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ABSTRACT

Astrobiology is premised on the idea that life beyond Earth can exist. Yet, everything

known about life is derivative from life on Earth. To understand life beyond Earth,

then, requires a definition of life that is abstracted beyond a particular geophysi-

cal context. To do this requires a formal understanding of the physical mechanisms

by which matter is animated into life. At current, such descriptions are completely

lacking for the emergence of life, but do exist for the emergence of consciousness.

Namely, contemporary neuroscience offers definitions for universal physical processes

that are in one-to-one correspondence with conscious experience. Since consciousness

is a sufficient condition for life, these universal definitions of consciousness offer an

interesting way forward in terms of the search for life in the cosmos. In this work, I

systematically examine Integrated Information Theory (IIT), a well-established the-

ory of consciousness, with the aim of applying it in both biological and astrobiological

settings. Surprisingly, I discover major problems with Integrated Information Theory

on two fronts: mathematical and epistemological. On the mathematical side, I show

how degeneracies buried deep within the theory render it mathematically ill-defined,

while on the epistemological side, I prove that the postulates of IIT are scientifically

unfalsifiable and inherently metaphysical. Given that IIT is the preeminent theory

of consciousness in modern neuroscience, these results have far-reaching implications

in this field. In addition, I show that the epistemic issues of falsifiability that ham-

string IIT apply quite generally to all contemporary theories of consciousness, which

suggests a major reframing of the problem is necessary. The problems that I reveal

in regard to defining consciousness offer an important parallel in regard to defining

life, as both fields seek to define their topic of study in absence of an existing theo-

retical framework. To avoid metaphysical problems related to falsifiability, universal

theories of both life and consciousness must be framed with respect to independent
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empirical observations that can be used to benchmark predictions from the theory. In

this regard, I argue that the epistemic debate over scientific theories of consciousness

should be used to inform the discussion regarding theoretical definitions of life.
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For Nida, next to whom the beauty of science pales in comparison.
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Chapter 1

INTRODUCTION

Modern astrophysics provides insight into many existential questions, such as the

nature of space and time, the ultimate fate of the universe, and the scale of the

cosmos. Yet, the question of whether or not we are alone in the universe remains

fundamentally unaddressed. The burgeoning field of exoplanetary science promises

insight into this question, as technological advances allow us to infer the atmospheric

composition of planets beyond our solar system for the first time ever. From these

faint beams of light, we will either detect the presence of life elsewhere in the universe

or remain alone indefinitely. The a priori balance of outcomes depends entirely on

a working understanding of the physical processes by which matter is animated into

life.

1.1 Exoplanets

The first confirmed exoplanets were discovered in 1992 by Wolszczan and Frail

(Wolszczan and Frail, 1992). At the time, the authors were able to identify periodic

variations in the arrival time from a millisecond radio pulsar that were determined

to be due to the gravitational influence of at least two terrestrial size planets, with

orbital periods of 98 and 67 days respectively. As it turns out, this first method of

exoplanet detection is also the rarest, as the solid angle swept out by the beam from

a pulsar is relatively small and the supernova process by which they are generated is

likely to destroy any primordial planets. Thus, only a handful of exoplanets have been

discovered via pulsar timing variations to date (Schneider et al., 2011), but these first

two confirmed planets paved the way for future telescope missions devoted entirely
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to exoplanet hunting. Of these, the Kepler Space Telescope is undoubtedly the most

famous, and responsible in large part for ushering in the modern era of exoplanet

science (Borucki et al., 2010, 2011). Launched in 2009, Kepler is devoted entirely

to exoplanet hunting via the transit method, which is premised on the idea that as

a planet passes in front of its host star the flux from the host star is diminished

due to the shadow of the planet on the face of the star which allows the presence

of the planet to be inferred. Of course, to confidently make this inference requires

that the signal to noise ratio be such that the planetary signal can be unambiguously

decoupled from background noise such as starspots on the stellar surface. Thus, a

multitude of transits is typically required which biases the transit method towards

short-period, large planets (Ananyeva et al., 2020). This bias resulted in the first

major surprise of the modern exoplanet era; namely, the ubiquity of “hot Jupiters”,

which are Jupiter mass planets on extremely close orbits (often on the order of days),

for which there is no analog in our solar system. In addition to the discovery of

hot Jupiters, “super-Earths” were discovered as a second class of planets with no

immediate analog in our solar system (Mayor et al., 2009). Indeed, super-Earths are

intermediate-mass planets (2-15 M⊕) that are expected to have either a thick gaseous

envelope (“mini-Neptune”) or a high abundance of water (“ocean world”) (Fu et al.,

2009; Adams et al., 2008).

The discovery of water worlds brings into question the difference between a hab-

itable planet and an inhabited planet. In exoplanet science, the canonical defini-

tion of the former is any planet capable of maintaining liquid water on its surface

(Lammer et al., 2009). More specifically, the habitable zone refers to the annulus

distance surrounding a star within which an Earth analog suffers from neither a run-

away greenhouse effect (inner radius) nor frozen water-ice (outer radius) (Kopparapu

et al., 2013). Interestingly, the bounds on habitability correspond qualitatively to
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Venus and Mars, with the former representing a planet that suffers from a runaway

greenhouse effect and the latter representing a planet with frozen water-ice. Thus, the

search for habitable worlds is clearly influenced by what it means to be habitable in

our solar system, which is a point we will return to in detail later on. Naturally, water

worlds satisfy the definition of habitable planets given that their surfaces are primar-

ily liquid water. For example, in the TRAPPIST-1 system (Luger et al., 2017), three

of the seven terrestrial exoplanets are in the canonical habitable zone; yet, of these,

none are likely to be inhabited due to the fact that too much water actually shuts off

key geochemical cycles thought to be necessary for life, such as plate tectonics and

continental weathering (Unterborn et al., 2018; Kite et al., 2009).

In addition to habitability, detectability is another concern at the forefront of

modern exoplanet science (Desch et al., 2017; Walker et al., 2018). There are four

potential outcomes that can result from an exoplanetary observation: a true positive,

a true negative, a false positive, or a false negative. A true positive is the ideal

outcome, in which we detect life on an inhabited planet (i.e. life is there and we

detect it). However, there is also the potential for an observation to result in a false

negative, in which life is present but we fail to detect it. In practice, this situation

is no better than a true negative, as failure to detect life on an inhabited planet

results in the same practical outcome as failure to detect life on an uninhabited

planet - we simply can’t tell the difference. Thus, the question of habitability has

shifted to one of detectability, as scientists realize the most likely places to detect

life are not necessarily the most likely places for life to exist (Unterborn et al., 2018;

Glaser et al., 2020). The last of the four outcomes is a false positive, in which a

biosignature is detected and falsely attributed to biotic sources when, in reality, it

was caused by an abiotic process. This is arguably the deepest issue currently faced

by exoplanetary scientists, as an inability to rule out abiotic sources amounts to an
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inability to confidently infer the presence of life. To understand this issue further, it

helps to investigate the landscape of potential biosignatures, so as to understand the

relative confidence we have in each.

1.2 Biosignatures

There are certain biosignatures that, if detected, would result in the unambiguous

confirmation of life outside of Earth. Microbial life on Mars, for example, would

be an unambiguous confirmation that life on Earth is not alone (so-called “smoking

guns”). Yet, if we were to find life on Mars, chances are that either it spread from

Earth to Mars or vise versa, in which case we still have only a single example of the

emergence of life. Finding life elsewhere in the solar system, such as the moons of

Jupiter or Saturn, would likely provide a much stronger constraint on the likelihood

of life emerging in the universe, as the chances of a shared origin diminish greatly.

This is not to say that finding life on Mars would not be informative but only to

emphasize the fact that there is a risk/reward tradeoff when it comes to the search

for life outside of Earth. Here, we are solely concerned with the remote detection

of life outside of our solar system. The reason for this is primarily aesthetic, as the

search for life outside our solar system answers a different set of questions than the

search for life within our solar system, though the challenges associated with decoding

the presence of life from a beam of light are compounded accordingly.

Arguably the only real smoking gun biosignature from an exoplanet would be an

unambiguous technosignature - either in the form of decoded communication or the

detection of molecules that are the byproduct of a complex technological process (Lin

et al., 2014; Stevens et al., 2016; Griffith et al., 2015; Korpela et al., 2015). Yet, the

likelihood of this occurring is extremely low due primarily to three different factors.

First, intelligent life must overcome many “filters” in order to reach a high enough
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level of complexity for interstellar communication (Hanson, 1998). Second, it is un-

clear whether communication is even possible in the absence of common grounding, as

decoding messages requires the use of a mutually agreed-upon code (Brillouin, 2013).

And third, technological barriers may limit the ability of advanced civilizations to

contact each other (Dyson, 1979). All this to say that the most unambiguous biosig-

nature is also the one that is least likely to occur, which is an inverse correlation that

seems to holds quite generally (i.e. the less ambiguous a biosignature is the rarer it

is).

In the absence of a clear technosignature, we get into the more plausible realm

of biosignatures from unintelligent life, which is what the vast majority of current

exoplanet science is focused on. In particular, it is oxygenic photosynthesis that

the community has established as the most promising biosignature going forward

(Schwieterman et al., 2018; Grenfell, 2017; Meadows et al., 2018; Walker et al., 2018).

Roadmaps for the future of astrobiology, such as that of Horneck et al. (2016), skew

heavily towards molecular oxygen (O2) as a biosignature not because it is a smoking

gun, but rather, it is the most likely to be detected. Alternatives such as the “all

small molecules” program of Seager et al. (2016) exist and may very well provide a

less ambiguous biosignature than O2, but they are unlikely to be detectable via trans-

mission spectroscopy due to the trace abundances that result from such processes. If

one reflects on what biosignatures are technologically feasible with the James Webb

Space Telescope (JWST) it is without a doubt oxygenic photosynthesis that shows

the most promise. For this reason, there is an abundance of literature surrounding

O2 as a biosignature (Meadows, 2017). The emerging consensus is that if one can

understand the sources and sinks of abiotic oxygen, then the detection of oxygen in

the atmosphere in an abundance that cannot be attributed to abiotic means must be

due to the presence of life on a given planet. Thus, there is a considerable amount
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of effort currently underway to understand the carbon cycle on earth and beyond, as

ultimately this dictates the amount of oxygen gas present in a planetary atmosphere.

In particular, coupled tectonic-climate models attempt to understand the interplay

between subduction, surface creation, weathering, and climate so that the abiotic

rates of gas production can be constrained (Grenfell, 2017; Sleep and Zahnle, 2001;

Whipple and Meade, 2004; Roe et al., 2008; Lee et al., 2015). Understanding this

problem on Earth is difficult enough, let alone exoplanets; yet, it plays a crucial role

in ruling out abiotic sources of oxygen gas.

In the context of the environment, there are a few situations for which molecular

oxygen has no known abiotic sources (Meadows et al., 2018). First, the detection of

oxygen in combination with methane; and second, the detection of oxygen in absence

of carbon monoxide. The reason the former serves as a biosignature is due to the fact

that methane and oxygen are in redox disequilibrium (methane is a sink for oxygen),

which means the presence of oxygen and methane together implies a high rate of O2

replenishment, likely from a biological source though abiotic sources are not ruled

out (Krissansen-Totton et al., 2018). Similarly, the presence of oxygen in absence of

carbon monoxide (CO) suggests photochemical generation is not responsible for the

abundance of O2, as CO would then be abundant as well. Thus, in the context of

other spectral features, abiotic sources of O2 are less likely.

In addition to the detection of molecular oxygen via transmission spectroscopy,

another possible biosignature is the so-called “red-edge” (Seager et al., 2005; Pallé

et al., 2009; Schwieterman et al., 2015). The red-edge refers to the fact that pho-

tosynthetic life on earth uses primarily Chlorophyll a as the molecule that harvests

sunlight and converts it into energy. This molecule, in turn, has a very particular

absorption spectrum - absorbing green wavelengths of light strongly while primarily

reflecting the rest. This, in combination with the internal geometry of leaves, results
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in a steep increase in reflection at the boundary between visible and infrared radia-

tion (hence the term “red-edge”). In terms of biosignatures, it is possible to imagine

detecting this signal in the reflection spectrum of an exoplanet, though this detection

is notoriously difficult (Montanes-Rodriguez et al., 2006). Better yet, it is possible to

imagine seasonal variations in the reflectance spectrum corresponding to the growth

and decay of vegetation (Meadows, 2008), though again a strong biosignature such

as this is likely to be incredibly rare and difficult to detect.

1.3 A Bayesian Approach

Given the previous section, it is clear that future biosignatures are likely to be

ambiguous rather than unequivocal - begging the question of whether or not an abi-

otic process is responsible for a false positive. Indeed, there have been numerous

“biosignature” detections over the years, with varying degrees of ambiguity. For ex-

ample Allan Hills meteorite 84001 (ALH 84001), discovered in 1984, was reported

to show surface features that were consistent with biological origin (McKay et al.,

1996). Naturally, this resulted in an extremely high-profile publication that made

world-wide news, prompting former United States president Bill Clinton to make a

statement on the discovery (NASA, 1996). However, the scientific community eventu-

ally reached the consensus that the surface features in question were not biological in

origin (Golden et al., 2001). More recently, another headline-making biosignature was

that of the “Alien Megastructure” star KIC 8462852 (also known as Tabby’s Star).

Discovered by the Kepler Space Telescope, this anomalous star showed occasional

dips in brightness on the order of tens of percent (e.g. 20%). At the time, aperiodic

dips in brightness of this magnitude had no known astrophysical source, prompting

some to argue that the dips could be caused by alien artifacts designed to either

harvest starlight for energy or to provide extra living space for inhabitants (Wright
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et al., 2015). However, follow-up observations revealed a wavelength dependence to

these dips that is indicative of dust, rather than intelligent life (Schaefer et al., 2018).

As a third example, there was a recent report of phosphine gas detected in the atmo-

sphere of Venus, for which no known abiotic process could be responsible (Greaves

et al., 2020). Unfortunately, this sensational report was short-lived as an error in the

data reduction pipeline was found to be responsible for the detection (Greaves et al.,

2020; Snellen et al., 2020). In all three of the preceding examples, a biosignature was

reported but ultimately concluded to be the result of an abiotic rather than biotic

process (i.e. a false positive). The purpose of these examples is to illustrate the logic

underlying the search for alien biosignatures; namely, if a biosignature is detected, all

known abiotic processes are considered in turn and if none can explain the observation

biology is invoked as the solution.

Ideally, the likelihood of a biological process being responsible for a given observa-

tion should be weighed against the likelihood of an unknown (or unlikely) abiological

source. For this comparison to be done objectively, Bayesian inference must be in-

voked. Put simply, Bayesian inference is a mathematical formalism that allows one

to precisely quantify degrees of belief based on available evidence (Joyce, 2019). In

regard to biosignatures, Bayes’ Theorem, which is the core of Bayesian inference, can

be formulated as follows:

P (life|data) = P (data|life)P (life)
P (data) = P (data|life)P (life)

P (data|no life)P (no life) + P (data|life)P (life)

Here, the probability that we have detected life given an observation, P (life|data),

breaks down into a ratio of the likelihood that life generates the data, P (data|life),

and the likelihood of the observation in general, P (data). In practice, the term in

the denominator is almost always decomposed into a weighted sum of conditional

probabilities which, in this case, represent the likelihood of true and false positives

8



generating the data: P (data|life) and P (data|no life). Thus, the use of Bayes’ theo-

rem allows the notion of true and false positives to enter the discussion surrounding

biosignatures in a way that is both natural and quantitative. Consequently, all biosig-

natures can and should be cast in terms of Bayes’ theorem in order to formalize their

underlying assumptions. For example, the detection of seasonal changes in pigmen-

tation via a reflection spectrum has no known abiotic source, which translates into

the mathematical assumption P (data|no life) = 0. Thus, we have P (life|data) = 1,

quantitatively justifying the claim of a smoking gun. Conversely, in the report of

phosphine on Venus, there is a non-negligible probability that the data was due to

a source other than life, so P (data|no life) > 0 which lowers the likelihood of a true

positive. Of course, to make this argument precise requires knowledge of all other

terms in Bayes’ theorem, such as the prior probability of life: P (life).

It is here that the full utility of Bayes’ theorem is evident, as it forces us to

quantify the assumptions that ultimately result in ambiguity over the interpretation

of biosignatures. In particular, the term P (life) represents the prior probability, or

initial degree of belief, that there is life elsewhere in the universe. Based on the fact

life exists on earth, we know P (life) > 0, but the exact value could be arbitrarily large

or astronomically small (Carter, 1983; Spiegel and Turner, 2012; Walker et al., 2018).

If the emergence of life is incredibly rare (e.g. P (life) = 1e−24) then it is more likely

that an unknown abiotic source is responsible for the observation than life, as the

chances of life existing elsewhere in our universe are negligibly small. Conversely, if

the emergence of life is relatively common (e.g. P (life) = 1e−4), then the detection of

something as simple as O2 will result in a non-negligible probability of a true positive.

Unfortunately, there is currently no way of objectively assessing these probabilities

due to the fact that the probability of life emerging is entirely unconstrained.

9



1.4 Defining Life

The inability to constrain the likelihood of life emerging in a given planetary

context supervenes on our inability to define life. Earth is the only known example of

a planet that has given rise to life, which means we have a single data point (known as

the “N=1 problem”) from which to draw inferences from (Sterelny and Griffiths, 2012;

Smith, 2016). Granted, the diversity of life on earth suggests paths forward in terms of

“universal biochemistry” (Mariscal and Fleming, 2018; Kim et al., 2019), but there is

no doubt in the scientific community that we lack a mechanistic understanding of the

physical conditions that give rise to life. We lack both a theoretical definition of what

it means to be alive as well as a formal framework for differentiating between living

and non-living systems. Consequently, it can be argued that the current definition of

life in the exoplanet community is one of folk-psychology - operating strictly on an

informal “know it when you see it” basis (Machery, 2012; Walker et al., 2018).

Unsuccessful attempts to define life have been ongoing for decades. As early as

1943, Nobel laureate Erwin Schrödinger attempted to explicate a working definition of

life based on physics, but his conclusion was that life requires “other laws of physics

that are hitherto unknown” (Schrödinger, 1992; Walker, 2017). Other notable at-

tempts at defining life over the years included those of Dyson (1999); Hazen (2017);

Feinberg and Shapiro (1980); Kamminga (1988); Fleischaker (1990); Koshland (2002).

The most popular definition, and that adopted by NASA, is the chemical Darwinism

definition of Joyce; namely, that “life is a self-sustaining chemical system capable of

Darwinian evolution” (Joyce, 1994). Yet, this definition does little to alleviate the

problem faced by the exoplanet community for several reasons. First, it says nothing

of the emergence of life and therefore does not constrain P (life); second, it is contin-

gent on life as we know it, thus failing to overcome the N=1 problem; and third, it is
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qualitative rather than quantitative, which implies it does not readily translate into

the Bayesian formalism. For these reasons, among others, the chemical Darwinism

definition of life is not unanimously accepted and is of little operational value (Cleland

and Chyba, 2002; Machery, 2012).

The inability to define life despite nearly a century of attempts has lead to the

postmodern attempt to understand why life is so difficult to understand (Cleland and

Chyba, 2002; Machery, 2012; Trifonov, 2011; Walker et al., 2017b). There is growing

support for the idea that the problem with defining life is rooted in the inability

to recognize life as a process rather than an end result (Walker et al., 2017b). In

this paradigm, what we commonly refer to as “life” is recognized as a byproduct

of a fundamental dynamical process that coordinates inanimate matter into self-

sustaining chemical systems (Dupré, 2017; Smith, 2016). Thus, being alive is not as

simple as having a metabolism, for example, as a system without a metabolism such

as a screwdriver on Mars cannot be explained without invoking life as a process. The

exact physical processes by which matter is concerted into life remain undetermined,

but there is growing evidence that what differentiates living from non-living systems

is the relationship between information and matter (Walker and Davies, 2013; Walker

et al., 2017a). To quote Walker directly:

[Treating life as a process] necessitates a re-conceptualization of the ori-

gins of life, removing the imposed hard boundary between non-life and

life, and recognizing there may exist physical processes that we do not

yet understand which are most prominent in living systems but are not

necessarily absent elsewhere. One candidate is the physics of information:

it is often speculated that information may be a key factor in the origins

of life. Just as massive bodies represent ideal example systems to study

gravity, life could represent the structures in physical reality where the ef-

11



fects of information are most prominent. However, we do not understand

how information can structure matter (or precisely what “information”

is for that matter), yet it seems apparent this is critical to structuring

living systems across the hierarchy of living processes from cells to cities.

(Walker et al. (2017b))

1.5 The Strong Life-Mind Continuity Thesis

The working hypothesis underlying the current work is that information process-

ing is what differentiates living and non-living systems. In particular, both living and

non-living systems demonstrate complex collective dynamics but the informational

architecture that gives rise to these dynamics is hypothesized to be different (Kim

et al., 2021). Oil droplets, for example, are capable of complex dynamics that at least

visually imitate the dynamics of biological systems such as ant colonies (Gutierrez

et al., 2014). However, ant colonies presumably process more information than oil

droplets in the form of long-term spatiotemporal correlations that are critical to the

robust implementation of complex computations such as nest site selection (Mallon

et al., 2001; Pratt and Sumpter, 2006; Valentini et al., 2020). Similarly, the human

brain processes more information than an ant colony as evident by the fact that the

space of computations realizable by the human brain is vastly greater than that of an

ant colony (Von Neumann and Kurzweil, 2012). Thus, the goal is to quantitatively

test the working hypothesis by applying a mathematical measure of information pro-

cessing to a variety of living and non-living dynamical processes, such as those shown

in Figure 1.1.

There are several information-theoretic measures that could potentially be used

to quantify the difference between living and non-living dynamical systems. These

include active information (Lizier et al., 2012), transfer entropy (Schreiber, 2000;
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Figure 1.1: The Goal of Our Working Hypothesis Is to Demonstrate That a Quan-

titative Measure of Information Processing Can Be Used to Differentiate Living and

Non-living Systems. Interacting Oil Droplets (Left) Are Hypothesized to Process

Less Information than Ant Colonies (Middle) Which, in Turn, Are Hypothesized to

Process Less Information than the Human Brain (Right).

Lizier et al., 2008), effective information (Hoel, 2017), excess entropy (Crutchfield

and Feldman, 2003), and integrated information (Tononi, 2004; Balduzzi and Tononi,

2008; Oizumi et al., 2014). 1 Of these, integrated information is of particular interest

due to the claim that it is both a necessary and sufficient condition for consciousness.

Of course, a measure of consciousness is not the same as a measure of life, but it

is a trivial step to assume consciousness is a sufficient condition for life given the

difficulty associated with imagining consciousness in the absence of life. Thus, if

integrated information is necessary and sufficient for consciousness, as its proponents

claim, it should also be viable as a sufficient condition for life.

In addition to the assumption that consciousness is a sufficient condition for life,

there is an alternative reason to focus on a measure of consciousness as opposed

to (non-existent) measures of life. Namely, the idea that cognitive processes are an

enrichment of the organizational principles and processes definitive of life. In its
1A full review of these measures in the context of differentiating living and non-living systems

can be found in Kim et al. (2021)
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strongest form, this is known as the “strong life-mind continuity thesis” (Stewart,

1995; Maturana and Varela, 1987; Wheeler, 1997; Kirchhoff and Froese, 2017) and

can be outlined as follows:

The thesis of strong continuity would be true if, for example, the ba-

sic concepts needed to understand the organization of life turned out to

be self-organization, collective dynamics, circular causal processes, au-

topoiesis, etc., and if those very same concepts and constructs turned out

to be central to a proper scientific understanding of mind. (Clark (2000))

In other words, if strong life-mind continuity holds then a measure of conscious-

ness is one and the same with a measure of life. For our purposes, this suggests

there is no need to reinvent the wheel by defining a quantitative measure of life if

a quantitative measure of consciousness already exists and is well-established in the

cognitive neuroscience community.

1.6 Integrated Information Theory

Integrated Information Theory is the most popular theory of consciousness in con-

temporary neuroscience (Figure 1.2). In addition to generating hundreds of research

papers, it recently received a twenty-five million dollar grant, solidifying its promi-

nence as a top research program for years to come (Reardon, 2019). The theory’s

popularity is due in large part to three factors. First, it is a “phenomenologically

derived” theory of consciousness, meaning that the theory axiomatizes what it is

like to be conscious and from these axioms, it derives a mathematical measure. Of

course, the word “derives” is used loosely in this context, as the phenomenological

axioms must first be translated into physical postulates which are, in turn, translated

into a mathematical formalism. Nonetheless, the phenomenology-first approach to
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consciousness avoids many epistemic problems that plagued the scientific study of

consciousness throughout the twentieth century and is one of IIT’s biggest appeals

(Negro, 2020). Second, the theory is mathematical in nature, aiming to provide an

information-theoretic measure of consciousness - Φ - that can be applied out of the

box to any dynamical system (all that is necessary is a transition probability ma-

trix). Thus, for the first time, there is a theory of consciousness that goes beyond

ambiguous claims and makes concrete predictions in terms of a real-valued function

corresponding to consciousness. This leads to the third factor responsible for IIT’s

popularity, which is that it is an experimentally falsifiable theory. Predicted Φ val-

ues can be compared to experimental results and used to provide evidence for or

against the epistemic foundations of the theory. For example, if a conscious human

has Φ = 0 the theory is falsified. For these reasons, among others, IIT has seen expo-

nential growth in popularity over the past two decades and recently surpassed global

neuronal workspace (Dehaene and Changeux, 2004) as the most popular theory of

consciousness to date. 2

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Year

0

100

200

300

400

500

C
ita

tio
ns

 P
er

 Y
ea

r

Contemporary Theories of Consciousness
Global Neuronal Workspace Integrated Information Theory Higher-order Thought Attention Schema Theory

Figure 1.2: Rival Theories of Consciousness in Terms of Citations per Year. IIT Is

Currently the Most Popular Theory of Consciousness in Contemporary Neuroscience.

2Data is from the SCOPUS database (Burnham, 2006) and includes any citation that uses the
name of the theory in the title, abstract, or keywords.
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The core idea underlying IIT is, unsurprisingly, integrated information. Measures

of integrated information such as Φ quantify the extent to which the whole is more

than the sum of its parts (Tegmark, 2016). To do so, one “cuts” the system into parts

by preventing information exchange between subcomponents. If the dynamics of the

system remain unchanged, then the subcomponents are acting independently and the

system is not integrated. Mathematically, this can be formalized by asking whether

or not the transition probability matrix M describing the dynamical evolution of a

system can be tensor factorized into the product of two (or more) conditionally inde-

pendent transition probability matrices MA and MB. More specifically, if we consider

a time-dependent random process x(t) with marginal probability distributions p(x0)

and p(x1) (corresponding to x(t0) and x(t1)), we have a Markov process defined by:

p(x1) = Mp(x0)

Similarly, if we tensor factorize the transition probability matrix as M̂ = MA ⊗MB,

we have an approximation to this process defined by:

p̂(x1) = M̂p(x0)

Measures of integrated information then quantify the information-theoretic distance

D between the marginal probability distribution p(x1) that results from the natural

dynamical evolution and the marginal distribution p̂(x1) that results under tensor

factorization. Minimizing this distance over all possible tensor factorizations yields

the Φ value for the system; That is:

Φ = minD[p(x1)||p̂(x1)]

There is an intuitive appeal to the notion that consciousness is the extra “stuff”

that emerges when a system is considered as a whole rather than its parts. Yet,
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this intuition is far from a definition and requires very strong justification if it is to

form the axiomatic backbone of a scientific theory. Thus, while the ultimate goal

is to apply a measure such as Φ to various living and non-living systems, we must

first assess the epistemic foundations of the theory and the arguments justifying its

validity.

1.7 Dissertation Context and Layout

Within this context, this dissertation levels a number of serious accusations against

the scientific validity of IIT. In Chapter 2, I demonstrate that despite being lauded

as a mathematically rigorous theory of consciousness, ambiguity in the definition

of Φ renders IIT mathematically ill-defined In Chapter 3, I turn to the epistemic

foundations of the theory, demonstrating that the presence or absence of integrated

information is ultimately a consequence of arbitrary changes in the binary labels are

used to internally represent functional states. This, in turn, proves IIT is either (a)

falsified or (b) inherently unfalsifiable. In Chapter 4, I make this argument concrete

by building Turing indistinguishable machines with and without Φ > 0, for which

only metaphysical justification can be used to explain IIT’s predicted difference in

subjective experience. In Chapter 5, I prove that the issues with falsification that

hamstring IIT apply quite generally to all machine-state functionalist theories of con-

sciousness, a broad class of theories that subsumes IIT. As a whole, this dissertation

represents a step towards formally understanding the limits and pitfalls of scientific

inquiry as it applies to disciplines lacking a formal definition of their topic of study,

such as astrobiology, which is a topic I return to in the conclusion.
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Chapter 2

ON THE NON-UNIQUENESS PROBLEM IN INTEGRATED INFORMATION

THEORY

2.1 Abstract

Integrated Information Theory is lauded as a mathematically rigorous theory of

consciousness due its provision of a scalar mathematical measure of consciousness - Φ -

deduced from the phenomenological axioms of the theory. Here, we show that despite

its widespread use, Φ is not a well-defined mathematical concept in the sense that the

value it specifies is neither unique nor specific. This problem, occasionally referred to

as “undetermined qualia”, is the result of degeneracies buried deep in the optimization

routine used to calculate Φ and completely undermines the validity of the theory. As

demonstration, we first apply the mathematical definition of Φ to a simple AND+OR

logic gate system and show 83 non-unique Φ values result, spanning a substantial

portion of the range of possibilities. We then introduce a Python package called

PyPhi-Spectrum designed to address this issue by calculating the entire spectrum of

possible Φ values for any given system and apply it to a host of recently published

Φ values. We find that virtually all Φ values in the literature are chosen arbitrarily

from a set of non-unique possibilities, often including both conscious and unconscious

predictions. Lastly, we review proposed solutions to this problem and find none to

be adequate, either because they fail to specify a unique Φ value or yield Φ = 0

for systems that are clearly integrated. We conclude with a philosophy of science

discussion, arguing the handling of IIT’s core ideas has been unscientific to date.
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2.2 Introduction

Integrated Information Theory (IIT) is lauded as a mathematical theory of con-

sciousness due to its provision of a scalar mathematical measure - Φ - that is claimed

to predict the overall level of consciousness in virtually any dynamical system. In

comparison to other contemporary theories, such as Global Neuronal Workspace The-

ory (Dehaene and Changeux, 2004) or Predictive Processing (Dolkega and Dewhurst,

2020; Wilkinson et al., 2019; Seth, 2014; Hobson et al., 2014; Hohwy, 2018), the math-

ematical rigor of IIT is unique and is at least partially responsible for the exponential

growth in popularity IIT has experienced over the past decade 1 . It may come as a

surprise, then, to learn that a unique Φ value is not guaranteed. This is not to say

there is ambiguity in the derivation of Φ from the phenomenological axioms of the

theory, which there is (Barrett and Mediano, 2019; Bayne, 2018; McQueen, 2019),

but rather, that the accepted mathematical definition of Φ in IIT 3.0 (Oizumi et al.,

2014) does not result in a uniquely defined value. Indeed, as we will show, it is possi-

ble that IIT simultaneously predicts a system to be both conscious and unconscious

which implies the theory is mathematically ill-defined.

As early as 2012, it was clearly known by proponents of IIT that Φ may be

“indeterminate” for some systems (Tononi, 2012). Yet, to date, an investigation of

the scope of this problem has not been undertaken. How this fundamental flaw came

to be overlooked is somewhat of an enigma, as even the simplest of systems can evade

a straightforward Φ evaluation. The specifics of this problem result as a consequence

of what is occasionally referred to as “underdetermined qualia” or “tied purviews” in

the literature (Krohn and Ostwald, 2017; Moon, 2019). Basically, Φ is defined as an

information-theoretic distance between two vectors known as cause-effect structures
1It is relatively straightforward to track the popularity of rival theories using the SCOPUS

database (Burnham, 2006)
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(CES) or “constellations”. A constellation is comprised of “concepts” which, in turn,

are comprised of three things: a “core cause repertoire” (probability distribution), a

“core effect repertoire” (probability distribution), and a φMax value (scalar). The core

cause and core effect are chosen based on an optimization routine that is designed to

select the cause/effect with the highest φmax value. However, in practice, equivalent

φMax values are ubiquitous - in which case the core cause and core effect are non-

unique or “degenerate”. Naturally, the constellations are affected by this degeneracy

(as they are comprised of the degenerate core cause/effect repertoires) which, in turn,

affects the value of Φ. Put simply, cause-effect structures are underspecified and

therefore the distance between them (Φ) is non-unique.

Of course, it is possible to select a core cause and core effect repertoire arbitrarily

from the set of degenerate values. For example, using an if less than statement

in the optimization routine will select the first of the degenerate core causes/effects

while using an if less than or equal to statement will select the last of the de-

generate core causes/effects. Thus, it is easy to imagine that numerical routines used

to calculate Φ, such as PyPhi (Mayner et al., 2018), simply failed to consider this

small detail. However, this is not the case. Buried in the configuration files for PyPhi

is the option to select whether to keep the smallest or largest purview element in

the event of a tie (i.e. the same φmax value for different causes/effects). Indeed,

this is an ad hoc solution that is well known in the small body of literature that

covers degenerate core causes and effects (Moon, 2019; Krohn and Ostwald, 2017;

Albantakis et al., 2019). Unfortunately, it is equally well known that this is not a

valid solution (Moon, 2019), as often the tied purview elements are the same size and

the fundamental degeneracy remains unaddressed. 2 In addition, there is nothing
2In which case, algorithms such as PyPhi default to selecting the first of the degenerate values

which depends arbitrarily on the order in which purview elements are considered
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phenomenological to suggest why the smallest or largest purview element should be

retained as the core cause/effect, which is evident by the fact that different authors

reach conflicting conclusions as to whether to select the smallest or largest purview

element (Krohn and Ostwald, 2017; Albantakis et al., 2019; Moon, 2019).

Here, we aim to shed light on this issue by attempting to calculate Φ for a very

simple model system in the form of an AND gate connected to an OR gate. Taking

the mathematical definition of Φ at face value, we demonstrate that a spectrum

of 83 different Φ values results, corresponding to both conscious and unconscious

predictions. Next, we provide a modified version of PyPhi called PyPhi-Spectrum

that can be used to calculate the entire spectrum of Φ values for a given dynamical

system with a single function call, as opposed to the singular value that is typically

reported. We then apply this algorithm to a corpus of ten recently published Φ values,

in order to determine the extent to which non-unique Φ values are overlooked in the

literature. Last, we investigate whether or not proposed solutions adequately address

this problem. We conclude with a philosophy of science discussion related to the

scientific handling of ideas.

2.3 Methods

2.3.1 Preliminaries

In IIT 3.0, ΦMax is the overall level of conscious experience that is predicted for a

given dynamical system. The calculation of ΦMax is notoriously difficult to perform.

In total, five nested optimization steps are required, as shown in Algorithm 1. At

the core of this routine is a simple distance measure in the form of an earth mover’s

distance (Rubner et al., 2000) between two probability distributions. This results in

a measure of integration known as φ (“little phi”). However, this elementary distance
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calculation must be performed for every possible partition of a given “purview” in

order to calculate φMIP , then every possible purview for a given “mechanism” in order

to find φMax 3 . This results in what is known as a cause-effect structure (CES) or

“constellation”, which is defined by the set of mechanisms, their φMax values, and two

probability distributions per mechanism corresponding to the “core cause” and “core

effect”. Next, one must generate a constellation for every possible partition of the

subsystem under consideration and use a modification of the earth mover’s distance

to quantify how close this constellation is to that of the unpartitioned subsystem.

This results in a second measure of integration known as Φ (“big Phi”), which is

designed to quantify the effect of a system-level partition on the underlying ability

for a system’s components (mechanisms) to integrate information. The system-level

partition with the smallest Φ value is the minimum information partition (MIP) and

the corresponding Φ value is ΦMIP . Last, this entire process must be repeated for

every possible subsystem in a given system in order to find the maximum integrated

information ΦMax. In total, this hierarchy of nested optimization routines results in a

computational complexity that scales as O(13m), where m is the number of elements

in the system and is unrealizable in practice for all but the smallest of physical systems

(c.f. Appendix A).

2.3.2 Degenerate Core Causes and Effects

To demonstrate the problems inherent in the mathematical definition of ΦMax we

will consider a simple system comprised of an AND gate and an OR gate connected to

each another, as shown in Figure 2.1. Since there are only two elements, we need not

worry about the outermost optimization as a subsystem must be comprised of at least
3Here, we assume the reader is familiar with the basic terms in IIT 3.0. For a more detailed

explanation of terms, we refer the reader to the original IIT 3.0 publication (Oizumi et al., 2014).
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Algorithm 1: Pseudocode Overview of the Routine to Calculate Phi Max
1 ## Calculate Phi_Max
2 for each subsystem in the powerset of system elements:
3 ## Calculate Phi_MIP
4 for each unidirectional partition of the subsystem:
5 ## Build CES
6 for each mechanism in the powerset of the subsystem elements:
7 ## Calculate phi_max
8 for each element in the past purview:
9 ## Calculate phi_cause_max

10 for every partition of the purview element:
11 phi = D(partitioned_purview || unpartitioned purview)
12 phi_cause_max = max(phi)
13 for each element in the future purview:
14 ## Calculate phi_effect_max
15 for every partition of the purview element:
16 phi = D(partitioned_purview || unpartitioned purview)
17 phi_effect_max = max(phi_effect_mip)
18 phi_max = min(phi_cause_max,phi_effect_max)
19 Phi = D(original_ces || new_ces)
20 Phi_MIP = min(Phi)
21 Phi_Max = max(Phi_MIP)

two components in order to generate ΦMIP > 0, so ΦMIP = ΦMax in what follows.

To calculate ΦMIP we first must initialize the system into a given state. We assume

an initial state s0 = 00 in all that follows, though our results are not sensitive to this

choice. The next step is to identify the cause-effect structure (CES) or “constellation”

C corresponding to the transition probability matrix (TPM) of the unpartitioned

system. To do this, one must find the core cause and core effect of every potential

mechanism in the system, where a mechanism is any element in the power set of the

subsystem. In our case, the potential mechanisms are in P({AcBc}) = {Ac, Bc, ABc}

where the superscript c denotes the mechanism in its current state. For each element

in this set, we must identify how well it constrains elements in the past power set

P({ApBp}), known as the past purview, as well as how well it constrains elements in

the future powerset P({AfBf}), known as the future purview.
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Figure 2.1: A Simple System Comprised of a Fully Connected AND+OR Gate System.

Nodes Are Labeled as A and B, Respectively. Partitions Are Found by Cutting the

Connection from One Element to the Other in a Unidirectional Fashion.

Next, we measure the earth mover’s distance D between the constrained distribu-

tion of each purview element and the constrained distribution of each purview element

under the minimum information partition (MIP):

φMIP (m, z) = D[p(z|m = s0)||p(z|m = s0/MIP)]

where z is the purview element and m is the mechanism. The distribution p(z|m = s0)

tells us the likelihood of z given the current state of m is s0 which, compared to an

unconstrained distribution, tells us how much information m is generating about z.

However, we also need to know whether or not that information is “integrated” so

we must break m and z up into all possible parts and ask whether the parts act-

ing independently can generate the same amount of information as the whole. For

example, to find how much integrated information is generated by the mechanism

Ac about the purview element z = ABp we calculate the probability distribution

p(ABp|Ac = 0) and compare this to the two possible partitions of the purview:

Ac/ABp → (Ac/Ap × []/Bp) and Ac/ABp → (Ac/Bp × []/Ap). The first partition

allows Ac to constrain Ap but leaves Bp unconstrained (denoted by an empty bracket
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[]) while the second partition allows Ac to constrain Bp but leaves Ap unconstrained.

The distributions generated by these partitions, shown in Figure 2.2, are then com-

pared to the distribution generated by the unpartitioned system, and the partition

that minimizes the earth mover’s distance to the unpartitioned system is the MIP

for this purview/mechanism combination. If multiple partitions yield the same earth

mover’s distance to the unpartitioned system, as is the case in Figure 2.2, it is irrel-

evant which one is chosen as all that moves forward in the computation is the scalar

value of φMIP .

Figure 2.2: All Possible Partitions of a Given Mechanism+Purview Combination and

the Resulting φMIP Value.

Once we have identified the MIP (and calculated φMIP ) for all purview elements

for a given mechanism, we define the core cause and core effect as the past and future

purview elements with the greatest φMIP . We denote the integrated information

of the former as φMax
cause and of the latter as φMax

effect and define the total integrated
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information φMax of a given mechanism as:

φMax = min [φMax
cause, φ

Max
effect]

If φMax > 0 for a mechanism we say that the mechanism gives rise to a “concept”. A

concept is fully specified by three things: its φmax value, the cause repertoire corre-

sponding to the core cause, and the effect repertoire corresponding to the core effect.

We have already provided an example of a cause repertoire in Figure 2.2, namely, it

is the distribution over previous state of the purview element given that the current

state of the mechanism. In Figure 2.2, the state of Ac constrains the probability of ob-

serving ABp and this constrained distribution is the cause repertoire for the purview

element ABp. Any element not included as part of the purview is left unconstrained

and must be independently “noised” (Oizumi et al., 2014). For example, if the purview

of mechanism Ac is Ap we generate the constrained distribution p(Ap|Ac = s0) and

combine this with the unconstrained distribution for Bp (denoted puc(Bp)). For the

AND+OR system, we have p(Ap|Ac = 0) = [2/3, 1/3] and puc(Bp) = [1/2, 1/2] which

yields the cause repertoire: [1/3, 1/3, 1/6, 1/6], where states are ordered in binary

with the most significant digit on the left (i.e. [00, 01, 10, 11]).

The effect repertoire for a given purview element is generated in the same way as

a cause repertoire. For example, the probability of observing Af given the state of

mechanism Ac = 0 is P (Af |Ac = 0) = [0, 1]. Combining this with the unconstrained

future distribution for Bf yields the effect repertoire [1/4, 3/4, 0, 0]. Note, this is an

example where the unconstrained future distribution for Bf is not uniform. This is a

direct result of the noising procedure as an OR gate receiving uniform random input

is three times as likely to be in state 1 as it is to be in state 0. Furthermore, when

more than one target node is involved, we must send independent noise to each target

(to avoid correlated input). For example, in a three-node system if we were looking
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at the purview element BCf and noising over the state of Ac, we must imagine that

Ac has the ability to send different signals to Bf and Cf at the same time (hence the

term “noising”).

We can now define the CES or “constellation” C as the set of all concepts for the

system in the given state. Recall, each concept corresponds to a single mechanism

and is comprised of the mechanism’s core cause repertoire, core effect repertoire,

and φMax value. In our example, there are at most three concepts, corresponding

to the mechanisms {Ac, Bc, ABc}. The core cause repertoire for a mechanism is

found by optimizing over all past purview elements and identifying the purview with

the highest φMIP , where φMIP is found by further optimization over all possible

partitions. Figure 2.3 shows φMIP and the corresponding partition for all possible

purview elements given the mechanism Ac.

Figure 2.3: All Possible Purview Elements and Their MIPs for a given Mechanism.

It Is Here That the Degeneracy Is Introduced, as One Cannot Select a Unique Core

Cause or Effect for a given Mechanism If There Are Purview Element with the Same

φMIP Values.

At this point, we are faced with a problem. The postulates of IIT (and the exclu-
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sion postulate in particular) imply that we must assign a unique core cause to each

mechanism, but the purview element that generates φMax
cause is not unique. As Figure

2.3 shows, Ap, Bp, and ABp all generate the same φMIP value for the mechanism in

question. Since each purview/mechanism combination is associated with a different

cause repertoire, the core cause repertoire and the resulting constellation C are not

well-defined. If the scalar value of φMax
cause was all that mattered to the calculation of Φ,

this degeneracy would be inconsequential (as is the case for partitions that generate

the same φMIP value for a given purview element). However, system-level integrated

information Φ is defined as the cost of transforming the core cause/effect repertoires

from one constellation C into another C ′. That is:

Φ = D(C||C ′)

where D is an extension of the earth mover’s distance that calculates the cost of

moving φMax between repertoires. If the core cause or effect repertoire changes, the

distance between constellations will change accordingly, as the distance metric that

goes into the EMD calculation is sensitive to the relative shape of the distributions

and not just the scalar φMax values. For example, if we were to choose ABp as

the core cause for mechanism Ac, this generates the concept in C given by the tu-

ple {[1/3, 1/3, 1/3, 0], [1/2, 1/2, 0, 0], 1/6} where the first element is the core cause

repertoire, the second element is the core effect repertoire, and the third element is

the φMax value. However we could just as easily have chosen Ap as our core cause

and Af as our core effect. In which case, the concept generated for Ac would be

{[1/3, 1/3, 1/6, 1/6], [1/4, 3/4, 0, 0], 1/6}. Clearly, these choices have the same ΦMax

value but significantly different core cause and effect repertoires.

To illustrate the consequences of this, let C be the constellation consisting only of

the concept generated by Ac with core cause ABp and core effect ABf and let C ′ be
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the constellation consisting of only the null concept for this system (the unconstrained

cause and effect repertoires):

C = {[1/3, 1/3, 1/3, 0], [1/2, 1/2, 0, 0], 1/6}

C ′ = {[1/4, 1/4, 1/4, 1/4], [3/16, 9/16, 1/16, 3/16], 0}

The extended earth mover’s distance is the cost of transforming C into C ′ by moving

φMax = 1/6 a distance given by the sum of the (regular) earth mover’s distance

between cause repertoires and effect repertoires. Namely, we have

Dcause = DEMD([1/3, 1/3, 1/3, 0]||[1/4, 1/4, 1/4, 1/4]) = 1/3

Deffect = DEMD([1/2, 1/2, 0, 0]||[3/16, 9/16, 1/16, 3/16]) = 1/2

which results in the integrated conceptual information:

ΦMIP = (Dcause +Deffect)φMax = (1
3 + 1

2)1
6 = 5

36

Now, if we instead choose Ap and Af as our core cause and core effect we have:

C = {[1/3, 1/3, 1/6, 1/6], [1/4, 3/4, 0, 0], 1/6}

Dcause = DEMD([1/3, 1/3, 1/6, 1/6]||[1/4, 1/4, 1/4, 1/4]) = 1/6

Deffect = DEMD([1/4, 3/4, 0, 0]||[3/16, 9/16, 1/16, 3/16]) = 1/4

corresponding to an integrated conceptual information:

ΦMIP = (1
6 + 1

4)1
6 = 5

72

Thus, we get different values of ΦMIP depending on our choice of core cause and core

effect.
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A Spectrum of Non-unique Φ Values

Each combination of degenerate core cause/effect repertoires results in the potential

for a different Φ value. For example, if the unpartitioned system has three degenerate

core causes for Ac and two for Bc, then there are 3× 2 = 6 non-unique constellations

(CES) for the unpartitioned system. If the partitioned system also has six non-

unique CES, then there are a total of 36 different combinations for the distance

between constellations (Φ). For the AND+OR system, the unpartitioned system has

a total of 81 non-unique combinations, while each cut has a total of 9 non-unique

constellations. Thus, one must examine the distance between 81 × 9 × 2 different

combinations of constellations in order to determine all possible Φ values, which we

refer to as the “spectrum” of Φ values for the subsystem. Note, not all Φ values

are valid ΦMIP values; it is only those between the upper and lower Φ value of the

minimum information partition (MIP) that satisfy the definition of ΦMIP . In total,

83 non-unique ΦMIP values result for the AND+OR system, as shown in Figure 2.3.2.

Again, we emphasize there is nothing in the axioms or postulates of IIT to suggest

which of these 83 values IIT actually predicts, as all are equally valid according to the

mathematical definition of Φ. Crucially, both ΦMIP = 0 and ΦMIP > 0 are present

in the spectrum, meaning IIT cannot actually predict whether or not this simple

system is conscious (or it simultaneously predicts the system is both conscious and

unconscious).

PyPhi-Spectrum

The Python package PyPhi (Mayner et al., 2018) provides all of the basic func-

tionality needed to calculate the spectrum of Φ values for a given system. Namely, it

allows the user to calculate purviews, cause/effect repertoires, earth mover’s distance,
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CES distance (extended earth mover’s distance), and more. In addition, it contains

prebuilt classes for data structures such as concepts that are useful in the calcula-

tion. Here, we wrap this basic functionality into a modified version of PyPhi called

PyPhi-Spectrum that allows the user to calculate all Φ values for a given subsys-

tem with a single function call. To install this package, one can simply download or

clone the entire Phi-Spectrum repository (which includes core PyPhi functionality)

from https://github.com/jakehanson/pyphi-spectrum. An overview of the wrapper,

as well as basic usage, can be found in Appendix C.
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2.4 Results

We now apply our methodology to a host of recently published Φ values, in or-

der to determine the extent to which degenerate core causes/effects undermine the

publication of a unique Φ value. We begin with a pedagogical case study, followed

by the broad application of the PyPhi-Spectrum package to as large of a corpus as

is computationally feasible.

2.4.1 Case Study: Three-node Fission Yeast Cell Cycle

As a case study, we consider the Boolean network model of the fission yeast cell

cycle from Marshall et al. (2017b). In this study, IIT is used to analyze the causal

structure of a minimal biological system, namely, the cell cycle of the fission yeast S.

pombe. Using Φ, the authors identify three integrated subsystems corresponding to

the full system (eight nodes), a six node subsystem, and a three-node subsystem - all

potentially of biological importance. Of these three systems, only the smallest may

be subject to our analysis, though we expect similar results for the other two systems.

Applying the methodology from Section 2.3, we find a spectrum of 244 non-unique

Φ values, spanning a range from 0.00− 0.83 bits (Figure 2.5). Crucially, only one of

these values (Φ = 0.09) is published as the unique ΦMIP value for this subsystem. In

reality, all of these values are equally valid according to the mathematical definition

of Φ. Furthermore, the inclusion of Φ = 0 in the spectrum of possibilities changes the

biological interpretation of the results entirely. If the subsystem under consideration

has ΦMIP = 0, rather than ΦMIP > 0, it would not be identified as “integrated” and

its biological function would not be deemed of interest. Thus, the conclusion that this

subsystem is of biological importance is entirely dependent on the arbitrary selection

of a single Φ value from the spectrum of possibilities and, in general, it is impossible
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to tell a priori whether the narrative being built around a particular Φ value is valid

without studying the entire spectrum of possibilities.

2.4.2 The Non-uniqueness of Published Φ Values

Next, we use PyPhi-Spectrum to analyze a corpus of recently published Φ values,

with the goal of understanding the extent to which underdetermined qualia render

published Φ values ill-defined. The corpus we analyze is intended to be comprehen-

sive, but we are limited by the computational resources required to perform these

calculations (see Appendix A). Of the dozen or so Φ values that are published in the

literature Haun and Tononi (2019); Albantakis et al. (2019); Albantakis and Tononi

(2019); Juel et al. (2019); Popiel et al. (2020); Hanson and Walker (2019, 2020); Sev-

enius Nilsen et al. (2019); Aguilera et al. (2018); Marshall et al. (2017b); Farnsworth

(2021); Niizato et al. (2020); Tononi et al. (2016); Hoel et al. (2016); Chalmers and

McQueen (2014), only a handful are small enough to be subjected to our analysis

(Albantakis et al., 2019; Hanson and Walker, 2020; Farnsworth, 2021; Marshall et al.,

2017b; Oizumi et al., 2014; Tononi et al., 2016; Hoel et al., 2016; Chalmers and Mc-

Queen, 2014). These systems, summarized in Table 2.1, are selected primarily for

their size, though size alone is not a good indication of computational tractability.

For example, certain three-node systems, such as that found in Hanson and Walker

(2020), have thousands of degenerate cause-effect structures while others, such as

that found in Farnsworth (2021), have just a few. It is not readily apparent what dic-

tates the number of non-unique cause-effect structures that result for a given system,

though symmetric inputs almost certainly play a role (see Section 2.5). Consequently,

our corpus is limited to small systems (2-4 nodes) which happen to allow relatively

fast evaluation via PyPhi-Spectrum 4 . While improvements such as parallelization
4Less than a day on a Mac Pro; 3.5 GHz 6-Core Intel Xeon E5 Processor
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Figure 2.5: The Spectrum of ΦMIP Values That Result From Degenerate Core

Causes/Effects in the Three-node Fission Yeast System Analyzed by Marshall et al.

(2017b). The Published Value for this System is Shown As a Black ‘x’. Figure (a)

Shows the Φ Values for Each Cut in Rank Order, While (b) Shows the Φ Values for

Each Cut Relative to the Upper and Lower Bound on ΦMIP . All Φ Values Between

the Min and Max Φ Value of the MIP Are Equally Valid ΦMIP Values.
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could certainly be made to improve performance and increase the size of our corpus,

we do not believe doing so would add much to the interpretation of our results.

Name Description Size Φ Value

AND+OR System from Section 2.3 2 0.0903

Farnsworth 2021 (Full) Virus-Host Dynamics 5 0.3125

Farnsworth 2021 (Reduced) Simplified Virus-Host Dynamics 3 0.4375

Gomez et al. 2020 p53-Mdm2 Regulatory Network 4 0.2153

Photodiode COPY+COPY 2 1.0000

Marshall et al. 2017 Fission Yeast Cell Cycle 3 0.0903

Hoel et al. 2016 AND+AND+AND+AND 4 0.1139

Tononi et al. 2016 MAJORITY+OR+AND+AND 4 0.6597

Oizumi et al. 2014 OR+AND+XOR 3 1.9167

Table 2.1: Summary of Corpus in Reverse Chronological Order. Sources Were

Selected Based on the Publication of a Unique ΦMIP Value and Computational

Tractability. Additional Details Required for Analysis, Such as Transition Proba-

bility Matrices and Initial States Are Provided in Appendix D.

Our primary result is shown in Figure 2.6. Namely, it is the calculation of the

entire spectrum of ΦMIP values relative to the published value for every text in our

corpus. There are several things to note. First, the existence of a unique Φ value is

rare, as only the photodiode has a spectrum consisting of a single value (the number of

different ΦMIP values is denoted by |ΦMIP | in Figure 2.6). For the rest of the corpus,

the spectra often consist of dozens if not hundreds of non-unique ΦMIP values, of

which only one is published (denoted as a black “x” in Figure 2.6). In addition, it

is entirely possible for a spectrum to contain both Φ = 0 and Φ > 0 values, which
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implies IIT is not a well-defined mathematical theory. This occurs for three out of the

ten published Φ values in our corpus: AND+OR, Marshall et al. (2017b), and Hoel et al.

(2016). In such cases, IIT does not fail to predict whether or not a system is conscious

so much as it simultaneously predicts a system to be both conscious and unconscious,

which is a much stronger indictment of the logical foundations of the theory (the

exclusion postulate in particular). Last, we would like to point out that the span of

ΦMIP values is often comparable to the entire range of possibilities that one would

expect for systems of this size. According to Figure 2.6, a typical Φ spectrum spans

roughly 1/2 of a bit. In comparison, a (deterministic) two-node Boolean system is

bounded from above by ΦMIP ≤ 1.5 bits (Appendix B), which implies that the Φ

values calculated by IIT are not only non-unique but also non-specific (i.e. they don’t

constrain the possible Φ values to a small portion of the range).

2.5 Existing Solutions

The problem of degenerate core causes/effects in IIT is understudied but not

entirely unknown (Oizumi et al., 2014; Krohn and Ostwald, 2017; Moon, 2019; Al-

bantakis et al., 2019). To our knowledge, there are four different solutions to this

problem, with differing degrees of justification. The first solution is that put forward

by Oizumi et al. (2014) in the original IIT 3.0 publication. In Figure S1 of their Sup-

porting Information, the authors argue that the degenerate core cause corresponding

to the biggest purview element should be selected as the core cause, with the justifica-

tion being that the larger purview “specifies information about more system elements

for the same value of irreducibility”. By this, what is meant is that the φmax values

of the degenerate purview elements are the same (same value of irreducibility) but

bigger purview elements s constrain more of the system (e.g. ABp constrains more of

the system than Ap). Conveniently, the degenerate core causes in the example they
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System Is given by the Cardinality of Its Spectrum |ΦMIP |.

consider correspond to purview elements of different sizes, which allows this simple

criterion to result in a unique core cause; in general, there is no guarantee this is the

case and, therefore, this criterion cannot be used to guarantee a unique Φ value. In

addition, it is unclear why the selection of bigger purview elements is more in line with
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the axioms and/or postulates of the theory. Constraining more or less of the system

does not have a clear interpretation in terms of the phenomenology from which Φ is

purportedly derived, which implies additional postulates are required (Moon, 2019).

This lack of phenomenological grounding is further evident by the fact that Krohn

and Ostwald (hereafter KO17) reach the exact opposite criterion as a proposed solu-

tion to the same problem (Krohn and Ostwald, 2017); namely, KO17 argues that it is

the smallest purview element that should be selected as the core cause/effect in the

case of tied purviews, based on the idea that “causes should not be multiplied beyond

necessity” (Tononi, 2012). While this verbiage is technically part of IIT’s exclusion

postulate, it is not clear that it can be applied to the dimensionality of purview ele-

ments - is choosing Bp as the core cause of Ac instead of ABp really multiplying the

cause of Ac beyond necessity? The answer is unclear; however, what is clear is that

the smallest purview element is still not guaranteed to be unique which means Φ is

still not mathematically well-defined. To address this, KO17 presents a completely

novel solution in the form of a modified definition of Φ based on the difference in the

sum of φmax values between constellations, rather than the extended earth mover’s

distance. The obvious benefit of this definition is that it depends only on the scalar

φmax values associated with concepts, rather than the non-unique cause/effect distri-

butions. In other words, it does not matter which of the degenerate core causes is

selected because they all have the same φMax value and the integrated conceptual in-

formation is just the sum of φMax values over concepts. The fourth and final solution

is the “differences that make a difference” criterion proposed by Moon (2019). Here,

the author argues that if degenerate core causes/effects exist then none of the corre-

sponding purview elements should be selected as the core cause/effect (i.e. φmax = 0

for the mechanism). This solution is based on the idea that in IIT “to exist is to cause

differences”. If tied purview elements exist with the same φMax value, then the φMax
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value does not change if one of the tied purview elements is excluded. For example, if

Ap and Bp both give rise to a concept with φMax = 1/6, one can eliminate Bp without

changing the φMax value for the mechanism; therefore, the existence of Bp does not

make a difference “from the intrinsic perspective of the system”. The fact that one

can do this individually for each of the degenerate core causes or effects implies that

none can give rise to a concept and φMax = 0 for the mechanism.

Unfortunately, there are major problems with the Φ values that result from all four

proposed solutions to the non-uniqueness problem. Namely, selecting the smallest or

largest purview element does not guarantee a unique Φ value; and the KO17 and

Moon criteria result in Φ = 0 for systems that are clearly integrated. In the case

of the KO17 definition of Φ, under a partition, the sum of φMax values can actually

increase, resulting in the confounding conclusion that the system is integrating more

information after a cut than it was before (Φ < 0). These so-called “magic cuts” are

discussed by Krohn and Ostwald (2017), as well as in the PyPhi documentation, but

they do not bode well for a measure of integration. More immediately, if we apply the

KO17 definition of Φ to the AND+OR system from Section 2.3, we find Φ = 0 due to the

fact that the φMax values for each concept are the same before and after the system

level minimum information partition (∑φMax = 5/12 in both cases). Consequently,

we reject this modified definition of Φ outright based on the idea that an AND+OR

system is integrated. This notion is supported by the general mathematical definition

of integrated information, which is an inability to tensor factorize a system without

changing the underlying dynamics (Oizumi et al., 2016b; Tegmark, 2016). In the case

of the AND+OR system, one cannot cut A from B without affecting the state of B,

and vise versa, which implies the system is integrated. The same conclusion applies

to Moon’s criterion, for which the AND+OR system again fails to yield Φ > 0 due to

the presence of degenerate core causes/effects for all mechanisms. In addition, the
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“differences that make a difference” argument relies entirely on the assumption that

the φ value being measured is an accurate reflection of what it means to make a

difference. Put simply, cutting information from an AND gate to an OR gate does make

a difference in terms of system-level integration, and the only way to justify that it

doesn’t is to define differences that make a difference in terms of φ values.

As demonstration of the problems inherent with each of the four existing solu-

tions, we reanalyze our corpus enforcing each criterion in turn (Figure 2.7) 5 . As

expected, the KO17 and Moon solution yield Φ = 0 for several systems that are

clearly integrated and the “smallest” criterion does little to mitigate the degeneracy.

At first glance, however, it appears the “biggest” criterion avoids both of these issues

and provides a positive Φ value in all cases. Unfortunately, this is nothing more than

an idiosyncrasy of our data set, as selecting the biggest purview element suffers from

the same problem as selecting the smallest purview element; namely, degenerate core

causes/effects are often the same size. The reason that the “biggest” solution appears

to yield unique Φ values for the systems under consideration is due entirely to the

ubiquitous use of two-input logic gates (AND, OR,XOR, NOR, etc.) in our corpus. In such

cases, the tied purview elements are almost always A, B and AB for which selecting

the largest purview element (AB) results in a unique core cause/effect. However,

this does not hold in general, as systems comprised of logic gates with more than

two inputs (e.g. neurons in the human brain) have entirely different symmetries. As

Figure 2.8 shows, a simple system of majority gates, each with three inputs, is enough

to prove that a unique Φ value does not always result from the “biggest” criterion.

Thus, the fundamental problem remains unaddressed.
5Implementation of the “Smallest”,“Biggest”, and “Moon” solutions are available via keyword

arguments in the PyPhi-Spectrum package (see Appendix C), while the KO17 solution is available
by changing the USE-SMALL-PHI-FOR-CES option in the standard PyPhi configuration file.
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Figure 2.7: The Spectrum of Φ Values That Results From Each of the Four Proposed

Solutions. The “Smallest” and “Biggest” Solutions Do Not Guarantee a Unique Φ

Value, While the “Moon” and “KO17” Solutions Result in Φ = 0 For Systems That

Are Clearly Integrated, Such as the AND+OR Gate.

2.6 Discussion

In IIT, the constellation corresponding to the unpartitioned CES is equated with

nothing less than subjective experience itself. The geometric shape of this constel-

lation (meaning the shape of the probability distributions that comprise the core

cause/effect repertoires) is identified as “what it is like” to be something (Nagel,

1974) while the ΦMax value is identified as the overall “level” of consciousness. Our

results prove that this structure is unequivocally underspecified and thus, by IIT’s

own description, Φ cannot be used to measure the contents or quantity of subjective

experience. In the words of Moon, “the qualia underdetermination problem shakes

IIT to the ground” (Moon, 2019).
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Figure 2.8: For a System of Three Fully Connected Majority Gates (a) Selecting

the Largest Purview Element Does Little to Mitigate Degeneracy, as Evident by the

Range of Possible ΦMIP Values (b).

And yet, IIT is more popular than ever and Φ is being used to bolster arguments

in neuroscience and beyond (Reardon, 2019; Farnsworth, 2021; Niizato et al., 2020).

From a philosophy of science perspective, this is disconcerting, as IIT demonstrates

several hallmark features of an unscientific handling of the core ideas of a theory

(Godfrey-Smith, 2009). For one, the use of ad hoc procedures to resolve contradictions

that are deduced from the axioms of a theory is never a good sign; that IIT tries to

resolve the undetermined qualia problem with the ad hoc procedure of selecting the
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smallest or largest purview element is a textbook example of this. In addition, the

widespread use of a black box algorithm based on faulty assumptions is a recipe

for disaster, especially given IIT’s ultimate aims of serving in medical, moral, and

legal settings. In fact, we were unable to find a single example of a standard Φ

application that does not use PyPhi other than those found in the original IIT 3.0

publication (Oizumi et al., 2014). This, in combination with formal proofs that

imply IIT is impossible to falsify experimentally (Doerig et al., 2020; Kleiner and

Hoel, 2020; Hanson and Walker, 2020), seems to put the theory on the wrong side

of the demarcation problem (i.e. what separates science from pseudoscience), despite

its widespread use.

Granted, there is hope that IIT may yet provide a blueprint for a successful

scientific theory of consciousness (Negro, 2020; Kleiner, 2020). But, to date, it is

difficult to overlook the fact that IIT has repeatedly pushed forward before resolving

contradictions inherent in its logical foundation (Cerullo, 2015; Doerig et al., 2019;

Moon, 2019). On one hand, this could be seen as a positive, as Feyerabend argues

that all new theories must proceed counterinductively for a matter of time if they are

to succeed - going against well-established principles and holding onto assumptions

in the face of overwhelming evidence to the contrary (Feyerabend, 1993). Yet, even

Feyerabend is careful to distinguish between scientific and unscientific handling of

ideas, stating:

The distinction between the crank and the respectable thinker lies in the

research that is done once a certain point of view is adopted. The crank

usually is content with defending the point of view in its original, unde-

veloped, metaphysical form, and he is not prepared to test its usefulness

in all those cases which seem to favor the opponent, or even admit that

there exists a problem. It is this further investigation, the details of it,
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the knowledge of the difficulties, of the general state of knowledge, the

recognition of objections, which distinguishes the “respectable thinker”

from the crank. The original content of his theory does not. (Feyerabend

(1981))

Going forward, it is of paramount importance that proponents of IIT seek to address

contradictions in the theory head-on, rather than bypass them, as the scientific merit

of the theory ultimately depends on it.
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Chapter 3

INTEGRATED INFORMATION THEORY AND ISOMORPHIC

FEED-FORWARD PHILOSOPHICAL ZOMBIES

3.1 Abstract

Any theory amenable to scientific inquiry must have testable consequences. This

minimal criterion is uniquely challenging for the study of consciousness, as we do not

know if it is possible to confirm via observation from the outside whether or not a

physical system knows what it feels like to have an inside - a challenge referred to as

the hard problem of consciousness. To arrive at a theory of consciousness, the hard

problem has motivated the development of phenomenological approaches that adopt

assumptions of what properties consciousness has based on first-hand experience and,

from these, derive the physical processes that give rise to these properties. A leading

theory adopting this approach is Integrated Information Theory (IIT), which assumes

our subjective experience is a “unified whole”, subsequently yielding a requirement

for physical feedback as a necessary condition for consciousness. Here, we develop a

mathematical framework to assess the validity of this assumption by testing it in the

context of isomorphic physical systems with and without feedback. The isomorphism

allows us to isolate changes in Φ without affecting the size or functionality of the orig-

inal system. Indeed, the only mathematical difference between a “conscious” system

with Φ > 0 and an isomorphic “philosophical zombie” with Φ = 0 is a permutation

of the binary labels used to internally represent functional states. This implies Φ is

sensitive to functionally arbitrary aspects of a particular labeling scheme, with no

clear justification in terms of phenomenological differences. In light of this, we argue
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any quantitative theory of consciousness, including IIT, should be invariant under

isomorphisms if it is to avoid the existence of isomorphic philosophical zombies and

the epistemological problems they pose.

3.2 Introduction

The scientific study of consciousness walks a fine line between physics and meta-

physics. On the one hand, there are observable consequences to what we intuitively

describe as consciousness. Sleep, for example, is an outward behavior that is uncon-

troversially associated with a lower overall level of consciousness. Similarly, scientists

can decipher what is intrinsically experienced when humans are conscious via verbal

reports or other outward signs of awareness. By studying the physiology of the brain

during these specific behaviors, scientists can study “neuronal correlates of conscious-

ness” (NCCs), which point to where in the brain conscious experience is generated

and what physiological processes correlate with it (Rees et al., 2002). On the other

hand, NCCs cannot be used to explain why we are conscious or to predict whether

or not another system demonstrating similar properties to NCCs is conscious. In-

deed, NCCs can only tell us the physiological processes that correlate with what are

assumed to be the functional consequences of consciousness and, in principle, may

not actually correspond to a measurement of what it is like to have subjective expe-

rience (Chalmers, 1995). In other words, we can objectively measure behaviors we

assume accurately reflect consciousness but, currently, there exist no scientific tools

permitting testing our assumptions. As a result, we struggle to differentiate whether

a system is truly conscious or is instead simply going through the motions and giving

outward signs of, or even actively reporting, an internal experience that does not exist

(Searle, 1980).

This is the “hard problem” of consciousness (Chalmers, 1995) and it is what differ-
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entiates the study of consciousness from all other scientific endeavors. Since conscious-

ness is subjective (by definition), there is no objective way to prove whether or not

a system experiences it readily accessible to science. Addressing the hard problem,

therefore, necessitates an inversion of the approach underlying NCCs: rather than

starting with observables and deducing consciousness, one must start with conscious-

ness and deduce observables. This has motivated theorists to develop phenomeno-

logical approaches that adopt rigorous assumptions of what properties consciousness

must include based on human experience, and, from these, “derive” the physical pro-

cesses that give rise to these properties. The benefit to this approach is not that the

hard-problem is avoided, but rather, that the solution appears self-evident given the

phenomenological axioms of the theory. In practice, translating from phenomenology

to physics is rarely obvious, but the approach remains promising.

The phenomenological approach to addressing the hard problem of consciousness

is exemplified in Integrated Information Theory (IIT) (Tononi, 2008; Oizumi et al.,

2014), a leading theory of consciousness. Indeed, IIT is a leading contender in modern

neuroscience precisely because it takes a phenomenological approach and offers a well-

motivated solution to the hard problem of consciousness (Tononi et al., 2016). Three

phenomenological axioms form the backbone of IIT: information, integration, and

exclusion. The first, information, states that by taking on only one of the many

possibilities a conscious experience generates information (in the Shannon sense, e.g.

via a reduction in uncertainty (Shannon, 1948)). The second, integration, states each

conscious experience is a single “unified whole”. And the third, exclusion, states

conscious experience is exclusive in that each component in a system can take part in

at most one conscious experience at a time (simultaneous overlapping experiences are

forbidden). Given these three phenomenological axioms, IIT derives a mathematical

measure of integrated information - Φ - that is designed to quantify the extent to
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which a system is conscious based on the logical architecture (i.e. the “wiring”)

underlying its internal dynamics.

In constructing Φ as a phenomenologically-derived measure of consciousness, IIT

must assume a connection between its phenomenological axioms and the physical

processes that embody those axioms. It is important to emphasize that this assump-

tion is nothing less than a proposed solution to the hard problem of consciousness,

as it connects subjective experience (axiomatized as integration, information, and

exclusion) and objective (measurable) properties of a physical system. As such, it is

possible for one to accept the phenomenological axioms of the theory without accept-

ing Φ as the correct quantification of these axioms and, indeed IIT has undergone

several revisions in an attempt to better reflect the phenomenological axioms in the

proposed construction of Φ (Tononi, 2004; Balduzzi and Tononi, 2008; Oizumi et al.,

2014). Experimental falsification of IIT or any other similarly constructed theory

is a matter of sufficiently violating our intuitive understanding of what a measure

of consciousness should predict in a given situation which, outside of a few clear

cases (e.g. that humans are conscious while awake), varies across individuals and

adds a level of subjectivity to assessing the validity of measures derived based on

phenomenology. Given that IIT is a phenomenological theory, it is therefore only

natural that the bulk of epistemic justification for the theory comes in the form of

carefully constructed logical arguments, rather than directly from empirical obser-

vation (Godfrey-Smith, 2009). For this reason, it is extremely important to isolate

and understand the logical assumptions that underlie any potentially controversial

deductions that come from the theory, as this plays an important role in assessing

the foundations of the theory.

Here we focus on a particularly controversial aspect of IIT, namely, the fact that

philosophical zombies are permitted by the theory. By definition, a philosophical
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zombie is an unconscious system capable of perfectly emulating the outward behavior

of a conscious system. In addition to being epistemologically problematic (Marcus,

2004; Kirk, 2003), such systems are thought to indicate problems with the logical

foundations of any theory that admits them (Harnad, 1995), as it is difficult to imagine

how a difference in subjective experience can be scientifically justified without any

apparent difference in the outward functionality of the system (Turing, 1950). In

IIT, philosophical zombies arise as a direct consequence of IIT’s proposed translation

of the integration axiom. IIT assumes the subjective experience of a unified whole

(the integration axiom) requires feedback in the physical substrate that gives rise to

consciousness as a necessary (but not sufficient) condition. This implies any strictly

feed-forward logical architecture has Φ = 0 and is unconscious by default, despite the

fact that the logical architecture of an “integrated” system with Φ > 0 can always

be unfolded (Doerig et al., 2019) or decomposed (Krohn and Rhodes, 1965; Zeiger,

1967a) into a system with Φ = 0 without affecting the outward behavior of the system.

In what follows, we demonstrate the existence of a fundamentally new type of

feed-forward philosophical zombie, namely, one that is isomorphic to its conscious

counterpart in its state-transition diagram. To do so, we implement techniques based

on Krohn-Rhodes decomposition from automata theory to isomorphically decompose

a system with Φ > 0 onto a feed-forward system with Φ = 0. The result is a feed-

forward philosophical zombie capable of perfectly emulating the behavior of its con-

scious counterpart without increasing the size of the original system. Given the strong

mathematical equivalence between isomorphic systems, our framework suggests the

presence or absence of feedback is not associated with observable differences in func-

tion or other properties such as efficiency or autonomy. Our formalism translates

into a proposed mathematical criterion that any observationally verifiable measure of

consciousness should be invariant under physical isomorphisms. That is, we suggest
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conscious systems should form an equivalence class of physical implementations with

structurally equivalent state-transition diagrams. Enforcement of this criterion serves

as a necessary, but not sufficient, condition for any theory of consciousness to be free

from philosophical zombies and the epistemological problems they pose.

3.3 Methods

Our methodology is based on automata theory (Hopcroft et al., 2006; Ginzburg,

2014), where the concept of philosophical zombies has a natural interpretation in

terms of “emulation” (Egri-Nagy and Nehaniv, 2015). The goal of our methodology

is to demonstrate that it is possible to isomorphically emulate an integrated finite-

state automaton (Φ > 0) with a feed-forward finite-state automaton (Φ = 0) using

techniques closely related to the Krohn-Rhodes theorem (Krohn and Rhodes, 1965;

Zeiger, 1967b).

3.3.1 Finite-State Automata

Finite-state automata are abstract computing devices, or “machines”, designed

to model a discrete system as it transitions between states. Automata theory was

invented to address biological and psychological problems (Zeiger, 1968; Shannon and

McCarthy, 2016) and it remains an extremely intuitive choice for modeling neuronal

systems. This is because one can define an automaton in terms of how specific abstract

inputs lead to changes within a system. Namely, if we have a set of potential inputs

Σ and a set of internal states Q, we define an automaton A in terms of the tuple

A = (Σ, Q, δ, q0) where δ : Σ × Q → Q is a map from the current state and input

symbol to the next state, and q0 ∈ Q is the starting state of the system. To simplify

notation, we write δ(s, q) = q′ to denote the transition from q to q′ upon receiving

the input symbol s ∈ Σ.
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For example, consider the “right-shift automaton” A shown in Figure 3.1. This

automaton is designed to model a system with a two-bit internal register that pro-

cesses new elements from the input alphabet Σ = {0, 1} by shifting the bits in the

register to the right and appending the new element on the left (DeDeo, 2011). The

global state of the machine is the combined state of the left and right register, so

Q = {00, 01, 10, 11} and the transition function δ specifies how this global state

changes in response to each input, as shown in Figure 3.1b.

In addition to the global state transitions, each individual bit in the register of the

right-shift automaton is itself an automaton. In other words, the global functionality

of the system is nothing more than the combined output from a system of intercon-

nected automata, each specifying the state of a single component or “coordinate”

of the system. Specifically, the right-shift automaton is comprised of an automaton

AQ1 responsible for the left bit of register and an automaton AQ2 responsible for the

right bit of the register. By definition, AQ1 copies the input from the environment

and AQ2 copies the state of AQ1. Thus, ΣQ1 = {0, 1} and ΣQ2 = Q1 = {0, 1} and

the transition functions for the coordinates are δQ1 = δQ2 = {δ(0, 0) = 0; δ(0, 1) =

0; δ(1, 0) = 1; δ(1, 1) = 1}. This fine-grained view of the right-shift automaton speci-

fies its logical architecture and is shown in Figure 3.1c. The logical architecture of the

system is the “circuitry” that underlies its behavior and, as such, is often specified

explicitly in terms of logic gates, with the implicit understanding that each logic gate

is a component automaton.

It is important to note that not all automata require multiple input symbols and

it is common to find examples of automata with a single-letter input alphabet. In

fact, any deterministic state-transition diagram can be represented in this way, with

a single input letter signaling the passage of time. In this case, the states of the

automaton are the states of the system, the input alphabet is the passage of time,
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(a) (b) (c)

Figure 3.1: The Right-shift Automaton A in Terms of Its State-transition Diagram

(a), Transition Function δ (b), and Logical Architecture (c).

and the transition function δ is given by the transition probability matrix (TPM)

for the system. Because Φ is a mathematical measure that takes a TPM as input,

this specialized case provides a concrete link between IIT and automata theory. Non-

deterministic TPMs can also be described in terms of finite-state automata (Maler,

1995; DeDeo, 2011) but, for our purposes, this generalization is not necessary.

3.3.2 Cascade Decomposition

The idea of decomposability is central to both IIT and automata theory. As

Tegmark (2016) points out, mathematical measures of integrated information, includ-

ing Φ, quantify the inability to decompose a transition probability matrix M into two

independent processes MA and MB. Given a distribution over initial states p, if we ap-

proximate M by the tensor factorization M̂ ≈MA⊗MB, then Φ, in general, quantifies

an information-theoretic distance D between the regular dynamics Mp and the dy-

namics under the partitioned approximation M̂p (i.e. Φ = D(Mp||M̂p)). In the latest
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version of IIT (Oizumi et al., 2014), only unidirectional partitions are implemented

(information can flow in one direction across the partition) which mathematically

enforces the assumption that feedback is a necessary condition for consciousness.

Decomposition in automata theory, on the other hand, has historically been an

engineering problem. The goal is to decompose an automaton A into an automaton

A′ which is made of simpler physical components than A and maps homomorphically

onto A. Here, we define a homomorphism h as a map from the states, stimuli, and

transitions of A′ onto the states, stimuli, and transitions of A such that for every state

and stimulus in A′ the results obtained by the following two methods are equivalent

(Zeiger, 1968):

1. Use the stimulus of A′ to update the state of A′ then map the resulting state

onto A.

2. Map the stimulus of A′and the state of A′ to the corresponding stimulus/state

in A then update the state of A using the stimulus of A.

In other words, the map h is a homomorphism if it commutes with the dynamics

of the system. The two operations (listed above) that must commute are shown

schematically in Figure 3.2. If the homomorphism h is bijective then it is also an

isomorphism and the two automata necessarily have the same number of states.

From an engineering perspective, homomorphic/isomorphic logical architectures

are useful because they allow flexibility when choosing a logical architecture to im-

plement a given computation (i.e. the homomorphic system can perfectly emulate

the original). Mathematically, the difference between homomorphic automata is the

internal labeling scheme used to encode the states/stimuli of the global finite-state

machine, which specifies the behavior of the system. Thus, the homomorphism h is a

dictionary that translates between different representations of the same computation.
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Figure 3.2: For the Map h to be a Homomorphism From A′ Onto A, Updating the

Dynamics Then Applying h (Top) Must Yield the Same State of A As Applying h

Then Updating the Dynamics (Bottom).

Just as the same sentence can be spoken in different languages, the same compu-

tation can be instantiated using different encodings. Under this view, what gives a

computational state meaning is not its binary representation (label) but rather its

causal relationship with other global states/stimuli, which is what the homomorphism

preserves.

Because we are interested in isolating the role of feedback, the specific type of

decomposition we seek is a feed-forward or cascade decomposition of the logical ar-

chitecture of a given system. Cascade decomposition takes the automaton A and

decomposes it into a homomorphic automaton A′ comprised of several elementary

automata “cascaded together”. By this, what is meant is that the output from one

component serves as the input to another such that the flow of information in the

system is strictly unidirectional (Figure 3.3). The resulting logical architecture is said

to be in “cascade” or “hierarchical” form and is functionally identical to the original

system (i.e. it realizes the same global finite-state machine).

At this point, the connection between IIT and cascade decomposition is readily

apparent: if an automaton with feedback allows a homomorphic cascade decomposi-

tion, then the behavior of the resulting system can emulate the original but utilizes
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Figure 3.3: An Example of a Fully Connected Three Component System in Cascade

Form. Any Subset of the Connections Drawn Above Meets the Criteria for Cascade

Form Because All Information Flows Unidirectionally.

only feed-forward connections. Therefore, there exists a unidirectional partition of

the system that leaves the dynamics of the new system (i.e. the transition probability

matrix) unchanged such that Φ = 0 for all states.

In the language of Oizumi et al. (2014), we can prove this by letting C→ be the

constellation that is generated as a result of any unidirectional partition and C be

the original constellation. Because C→ has no effect on the TPM, we are guaranteed

that C→ = C and ΦMIP = D(C|C→) = 0. We can repeat this process for every

possible subsystem within a given system and, since the flow of information is always

unidirectional, ΦMIP = 0 for all subsets so ΦMax = 0. Thus, Φ = 0 for all states and

subsystems of a cascade automaton.

Pertinently, the Krohn-Rhodes theorem proves that every automaton can be de-

composed into cascade form (Krohn and Rhodes, 1965; Zeiger, 1967a), which implies

every system for which we can measure non-zero Φ allows a feed-forward decompo-

sition with Φ = 0. These feed-forward systems are “philosophical zombies” in the

sense that they lack subjective experience according to IIT (i.e. Φ = 0), but they

nonetheless perfectly emulate the behavior of conscious systems. Yet, the Krohn-
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Rhodes theorem does not tell us how to construct such systems. Furthermore, the

map between systems is only guaranteed to be homomorphic (many-to-one) which

allows for the possibility that Φ is picking up on other properties (e.g. such as the ef-

ficiency and/or autonomy of the computation) in addition to the presence or absence

of feedback (Oizumi et al., 2014).

To isolate what Φ is measuring, we must go one step further and insist that the

decomposition is isomorphic (one-to-one) such that the original and zombie systems

can be considered to perform the same computation (Egri-Nagy and Nehaniv, 2015)

(same global state-transition topology) under the same resource constraints. In this

case, the feed-forward system has the exact same number of states as its counterpart

with feedback. Provided the latter has Φ > 0, this implies Φ is not a measure of

the efficiency of a given computation, as both systems require the same amount of

memory. This is not to say that feedback and Φ do not correlate with efficiency

because, in general, they do (Albantakis et al., 2014). For certain computations,

however, the presence of feedback is not associated with increased efficiency but only

increased interdependence among elements.

It is these specific corner cases that are most beneficial if one wants to assess the

validity of the theory, as they allow one to understand whether or not feedback is

important in absence of the benefits typically associated with its presence. In other

words, IIT’s translation of the integration axiom is that feedback is a minimal criterion

for the subjective experience of a unified whole; yet, Φ is described as quantifying “the

amount of information generated by a complex of elements, above and beyond the

information generated by its parts” (Tononi, 2008), which seems to imply feedback

enables something “extra” feed-forward systems cannot reproduce. An isomorphic

feed-forward decomposition allows us to carefully track the mathematical changes

that destroy this additional information, in a way that lets us preserve the efficiency
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and functionality of the original system. This, in turn, provides the clearest possible

case to assess whether or not this additional information is likely to correspond to a

phenomenological difference between systems.

3.3.3 Feed-forward Isomorphisms via Preserved Partitions

The special type of computation that allows an isomorphic feed-forward decompo-

sition is one in which the global state-transition diagram is amenable to decomposition

via a nested sequence of preserved partitions. A preserved partition is a way of parti-

tioning the state space of a system into blocks of states (macrostates) that transition

together. Namely, a partition P is preserved if it breaks the state space S into a

set of blocks {B1, B2, ..., BN} such that every state within each block transitions to

a state within the same block (Hartmanis, 1966; Zeiger, 1968). If we denote the

state-transition function f : S → S, then a block Bi is preserved when:

∃j ∈ {1, 2, ..., N} such that f(x) ∈ Bj∀x ∈ Bi

In other words, for Bi to be preserved, ∀x in Bi x must transition to some state in a

single block Bj (i = j is allowed). Conversely, Bi is not preserved if there exist two

or more states in Bi that transition to different blocks (i.e. ∃ x1, x2 ∈ Bi such that

f(x1) = Bj and f(x2) = Bk with j 6= k ). In order for the entire partition Pi to be

preserved, each block within the partition must be preserved.

For an isomorphic cascade decomposition to exist, we must be able to iteratively

construct a hierarchy or “nested sequence” of preserved partitions such that each

partition Pi evenly splits the partition Pi−1 above it in half, leading to a more and

more refined description of the system. For a system with 2n states where n is the

number of binary components in the original system, this implies that we need to

find exactly n nested preserved partitions, each of which then maps onto a unique
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component of the cascade automaton, as demonstrated in Section 3.3.3.

If one cannot find a preserved partition made of disjoint blocks or the blocks of a

given partition do not evenly split the blocks of the partition above it in half, then

the system in question does not allow an isomorphic feed-forward decomposition.

It will, however, still allow a homomorphic feed-forward decomposition based on

a nested sequence of preserved covers, which forms the basis of standard Krohn-

Rhodes decomposition techniques (Zeiger, 1968; Egri-Nagy and Nehaniv, 2008, 2015).

Unfortunately, there does not appear to be a way to tell a priori whether or not a

given computation will ultimately allow an isomorphic feed-forward decomposition,

although a high degree of symmetry in the global state-transition diagram is certainly

a requirement.

Example: AND/OR ∼= COPY/OR

As an example, we will isomorphically decompose the feedback system X, comprised

of an AND gate and an OR gate, shown in Figure 3.4a. As it stands, X is not in cascade

form because information flows bidirectionally between the components Q1 and Q2.

While this feedback alone is insufficient to guarantee Φ > 0, one can readily check

that X does indeed have Φ > 0 for all possible states (Mayner et al., 2018). The global

state-transition diagram for the system X is shown in Figure 3.4c. Note, we have

purposefully left off the binary labels that X uses to instantiate these computational

states, as the goal is to relabel them in a way that results in a different (feed-forward)

instantiation of the same underlying computation. In general, one typically starts

from the computation and derives a single logical architecture but, here, we must

start and end with fixed (isomorphic) logical architectures - passing through the

underlying computation in between. The general form of the feed-forward logical

architecture X ′ that we seek is shown in Figure 3.4b.
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(a)

(b) (c)

Figure 3.4: The Goal of an Isomorphic Cascade Decomposition is to Decompose the

Integrated Logical Architecture of the System X (a) so That It Is in Cascade Form

X ′ (b) Without Affecting the State-transition Topology of the Original System (c).

Given the global state-transition diagram shown in Figure 3.4c, we let our first

preserved partition be P1 = {B0, B1} with B0 = {A,D} and B1 = {B,C}. It is easy

to check that this partition is preserved, as one can verify that every element in B0

transitions to an element in B0 and every element in B1 transitions to an element in

B1 (shown topologically in Figure 3.5a). We then assign all the states in B0 a first

coordinate value of 0 and all the states in B1 a first coordinate value of 1, which

guarantees the state of the first coordinate is independent of later coordinates. If the

value of the first coordinate is 0 it will remain 0 and if the value of the first coordinate

is 1 it will remain 1, because states within a given block transition together. Because

0 goes to 0 and 1 goes to 1, the logic element (component automaton) representing

the first coordinate Q′1 is a COPY gate receiving its previous state as input.
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The second preserved partition P2 must evenly split each block within P1 in half.

Letting P2 = {{B00, B01}, {B10, B11}} we have B00 = {A}, B01 = {B}, B10 = {C},

and B11 = {D}. At this stage, it is trivial to verify that the partition is preserved

because each block is comprised of only one state which is guaranteed to transition to

a single block. As with Q′1, the logic gate for the second coordinate (Q′2) is specified

by the way the labeled blocks of P2 transition. Namely, we have B00 → B00, B01 →

B01, B10 → B01, and B11 → B11. Note, the transition function δQ2 is completely

deterministic given input from the first two coordinates (as required) and is given by

δQ2 = {00 → 0; 01 → 1; 10 → 1; 11 → 1}. This implies Q′2 is an OR gate receiving

input from both Q′1 and Q′2.

(a) (b) (c)

Figure 3.5: The Nested Sequence of Preserved Partitions in (a) Yields the Isomor-

phism (b) Between X and X ′ Which Can Be Translated Into the Strictly Feed-forward

Logical Architecture With Φ = 0 Shown in (c).

At this point, the isomorphic cascade decomposition is complete. We have con-

structed an automaton for Q′1 that takes input from only itself and an automaton

for Q′2 that takes input only from itself and earlier coordinates (i.e. Q′1 and Q′2).

The mapping between the states of X and the states of X ′, shown in Figure 3.5b,

is specified by identifying the binary labels (internal representations) each system

uses to instantiate the abstract computational states A,B,C,D of the global state-

transition diagram. Because X and X ′ operate on the same support (the same four
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binary states) the fact that they are isomorphic implies the difference between rep-

resentations is nothing more than a permutation of the labels used to instantiate

the computation. By choosing a specific labeling scheme based on isomorphic cas-

cade decomposition, we can induce a logical architecture that is guaranteed to be

feedback-free and has Φ = 0. In this way, we have “unfolded” the feedback present

in X without affecting the size/efficiency of the system.

3.4 Results/Discussion

We are now prepared to demonstrate the existence of isomorphic feed-forward

philosophical zombies in systems similar to those found in Oizumi et al. (2014). To do

so, we will decompose the integrated system Y shown in Figure 3.6 into an isomorphic

feed-forward philosophical zombie Y ′ of the form shown in Figure 3.3. The system

Y , comprised of two XNOR gates and one XOR gate, clearly contains feedback between

components and has Φ > 0 for all states for which Φ can be calculated (Figure 3.6c).

As in Section 3.3.3, the goal of the decomposition is an isomorphic relabeling of the

finite-state machine representing the global behavior of the system, such that the

induced logical architecture is strictly feed-forward.

We first evenly partition the state space of Y into two blocks B0 = {A,C,G,H}

and B1 = {B,D,E, F}. Under this partition, B0 transitions to B1 and B1 transitions

to B0, which implies the automaton representing the first coordinate in the new

labeling scheme is a NOT gate. Note, this choice is not unique, as we could just as

easily have chosen a different preserved partition such as B0 = {A,D,E,H} and

B1 = {B,C, F,G}, in which case the first coordinate would be a COPY gate; as long as

the partition is preserved, the choice here is arbitrary and amounts to selecting one

of several different feed-forward logical architectures - all in cascade form. For the

second preserved partition, we let P2 = {{B00, B01}, {B10, B11}} with B00 = {C,G},

61



(a) (b) (c)

Figure 3.6: The Transition Probability Matrix (a), Logical Architecture (b), and All

Available Φ Values (c) For the Example System Y . Note, “N/A” Implies Φ Is Not

Defined for a given State Because It Is Unreachable.

B01 = {A,H}, B10 = {B,F}. and B11 = {D,E}. The transition function for

the automaton representing the second coordinate, given by the movement of these

blocks, is: δQ2′ = {00 → 0; 01 → 1; 10 → 0; 11 → 1}, which is again a COPY gate

receiving input from itself. The third and final partition P3 assigns each state to

its own unique block. As is always the case, this last partition is trivially preserved

because individual states are guaranteed to transition to a single block. The transition

function for this coordinate, read off the bottom row of Figure 3.7, is given by:

δQ3′ = {000→ 0; 001→ 0; 010→ 1; 011→ 1; 100→ 0; 101→ 0; 110→ 1; 111→ 1}

Using Karnuagh maps (Karnaugh, 1953), one can identify δQ3 as a COPY gate receiving

input from Q′2. With the specification of the logic for the third coordinate, the cascade

decomposition is complete and the new labeling scheme is shown in Figure 3.7. A

side-by-side comparison of the original system Y and the feed-forward system Y ′ is

shown in Figure 3.8. As required, the feed-forward system has Φ = 0 but executes

the same sequence of state transitions as the original system, modulo a permutation
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of the labels used to instantiate the states of the global state-transition diagram.

Figure 3.7: Nested Sequence of Preserved Partitions Used to Decompose Y into

Cascade Form.

3.4.1 Discussion

Behavior is most frequently described in terms of abstract states/stimuli, which are

not tied to a specific representation (binary or otherwise). Examples include descrip-

tors of mental states, such as being asleep or awake, etc.: these are representations

of system states that must be defined either by an external observer or internally

in the system performing the computation by its own logical implementation, but

are not necessarily an intrinsic attribute of the computational states themselves (e.g.

these states could be labeled with any binary assignment consistent with the state

transition diagram of the computation). The analysis presented here is based on this

premise, such that behavior is defined by the topology of the state-transition dia-

gram, independent of a particular labeling scheme. And, indeed, it is this premise

that enables Krohn-Rhodes decomposition to be useful from an engineering perspec-

tive, as one can swap between logical architectures without affecting the operation of
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(a)

(b)

(c)

(d)

Figure 3.8: Side-by-side Comparison of the Feedback System Y With Φ > 0 (a) and

Its Isomorphic Feed-forward Counterpart Y ′ With Φ = 0 (c). The Respective Global

State-transition Diagrams (b) and (d) Differ Only by a Permutation of Labels.

a system in any way.

Phenomenologically, consciousness is often associated with the concept of “top-

down causation”, where “higher level” mental states exert causal control over lower-

level implementation (Ellis, 2016). Under this view, the “additional information”

provided by consciousness above and beyond non-conscious systems is considered to

be functionally relevant by affecting how states transition to other states. Typically

this is associated with a macroscale intervening on a microscale, which historically has

been problematic due to the issue of supervenience whereby a system can be causally

overdetermined if causation operates across multiple scales (Kim, 2017). Ellis and

others have described functional equivalence classes (Ellis, 2016; Auletta et al., 2008)
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as one means of implementing top-down causation without causal overdetermination

because what does the actual causal work is a functional equivalence class of mi-

crostates, which as a class have the same causal consequences. Building on the idea

of functional equivalence classes, our formalism introduces a different kind of top-down

causation that also avoids issues of supervenience. In our formalism, consciousness

is most appropriately thought of as a computation having to do with the topology

(causal architecture) of global state transitions, rather than the labels of the states or

a specific logical architecture. Thus, the computation/function describes a functional

equivalence class of logical architectures that all implement the same causal relations

among states, i.e. the functional equivalence class is the computational abstraction

(macrostate) which can be implemented in any of a set of isomorphic physical archi-

tectures (microstates/physical implementations). There is no additional “room at the

bottom” for a particular logical architecture to exert more causal influence when it

instantiates a particular abstraction than another architecture instantiating the same

abstraction, because the causal structure of the abstraction remains unchanged. Any

measure of consciousness that changes under the isomorphism we introduce here,

such as Φ, cannot, therefore, account for “additional information” related to execut-

ing a particular function, because of the existence of zombie systems within the same

functional equivalence class.

It is important to recognize there exists an alternative perspective where one de-

fines differences relevant to consciousness not in terms of abstract computation, but

in terms of specific logical implementations, as IIT adopts. However, this does not

address, in our view, whether isomorphic systems ultimately experience a phenomeno-

logical difference as there is no way to test that assumption other than accepting it

axiomatically. In particular, for the examples we consider here, there is only one input

signal, meaning there are not multiple ways to encode input from the environment.
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Therefore there is no physical mechanism by which the environment can dictate a

privileged internal representation. Instead, the choice of internal representation is ar-

bitrary with respect to the environment and depends only on the physical constraints

of the architecture of the system performing the computation. For a system as com-

plex as the human brain, there are presumably many possible logical architectures

that define an equivalence class capable of performing the same computation given

the same input, differing only in how the states are internally represented (e.g. by

how neurons are wired together). This could, for example, explain why human brains

all have the potential to be conscious despite differences in the particular wiring of

their neurons. Why the internal representations that have evolved were selected for

in the first place is likely important for understanding why consciousness emerged in

the universe.

The foregoing provides examples where Φ is independent of both functionality

and efficiency. Historically within IIT, the presence of feedback is associated with

efficiency, such that unconscious feed-forward systems like those presented in Oizumi

et al. (2014) and Doerig et al. (2019) operate under drastically different resource

constraints than their conscious counterparts with feedback. This motivates argu-

ments for an evolutionary advantage toward efficient representation and, by proxy,

Φ/consciousness (Albantakis et al., 2014). Under isomorphic decomposition, however,

systems with feedback can be assumed to have equivalent efficiency to their counter-

parts without feedback, because the size of the system and its state transitions are

equivalent - demonstrating that Φ is fundamentally distinct from efficiency. This,

in turn, implies there is no inherent evolutionary benefit to the presence or absence

of Φ because it is not selectable as being distinctive to a particular computation

an organism must perform for survival, but only how that computation is internally

represented.
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Given that isomorphic systems exhibit the same behavior, meaning that they take

the exact same trajectory through state space, modulo a permutation of the labels

used to represent the states, they can also be considered to be equally autonomous.

This is because the internal states of isomorphic systems are in one-to-one correspon-

dence (Figure 3.5b), meaning the presence/absence of autonomy does not affect the

transitions in the global state diagram of the system (e.g. Figure 3.8b/3.8d). In our

examples, the future state of the system as a whole is completely determined its cur-

rent state for both the zombie system and its conscious counterpart. Similarly, the

future state of each individual component within a given system is completely deter-

mined by its inputs (i.e. it is a deterministic logic gate). This presents a challenge

for understanding in what sense a system with Φ > 0 can be said to be dictating its

own future from within, while the system with Φ = 0 is not, as IIT suggests. The

notion of autonomy that IIT adopts to address this is one of interdependence - au-

tonomous systems rely on bi-directional information exchange between components

while non-autonomous systems do not. Yet, given that each component can store

only one bit of information, components cannot store where the information came

from (e.g. whether or not they are part of an integrated architecture). Since the

information stored by the system as a whole is nothing more than the combined in-

formation stored by individual components, it is unclear to us why feedback between

elements should result in autonomy while feed-forward connections between elements

should not, given isomorphic state-transition diagrams.

This leads us to the central question of this manuscript, which is what is expe-

rienced as the isomorphic system with Φ > 0 cycles through its internal states that

is not experienced by the isomorphic system with Φ = 0? Since in our examples

the environment is not dictating the representation of the input, and all state tran-

sitions are isomorphic, the representation and therefore the logic is arbitrary so long
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as a logical architecture is selected with the proper input-output map under all cir-

cumstances. In light of this, our formalism suggests any mathematical measure of

consciousness, phenomenologically motivated or otherwise, must be invariant with

respect to isomorphic state-transition diagrams. This minimal criterion implies mea-

surable differences in consciousness are always associated with measurable differences

in the computation being performed by the system (though the inverse need not be

true), which is nothing more than precise mathematical enforcement of the prece-

dent set by Turing (1950). From this perspective, measures of consciousness should

operate on the topology of the state-transition diagram, rather than the logic of a

particular physical implementation. That is, they should probe the computational

capacity of the system without being biased by a particular logical architecture - al-

lowing identifying equivalence classes of physical systems that could have the same

or similar conscious experience.

Our motivation in this work is to provide new roads to address the hard problem

of consciousness by raising new questions. Our framework focuses attention on the

fact that we currently lack a sufficiently formal understanding of the relationship be-

tween physical implementation and computation to truly address the hard problem.

The logical architectures in Figures 3.8a and 3.8c are radically different, and yet, they

perform the same computation. The fact that this computation allows a feed-forward

decomposition is a consequence of redundancies that allow a compressed description

in terms of a feed-forward logical architecture. There are symmetries present in the

computation that allow one to take advantage of shortcuts and reduce the compu-

tational load. This, in turn, shows up as flexibility in the logical architecture that

can generate the computation. In other words, the computation in question does not

appear to require the maximum computational power of a three-bit logical architec-

ture. For sufficiently complex eight-state computations, however, the full capacity
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of a three-bit architecture is required, as there is no redundancy to compress. Such

systems cannot be generated without feedback, as the presence of feedback is accom-

panied by indispensable functional consequences. In this case, the computation is

special because it cannot be efficiently represented without feedback - a relationship

that can, in principle, be understood but is only tangentially accounted for in cur-

rent formalisms. It is up to the community to decide if the causal mechanisms of

consciousness are at the level of particular logical architectures or the computations

they instantiate, our goal in this work is simply to point out where the distinction

between the two sets of ideas is very apparent and clear-cut mathematically so that

additional progress can be made.
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Chapter 4

FORMALIZING FALSIFICATION OF CAUSAL STRUCTURE THEORIES OF

CONSCIOUSNESS ACROSS COMPUTATIONAL HIERARCHIES

4.1 Abstract

There is currently a global, multimillion-dollar effort to experimentally confirm

or falsify neuroscience’s preeminent theory of consciousness: Integrated Information

Theory (IIT). Yet, recent theoretical work suggests major epistemic concerns regard-

ing the validity of IIT and all so-called causal structure theories. In particular, causal

structure theories are based on the assumption that consciousness supervenes on a

particular causal structure, despite the fact that different causal structures can lead

to the same input-output behavior and global functionality. This, in turn, leads to

epistemic problems when it comes to the ability to falsify such a theory - if two

systems are functionally identical, what remains to justify a difference in subjective

experience? Here, we ground these abstract epistemic problems in a concrete exam-

ple of functionally indistinguishable systems with different causal architectures. Our

example comes in the form of an isomorphic feed-forward decomposition (unfolding)

of a simple electronic tollbooth, which we use to demonstrate a clear falsification of

causal structure theories such as IIT. We conclude with a brief discussion regarding

the level of formal description at which a candidate measure of consciousness must

operate if it is to be considered scientific.

70



4.2 Introduction

If, and if so how, theories for consciousness can be brought within the purview of

science is a subject of intense debate and equally intense importance. Resolution of

this debate is necessary for validating theory against experiments in human subjects.

It is also critical to recognizing and/or engineering consciousness in non-human sys-

tems such as machines. Currently, there is a global, multi-million dollar effort devoted

to scientifically validating or refuting the most promising candidate theories (Reardon,

2019), specifically Integrated Information Theory and Global Neuronal Workspace.

At the same time, it is becoming increasingly unclear whether these theories meet

the required scientific criteria for validating them.

Since the early 1990s, scientific studies of consciousness have primarily focused

on identifying spatiotemporal patterns in the brain that correlate with what we intu-

itively consider to be conscious experience. This is due in large part to advances in

medical imaging such as electroencephalograms (EEG) and functional magnetic reso-

nance imaging (fMRI) that assess brain activity during different activities (e.g., sleep-

ing, verbal reports, etc.). The empirical data that results from such tests provide evi-

dence for links between spatiotemporal patterns and inferred conscious states. These

links, known as Neural Correlates of Consciousness (NCCs), are well-established and

form the basis for an entire subfield of contemporary neuroscience (Rees et al., 2002;

Metzinger, 2000). Despite the success of NCCs, however, there is an underlying epis-

temic issue with the scientific study of consciousness because conscious states are

never directly observed in the NCC framework. Instead, they are inferred based on

our own phenomenological experience. For example, when a person is asleep we in-

fer they are less conscious than when awake because we have a first-hand subjective

experience of being awake but not of being in deep sleep.
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While this epistemic issue is widely known, Kleiner and Hoel (2020) (abbreviated

herein as KH) have recently formalized the scientific issues arising when consciousness

is inferred based on correlates, rather than directly measuring it, revealing a pervasive

problem with current theoretical frameworks attempting to formalize consciousness.

Their analysis leads them to the startling conclusion that all contemporary theo-

ries of consciousness are either already falsified or unfalsifiable. In KH, falsification

is formally defined as a mismatch between what a theory predicts based on obser-

vations, pred(O), and what is inferred from observations, inf(O). Consequently, a

theory is falsified if one can substitute a physical system for another in a way that

changes pred(O) but preserves inf(O). The authors prove such a substitution exists

for all contemporary theories of consciousness that treat inferences and observations

independently including Integrated Information Theory (IIT) (Tononi, 2008; Oizumi

et al., 2014), Global Neuronal Workspace (Sergent and Dehaene, 2004), Recurrent

Processing Theory (Lamme, 2006), and Higher-Order Thought Theory (Rosenthal,

2002). Conversely, if a theory of consciousness treats inferences and predictions as

strictly dependent, then the theory is necessarily unfalsifiable, as no experiment could

possibly find a mismatch between what is predicted and what is inferred. Contem-

porary theories of consciousness that suffer from this issue include Global Workspace

Theory (Baars, 2005), Attention Schema Theory (Graziano and Webb, 2015), and

any behaviorist theory in general (Graham, 2019).

The argument made by KH is actually a generalization of a previous argument

made by Doerig et al. (2019), wherein the authors focused on a particular theory

(IIT) and a particular type of substitution known as “unfolding”. According to IIT,

feedback plays an essential role in generating conscious experience. The motivation

for this assumption is that, phenomenologically, we experience consciousness as an

“undivided whole”, meaning, for example, that our left and right visual fields are
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integrated into a single conscious experience. IIT offers a mathematical measure

of integration Φ that equates to the overall level of consciousness. Integration, as

a phenomenological axiom of the theory, therefore must have a direct translation

in terms of mathematical machinery. The way this is accomplished in IIT is by

assuming integrated experience is mirrored by integration of the physical substrate

that gives rise to consciousness, where the latter use of the term integration has

a precise mathematical definition in terms of the presence of feedback between the

physical components in a system (e.g., neurons). Consequently, any system that is

strictly feed-forward is unconscious, by definition in IIT, due to an assumed inability

for such physical structures to generate a unified subjective experience. What Doerig

et al. (2019) showed was that the input-output behavior of any conscious system with

feedback and Φ > 0 can be perfectly emulated by a strictly feed-forward system with

Φ = 0. To do so, one simply needs to “unfold” the feedback present in the causal

structure of the conscious system in a way that preserves the underlying functionality

of the system (i.e. the input-output behavior) - a feat that can be accomplished in

the forward or backward direction using feed-forward and recurrent neural networks,

respectively (Doerig et al., 2019). In the formalism of KH, this unfolding argument

proved that within IIT one can always find a substitution of causal structures that

preserves inf(O) but changes pred(O), therefore falsifying the theory.

Interestingly, unfolding substitutions were known in IIT prior to the work of Do-

erig et al. (2019) but were not necessarily considered detrimental. In fact, Oizumi

et al. (2014) explicitly considered feed-forward substitutions in the development of IIT

3.0 but subsequently dismissed them as inconsequential. The justification for this was

primarily the assumption that feedback is a necessary condition for an “integrated ex-

perience” but, again, we stress that this assumption, known as the integration axiom,

has two distinct interpretations: the phenomenological axiom and the mathematical
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translation of the phenomenological axiom. While few would argue against integra-

tion as a phenomenological axiom, the way that it is translated into mathematical

machinery is the subject of the epistemic concerns raised by the unfolding argument.

In particular, how does one justify, scientifically, that feedback is indeed what em-

bodies the subjective experience of an integrated whole in absence of any particular

functional consequences?

In answer to this question, many authors have put forth the idea that meaning-

ful differences can and do exist between functionally identical systems at a formal

level of description below the finite-state automaton (FSA) description of the sys-

tem. In particular, causal structure theories posit that it is the way a computation

is instantiated rather than the computation in the abstract that is relevant in deter-

mining consciousness. In a previous work, we showed that a particular instantiation

of a computation is a direct consequence of the labels that are assigned to represent

the abstract functional states of a computation, meaning that different causal struc-

tures result from different encodings of the same computation (Hanson and Walker,

2019). Because causal structure supervenes on a particular encoding, the so-called

“combinatorial-state automaton” (CSA) description of a system is nothing more than

a labeled version of the FSA description (see Figure 4.1). This implies causal structure

theories such as IIT are assuming that the way a system encodes a computation is rel-

evant to whether or not it is conscious of the computation which, in computer science

terms, is analogous to the claim that it is binary (compiled) code that determines

whether or not artificially intelligent machines are conscious rather than the abstract

(functional) code being executed. Similarly, one can go one step beyond traditional

causal structure theories (which act at the CSA level) and posit that it is the specific

material properties or the choice of logical basis that is relevant for determining con-

sciousness. In light of this hierarchy (Harnad, 2006), the main claim of the unfolding
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argument and its subsequent generalization is that we must infer consciousness at the

level of the FSA description of a system, as only this level has a phenomenological

grounding in terms of first-hand experience. Consequently, any measure of conscious-

ness that is not invariant with respect to changes that preserve the FSA description

of a system is either falsified or unfalsifiable, depending on whether one assumes the

inference procedure or the prediction from the theory is correct.

In this work, we seek to ground the abstract, epistemic problems associated with

the unfolding argument – and indeed, more general arguments of falsifiability - in a

concrete, easily visualizable system that can readily be realized using widely available

tabletop electronics. In particular, we construct isomorphic causal structures (digital

circuits) designed to operate a simple electronic tollbooth. The utility of this approach

is that it provides a clear falsification of causal structure theories such as IIT in terms

of the scale at which they operate. In other words, formalizing this epistemic hierarchy

and its degeneracies in the context of inference and prediction allows investigating

not only how theories of consciousness might be falsified or are unfalsifiable following

on the work of Doerig et al. (2019) and Kleiner and Hoel (2020), but also at what level

of the computational hierarchy (FSA or CSA) a theory of consciousness is falsified or

unfalsifiable.

4.3 Results

The different levels of abstraction at which it is possible to specify a computation

can be assessed explicitly for theories of consciousness, such as IIT, by constructing

automata and circuits representing different levels in the hierarchy in Figure 4.1. We

do so, using the formalism we developed in Hanson and Walker (2019), by construct-

ing functionally identical machines operating under the same resource constraints

using different causal architectures (circuits). We consider a very simple case of the
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Figure 4.1: Different Levels of Abstraction Where a Computational Theory of Con-

sciousness Can Apply. At the Level of the Computation in the Abstract, the Topology

of a Finite-state Automaton (FSA) Is Specified – in This Case, a Mod-eight Counter

(Left). Encoding These Abstract Functional States with a Specific Binary Represen-

tation Results in a Combinatorial-state Automaton (CSA), Which Constrains Local

Dependencies Between Subcomponents Within a System and Is the Level at Which

Φ Is Calculated (Center). To Fully Specify the Causal Structure, However, One Must

Still Choose a Set of Elementary Logic Gates to Realize a given CSA (Right). In

This Case, We Have Shown Two Different Choices for an Elementary Logical Basis:

AND/OR/NOT Gates (1a, 2a) and Universal NAND Gates (1b, 2b).

design of a simplified electronic tollbooth using a causal architecture with and with-

out feedback. Focusing on feedback, as opposed to some other difference in causal

architecture, allows us to ground our results in the specifics of Integrated Information

Theory (IIT), where feedback is assumed to be a necessary condition for the presence

of consciousness (i.e., Φ > 0). We focus on IIT as it is the most mathematically rigor-
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ous theory of consciousness developed to date. However, we expect the quantitative

approach to addressing epistemic issues of falsification to also be possible for other

theories of consciousness.

The qualitative description of the tollbooth’s behavior is to lift a boom barrier

upon receipt of exactly eight quarters, as shown in Figure 4.2a. To do this, the

circuit governing the behavior of the tollbooth must transition through eight internal

memory states, corresponding to the eight functional states in the FSA description

of the machine shown in Figure 4.2b). To control for system size, we insist that both

circuits are constructed on a three-bit logical architecture, which serves to enforce

a strict one-to-one correspondence (isomorphism) between the internal states of the

two systems.

(a) (b)

Figure 4.2: Schematic Illustration of a Simplified Electronic Tollbooth (a) and Its FSA

Description (b). The General Behavior of the Tollbooth Is to Lift a Boom Barrier

upon Receipt of Eight Quarters ($2.00). To Do This Requires the Ability to Cycle

Through Eight Internal Memory States {A,B, ..., H}, Sending Each Internal State

as Output to the Boom Barrier. Note, for the Tollbooth to Function Correctly, the

Boom Barrier Must Be Programmed to Recognize Internal State A as Functionally

Important, as This Is the Output That Causes the Boom Barrier to Lift and Reset.

We will first demonstrate a “conscious” circuit with feedback (and Φ > 0), fol-
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lowed by a functionally identical but “unconscious” circuit with strictly feed-forward

connections (and Φ = 0). The general construction of both circuits is the same: first,

we assign binary labels to the functional states of the system; then, we map these

binary state transitions onto JK flip-flops, which are the “bits” in our digital electron-

ics; and last, we use Karnaugh Maps to simplify the logic tables of the JK flip-flops in

a way that results in simple elementary logic gate operations (e.g. AND, OR, XOR). As

we show, the presence or absence of feedback ultimately stems from the initial choice

of the binary labels used to represent or encode the functional states of the system.

For the system with feedback, we randomly assign these labels in a way that happens

to result in Φ > 0 for all states. For the feed-forward system, however, we carefully

decompose the underlying dynamics in a way that exploits hierarchical relations such

that information flow between components in the system is strictly uni-directional.

The result is a “hierarchical coordinate scheme” wherein each JK flip-flop is responsi-

ble for keeping track of a particular symmetry in the state transition diagram of the

original system.

4.3.1 Constructing a Conscious Tollbooth

The construction of any particular causal architecture requires specification of the

way in which functional relationships are physically instantiated. In other words,

there are two distinct “levels” at which the functional topology can be specified: in

terms abstract states and their mathematical relations (the FSA level of description)

(Chalmers, 1993), or in terms of specific causal relations between subcomponents (the

CSA level of description) (Chalmers, 1993). The difference between these two levels

of abstraction is equivalent in the automata formulation we present here to whether

or not binary labels have been assigned to represent functional states such as those

shown in Figure 4.2b. The presence of binary labels restricts the causal relationships
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between subcomponents within the system, thereby constraining the causal structure.

To construct the conscious tollbooth, we randomly assign the following binary

labels to represent the eight functional states of the tollbooth:

A = 000, B = 110, C = 010, D = 101, E = 111, F = 011, G = 001, H = 100

This assignment of labels fully specifies the Boolean logic of the system, as each

binary component (bit) now must transition in accordance with the global state of

the system. For example, the transition from state A to state B requires that the

first component of the system transitions from state 0 to state 1 when the system

is in the global state 000. Similarly, the transition from state B to state C specifies

that the first component of the system must transition from 1 to 0 when the system

is in global state 110. Taken together, the constraints on each individual component

in the system at each moment in time provide sufficient criteria for constructing a

digital circuit that governs this system. As a sidenote, we remark that for the boom

barrier to function correctly it now must be programmed to recognize the binary state

A = 000 as the “$2.00 state”. This means the sensorimotor hardware of the system

must be wired in such a way that it “knows” to lift the boom barrier (and reset) when

there is a lack of voltage on the three output lines coming from the circuit, which

can be accomplished via an encoder/decoder device that translates signals from the

internal circuitry to the external hardware or by hardwiring the machinery of the

boom barrier directly.

To finish the construction of the causal architecture, we must specify the elemen-

tary building blocks of our system. In a human brain, these building blocks would be

neurons but in a digital circuit, these building blocks are “JK flip-flops”, which are

binary memory storage devices (bits) widely used in the construction simple digital

circuits (Moore, 1958; Cavanagh, 2018). The behavior of a JK flip-flop is quite simple:
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there are two stable internal states (0 and 1), two input channels (the J input and the

K input), and a “clock” that serves to synchronize multiple flip-flops within a system.

Upon receipt of voltage on a line from the clock, the flip-flop does one of four things

depending on the input from the J and K channels: if the JK input is 00 the internal

state remains constant (“latch”), if the JK input is 01 the internal state resets to 0

(“reset”), if the JK input is 10 the internal state is set to 1 (“set”), and if the JK

input is 11 the internal state is swapped (“toggle”). Thus, for any given internal

state transition - Qi(t0)→ Qi(t1) - there are two different possibilities for JK inputs

that will correctly realize this transition, as shown in Figure 4.3. This degeneracy

provides much-needed flexibility when it comes to the design of the elementary logic

gate operations required to actually realize the underlying Boolean logic.

(a) (b)

Figure 4.3: A JK Flip-flop Is a Commonly Used Binary Storage Device (Bit) in

Digital Electronics (a). The Internal State of the Flip-flop Takes One of Two Values

(Q ∈ {0, 1}) and Is Continuously Sent as Output. Upon Receipt of a Voltage from a

Clocked Input, the Voltages on the Two Input Channels J and K Dictate the State

Transitions of Q (See Main). For Any given State Transition Q(t0) → Q(t1), There

Are Two Combinations of JK Inputs That Will Correctly Realize the Transition (b),

Which Provides Much-needed Flexibility When It Comes to Elementary Logic Gate

Descriptions.

With the specification of the binary labels and the choice of electronic components,
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we can now go about actually building the digital circuit using elementary logic gates.

To do so, we first convert the state transitions of each individual component into its

associated JK value. As mentioned, there is degeneracy in the choice of JK input

which means we only have to specify one of the input channels (either J or K) to get

the correct transition. For each component in the circuit, there is a column in Figure

4.4a corresponding to the JK value that is required; note, inputs that do not need to

be specified are denoted with an asterisk. Next, we must determine the elementary

logic gates required to get the correct JK values given the current state of the system.

For instance, when the system is in global state 110, the value of K1 (the K-input to

the first component) must be 1, but when the system is in global state 111 the value

of K1 must be 0. Taken together, the eight states of the system comprise a truth

table of JK input as a function of the global state of the system, as shown in Figure

4.4b. Ordering these truth tables in gray code yields “Karnaugh maps”, which allow

straightforward identification of the elementary logic gates required to operate the

circuit (Karnaugh, 1953). The elementary logic expression for each of the six input

channels, in terms of AND,OR, XOR, and NOT gates, is shown above the corresponding

Karnaugh map in Figure 4.4b.

The elementary logic expressions for the behavior of each JK input complete

the construction of our circuit, which is shown in Figure 4.5a. Clearly, this circuit

contains meaningful feedback between components, as the state of the first component

depends on the state of the second and third and vis versa (e.g. J1 = Q1Q2 and

K1 = Q2 ⊕Q3). The last thing to check is whether or not this feedback is associated

with the presence of consciousness according to IIT, as feedback is a necessary (but

not sufficient) condition for Φ > 0. Using the python package PyPhi (Mayner et al.,

2018), we find Φ > 0 for all states (Figure 4.5b), meaning this system is indeed

considered conscious according to IIT.
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(a) (b)

Figure 4.4: To Construct the Digital Circuitry for a given Labeling Scheme, We Must

Convert the Global State Transitions into Their Associated JK Values (a). Then,

We Use Karnaugh Maps to Determine the Elementary Logic Required to Correctly

Update Each Component (b). The Presence of Feedback in the Resultant Digital

Circuit Is Evident by the Dependence of Earlier Components on Later Components

(e.g. J1 = Q1Q2 +Q3) and Vice Versa (e.g. K3 = Q1Q2).

(a) (b)

Figure 4.5: A Three-bit Causal Architecture Comprised of JK Flip-flops Capable of

Perfectly Operating the Electronic Tollbooth Shown in Figure 4.2. Clearly, This Sys-

tem Contains Feedback in the Form of Bidirectional Dependence Between Elements

(a). In Addition, It Has Φ > 0 for All States (b) Which Implies It Is Conscious

According to IIT.

4.3.2 Constructing an Unconscious Tollbooth

In the previous section, we demonstrated the construction of a causal structure

with feedback that is designed to operate the electronic tollbooth shown in Figure
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4.2a. We did so by randomly assigning 3-bit binary labels to represent the function

states ({A,B, ..., H}) of the system and constructing the logic of the digital circuit

in a way that correctly realizes these labeled state transitions. The result was a

circuit that utilized feedback connections (i.e. there was bi-directional information

exchange between components) and had Φ > 0 for all states (Figure 4.5). In this

section, we demonstrate that it is possible to assign binary labels in a different way,

such that the causal architecture that results instantiates the same functional topology

(Figure 4.2b) without the use of feedback. In other words, we “unfold” the underlying

dynamics of the system in a way that guarantees a causal architecture with Φ = 0

for all states in the system.

The process of unfolding a finite-state description of a system is based on tech-

niques closely related to the Krohn-Rhodes theorem from automata theory, which

states: any abstract deterministic finite-state automata (FSA) can be realized using

a strictly feed-forward causal architecture comprised solely of simple elementary com-

ponents (Krohn and Rhodes, 1965; Zeiger, 1967b). To do so isomorphically, one must

find a “nested sequence of preserved partitions”, which creates a hierarchical label-

ing scheme wherein earlier components (flip-flops) transition independently of later

components (Zeiger, 1968; Hanson and Walker, 2019). Due to this hierarchical inde-

pendence, information is guaranteed to flow unidirectionally from earlier components

to later components, thereby ensuring a strictly feed-forward logical architecture and

Φ = 0 for all states. While a full discussion of Krohn-Rhodes decomposition is well

beyond the scope of this paper (Egri-Nagy and Nehaniv, 2015), we briefly describe

the relevant methodology for constructing a nested sequence of preserved partitions

in the Methods section. The result, applied to the finite-state description of the toll-

booth shown in Figure 4.2b, is the following set of binary labels used to represent the
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functional states of our system:

A = 000, B = 100, C = 010, D = 110, E = 001, F = 101, G = 011, H = 111

Notice, in this labeling scheme, the value of the first component (also called a “co-

ordinate”) partitions the underlying state space of the system into two macrostates:

{A,C,E,G} and {B,D, F,H}. These macrostates are relevant due to the fact they

transition deterministically back and forth between one another. Thus, knowing the

future state of the first component depends solely on knowing the current state of the

first component. Similarly, the future state of the second component is completely

deterministic given the current state of the first and second components and is ag-

nostic to the third. In this way, each additional component offers a refined estimate

as to where in a given macrostate the current microstate is located (DeDeo, 2011),

which justifies the claim that the labeling scheme is “hierarchical”.

With hierarchical labels assigned, the circuit construction now proceeds identically

to the previous section. Namely, we convert the binary state transitions into their

associated JK values, shown in Figure 4.6a. Then, we construct truth tables for the

state of each J and K input given the global state of the system; and last, we order

these truth tables in gray code (Karnaugh Maps) and assign elementary logic gates

to each input channel (Figure 4.6b). The resulting logical architecture is shown in

Figure 4.7a). As required, the circuit is indeed strictly feed-forward, as evident by

the fact that each component depends solely on itself or earlier components. This, in

turn, guarantees Φ = 0 for all states of the system (Figure 4.7b) as the presence of

feedback connections is assumed to be a necessary condition for consciousness in IIT.
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(a) (b)

Figure 4.6: The State Transitions and JK Values (a) Corresponding to the Hierar-

chical Labeling Scheme Described in the Main Text. Figure (b) Shows the Karnaugh

Maps Used to Determine the Elementary Logic Gates Used in the Construction of

the Feed-forward Logical Architecture. Note, the Logical Dependence Between Com-

ponents Is Strictly Unidirectional (e.g. J2 and K2 Depend Only On the State of

Q1).

(a) (b)

Figure 4.7: The Unfolded Causal Structure That Results from the Hierarchical La-

beling Scheme Described in the Main Text (a). This Strictly Feed-forward Causal

Structure Operates under the Same Resource Constraints as the Feedback System

(Three-bit Logical Architecture) but Has Φ = 0 for All States (b).

4.4 Discussion

While we have presented a specific example of a feed-forward isomorphic trans-

formation as a way to probe causal structure theories such as IIT, the arguments

85



and their applicability are general. We do not need to realize additional feed-forward

automata emulators in a lab to know that they exist, as the Krohn-Rhodes theorem

guarantees such a decomposition is always possible. This has implications for the

design of machines with “human” intelligence. Importantly, our example highlights

how the assessment of falsification depends on what level of the computational hi-

erarchy one assumes consciousness arises within a given theory. In our example, we

can consider the implications at either the FSA or CSA level. At the level of FSAs

we provided an explicit case of equivalent computations implemented with different

causal structures implemented at the CSA level, and each CSA can further be instan-

tiated in different circuits depending on the choice of logic gates being used. This

forms a hierarchy of supervenient computations FSA → CSA → circuit (Figure 4.1).

Recall, according to KH, a theory of consciousness is falsified if there is a mismatch

between what the theory predicts based on observation pred(O) and what the inferred

conscious experience of the system is inf(O) (Kleiner and Hoel, 2020). Conversely,

a theory is unfalsifiable if pred(O) is dependent on inf(O). The setup of the toll-

booth example highlights how these two criteria play out in a concrete example. The

tollbooth setup carefully controls for all confounding factors, creating a situation in

which everything in the automata that could be used to infer a difference in the con-

scious states of the two tollbooths (e.g. behavior, functional topology, and efficiency)

is fixed - the only difference is that which emerges at the CSA level, as a consequence

of the difference in labeling. Causal structure theories are falsified at the FSA level

because there is a mismatch between the inference and prediction: equivalent systems

at the FSA level can be conscious or not depending on lower-level implementations.

Inferences about any differences in conscious experience must therefore occur at the

CSA level if causal structure theories. However, this is also where predictions are

made about what systems are conscious or not in causal structure theories. While
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this coupling of prediction and inference may save a theory from falsification, it has

the unintended consequence of rendering the theory unfalsifiable at the CSA level, as

a difference in prediction and inference (a requirement for falsification) is no longer

possible (see e.g., Kleiner and Hoel (2020) ). Thus, causal structure theories, such as

IIT, are show to be falsified at the FSA level and unfalsifiable at the CSA level.

By formalizing the epsitemic issues surrounding consciousness in the concerete

mathematical formalization of automata theory, the approach we present here en-

ables applying the formal arguments of Kleiner and Hoel to theories of consciousness

at specific levels of abstraction in order to test their validity. Not the least of which

is that it directly connects validation of theories for consciousness to foundations of

computer science. The formalization we present is, in fact, is a concrete mathematical

analysis of the Turing test: at the FSA level our machines are Turing indistinguish-

able. It is only in the assignment of representation (labeling) that they become

distinguishable. Thus, our unconscious tollbooth could be said to pass the Turing

test at the FSA level. Furthermore, our focus on isomorphisms supports prior pro-

posals that the measurement of “isomorphic experiences”, which differ in content but

not overall quality of experience, may indeed be possible - even if the subjectivity of

the experience itself is not. To approach analyzing such isomorphic physical systems

(humans and/or machines) one must find a level of abstraction that is invariant be-

tween two physical implementations. There is a direct correspondence between a FSA

- conventionally called a deterministic finite-state automaton (DFA) - description of

a behavior and the algebraic theory of semigroups. Namely, every DFA maps directly

onto a transformation semi-group, which implies the rich mathematics of semigroup

theory may be relevant in ascertaining the mathematical structure of phenomenolog-

ical experience. Semigroup measures such as the group complexity act at the level of

the abstract transformation semigroup (corresponding to an abstract DFA) and are
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therefore invariant with respect to changes in the causal architectures and/or material

properties that instantiate a given computation (Rhodes et al., 2010). In addition,

such measures would capture much of the intuitive notions associating consciousness

with complexity (such is at the heart of IIT (Tononi and Edelman, 1998)). However, it

is not clear if such a framework could avoid ultimately issues of falsification. For that,

new ideas about theories of consciousness may be needed which must be directed not

at measuring experience itself, but instead whether or not the physical act of having

a conscious experience leads to meaningful causal differences in the implementation

of computations across different levels of abstraction and implementation.

4.5 Methods

4.5.1 Isomorphic Unfolding via Preserved Partitions

The Krohn-Rhodes theorem guarantees that any finite-state transition diagram

can be “unfolded” such that the resultant causal architecture is feedback-free and

has Φ = 0. Typically, however, this unfolding process results in a causal architecture

that is much larger than the minimum number of bits to instantiate the functional

topology of the system using feedback. In other words, Krohn-Rhodes decomposi-

tion, and other unfolding methodologies (Oizumi et al., 2014; Doerig et al., 2019),

inevitably result in a clear difference in efficiency between feed-forward and recurrent

representations of the same underlying computation. To control for this, we must

find a system that allows an isomorphic feed-forward representation, which can be

done using a nested sequence of preserved partitions.

A preserved partition is a way of grouping microscopic states into macroscopic

equivalence classes (blocks) based on symmetries present in dynamics. In particular,

a partition P is preserved if it breaks the microscopic state space S into a set of blocks
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P = {B1, B2, ..., BN} such that every microstate within a given block transitions to

the same macrostate (i.e. the same block) (Hartmanis, 1966; Zeiger, 1968). If we

denote the underlying microscopic dynamics as a function f : S → S, then a block

Bi is preserved when:

∃j ∈ {1, 2, ..., N} such that f(x) ∈ Bj∀x ∈ Bi

In other words, for Bi to be preserved, ∀x in Bi x must transition to some state in a

single block Bj (i = j is allowed). Conversely, Bi is not preserved if there exist two

or more states in Bi that transition to different blocks (i.e. ∃ x1, x2 ∈ Bi such that

f(x1) = Bj and f(x2) = Bk with j 6= k ). In order for the entire partition Pi to be

preserved, each block within the partition must be preserved.

For an isomorphic cascade decomposition to exist, we must be able to heirar-

chically construct preserved partitions in a maximally efficient way. Namely, each

partition in the nested sequence of preserved partitions ({P1, P2, ..., PN}) must con-

sist of blocks that evenly split the blocks in the partition above it in half. If this is the

case, then a single bit of information can be used to specify where in the preceding

block the current state is located. This, in turn, allows a straightforward mapping

from the blocks of the preserved partition Pi onto the first i binary coordinates used

to represent these blocks. Thus, a system with 2n microstates requires only n binary

components, meaning the representation is maximally compact. If one cannot find a

preserved partition made of disjoint blocks or the blocks of a given partition do not

evenly split the blocks of the partition above it in half, then the system in question

does not allow an isomorphic feed-forward decomposition and traditional Krohn-

Rhodes decomposition techniques (Zeiger, 1968; Egri-Nagy and Nehaniv, 2008, 2015)

must be employed.

To isomorphically decompose the finite-state automaton shown in Figure 4.2b,
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we let our first preserved partition be P1 = {B0, B1} with B0 = {A,C,E,G} and

B1 = {B,D, F,H}. It is easy to check that this partition is preserved, as one can

verify that every element in B0 transitions to an element in B1 and every element in

B1 transitions to an element in B0 (shown topologically in Figure 4.8). To keep track

of the blocks, we assign all the states in B0 a binary coordinate value of Q′1 = 0 and

all the states in B1 a binary coordinate value of Q′1 = 1, which serves as the first of

the three binary components (Q′1Q′2Q′3) assigned to represent the global state of the

system. The logic of the first coordinate is given by the corresponding state transitions

of the blocks in P1. Since block 0 goes to 1 and vis versa, the first component is

essentially a NOT gate taking input from itself, or a JK flip-flop receiving a “toggle”

signal.

The second preserved partition P2 must evenly split each block within P1, such

that every block in P2 is half the size of the blocks in P1. Denoting P2 =

{{B00, B01}, {B10, B11}}, we let B00 = {A,E}, B01 = {C,G}, B10 = {B,F}, and

B11 = {D,H}. One can quickly check that these blocks are indeed preserved,

and that the component logic for Q′2 (based on the state of Q′1Q′2) is given by:

{00 → 0; 01 → 1; 10 → 1; 11 → 0}. In a single-channel input scheme, this corre-

sponds to Q′2 as an XOR gate (i.e. Q′2 = Q′1 ⊕ Q′2) but, again, the two-channel logic

corresponding to a JK flip-flop will differ slightly.

The third and final partition P3 must also split the blocks of P2 in half, which

implies each of the eight states corresponds to its own block in P3. Naturally, this

partition is preserved since there is only a single state in each block (making it im-

possible for two states within a given block to transition to separate blocks). Since

P3 is at the bottom of the hierarchy, the state of Q′3 can depend on the global state

of the system (Q′1Q′2Q′3). Unlike the previous two coordinates, this truth table is

too large to be captured with a single elementary logic gate (e.g. NOT,XOR,etc.).
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Instead, we must rely on a combination of elementary logic gates, which is dras-

tically simplified by the use of JK flip-flops. Indeed, it is this third coordinate

(and the potential for more complicated logical descriptions in general) that moti-

vated our use of two-channel flip-flops rather than single-channel devices (e.g. D

flip-flops). Reading the block transitions off of the bottom of Figure 4.8, we have

{000→ 0; 001→ 0; 010→ 1; 011→ 1; 100→ 0; 101→ 0; 110→ 1; 111→ 1}. Clearly,

there is no single binary logic gate that implements this truth table, and we must

instead refer to the Karnaugh maps shown in Figure 4.4b.

Figure 4.8: A Nested Sequence of Preserved Partitions {P1, P2, P3} Used to Isomor-

phically Decompose (Unfold) the Dynamics Underlying the Finite-state Description

of the Tollbooth Shown in Figure 4.2. Blocks Within Any given Partition Transition

Deterministically, Which Implies the Logic for Individual Components Can Be Con-

structed Hierarchically. The Binary Labels Assigned to the Blocks of P3 Correspond

to a Labeling Scheme That Is Isomorphic to the Original and Strictly Feed-forward

(See Main).

At this point, the isomorphic cascade decomposition is complete. The values

assigned to the blocks of Q3 correspond to our new binary labeling scheme, namely:
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A = 000, B = 100, C = 010, D = 110, E = 001, F = 101, G = 011, H = 111

As demonstrated in the main text, these labels result in a causal architecture

that is strictly feed-forward and has Φ = 0 for all states, as desired. This can easily

be seen by the fact that the transitions of blocks in any given level of the nested

sequence of preserved partitions are fully deterministic without the need to specify

lower levels (Figure 4.8). Thus, downstream information from later coordinates is

inconsequential to the action of earlier coordinates, which enforces the “hierarchical”

relationship between components. Note, this result is by no means unique; there

are other nested sequences of preserved partitions for this system that are equally

valid. Choosing a different nested sequence of preserved partitions simply amounts

to changing the labels assigned to each block which, in turn, changes the Boolean logic

governing the system. As long as the partitions are preserved, however, the causal

architecture that results is guaranteed to be strictly feed-forward and isomorphic to

the logical architecture we present.
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Chapter 5

FALSIFICATION OF MACHINE STATE FUNCTIONALISM VIA AN

UNFOLDING ARGUMENT

5.1 Abstract

Recently postulated mathematical measures of consciousness have generated an

intense debate regarding the epistemic underpinnings required for a theory of con-

sciousness to be considered scientific. In particular, the “unfolding argument” proved

that causal structure theories of consciousness such as Integrated Information The-

ory (IIT) must either be false or outside the realm of science, as it is possible to vary

predictions within the theory without changing the input-output behavior of a given

system which is used to infer conscious experience. Here, we apply this same line

of reasoning to machine state functionalist theories of consciousness, a much broader

class of theories that subsumes causal structure theories. We prove that machine

state functionalism is subject to its own version of the unfolding argument, in which

machine states are allowed to vary under fixed input-output conditions. If conscious-

ness must be inferred at the level of input-output behavior, our results imply machine

state functionalism as a whole is either falsified or outside the realm of science in a

way completely analogous to causal structure theories.

5.2 Introduction

The turn of the twenty-first century saw a shift in the scientific study of con-

sciousness from what a system does to how it does it. This shift was brought about in

large part due to advances in medical imaging such as electroencephalographs (EEG)
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and functional magnetic resonance imaging (fMRI), which allow one to see the inner

workings of the brain in a way previously unaccessible. This, in turn, brought about

the rise of so called “causal structure theories” of consciousness, which posit that cer-

tain logical architectures are responsible for the subjective feeling of consciousness,

in absence of any particular (outward) functional consequences.

The most famous causal structure theory is Integrated Information Theory (IIT),

which claims to derive the requisite causal structures responsible for consciousness

directly from first-hand phenomenological axioms (Tononi, 2004, 2008; Oizumi et al.,

2014). This “derivation” involves the translation from phenomenological axioms to

physical postulates thought to embody these axioms. For example, the phenomeno-

logical experience of consciousness as a unified whole (the integration axiom) is born

out by the assumption that physical feedback between elementary components in a

system is a necessary condition for instantiating such an experience (the integration

postulate). In this way, a correspondence between phenomenological experience and

the physical substrate of consciousness is built - therein solving the hard problem of

consciousness (Chalmers, 1995).

Crucially, the translation from phenomenological axioms to physical postulates is

not inherently objective. Indeed, it is well known that the mathematical measure of

consciousness - Φ - specified by IIT is just one of many possible measures consistent

with the axioms of the theory (Barrett and Mediano, 2019). Given this, justification

for a given set of necessary and sufficient physical conditions for consciousness is of the

utmost importance, as it is possible to agree on the phenomenological underpinnings

of a given theory of consciousness without agreeing on the qualitative or quantitative

predictions from the theory.

Such epistemological issues have recently come to a head in a debate over the “un-

folding argument” - a claim that all causal structure theories (most notably IIT) are
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either (a) falsified or (b) unfalsifiable (Doerig et al., 2019; Hanson and Walker, 2020).

The basis of the unfolding argument is that it is always possible to fix the input-output

behavior of a given system while allowing the internal causal structure to vary. Since

causal structure theories posit that it is how a system computes rather than what a

system computes, the ability to vary the former while fixing the latter successfully de-

couples predictions of the theory from the outward behavior of the system. Logically,

this decoupling is problematic as one can no longer rely on behavioral states such

as being asleep to benchmark predictions from the theory. In other words, one can

no longer test the predictions from the theory against our common-sense notion that

certain behaviors such as being asleep correspond to certain conscious states, as the

same behavior is consistent with the opposite prediction from the theory. Therefore,

one must choose between believing that behavior is an accurate reflection of subjec-

tive experience, in which case causal structure theories such as IIT are falsified, or

believing the predictions from the theory, in which case predictions from the theory

can never be falsified by third-party information.

The unfolding argument sheds light on a hitherto unformalized issue in the scien-

tific study of consciousness. Namely, the importance of comparing predictions from

a theory of consciousness to something objective and independent from the theory

itself. In scientific fields other than consciousness, the objective benchmark to which

to compare predictions from the theory is rarely the subject of debate, as the ontolog-

ical status of the empirical data is usually unambiguous. For consciousness, however,

one can present the same empirical observations to two different parties and receive

contradictory answers as to whether or not the system is conscious. In other words, a

theory of consciousness is required to interpret whether or not a system is conscious -

rendering it impossible to compare the predictions from a theory to something objec-

tive. In short, the scientific study of consciousness is theory-laden, making it difficult
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to ground any theory in the traditional scientific notion of falsifiability.

A general formalization of the epistemic issues surrounding falsification and con-

sciousness was recently presented by Kleiner and Hoel (2020). In this formalism,

falsification is defined as a mismatch between a prediction from a theory and the

results from an (independent) inference procedure. Ideally, the inference procedure

is objective, in the sense that falsification results when there is a mismatch between

what a theory predicts and what is objectively true. But, as mentioned, the inference

procedure itself requires some theory of consciousness, which often couples inference

and prediction into a single procedure - rendering the theory inherently unfalsifiable.

In light of this, the falsification side of the unfolding argument can be recast in terms

of a mismatch between the predictions of causal structure theories and an inference

procedure based on the input-output behavior of the system: if one assumes behav-

ior is reflective of subjective experience (e.g. sleep is indicative of a lower subjective

experience than being awake) then the ability to vary the causal structure without

affecting the input-output behavior of the system implies experimental falsification of

the theory. Conversely, if one uses the inner workings of the system to infer whether

or not it is conscious, rather than the input-output behavior, then the inference pro-

cedure is one and the same with the prediction procedure, resulting in an inability to

falsify the theory. Thus, even with the epistemic issue of inference being theory-laden,

the unfolding argument serves as a way to prove when a theory of consciousness is

no longer scientifically viable by considering all possible inference procedures in turn

Hanson and Walker (2020)

Given the utility of the unfolding argument, it is important to understand the

scope of its validity. In this work, we examine whether the unfolding argument can be

applied to a broader class of consciousness theories beyond causal structure theories.

In particular, we focus on machine state functionalist theories of consciousness, which

96



subsume causal structure theories of consciousness. We find that, like causal theories,

machine state functionalist theories are subject to their own version of the unfolding

argument, wherein one can logically prove that machine state functionalism is either

(a) falsified or (b) unfalsifiable, depending on the inference procedure being used.

5.3 Preliminaries

5.3.1 Defining Machine State Functionalism

Machine state (MS) functionalist theories are based on the idea that conscious

states are in one-to-one correspondence with machine states Putnam (1960, 1992). In

what follows, we consider machine state functionalist theories based on a deterministic

finite-state automaton (DFA) descriptions of a system, with the understanding that

all MS functionalist formalisms suffer from the issues that we prove using DFAs (see

Discussion). DFA descriptions are natural MS models of both brains and circuits,

as they formalize the relationship between inputs, outputs, and internal states - a

feature central to the idea of functionalism. Mathematically, a DFA A is defined by

the tuple {S,Σ, δ}, where S is a set of internal states, Σ is a set of inputs (known as

the alphabet), δ : S × Σ → S is a function that specifies how the system transition

through internal states based on the input α ∈ Σ and current state s ∈ S.

There are several different brands of MS functionalism, depending on where the

boundary is drawn between abstract machine states and physical inputs and outputs

(Figure 5.1). In the most conservative case, MS functionalist theories predict that

conscious states supervene on the abstract automaton description of a system in isola-

tion. We will refer to this class of theories as Type 1 MS Functionalism and define

it as all theories whose prediction function pred can be written strictly as a function of

A = {S,Σ, δ} - i.e. pred(A). Note, causal structure theories such as IIT are subsumed
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by this brand of MS functionalism, as a transition probability matrix (the mathemat-

ical object which is used to make predictions in IIT) is nothing more than a DFA

with a single input representing the passage of time. Type 2 MS Functionalism

takes into account the temporal sequence of abstract inputs Σ̃ = (Σ(t0),Σ(t1), ...) that

is fed into the stationary automaton description A and the corresponding temporal

sequence of machine states S̃ - i.e. pred(Σ̃, A, S̃). The difference between Type 1 and

Type 2 theories is entirely whether or not specific trajectories through internal states

are relevant in predicting conscious states, meaning the former is based off of a static

description of the automaton while the latter accounts for the temporal sequence of

internal state transitions. Type 3 MS Functionalism adds an additional layer of

physicality by accounting for the relationship between physical inputs/outputs and

abstract machine states. If we denote the sequence of physical inputs as Ĩ and the

sequence of physical outputs as Õ, then Type 3 functionalist theories are those that

explicitly include the maps F : I → Σ and G : S → O in the static description of

the machine - i.e. pred(F,A,G). While it is possible to go beyond Type 3 theories

and include the temporal sequence of physical inputs and outputs themselves (i.e. Ĩ

and Õ), such a theory is no longer under the umbrella of MS functionalism, as the

prediction function can depend entirely on physical inputs and behavioral outputs

without explicitly accounting for internal machine states.

5.3.2 Defining Falsification

A formalization of falsification arguments for theories of consciousness has re-

cently been provided by Kleiner and Hoel (2020). In their formalism, falsification

is defined based on a set of observations, O, as a mismatch between what a theory

predicts, pred(O), and the state of consciousness that can be inferred inf(O) from

the observations. It is always assumed that output behavior (e.g. self-report) is the
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(a) (b)

Figure 5.1: MS Functionalist Theories Can Be Broken down into Three Different

Types, According to Where the Boundary Is Drawn Between Machine States and

Physical Inputs/Outputs (a). In All Cases, the Inference Procedure Is Dictated by a

Specific Sequence of Physical Input-output Behavior (b).

basis for inference, as this is the only empirical data that can be uncontroversially

grounded in phenomenology (Doerig et al., 2020). Conversely, internal data such as

functional magnetic resonance imaging (fMRI) is often what is used to make predic-

tions within the theory. Thus, the goal for a successful theory of consciousness is to

make predictions based on internal data that are in agreement with the conscious

states we infer based on output behavior. Likewise, if one can demonstrate a case in

which pred(O) 6= inf(O) then the theory is considered falsified. Of course, one can

always insist that the predictions from the theory are correct and the results from

the inference procedures are incorrect but, in doing so, the theory becomes inherently

unfalsifiable and strictly metaphysical (Doerig et al., 2019; Kleiner and Hoel, 2020).

In what follows, we assume inference is based on output behavior, as is the case for

the standard unfolding argument (Doerig et al., 2019). To formalize this notion, we

imagine a set of behaviors {B} = {B0, B1, ..., BN} that map to a scalar value of con-

sciousness via an inference procedure: inf : {B} → R. For clarity, we treat {B} as a

totally ordered set, meaning that i < j implies inf(Bi) < inf(Bj). Qualitatively, this

corresponds to the notion that we can infer when a behavior Bj is “more conscious”
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than a behavior Bi (e.g. being awake corresponds to a higher level of consciousness

than being asleep. Furthermore, we assume that any system capable of performing

behavior Bj is also capable of performing behavior Bi. In terms of abstract com-

putation, this assumption is natural, as higher computational complexity can easily

emulate lower computational complexity via a homomorphism (many-to-one map)

between computational states. When sensori-motor hardware is considered, however,

this assumption makes less sense as the ability to perform a given behavior depends

strongly on the sensorimotor capabilities of the system in question. Fortunately, MS

functionalism is concerned primarily with the computational capabilities of a system,

rather than its sensorimotor functionality, and therefore the assumption of a total

ordering is justified. For clarity, one can imagine that the sensorimotor hardware of

the systems in question is fixed, such that behavioral capability is dictated strictly

by computational abilities.

5.4 Results

With falsification and the various types of machine state functionalism formally

defined, we can now state our main results.

Theorem 1. Type 1 MS Functionalist theories are falsified (or unfalsifiable).

Proof. Consider an automaton A capable of generating behavior Bi and an automaton

A′ capable of generating behavior up to Bj with j > i. When A′ emulates A, it must

be prescribed the same prediction, as inference is fixed based on the input-output

behavior of the system. So pred(A) = pred(A′) if the theory is to avoid falsification.

Conversely, when A′ goes beyond A, we have inf(A′) > inf(A) since Bj > Bi, in

which case pred(A′) > pred(A) if the theory is to avoid falsification. This implies a

contradiction wherein pred(A′) = pred(A) when realizing Bi but pred(A′) 6= pred(A)
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when realizing Bj. Since the DFA description of A and A′ is unchanged, a measure

of consciousness cannot make predictions based solely on the DFA description of a

system, hence Type 1 theories are falsified.

Figure 5.2: Falsification of Type 1 MS Functionalism via Emulation. Here, the Au-

tomaton on the Right Is Capable of Emulating the Behavior of the Automaton on

the Left, Depending on the Input Sequence Fed into the Machine. Certain Input

Sequences Lead to inf(A) = inf(A′), While Others Lead to inf(A) 6= inf(A′). Con-

sequently, Type 1 MS Functionalist Theories Are Falsified, as the Prediction Function

Is Fixed but the Results from the Inference Procedure Are Allowed to Vary.

As concrete demonstration of this proof, consider the two automata shown in

Figure 5.2. On the left, the automaton A is designed to count mod-four while,

on the right, the automaton A′ counts mod-four or mod-eight, depending on the

input sequence Σ̃. If we assume behavior Bi corresponds to counting mod-four while

behavior Bj corresponds to counting mod-eight then, under input sequence Σ̃i =

{α1, α1, α1, ..., }, we have inf(A) = inf(A′) so pred(A) = pred(A′). But, under input

sequence Σ̃j = {α2, α2, α2, ..., }, we have inf(A) 6= inf(A′), as A is counting mod-four

while A′ is counting mod-eight. Thus, under Σ̃j we must have pred(A) 6= pred(A′).

However, the input sequence is not explicitly considered by Type 1 MS functionalist
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theories, as only the static automaton (“machine table”) description A = {S,Σ, δ}

is relevant. Since this description is fixed for both Bi and Bj, Type 1 theories are

falsified. Granted, counting mod-eight is not a behavior we typically associate with

a particular subjective experience, but the same principle applies regardless of the

complexity of the behavior in question.

What changes in going from Bi to Bj is not the machine-state description, but

the sequence of inputs that is fed into it. Since the input sequence is not part of the

machine table description of the DFA, a measure of consciousness that acts solely

on the DFA description is invariant with respect to such changes and, consequently,

falsified. This suggests that it is the trajectory that a system takes through internal

states that is relevant when predicting consciousness, which is Type 2 MS function-

alism. However, Type 2 MS functionalism is also falsified, as the following theorem

proves.

Theorem 2. Type 2 MS Functionalist theories are falsified (or unfalsifiable).

Proof. Consider a single automaton A executing behavior Bi under input sequence

Σ̃. Now, consider the same automaton under an intervention † that disconnects the

automaton from its motor output, such that G† : S → ∅. Under this intervention,

A† generates the trivial behavior B0, as the sequence of abstract machine states S̃ is

mapped onto the empty set of behavior. Yet, the prediction function pred(Σ̃, A, S̃)

is invariant with respect to this intervention, as all inputs to the prediction function

take place prior to the movement of G (Figure 5.3). Thus, the intervention G→ G†

changes the results from the inference procedure while leaving the results from the

prediction function intact, which implies falsification of Type 2 MS functionalism.

Theorem 2 suggests that MS functionalist theories must include not only the se-

quence of abstract inputs and outputs but also the maps that encode/decode physical
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Figure 5.3: Falsification of Type 2 MS Functionalism via an Intervention G → G†

That Disconnects Machines from Their Motor Hardware. Under This Intervention,

the Results from the Inference Procedure Change While the Prediction Function

Remains Fixed, Implying Falsification of Type 2 MS Functionalism.

stimuli and responses - i.e. Type 3 MS functionalism. Again, however, this gener-

alization is not sufficient to save MS functionalism from falsification, as Theorem 3

proves.

Theorem 3. Type 3 MS Functionalist theories are falsified (or unfalsifiable).

Proof. Consider an automaton A capable of generating behavior Bj under the se-

quence of physical inputs Ĩj. Since {B} is a total ordering, any such system can also

generate behavior Bk (k < j) under the sequence of physical inputs Ĩk. Thus, under

Ĩj we must have pred(A) = inf(Bj) to avoid falsification while under Ĩk we must have

pred(A) = inf(Bk). By definition, Type 3 MS functionalism is invariant with respect

to the physical input sequence Ĩ, thus, pred(A) is fixed for both Ĩk and Ĩj. However,

the results from the inference procedure have changed as a consequence of the phys-

ical inputs, since inf(Bj) 6= inf(Bk). Thus, the results from the inference procedure

have changed while the prediction function remained fixed, implying falsification of

Type 3 theories (Figure 5.4).
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Figure 5.4: Falsification of Type 3 MS Functionalism Occurs by Fixing the Internal

Circuitry (A) and Sensorimotor Hardware (F,G) of a System and Allowing the Phys-

ical Input Sequence to Vary. Under Ĩj, the System Generates Output Behavior Õj

with Inference Contents inf(Bj) While under Ĩk, the System Generates Output Be-

havior Õk with Inference Contents inf(Bk) 6= inf(Bj). In Both Cases, the Prediction

Function (pred(F,A,G)) Is Fixed, Implying Falsification of Type 3 MS Functionalism.

5.5 Discussion

The second half of the twentieth century saw both the rise and fall of machine state

functionalism (Shagrir, 2005). Indeed, Hilary Putnam, one of the early proponents

of functionalism, was responsible in large part for its demise. In 1988, he put forth

an argument against functionalism based on the idea that many different functional

topologies can realize the same input-output behavior (Putnam, 1988). However,

this argument was not universally accepted due to the fact that it was unclear where

boundaries were being drawn between the abstract logical properties of a system

(software) and their concrete, physical instantiation (hardware) (Chalmers, 1996).

Our results can be seen as a return to this early work, with the contemporary

knowledge that clearly defined inference and prediction procedures are of the utmost

importance. In addition to defining falsification, we explicitly treat the encoding

process by which physical inputs are transformed into machine state inputs (and
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likewise for motor outputs). Therefore, we have a well-defined mathematical notion

of the interface between “internal” and “external” properties of the system in terms

of the maps F and G. Using this, we can define non-functionalist theories as those

that make predictions based on physical input-output behavior (i.e. pred(Ĩ , Õ)),

while functionalist theories are those that explicitly depend on the internal machine-

state description (i.e. pred(Ĩ , A, Õ)). Our main conclusion is that any theory of

consciousness must be invariant with respect to changes in A that leave (Ĩ , Õ) fixed

if it is to avoid a priori falsification via the unfolding argument. In other words,

for a functionalist theory to be considered scientific it must group predictions into

equivalence classes that align with the results from inference procedures based on input-

output behavior. Crucially, this is not necessarily the same as a prediction function

based on input-output behavior (i.e. pred(Ĩ , Õ)), but rather, the prediction function

utilizes internal data in a way that independently predicts the results of the inference

procedure. Thus, input-output behavior is not used for prediction, as is the case for

behaviorist theories, but rather, as the independent benchmark used for inference.

There is a strong analogy between the formal argument we present and the unfold-

ing argument as it applies to causal structure theories (Doerig et al., 2019). In terms

of causal structure theories, one fixes the functional topology of a system and allows

the causal structure that realizes it to vary in a way that varies the prediction from

the theory. For example, one can realize the same finite-state automaton A using a

circuit with or without feedback connections (Hanson and Walker, 2020). By fixing

the automaton description, one necessarily fixes the input-output behavior (though

the inverse is not necessarily true) and therefore the results from the inference pro-

cedure. Any theory that makes predictions based on causal structure, therefore, is

falsified. Similarly, in terms of MS functionalist theories one fixes the input-output

behavior of the system and allows the MS description of the system to vary in a way
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that affects the prediction from the theory. Thus, our results can be seen as an un-

folding argument applied at the level of machine states rather than causal structure.

In both cases, the ability to vary predictions below the level of input-output behavior

is the cause for falsification, as inference is assumed to supervene on the input-output

behavior of the system.

Going forward, the problem theories of consciousness must contend with is that

only inference procedures based on input-output behavior are considered theory-

independent. It seems paradigm cases, and all other empirical data to be explained

by a theory of consciousness, are at the level of input-output behavior (Doerig et al.,

2020). In light of this, it is no surprise that a theory must be fixed below the level

of input-output behavior if it is to avoid falsification. In fact, this precise conclusion

was reached by Turing (1950), who argued that behaviorally indistinguishable systems

must be prescribed the same subjective experience on the basis that there is no em-

pirical differences below the level of input-output behavior that can be used to justify

a difference in subjective experience. This means any theory that resolves differ-

ences in subjective experience based on something other than input-output behavior

is ultimately doing so without proper justification and, consequently, is metaphysical

(Turing, 1950). That Turing reached this conclusion seven decades before the current

formalization is perhaps a testament to the depth at which he understood this issue.

The notion of Turing-indistinguishability is not a simplification of the problem of

consciousness, but rather, a scientific requirement.

As has historically been the case when it comes to the study of consciousness, it is

much easier to prove what consciousness isn’t rather than what it is. Here, we have

shown that the unfolding arguments that undermine causal structure theories apply

equally well to machine state functionalist theories. We hope that in building this

analogy it is easier to understand the epistemic issues that surround the scientific
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study of consciousness and, in particular, the crucial role that falsification plays. In

addition, we stress that the inability to falsify theories based on anything other than

input-output behavior has serious consequences in terms of the resolution at which

one can make theoretical predictions. While we can continue to build increasingly

complex theories of consciousness, they will always be limited scientifically by what

we can ground experimentally using independent inference procedures.
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Chapter 6

CONCLUSION

6.1 Summary of Results

This dissertation was motivated by the search for life elsewhere in the universe.

We began with a brief discussion of the history of exoplanets, with an emphasis on

the capability for telescopes in the near future to remotely detect biosignatures. We

then briefly reviewed the most promising biosignatures, of which oxygen gas (O2) is

the preeminent candidate. However, there is a substantial body of literature devoted

to understanding the abiotic processes by which biosignatures such as O2 can be

produced. In light of this, it is extremely difficult to tell a priori what the likelihood

of false positives relative to true positives will be. To address this problem quanti-

tatively requires Bayesian inference, in which the probability of a true biosignature

is mathematically compared to that of a false positive. Crucial to this quantitative

analysis is the marginal distribution p(life) corresponding to the prior probability that

life emerges in a given planetary context. At this point, p(life) is completely uncon-

strained which implies the detection of a biosignature will be statistically inconclusive

in all but the most straightforward of cases.

To remedy this problem requires taking a step back and examining the state of

knowledge surrounding life’s origin. In this regard, the connection between informa-

tion and life is pertinent, as information seems to play a vital role in differentiating

living and non-living processes. To investigate this hypothesis further, we sought a

quantitative measure of information processing that could be applied to dynamical

systems in a way that ideally recovered our intuitive understanding of living and non-
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living systems. There were several candidate measures that could be used to test this

hypothesis, but Integrated Information Theory (IIT) was by far the most promising.

The reason for this was because IIT provides an out-of-the-box mathematical mea-

sure - Φ - that is purportedly one and the same with conscious experience. Since

consciousness is a sufficient condition for life, Φ serves as a quantitative measure of

life in addition to consciousness. Also, the strong mind-body continuity thesis sug-

gests that the organizational principles of the mind are nothing more than a distilled

and enhanced version of the organizational principles of life. Under this hypothesis,

a measure of consciousness is a measure of life.

In Chapter 2, we studied the mathematical formalism used to calculate Φ in

practice. Surprisingly, we found that despite its widespread usage in contemporary

neuroscience, IIT is not a well-defined mathematical theory. The reason for this

was due to the fact that deep within the optimization routine used to calculate Φ

there are unresolved degeneracies. These degeneracies are the result of a procedure

that requires the user to select the minimum of local φ (“little phi”) values which,

in practice, is not guaranteed to be unique. Depending on which φ value is chosen,

the “core cause” and “core effect” corresponding to the φ value changes. This, in

turn, causes the global integrated information Φ (“big Phi”) to change. Since Φ

is the predicted value of consciousness for a given system, failure to resolve these

degeneracies can amount to non-unique and non-specific predictions. To demonstrate

this, we attempted to calculate Φ for a simple AND+OR logic gate system and found

83 different Φ values resulted - spanning virtually the entire range of possibilities

and including both conscious and unconscious predictions. To further investigate the

scope of this problem, we created a Python package called PyPhi-Spectrum that can

be used to calculate the entire spectrum of Φ values for a given system with a single

function call. We applied PyPhi-Spectrum to a corpus comprised of ten recently
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published Φ values and found that, of the ten, only one of the published Φ values was

actually unique. The rest were selected arbitrarily for a host of alternatives, which

heavily impacts the validity of their results.

In Chapter 3, we left the mathematical problems associated with Φ aside and

turned instead to the epistemic foundations of the theory. IIT is presented as a “phe-

nomenology first” theory, meaning that it starts with phenomenological axioms of

what it is like to be conscious and, from these, it “derives” a mathematical measure

of consciousness. In particular, the integration axiom states that consciousness is

experienced as a single “unified whole”, which IIT then translates into the physical

postulate that feedback between elements (e.g. neurons) is a necessary condition for

consciousness. However, the Krohn-Rhodes theorem from automata theory states

that any system with feedback can be perfectly emulated by a strictly feed-forward

system. In the context of IIT, we showed that this implies every conscious system

with Φ > 0 has a feed-forward emulator with Φ = 0 that is functionally indistin-

guishable from the original (i.e. a “philosophical zombie”). We then proved that the

homomorphism guaranteed by the Krohn-Rhodes Theorem can also be an isomor-

phism, meaning the only difference between conscious and unconscious systems in

IIT is a permutation of the binary labels used to represent functionally states. Since

labels are arbitrary, we argued IIT fails to justify the assumption that feedback is a

necessary condition for consciousness, instead simply assuming it to be true.

In Chapter 4, we sought a concrete demonstration of the epistemic problem pre-

sented in Chapter 3. For this, we turned to a simple digital counter designed to

operate an electronic tollbooth. The first step in the design process was to choose

the labels that are assigned to implement the functional states of the system. For

this, we first chose labels arbitrarily and showed that a circuit with feedback and

Φ > 0 resulted (i.e. a conscious tollbooth). Then, we performed an isomorphic cas-
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cade decomposition using the methodology we developed in Chapter 3 and showed

that the result is a functionally indistinguishable circuit with Φ = 0 (i.e. an uncon-

scious tollbooth). Since both systems operated under the same resource constraints

and instantiated the exact same computation, the only way to justify a difference

in subjective experience was by assuming the integration postulate is true. Yet, in

absence of functional consequences this assumption cannot be tested which implies

IIT is either falsified by our example or outside of the realm of science.

In Chapter 5, we generalized our arguments beyond the limited scope of IIT. In

particular, we focused on machine-state (MS) functionalism which is a broad class of

theories that subsumes causal structure theories of consciousness such as IIT. We first

created a taxonomy of different MS functionalist theories before proceeding to prove

each type falsified/unfalsifiable in turn. The basis for these proofs was the same as

the argument we previously applied to IIT, namely, the idea that inference procedures

used to independently test theories of consciousness take place at the level of input-

output behavior but MS functionalism makes predictions that can vary under fixed

input-output conditions. Put differently, MS functionalist theories allow philosophical

zombies in a way completely analogous to causal structure theories and are therefore

subject to the same epistemological concerns. These issues with MS functionalism

were well known in the latter half of the twentieth century but were based in large

part on thought experiments rather than formal mathematical proofs such as those

we provide. Our arguments suggest that in absence of a mechanistic understanding of

the processes that generate the behaviors we associate with consciousness, the Turing

test is the only epistemologically sound metaphysical position.
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6.2 Outlook: What Theories of Consciousness Teach Us about Defining Life

Both consciousness and life are “pre-theoretical” sciences, meaning they study

their topic of interest in absence of a theoretical definition. Integrated Information

Theory was the first convincing attempt to define consciousness in a way that connects

it to empirical science. For this connection to be made, the properties we intuitively

associate with consciousness must be given a causal account in terms of the processes

by which they are generated. In this regard, IIT was arguably successful. The theory

assumed a causal connection between the phenomenological properties we associate

with consciousness, such as unified experience, and the physical mechanisms that give

rise to these properties, such as feedback connections.

Unfortunately, the causal account provided by IIT failed to generate testable hy-

potheses. From its inception, IIT embraced “philosophical zombies” in a way that all

but guaranteed the theory was metaphysical. There is a long history of arguments

explicitly against theories of consciousness that admit philosophical zombies and IIT

is not even superficially immune to these arguments (Harnad, 1995; Cohen and Den-

nett, 2011; Doerig et al., 2019; Hanson and Walker, 2020). Instead, it relies on the

unfalsifiable belief that their assumed causal explanation is correct. Consequently,

current experiments designed to falsify or confirm IIT in a laboratory setting are

ill-founded, as they are unwittingly based on metaphysical assumptions.

It is easy to forget that IIT is the most popular theory of consciousness in contem-

porary neuroscience. That a theory can reach such status without proper scientific

justification is an admonishing lesson for origins of life research. Like consciousness,

theories of life are trying to make the transition from metaphysical definitions to

testable hypotheses. In doing so, they must explicitly make the connection between

the properties we associate with life and its causal mechanisms, while simultaneously

112



taking care not to conflate predictions and assumptions. A canonical example of a

successful transition from a pre-theoretical to a theoretical science is the definition

of water (Murphy and Medin, 1985; Cleland and Chyba, 2002). As a pre-theoretical

concept, water was defined by its properties, namely, that it is a colorless, odorless,

liquid that boils at 100 °C. After the advent of molecular theory, however, water was

identified as H2O, which not only redefined the concept but also explained why water

has the properties that we associate with it, such as its boiling point. In doing so, the

molecular theory of water not only connected our intuitive understanding of water

with a causal account but also provided additional explanatory power in the form of

predictions that could be independently tested. These predictions serve as a crucial

demarcation between physical and metaphysical theories.

In contrast, current definitions of life fail to provide additional explanatory power

or make concrete predictions. For example, NASA’s adopted definition of life as “a

self-sustaining chemical system capable of Darwinian evolution” (Joyce, 1994), fails to

provide a causal mechanism that explains why life has the salient features we attribute

to it, such as homeostasis, chemical replication, evolution, metabolism, etc. In other

words, a scientific definition is more than the aggregate of its properties - it requires a

causal explanation. It is virtually impossible to come up with a scientific theory based

on a collection of salient features, as it is a well-established fact that categorization

does not lend itself to definition (Murphy and Medin, 1985; Machery, 2012). This

is not because categorization is entirely vacuous, but rather, categorization provides

insufficient criteria for generating a definition with any additional explanatory power.

The next step for life as a pre-theoretical science is to connect the properties we

attribute to life, such as replication and metabolism, with a causal understanding of

the physical mechanisms that generate these properties. It is here that the analogy

with consciousness is most productive, as many of the salient features we attribute to
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life are one and the same with those we attribute to consciousness (e.g. complexity,

integration, and emergence). Crucially, theories of consciousness have already tried

(and failed) to turn these salient attributes into scientific theories in a way that

foreshadows problems faced by theories of life. The current discussion regarding the

use of complexity as a biosignature (Marshall et al., 2017a), for example, mirrors early

discussion regarding the use of complexity as a measure of consciousness (Tononi and

Edelman, 1998). The reason complexity should not be used as a measure for life

is the same reason it cannot be used as a measure of consciousness. Namely, we

lack experimental evidence to ground the assumption that it is a necessary and/or

sufficient condition.

To be a necessary condition, it must not be possible to have life without complex-

ity. While this may make sense intuitively, it is impossible to test experimentally.

If we assume that complexity is life, then whatever the measured complexity for a

system is dictates our interpretation of whether or not it is alive. Conversely, if our

intuition is used as an independent inference procedure to which predictions from the

theory are compared then, at best, the theory recovers our intuition. In the former

case, the theory is unfalsifiable, while in the latter it fails to provide additional ex-

planatory power. With regard to sufficiency, the problem is the same. It is intuitive

to assume that the presence of a salient feature such as complexity is a sufficient

condition for life. However, to test this assumption empirically requires the ability

to independently isolate what we call “life” so we can compare it to the predictions

that complexity is sufficient for life. Thus, we still need to know a priori whether or

not a system is alive in order to test the sufficiency condition. In addition, a single

salient feature such as complexity fails to provide an explanation for any of the other

properties we associate with life, such as replication or metabolism. So long as a

definition fails to provide a mechanistic understanding of why life has the properties
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it has, its use as a measure of life is scientifically unfounded. The same problem holds

for any salient feature we would like to turn into a causal account.

In summary, definitions of life should abide by the following three conditions.

First, a definition must contain a causal account of the properties we associate with

a given concept if it is to be considered scientific. Definitions lacking a mechanistic

component are scientifically devoid of meaning due to a lack of additional explana-

tory power. Second, the mechanistic account provided must generate testable conse-

quences, and these predictions must be compared to observations whose interpretation

is independent of the theory in question. As we demonstrated with IIT, interpreting

predictions through the lens of the theory in question leads to an inherently unfal-

sifiable (metaphysical) theory. And last, definitions cannot be deduced from salient

attributes. Using intuitive features of life such as complexity or replication to try and

define the causal mechanisms at play will at best result in a theory of complexity or

replication, rather than a general theory of life.

While studies of consciousness are informative in guiding studies of life, they are

not the same scientific question. Consciousness has its own set of epistemological

concerns surrounding the fact that consciousness is subjective, by definition, which

makes it difficult to study as external observers. Life, on the other hand, is like any

other empirical phenomenon we have yet to explain, such as water in the absence of

molecular theory. As much as we would like to know a priori what steps we can take

to discover the analogous theory for life, history makes it clear there is no one path

forward. We may discover evidence for life on Mars or an unambiguous biosignature

from a distant world. Or, perhaps we will remain alone indefinitely. At this point,

what is most important is maintaining a diversity of ideas, as progress often comes

from the most unlikely of sources. In this regard, we have attempted a wholly original

solution to the quantification of life using a preeminent theory of consciousness from
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contemporary neuroscience. Unfortunately, our trust in this theory was misguided as

it proved to be based on a set of assumptions that render it metaphysical at best.

However, our results highlight the fact that science as a whole is not an immutable

body of knowledge, but rather, a tangled web of human design. Indeed, it is precisely

the deviations from perfection that lead to progress, as ill-founded assumptions must

be winnowed out in favor of those that stand the test of time. With theories of

consciousness, as with theories of life, it is to be expected that there will be many

false starts before a stable paradigm is established. On the surface, this may look like

chaos but, in reality, it is an indispensable aspect of the scientific process.
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“The Ĝ infrared search for extraterrestrial civilizations with large energy supplies.
iii. the reddest extended sources in wise”, The Astrophysical Journal Supplement
Series 217, 2, 25 (2015).

120



Gutierrez, J. M. P., T. Hinkley, J. W. Taylor, K. Yanev and L. Cronin, “Evolution of
oil droplets in a chemorobotic platform”, Nature communications 5, 1, 1–8 (2014).

Hanson, J. R. and S. I. Walker, “Integrated information theory and isomorphic feed-
forward philosophical zombies”, Entropy 21, 11, 1073 (2019).

Hanson, J. R. and S. I. Walker, “Formalizing falsification of causal structure
theories for consciousness across computational hierarchies”, arXiv preprint
arXiv:2006.07390 (2020).

Hanson, R., “The great filter-are we almost past it”, preprint available at
http://hanson. gmu. edu/greatfilter. html (1998).

Harnad, S., “Why and how we are not zombies”, Journal of Consciousness Studies 1,
164–167 (1995).

Harnad, S., “The annotation game: On turing (1950) on computing, machinery, and
intelligence”, in “The Turing test sourcebook: philosophical and methodological
issues in the quest for the thinking computer”, (Kluwer, 2006).

Hartmanis, J., Algebraic structure theory of sequential machines (prentice-hall inter-
national series in applied mathematics) (Prentice-Hall, Inc., 1966).

Haun, A. and G. Tononi, “Why does space feel the way it does? towards a principled
account of spatial experience”, Entropy 21, 12, 1160 (2019).

Hazen, R. M., “Chance, necessity and the origins of life: a physical sciences perspec-
tive”, Philosophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences 375, 2109, 20160353 (2017).

Hobson, J. A., C. C.-H. Hong and K. J. Friston, “Virtual reality and consciousness
inference in dreaming”, Frontiers in psychology 5, 1133 (2014).

Hoel, E. P., “When the map is better than the territory”, Entropy 19, 5, 188 (2017).

Hoel, E. P., L. Albantakis, W. Marshall and G. Tononi, “Can the macro beat the
micro? integrated information across spatiotemporal scales”, Neuroscience of Con-
sciousness 2016, 1 (2016).

Hohwy, J., “The predictive processing hypothesis”, in “The Oxford handbook of 4E
cognition”, pp. 129–145 (Oxford University Press, 2018).

Hopcroft, J. E., R. Motwani and J. D. Ullman, “Automata theory, languages, and
computation”, International Edition 24, 19 (2006).

Horneck, G., N. Walter, F. Westall, J. L. Grenfell, W. F. Martin, F. Gomez, S. Leuko,
N. Lee, S. Onofri, K. Tsiganis et al., “Astromap european astrobiology roadmap”,
Astrobiology 16, 3, 201–243 (2016).

Joyce, G., “Origins of life: The central concepts, eds. dw deamer and gr fleischaker”,
(1994).

121



Joyce, J., “Bayes’ Theorem”, in “The Stanford Encyclopedia of Philosophy”, edited
by E. N. Zalta (Metaphysics Research Lab, Stanford University, 2019), spring 2019
edn.

Juel, B. E., R. Comolatti, G. Tononi and L. Albantakis, “When is an action caused
from within? quantifying the causal chain leading to actions in simulated agents”,
in “Artificial Life Conference Proceedings”, pp. 477–484 (MIT Press, 2019).

Kamminga, H., “Historical perspective: the problem of the origin of life in the context
of developments in biology”, Origins of Life and Evolution of the Biosphere 18, 1,
1–11 (1988).

Karnaugh, M., “The map method for synthesis of combinational logic circuits”, Trans-
actions of the American Institute of Electrical Engineers, Part I: Communication
and Electronics 72, 5, 593–599 (1953).

Kim, H., H. B. Smith, C. Mathis, J. Raymond and S. I. Walker, “Universal scaling
across biochemical networks on earth”, Science advances 5, 1, eaau0149 (2019).

Kim, H., G. Valentini, J. Hanson and S. I. Walker, “Informational architecture across
non-living and living collectives”, Theory in Biosciences pp. 1–17 (2021).

Kim, J., “Concepts of supervenience”, in “Supervenience”, pp. 37–62 (Routledge,
2017).

Kirchhoff, M. D. and T. Froese, “Where there is life there is mind: In support of a
strong life-mind continuity thesis”, Entropy 19, 4, 169 (2017).

Kirk, R., Mind and body, vol. 11 (McGill-Queen’s Press-MQUP, 2003).

Kite, E. S., M. Manga and E. Gaidos, “Geodynamics and rate of volcanism on massive
earth-like planets”, The Astrophysical Journal 700, 2, 1732 (2009).

Kleiner, J., “Mathematical models of consciousness”, Entropy 22, 6, 609 (2020).

Kleiner, J. and E. Hoel, “Falsification and consciousness”, arXiv preprint
arXiv:2004.03541 (2020).

Kopparapu, R. K., R. Ramirez, J. F. Kasting, V. Eymet, T. D. Robinson, S. Ma-
hadevan, R. C. Terrien, S. Domagal-Goldman, V. Meadows and R. Deshpande,
“Habitable zones around main-sequence stars: new estimates”, The Astrophysical
Journal 765, 2, 131 (2013).

Korpela, E. J., S. M. Sallmen and D. L. Greene, “Modeling indications of technology in
planetary transit light curves—dark-side illumination”, The Astrophysical Journal
809, 2, 139 (2015).

Koshland, D. E., “The seven pillars of life”, Science 295, 5563, 2215–2216 (2002).

Krissansen-Totton, J., S. Olson and D. C. Catling, “Disequilibrium biosignatures over
earth history and implications for detecting exoplanet life”, Science advances 4, 1,
eaao5747 (2018).

122



Krohn, K. and J. Rhodes, “Algebraic theory of machines. i. prime decomposition
theorem for finite semigroups and machines”, Transactions of the American Math-
ematical Society 116, 450–464 (1965).

Krohn, S. and D. Ostwald, “Computing integrated information”, Neuroscience of
consciousness 2017, 1, nix017 (2017).

Lamme, V. A., “Towards a true neural stance on consciousness”, Trends in cognitive
sciences 10, 11, 494–501 (2006).
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For a subsystem of size n, the computational complexity scales as follows. First,
one must calculate the cause-effect structure (CES) for every possible partition of the
subsystem. If the partition is a bipartition, as is typically assumed (Mayner et al.,
2018; Krohn and Ostwald, 2017), the number of ways to do this is S(n, 2), where
n is the size of the subsystem and S(n,m) are Stirling numbers of the second kind
Stanley (2011). However, two small corrections should be considered: first, partitions
are unidirectional, and second, the unpartitioned system must also be addressed. The
former consideration results in twice as many bipartitions, while the latter results in a
single additional partition. Combining these results in a total of 2S(n, 2)+1 partitions
which, for large n, is well approximated as 2S(n, 2). For each CES, there are 2n − 1
potential mechanisms, corresponding to the size of the powerset of elements excluding
the empty set. For each potential mechanism, there are

(
n
k

)
purview elements of size k,

each of which can be partitioned S(k, 2) times. Therefore, there are 2∑k

(
n
k

)
S(k, 2) =

2(3n) elementary distance calculations that must be performed to calculate a single
CES, where the additional factor of two is due to the need to optimize φmax over both
past and future purviews. Putting this together, there are a total of 2S(n, 2 + 1) ×
(2n − 1) × 2(3n) ≈ 12n elementary distance calculations required to get the system-
level integrated information ΦMIP for a given subsystem. For the global system,
this calculation must be embedded in an additional optimization corresponding to
maximizing over the powerset of all possible subsystems (i.e. Φmax = max{ΦMIP}).
For a global system of size m, there are

(
m
n

)
subsystems of size n, each with 12n

elementary distance calculations. Therefore, there are a total of ∑n

(
m
n

)
12n = 13m

elementary calculations required to find Φmax for a global system of size m. For all
but the smallest m values, the computational resources required to actually calculate
Φmax are impossible to realize.

Interestingly, the O(13m) scaling derived here is in tension with the previously
published value of O(53m) (Mayner et al., 2018). This could be due to the possibility
that the O(53m) scaling considers all possible partitions, rather than strict bipar-
titions, or perhaps it resolves the elementary computation in terms of some more
fundamental operation (e.g. bit flips). Without additional information, it is difficult
to say whether or not either of these considerations could resolve the tension between
values. We do note, however, that the published values of t = 1, t = 16, and t = 9900s
for n = 3,n = 5, and n = 7 (Mayner et al., 2018) are within an order of magnitude
of the predicted O(13m) scaling while off by 40 orders of magnitude from an O(53m)
scaling, though the use of parallelization complicates this point.
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It is relatively straightforward to calculate a loose upper bound on ΦMIP for a
subsystem of size n. To do so, one need only understand the extension of the earth
mover’s distance D that is used in the calculation ΦMIP = D(C||C→). By definition,
the “earth” being moved is φMax between concepts in the unpartitioned CES (C)
and the partitioned CES (C→), while the “distance” it is moved is measured by the
regular earth mover’s distance between concepts (Oizumi et al., 2014). In light of this,
a straightforward upper bound on ΦMIP can be found by asking what the maximum
value of φMax is for each concept and moving that amount as far away as possible.
For a mechanism of size m, its φMax value is bounded from above by the maximum
value of the regular earth mover’s distance, which is EMDMax(m) = m. It is easy to
see this is the case, as EMDMax is achieved when all the probability (p = 1) is moved
the maximum Hamming distance (HMax), which is m for a mechanism comprised of
m bits. For example, EMDMax for a three-bit mechanism is achieved when p = 1 is
moved from state 000 to state 111 (HMax = 3), so φmax = EMDMax = 3. Next, we
must ask what the maximum distance DMax in conceptual space is that this amount
of φMax can be moved. Since this distance is again a regular earth mover’s distance,
we have DMax = EMDMax(m) = m. Thus, the maximum contribution a mechanism
of size m can make to the extended earth mover’s distance D is upper bounded
by φMax(m)DMax(m) = [EMDMax(m)]2 = m2. Of course, not all mechanisms are
the same size, so the total contribution is bounded by the sum of the maximum
contribution from mechanisms of each size, namely:

ΦMIP (n) ≤
n∑

m=1

(
n

m

)
m2 = 2n−2n(n+ 1)

To date, this is the only known upper bound on ΦMax that we are aware of (though
bounds on φmax and IIT 2.0 are readily available (Krohn and Ostwald, 2017; Oizumi
et al., 2016a; Arsiwalla and Verschure, 2016; Tegmark, 2016; Toker and Sommer,
2016)), and it is a very loose bound. For a subsystem of size n = 2, as is the case for the
AND+OR system we consider in the main text, we have ΦMIP (2) ≤ (1)2+(1)2+(2)2 = 6
bits. In practice, we cannot reasonably expect φMax = EMDMax for all mechanisms,
as the existence of φMax = EMDmax for one mechanism almost certainly precludes the
existence of φMax = EMDMax for another. Likewise, cutting a CES cannot possibly
result in a distance of DMax = EMDMax for all concepts, as additional noise cannot
be used to increase the fidelity of constraints. At best, it is likely that concepts map
to the null concept in the CES of the MIP, corresponding to a maximum distance
DMax(n) = n/2. In this case, the bound that results is ΦMIP ≤ 2n−3n(n+ 1), which
is still likely loose. To tighten it, one must consider the φMax values that can result
for a system of mechanisms as an ensemble, rather than individually, which is a task
that we found quickly became intractable.

Numerical Approach

Fortunately, for our purposes a numerical approach will suffice. Given a small
enough system, it is possible to calculate the Φ values for every possible transi-
tion probability matrix (TPM) that results from Boolean logic on a two-bit system.
Namely, each bit (A and B) takes one of two possible states in response to the global
state of the system. This means there are 24 = 16 possible state transitions for each
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coordinate, for a total of 162 unique TPMs. For each, it is possible to calculate the
Φ spectrum that results using the algorithm we describe in the main text. Then, the
upper bound on ΦMIP is simply the maximum ΦMIP value over all possible TPMs in
all possible initial states. Since the system is only two bits, this bound on ΦMIP is
equivalent to the bound on ΦMax, as subsystems must be comprised of at least two
bits to generate ΦMIP > 0. Performing this exercise results in the bound ΦMax ≤ 1.5,
which is interestingly exactly one-fourth the analytical bound derived in the previous
section; as discussed, it is likely that a factor of 1/2 is accounted for if DMax(n) = n/2,
while the other factor of 1/2 may be accounted for by the same type of argument
applied to φMax (rather than DMax). If so, the upper bound on ΦMIP would be
2n−4n(n+ 1) and is potentially more tractable to derive than previously believed.
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APPENDIX C

BASIC USAGE FOR PYPHI-SPECTRUM
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A pseudo-code overview of the PyPhi-Spectrum wrapper is shown in Algorithm 2,
while basic usage is shown in Algorithm 3. Note, the get-phi-spectrum call returns
the Φ values that result from all possible concepts for each cut, while the get-phi-MIP
call returns the Φ values corresponding to the minimum information partition (i.e.
ΦMIP ). Optimizing the latter over all possible subsystems would provide ΦMax for
a given system. To install the code, download or clone the entire PyPhi-Spectrum
repository (which includes core PyPhi functionality) from github.com/jakehanson.

Algorithm 2: Pseudocode overview of the PyPhi-Spectrum wrapper
1 ## Return the spectrum of Phi values
2 def get_phi_spectrum(subsystem):
3 ## Initialize an empty list to store all Phi values for all cuts
4 Phi_Spectrum = []
5 ## Find all concepts for the specified subsystem
6 all_concepts = get_all_concepts(subsystem)
7 ## Create all possible CES via the Cartesian product of all concepts
8 original_CES = get_all_CES(all_concepts)
9 print("\tNumber of Non-unique Constellations =",len(original_CES))

10 ## Cut the TPM and find all concepts. Get the new Phi value and repeat.
11 bipartitions = get_all_bipartitions(cut_indices, cut_node_labels)
12 for cut in bipartitions:
13 print("\nEvaluating Cut ",cut)
14 new_subsystem = subsystem.apply_cut(cut)
15 ## Find all concepts for the specified subsystem
16 new_concepts = get_all_concepts(new_subsystem)
17 new_CES = get_all_CES(new_concepts)
18 print("\tNumber of Non-unique Constellations =",len(new_CES))
19 ## Now store all possible Phi values for this cut
20 Phi_cut = []
21 for original in original_CES:
22 for new in new_CES:
23 Phi = ces_distance(original,new)
24 if Phi not in Phi_cut:
25 Phi_cut.append(Phi)
26 ## Append the list of Phi values to the spectrum
27 Phi_Spectrum.append(Phi_cut)
28 return(bipartitions,Phi_Spectrum)
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Algorithm 3: Basic Usage for the PyPhi-Spectrum Wrapper
1 import pyphi
2 import numpy as np
3 from pyphi import phi_spectrum
4

5 # TPM (little-end notation)
6 tpm = np.array([
7 [0.,0.,0.],
8 [0.,0.,0.],
9 [1.,0.,0.],

10 [1.,0.,1.],
11 [0.,1.,0.],
12 [0.,1.,0.],
13 [1.,1.,0.],
14 [1.,1.,1.]
15 ])
16

17 # Set up network object
18 network = pyphi.Network(tpm, node_labels=['A','B','C'])
19 print("Network = ",network.node_labels)
20

21 # Put the system into a given state
22 state = (0,0,0)
23 nodes = ['A','B','C']
24

25 ## Get the requisite Subsystem
26 subsystem = pyphi.Subsystem(network, state, nodes)
27

28 ## Calculate all Phi values
29 display_CES= False # if True, output will display constellations
30 solution = None # How to handle degeneracy ('Smallest','Largest', or 'Moon')
31 Phi_Spectrum = phi_spectrum.get_phi_spectrum(subsystem,display_CES,solution)
32

33 print("\nCuts = ",Phi_Spectrum[0])
34 print("\nPhi Spectrum = ",Phi_Spectrum[1])
35

36 Phi_MIP = phi_spectrum.get_Phi_MIP(Phi_Spectrum)
37 print("Phi MIP = ",Phi_MIP)
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APPENDIX D

ADDITIONAL DETAILS RELATED TO THE CALCULATION OF Φ VALUES
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In this section, we provide the transition probability matrices and initial states
necessary to replicate our results. The same data can be found in downloadable form
via the GitHub repository: https://github.com/jakehanson/pyphi-spectrum.

Photodiode (Chalmers and McQueen, 2014; Oizumi et al., 2014)

A photodiode is a simple system of two interacting COPY gates, taking input from
one another. It is arguably the simplest “integrated” system one can study, and has
been studied in the context of IIT at least twice (Chalmers and McQueen, 2014;
Oizumi et al., 2014). Following Chalmers and McQueen Chalmers and McQueen
(2014), we set the initial state of the system to be s0 = 10. The transition probability
matrix is given below.

Table D.1: The Transition Probability Matrix for a Simple Diode Comprised of Two
Interconnected COPY Gates Taking Input from One Another Such as That Described
in Chalmers and McQueen (2014)

.

s(t) s(t+1)
00 00
10 01
01 10
11 11

AND+OR (Hanson and Walker, 2019; Albantakis et al., 2019)

Like the photodiode, the AND+OR system has been studied in the context of IIT
at least twice prior to the current work (Hanson and Walker, 2019; Albantakis et al.,
2019). However, a concrete Φ value has yet to be published. Therefore, we take the
“published value” to be that of the PyPhi value found in Section 2.3. Similarly, we
take the initial state to be s0 = 00 in accordance with Section 2.3. The transition
probability matrix is given below.

Table D.2: The Transition Probability Matrix for an AND+OR System Such as That
Described in Section 2.3

s(t) s(t+1)
00 00
10 01
01 01
11 11
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Hanson and Walker (2019)

This system is a three bit digital counter in the initial state ’101’. The initial state
is selected somewhat arbitrarily, since any initial state will work, but s0 = 101 results
in a particularly fast evaluation. The TPM, from Figure 4 of the original publication,
is as follows:

Table D.3: The Transition Probability Matrix for the Simple Electronic Counter From
Hanson and Walker (2020)

s(t) s(t+1)
000 110
100 000
010 101
110 010
001 100
101 111
011 001
111 011

Majority Gate System

This system is comprised of three interconnected majority gates, each with three
inputs, as shown in Figure 2.8. If the majority of inputs to a given node are 0 the
state of the node at the next timestep is 0 and if the majority of inputs to a given
node are 1 the state of the node at the next timestep is 1. In the main text, the
system is evaluated in initial state s0 = 000. The transition probability matrix is
provided below.

Table D.4: The Transition Probability Matrix for the MAJ+MAJ+MAJ System (Figure
2.8)

s(t) s(t+1)
000 000
100 000
010 000
110 111
001 000
101 111
011 111
111 111
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Gomez et al. (2021)

This papers studies the p53–Mdm2 biological regulatory network. Typically, this
network is multivalued, but there are two possible binarizations that make standard Φ
calculations possible. Of these, we chose the Fauré and Kaji binarization as it is much
faster to analyze than the Tonello binarization. Following the authors, we choose an
initial state s0 = 0001 and use the following TPM. Note, the PyPhi value we compute
for this TPM differs from that published by the authors due to their use of several
non-standard configuration settings, such as Krohn and Ostwalds definition of Φ as
a difference in integrated conceptual information rather than the IIT 3.0 definition.

Table D.5: The Transition Probability Matrix for the Fauré-Kaji Binarization of the
p53-mdm2 Biological Regulatory Network From Gomez et al. (2021)

s(t) s(t+1)
0000 1101
1000 1100
0100 1100
1100 1110
0010 1101
1010 1101
0110 1101
1110 1111
0001 0001
1001 0000
0101 0000
1101 0010
0011 0001
1011 0001
0111 0001
1111 0011

Farnsworth (2021)

In this paper a virocell (virus infected cell) is introduced into a Boolean network
model of host cell dynamics. There are two network models provided, the first con-
sists of five nodes and is the “full system”, while the second consists of three nodes
and is the “reduced system”. For both systems, we study the case where all the nodes
are ’ON’ (i.e. s0 = 11111 and s0 = 111, respectively). Following the Supplementary
Material provided by Farnsworth, the transition probabilities matrices are given be-
low. Note, in the full system, the second node is an AND gate (as shown in his Figure
6) rather than a COPY gate (as shown in Figure 8 of his Supplementary Material).
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Table D.6: The Transition Probability Matrix for the Entire Boolean Network Model
of Virus-host Dynamics From Farnsworth (2021)

s(t) s(t+1)
00000 00000
10000 00000
01000 10000
11000 10000
00100 01000
10100 01000
01100 11000
11100 11000
00010 00100
10010 00101
01010 10100
11010 10101
00110 01100
10110 01101
01110 11100
11110 11101
00001 00000
10001 00000
01001 10010
11001 10010
00101 01000
10101 01000
01101 11010
11101 11010
00011 00100
10011 00101
01011 10110
11011 10111
00111 01100
10111 01101
01111 11110
11111 11111

Table D.7: The Transition Probability Matrix for the Reduced System From
Farnsworth (2021)

s(t) s(t+1)
000 000
100 000
010 100

Continued on next page
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Table D.7 – continued from previous page
s(t) s(t+1)
110 101
001 010
101 010
011 110
111 111

Oizumi et al. (2014)

This is the canonical OR+AND+XOR system that is often used in demonstrating how
to calculate Φ (Tononi, 2015; Oizumi et al., 2014; Mayner et al., 2018). Following
Oizumi et al., we take the system to be in the initial state s0 = 100. The transition
probability matrix is given below.

Table D.8: The Transition Probability Matrix for the OR+AND+XOR System From
Oizumi et al. (2014)

s(t) s(t+1)
000 000
100 001
010 101
110 100
001 100
101 111
011 101
111 110

Tononi et al. (2016)

This paper demonstrates the calculation of Φ for a simple system of four inter-
acting logic gates: MAJORITY+OR+AND+AND. Following the authors, we use the initial
state s0 = 1110. The transition probability matrix is given below.

Table D.9: The Transition Probability Matrix for the MAJ+OR+AND+AND System From
Tononi et al. (2016)

s(t) s(t+1)
0000 0000
1000 0100
0100 0000

Continued on next page
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Table D.9 – continued from previous page
s(t) s(t+1)
1100 1110
0010 0000
1010 1100
0110 1000
1110 1110
0001 0100
1001 0100
0101 0100
1101 1110
0011 0101
1011 1101
0111 1101
1111 1111

Hoel et al. (2016)

This paper examines several small Boolean networks at both micro and macro
scales. We choose to analyze the smallest of microsystems here, which is a system of
four interconnected AND gates with noisy input. Following the authors, we analyze the
system in initial state s0 = 0000. Due to the noisy input, the TPM is not deterministic
and therefore cannot be written as an N by 2 matrix. Instead, it must be written as
an N by N matrix where entry (i, j) specifies the probability of state i transitioning
to state j at timestep t+ 1 (a standard transition probability matrix). The transition
probability matrix is given below.

Table D.10: The Transition Probability Matrix for the Noisy AND+AND+AND+AND
System From Hoel et al. (2016)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0.24 0.10 0.10 0.04 0.10 0.04 0.04 0.02 0.10 0.04 0.04 0.02 0.04 0.02 0.02 0.01
1 0.24 0.10 0.10 0.04 0.10 0.04 0.04 0.02 0.10 0.04 0.04 0.02 0.04 0.02 0.02 0.01
2 0.24 0.10 0.10 0.04 0.10 0.04 0.04 0.02 0.10 0.04 0.04 0.02 0.04 0.02 0.02 0.01
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.49 0.21 0.21 0.09
4 0.24 0.10 0.10 0.04 0.10 0.04 0.04 0.02 0.10 0.04 0.04 0.02 0.04 0.02 0.02 0.01
5 0.24 0.10 0.10 0.04 0.10 0.04 0.04 0.02 0.10 0.04 0.04 0.02 0.04 0.02 0.02 0.01
6 0.24 0.10 0.10 0.04 0.10 0.04 0.04 0.02 0.10 0.04 0.04 0.02 0.04 0.02 0.02 0.01
7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.49 0.21 0.21 0.09
8 0.24 0.10 0.10 0.04 0.10 0.04 0.04 0.02 0.10 0.04 0.04 0.02 0.04 0.02 0.02 0.01
9 0.24 0.10 0.10 0.04 0.10 0.04 0.04 0.02 0.10 0.04 0.04 0.02 0.04 0.02 0.02 0.01
10 0.24 0.10 0.10 0.04 0.10 0.04 0.04 0.02 0.10 0.04 0.04 0.02 0.04 0.02 0.02 0.01
11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.49 0.21 0.21 0.09
12 0.00 0.00 0.00 0.49 0.00 0.00 0.00 0.21 0.00 0.00 0.00 0.21 0.00 0.00 0.00 0.09
13 0.00 0.00 0.00 0.49 0.00 0.00 0.00 0.21 0.00 0.00 0.00 0.21 0.00 0.00 0.00 0.09
14 0.00 0.00 0.00 0.49 0.00 0.00 0.00 0.21 0.00 0.00 0.00 0.21 0.00 0.00 0.00 0.09
15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Marshall et al. (2017b)

This model system is the fission yeast cell cycle from Marshall et al. (2017b). As
mentioned in the main text, we study the three node subsystem rather than the full
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eight node subsystem (plus one external node) studied in the original publication. To
calculate the spectrum of Φ values for this subsystem (or just the PyPhi Φ value),
the TPM for the entire system (all nine nodes) is required. Therefore, there are 512
states in the TPM. Following the authors, the initial state of the system is set to
s0 = 000110011. In little-end binary notation (most significant bit on the right), the
TPM used is as follows:

Table D.11: The Transition Probability Matrix for the Three-node Fission Yeast
System From Marshall et al. (2017b)

s(t) s(t+1) s(t) s(t+1) s(t) s(t+1) s(t) s(t+1)
0 2 128 162 256 78 384 110
1 2 129 162 257 66 385 98
2 130 130 162 258 2 386 162
3 130 131 162 259 2 387 162
4 4 132 132 260 76 388 76
5 0 133 128 261 68 389 68
6 128 134 128 262 4 390 132
7 128 135 128 263 0 391 128
8 8 136 136 264 76 392 76
9 0 137 128 265 72 393 72
10 128 138 128 266 8 394 136
11 128 139 128 267 0 395 128
12 12 140 140 268 76 396 76
13 0 141 128 269 76 397 76
14 128 142 128 270 12 398 140
15 128 143 128 271 0 399 128
16 256 144 384 272 332 400 332
17 256 145 384 273 320 401 320
18 384 146 384 274 256 402 384
19 384 147 384 275 256 403 384
20 260 148 388 276 332 404 332
21 256 149 384 277 324 405 324
22 384 150 384 278 260 406 388
23 384 151 384 279 256 407 384
24 264 152 392 280 332 408 332
25 256 153 384 281 328 409 328
26 384 154 384 282 264 410 392
27 384 155 384 283 256 411 384
28 268 156 396 284 332 412 332
29 256 157 384 285 332 413 332
30 384 158 384 286 268 414 396
31 384 159 384 287 256 415 384
32 18 160 178 288 82 416 114
33 18 161 178 289 82 417 114
34 146 162 178 290 18 418 178

Continued on next page
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Table D.11 – continued from previous page
s(t) s(t+1) s(t) s(t+1) s(t) s(t+1) s(t) s(t+1)
35 146 163 178 291 18 419 178
36 16 164 144 292 84 420 84
37 16 165 144 293 80 421 80
38 144 166 144 294 16 422 144
39 144 167 144 295 16 423 144
40 16 168 144 296 88 424 88
41 16 169 144 297 80 425 80
42 144 170 144 298 16 426 144
43 144 171 144 299 16 427 144
44 16 172 144 300 92 428 92
45 16 173 144 301 80 429 80
46 144 174 144 302 16 430 144
47 144 175 144 303 16 431 144
48 272 176 400 304 336 432 336
49 272 177 400 305 336 433 336
50 400 178 400 306 272 434 400
51 400 179 400 307 272 435 400
52 272 180 400 308 340 436 340
53 272 181 400 309 336 437 336
54 400 182 400 310 272 438 400
55 400 183 400 311 272 439 400
56 272 184 400 312 344 440 344
57 272 185 400 313 336 441 336
58 400 186 400 314 272 442 400
59 400 187 400 315 272 443 400
60 272 188 400 316 348 444 348
61 272 189 400 317 336 445 336
62 400 190 400 318 272 446 400
63 400 191 400 319 272 447 400
64 66 192 194 320 78 448 78
65 66 193 194 321 66 449 66
66 130 194 130 322 66 450 194
67 130 195 130 323 66 451 194
68 68 196 196 324 76 452 76
69 64 197 192 325 68 453 68
70 128 198 128 326 68 454 196
71 128 199 128 327 64 455 192
72 72 200 200 328 76 456 76
73 64 201 192 329 72 457 72
74 128 202 128 330 72 458 200
75 128 203 128 331 64 459 192
76 76 204 204 332 76 460 76
77 64 205 192 333 76 461 76
78 128 206 128 334 76 462 204

Continued on next page
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Table D.11 – continued from previous page
s(t) s(t+1) s(t) s(t+1) s(t) s(t+1) s(t) s(t+1)
79 128 207 128 335 64 463 192
80 320 208 448 336 332 464 332
81 320 209 448 337 320 465 320
82 384 210 384 338 320 466 448
83 384 211 384 339 320 467 448
84 324 212 452 340 332 468 332
85 320 213 448 341 324 469 324
86 384 214 384 342 324 470 452
87 384 215 384 343 320 471 448
88 328 216 456 344 332 472 332
89 320 217 448 345 328 473 328
90 384 218 384 346 328 474 456
91 384 219 384 347 320 475 448
92 332 220 460 348 332 476 332
93 320 221 448 349 332 477 332
94 384 222 384 350 332 478 460
95 384 223 384 351 320 479 448
96 82 224 210 352 82 480 82
97 82 225 210 353 82 481 82
98 146 226 146 354 82 482 210
99 146 227 146 355 82 483 210
100 80 228 208 356 84 484 84
101 80 229 208 357 80 485 80
102 144 230 144 358 80 486 208
103 144 231 144 359 80 487 208
104 80 232 208 360 88 488 88
105 80 233 208 361 80 489 80
106 144 234 144 362 80 490 208
107 144 235 144 363 80 491 208
108 80 236 208 364 92 492 92
109 80 237 208 365 80 493 80
110 144 238 144 366 80 494 208
111 144 239 144 367 80 495 208
112 336 240 464 368 336 496 336
113 336 241 464 369 336 497 336
114 400 242 400 370 336 498 464
115 400 243 400 371 336 499 464
116 336 244 464 372 340 500 340
117 336 245 464 373 336 501 336
118 400 246 400 374 336 502 464
119 400 247 400 375 336 503 464
120 336 248 464 376 344 504 344
121 336 249 464 377 336 505 336
122 400 250 400 378 336 506 464

Continued on next page
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Table D.11 – continued from previous page
s(t) s(t+1) s(t) s(t+1) s(t) s(t+1) s(t) s(t+1)
123 400 251 400 379 336 507 464
124 336 252 464 380 348 508 348
125 336 253 464 381 336 509 336
126 400 254 400 382 336 510 464
127 400 255 400 383 336 511 464
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