schmidt et al., 2009) with a set of benchmark queries

to tests the various SPARQL features including FILTER, OPTIONAL, UNION,

solution modifiers and ASK queries.

• Berlin SPARQL Benchmark (BSBM) (Bizer & Schultz, 2009) was developed

for comparing the performance between native RDF stores and systems featuring

SPARQL-to-SQL rewriters. BSBM has adopted an e-commerce application as

their case study and mainly addressed the dataset generation process. This

16 https://dblp.org/

22

benchmark defines parametric query templates, which are used to create concrete,

randomized benchmark queries by sampling template parameters over the

corresponding input data. It was proposed with a “query mix” to test various

SPARQL features similar to SP2Bench excepted the ASK but with additional

DESCRIBE and CONSTRUCT queries.

• Waterloo SPARQL Diversity Test Suite (WatDiv) (Aluç et al., 2014),

introduced in 2014 by the University of Waterloo, is a synthetic dataset based on

the e-commerce use case scenario. WatDiv has a data generator as well as query

generator and was designed to cover both structural and data-driven features of

four different shapes, namely, linear, star, snowflake, and complex SPARQL

queries.

• YAGO (Yet Another Great Ontology), which is a semantic knowledge base

developed at the Max Planck Institute for Computer Science, derived from

Wikipedia, WordNet, and GeoNames. YAGO2 (Hoffart et al., 2013) is an

extension of the YAGO knowledge base in which entities, facts, and events are

anchored in both time and space. This dataset represents a prime example of a

large real-world dataset.

• DBLP Computer Science Bibliography provides bibliographic information on

computer science journals and proceedings. It is a real-world dataset.

2.6 Distributed Data Management Tools

Hadoop is an open-source framework for distributed storage and processing of

large datasets based on the HDFS and MapReduce paradigm (Dean et al., 2008). HDFS is

a very popular distributed file system due to its replication capability to provide data

23

redundancy where MapReduce can be I/O intensive and not suitable for interactive

queries. To overcome this issue, a number of distributed computation engines based on

in-memory processing strategy have been introduced.

Spark is an in-memory cluster-computing framework like MapReduce, which

utilizes in-memory caching and advanced directed acyclic graph (DAG) execution engine

to create efficient query plans for data transformations. Spark runs programs up to 100

times faster in-memory processing mode and 10 times faster in disk processing mode

than Hadoop MapReduce. Spark has a SQL like module called Spark SQL that is used for

structured data processing and allows running SQL like queries on Spark data. Spark

SQL includes a cost-based optimizer that enables control code generation to make queries

faster.

Drill17 is an MPP-based schema-free distributed SQL query engine that executes

SQL queries on a number of NoSQL databases and different file formats. Drill can

operate on more than one record at a time with vectorization and can also optimize

queries and has ability to generate code on the fly for better performance.

2.7 Big Data File Formats

In this section, we discuss the state-of-the-art big data file formats called Parquet

and ORC, which are relevant to this research work.

Parquet is a column-oriented data storage format of the Apache Hadoop

ecosystem. It stores data in a column-oriented way, where the values of each column are

organized consecutively on a disk that enables better compression. This data format

supports additional optimizations include encodings (bit packing, run length, and

17 https://drill.apache.org/

24

dictionary encoding) as well as compression algorithms like Snappy18, GZip19, LZO20,

and so on. Parquet supports both flat and nested data. Parquet has a filter pushdown

option that prunes extraneous data to reduce the number of data scans and reads when a

query contains a filter expression. Pruning data reduces the I/O, CPU, and network

overhead to optimize query performance. Another advantage is that NULL values are not

stored explicitly in Parquet, therefore, sparse columns cause little to no storage overhead.

ORC21 (Optimized Row Columnar) is a columnar file format that provides a

highly efficient way to store relational data. It stores collections of rows in one file, and

within the collection, the row data is stored in a columnar format. This allows parallel

processing of row collections across a cluster. Each file with the columnar layout is

optimized for compression and skipping of data/columns reduces read and decompression

load. Its file structure consists of three parts: Stripe, Footer, and Postscript. It breaks the

source file into a set of rows called a Stripe. The default stripe size is 250 MB. This large

stripe size enables an efficient read of columns from HDFS. The file footer contains a list

of stripes in the file, the number of rows per stripe, and each column's data type. It also

contains column-level aggregate count, min, max, and sum. Postscript contains

compression parameter and size of the compressed footer. Each stripe in an ORC File has

three parts: Index data, Row data, and Stripe footer. Index data include min and max

values for each column and the row positions within each column. Row index entries

provide offsets that enable seeking the right compression block and byte within a

decompressed block. The Row data are composed of multiple streams per column, and

18 http://google.github.io/snappy/
19 https://www.gnu.org/software/gzip/
20 http://www.oberhumer.com/opensource/lzo/
21 https://orc.apache.org/

25

they are used in table scans. The stripe footer contains a directory of stream locations.

Figure 2.8 illustrates the layout of the ORC File structure. The columns in an ORC File

separate the stripes or sections of the file. An internal index is used to track a section of

the data within each column. This organization allows readers to efficiently omit the

columns that are not required. Only required column values on each query are scanned

and transferred on query execution. The ORC File supports sparse indexes that are data

statistics and position pointers. The data statistics are used in query optimization, and

they are also used to answer simple aggregation queries. The ORC reader uses these

statistics to avoid unnecessary data read from HDFS. The position pointers are used to

locate the index groups and stripes.

Figure 2.8: The ORC File Format (Huai et al., 2014)

26

The ORC File uses a two-level compression scheme. Each column can apply one

of the four types of encoding schemes based on its data type: 1) a sequence of bytes, 2) a

run-length encoded sequence of bytes, 3) a run-length and delta encoded sequence of

integers, and 4) a bit vector. Users can further ask the writer of an ORC File to compress

streams of data with a general-purpose codec among ZLIB 22 , Snappy, and LZO.

Metadata about the ORC data, such as the schema and compression format, are serialized

into the file and are made available to the readers. The operator translates the ORC File

schema into appropriate data flow types when possible.

22 https://zlib.net/

27

CHAPTER 3

DISTRIBUTED IN-MEMORY RDF MANAGEMENT

During recent years, researchers have made significant efforts for efficient storage

and querying of big RDF data in the distributed computing environments. Many RDF

management systems are employing NoSQL databases on their storage layers.

Concurrently, a number of distributed RDF management systems use in-memory cluster

computing engines like Spark to minimize data preprocessing cost and improve query

performance by exploiting data parallelization. Another key element of efficient query

processing is the data partitioning scheme that has a huge impact in query answering. An

efficient data partitioning scheme can handle all query types efficiently to improve the

overall the efficiency of the system.

3.1 RDF Management with NoSQL Databases

In last few years, NoSQL databases have been used along with MapReduce

computation model for RDF data storage and query processing. In contrast, in this

chapter, we propose RDF data management systems based on NoSQL databases with in-

memory processing engine (e.g., Spark) that seem promising for hosting massive RDF

datasets in the distributed environment as well as faster query responses.

3.1.1 Data Modeling

In this section, we present our methodology for RDF data modeling using NoSQL

databases (HBase23 and Cassandra24). Before loading RDF data to HBase and Cassandra,

we parse the input dataset and apply various transformations. The transformations include

replacing all URIs with their corresponding namespace prefix and removing data type

23 https://hbase.apache.org/
24 https://cassandra.apache.org/

28

information from RDF object to convert it to primitive type because Spark SQL supports

complex and primitive data types. Data type information of predicates is maintained in

order to load RDF data into HBase and Cassandra.

RDF Data Layout for HBase. Each RDF subject is compressed with its

properties and corresponding values and mapped to HBase row key. Each column name

represents a property and the value corresponds to the subject, that is the row key. The

column value represents the object from the RDF dataset. All columns of a row key

belong to a single HBase column family. It is recommended in HBase Reference Guide25

to keep the number of column families in schema low, that’s why we choose a single

column family for our HBase storage schema. In our approach, we created a single

DataFrame for the HBase table and cached that table in memory.

 Table 3.1: An Example of RDF Triples

<s1> <p1> <o1>

<s1> <p2> “ABC”

<s1> <p3> <o2>

<s2> <p1> <o3>

<s2> <p2> “DEF”

<s2> <p3> <o2>

<s2> <p3> <o4>

<s2> <p4> “GHI”

Table 3.2: Sample Instance in HBase Storage Schema

rowkey p:p1 p:p2 p:p3 p:p4

s1 {o1} {“ABC”} {o2} null

s2 {o3} {“DEF”} {o2, o4} “GHI”

Table 3.2 represents our proposed HBase storage schema of sample RDF triples

of Table 3.1. In Table 3.2, s1 and s2 denote row keys; p1, p2, p3, and p4 are column

qualifiers, which belong to the same column family p; and {} denote set of cell values

25 http://hbase.apache.org/book.html#_preface

29

with timestamps excluded. Here namespace IRIs of all of the subject, property, and object

are replaced with their corresponding prefixes.

RDF Data Layout for Cassandra. The data layout to map RDF data to

Cassandra involves each RDF subject and object (s, o) combined to form a partition key

and each property forms the clustering column in a Cassandra table. Initially, a single

DataFrame with subject, property, and object has been created for the Cassandra table.

Table 3.3: Sample Instance in Cassandra Storage Schema

s p o

s1 p1 o1

s1 p2 “ABC”

s1 p3 o2

s2 p1 o3

s2 p2 “DEF”

s2 p3 o2

s2 p3 o4

s2 p4 “GHI”

Table 3.3 represents the Cassandra RDF storage schema of sample RDF triples

(Table. 3.1) where s, p, and o denote subject, property, and object columns and their

corresponding values are presented in the table cells. All namespace IRIs are replaced by

their corresponding prefixes. Next, we use vertical partitioning approach that involves

grouping triples based on predicates. A DataFrame is created for each predicate and

cached in memory.

Table 3.4 shows the temporary views named p1, p2, p3, and p4 that are created from

the initial Cassandra table (Table 3.3) for properties p1, p2, p3, and p4.

30

Table 3.4: Temporary Views of Predicates p1, p2, p3, and p4

p1

s o

s1 o1

s2 o3

p2

s o

s1 “ABC”

s2 “DEF”

p3

s o

s1 o2

s2 o2

s2 o4

p4

s o

s2 “GHI”

3.1.2 SPARQL Query Translation

In this section, we present SPARQL query translation to SPARK SQL for both

HBase and Cassandra storage schemas. In order to rewrite SPARQL query to SPARK

SQL, we developed a query compiler, that is implemented in Flex – a lexical analyzer

creator, Bison – a parser generator and C++11.

Algorithm 1: Block Query Generation and Triple Rewriting

Input: sparqlQuery

Output: blocks: vector<block>, op: vector<Operator>, proj: vector<Projection>

1: {selectClause, whereClause}  sparqlQuery

2: Add each variable of selectClause to proj list

3: {blocks, op}  whereClause

4: blocks → {block1, block2,………….., blockn}

5: op → {op1, op2,…………..,opn-1}

6: blocks  tripleRewriting(blocks)

7: return blocks, op, proj

SPARQL Parsing. Initially, the compiler validates the input SPARQL query and

builds a query parse tree from SPARQL grammar rules. Then, Algorithm 1 transforms

the input query into two clauses, SELECT and WHERE. The projected variables are

listed in projection list proj from selectClause. The whereClause, basically a group graph

31

pattern, consists of n number of blocks of BGP where n ≥ 1 and are connected through n

– 1 operators. The block connecting operator, op, is OPTIONAL or UNION. Each block,

Bk contains a single or multiple sets of triple pattern tp, filter pattern f and block ID k as

follows: {(tp1, f1, k), (tp2, f2, k)…, (tpi, fi, k)}, followed by next block Bk+1 and so on.

The list of op is based on the operator present in WHERE clause. If the operator is

OPTIONAL then op will be LEFT OUTER JOIN, and if the operator is UNION then op

will be UNION ALL. If op does not present in the SPARQL query, then all triple patterns

will be treated as a single block. SPARQL queries can have the property part of the triple

as a variable. The tripleRewriting method replaces property variable with a bound value

that is found in a filter pattern for that variable and discards the FILTER from that block.

SELECT ?article WHERE {

 ?article rdf:type bench:Article .

 ?article ?property ?value .

 FILTER (?property = swrc:pages)

}

Figure 3.1: SP2Bench Query 3a

tp1: <?article, rdf:type, bench:Article>

tp2: <?article, swrc:pages, ?value>

Figure 3.2: Rewritten SP2Bench Query Triples 3a

Figure 3.2 shows the triple patterns in tuple format for the SPARQL query of

Figure 3.1. Finally, the algorithm produces blocks, op, and proj list.

SPARQL Translation for HBase Data Layout. The translation of SPARQL

query to Spark SQL statement consists of the following steps: Initially, the compiler

identifies unique predicates from query’s BGP to create a view over HBase table where

each row key represents unique subject and columns represent predicates of the SPARQL

query. Each row in HBase table contains object value of corresponding predicate column.

32

If a subject does not have a value of a particular predicate, then we put object value as

null for that predicate column. The compiler also lists predicates for each subject present

in query’s BGP. From the HBase table, we create DataFrame for each subject by adding

NOT NULL to the subject’s properties in the WHERE clause and then create temporary

views from that DataFrame.

Table 3.5: Temporary Views of Subject s1 and s2

 s1

p:p1 p:p2 p:p3

{o1} {“ABC”} {o2}

 s2

p:p1 p:p2 p:p3 p:p4

{o3} {“DEF”} {o2, o4} {o3}

Table 3.5 represents the temporary views s1, and s2 of the corresponding subjects

s1 and s2. These temporary views are NOT materialized to disk or even to the memory

and lifetime of these views are dependent on the SparkSession. The join conditions are

identified from any two triple patterns in the WHERE clause having the form (S1 P1 O1)

and (S2 P2 O2), where O1 = S2 or S1 = O2 and S1 ≠ S2 and requires two temporary views of

subject to be joined. Finally, the compiler translates the SPARQL query to Spark SQL

statement based on the subject-predicate mapping that is identified from query’s BGP.

Algorithm 2: Generate Temporary Views

Input: blocks, op

Output: predicates: vector<p>, tempViews: vector<string>

1: {subjects, predicates}  getSubjectPredicate(blocks)

2: predicates → {p1, p2, p3,…………}

 subjects → {s1, s2, s3,………..}

 // list of unique predicates and subjects used to create DataFrame for HBase table

3: subToPred  getSubPredMapping(blocks, op, subjects)

33

4: subToPred → vector<subject, vector<predicates>>

 // return subject with their corresponding predicates

5: tempViews  getTempViews(blocks, op, subToPred)

 // generate temp views for each subject with NOT NULL condition.

6: return predicates, tempViews

Algorithm 2 takes blocks and op as input and produces a list of predicates and

tempViews. The getSubjectPredicate method takes blocks as input and, triples in blocks

are processed in an iterative manner to produce two lists of unique predicates and

subjects. The getSubPredMapping method takes blocks, op, and subjects as input and

produces subToPred, a list of subjects with their corresponding predicates list. The final

method in algorithm 2, getTempViews, generates temporary views of each subject with

the NOT NULL condition for their corresponding predicates. Finally, it produces a list of

predicates and a list of the string representation of tempViews for each subject. Overall

translation process from SPARQL to Spark SQL is shown in Figure 3.4 using BSBM

query 10 (Figure 3.3). It is important to mention that we replaced colon (:) with an

underscore (_) because Spark SQL statements do not support colon except in String

values.

PREFIX bsbm-inst: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/instances/>

PREFIX bsbm: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/vocabulary/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT DISTINCT ?offer ?price WHERE {

 ?offer bsbm:product bsbm-inst:dataFromProducer7/Product323.

 ?offer bsbm:vendor ?vendor .

 ?offer dc:publisher ?vendor .

 ?vendor bsbm:country <http://downlode.org/rdf/iso-3166/countries#US> .

 ?offer bsbm:deliveryDays ?deliveryDays .

 FILTER (?deliveryDays <= 3)

34

 ?offer bsbm:price ?price .

 ?offer bsbm:validTo ?date .

 FILTER (?date > “2008-07-08” ^^xsd:date)

}

ORDER BY xsd:double(str(?price))

LIMIT 10

Figure 3.3: BSBM Query 10

Temporary View offerTable:

SELECT rowKey AS offer, bsbm_product, bsbm_vendor, dc_publisher, bsbm_deliveryDays,

bsbm_price AS price, bsbm_validTo FROM hbaseTable WHERE bsbm_product IS NOT NULL,

bsbm_vendor IS NOT NULL, dc_publisher IS NOT NULL, bsbm_deliveryDays IS NOT NULL,

bsbm_price IS NOT NULL, bsbm_validTo IS NOT NULL

Temporary View vendorTable:

SELECT rowKey AS vendor, bsbm_country FROM hbaseTable WHERE bsbm_country IS NOT NULL

Final Spark SQL statement:

SELECT DISTINCT offerTable.offer AS offer, offerTable.price AS price FROM offerTable JOIN

vendorTable ON (vendorTable.vendor = offerTable.vendor) WHERE offerTable.bsbm_product =

'bsbm-inst:dataFromProducer7/Product323'

AND vendorTable.bsbm_country = 'http://downlode.org/rdf/iso-3166/countries#US'

AND offerTable.bsbm_deliveryDays <= 3 AND offerTable.bsbm_validTo > 20080708

ORDER BY price

LIMIT 10

Figure 3.4: Compiler Translation of BSBM Query 10

This query translation process is slightly different for the query that has an

OPTIONAL clause. If the SPARQL query contains OPTIONAL clauses, then the

compiler first makes a list of all properties for each subject that will be used for

projection along with subject (row key). If a subject or object is given, then it is added to

the WHERE clause, however, only those predicates with the NOT NULL condition are

added to the WHERE clause of Spark SQL statement. Predicates that appear before the

OPTIONAL operator and predicates of the same subject that appear for the first time

35

after an OPTIONAL operator will be used for the NOT NULL condition in WHERE

clause. Predicates are simply discarded from WHERE clause if they appear subsequent

times after OPTIONAL operator for the same subject. If the same subject within a block

exists after OPTIONAL operator in query’s BGP, the compiler does not add that subject

with LEFT OUTER JOIN in Spark SQL statement unless there is a join condition or

multi-valued attribute with given object value in that block.

PREFIX bsbm-inst: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/instances/>

PREFIX bsbm: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/vocabulary/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?label ?comment ?producer ?productFeature ?propertyTextual1 ?propertyTextual2

?propertyTextual3 ?propertyNumeric1 ?propertyNumeric2 ?propertyTextual4 ?propertyTextual5

?propertyNumeric4 WHERE {

 bsbm-inst:dataFromProducer8/Product360 rdfs:label ?label .

 bsbm-inst:dataFromProducer8/Product360 rdfs:comment ?comment .

 bsbm-inst:dataFromProducer8/Product360 bsbm:producer ?p .

 ?p rdfs:label ?producer .

 bsbm-inst:dataFromProducer8/Product360 dc:publisher ?p .

 bsbm-inst:dataFromProducer8/Product360 bsbm:productFeature ?f .

 ?f rdfs:label ?productFeature .

 bsbm-inst:dataFromProducer8/Product360 bsbm:productPropertyTextual1 ?propertyTextual1 .

 bsbm-inst:dataFromProducer8/Product360 bsbm:productPropertyTextual2 ?propertyTextual2 .

 bsbm-inst:dataFromProducer8/Product360 bsbm:productPropertyTextual3 ?propertyTextual3 .

 bsbm-inst:dataFromProducer8/Product360 bsbm:productPropertyNumeric1 ?propertyNumeric1 .

 bsbm-inst:dataFromProducer8/Product360 bsbm:productPropertyNumeric2 ?propertyNumeric2 .

OPTIONAL

 { bsbm-inst:dataFromProducer8/Product360 bsbm:productPropertyTextual4 ?propertyTextual4 }

 OPTIONAL

 { bsbm-inst:dataFromProducer8/Product360 bsbm:productPropertyTextual5 ?propertyTextual5 }

 OPTIONAL

 { bsbm-inst:dataFromProducer8/Product360 bsbm:productPropertyNumeric4 ?propertyNumeric4 }

}

Figure 3.5: BSBM Query 2

36

We use BSBM query 2 (Figure 3.5) to demonstrate how our query compiler works with

OPTIONAL clause (Figure 3.6).

Temporary View bsbm_inst_dataFromProducer8_Product360Table:

SELECT rowKey AS product, rdfs_label AS label, rdfs_comment AS comment, bsbm_producer AS

producer, bsbm_productFeature AS feature, bsbm_productPropertyTextual1 AS propertyTextual1,

bsbm_productPropertyTextual2 AS property Textual2, bsbm_productPropertyTextual3 AS property

Textual3, bsbm_productPropertyTextual4 AS propertyTextual4, bsbm_productPropertyTextual5 AS

propertyTextual5, bsbm_productPropertyNumeric1 AS propertyNumeric1,

bsbm_productPropertyNumeric2 AS propertyNumeric2, bsbm_productPropertyNumeric4 AS

propertyNumeric4

FROM hbaseTable WHERE rdfs_label IS NOT NULL AND rdfs_comment IS NOT NULL AND

bsbm_producer IS NOT NULL AND bsbm_productPropertyTextual1 IS NOT NULL AND

bsbm_productPropertyTextual2 IS NOT NULL AND bsbm_productPropertyTextual3 IS NOT NULL

AND bsbm_productPropertyNumeric1 IS NOT NULL AND bsbm_productPropertyNumeric2 IS NOT

NULL

Temporary View pTable:

SELECT rowKey AS p, rdfs_label AS label FROM hbaseTable WHERE rdfs_label IS NOT NULL

Temporary View fTable:

SELECT rowKey AS f, rdfs_label AS label FROM hbaseTable WHERE rdfs_label IS NOT NULL

Final Spark SQL statement:

SELECT productTable.label AS label, productTable.comment AS comment, pTable.label AS

producer, fTable.label AS feature, productTable.propertyTextual1 AS propertyTextual1,

productTable.propertyTextual2 AS propertyTextual2, productTable.propertyTextual3 AS

propertyTextual3, productTable.propertyNumeric1 AS propertyNumeric1,

productTable.propertyNumeric2 AS propertyNumeric2, productTable.propertyTextual4 AS

propertyTextual4, productTable.propertyTextual5 AS propertyTextual5,

productTable.propertyNumeric4 AS propertyNumeric4

FROM productTable JOIN pTable ON (productTable.producer = pTable.p) JOIN fTable ON

(ARRAY_CONTAINS(productTable.feature, fTable.f))

Figure 3.6: Compiler Translation of BSBM Query 2

37

HBase supports multi-valued attributes by using their corresponding timestamp. We use

array data type to access multi-valued attributes.

PREFIX bsbm-inst: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/instances/>

PREFIX bsbm: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/vocabulary/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT DISTINCT ?product ?label WHERE {

 ?product rdfs:label ?label .

 ?product a bsbm-inst:ProductType1 .

 ?product bsbm:productFeature bsbm-inst:ProductFeature1 .

 ?product bsbm:productFeature bsbm-inst:ProductFeature2 .

 ?product bsbm:productPropertyNumeric1 ?value1 .

 FILTER (?value1 > 450)

}

ORDER BY ?label

LIMIT 10

Figure 3.7: BSBM Query 1

Temporary View productTable:

SELECT rowKey AS product, rdfs_label AS label, rdf_type, bsbm_productFeature,

bsbm_productPropertyNumeric1

FROM hbaseTable WHERE rdfs_label IS NOT NULL, rdf_type IS NOT NULL, bsbm_productFeature IS

NOT NULL, bsbm_productPropertyNumeric1 IS NOT NULL

Final Spark SQL statement:

SELECT DISTINCT productTable.product AS product, productTable.label AS label

FROM productTable WHERE ARRAY_CONTAINS(productTable.rdf_type, 'bsbm-inst:ProductType1')

AND ARRAY_CONTAINS(productTable.bsbm_productFeature, 'bsbm-inst:ProductFeature1') AND

ARRAY_CONTAINS(productTable.bsbm_productFeature, 'bsbm-inst:ProductFeature2') AND

productTable.bsbm_productPropertyNumeric1 > 450

ORDER BY label

LIMIT 10

Figure 3.8: Compiler Translation of BSBM Query 1

38

We use BSBM query 1 (Figure 3.7) to demonstrate how our query compiler handles

multi-valued attributes. Before the query translation process, we have to provide the

multi-valued attributes as input to the compiler. In this case, rdf:type and

bsbm:productFeature are the multi-valued attributes. First, we have to use row object to

create temporary view of HBase table similar to query 10. Then the query compiler

translates the SPARQL query to Spark SQL as shown in Figure 3.8.

SPARQL Translation for Cassandra data layout. To define a mapping from

SPARQL to Spark SQL based on Cassandra data layout, algorithm 3 is used. It takes

blocks, op, and proj as input, translates and processes every triple pattern (tpi) and filter

pattern (fi) in each block in an iterative manner. First, it starts processing triple pattern

(tpi) by translating it to a tuple of <s, p, o> and then iterate through all the tuples to find

join condition among predicates and conditions for whereClause. After processing all

tuples of that block, it starts processing filter constraints (fi) for that block and then adds

the filter constraints to the conditions to produce a whereClause. Next, fromClause is

combined with join_conditions to produce the final fromClause for that block. The

getBlockJoin method is used to produce LEFT OUTER JOIN condition between two

blocks. The getSelectClauseLeftJoin and getSelectClauseUnion methods are used to

produce final select clauses for LEFT OUTER JOIN and UNION respectively. Finally,

the algorithm generates the SQL statement for the input SPARQL Query. BSBM query 7

(Figure 3.9) is used to demonstrate SPARQL to Spark SQL translation for Cassandra

RDF data. The compiler maps SPARQL to Spark SQL statement as shown in Figure

3.10.

Algorithm 3: Generate VP SQL

Input: blocks, op, proj

39

Output: query

1: query = “”

2: aliaseMap = map<String, String>

3: blockQuery  ϕ

4: m  getTripleCount(blocks)

5: if n > 1

6: buildJoin  true

7: end if

8: for k = 1 to k = n do

9: projections, conditions  ϕ

10: fromClause  ϕ

11: whereClause  ϕ

12: for i = 1 to m do

13: if b == k // b is the block number

14: join_conditions  ϕ

15: if isVar(tpi.Subject) then

16: projections  projections  (tpi.Subject → Ti.Subject)

17: aliaseMap[Ti.Subject] = tpi.Subject

18: else

19: conditions  conditions  (Ti.Subject = tpi.Subject)

20: end if

21: if isVar(tpi.Object) then

22: projections  projections  (tpi.Object → Ti.Object)

23: aliaseMap[Ti.Object] = tpi.Object

24: else

25: conditions  conditions  (Ti.Object = tpi.Object)

26: end if

27: for j = m to j = 1 do

28: if b == k

29: if tpi == 1

30: fromClause  predicate(i) at tpi assign to aliases Ti

31: if isPresent(fi) then

32: conditions  conditions  fi

33: end if

34: else

40

35: fromClause  concate_str(fromClause, “JOIN”, predicate(i) at tpi assign to

aliases Ti)

36: if isVar(tpi.Subject)

37: if tpi.Subject == tpj.Subject

38: join_conditions  join_conditions  (Ti.Subject == Tj.Subject)

39: end if

40: if tpi.Subject == tpj.Object

41: join_conditions  join_conditions  (Ti.Subject == Tj.Object)

42: end if

43: end if

44: if isVar(tpi.Object)

45: if tpi.Object == tpj.Subject

46: join_conditions  join_conditions  (Ti. Object == Tj.Subject)

47: end if

48: if tpi.Object == tpj.Object

49: join_conditions  join_conditions  (Ti. Object == Tj.Object)

50: end if

51: end if

52: end if

53: end if

54: end for

55: if isPresent(fi) then

56: if isContains(fi, “!bound”)

57: op[i] = “EXCEPT”

58: else

59: whereClause  conditions  fi

60: end if

61: end if

62: fromClause  fromClause  join_conditions

63: end if

64: end for

65: if (buildJoin = true) then

66: tempQuery  getTempQuery(projections, fromClause, whereClause)

67: Add tempQuery to vector blockQuery.

68: else

69: selectClause  getProjections(proj, isDistinct)

41

70: tempQuery  getTempQuery(selectClause, fromClause, whereClause)

71: query = tempQuery // query is the final result if SPARQL Query does not have operator

OPTIONAL or UNION.

72: end if

73: end for

74: if n > 1 then

75: blockJoinCond  getBlockJoin(proj, aliaseMap, blocks)

76: blockJoinCond → {cond1, cond2,….. condn-1}

77: selectClauseLeftJoin  getSelectClauseLeftJoin(proj, aliaseMap, blocks)

78: selectClauseLeftJoin → {XK. projK} // k ≤ n

79: selectClauseUnion  getSelectClauseUnion(proj)

80: // selectClauseUnion is the string representation of the projected elements present in proj vector.

81: for j = 1 to j = n – 1 do

82: if op[j] == “LEFT OUTER JOIN” || op[j] == “EXCEPT”

83: if j == 1 then

84: query += concat_str(selectClauseLeftJoin, blockQuery[j-1], op[j], blockQuery[j],

cond[j-1])

85: else

86: query += concat_strQuery(op[j], blockQuery[j], cond[j-1])

87: end if

88: end if

89: if op[j] == ‘UNION ALL’ then

90: if j == 1 then

91: query += concat_str(selectClauseUnion, blockQuery[j-1], op[j], blockQuery[j])

92: else

93: query += concat_strQuery(op[j], blockQuery[j], “”)

94: end if

95: end if

96: end for

97: end if

98: return query

42

PREFIX bsbm-inst: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/instances/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX rev: <http://purl.org/stuff/rev#>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX bsbm: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/vocabulary/>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?productLabel ?offer ?price ?vendor ?vendorTitle ?review ?revTitle ?reviewer ?revName

?rating1 ?rating2 WHERE {

 bsbm-inst:dataFromProducer8/Product360 rdfs:label ?productLabel .

 OPTIONAL {

 ?offer bsbm:product bsbm-inst:dataFromProducer8/Product360 .

 ?offer bsbm:price ?price .

 ?offer bsbm:vendor ?vendor .

 ?vendor rdfs:label ?vendorTitle .

 ?vendor bsbm:country <http://downlode.org/rdf/iso-3166/countries#DE> .

 ?offer dc:publisher ?vendor .

 ?offer bsbm:validTo ?date .

 FILTER (?date > “2008-07-08” ^^xsd:date)

 }

 OPTIONAL {

 ?review bsbm:reviewFor bsbm-inst:dataFromProducer8/Product360 .

 ?review rev:reviewer ?reviewer .

 ?reviewer foaf:name ?revName .

 ?review dc:title ?revTitle .

 OPTIONAL { ?review bsbm:rating1 ?rating1 . }

 OPTIONAL { ?review bsbm:rating2 ?rating2 . }

 }

}

Figure 3.9: BSBM Query 9

43

SELECT X0.productLabel, X1.offer, X1.price, X1.vendor, X1.vendorTitle, X4.review, X2.reviewer,

X2.revName, X2.revTitle, X3.rating1, X4.rating2

FROM (SELECT T0.Subject AS Product, T0.Object AS productLabel FROM rdfs_label T0 WHERE

T0.Subject = 'bsbm-inst:dataFromProducer8/Product360') AS X0

LEFT OUTER JOIN (SELECT T1.Object AS Product, T7.Object AS date, T7.Subject AS offer,

T2.Object AS price, T6.Object AS vendor, T4.Object AS vendorTitle FROM bsbm_product T1 JOIN

bsbm_price T2 ON (T2.Subject = T1.Subject) JOIN bsbm_vendor T3 ON (T3.Subject = T2.Subject)

JOIN rdfs_label T4 ON (T4.Subject = T3.Object) JOIN bsbm_country T5 ON (T5.Subject =

T4.Subject) JOIN dc_publisher T6 ON (T6.Object = T5.Subject AND T6.Subject = T3.Subject) JOIN

bsbm_validTo T7 ON (T7.Subject = T6.Subject) WHERE T1.Object = 'bsbm-

inst:dataFromProducer8/Product360' AND T5.Object =

'http://downlode.org/rdf/iso3166/countries#DE' AND T7.Object > 20080708) AS X1 ON

(X0.Product = X1.Product)

LEFT OUTER JOIN (SELECT T8. Object AS Product, T10. Object AS revName, T11.Object AS

revTitle, T11.Subject AS review, T10.Subject AS reviewer

FROM bsbm_reviewFor T8 JOIN rev_reviewer T9 ON (T9.Subject = T8.Subject) JOIN foaf_name T10

ON (T10.Subject = T9.Object) JOIN dc_title T11 ON (T11.Subject = T9.Subject) WHERE T8.Object =

'bsbm-inst:dataFromProducer8/Product360') AS X2 ON (X0.Product = X2. Product) LEFT OUTER

JOIN (SELECT T12.Object AS rating1, T12.Subject AS review FROM bsbm_rating1 T12) AS X3 ON

(X2.review = X3.review) LEFT OUTER JOIN (SELECT T13.Object AS rating2, T13.Subject AS review

FROM bsbm_rating2 T13) AS X4 ON (X2.review = X4.review)

Figure 3.10: Compiler Translation of BSBM Query 7

The query compiler supports basic SPARQL queries. The Optional graph pattern

and Alternate graph pattern are mapped to LEFT OUTER JOIN and UNION ALL in

Spark SQL respectively. It supports FILTERS, ORDER BY, DISTINCT, LIMIT

modifiers. This compiler does not support DESCRIBE and CONSTRUCT clauses. So,

we perform a manual translation for query performance evaluation. There is a difference

between HBase and Cassandra RDF data layout for mapping SPARQL function

!Bound(Object) to Spark SQL statement. In this case, HBase uses `Object IS NULL`

whereas Cassandra uses EXCEPT clause. To demonstrate the translation process of

SPARQL function !Bound(Object) to Spark SQL statement using EXCEPT clause, we

44

used BSBM query 3 (Figure 3.11) to demonstrate the translated SQL statements (Figure

3.12).

PREFIX bsbm-inst: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/instances/>

PREFIX bsbm: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/vocabulary/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?product ?label WHERE {

 ?product rdfs:label ?label .

 ?product a bsbm-inst:ProductType1 .

 ?product bsbm:productFeature bsbm-inst:ProductFeature100 .

 ?product bsbm:productPropertyNumeric1 ?p1 .

 FILTER (?p1 > 730)

 ?product bsbm:productPropertyNumeric3 ?p3 .

 FILTER (?p3 < 380)

 OPTIONAL {

 ?product bsbm:productFeature bsbm-inst:ProductFeature200 .

 ?product rdfs:label ?testVar }

 FILTER (!bound(?testVar))

}

ORDER BY ?label

LIMIT 10

Figure 3.11: BSBM Query 3

SELECT T0.Subject AS product, T0.Object AS label

FROM rdfs_label AS T0 JOIN rdf_type AS T1 ON T0.Subject = T1.Subject JOIN bsbm_productFeature

AS T2 ON T0.Subject = T2.Subject JOIN bsbm_productPropertyNumeric1 T3 ON T0.Subject =

T3.Subject JOIN bsbm_productPropertyNumeric3 AS T4 ON T0.Subject = T4.Subject WHERE

T1.Object = 'bsbm-inst:ProductType1' AND T2.Object = 'bsbm-inst:ProductFeature100' AND T3.

Object > 730 AND T4. Object < 380 EXCEPT SELECT T5.Subject AS product, T6. Object AS label

FROM bsbm_productFeature AS T5 JOIN rdfs_label AS T6 ON T5.Subject = T6.Subject WHERE

T5.Object = 'bsbm-inst:ProductFeature200'

ORDER BY label

LIMIT 10

Figure 3.12: Compiler Translation of BSBM Query 3

45

3.1.3 Experimental Setup

In this section, we present a comparative performance evaluation of HBase and

Cassandra systems conducted to benchmark with Spark SQL. The experimental setup

followed by a discussion of the results is presented.

Benchmark Queries. For the performance evaluation of two systems, we utilize

two datasets. The Berlin SPARQL Benchmark (Bizer & Schultz, 2009) is built around e-

commerce use-case where a number of vendors offer a set of products to the consumers

and the consumers post their reviews about the products. The BSBM queries are based on

the real-world use cases that simulate the search patterns of a consumer looking for a

given product. We have selected all BSBM benchmark queries for performance

evaluation. Characteristics of the BSBM benchmark queries are presented in (Bizer &

Schultz, 2009). The SP2Bench (Schmidt et al., 2009) is a SPARQL performance

benchmark suite designed to cover the most important SPARQL constructs and operator

constellations using a range of RDF data access pattern as well as SPARQL-to-SQL re-

write systems. The data model of SP2Bench is based on DBLP (Digital Bibliography &

Library Project), a computer science bibliography website started in 1993 and currently

hosts more than 2.3 million journal articles. From SP2Bench we have selected 1, 2, 3a, 5a,

6, 8 and 11. Query 1 is simple with only one joining variable. Queries 2, 6 and 8 have

OPTIONAL blocks. Queries 3a and 5a both have one FILTER operator and query 11 has

LIMIT, OFFSET and ORDER BY modifiers. Both BSBM and SP2Bench have data

generator that can generate any number of triples based on user specification.

Cluster Configuration. To conduct the comparative analysis between two

systems, we constructed seven node clusters on Microsoft Windows Azure Platform.

46

Each node in the cluster had 2 vCPUs Intel(R) Xeon(R) CPU E5-2673 v3 @ 2.40 GHz

processor, 14 GB of memory, 6400 Max IOPS, 4 data disks and total 512 GB of hard disk

space running Ubuntu 16.04.3 LTS OS. Hadoop 2.7.4 and Spark 2.2.0 were configured

on all nodes where each Spark executor was given 8 GB of memory. For HBase system

settings, we used HBase 1.3.1 in the cluster configuration. For distributed applications,

HBase relies on a high-performance coordination service called ZooKeeper. In our

system configuration, we used built-in Zookeeper of HBase that is dedicated to the

master. For Cassandra system settings, we used Apache Cassandra 3.11 with a uniform

cluster name and IP configuration set to all nodes. Each Cassandra instance can equally

hold a maximum of 256 index tokens.

3.1.4 Evaluation

Initially, the RDF dataset was copied into HDFS; a Spark job was used by RDF-

loader to parse and convert raw RDF data in order to load into HBase and Cassandra

storage schemas. The following result demonstrates the performance of RDF Loader in

parsing and loading 10 and 20 million triples for HBase and Cassandra storage strategies

(Figure 3.13 and 3.14). After loading triples into HBase and Cassandra storage systems,

we ran benchmark queries described in section 3.1.3 on a 7-Node cluster.

Figure 3.13: BSBM RDF Dataset Loading Time for 10 and 20 Million Triples (log scale)

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

10M 20M

T
im

e
(s

ec
o
n
d
s)

HBase Cassandra

47

Figure 3.14: SP2Bench RDF Dataset Loading Time for 10 and 20 Million Triples

(log scale)

Figure 3.15: Query Runtimes - BSBM Queries [Q1 – Q6] (log scale)

Figure 3.16: Query Runtimes - BSBM Queries [Q7 – Q12] (log scale)

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

10M 20M

T
im

e
(s

ec
o
n
d
s)

HBase Cassandra

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

Q1 Q2 Q3 Q4 Q5 Q6

T
im

e
(s

ec
o
n
d
s)

HBase-10M Cassandra-10M HBase-20M Cassandra-20M

1.E+00

1.E+01

1.E+02

1.E+03

Q7 Q8 Q9 Q10 Q11 Q12

T
im

e
(s

ec
o
n
d
s)

HBase-10M Cassandra-10M HBase-20M Cassandra-20M

48

Performance comparison between HBase and Cassandra storage schemas for

BSBM queries on 7-node cluster is shown in Figure 3.15 [Q1 – Q6] and 3.16 [Q7 – Q12]

of 10 million and 20 million triples. We ran each query 3 times and took the average

response time. Cassandra outperforms HBase in query response time of queries from Q1

to Q6. However, for queries Q7 through Q12, HBase is faster than Cassandra. Query

response time depends on the size (number of rows) of each temporary view. Besides,

HBase has to handle multi-valued attributes via array data type and performing

operations on array data type were time-consuming. Most of the queries from Q1 to Q6

involved array data type in HBase and the size of the subject temporary views are larger

than the size of property temporary views in Cassandra; therefore, Cassandra outperforms

HBase. However, from query Q7 to Q12, HBase outperforms Cassandra, as it requires

less number of joins with subject views. On the other hand, for all of the join conditions

in a query BGP, all property table views have to participate in Cassandra storage scheme.

Figure 3.17: Query Runtimes - SP2Bench Queries (log scale)

Figure 3.17 shows the SP2Bench query response time of 10 million and 20 million triples

using HBase and Cassandra storage schemas. Response time for query 1, 3a, and 11 are

0.E+00

1.E+03

2.E+03

3.E+03

4.E+03

5.E+03

6.E+03

7.E+03

8.E+03

Q1 Q2 Q3a Q5a Q6 Q8 Q11

T
im

e
(s

ec
o
n
d
s)

HBase-10M Cassandra-10M

HBase-20M Cassandra-20M

49

almost same for both HBase and Cassandra system - a few seconds, however, query

response time for HBase storage schema is noticeably higher on queries 2, 5a, 6 and 8.

Queries 2 and 6 have OPTIONAL blocks. Query 2 has ten triple patterns with one unique

subject. For HBase storage schema, the generated Spark SQL statement for query 2 gets

rid of the complexity of the joins from the original query by not including LEFT OUTER

JOIN from the final query statement. Although we have eliminated join, the size of the

subject temporary view is still very large that requires many rows to be scanned to get

final result as compared to Cassandra storage schema with property table joins. Query 5a

has six triple patterns and one FILTER. Queries 6 and 8 have more triple patterns and

filters than query 5a. Query response time of query 8 that involves multiple joins, and a

UNION is very high on HBase storage schema as compared to Cassandra because the

size of subject temporary views is greater than the size of property temporary views.

3.1.5 Conclusion

We present new data models for storing RDF data in HBase and Cassandra that

are different from the existing NoSQL based RDF management systems. Further

optimization of indexing schemes and tuning for efficient retrieval capabilities on both

databases can be explored. A query compiler that translates SPARQL queries to Spark

SQL statements using RDF data layouts for the two systems has been presented.

Comparison of query performance of HBase and Cassandra systems is presented with a

discussion of the results. Results show that HBase outperforms Cassandra for queries

involving one subject (star-shaped query). On the other hand, Cassandra performs better

on queries with multiple subjects because of vertical partitioning data storage schema.

50

3.2 RDF Management with VPExp and 3CStore Data Layouts

In an RDF dataset, the number of distinct predicates is often relatively few as

compared to the number of distinct subjects or objects. Based on this observation, Abadi,

et al. introduced Vertically Partitioned (VP) architecture in (Abadi et al., 2007) by storing

the tripe in files named after predicates whose content keeps only subject and object

entries. To provide more efficient relational data layouts by taking advantage of VP

schema, we propose two relational data layouts for RDF graphs called VPExp and

3CStore. The first approach, VPExp, is based on the concept of splitting predicates using

explicit type information of the object introduced in (Husain et al., 2011). The second

approach, 3CStore, is primarily designed to minimize the join operations and data

communication costs for SPARQL queries over distributed systems by creating sub-

tables from VP table based on different join correlations between triple patterns.

3.2.1 Data Modeling

Our first RDF data partitioning approach VPExp is based on the concept of

minimizing input data size for a particular predicate rdf:type during query evaluation.

The rdf:type predicate is very common in RDF datasets and usually contains a lot of rows

while doing Vertical Partitioning. Therefore, we decided to further split that predicate

into a number of distinct objects the predicate has. Suppose the rdf:type predicate has o1,

o2,…..,on number of distinct objects then VPExp will create rdf_type_o1,

rdf_type_o2,……, rdf_type_on tables along with the original rdf_type table. We use the

following query to determine unique objects of rdf:type predicate.

SELECT DISTINCT o FROM TripleTable WHERE p = 'rdf:type'

For each rdf:type object (say, obj) we use the following query to create VPExp tables.

51

SELECT DISTINCT s FROM TripleTable WHERE p = 'rdf:type' AND o = obj

We name the table as rdf_type_obj. This approach takes advantage by minimizing the

input data size of rdf:type predicate table when the triple pattern of a SPARQL query

contains rdf:type in predicate position and the corresponding object is not a variable. The

second approach 3CStore is a three-column data layout. The goal of this storage model is

to minimize the input data size as well as join operations during query evaluation.

Generally, in VP approach the join variable that occurs in subject or object position

between two triple patterns in SPARQL query determines the columns on which the

corresponding VP tables have to be joined. Four possible correlations (Schätzle et al.,

2015) exist for position of the join variable that can occur between two triple patterns

based on their corresponding subject and object positions. If both triple patterns have the

join variable in their subject position, then it is subject-subject correlation (SS). Similarly,

other three correlations are subject-object (SO), object-subject (OS), and object-object

(OO). Based on these correlations we pre-compute a subset of the VP table with all other

VP tables using inner join and create three-column stores for all correlations where the

second column (column2) contains the correlation value, the first column (column1)

contains subject or object values that are not common between VPs and from the first VP

table VPP1, and the third column (column3) contains the remaining subject or object

values from the second VP table VPP2. The file is named as (correlation name)_p1_p2.

Suppose VPP1 has (s1, o1) and VPP2 has (s2, o2) and if we are computing SS correlation

then s1 must be equal to s2. In this case, we call that common value as ss and store in

3CStore approach as (o1, ss, o2) and materialized that table named as ss_p1_p2 unless the

table is empty. For example, we use the following query to determine the SS correlation

52

of VPP1 with VPP2.

SELECT t1.o AS column1, t1.s AS column2, t2.o AS column3 FROM VPP1 t1 JOIN VPP2

t2 ON t1.s = t2.s

Similarly, we can pre-compute all other correlations and materialized as 3CStore tables in

HDFS.

Table 3.6: 3CStore Table Construction Using Correlations Between Triple Patterns

Correlation
Join Condition

(name of common value)

3CStore

(column1, column2,

column3)

Table Name

SS s1 = s2 (ss) (o1, ss, o2) ss_p1_p2

SO s1 = o2 (so) (o1, so, s2) so_p1_p2

OS o1 = s2 (os) (s1, os, o2) os_p1_p2

OO o1 = o2 (oo) (s1, oo, s2) oo_p1_p2

We did not pre-compute 3CStore tables for OO correlations because the number of

distinct objects in RDF dataset can be huge and create a lot of 3CStore files in HDFS,

which will cost a significant amount of storage space. If there is no storage space issue,

then one can pre-compute 3CStore tables for OO correlation also. For SPARQL

translation with 3CStore approach VP tables can be utilized if there is no 3CStore table in

HDFS.

3.2.2 Data Loading and Query Translation

We use Spark as the RDF loader and, for query processing, we use both Spark

and Drill. We describe the data loading approach and SPARQL query translation to SQL

for both Spark and Drill based on the three storage models, VP, VPExp, and 3CStore. In

order to rewrite the SPARQL query to SQL, we developed a query compiler, which is

implemented in Flex – a lexical analyzer creator, Bison – a parser generator and C++11.

53

RDF Loader. The goal of the RDF loader is to load, parse, and store RDF data

into three different RDF storage schemas in HDFS. Before storing RDF data to HDFS,

we parse the input dataset and apply various transformations. The transformation includes

replacing all URIs with their corresponding namespace prefix and remove data type

information from RDF object to convert that object into primitive type because Spark

SQL and Drill both support complex and primitive data types. We use Parquet storage

format to store RDF data into HDFS.

Query Translation. The compiler first validates the input query and builds a

query parse tree from SPARQL grammar rules. Algorithm 4 shows how the translation

process works. The compiler then translates the input query into two clauses, SELECT

and WHERE clause. The projected variables are listed in the projection list from

SELECT Clause. The WHERE Clause, which is basically a group graph pattern, consists

of n number of BGP where n ≥ 1 and are connected through n – 1 operators. The BGP

connecting operator op is OPTIONAL, UNION, and DOT where DOT operator indicates

an implicit conjunction between two BGPs. We can simply write the WHERE clause as

{BGP1, op1, BGP2, op2,….opn-1, BGPn}. Each BGP consists of triple pattern tpi and filter

pattern fi as follows BGP1 = {(tp1, f1), (tp2, f2),.......}. The BGP connecting operators

OPTIONAL, UNION, and DOT are replaced by LEFT OUTER JOIN, UNION ALL, and

JOIN respectively when SPARQL query is translated into SQL statement. SPARQL

queries can have predicate as a variable. The tripleRewriting method replaces the

predicate variable with a bound value that is found in a filter pattern for that variable and

then discards the FILTER from that BGP. The tripleRearranging method rearranges each

triple pattern in the BGP in such a way that join condition between two triple patterns can

54

be found in successive order to avoid further cross join from SQL statement.

Algorithm 4: SPARQL Query Translation

Input: sparqlQuery

Output: bgp: vector<BGP>, op: vector<Operator>, projection: vector<Projection>

1: {selectClause, whereClause}  sparqlQuery

2: Add each variable of selectClause to project list

3: {bgp, op}  whereClause

4: bgp → {BGP1, BGP2,………….., BGPn}

5: op → {op1, op2,…………..,opn-1}

6: bgp  tripleRewriting(bgp)

7: bgp  tripleRearranging(bgp)

8: return bgp, op, projection

Algorithm 5: BGP Translation for VP and VPExp Schema

Input: BGPj: vector<Triple Pattern: tp: (s, p, o)>

stg: Name of the schema (VP or VPExp)

Output: projection: Projection, from: vector<Table Name, Table alias>, condition: Where

1: projection  ϕ; from  ϕ; condition  ϕ

2: for each triple pattern tpi ∈ BGPj do

3: if tpi.p = ‘rdf:type’  !isVar(tpi.o)  stg = VPExp then

4: from  from  (concat_str(tpi.p, ‘rdf:type’, ‘’), Tt) // Tt is the unique alias of tpi

5: if isVar(tpi.s) then

6: projection  projection  (tpi.s → Tt.s)

7: else

8: condition  condition  (Tt.s = tpi.s)

9: end if

10: else

11: from  from  (tpi.p, Ti)

12: if isVar(tpi.s) then

13: projection  projection  (tpi.s → Tt.s)

14: else

15: condition  condition  (Tt.s = tpi.s)

16: end if

55

17: if isVar(tpi.o) then

18: projection  projection  (tpi.o → Tt.o)

19: else

20: condition  condition  (Tt.o = tpi.o)

21: end if

22: end if

23: end for

24: return projection, from, condition

For VP and VPExp approaches, tables are selected from the predicate position of

each triple pattern. In 3CStore approach, tables are selected from the combination of two

triple patterns if there is any existing correlation, otherwise, the table is selected just like

in VP approach. The BGP translation of VP and VPExp is shown in algorithm 5, and

algorithm 6 shows BGP translation of 3CStore storage layouts. Each algorithm takes a

BGP as input and generates a list of projections, conditions, and from; from is the table

names with their corresponding unique aliases, which are used to generate subqueries for

triple patterns. These subqueries are combined together to compute the SQL statement for

each BGP. These SQL statements are then combined with the generated projection(s) and

op (operators) from algorithm 1 to generate the final SQL statement. For all three storage

approaches, if the predicate position remains a variable and no filter pattern presents in

the BGP to replace that variable, in that case, the base triple table will be selected. For the

VPExp schema with predicate position as ‘rdf:type’ and the object is a bound value, all

bound values from triple patterns and filter constraints are used as conditions in WHERE

clause. The table columns are renamed by their corresponding variable name in the

SELECT clause of SQL statement.

56

Algorithm 6: BGP Translation for 3CStore Schema

Input: BGPj : vector<tp: (s, p, o)>

Output: projection: Projection, from: vector<Table Name, Table alias>, condition: Where

1: n  getTripleCount(BGPj)

2: m, l = 0

3: if n > 1

4: for m = 0 to n/2 - 1

5: l = m + 1

6: if tpm.s = tpl.s then

7: table  table  (concat_str(‘ss_’,tpm.s, tpl.s), Tt) // Tt is the unique alias of tpi

8: if isVar(tpm.o) then

9: projection  projection  (tpm.o → Tt.column1)

10: else

11: condition  condition  (Tt.column1 = tpm.o)

12: end if

13: if isVar(tpl.o) then

14: projection  projection  (tpl.o → Tt.column3)

15: else

16: condition  condition  (Tt.column3 = tpl.o)

17: end if

18: end if

19: if tpm.s = tpl.o then

20: table  table  (concat_str(‘so_’,tpm.s, tpl.o), Tt)

21: if isVar(tpm.o) then

22: projection  projection  (tpm.o → Tt.column1)

23: else

24: condition  condition  (Tt.column1 = tpm.o)

25: end if

26: if isVar(tpl.s) then

27: projection  projection  (tpl.s → Tt.column3)

28: else

29: condition  condition  (Tt.column3 = tpl.s)

30: end if

31: end if

32: if tpm.o = tpl.s then

57

33: table  table  (concat_str(‘os_’,tpm.o, tpl.s), Tt)

34: if isVar(tpm.s) then

35: projection  projection  (tpm.s → Tt.column1)

36: else

37: condition  condition  (Tt.column1 = tpm.s)

38: end if

39: if isVar(tpl.o) then

40: projection  projection  (tpl.o → Tt.column3)

41: else

42: condition  condition  (Tt.column3 = tpl.o)

43: end if

44: end if

45: m = m + 2

46: end for

47: end if

48: if n%2 != 0 || n = 1 then

// find the last triple pattern if the total count of triple pattern is odd or there is only one triple pattern in

the bgp

49: table  table  (tpn-1.p, Tt)

50: if isVar(tpn-1.s) then

51: projection  projection  (tpn-1.s → Tt.s)

52: else

53: condition  condition  (Tt.s = tpn-1.s)

54: end if

55: if isVar(tpn-1.o) then

56: projection  projection  (tpn-1.o → Tt.o)

57: else

58: condition  condition  (Tt.o = tpn-1.o)

59: end if

60: end if

61: return projection, from, condition

The translation process of the three data models is given below using query 426

from LUBM in the following example. It is important to mention here that we replace

26 http://swat.cse.lehigh.edu/projects/lubm/queries-sparql.txt

http://swat.cse.lehigh.edu/projects/lubm/queries-sparql.txt

58

colon (:) with underscore (_) because SQL statements do not support colon except in

String values. We append the HDFS path of tables with the file extension (parquet) for

Drill SQL statements.

VP (Spark SQL):

SELECT T0.s AS X, T2.o AS Y1, T3.o AS Y2, T4.o AS Y3 FROM rdf_type T0 JOIN ub_worksFor T1 ON

(T1.s = T0.s) JOIN ub_name T2 ON (T2.s = T0.s) JOIN ub_emailAddress T3 ON (T3.s = T0.s) JOIN

ub_telephone T4 ON (T4.s = T0.s) WHERE T1.o = '<http://www.Department0.University0.edu>'

AND T0.o = '<ub:FullProfessor>')

VP (Drill):

SELECT T0.s AS X, T2.o AS Y1, T3.o AS Y2, T4.o AS Y3 FROM hdfs.vp.`rdf_type.parquet` T0 JOIN

hdfs.vp.`ub_worksFor.parquet` T1 ON (T1.s = T0.s) JOIN hdfs.vp.`ub_name.parquet` T2 ON (T2.s =

T0.s) JOIN hdfs.vp.`ub_emailAddress.parquet` T3 ON (T3.s = T0.s) JOIN

hdfs.vp.`ub_telephone.parquet` T4 ON (T4.s = T0.s) WHERE T1.o =

'<http://www.Department0.University0.edu>' AND T0.o = '<ub:FullProfessor>')

VPExp (Spark SQL):

SELECT T0.s AS X, T2.o AS Y1, T3.o AS Y2, T4.o AS Y3 FROM rdf_type_ub_FullProfessor T0 JOIN

ub_worksFor T1 ON (T1.s = T0.s) JOIN ub_name T2 ON (T2.s = T0.s AND T2.s = T1.s) JOIN

ub_emailAddress T3 ON (T3.s = T0.s AND T3.s = T1.s AND T3.s = T2.s) JOIN ub_telephone T4 ON

(T4.s = T0.s AND T4.s = T1.s AND T4.s = T2.s AND T4.s = T3.s)

WHERE T1.o = '<http://www.Department0.University0.edu>'

VPExp (Drill):

SELECT T0.s AS X, T2.o AS Y1, T3.o AS Y2, T4.o AS Y3 FROM

hdfs.vpexp.`rdf_type_ub_FullProfessor.parquet` T0 JOIN hdfs.vpexp.`ub_worksFor.parquet` T1 ON

(T1.s = T0.s) JOIN hdfs.vpexp.`ub_name.parquet` T2 ON (T2.s = T0.s AND T2.s = T1.s) JOIN

hdfs.vpexp.`ub_emailAddress.parquet` T3 ON (T3.s = T0.s AND T3.s = T1.s AND T3.s = T2.s) JOIN

hdfs.vpexp.`ub_telephone.parquet` T4 ON (T4.s = T0.s AND T4.s = T1.s AND T4.s = T2.s AND T4.s =

T3.s)

WHERE T1.o = '<http://www.Department0.University0.edu>'

3CStore (Spark SQL):

SELECT T0.column2 AS X, T1.column1 AS Y1, T1.column3 AS Y2, T2.column3 AS Y3 FROM

ss_rdf_type_ub_worksFor T0 JOIN ss_ub_name_ub_emailAddress T1 ON (T0.column2 = T1.column2)

59

JOIN ub_telephone T2 ON (T0.column2 = T2.s) WHERE T0.column1 = '<ub:FullProfessor>' AND

T0.column3 = '<http://www.Department0.University0.edu>'

3CStore (Drill):

SELECT T0.column2 AS X, T1.column1 AS Y1, T1.column3 AS Y2, T2.column3 AS Y3 FROM

hdfs.threecstore.`ss_rdf_type_ub_worksFor .parquet` T0 JOIN

hdfs.threecstore.`ss_ub_name_ub_emailAddress.parquet` T1 ON (T0.column2 = T1.column2) JOIN

hdfs.threecstore.`ub_telephone.parquet` T2 ON (T0.column2 = T2.s) WHERE T0.column1 =

'<ub:FullProfessor>' AND T0.column3 = '<http://www.Department0.University0.edu>'

3.2.3 Experimental Setup

We present a comparative performance evaluation of our data management

solutions VPExp, and 3CStore conducted to benchmark with Spark and Drill against

traditional VP data layout and S2RDF. The experimental setup and a discussion of results

are presented.

Benchmark Queries. For the performance evaluation of our data management

solutions, we utilize two datasets, LUBM with the number of universities set to 1000 and

2000 and WatDiv with scale factor 1000 and 5000. LUBM was proposed in 2005 with

fourteen standard queries. This benchmark was originally designed to test the inference

capabilities of Semantic Web repositories. The University of Waterloo introduced

WatDiv in 2014. WatDiv has data generator as well as query generator and was designed

to cover both structural and data-driven features of four different types of query shapes,

namely, linear, star, snowflake, and complex SPARQL queries.

Cluster Configuration. To conduct the comparative analysis of our data

management solutions, we constructed five node clusters on Microsoft Windows Azure

Platform. Each node in the cluster has a 4 vCPUs Intel(R) Xeon(R) CPU E5-2673 v3 @

2.40 GHz processor, 28 GB of memory, 16000 Max IOPS, 8 Data disks and total 4 TB of

60

hard disk space running Ubuntu 16.04.3 LTS OS. Hadoop 2.7.4, Spark 2.2.0, ZooKeeper

3.4.10 and Drill 1.11 are configured on all nodes where each spark executor and drillbit is

given 16 GB of memory. We also configure Zeppelin27 0.7.3 for query execution of our

systems.

3.2.4 Evaluation

This section presents an empirical comparison of our approaches with an open

source HDFS-based RDF management system S2RDF based on a data partitioning

schema called ExtVP to load RDF data in HDFS and uses SparkSQL for query

processing. Initially, the RDF dataset is copied into HDFS; RDF-loader uses a Spark job

to parse, convert, and store the raw RDF data using Parquet file format in to three

different storage schemas, namely, VP, VPExp, and 3CStore.

Table 3.7: Experimental Setup - Dataset Scale

27 https://zeppelin.apache.org/

Dataset

Number of Triples (million)

LUBM

Number of Universities

1000 138

2000 276

WatDiv

Scale Factor

1000 109

5000 549

https://zeppelin.apache.org/

61

Table 3.8 Load Times

Dataset

Load Time (minutes)

VP VPExp 3CStore
S2RDF

SF = 0.5

S2RDF

SF = 1

LUBM 1000 6.6 8.8 118.58 105.2 111.9

LUBM 2000 9.9 12.6 198.52 172.8 179.8

WatDiv 1000 5.1 6.7 248.4 159.8 214.9

WatDiv 5000 17.5 21.5 908.33 596.0 703.8

Table 3.7 shows the size of the datasets that we used in this experiment. Table 3.8

presents results that demonstrate the performance of RDF Loader in parsing and loading

triples into three storage strategies (VP, VPExp, and 3CStore) on a 5-Node cluster.

S2RDF has three components: DataSetCreator, QueryTranslator, and QueryExecutor.

Before using DataSetCreator to load data into HDFS, we used our parser to replace all

URIs with their corresponding namespace prefix and remove data type information from

RDF objects to convert those objects into primitive type that we did in our proposed

systems. We use the selectivity threshold (SF TH) of 0.5 and 1 for S2RDF to load data in

HDFS. After that, we run selected benchmark queries from LUBM and WatDiv datasets.

The data loading times of S2RDF are also reported in Table 3.8. 3CStore has the slowest

data load time as compared to other storage layouts because it creates three additional

tables for each VP table and also materializes them. For S2RDF, when SF value is set to

1, it materializes all ExtVP tables for query execution, when SF is set to 0.5, it

materializes only those ExtVP tables whose entries do not exceed half of the

corresponding VP entries, therefore, S2RDF with SF = 0.5 has faster data load time as

compared to SF = 1.

62

Table 3.9: Store Sizes

Dataset

RDF File Size on HDFS (GB)

Original VP VPExp 3CStore
S2RDF

SF = 1

S2RDF

SF = 0.5

LUBM 1000 23.0 1.8 2.0 34.8 8.6 4.3

LUBM 2000 46.2 3.6 4.0 70.3 11.4 8.3

WatDiv 1000 14.5 1 1 58.5 12.1 5.4

WatDiv 5000 74.0 7.5 7.5 242.3 64.5 30.9

VP and VPExp do not have any additional computation like 3CStore and S2RDF;

therefore, VP and VPExp have the fastest data load time compared to other storage

systems. Table 3.9 demonstrates the HDFS sizes for the four datasets in the above-

mentioned storage systems. 3CStore requires more storage space than other data storage

layouts because we have not done any optimization to reduce the storage space like

S2RDF system did. In addition to the load time and storage space, we are also concern

about the query response time of the above-mentioned RDF systems. To conduct

performance evaluation of the RDF storage management solutions using two different

cluster computing engines we selected 4 representative queries from each benchmark

query set. We selected Q1, Q2, Q8, and Q14 from LUBM and L1, S1, F2, and C3 from

WatDiv query set. Q1 has a star-shaped pattern with high selectivity and carries large

input; Q2 has a complex pattern with large intermediate results, Q8 is the most complex

snowflake query of the LUBM benchmark, and Q14 is the most unselective query that

returns all undergraduate students. The WatDiv representative queries fall into one of the

four categories: L1 is a linear query, S1 is a star query, F2 is a snowflake, and C3 a

complex one. The RDF-loader creates parquet files with table names for VP, VPExp, and

3CStore data layouts. These parquet files are used to create DataFrames, which are then

63

used to register Spark SQL temporary views. In Zeppelin, it takes a few seconds to a few

minutes for the Spark to create temporary views for storage layouts depending on the

number of tables. The compiler also generates the name of required tables for a particular

SPARQL query while generating SQL statement. It is recommended to create temporary

views from compiler generated table names if the cluster does not have enough memory

and the number of tables is huge (especially for 3CStore data layout). Table 3.10 shows

the query response time for the selected queries of the VP, VPExp, 3CStore, and ExtVP

of S2RDF system.

Table 3.10: Query Runtimes (seconds) S = Spark, D = Drill

Query

VP VPExp 3CStore
S2RDF

SF = 1

S2RDF

SF = 0.5
S D S D S D

L
U

B
M

 1
0
0
0

 Q1 4 3 2 2 2 2 2 3

Q2 11 9 8 9 4 5 3588 3629

Q8 8 7 7 5 4 3 6 6

Q14 1 1 1 1 1 1 1 1

L
U

B
M

 2
0
0
0

 Q1 6 4 3 3 2 2 2 5

Q2 17 13 15 13 5 6 8244 8623

Q8 14 12 14 11 7 6 7 12

Q14 1 1 1 1 1 1 1 1

W
at

D
iv

 1
0
0

0
 L1 3 1 3 1 2 1 1 1

S1 4 2 4 2 3 2 2 2

F2 4 1 4 1 2 1 2 2

C3 3 2 3 2 2 1 4 4

W
at

D
iv

 5
0
0

0
 L1 3 2 3 2 2 2 2 2

S1 7 6 7 6 3 2 2 2

F2 5 4 5 4 2 2 2 2

C3 9 8 9 8 5 2 10 11

64

From Table 3.10 we can see that 3CStore data layout outperforms all other

systems although it costs a huge amount of storage space and requires a significant

amount of loading time. The reason is that a smaller number of join operations are

involved with 3CStore data layout. S2RDF has better query response time than VP and

VPExp systems except with queries involving complex shape (C3) and has large

intermediate results (Q2). On the other hand, VPExp outperforms VP where rdf:type is in

predicate position with the bound object (e.g. Q1). Table 3.10 also shows a comparative

performance evaluation between Spark and Drill for VP, VPExp, 3CStore schemas along

with S2RDF system. In most of the cases Drill outperforms Spark. One important thing is

that Drill does not need to create temporary views like Spark, all we need to append the

HDFS path (using file system storage plugin) and file format along the table names. We

ran all queries for VP, VPExp, and 3CStore systems using Zeppelin.

Our proposed 3CStore outperforms all other data layouts and S2RDF system but

costs a significant amount of storage space with huge data loading time. The VPExp

layout only outperforms traditional VP where the object of predicates ‘rdf:type’ is bound

to a value in a triple pattern. The compiler can reorder triple patterns in each BGP to

avoid cross product (Cartesian join) while generating SQL statement.

3.2.5 Conclusion

We introduce VPExp and 3CStore data layouts and present a comparative

performance evaluation against traditional VP and S2RDF systems over distributed

cluster computing engines Spark and Drill using different query shapes and datasets. The

3CStore accelerates the query processing but costs a significant increase in storage

consumption. In the following sections, we describe several Spark-based RDF

65

management systems that are developed within the course of this thesis over the last

years.

3.3 Mixed RDF Partitioning Strategies

The Property Table (PT) is an RDF data storage schema like a traditional

relational table where each row contains a distinct subject, and its object values are stored

in the corresponding columns. Each table is identified by a predicate. This approach was

first introduced in Jena (Wilkinson, 2006) wherein two types of property tables were

proposed. They are property class table and clustered property table. The clustered table

contains sets of properties that tend to be defined together. On the other hand, the

property-class table uses the “rdf:type“ property of subjects to cluster similar sets of

subjects together in the same table. In both implementations, a leftover table with three

columns (s, p, o) is created for storing the triples not belonging to any other table. The PT

approach has some drawbacks. Firstly, it generates many NULL values for a given

cluster since not all properties will be defined for all subjects because of the fact that

RDF data may not be very structured. Secondly, PTs cannot handle multi-valued

attributes. Another variant of PT is the Unified Property Table which was proposed in

Sempala (Schätzle et al., 2014) where all RDF properties of a dataset are used to form a

single Property Table. In the Unified Property Table, a duplicate row will be created for

each value of a multi-valued property that leads to a huge table and poses a significant

overhead. Despite these limitations, the Property Table approach has an advantage that it

can reduce subject-subject self-joins required by a query. To address the above-

mentioned issues, we devise a modified version of a Property Table that avoids storing

NULL values explicitly thereby preventing additional storage overhead. Multi-valued

66

properties are stored in a single cell using nested data structures to prevent creation of

duplicate rows.

3.3.1 Modified Property Table

We use an approach to create the Property Table where all predicates (or

properties) along with the subject define the name of columns in a single table. We use

RDF in N-Triples format for the data storage layout. Initially, we create a TT (Triple

Table) with three columns where each row comprises an RDF statement, i.e., triples

(subject, property, object). Then we create PT (Property Table) with the following

schema:

PT(subject, property1, ... , propertyn)

where n is the total number of distinct properties present in a particular dataset.

Here, each RDF subject is stored in the subject column and their object values reside in

their corresponding property columns. We overcome the drawback that is the presence of

multi-valued properties by storing the multi-valued properties in a single cell using a

nested data structure (e.g., Array). Neither the clustering algorithm nor class of the

subject is required to create the schema for the modified property table. Triple table is

maintained along with the modified property table to answer SPARQL queries with

unbound property triple patterns (e.g. {s ?p o}). Queries involving multi-valued

properties require un-nesting those properties that introduces a small overhead.

67

Table 3.11: Modified Property Table for RDF Graph in Figure 2.2

subject type title author name website_of

Article_1 Article “Title One” [David_Gary]

Article_2 Article “Title Two”
[David_Gary,

John_Wayne]

David_Gary Person “David Gary”

www.aaa.com/d_g David_Gary

Article_3 Article “Title Three” [John_Wayne]

John_Wayne Person “John Wayne”

www.bbb.com/j_w John_Wayne

3.3.2 Subset Property Table

The Modified Property Table approach is optimized for star pattern queries. This

approach allows star-pattern queries to be answered entirely without requiring a join,

which is the most expensive operation in SPARQL. However, this data layout is not

suitable for answering SPARQL queries with triple patterns having different subjects.

The number of times the modified property table needs to be joined is equal to the

number of different subjects present in the BGP minus one. For example, if a BGP has

three different subjects, then there will be two join operations of the whole modified

property table which degrades querying efficiency. To address this issue, we further split

the whole modified property table into a number of tables with a subset of properties to

reduce the input table sizes for the SPARQL query. Further splitting into subsets of

properties is done as follows:

(i) use each value of rdf:type predicate to find distinct set of properties associated

with it;

68

(ii) use properties that do not belong to any value of rdf:type predicate to form

another subset. We use this subset to find distinct supersets of properties that are in turn

used to create individual subset property tables.

Hence, we call this partitioning schema Subset Property Table (SPT) approach. In

this data storage schema, a few numbers of subjects can reside in multiple subset property

tables and causes a small amount of storage overhead that is negligible.

From the Property Table presented in Table 3.11, we can see that there are two

unique values (Person and Article) of the property rdf:type (type). For each value of

rdf:type property we find two subsets of properties: sp1 = {type, title, author} and sp2 =

{type, name}. We find another subset of properties sp3 = {website_of} where the property

website_of does not belong to any value of rdf:type predicate. Then we take property

names from each sp along with subject to create schema for the subset property tables

and save them as parquet file. We also keep a statistics file to keep the table names along

with their list of properties and row count that are used in SPARQL query translation

process. Some subset property tables may have data duplication, but it improves query

performance by decreasing the number of rows in input tables. These tables are smaller

than the original modified property table and therefore, in many cases, it could become

possible to keep the entire table in memory during query execution and the reduction of

rows consequently decreases the complexity of joins. Example of SPTs are shown in

Table 3.12.

69

Table 3.12: Subset Property Tables for RDF Graph in Figure 2.2

spt_1

subject type title author

Article_1 Article “Title One” [David_Gary]

Article_2 Article “Title Two” [David_Gary, John_Wayne]

Article_3 Article “Title Three” [John_Wayne]

spt_2

subject type name

John_Wayne Person “John Wayne”

David_Gary Person “David Gary”

spt_3

subject website_of

www.aaa.com/d_g David_Gary

www.bbb.com/j_w John_Wayne

Table 3.13: Statistics of Subset Property Tables

set_of_properties table size

(type, title, author) spt_1 3 tuples

(type, name) spt_2 2 tuples

(website_of) spt_3 2 tuples

3.3.3 Combined Property Table & Vertical Partitioning (PT + VP)

In this RDF storage model we use our proposed Modified Property Table

approach with Vertical Partitioning (VP) approach proposed in SW-Store (Abadi et al.,

2009). VP has some advantages over PT approach. VP approach does not need a nested

data structure to store multi-valued attribute. It creates unique rows in the table for every

value of that particular property. The approach skips storing those properties for a

particular subject that are not defined. Therefore, it avoids the explicit storage of NULL

70

data, although we overcame this limitation in the modified property table by saving the

table in Parquet format.

Table 3.14: Vertical Partitioning for RDF Graph in Figure 2.2

type

subject object

Article_1 Article

Article_2 Article

Article_3 Article

David_Gary Person

John_Wayne Person

title

subject object

Article_1 “Title One”

Article_2 “Title Two”

Article_3 “Title Three”

 author

subject object

Article_1 David_Gary

Article_2 David_Gary

Article_2 John_Wayne

Article_3 John_Wayne

name

subject object

David_Gary “David Gary”

John_Wayne “John Wayne”

website_of

subject object

www.aaa.com/d_g David_Gary

www.bbb.com/j_w John_Wayne

This VP approach is not free from drawbacks. This approach involves more joins

than the PT approach, technically, for n number of triple patterns in a SPARQL BGP, it

needs n – 1 number of join operations to answer the particular query. VP tables are

normally very narrow and often small; therefore, it becomes possible to keep the entire

table in memory during query execution. Generally, PT is wider and bigger than each VP

table, therefore, we could take advantage by using VP approach for those subjects that

have a single property in SPARQL query’s BGP. For subjects with multiple properties,

we could use PT approach to avoid more than one join for star-pattern queries. In order to

71

get benefits from both PT and VP approaches, we decided to store RDF datasets using

both these approaches.

3.3.4 Combined Subset Property Table & Vertical Partitioning (SPT + VP)

As SPTs are smaller than the original Property Table, therefore, we decided to

combine the VP and SPT approaches in order to store an entire RDF dataset. As we know

that the same subject can reside in multiple SPTs, therefore, we used table statistics to

take the smallest table in terms of the number of rows during SPARQL processing.

3.3.5 SPARQL to Spark SQL

In order to rewrite the SPARQL query to Spark SQL, we developed a query

compiler, that is implemented in Flex – a lexical analyzer creator, Bison – a parser

generator and C++14. We know that every BGP consists of a set of triple patterns and

join is the most expensive operation in Spark, therefore, we have to do the ordering of

joins by reordering the triple patterns in the BGP using the number of bound values in the

triple patterns and the statistics of the input RDF dataset. We have given the highest

priority to the triple patterns that contain bound values because it limits the number of

resulting tuples. Then we give priority to those triple patterns for which the selected input

tables’ sizes in terms of the number of tuples will be small because we want to join the

smallest tables first, and this reduces the intermediate result size thereby minimizes the

amount of data to be shuffled across the network and saves I/O and CPU. It is important

to mention in here that for VP approach, tables will be selected from the name of the

property of the corresponding triple patterns, and for the subset property tables, tables

will be selected from the group of property names of a particular subject for which the

triple patterns are grouped together. In SPT there is a possibility of getting multiple tables

72

for the same group of properties. In that case, we select the smallest one among those

tables. For the combined approaches, VP tables will be selected only for those triple

patterns whose subject is unique and no other triple pattern has the same subject in the

BGP. PT or SPTs will be selected in the combined approach where triple patterns can be

grouped with the same subject, that means there should be at least two triple patterns

having the same subject in a BGP. The input SPARQL query can be translated to an

equivalent Spark SQL query by mapping its operators to the equivalent Spark SQL

keywords. A FILTER expression in SPARQL can be mapped to the equivalent conditions

in Spark SQL by adapting the SPARQL syntax to the syntax of SQL and then these

conditions can be added to the WHERE clause of the corresponding (sub)query in Spark

SQL statement. The OPTIONAL pattern is mapped to a left outer join, and UNION,

OFFSET, LIMIT, ORDER BY and DISTINCT can be mapped using their equivalent

clauses in the SQL dialect of Spark. Finally, a translated SPARQL query is executed by

Spark using a single equivalent Spark SQL query.

BASE <http://example.org/property/>

PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>

SELECT * WHERE {

 ?x rdf:type ?a .

 ?x title ?b .

 ?x author ?y .

 ?y rdf:type ?c .

 ?y name “John Wayne” .

 ?z website_of ?y }

 Q2. An Example SPARQL Query

73

Figure 3.18 shows the SPARQL to SQL translation process for SPT approach. At

the beginning of the translation process the compiler groups the properties for each

subject and then use statistics table to select SPTs.

Figure 3.18: SPARQL to SQL Translation Process for SPT Approach of Q2

In this example, we showed the Join-Order Optimization technique that we used

for this implementation by showing the comparison between the optimized and

unoptimized version of translation for the SPARQL query. We used join order

optimization technique where triple patterns with more bound values are given top

priority because they (e.g., spt_2) have the best selectivity. After that, we give priority to

74

those selected tables who has the smallest size and then add a join operator for that table

to generate the SQL query. For the SPT + VP approach, the table website_of will be

selected instead of spt_3 because the subject z has only one property, and the statistics

file will also have the statistics for VP tables. PT approach has the same translation

process as SPT where all selected table will have the same name pt with the same size

and PT + VP approach follows the same translation process of SPT + VP approach.

3.3.6 Experimental Setup

We present comparative performance evaluation of our data management

solutions along with other state-of-the-art systems, name S2RDF (Schätzle et al., 2015),

SPARQLGX (Graux et al., 2016), and S2X (Schätzle et al., 2016). The reason for

choosing those state-of-the-art systems is that all systems use the most popular general-

purpose in-memory cluster computing system Spark and its components for answering

SPARQL queries like we are doing for our RDF management solutions.

Benchmark Queries. We utilize two datasets for the performance evaluation of

our data management solutions, LUBM with the number of universities set to 1000 and

2000, and WatDiv with scale factor 1000 and 5000. LUBM was proposed in 2005 with

fourteen standard queries. This benchmark was originally designed to test the inference

capabilities of Semantic Web repositories. The University of Waterloo introduced

WatDiv in 2014. WatDiv has data generator as well as query generator and was designed

to cover both structural and data-driven features of four different types of query shapes,

namely, linear, star, snowflake, and complex SPARQL queries. We selected Q1, Q2, Q8,

and Q14 from LUBM test query set. Q1 has a star-shaped pattern with high selectivity

and carries large input; Q2 has a complex pattern with large intermediate results, Q8 is

75

the most complex snowflake query of the LUBM benchmark, and Q14 is the most

unselective query that returns all undergraduate students. The WatDiv basic query set

contains queries of varying shape and selectivity in order to model different scenarios.

The queries are grouped into the following subsets:

• L (L1, L2, L3, L4, L5): Linear shaped queries.

• S (S1, S2, S3, S4, S5, S6, S7): Star shaped queries.

• F (F1, F2, F3, F4, F5): Snowflake shaped queries.

• C (C1, C2, C3): Complex shaped queries.

Cluster Configuration. To conduct the comparative analysis of our data

management solutions, we constructed five node clusters on Microsoft Windows Azure

Platform. Each node in the cluster has 4 vCPUs Intel(R) Xeon(R) CPU E5-2673 v3 @

2.40 GHz processor, 28 GB of memory, 16000 Max IOPS, 8 Data disks and total 4 TB of

hard disk space running Ubuntu 16.04.3 LTS OS. Hadoop 2.7.4 and Spark 2.2.0 are

configured on all nodes where each spark executor is given 16 GB of memory.

3.3.7 Evaluation

We present an empirical comparison of our approaches with the open source

HDFS and Spark based RDF management systems S2RDF, SPARQLGX, and S2X.

Table 3.15 shows the size of datasets that we used in our experiment. Table 3.16 presents

the storage sizes of each RDF data layout on HDFS. We use RDF dataset in N-Triples

format to our proposed storage schemes to store in HDFS as parquet file like S2RDF

system. SPARQLGX also uses N-Triples format for input RDF graph and stores data

using text files. S2X uses Notation3 format for input RDF graph. The size of the RDF

graph in Notation3 format is reported as required storage space for S2X. From the table,

76

we can see that PT and SPT approaches have low storage overhead, and S2RDF and S2X

have high storage overhead.

Table 3.15: Experimental Setup - Dataset Scale

Table 3.16: Store Sizes in GB

Dataset

LUBM 1000 LUBM 2000 WatDiv 1000 WatDiv 5000

Data Layout

Original 23 46.2 14.5 74

PT 0.69 1.4 0.98 5.1

VP 1.8 3.6 1 7.5

PT + VP 2.2 4.4 2 10.8

SPT 1 2 1.4 7.2

SPT + VP 2.1 4.2 2.4 12.9

S2RDF 4.88 9.6 11.3 58.9

SPARQLGX 1.1 2.3 0.899 4.8

S2X 13.6 27.3 6.1 33.4

Dataset

Number of Triples (million)

LUBM

Number of Universities

1000 138

2000 276

WatDiv

Scale Factor

1000 109

5000 549

77

Figure 3.19: RDF Data Load Times (log scale)

3.3.8 Comparison of Storage Strategies

From the above Figure 3.19, we can see that PT and VP approaches have fast data

load time compared to other storage layouts. On the other hand, S2RDF has the highest

data preprocessing cost. Our proposed SPT and combined storage strategy (SPT + VP)

have the moderate data loading overhead as compared to other storage systems.

Figure 3.20: Query Runtimes - LUBM 1000 (log scale)

1.E+00

1.E+01

1.E+02

1.E+03

LUBM 1000 LUBM 2000 WatDiv 1000 WatDiv 5000

T
im

e
(m

in
u
te

s)

PT VP PT + VP SPT SPT + VP S2RDF SPARQLGX S2X

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

Q1 Q2 Q8 Q14

T
im

e
(m

il
li

se
co

n
d
s)

PT VP PT + VP SPT SPT + VP

78

Figure 3.21: Query Runtimes - LUBM 2000 (log scale)

Figure 3.22a: Query Runtimes - WatDiv 1000 (log scale)

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

Q1 Q2 Q8 Q14

T
im

e
(m

il
li

se
co

n
d
s)

PT VP PT + VP SPT SPT + VP

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

L1 L2 L3 L4 L5 S1 S2 S3 S4 S5

T
im

e
(m

il
li

se
co

n
d
s)

PT VP PT + VP SPT SPT + VP

79

Figure 3.22b: Query Runtimes - WatDiv 1000 (log scale)

Figure 3.23a: Query Runtimes - WatDiv 5000 (log scale)

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

S6 S7 F1 F2 F3 F4 F5 C1 C2 C3

T
im

e
(m

il
li

se
co

n
d
s)

PT VP PT + VP SPT SPT + VP

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

L1 L2 L3 L4 L5 S1 S2 S3 S4 S5

T
im

e
(m

il
li

se
co

n
d
s)

PT VP PT + VP SPT SPT + VP

80

Figure 3.23b: Query Runtimes - WatDiv 5000 (log scale)

In Figure 3.20 to 3.23, we show the times in logarithmic scale to compare the

query sets from LUBM and WatDiv datasets of Property Table, Vertical Partitioning,

Subset Property Table, and their combined strategies. We can see that SPT + VP

outperforms all other data layouts for all types of queries except query C1 and C2 from

WatDiv where VP approach dominates because these queries contain mostly triples with

distinct subject variables and each having more than two properties, therefore, the

number of tuples in selected subset property tables is high and also quite larger than VP

tables.

3.3.9 Comparison of SPT + VP Approach with Related Systems

Since the SPT + VP approach dominates in most of the cases, we decide to

compare SPT + VP approach with other state-of-the-art solutions: S2RDF, SPARQLGX,

and S2X in the same cluster setup.

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

S6 S7 F1 F2 F3 F4 F5 C1 C2 C3

T
im

e
(m

il
li

se
co

n
d
s)

PT VP PT + VP SPT SPT + VP

81

Figure 3.24: Query Runtimes - LUBM 1000 (log scale)

Figure 3.25: Query Runtimes - LUBM 2000 (log scale)

Figure 3.26a: Query Runtimes - WatDiv 1000 (log scale)

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

Q1 Q2 Q8 Q14

T
im

e
(m

il
li

se
co

n
d
s)

SPT + VP S2RDF SPARQLGX S2X

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

Q1 Q2 Q8 Q14

T
im

e
(m

il
li

se
co

n
d
s)

SPT + VP S2RDF SPARQLGX S2X

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

L1 L2 L3 L4 L5 S1 S2 S3 S4 S5

T
im

e
(m

il
li

se
co

n
d

s)

SPT + VP S2RDF SPARQLGX S2X

82

Figure 3.26b: Query Runtimes - WatDiv 1000 (log scale)

Figure 3.27a: Query Runtimes - WatDiv 5000 (log scale)

Figure 3.27b: Query Runtimes - WatDiv 5000 (log scale)

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

S6 S7 F1 F2 F3 F4 F5 C1 C2 C3

T
im

e
(m

il
li

se
co

n
d
s)

SPT + VP S2RDF SPARQLGX S2X

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

L1 L2 L3 L4 L5 S1 S2 S3 S4 S5

T
im

e
(m

il
li

se
co

n
d
s)

SPT + VP S2RDF SPARQLGX S2X

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

S6 S7 F1 F2 F3 F4 F5 C1 C2 C3

T
im

e
(m

il
li

se
co

n
d
s)

SPT + VP S2RDF SPARQLGX S2X

83

Figure 3.28a: Average Querying Time Grouped by Query Type - WatDiv 1000

(log scale)

Figure 3.28b: Average Querying Time Grouped by Query Type - WatDiv 5000

(log scale)

From Figure 3.24 and 3.25, we can see that SPT + VP outperforms all other

systems for the selected LUBM queries. The query performance of S2RDF is very poor

with query having large intermediate result (Q2). From Figure 3.26 and 3.27, we can see

that SPT + VP has a significant querying performance for star-shaped pattern (S1 to S7).

Compared to S2RDF, for WatDiv 1000, SPT + VP approach is faster for queries L1 to

L5, F1, F2, F3, F5, and C3 and when the data size increases to 5000, SPT + VP becomes

slower for queries L1, L3, L4, F1, F3, F5 and it is still slower for C1 and C2 by a

considerable margin. This is because of the extensive precomputations of S2RDF which

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

L S F C

T
im

e
(m

il
li

se
co

n
d
s)

SPT + VP S2RDF SPARQLGX S2X

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

L S F C

T
im

e
(m

il
li

se
co

n
d
s)

SPT + VP S2RDF SPARQLGX S2X

84

heavily decrease the processing time for joins between VP tables. Note that, S2RDF

achieves this querying performance because of extensive precomputations with high

loading time, therefore, this system is not suitable for some datasets having a large

number of properties. On the other hand, SPT + VP has fast data loading time and does

not depend on number of predicates of a particular input graph. SPARQLGX outperforms

SPT + VP in queries C1 and C2 but in rest of the queries SPT + VP outperforms

SPARQLGX. S2X constantly performing poor for all types of query patterns. Therefore,

S2X has the worst average query response time among all other systems, as shown in

Figure 3.28a and 3.28b. SPT + VP outperforms S2X in every case, mostly by a

significant order of magnitude.

3.3.10 Conclusion

We presented data partitioning strategies for distributed RDF data storage and

SPARQL querying built on top of Spark. The evaluation results show that our proposed

SPT + VP approach outperforms all other storage approaches. We also conducted a

comparative performance evaluation of SPT + VP approach on a Hadoop cluster with

other state-of-the-art systems: S2RDF, SPARQLGX, and S2X using different query

patterns and datasets. Our proposed Spark-based SPT + VP RDF management solution

outperforms for all query types except few complex queries where S2RDF outperforms

because of its materialized semi-join reduction ExtVP tables that come with an expensive

preprocessing phase.

3.4 S3QLRDF with Property Table Partitioning Strategy

In this section, we describe S3QLRDF28 (Hassan & Bansal, 2020) (SPARQL to

28 https://github.com/sbansallab/S3QLRDF

85

Spark SQL for RDF), a distributed Hadoop-based SPARQL query processor for large-

scale RDF data implemented on top of Spark. It uses the relational interface of Spark for

query execution by compiling SPARQL to SQL and comes with a new partitioning

schema for RDF data called PTP that is a modified and enhanced version of the well-

known PT schema (Wilkinson, 2006).

3.4.1 Property Table Partitioning

The Modified Property Table (Hassan & Bansal, 2019) introduced in section 3.3.1

is a modified version of the traditional Property Table where multi-valued properties are

stored in a single cell using a nested data structure (e.g. Array). We further partition the

Modified Property Table into multiple tables based on distinct properties present in the

RDF dataset to devise our proposed Property Table Partitioning (PTP) schema.

Table 3.17: PTP Schema for RDF Graph Shown in Figure 2.2
type

subject type title author name

Article_1 Article “Title One” [David_Gary]

Article_2 Article “Title Two” [David_Gary, John_Wayne]

David_Gary Person “David Gary”

Article_3 Article “Title Three” [John_Wayne]

John_Wayne Person “John Wayne”

title

subject type title author

Article_1 Article “Title One” [David_Gary]

Article_2 Article “Title Two”
[David_Gary,

John_Wayne]

Article_3 Article “Title Three” [John_Wayne]

name

subject type name

David_Gary Person “David Gary”

John_Wayne Person “John Wayne”

author

subject type title author

Article_1 Article “Title One” [David_Gary]

Article_2 Article “Title Two”
[David_Gary,

John_Wayne]

Article_3 Article “Title Three” [John_Wayne]

website_of

subject website_of

www.aaa.com/d_g David_Gary

www.bbb.com/j_w John_Wayne

86

Each of the PTP tables contains only those subjects that have a value for the

particular property on which that partition is based, and we use the name of that particular

property as the partitioned table name. Table 3.17 shows the proposed RDF data layout

that is obtained from partitioning the whole Modified Property Table (Table 3.11).

An RDF dataset can have many properties, and most subjects will only use a

small subset of these properties, therefore, these tables will be sparse containing NULL

values. We decide to use the general-purpose Parquet columnar storage format to

materialize those PTP tables in HDFS because Parquet does not store NULL values

explicitly, thus sparse columns cause little to no storage overhead. We also keep a

statistics file to store the actual sizes (number of tuples) of each PTP table along with the

name of multi-valued attributes, such that these statistics can be used for query

generation.

The goal of PTP approach is to reduce the number of tuples to scan and the

amount of I/O required for a query. Since each table of the PTP is the fragment of the

Property Table, it is possible to minimize unnecessary I/O and comparisons during join

execution to reduce in-memory consumption. Spark is an in-memory system, and

memory is typically much more limited than HDFS disk space, thus saving this resource

is important for scalability. Another advantage of the PTP approach is that star patterns

can be answered entirely without the need for a join.

3.4.2 SPARQL to Spark SQL

 In this section, we describe the SPARQL query processing of S3QLRDF based on

PTP schema. To generate the equivalent Spark SQL expressions from SPARQL query,

we develop a query compiler that is implemented in Flex – a lexical analyzer creator,

87

Bison – a parser generator and C++14. An input SPARQL query gets mapped by the

compiler to a single Spark SQL query based on PTP schema that is then executed by

Spark.

 Every SPARQL query defines a graph pattern to be matched against an RDF

graph. A triple pattern is the basic building block of a SPARQL query, and a Basic Graph

Pattern (BGP) is simply the concatenation of a set of triple patterns using AND (.). Since

a BGP represents the core of the SPARQL query, we will mainly focus on the BGP

fragment. A triple group (tg) consists of a set of triple patterns having the same subject in

a BGP. So, a BGP (bgp) can have more than one distinct triple group.

Consider the following BGP (Figure 3.29).

bgp = { ?x type ?p .

 ?x name “John Wayne” .

 ?y type “Article” .

 ?y author ?x .

 ?y title ?t .

 ?z website_of ?x }

 Figure 3.29: An Example BGP of a SPARQL Query

At first, we group the triple patterns having the same subject. The above

mentioned bgp consists of three distinct triple groups, tg1 = { ?x type ?p . ?x name “John

Wayne” }, tg2 = { ?y type “Article” . ?y author ?x . ?y title ?t }, and tg3 = {

?z website_of ?x }. Then we count the bound (fixed) values for each triple group. The

number of bound values for the bgp is (tg1 → 1, tg2 → 1, tg3 → 0). Here, the basic

concept is that each triple group can be answered by a subquery without a join where

variables occurring in a triple group define the columns to be selected and fixed values

are used as conditions in the WHERE clause. Variables are mapped by subject and

88

property based on their position in the triple pattern. A subject variable is mapped to

subject column and the object(s) variable is mapped to its corresponding property (multi-

valued property is labeled with a special extension) column. It is worth mentioning here

that Spark uses the LATERAL VIEW EXPLODE function to flatten a complex column

(multi-valued property). This variable mapping is used to name the output columns such

that an outer query can easily refer to it. The table for a triple group is selected from the

properties which belong to that triple group. We also add a test for NOT NULL to the

property (multi-valued property with a special extension) in the WHERE clause if the

corresponding object is a variable in the triple pattern. This is not necessary for variables

on the subject position as the subject column does not contain NULL values. Because the

system is aware of the size of the PTP tables and each table is named after the property, it

can select the table for a triple group that has the lowest number of tuples identified from

the statistics file. For example, tg1 has two distinct properties, type and name, so two

candidate tables are available. From the statistics file, the number of tuples for the two

distinct tables are type → 5 and name → 2 (refer to Table 3.17). Since table name has

fewer number of tuples compared to type, the table name will be selected for tg1.

Similarly, table title and website_of will be selected for tg2 and tg3 respectively. Note that,

title and author have the same number of tuples; therefore, a random table will be

selected between them for the tg2. It then arranges the triple groups based on the number

of bound values and the size of the selected PTP tables for the triple groups. The triple

group with the highest number of bound values is given the top rank to execute first

during the query execution. A triple group having the smallest number of tuples will be

given the higher rank among the triple groups if they have the same number of bound

89

values. For example, tg1 and tg2 both have the highest number of bound values among the

triple groups, but the selected table of tg1 has a smaller number of tuples compared to tg2,

so tg1 will be given the highest rank during the query execution to execute first. Now, out

of the remaining two triple groups, tg2 and tg3, tg3 has a lower number of tuples compared

to tg2, but the number of bound values of tg2 is higher than tg3. Since we are giving higher

priority to the number of bound values than number of tuples of the selected table, tg2 will

be given a higher rank than tg3. Finally, the triple groups are arranged in such a way that

there must be at least one common variable between a triple group and any of its higher

ranked triple group(s) to avoid cross joins when processing them in that order. So, the

final ordering (ranking) among the three triple groups will be tg1 → tg2 → tg3.

Overall SPARQL translation process can be described as follows:

The subquery sq1 for tg1 is

SELECT subject, type FROM name WHERE type IS NOT NULL AND

name = ‘John Wayne’

The author is a multi-valued property that is identified from the statistics file. Thus, the

author column is flattened by the LATERAL VIEW EXPLODE function, and we rename

that column with an extension _lev.

The second subquery sq2 for tg2 is

SELECT subject, title, author_lve FROM title LATERAL VIEW EXPLODE(author)

EXPLODED_NAMES AS author_lve WHERE type = “Article” AND

title IS NOT NULL AND author_lve IS NOT NULL

And the third subquery sq3 for tg3 is

SELECT subject, website_of FROM website_of WHERE website_of IS NOT NULL

90

After applying the final ordering of triple groups (tg2 → tg1 → tg3) and variable mapping

for each triple group, we get the final SQL query for the bgp, that is

SELECT table_1.subject AS x, t1.type AS p, t2.subject AS y, t2.title AS t, t3.subject AS z

FROM (sq1) table_1 JOIN (sq2) table_2 ON (table_1.subject = table2.author_lve)

JOIN (sq3) table_3 ON (table_1.subject = table3.website_of AND

table2.author_lve = table3.website_of)

Therefore, the input SPARQL query can be translated to an equivalent Spark SQL query

by mapping its operators to the equivalent Spark SQL keywords. A FILTER expression

in SPARQL can be mapped to the equivalent conditions in Spark SQL by adapting the

SPARQL syntax to the syntax of SQL, and then these conditions can be added to the

WHERE clause of the corresponding (sub)query in Spark SQL statement. The

OPTIONAL pattern can be mapped to a LEFT OUTER JOIN, and UNION, LIMIT,

ORDER BY, and DISTINCT can be mapped directly using their equivalent clauses in the

SQL dialect of Spark. Finally, a translated SPARQL query is executed by Spark using a

single equivalent Spark SQL query.

3.4.3 Experimental Setup

In this section, we present a comparative performance evaluation of our RDF

management system S3QLRDF along with other state-of-the-art Hadoop-based RDF

querying approaches, namely CliqueSquare, S2RDF, SPARQLGX, and Rya as they are

the most similar to our system. The experimental setup and a discussion of results are

presented.

Benchmark Queries. For the performance evaluation of our RDF management

solutions, we utilize two synthetic and one real dataset, as shown in Table 3.18. The

91

synthetic datasets are LUBM with the number of universities set to 1000, 5000, and

10000, and WatDiv with scale factor of 1000, 5000, and 10000.

Table 3.18: Experimental Setup - Dataset Scale

LUBM was proposed in 2005 with a data generator and was originally designed

to test the inference capabilities of Semantic Web repositories. LUBM provides

14 predefined test queries, but many of these queries have simple structures and are quite

similar to each other. Therefore, we selected Q1, Q2, Q4, Q8, Q12, and Q14 from the

LUBM test query set based on their structure and selectivity. Q1 has a star-shaped pattern

with high selectivity, and it carries large input; Q2 has a complex pattern with large

intermediate results; Q4 is a simple highly selective star query with a small size of result

set; Q8 is the most complex snowflake query of the LUBM benchmark; Q12 is a simple

selective query, which has a constant number of solutions similar to Q1, Q4, and Q8

regardless of the dataset size; and Q14 is the most unselective query, which has a large

size of results set. Q2 and Q14 have increasing numbers of solutions proportional to the

dataset size. The University of Waterloo introduced WatDiv in 2014. WatDiv has a data

Dataset
Number of Triples

(million)

LUBM

Number of Universities

1000 138

5000 691

10000 1381

WatDiv

Scale Factor

1000 109

5000 549

10000 1098

YAGO2 72

92

generator as well as a query generator, and it was designed to cover both structural and

data-driven features of four different types of query shapes, namely, linear, star,

snowflake, and complex SPARQL queries. The WatDiv basic query set contains queries

of varying shape and selectivity to model different scenarios. The queries are grouped

into the following subsets:

• L (L1, L2, L3, L4, L5): Linear shaped queries.

• S (S1, S2, S3, S4, S5, S6, S7): Star shaped queries.

• F (F1, F2, F3, F4, F5): Snowflake shaped queries.

• C (C1, C2, C3): Complex shaped queries.

The real-life dataset is the YAGO2, which is a semantic knowledge base, derived

from Wikipedia, WordNet, and GeoNames. YAGO2 does not provide benchmark

queries; we have created a set of representative test queries (Y1 – Y5) with different

structures and complexities relative to LUBM and WatDiv query sets. Regarding LUBM

queries, we modified some of the original queries because executing those original

queries without the inferred triples returns an empty result set. All YAGO2 and modified

LUBM queries are listed in appendix A and B respectively.

Cluster Configuration. To conduct the comparative analysis of distributed RDF

data management solutions, we constructed seven node clusters (1 master and 6 workers)

on the Google Cloud Platform. Each node in the cluster has a 32 vCPUs Intel(R) Xeon(R)

CPU @ 2.30 GHz processor, 120 GB of memory, and 1TB of hard disk space running

Ubuntu 16.04.3 LTS OS. Hadoop 2.7.7 and Spark 2.4.4 are configured on all nodes

where each spark worker is given 100 GB of memory and 30 cores. In addition, Parquet

filter pushdown is enabled and broadcast joins in Spark SQL are disabled.

93

3.4.4 Evaluation

We present an empirical comparison of our prototype S3QLRDF system with four

other open-source Hadoop based state-of-the-art systems: CliqueSquare, S2RDF,

SPARQLGX, and Rya. The store sizes and data loading times are listed in Table 3.19.

During data loading phase, we parse data to replace all URIs with their corresponding

namespace prefix and remove data type information from RDF objects to convert them

into primitive types. We do not consider the data import on the HDFS as part of the

preprocessing phase. We conduct a performance evaluation of S3QLRDF with other

competitor systems based on three metrics: preprocessing (loading) times, store sizes, and

query execution times. All measurements are averaged over four runs. S3QLRDF has two

data loading options: 1. Drop all columns whose entries are all empty (NULL), and 2.

Keep all columns even if all entries are empty (NULL), which we call light-load. The

light-load requires much less time compared to the first loading option to store RDF data

in PTP schema. We notice that using the first data loading option cannot reduce

noticeable storage space consumption and also query execution times compared to the

light-load in our cluster configuration. Therefore, we discuss results with the light-load

preprocessing option for S3QLRDF. S3QLRDF has a two-step data loading process. The

first step is creating the Property Table, and the second step is to create PTP tables. We

do not report about the Property Table in the results of query run time because it does not

participate in query evaluation. Since Spark SQL has the cacheTable functionality to

cache table in memory, we report query execution times for both caching and without

caching PTP table along with the average mean runtimes (AM). S2RDF has two

preprocessing modes: VP and ExtVP, so we keep both of them in our results. We indicate

94

“TimeOut” whenever the query processing does not complete within a certain amount of

time (8 hours) and “Fail” whenever the query is not supported by the system or the

system crashes before the timeout delay.

Figure 3.30: Storage Space Distributions with Datasets

Table 3.19: Loading Times and HDFS Sizes of S3QLRDF and Competitors

Dataset
LUBM-

1000

LUBM-

5000

LUBM-

10000

WatDiv

SF-1000

WatDiv

SF-5000

WatDiv

SF-

10000

YAGO2

H
D

F
S

 S
iz

e
(G

B
)

Original 24 116 232 15 74 149 11

CliqueSquare 39.7 201 402 30 153 308 15

S2RDF-VP 0.98 5 10 1 5.5 11.1 1

S2RDF-ExtVP 3.9 19.2 38.9 10.4 53.7 108.5 10

SPARQLGX 1.2 5.9 12.1 0.88 4.8 9.8 1.1

Rya 1.4 7.3 14.9 2.9 17.2 32.3 2.8

S3QLRDF 3.7 18.7 37.4 7.6 38.3 76.6 5.3

L
o
ad

in
g
 T

im
e

(s
ec

o
n
d
s)

 CliqueSquare 611 3027 6149 645 2983 6237 4876

S2RDF-VP 63 173 289 104 219 325 114

S2RDF-ExtVP 898 2293 4112 6082 10261 14606 13899

SPARQLGX 143 508 908 106 380 749 105

Rya 854 3476 5735 1277 5084 12509 977

S3QLRDF 163 556 1009 279 766 1419 271

Figure 3.30 indicates the storage space distribution of LUBM (avg. of 1000, 5000,

and 10000), WatDiv (avg. of SF 1000, 5000, and 10000), and YAGO2 datasets. From

Table 3.19, we can see that S2RDF-VP and SPARQLGX have low space overhead; on

95

the other hand, CliqueSquare and S2RDF-ExtVP need more storage space due to their

underlying data storage layouts.

Figure 3.31: Time Distributions with Datasets (log scale)

From Figure 3.31, we notice that CliqueSquare, S2RDF-ExtVP, and Rya need

more time to load data compare to S2RDF-VP and SPARQLGX because of their

preprocessing methods. The lack of in-memory data processing framework in

CliqueSquare and Rya causes high overhead. S2RDF-ExtVP incurs significantly higher

overhead compared to S2RDF-VP because of additional pre-computation phases.

Although YAGO2 is the smallest dataset, S2RDF-ExtVP needs more preprocessing time

with YAGO2 due to its large number of predicates. We observe that the data loading time

of S2RDF-ExtVP depends not only on the size of the dataset but also on the number of

predicates. S3QLRDF has a moderate overhead in terms of data loading time and storage

space as compared to other systems.

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

LUBM-1000 LUBM-5000 LUBM-10000 WatDiv SF-

1000

WatDiv SF-

5000

WatDiv SF-

10000

YAGO2

T
im

e
(s

ec
o
n
d
s)

CliqueSquare S2RDF-VP S2RDF-ExtVP SPARQLGX Rya S3QLRDF

96

Figure 3.32: Performance Comparison for LUBM 10000 (log scale)

Table 3.20: LUBM Query Runtimes (milliseconds), AM: Arithmetic Mean

Query Q1 Q2 Q4 Q8 Q12 Q14 AM
Query/

hr

1
0
0
0

CliqueSquare 23004 131023 24005 55008 17003 25004 45841 78

S2RDF-VP 737 1447923 1417 3346 1291 249 242493 14

S2RDF-ExtVP 626 436253 773 2473 816 202 73523 48

SPARQLGX 7435 16159 15676 15320 9528 4654 11462 314

Rya 82519 TimeOut 24306 TimeOut TimeOut 19467 - -

S3QLRDF 1289 4275 318 875 809 839 1400 2569

S3QLRDF-CT 753 2708 162 579 529 468 866 4154

5
0
0
0

CliqueSquare 51008 547086 58008 221037 23004 61012 160192 22

S2RDF-VP 1170 7535191 4220 6630 1588 424 1258203 2

S2RDF-ExtVP 1045 2534103 811 5308 1012 364 423773 8

SPARQLGX 10820 24649 36834 28121 11966 5328 19619 183

Rya 393219 TimeOut 93028 TimeOut TimeOut 103257 - -

S3QLRDF 3672 6445 331 2045 984 1822 2549 1411

S3QLRDF-CT 1387 4430 187 1584 720 1013 1553 2317

1
0
0
0
0

CliqueSquare 85014 1149205 97020 429089 25005 109019 315725 11

S2RDF-VP 1899 18737030 8751 15377 1818 512 3127564 1

S2RDF-ExtVP 1813 9909611 1105 15261 1126 492 1654901 2

SPARQLGX 13780 36944 69986 51158 17697 7233 32799 109

Rya 820376 TimeOut 250340 TimeOut TimeOut 198825 - -

S3QLRDF 5193 8565 359 4005 1069 3298 3748 960

S3QLRDF-CT 2132 5841 209 2388 887 2016 2245 1603

1.E+00

1.E+02

1.E+04

1.E+06

1.E+08

Q1 Q2 Q4 Q8 Q12 Q14

T
im

e
(m

il
li

se
co

n
d
s)

CliqueSquare S2RDF-VP S2RDF-ExtVP SPARQLGX

Rya S3QLRDF S3QLRDF-CT

97

Figure 3.33: Performance Comparison for WatDiv SF10000 (log scale)

Table 3.21: WatDiv Query Runtimes (milliseconds), AM: Arithmetic Mean

Query L1 L2 L3 L4 L5 AM-L Query/hr

1
0
0
0

CliqueSquare 17004 17003 17003 16003 16002 16603 216

S2RDF-VP 1057 833 728 383 655 731 4923

S2RDF-ExtVP 693 668 483 203 345 478 7525

SPARQLGX 7499 6056 6266 5164 6513 6299 571

Rya 11553 13986 179566 2503 7850 43091 83

S3QLRDF 372 361 243 194 301 294 12236

S3QLRDF-CT 271 241 154 107 209 196 18329

5
0
0
0

CliqueSquare 21004 23005 20004 18004 23005 21004 171

S2RDF-VP 1193 864 788 476 817 827 4349

S2RDF-ExtVP 753 740 556 364 493 581 6194

SPARQLGX 9332 7233 7550 5295 7678 7417 485

Rya 93100 139321 2425292 16366 73631 549542 6

S3QLRDF 417 402 321 206 316 332 10830

S3QLRDF-CT 324 258 225 119 219 229 15720

1
0
0
0
0

CliqueSquare 24004 28004 22004 19004 29007 24404 147

S2RDF-VP 1214 1082 802 612 1079 957 3758

S2RDF-ExtVP 804 972 781 409 669 727 4951

SPARQLGX 10803 8740 8535 6330 10579 8997 400

Rya 201572 150843 3773827 32482 163556 864456 4

S3QLRDF 577 389 405 221 319 382 9419

S3QLRDF-CT 364 279 243 153 226 253 14229

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

L1 L2 L3 L4 L5 S1 S2 S3 S4 S5 S6 S7 F1 F2 F3 F4 F5 C1 C2 C3

T
im

e
(m

il
li

se
co

n
d

s)

CliqueSquare S2RDF-VP S2RDF-ExtVP SPARQLGX

Rya S3QLRDF S3QLRDF-CT

98

Query S1 S2 S3 S4 S5 S6 S7 AM-S
Query/

hr
1
0
0
0

CliqueSquare 18003 17003 17003 17003 17003 18003 17003 17288 208

S2RDF-VP 1403 1351 802 993 2893 1998 974 1487 2419

S2RDF-ExtVP 1156 1015 381 468 1220 535 403 739 4866

SPARQLGX 17207 8156 6499 8221 5944 6999 7655 8668 415

Rya 14013 104851 2930 30746 4713 2020 129859 41304 87

S3QLRDF 347 218 211 339 160 178 308 251 14310

S3QLRDF-CT 242 115 120 210 117 112 227 163 22047

5
0
0
0

CliqueSquare 23006 18003 17003 18004 17003 20005 21003 19146 188

S2RDF-VP 1947 1618 1005 1063 3276 1863 1004 1682 2139

S2RDF-ExtVP 1224 1064 505 586 1890 689 454 916 3930

SPARQLGX 22275 15479 7560 11251 8751 8541 8845 11814 304

Rya 81997 976214 28658 167601 33253 33400 715782 290986 12

S3QLRDF 454 283 228 366 196 210 371 301 11954

S3QLRDF-CT 321 144 125 254 126 128 238 190 18862

1
0
0

0
0

CliqueSquare 31005 20003 18003 20005 18004 21004 26005 22004 163

S2RDF-VP 2071 1810 1276 1089 4049 3015 1012 2046 1759

S2RDF-ExtVP 1588 1665 738 627 2054 964 498 1162 3098

SPARQLGX 30205 15140 8251 12190 9846 10440 12707 14111 255

Rya 160363 1914860 66350 339725 64166 51112 1544922 591642 6

S3QLRDF 472 294 242 383 226 222 378 316 11366

S3QLRDF-CT 338 159 137 301 121 142 261 208 17272

99

Query F1 F2 F3 F4 F5 AM-F Query/hr

1
0
0
0

CliqueSquare 17003 34005 17003 17004 23004 21603 166

S2RDF-VP 3213 3299 2806 3100 1200 2723 1321

S2RDF-ExtVP 1195 1762 1590 1695 1020 1452 2478

SPARQLGX 9303 14175 12139 12256 16317 12838 280

Rya 118584 58966 3028489 36392 13775 651241 5

S3QLRDF 498 410 813 902 750 674 5336

S3QLRDF-CT 394 263 570 614 428 453 7933

5
0
0
0

CliqueSquare 22004 52010 29004 18004 45009 33206 108

S2RDF-VP 4015 4174 3186 4415 1804 3518 1023

S2RDF-ExtVP 1418 2393 1611 1996 1415 1766 2037

SPARQLGX 12077 26228 24835 14840 20742 19744 182

Rya 2935654 502117 TimeOut 244267 87633 - -

S3QLRDF 621 460 1343 1152 765 868 4146

S3QLRDF-CT 484 282 891 764 529 590 6101

1
0
0

0
0

CliqueSquare 23004 64009 51009 24005 69015 46208 77

S2RDF-VP 4707 5249 3743 5052 1899 4130 871

S2RDF-ExtVP 1666 2859 1759 2967 1586 2167 1660

SPARQLGX 14727 36746 41766 15964 23861 26612 135

Rya 16566663 955236 TimeOut 641823 161901 - -

S3QLRDF 903 543 1488 1502 802 1047 3436

S3QLRDF-CT 630 316 1093 1278 662 795 4523

100

Query C1 C2 C3 AM-C Query/hr

1
0
0
0

CliqueSquare 33005 37006 30005 33338 107

S2RDF-VP 3427 5250 5852 4843 743

S2RDF-ExtVP 3251 3189 5275 3905 921

SPARQLGX 19854 15152 21817 18941 190

Rya 15444 2992945 2173732 1727373 2

S3QLRDF 3854 2615 387 2285 1575

S3QLRDF-CT 1597 1686 212 1165 3090

5
0
0
0

CliqueSquare 49010 71018 92018 70682 50

S2RDF-VP 4625 8970 10709 8101 444

S2RDF-ExtVP 4092 4892 8705 5896 610

SPARQLGX 34894 32621 48768 38761 92

Rya 130440 TimeOut 13385691 - -

S3QLRDF 5199 2844 664 2902 1240

S3QLRDF-CT 2152 2332 302 1595 2256

1
0
0

0
0

CliqueSquare 65014 109017 190041 121357 29

S2RDF-VP 5880 10361 16488 10909 329

S2RDF-ExtVP 5292 5783 14382 8485 424

SPARQLGX 64319 29652 78596 57522 62

Rya 310289 TimeOut 28712939 - -

S3QLRDF 6370 4702 977 4016 896

S3QLRDF-CT 2968 3449 351 2256 1595

101

Figure 3.34: Performance Comparison for YAGO2 (log scale)

Table 3.22: YAGO2 Query Runtimes (milliseconds), AM: Arithmetic Mean

Query Y1 Y2 Y3 Y4 Y5 AM Query/hr

S2RDF-VP 2923 5585 9754 8620 3469 6070 593

S2RDF-ExtVP 1811 5188 7507 3445 1566 3903 922

SPARQLGX 169546 35260 Fail 22542 15141 - -

Rya 1329020 5288669 Fail TimeOut 632515 - -

S3QLRDF 3525 9610 1921 2284 632 3594 1001

S3QLRDF-CT 2544 8853 1407 1685 376 2973 1210

The performance comparison for LUBM 10000 is illustrated in Figure. 3.32 on a

log scale while absolute runtimes are given in Table 3.20. We can observe that

S3QLRDF outperforms all other systems by up to an order of magnitude on average

(arithmetic mean). Q1 and Q4 are the most selective queries, returning only a few results

and can be answered by S3QLRDF within 5200 milliseconds or less. These queries

define a star-shaped pattern, which can be answered very efficiently with the PTP table of

S3QLRDF. For the most unselective query, Q14, S3QLRDF outperforms all other

systems. Q2, Q8, and Q12 define the complex patterns where Q8 and Q12 produce

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

Y1 Y2 Y3 Y4 Y5

T
im

e
(m

il
li

se
co

n
d
s)

S2RDF-VP S2RDF-ExtVP SPARQLGX Rya S3QLRDF S3QLRDF-CT

102

results of constant size as the size of the dataset increases. On the other hand, the

intermediate result set of Q2 increases when the input dataset increases. Also, for these

queries, runtimes of S3QLRDF are significantly faster than for all other systems, which is

below 9000 milliseconds. If we use the cacheTable functionality of Spark SQL to cache

PTP tables in memory, which we call S3QLRDF-CT, then we achieve an order of

magnitude faster response time despite that the caching table incurs a little overhead due

to caching time. We also report the number of query executions per hour (Query/hr)

where S3QLRDF and S3QLRDF-CT outperform all other systems. Figure 3.33 compares

the different systems on the largest dataset (SF10000) of WatDiv, corresponding AM

runtimes are listed in Table 3.21. For WatDiv, S3QLRDF and S3QLRDF-CT show a

competitive runtime performance for all query categories when increasing the size of the

dataset. In Table 3.21, we report the number of queries to execute per hour (Query/hr)

under all query categories for all competitors. Again, S3QLRDF and S3QLRDF-CT

outperform all of its competitors by an order of magnitude in terms of Query/hr. Figure

3.34 illustrates the execution times for YAGO2 queries of all compared systems while

absolute runtimes, and Query/hr are given in Table 3.22. CliqueSquare fails to execute

YAGO2 queries; therefore, we did not include CliqueSquare in the YAGO2 query

evaluation. We can observe that S3QLRDF and S3QLRDF-CT outperform SPARQLGX

and Rya by an order of magnitude on runtime in all queries. S2RDF has faster query

response times for Y1 and Y2 compared to S3QLRDF because of the materialized join

reduction tables of ExtVP and because S3QLRDF incurs a little overhead while flattening

a complex column. Since a number of complex columns are required to be flattened in

Y1 and Y2, S3QLRDF is slower in response time compared to S2RDF, but in terms of

103

average runtime and Query/hr, S3QLRDF outperforms all of its competitors, including

S2RDF.

3.4.5 Conclusion

We propose a distributed RDF storage and SPARQL querying system,

S3QLRDF, based on the PTP schema built on top of Spark. S3QLRDF uses the SQL

interface of Spark for query execution by compiling SPARQL to SQL. A complex join

query over large tables is expensive in a distributed setting because of large amounts of

data reading and shuffling across the network. The concept of this work is to reduce the

amount of data that must be accessed in a distributed environment. We conduct a

comparative performance evaluation of the S3QLRDF system on a Hadoop cluster with

the state-of-the-art systems CliqueSquare, S2RDF, SPARQLGX, and Rya, using different

query shapes, complexities with three different datasets up to 1.4 billion triples. Overall,

the evaluation demonstrates that S3QLRDF can be an efficient solution for querying

semantic data.

104

CHAPTER 4

BENCHMARKING S3QLRDF UNDER COLUMNAR FILE FORMATS

Columnar file formats have well known advantages that can improve the storage

efficiency by effective data compression, as well as helping to achieve significant

performance gains by moving only relevant portions of data into memory during query

processing. Columnar storage formats have been available for storing data in HDFS for

over a decade. Currently, Parquet and ORC formats are two of the most popular ones for

HDFS.

4.1 Relational Data Management Using Parquet and ORC

Relational data management including analysis is one of the most popular data

processing paradigms. Modern cloud-based relational data processing systems typically

do not manage their storage. They leverage a variety of external file formats to store and

access data. Over the last decade, a variety of external file formats such as Parquet, ORC,

etc., have been developed to store large volumes of relational data in the cloud. High-

performance networking and storage devices are used pervasively to process this massive

amount of data in Big Data frameworks like Spark and Hadoop. The performance of a

file format in terms of storage efficiency and data access rate plays an important role in

data management.

Parquet and ORC are columnar data storage in the Hadoop ecosystem. They offer

features that store data by employing different encoding, column-wise compression,

compression based on data type, and predicate pushdown. Typically, enhanced

compression ratios, or skipping blocks of data, involves reading fewer bytes from HDFS,

resulting in enhanced query performance. We use Parquet and ORC file formats as the

105

storage backend for our S3QLRDF system to run the experiments in order to measure the

RDF data storage efficiency, loading, and query execution performance.

4.2 Evaluation

We present an empirical comparison between Parquet and ORC file formats while

using S3QLRDF system with the PTP schema.

4.2.1 Experimental Setup

We performed our evaluation on a small cluster of 6 machines (1 master and 5

workers) using AWS EC2 instances. Each machine is equipped with 64GB of memory, 1

TB of disk space and with an 8 Core Intel Xeon Platinum 8175M CPU @ 2.50 GHz. The

cluster runs with Hadoop 2.7.7, Hive 2.3.6, and Spark 2.4.4 on Ubuntu 16.04 LTS. The

resource manager, Yarn, uses 240 GB of memory and 40 virtual cores. In our cluster

configuration, a Spark partition size is equal to the default size of an HDFS block (128

MB). We kept the default settings for both Parquet and ORC file formats with filter

pushdown enabled.

The experiments are conducted on a synthetic dataset, WatDiv, with around 109M

triples and 86 predicates, and a real-world dataset, a dump of YAGO (Yago2s 2.5.3),

with a total size of 245 million triples and 104 predicates. The PT (Property Table)

creation is the prerequisite to create the PTP tables, therefore, we report total time to

create PT and PTP as data loading time. Both Parquet and ORC are efficient formats in

terms of storage size due to their use of columnar storage and built-in compression. For

this performance comparison, we use their default compression codec when writing

Parquet/ORC files using Spark 2.4.4.

106

4.2.2 Analysis of Results

We report datasets loading times and HDFS sizes for PTP schema based on

Parquet and ORC file formats in Table 4.1.

Table 4.1: WatDiv and YAGO Loading Times and HDFS Sizes

File Format Load Time HDFS Size

W
at

D
iv

Parquet 796 s 7.1 GB

ORC 768 s 6.6 GB

Y
A

G
O

Parquet 5621 s 16.7 GB

ORC 4871 s 12.1 GB

Table 4.1 shows that ORC outperforms Parquet in terms of storage space and data

loading time. These two formats physically organize the data in different manners, which

is why they differ from one another in terms of their total size. Table 4.2 indicates the

total number of completed stages and tasks during the loading phase, where Parquet takes

more stages and tasks than ORC.

Table 4.2: Stages and Tasks During Dataset Loading Phase

File Format Total Number of Stages Total Number of Tasks

W
at

D
iv

Parquet 267 4679

ORC 266 4673

Y
A

G
O

 Parquet 321 8830

ORC 320 7789

107

Figure 4.1: CPU and RAM Consumptions During Data Loading Phase

Figure 4.2: Total HDFS Bytes Read/Written During Data Loading Phase

Figures 4.1 and 4.2 present resource usages (CPU and RAM) and the total amount

of bytes read from and written on the HDFS during the data loading process. The percent

of CPU and the amount of RAM usage are slightly less in ORC than Parquet. Similarly,

S3QLRDF reads and saves less amount of data while working with ORC than Parquet.

WatDiv comes with a set of 20 predefined query templates called Basic Testing

Use Case that can be grouped in four categories according to their shape: complex (C),

snowflake (F), star (S), and linear (L). Each of the queries from the basic query set is

evaluated four times to get the average run time. Finally, the query run times are

0

20

40

60

80

100

WatDiv YAGO

A
v
er

ag
e

C
P

U
 U

sa
g
e

(%
)

Parquet ORC

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

WatDiv YAGO

A
v
er

ag
e

R
A

M
 U

sa
g
e

(B
yt

es
)

Parquet ORC

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

WatDiv YAGO

T
o
ta

l
B

yt
es

 R
ea

d

Parquet ORC

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

WatDiv YAGO

T
o
ta

lB
yt

es
 W

ri
tt

en

Parquet ORC

108

aggregated by the query shapes. YAGO does not provide benchmark queries; we have

created four representative test queries (C, F, S, and L) based on the categories of WatDiv

basic query set where C, F, S, and L represent complex, snowflake, star, and linear-

shaped query. We submitted each query at a time as a single Spark Application in the

cold-start scenario when memory was free. The run times reported for each query are the

average of 4 execution times. Since Spark SQL has the cacheTable functionality to cache

tables in memory before execution, we report average query execution times for both

caching (CT) and without caching (W/O-CT) PTP tables. We also report the query run

times (T-CT) including caching times to investigate how the caching table affects the

overall query runtimes.

Table 4.3: WatDiv Basic Testing (milliseconds)

WatDiv-C Parquet ORC

W/O-CT 18787 26521

CT 9932 8765

T-CT 34196 45296

WatDiv-F Parquet ORC

W/O-CT 30606 49703

CT 14596 13081

T-CT 52561 72198

WatDiv-S Parquet ORC

W/O-CT 31561 49325

CT 8079 7011

T-CT 47936 67483

WatDiv-L Parquet ORC

W/O-CT 22743 35096

CT 5454 4906

T-CT 35906 51103

Table 4.4: YAGO Query Run Times (milliseconds)

YAGO-C Parquet ORC

W/O-CT 146028 152791

CT 120097 122743

T-CT 136335 143867

YAGO-F Parquet ORC

W/O-CT 5228 8321

CT 1704 1593

T-CT 8819 12435

YAGO-S Parquet ORC

W/O-CT 59349 78218

CT 58876 68082

T-CT 64776 76602

YAGO-L Parquet ORC

W/O-CT 4974 8232

CT 1541 1394

T-CT 8302 13064

109

The performance comparison between Parquet and ORC storage formats based on

PTP schema in terms of the query execution times for WatDiv and YAGO are shown in

Tables 4.3 and 4.4 respectively. The first observation was that ORC with CT, compared

to that of other options, had the best query performance for all WatDiv query types. For

YAGO, ORC with CT shows the best performance except for the C and S query types,

although it is not significantly worse. We did not consider caching times of PTP table in

memory for CT, but if we report caching times along with query runtimes (T-CT) then

ORC has slightly worse performance for the majority of query types. We also observe

that Parquet without cacheTable method (W/O-CT) shows reasonably better performance

for all query types. For future experiments in chapter 5, we will be using Parquet without

cacheTable method to measure query runtimes.

From the above discussion, we can conclude that the caching table in memory

adds some overhead to the total query runtimes; therefore, the cacheTable method is

recommended only for batch execution of queries. We demonstrate query performance

while using cacheTable method for batch execution of queries in section 3.4.4.

4.3 Conclusion

Spark is a prominent Big Data framework that offers a high-level SQL interface

(Spark-SQL) optimized by means of the Catalyst query optimizer. We conducted a

systematic evaluation for the performance of the Spark-SQL query engine for answering

SPARQL queries over the PTP schema for RDF datasets using two columnar file

formats, Parquet and ORC. The experimental results show that ORC has better storage

space efficiency, but in most of the cases Parquet was able to achieve better performance

in terms of query execution times.

110

CHAPTER 5

ASSESSMENT ON SPARK-BASED RDF MANAGEMENT SYSTEMS

Apache Spark is one of the most widely used tools in the Big Data platform for

efficient query answering over a large volume of data. This cluster computing framework

uses in-memory data structures that can be used to efficiently store data and enables

distributed query answering. Over the last few years, several systems have been designed

to exploit the Spark framework for building scalable RDF processing engines like

S3QLRDF, S2RDF, SPARQLGX, and PRoST. These systems load data as triples, and a

simple partitioning technique, like vertical partitioning or property table partitioning, is

applied to their raw form for further processing. In such systems, the RDD API, or Spark

SQL, is used to answer the SPARQL query.

5.1 Benchmarked SPARQL Evaluators

In this section, we present a brief overview on Spark-based RDF management

systems, namely S3QLRDF, S2RDF, SPARQLGX, and PRoST. Table 5.1 shows the

RDF data partitioning techniques used in the state-of-the-art Spark-based systems.

Table 5.1: Partitioning Strategies of Spark-based RDF Management Solutions

Storage Schema VP WPT PTP ExtVP

S3QLRDF X

S2RDF X X

SPARQLGX X

PRoST X X

Spark-based systems listed in Table 5.1 use one or a combination of relational

partitioning techniques. S3QLRDF uses PTP schema to devise the RDF data storage

layout, S2RDF makes use of both VP and ExtVP approaches, SPARQLGX uses only the

111

VP approach, and PRoST combines the VP with the Wide Property Table (WPT) (Cossu

et al., 2018) for their storage layout. Table 5.2 represents the RDF query processing

methods used in Spark-based systems based on Spark data abstraction.

Table 5.2: Data Access Model of Spark-based RDF Management Solutions

Data Access Model RDD API
DataFrame/Dataset

(Spark SQL)

S3QLRDF X

S2RDF X

SPARQLGX X

PRoST X

For the performance evaluation of Spark-based RDF management solutions, we

utilize two real datasets YAGO (Yago2s 2.5.3) and DBLP as shown in Table 5.3. The

YAGO is a semantic knowledge base, derived from Wikipedia, WordNet, and

GeoNames. Meanwhile, the DBLP Computer Science Bibliography provides

bibliographic information on computer science journals and proceedings. Both YAGO

and DBLP do not provide benchmark queries. Thus, we have created four representative

test queries C, F, S, and L for each dataset based on varying shape; like complex,

snowflake, star, and linear to model different scenarios respectively. These query patterns

actually affect the overall query performance. All YAGO and DBLP queries are listed in

appendix C and D respectively.

Table 5.3: Experimental Setup - Dataset Statistics

Dataset
Number of Triples

(million)
Number of Predicates HDFS Size (GB)

YAGO 245 104 35.5

DBLP 129 27 19.3

112

5.2 Evaluation

Cluster Configuration. We performed our evaluation on a small cluster of 6

machines (1 master and 5 workers) using AWS EC2 instances. Each machine is equipped

with 64 GB of memory, 1 TB of disk space, and an 8 Core Intel Xeon Platinum 8175M

CPU @ 2.50 GHz. The cluster runs with Hadoop 2.7.7, Hive 2.3.6, and Spark 2.4.4 on

Ubuntu 16.04 LTS. Yarn is the resource manager, which in total uses 240 GB memory

and 40 virtual cores. In our cluster configuration, we keep the default size of the HDFS

block (128 MB) with parquet filter pushdown enabled.

Table 5.4: Loading Times and HDFS Sizes

Dataset YAGO DBLP

H
D

F
S

 S
iz

e
(G

B
) S3QLRDF 16.7 23.8

S2RDF 32.8 29.1

SPARQLGX 3.4 2.2

PRoST 15.3 8.7

L
o
ad

in
g
 T

im
e

(s
ec

o
n
d
s)

S3QLRDF 5621 486

S2RDF 10999 2385

SPARQLGX 751 417

PRoST 1695 723

Experimental Results. We present an empirical comparison of 4 open-source

Spark-based state-of-the-art systems: S3QLRDF, S2RDF, SPARQLGX, and PRoST

based on real datasets, YAGO and DBLP. The store sizes and data loading times are

listed in Table 5.4. From Table 5.4, we can see that SPARQLGX has low space

overhead; on the other hand, S2RDF needs more storage space due to their underlying

data layouts. SPARQLGX also has low preprocessing overhead compared to other

systems. S2RDF needs more preprocessing time with YAGO due to its large number of

113

predicates. We observe that the data loading time of S2RDF depends not only on the size

of the dataset but also on the number of predicates which involve extensive

precomputations with high loading time; therefore, this system is not suitable for some

datasets having a large number of properties. S3QLRDF has a moderate overhead in

terms of data loading time when compared to other systems. Table 5.5 indicates the total

number of completed stages and tasks during the loading phase. S2RDF is highly

expensive in terms of computation among all other systems.

Table 5.5: Stages and Tasks During Dataset Loading Phase

System Total Number of Stages Total Number of Tasks

Y
A

G
O

S3QLRDF 321 8830

S2RDF 33568 1412013

SPARQLGX 25 7552

PRoST 1227 67446

D
B

L
P

S3QLRDF 90 2374

S2RDF 4304 275578

SPARQLGX 25 4135

PRoST 378 23098

114

Figure 5.1: CPU and RAM Consumptions During Data Loading Phase

Figure 5.2: Total HDFS Bytes Read/Written During Data Loading Phase (log scale)

Figures 5.1 and 5.2 present resource usages (CPU and RAM) and the total amount

of bytes read from and written on the HDFS during the data loading phase. SPARQLGX

has highest CPU utilization while reading and saving less amount of data for both YAGO

and DBLP datasets. On the other hand, S2RDF has the highest amount of RAM usage

compared to other systems. From the above discussion, we can conclude that S2RDF is

0

10

20

30

40

50

60

70

80

90

100

YAGO DBLP

A
v
er

ag
e

C
P

U
 U

sa
g
e

(%
)

S3QLRDF S2RDF

SPARQLGX PRoST

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

YAGO DBLP

A
v
er

ag
e

R
A

M
 U

sa
g
e

(B
yt

es
)

S3QLRDF S2RDF

SPARQLGX PRoST

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

1.E+13

YAGO DBLP

T
o
ta

l
B

yt
es

 R
ea

d

S3QLRDF S2RDF

SPARQLGX PRoST

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

YAGO DBLP

T
o
ta

l
B

yt
es

 W
ri

tt
en

S3QLRDF S2RDF

SPARQLGX PRoST

115

the costliest system for the cluster because of the highest data loading times and RAM

usages.

Query Performance. We conduct a query performance evaluation of Spark-

based RDF management systems based on query execution times and cluster resource

utilization. We report the query run times including caching times for those systems that

use cacheTable functionality to cache table in memory. Not all systems offer to execute a

set of queries in the same Spark application to take advantage of in-memory data left by a

previously executed query. Thus, we submitted each query at a time as a single Spark

application to make a fair comparison among all systems. All measurements are averaged

over four runs.

YAGO Dataset. YAGO does not provide benchmark queries. Therefore, we use

the YAGO test queries C, F, S, and L listed in appendix C to benchmark the performance

of different Spark-based systems.

Figure 5.3: YAGO Query Run Times (log scale)

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

C F S L

R
u
n
ti

m
e

(m
il

li
se

co
n
d
s)

S3QLRDF S2RDF SPARQLGX PRoST

116

Table 5.6: Stages and Tasks During YAGO Query Phase

Query C F S L
T

o
ta

l
N

u
m

b
er

 o
f

S
ta

g
es

S3QLRDF 12 5 3 5

S2RDF 59 36 27 22

SPARQLGX 18 9 7 7

PRoST 12 6 2 6

T
o
ta

l
N

u
m

b
er

 o
f

T
as

k
s

S3QLRDF 502 37 19 37

S2RDF 1858 809 800 658

SPARQLGX 831 9 228 403

PRoST 1151 482 35 482

Figure 5.4: Total HDFS Bytes Read During YAGO Query Phase (log scale)

Figure 5.5: CPU and RAM Consumptions During YAGO Query Phase

1.E+02

1.E+04

1.E+06

1.E+08

C F S L

T
o
ta

l
B

yt
es

 R
ea

d

S3QLRDF S2RDF SPARQLGX PRoST

0

20

40

60

80

100

C F S L

A
v
er

ag
e

C
P

U
 U

sa
g
e

(%
)

S3QLRDF S2RDF SPARQLGX PRoST

0.E+00

1.E+10

2.E+10

3.E+10

4.E+10

5.E+10

6.E+10

7.E+10

8.E+10

9.E+10

C F S L

A
v
er

ag
e

R
A

M
 U

sa
g
e

(B
yt

es
)

S3QLRDF S2RDF SPARQLGX PRoST

117

Figure. 5.3. illustrates the performance comparison for YAGO. S3QLRDF shows

the best performance, except for query C and S, although it is not significantly worse.

S3QLRDF incurs a little overhead while flattening a complex column. Since a number of

complex columns are required to be flattened in C and S, S3QLRDF is slower in response

time compared to S2RDF, which has the fastest query response times for C and S

compared to all other systems due to the materialized join reduction of ExtVP tables.

S2RDF trades off the query performances with disk space and loading time. SPARQLGX

has poor runtimes for all queries among all systems. The total number of completed

stages and tasks during the YAGO query phase are listed in Table 5.6. From Figure 5.4

we can see that the number of bytes required to read during query evaluation is less in

S3QLRDF for all of the queries, except C. We also figure out from Figure 5.5 that the

system SPARQLGX, which is inexpensive in terms of data loading time, become costly

in cluster resource utilization (CPU and RAM) for evaluating most of the queries, except

query F.

DBLP Dataset. Like YAGO, DBLP does not have benchmark queries; therefore,

we use the DBLP test queries C, F, S, and L listed in appendix D.

Figure 5.6: DBLP Query Run Times (log scale)

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

C F S L

R
u
n
ti

m
e

(m
il

li
se

co
n
d
s)

S3QLRDF S2RDF SPARQLGX PRoST

118

Table 5.7: Stages and Tasks During DBLP Query Phase

Query C F S L
T

o
ta

l
N

u
m

b
er

 o
f

S
ta

g
es

S3QLRDF 7 5 10 8

S2RDF 52 43 82 17

SPARQLGX 13 10 17 5

PRoST 6 4 2 4

T
o
ta

l
N

u
m

b
er

 o
f

T
as

k
s

S3QLRDF 64 43 285 456

S2RDF 1385 1377 2153 563

SPARQLGX 73 76 136 29

PRoST 461 241 21 241

Figure 5.7: Total HDFS Bytes Read During DBLP Query Phase (log scale)

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

C F S L

T
o
ta

l
B

yt
es

 R
ea

d

S3QLRDF S2RDF SPARQLGX PRoST

119

Figure 5.8: CPU and RAM Consumptions During DBLP Query Phase

Figure 5.6 illustrates the execution times for DBLP queries of all compared

systems. We can observe that S3QLRDF outperforms its competitors on runtime in most

of the queries, except F, where PRoST shows the best performance. Like YAGO,

SPARQLGX again shows poor query performance among all systems. The total number

of completed stages and tasks during the DBLP query phase are listed in Table 5.7. We

can also observe from Figure 5.7 that S3QLRDF reads relatively a less number of bytes

to answer queries C and F; on the other hand, PRoST requires less number of bytes to

read during query S and L evaluation. The average cluster CPU usage percent is high in

S2RDF and SPARQLGX while the average RAM usage is almost similar for all systems

(Figure 5.8).

5.3 Conclusion

In this chapter, we conduct an empirical evaluation of 4 state-of-the-art Spark-

based RDF management solutions based on common criteria: preprocessing (loading)

times, store sizes, query execution times, and cluster resource utilization. All of these

0

10

20

30

40

50

60

70

80

90

100

C F S L

A
v
er

ag
e

C
P

U
 U

sa
g
e

(%
)

S3QLRDF S2RDF SPARQLGX PRoST

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

C F S L

A
v
er

ag
e

R
A

M
 U

sa
g
e

(B
yt

es
)

S3QLRDF S2RDF

SPARQLGX PRoST

120

systems use different data partitioning techniques to devise their relational storage

schemas for RDF triplestore on top of Hadoop. The aim of using Spark with Hadoop is to

provide efficient RDF management systems to improve query performance by exploiting

data parallelization. Moreover, data partitioning also plays a vital role in efficient query

processing which has a huge impact on query performance.

121

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

The proliferation of the Semantic Web in the form of RDF demands an efficient,

scalable, and distributed storage along with a highly available and fault-tolerant parallel

processing strategy. More precisely, the rapid growth of RDF data raises the need for an

efficient partitioning strategy over distributed data management systems to improve

SPARQL query performance regardless of its pattern shape with minimized pre-

processing time. To this direction, a number of distributed big data processing tools, like

Hadoop, Hive, HBase and Impala, are exploited progressively due to their ability to

effectively handle large amounts of data. Spark is one of the most prominent Big Data

frameworks that offers a high-level SQL interface, being Spark-SQL, which is optimized

by means of the Catalyst query optimizer. This framework uses in-memory data

structures that can be used to store RDF data, offering increasing efficiency, and enabling

effective distributed query answering.

In this work, we focus on two key elements in the distributed system for efficient

SPARQL query processing; data parallelization and data partitioning. We propose several

RDF data partitioning schemas, like VPExp, 3CStore, Modified Property Table, Subset

Property Table, and Property Table Partitioning; and we use Spark and Drill to exploit

data parallelization for the distributed RDF management system. We also demonstrate

how columnar storage formats, like Parquet and ORC, can affect the overall performance

of the distributed RDF storage and SPARQL querying system.

Finally, we propose S3QLRDF, a distributed RDF management solution based on

Property Table Partitioning schema built on top of Spark. Based on our extensive

122

evaluation of S3QLRDF with other open-source state-of-the-art systems using real and

synthetic RDF datasets, we conclude that S3QLRDF system improves the efficiency of

SPARQL query processing.

For future work, we consider further improvements of S3QLRDF system in terms

of querying performance, especially for the query that involves flattening a number of

complex columns. We aim at generating a better query plan with complex properties for

less expensive retrieval. In addition to that, we plan to further extend the query translator

to support more SPARQL fragments and adding statistics to the query evaluator while

evaluating queries. For timely process and derive valuable insights from data produced in

the Semantic Web, we aim at integrating a real-time data pipeline (e.g., Kafka29 and

Spark Streaming pipeline) to our system for RDF stream processing.

29 https://kafka.apache.org/

123

PUBLISHED WORKS

Hassan, M., & Bansal, S. K. (2020). S3QLRDF: Property Table Partitioning Scheme for

Distributed SPARQL Querying of large-scale RDF data. In Proceedings of IEEE

International Conference on Smart Data Services (SMDS) (pp. 133-140).

Hassan, M., & Bansal, S. K. (2019). Data Partitioning Scheme for Efficient Distributed

RDF Querying Using Apache Spark. In Proceedings of IEEE International

Conference on Semantic Computing (ICSC) (pp. 24-31).

Hassan, M., & Bansal, S. K. (2018). RDF Data Storage Techniques for Efficient

SPARQL Query Processing Using Distributed Computation Engines. In Proceedings

of IEEE International Conference on Information Reuse and Integration (IRI) (pp.

323-330).

Hassan, M., & Bansal, S. K. (2018). Semantic Data Querying over NoSQL Databases

with Apache Spark. In Proceedings of IEEE International Conference on

Information Reuse and Integration (IRI) (pp. 364-371).

Mammo, M., Hassan, M., & Bansal, S. K. (2015). Distributed SPARQL Querying over

Big RDF Data Using PRESTO-RDF. International Journal of Big Data, vol 2, no. 3.

124

REFERENCES

 Abadi, D. J., Marcus, A., Madden, S. R., & Hollenbach, K. (2007). Scalable Semantic

Web Data Management Using Vertical Partitioning. In Proceedings of the 33rd

International Conference on Very Large Databases (pp. 411-422).

Abadi, D. J., Marcus, A., Madden, S. R., & Hollenbach, K. (2009). SW-Store: a vertically

partitioned DBMS for Semantic Web data management. The VLDB Journal, 18(2),

385-406.

Aluç, G., Hartig, O., Özsu, M. T., & Daudjee, K. (2014). Diversified Stress Testing of

RDF Data Management Systems. In International Semantic Web Conference (pp.

197-212). Springer, Cham.

UniProt Consortium. (2014). Activities at the Universal Protein Resource (UniProt).

Nucleic acids research, 42(D1), D191-D198.

Aranda-Andújar, A., Bugiotti, F., Camacho-Rodríguez, J., Colazzo, D., Goasdoué, F.,

Kaoudi, Z., & Manolescu, I. (2012). AMADA: Web Data Repositories in the

Amazon Cloud. In Proceedings of the 21st ACM International Conference on

Information and Knowledge Management (pp. 2749-2751).

Atre, M., Srinivasan, J., & Hendler, J. A. (2009). BitMat: A Main Memory RDF Triple

Store. In Proceedings of the 5th International Workshop on Scalable Semantic Web

Knowladge Base System (p. 33).

Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., & Ives, Z. (2007).

DBpedia: A Nucleus for a Web of Open Data. In Proceedings of the 6th

International Semantic Web Conference (pp. 722-735). Springer.

Berners-Lee, T., Hendler, J. & Lassila, O. (2001). Scientific American: Feature Article:

The Semantic Web.

Bizer, C., Heath, T., & Berners-Lee, T. (2011). Linked Data - The Story So Far. In

Semantic Services, Interoperability and Web Applications: Emerging Concepts (pp.

205-227). IGI global.

Bizer, C., & Schultz, A. (2009). The Berlin SPARQL Benchmark. International Journal

on Semantic Web and Information Systems (IJSWIS), 5(2), 1-24.

Boncz, P. A., Erling, O., & Minh Duc, P. (2013). Experiences with Virtuoso Cluster RDF

Column Store. In Linked Data Management (pp. 239–259). Chapman and

Hall/CRC, 2014.

Broekstra, J., Kampman, A., & Van Harmelen, F. (2002). Sesame: A Generic

Architecture for Storing and Querying RDF and RDF Schema. In International

125

Semantic Web Conference (pp. 54-68). Springer, Berlin, Heidelberg.

Callahan, A., Cruz-Toledo, J., Ansell, P., & Dumontier, M. (2013). Bio2RDF Release 2:

Improved Coverage, Interoperability and Provenance of Life Science Linked Data.

In Extended Semantic Web Conference (pp. 200-212). Springer.

Cossu, M., Färber, M., & Lausen, G. (2018). PRoST: Distributed Execution of SPARQL

Queries Using Mixed Partitioning Strategies. In 21st International Conference on

Extending Database Technology (pp. 469–472).

Cudré-Mauroux, P., Enchev, I., Fundatureanu, S., Groth, P., Haque, A., Harth, A., &

Wylot, M. (2013). NoSQL Databases for RDF: An Empirical Evaluation. In

International Semantic Web Conference (pp. 310-325). Springer.

Dean, J., & Ghemawat, S. (2004). MapReduce: Simplified Data Processing on Large

Clusters. In OSDI (pp. 137-150).

Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., & Zhang, W.

(2014). Knowledge Vault: A Web-Scale Approach to Probabilistic Knowledge

Fusion. In Proceedings of the 20th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (pp. 601-610).

Du, J. H., Wang, H. F., Ni, Y., & Yu, Y. (2012). HadoopRDF: A Scalable Semantic Data

Analytical Engine. In International Conference on Intelligent Computing (pp. 633-

641). Springer.

Fu, G., Batchelor, C., Dumontier, M., Hastings, J., Willighagen, E., & Bolton, E. (2015).

PubChemRDF: Towards the semantic annotation of PubChem compound and

substance databases. Journal of Cheminformatics, 7(1), 1-15.

Gezer, V., & Bergweiler, S. (2016). Service and Workflow Engineering based on

Semantic Web Technologies. In Tenth International Conference on Mobile

Ubiquitous Computing, Systems, Services and Technologies (UBICOMM 2016),

International Academy, Research, and Industry Association (IARIA). IARIA (Vol.

10, pp. 152-157).

Graux, D., Jachiet, L., Genevès, P., & Layaïda, N. (2016). SPARQLGX: Efficient

Distributed Evaluation of SPARQL with Apache Spark. In International Semantic

Web Conference (pp. 80-87). Springer, Cham.

Guo, Y., Pan, Z., & Heflin, J. (2005). LUBM: A Benchmark for OWL Knowledge Base

Systems. Journal of Web Semantics, 3(2-3), 158-182.

Harris, S., Lamb, N., & Shadbolt, N. (2009). 4store: The design and implementation of a

clustered RDF store. In 5th International Workshop on Scalable Semantic Web

Knowledge Base Systems (SSWS2009) (pp. 94-109).

126

Harth, A., Umbrich, J., Hogan, A., & Decker, S. (2007). YARS2: A Federated Repository

for Querying Graph Structured Data from the Web. In ISWC/ASWC (pp. 211-224).

Springer.

Hartig, O., Bizer, C., & Freytag, J. C. (2009). Executing SPARQL Queries over the Web

of Linked Data. In International Semantic Web Conference (pp. 293-309). Springer.

Hassan, M., & Bansal, S. K. (2019). Data Partitioning Scheme for Efficient Distributed

RDF Querying Using Apache Spark. In Proceedings of IEEE International

Conference on Semantic Computing (ICSC) (pp. 24-31).

Hassan, M., & Bansal, S. K. (2020). S3QLRDF: Property Table Partitioning Scheme for

Distributed SPARQL Querying of large-scale RDF data. In Proceedings of IEEE

International Conference on Smart Data Services (SMDS) (pp. 133-140).

Hoffart, J., Suchanek, F. M., Berberich, K., & Weikum, G. (2013). YAGO2: A spatially

and temporally enhanced knowledge base from Wikipedia. Artificial Intelligence,

194, 28-61.

Huai, Y., Chauhan, A., Gates, A., Hagleitner, G., Hanson, E. N., O'Malley, O., & Zhang,

X. (2014, June). Major technical advancements in Apache Hive. In Proceedings of

the 2014 ACM SIGMOD international conference on Management of data (pp.

1235-1246).

Huang, J., Abadi, D. J., & Ren, K. (2011). Scalable SPARQL Querying of Large RDF

Graphs. In Proceedings of the VLDB Endowment, 4(11), 1123-1134.

Husain, M. F., McGlothlin, J., Khan, L., & Thuraisingham, B. (2011). Scalable complex

query processing over large semantic web data using cloud. In IEEE 4th

International Conference on Cloud Computing (pp. 187-194).

Goasdoué, F., Kaoudi, Z., Manolescu, I., Quiané-Ruiz, J. A., & Zampetakis, S. (2015).

Cliquesquare: Flat plans for massively parallel RDF queries. In IEEE 31st

International Conference on Data Engineering (pp. 771-782).

Khadilkar, V., Kantarcioglu, M., Thuraisingham, B., & Castagna, P. (2012). Jena-HBase:

A distributed, scalable and efficient RDF triple store. In Proceedings of the 11th

International Semantic Web Conference Posters & Demonstrations Track, ISWC-

PD (Vol. 12, pp. 85-88).

Kornacker, M., Behm, A., Bittorf, V., Bobrovytsky, T., Ching, C., Choi, A., & Yoder, M.

(2015). Impala: A Modern, Open-Source SQL Engine for Hadoop. In Proceedings

of the Conference on Innovative Data Systems Research (Vol. 1, p. 9).

Ladwig, G., & Harth, A. (2011). CumulusRDF: linked data management on nested key-

127

value stores. In the 7th International Workshop on Scalable Semantic Web

Knowledge Base Systems (SSWS 2011) (Vol. 30).

Lakshman, A., & Malik, P. (2010). Cassandra: a decentralized structured storage system.

ACM SIGOPS Operating Systems Review, 44(2), 35-40.

McBride, B. (2001). Jena: Implementing the RDF Model and Syntax Specification. In

2nd Int’l Semantic Web Workshop (Vol. 40, pp. 23-28).

Neumann, T., & Weikum, G. (2008). RDF-3X: a RISC-style engine for RDF. In

Proceedings of the VLDB Endowment, 1(1), 647-659.

Aluç, G., Özsu, M. T., & Daudjee, K. (2014). Workload matters: Why RDF databases

need a new design. In Proceedings of the VLDB Endowment, 7(10), 837-840.

Aluç, G., Ozsu, M. T., Daudjee, K., & Hartig, O. (2013). chameleon-db: a Workload-

Aware Robust RDF Data Management System. University of Waterloo, Tech. Rep.

CS-2013-10.

Papailiou, N., Konstantinou, I., Tsoumakos, D., Karras, P., & Koziris, N. (2013,

October). H2RDF+: High-performance distributed joins over large-scale RDF

graphs. In 2013 IEEE International Conference on Big Data (pp. 255-263).

Papailiou, N., Konstantinou, I., Tsoumakos, D., & Koziris, N. (2012). H2RDF: Adaptive

Query Processing on RDF Data in the Cloud. In Proceedings of the 21st

International Conference on World Wide Web (pp. 397-400).

Pérez, J., Arenas, M., & Gutierrez, C. (2009). Semantics and Complexity of SPARQL.

ACM Transactions on Database Systems (TODS), 34(3), 1-45.

Punnoose, R., Crainiceanu, A., & Rapp, D. (2012). Rya: A Scalable RDF Triple Store for

the Clouds. In Proceedings of the 1st International Workshop on Cloud Intelligence

(pp. 1-8).

Schätzle, A., Przyjaciel-Zablocki, M., Berberich, T., & Lausen, G. (2015). S2X: Graph-

Parallel Querying of RDF with GraphX. In Biomedical Data Management and

Graph Online Querying (pp. 155-168). Springer, Cham.

Schätzle, A., Przyjaciel-Zablocki, M., & Lausen, G. (2011). PigSPARQL: Mapping

SPARQL to Pig Latin. In Proceedings of the International Workshop on Semantic

Web Information Management (pp. 1-8).

Schätzle, A., Przyjaciel-Zablocki, M., Hornung, T., & Lausen, G. (2013). PigSPARQL:

A SPARQL Query Processing Baseline for Big Data. In International semantic web

conference (posters & demos) (Vol. 1035, pp. 241-244).

128

Schätzle, A., Przyjaciel-Zablocki, M., Neu, A., & Lausen, G. (2014). Sempala:

Interactive SPARQL Query Processing on Hadoop. In International Semantic Web

Conference (pp. 164-179). Springer, Cham.

Schätzle, A., Przyjaciel-Zablocki, M., Skilevic, S., & Lausen, G. (2016). S2RDF: RDF

Querying with SPARQL on Spark. In Proceedings of the VLDB Endowment, vol. 9,

no. 10, pp. 804–815.

Schmidt, M., Hornung, T., Lausen, G., & Pinkel, C. (2009). SP2Bench: A SPARQL

Performance Benchmark. In 2009 IEEE 25th International Conference on Data

Engineering (pp. 222-233). IEEE.

Weiss, C., Karras, P., & Bernstein, A. (2008). Hexastore: Sextuple Indexing for Semantic

Web Data Management. In Proceedings of the VLDB Endowment, 1(1), 1008-1019.

Wilkinson, K., & Wilkinson, K. (2006). Jena Property Table Implementation. In

Proceedings of the Second International Workshop on Scalable Semantic Web

Knowledge Base Systems, pages 54–68.

Wu, W., Li, H., Wang, H., & Zhu, K. Q. (2012). Probase: A Probabilistic Taxonomy for

Text Understanding. In Proceedings of the 2012 ACM SIGMOD International

Conference on Management of Data (pp. 481-492).

Yuan, P., Liu, P., Wu, B., Jin, H., Zhang, W., & Liu, L. (2013). TripleBit: a Fast and

Compact System for Large Scale RDF Data. In Proceedings of the VLDB

Endowment, 6(7), 517-528.

Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., Mccauley, M., & Stoica, I.

(2012). Fast and Interactive Analytics over Hadoop Data with Spark. Usenix Login,

37(4), 45-51.

Zou, L., Mo, J., Chen, L., Özsu, M. T., & Zhao, D. (2011). gStore: Answering SPARQL

Queries via Subgraph Matching. In Proceedings of the VLDB Endowment, 4(8),

482-493.

129

APPENDIX A

YAGO2 QUERIES

130

BASE <http://yago-knowledge.org/resource/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

Y1: SELECT ?GivenName ?FamilyName WHERE {

 ?p hasGivenName ?GivenName .

 ?p hasFamilyName ?FamilyName .

 ?p rdf:type ?scientist .

 ?scientist rdfs:label “scientist” .

 ?p wasBornIn ?city1 .

 ?city1 isLocatedIn “France” .

 ?p hasAcademicAdvisor ?a .

 ?a wasBornIn ?city2 .

 ?city2 isLocatedIn “United_States” .

}

Y2: SELECT ?name WHERE {

 ?a isCalled ?name .

 ?a rdf:type ?actor .

 ?actor rdfs:label “actor” .

 ?a actedIn ?m1 .

 ?a directed ?m2 .

 ?m1 rdf:type ?movie .

 ?movie rdfs:label “movie” .

 ?m1 isLocatedIn “Portugal” .

 ?m2 rdf:type ?movie .

 ?m2 isLocatedIn “Spain” .

}

Y3: SELECT DISTINCT ?name1 ?name2 WHERE {

 ?p1 hasFamilyName ?name1 .

 ?p2 hasFamilyName ?name2 .

 ?p1 rdf:type ?scientist .

 ?p2 rdf:type ?scientist .

 ?scientist rdfs:label “scientist” .

 ?p1 hasWonPrize ?award .

 ?p2 hasWonPrize ?award .

 ?p1 wasBornIn ?city .

 ?p2 wasBornIn ?city .

 FILTER (?p1 != ?p2)

}

Y4: SELECT DISTINCT ?name1 ?name2 WHERE {

 ?p1 isCalled ?name1 .

 ?p1 wasBornIn ?city1 .

 ?p1 actedIn ?movie .

 ?p2 isCalled ?name2 .

 ?p2 wasBornIn ?city2 .

 ?p2 actedIn ?movie .

131

 ?city1 isLocatedIn “United_States” .

 ?city2 isLocatedIn “United_States” .

 FILTER (?p1 != ?p2)

}

Y5: SELECT ?name1 ?name2 WHERE {

 ?p1 isCalled ?name1 .

 ?p1 wasBornIn ?city .

 ?p1 isMarriedTo ?p2 .

 ?p2 isCalled ?name2 .

 ?p2 wasBornIn ?city .

}

132

APPENDIX B

LUBM QUERIES

133

PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>

Q4: SELECT ?X ?Y1 ?Y2 ?Y3 WHERE {

 ?X rdf:type ub:FullProfessor .

 ?X ub:worksFor <http://www.Department0.University0.edu> .

 ?X ub:name ?Y1 .

 ?X ub:emailAddress ?Y2 .

 ?X ub:telephone ?Y3 .

}

Q8: SELECT ?X ?Y ?Z WHERE {

 ?X rdf:type ub:UndergraduateStudent .

 ?Y rdf:type ub:Department .

 ?X ub:memberOf ?Y .

 ?Y ub:subOrganizationOf <http://www.University0.edu> .

 ?X ub:emailAddress ?Z .

}

Q12: SELECT ?X ?Y WHERE {

 ?X rdf:type ub:FullProfessor .

 ?Y rdf:type ub:Department .

 ?X ub:worksFor ?Y .

 ?Y ub:subOrganizationOf <http://www.University0.edu> .

}

134

APPENDIX C

YAGO QUERIES

135

BASE <http://yago-knowledge.org/resource/>

C: SELECT ?country ?capital ?lang ?geo ?lon ?lat ?area ?population ?inst ?player ?city1 ?city2

WHERE {

 ?geo hasLongitude ?lon .

 ?geo hasLatitude ?lat .

 ?geo hasArea ?area .

 ?geo linksTo ?lang .

 ?country hasOfficialLanguage ?lang .

 ?country hasNumberOfPeople ?population .

 ?country hasCapital ?capital .

 ?capital linksTo ?inst .

 ?player playsFor ?inst .

 ?player wasBornIn ?city1 .

 ?player diedIn ?city2 .

}

F: SELECT ?gname1 ?gname2 ?fname1 ?fname2 ?city1 ?city2 WHERE {

 ?p1 hasGivenName ?gname1 .

 ?p2 hasGivenName ?gname2 .

 ?p1 hasFamilyName ?fname1 .

 ?p2 hasFamilyName ?fname2 .

 ?p1 isMarriedTo ?p2 .

 ?p1 wasBornIn ?city1 .

 ?p2 wasBornIn ?city2 .

 }

S: SELECT ?geo ?lon ?lat ?area ?wiki ?lang WHERE {

 ?geo hasLongitude ?lon .

 ?geo hasLatitude ?lat .

 ?geo hasArea ?area .

 ?geo hasWikipediaUrl ?wiki .

 ?geo linksTo ?lang .

 }

L: SELECT ?country ?capital ?lang ?geo ?area WHERE {

 ?geo hasArea ?area .

 ?geo linksTo ?lang .

 ?country hasOfficialLanguage ?lang .

 ?country hasCapital ?capital .

 }

136

APPENDIX D

DBLP QUERIES

137

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX dbp: <http://dbpedia.org/ontology/>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX swrc: <http://swrc.ontoware.org/ontology#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX dcterms: <http://purl.org/dc/terms/>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

C: SELECT ?v0 ?homepage ?name ?v1 ?year ?isbn ?publisher ?v2 ?title ?creator WHERE {

 ?v0 foaf:homepage ?homepage .

 ?v0 foaf:name ?name .

 ?v1 swrc:editor ?name .

 ?v1 dcterms:issued ?year .

 ?v1 swrc:isbn ?isbn .

 ?v1 dc:publisher ?publisher .

 ?v2 dcterms:partOf ?v1 .

 ?v2 dc:title ?title .

 ?v2 swrc:series <http://dblp.l3s.de/d2r/resource/collections/crypt> .

 ?v2 dc:creator ?creator .

}

F: SELECT ?v0 ?v2 ?v3 ?v4 ?v5 ?v6 ?v7 ?v8 WHERE {

 ?v0 swrc:series <http://dblp.l3s.de/d2r/resource/conferences/genetic> .

 ?v0 foaf:homepage ?v2 .

 ?v0 dcterms:bibliographicCitation ?v3 .

 ?v0 dcterms:issued ?v4 .

 ?v0 dc:title ?v5 .

 ?v0 dc:creator ?v6 .

 ?v6 foaf:name ?v7 .

 ?v6 rdf:type ?v8 .

}

S: SELECT ?v0 ?v2 ?v3 ?v4 ?v5 ?v6 ?v7 ?v8 ?v9 ?v10 ?v11 ?v12 ?v13 ?v14 ?v15 ?v16

WHERE {

 ?v0 swrc:journal <http://dblp.l3s.de/d2r/resource/journals/vldb> .

 ?v0 foaf:homepage ?v2 .

 ?v0 dc:creator ?v3 .

 ?v0 foaf:maker ?v4 .

 ?v0 rdfs:seeAlso ?v5 .

 ?v0 dc:identifier ?v6 .

 ?v0 dc:title ?v7 .

 ?v0 dc:type ?v8 .

 ?v0 dcterms:bibliographicCitation ?v9 .

 ?v0 dcterms:issued ?v10 .

 ?v0 swrc:number ?v11 .

 ?v0 swrc:pages ?v12 .

 ?v0 swrc:volume ?v13 .

138

 ?v0 rdf:type ?v14 .

 ?v0 rdfs:label ?v15 .

 ?v0 owl:sameAs ?v16 .

}

L: SELECT ?v0 ?v1 ?v2 WHERE {

 ?v0 dcterms:issued "2017" .

 ?v0 swrc:journal ?v1 .

 ?v1 rdfs:label ?v2 .

}

	Table 3.5: Temporary Views of Subject s1 and s2
	Table 3.5 represents the temporary views s1, and s2 of the corresponding subjects s1 and s2. These temporary views are NOT materialized to disk or even to the memory and lifetime of these views are dependent on the SparkSession. The join conditions ar...

