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ABSTRACT  
   

Drylands make up more than 45% of the Earth’s land surface and are essential to 

agriculture and understanding global carbon and elemental cycling. This thesis presents 

an analysis of atmospheric relative humidity (RH) and temperature (T) as they impact 

soil moisture and water content at two dryland sites. In particular, this thesis assesses the 

likelihood and impact of non-rainfall moisture (NRM) sources on dryland soils. This 

work also includes a discussion of the development and testing of a novel environmental 

sensing network, using custom nodes called EarthPods, and recommendations for the 

collection of future data from dryland sites to better understand NRM events in these 

regions. An analysis of weather conditions at two drylands sites suggest that nighttime 

RH is frequently high enough for NRM events to occur. Thesis results were unable to 

detect changes in soil water content based on historical weather data, likely due to 

instrument limitations (depth and sensitivity of soil moisture probes) and the small 

changes in soil moisture during NRM events. However, laboratory tests of EarthPod soil 

moisture sensors indicated strong sensitivity to T. Characterization of these T sensitivities 

provide opportunities to calibrate and correct soil moisture estimates using these sensors 

in the future. This work provides the foundation for larger biogeochemical sampling 

campaigns focusing on NRM in dryland systems. 
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CHAPTER 1 

INTRODUCTION 

Dryland Biogeochemistry 

Drylands are defined by their aridity, but more specifically this aridity can be 

characterized by the ratio of precipitation to evapotranspiration (P/PET). This ratio gives 

a measure of the amount of water entering a system to the amount leaving and, as the 

ratio decreases, it indicates that the region experiences increasing aridity. The P/PET of 

dryland systems spans from dry subhumid areas (0.50 - 0.65) through semiarid (0.20 - 

0.50), arid (0.05 - 0.020), and hyperarid (<0.05) (Safriel et al., 2005). These regions 

cover ~45% of the Earth’s surface (Prăvălie, 2016) and account for about one quarter of 

global soil organic carbon (Plaza et al., 2018). Consequently, drylands play a key role in 

affecting the atmospheric CO2 pool at both interannual and decadal time scales (Poulter 

et al., 2014; Ahlström et al., 2015). Climate change projections estimate dryland area will 

increase 10% by the year 2100, with direct implications for food security and habitat 

stability (Plaza et al., 2018).  

Dryland ecosystems, particularly in North America, are uniquely heterogeneous 

in vegetative cover and soil texture in comparison to other ecosystems (Shreve et al. 

1964; McAuliffe 1994). This varied pattern of shrub cover on submeter to meter scales 

and soil texture on meter to kilometer scales means that water dynamics, and even the 

microbial response to water pulses, can vary across submeter scales such as between a 

shrub canopy and a proximal interspace (Cable et al. 2008).  
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The Sonoran Desert, covering parts of southern Arizona, California and northern 

Mexico, ranges from semi-arid to hyper-arid conditions. Since the Sonoran Desert has   

 

 

 

 

 

 

 

 

about 30% plant cover (Shreve et al. 1964) and is, like other North American deserts, 

heterogeneous in soil texture (Cable et al. 2008), it is necessary to look at the different 

microclimates that bare soil and under canopy regions produce (Figure 1). For instance, 

previous bulk carbon (C), nitrogen (N), and sulfur (S) measurements indicate that under-

canopy locations almost always have higher CNS concentrations due to an “island of 

fertility” effect (Mudrak et al. 2014), potentially correlating with increased litter retention 

in those areas.  

Previous research on soil microbial communities has shown that microbes and 

moisture play a dominant role in soil biochemistry, carbon stabilization, litter 

decomposition and elemental cycling in drylands (Austin et al. 2004; Evans et al. 2020). 

Dryland soils contain approximately 25% of global soil organic carbon (Safriel et al., 

Figure 1: Shrub, standing dead grass, and a proximal bare plot with soil biocrust 
cover at the Tempe desert botanical garden demonstrating the heterogeneity of 
dryland microclimates on submeter scales. 
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Dead Grass 
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2005), and microbes play a role in both fixation of carbon and the mineralization of 

carbon substrates into CO2 (Manzoni et al., 2012). Similarly, drylands contain greater 

than 40% of global soil organic nitrogen (Plaza et al., 2018) and soil moisture strongly 

regulates microbial response to nitrogen pools (Wertin et al., 2018). Since microbial 

mineralization of soil organic matter is the primary source of inorganic soil nitrogen 

(Wang et al., 2014), the pool of bioaccessible nitrogen available to plants in drylands is 

dependent on microbial activity. Similar to nitrogen, sulfur is both an essential nutrient 

for plant growth in the form of cysteine, methionine, coenzymes, and vitamins, and also a 

potentially limiting (Bünemann et al. 2007). Most previous research on microbial sulfur 

cycling in soil has focused on soil arylsulfatase (ARS) content. Since the vast majority of 

soil sulfur is organic, 90-98% (Scherer, 2001), the arylsulfatase enzyme, which catalyzes 

the formation of sulfate, has been a primary focus for research into microbial sulfur 

cycling (Chen et al., 2019).  

 Water is a limiting factor for the growth, maintenance, and activity of microbes. 

To sustain themselves or perform more complex activities like elemental cycling, 

microbes must first acquire water. For this reason, most research on microbial activity in 

drylands has focused on their response to rainfall (Austin et al. 2004; Dirks et al. 2010; 

Evans et al. 2020). These events, however, tend to be short as soil dries rapidly post-

rainfall, usually within a couple days or even hours (Huxman et al., 2004). During 

prolonged dry periods there may be other potential sources of moisture in dryland 

environments, such as fog, dew, soil water vapor adsorption, and mineral deliquescence 

(Wang et al. 2017, Davila et al. 2013, Canarini et al. 2020). These additional non-rainfall 

moisture (NRM) sources have been shown to stimulate microbial activity during rainless 
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periods (Kuehn et al. 2004, Evans et al. 2020, Dirks et al. 2010). Additionally, as aridity 

increases and rainfall decreases, NRM sources may become a more prominent portion of 

the total water budget. Therefore, NRM sources may have a profound impact on the 

frequency and duration of microbial activity, perhaps even more than rainfall, in arid and 

hyper-arid regions.  

While characterization of moisture controls over soil microbial dynamics has 

typically focused on precipitation, non-rainfall moisture sources can also stimulate 

microbial metabolic activity in plant litter, biological soil crusts, and soils (Wang et al., 

2017). This activity includes respiration (Jacobson et al., 2015; Gliksman et al., 2017; 

Evans et al., 2020) and carbon and nitrogen fixation (Ramond et al., 2018; Ouyang and 

Hu, 2017). Furthermore, non-rainfall moisture manipulation experiments with dryland 

litter show that the microbial respiration response can be extremely rapid, with increased 

CO2 production observed within minutes after non-rainfall moisture exposure in 

laboratory conditions (Jacobson et al., 2015). Furthermore, it is possible that these 

microbial metabolic responses to NRM sources could differ significantly from responses 

to larger quantities of moisture such as during rainfall events. For example, certain 

elements of decomposition or nutrient cycling may have been prioritized during low 

moisture periods. Either way, the direct addition of even small amounts of liquid water 

immediately increases microbial access to substrates, rapidly increasing the microbial 

potential for decomposition and elemental cycling (Austin et al., 2004). 

Although microbial N cycling is typically modeled in association with rain events, 

RH changes may also activate microbial nitrogen fixation which creates larger reservoirs 

of nitrogen available to plants (Ramond et al., 2018). The dynamics of ARS production 
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in dryland ecosystems is severely understudied (Bünemann et al., 2007) and our 

understanding of how RH and NRM may affect soil S has yet to be studied. Bioavailable 

S is essential for plant growth and stoichiometrically coupled to C and N dynamics under 

most humidity regimes, but it can become decoupled in hyper arid conditions due to 

salinization and atmospheric deposition (Luo et al., 2016). In these conditions, S 

oxidation can lead to decreased soil pH, enhanced solubility of trace metals, and 

associated shifts in the soil microbial community.  

  

Sources and Measurement of NRM 

Although fog and dew events are caused by separate phenomena, their impact on 

microbial soil communities is often assumed to be similar in models (Wang et al. 2017). 

A fog event occurs when atmospheric water vapor becomes saturated and condenses into 

small droplets suspended in the air (Figure 2). Dew, on the other hand, forms when the 

surface T of the soil or plant foliage is lower than the dewpoint, a T at which the water 

vapor in the air would be saturated (Jacobs et al. 1999). In both cases, water condenses at 

or near the soil surface and becomes available for microbial use (Figure 2). 

 Water vapor adsorption, on the other hand, occurs within the pores of the soil. 

When the atmospheric RH is higher than the soil RH, that gradient draws external water 

vapor into the pores of the soil where it can adsorb to the minerals and potentially form 

liquid water (Agam et al. 2006). This can occur at higher T than dew formation, which 

may also make it a more frequent source of water in dryland ecosystems. 

 Mineral deliquescence is another source of NRM that could be used by microbes 

as a moisture source in arid systems. When RH reaches the deliquescence relative 
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humidity (DRH) of a mineral, water vapor condenses on or in the pores of hygroscopic 

minerals causing the mineral to dissolve in on itself forming a brine or saturated solution 

(Davila et al 2013). While deliquescence can rely on water vapor adsorption to occur, the 

moisture source that microbes are accessing is a solution made up of the dissolution of 

the hygroscopic mineral and, therefore, has a decreased water activity relative to 

condensate. 

 
 

Dew Fog Water Vapor 
Adsorption 

Mineral 
Deliquescence 

Passive Collector X X 
  

Active Collector 
 

X 
  

Leaf Wetness Sensor X 
   

Soil Wetness Sensor X 
 

X X 

Microlysimeter X 
 

X X 

Soil Relative Humidity 
Sensor 

X X X X 

Table 1: Ability of different methods of collection and sensing for assessing NRM event 
occurrence. 

 
 Each of these NRM sources can be measured in multiple ways (Table 1). Fog, for 

example, can be collected using both passive and active collectors to measure the 

quantity of moisture being deposited (Wang et al. 2017). Dew can also be measured 

directly using a variety of collectors that provide a surface on which dew can form.  It is 

also possible to measure fog drip under canopies using passive collectors (Goodman 

1985). Preliminarily, leaf wetness or soil wetness sensors can be used to determine when 

a moisture event is occurring on the surface or in the pores of soil, respectively. For 
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greater precision in quantity and length of an NRM event, microlysimeters are often used 

to calculate dewfall and water vapor adsorption (Ucles et al. 2013). However, because 

these NRM mechanisms all rely on RH, measuring soil and atmospheric RH may allow 

us to determine the length and extent of potential NRM events in these dryland systems. 

Previous research indicates that RH can be used to estimate when NRM events are 

occurring using either RH thresholds or functions to determine the ‘likelihood wet’ of a 

given soil system and humidity regime (Sentelhas et al., 2008; Evans et al., 2020). 

RH is defined as the percent saturation of water vapor in the air at a given T. 

There are two potential environmental sources of increased soil RH in drylands that are 

both more likely to occur at night. Whenever the overlying air has a higher RH than the 

soil, water vapor in soil pores will increase as the soil equilibrates with the air (Agam et 

al., 2006; McHugh et al., 2015). However, this process is unlikely to occur during the 

daytime when soil T can be higher than the atmospheric T, creating a thermal gradient in 

the upper 5 cm that prevents soil RH from equilibrating (Kobayashi et al., 1998; Pedram 

et al., 2018). It is also possible that water vapor input from deeper, wetter soils can cause 

increase in the soil RH of surface soils; however, the same thermal gradient that prevents 

atmospheric water vapor penetration can also prevent deeper water vapor sources from 

entering the top 5 cm of the soil sometimes even creating a buildup of water vapor in the 

regions below the thermal gradient (Pedram et al. 2018). As soil T fall at night, dryland 

soil RH is more likely to increase and equilibrate with atmospheric input or even with 

vapor input from below.  

Particularly in hotter regions, these conditions may lead certain types of NRM to 

be more frequent and more prevalent than others. Fog occurs during periods where water 
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vapor saturates the atmosphere (Figure 2) and, since percent saturation is inversely 

correlated with T, the conditions at which fog can occur are likely infrequent in most hot  

 
Figure 2:  Illustration of different types of NRM and the conditions at which they occur 
against their likelihood to occur in dryland climate regimes. Fog conditions occur when 
the atmospheric RH reaches saturation. Dew occurs when the atmospheric RH is high 
and surface soil temperature is low, reaching the dewpoint. Similarly, deliquescence 
occurs when hygroscopic minerals experience soil or atmospheric RH reaching their 
deliquescent RH. And Soil water vapor adsorption occurs when the atmospheric RH is 
higher that the soil RH, creating a gradient moving water vapor into the pores of the soil. 

climate regimes, although some cold deserts like the Atacama have significant fog input 

(Bonnail et al. 2018). Similarly, dew formation is dependent on low soil T and high RH 

(Figure 2) and may be more infrequent during hotter seasons. On the other hand, mineral 

deliquescence can occur whenever the soil RH is high enough (Figure 2) and, conversely, 

soil water vapor adsorption can occur whenever the soil RH is low enough in respect to 

the atmospheric RH (Figure 2) making both conditions potentially more likely to occur 

during dry seasons than other NRM sources.  

 This thesis focuses on determining the specific correlation of soil moisture and 

atmospheric and soil moisture measurements to determine if RH can be used as an 

accurate proxy for the occurrence of NRM events. 

 

 



  9 

 



  10 

CHAPTER 2 

CHARACTERIZATION OF SOIL MOISTURE IN RESPONSE TO ATMOSPHERIC 

VARIABLES 

Introduction: 
Since non-rainfall moisture (NRM) can stimulate a variety of microbial activities 

(Wang et al., 2017; Jacobson et al., 2015; Gliksman et al., 2017; Evans et al., 2020; 

Ramond et al., 2018; Ouyang and Hu, 2017), it is important to determine the frequency, 

duration, and impact of NRM events in dryland regions. While fog and dew events are 

frequently predicted using dew point, previous research has indicated that it is possible to 

more broadly predict NRM occurrence using RH. In their 2020 paper discussing litter 

decomposition in the Namib Desert, Evans et al. found that a threshold of atmospheric 

RH sustained above 85% could be used to indicate NRM events. However, their research 

also indicated that, by correlating atmospheric RH measurements with leaf wetness 

sensor measurements, it was possible to closely model the frequency of NRM events over 

a given period. Since the Evans model uses leaf wetness sensors, it can only account for 

surficial NRM events like dew and fog and cannot account for other NRM soil events 

such as water vapor adsorption and deliquescence.  

Here we use soil moisture sensors in conjunction with soil and atmospheric RH 

sensors to create a model that can predict NRM event occurrence in surface soils and, 

potentially, historical NRM event occurrence from data sets where soil moisture 

measurements are collected. These analyses are focused on soils in two contrasting sites 

in the Sonoran Desert in the southwestern USA (Figure 3). The Desert Botanical Garden 

(DBG) site contains remnant native desert patches characterized by arid desert scrubland 
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with coarse, gravelly soils in Phoenix, AZ at ~ 400 m elevation, predominated by Larrea 

tridentata shrubs (creosote bush). The Santa Rita Experimental Range (SRER) site is a 

semi-arid Prosopis velutina (mesquite) savanna near Tucson, AZ at ~ 1,100 elevation. 

The SRER is a part of the National Ecological Observatory Network (NEON) and 

therefore has robust historical weather and soil data, in particular soil moisture, 

atmospheric RH and T, and rain data, accessible through NEON since 2016. The DBG, 

while not a part of NEON, has an onsite weather station run by Kevin Hultine that has 

collected rain, T, wind, and RH data since 2016 as well. In particular, the atmospheric 

RH and rainfall data from these two sites makes it possible to characterize the frequency 

at which elevated humidity occurs without rainfall events, when NRM events would be 

obscured, and determine if NRM events could be occurring. The soil moisture data from 

the SRER will also enable the comparison of soil water content with atmospheric RH to 

determine with greater specificity when NRM events could be occurring. 

Figure 3: A) Overview of 
southern Arizona, USA with 
the location of each site and 
close-up of B) arid Desert 
Botanical Garden and C) 
semi-arid Santa Rita 
Experimental Range sites. 
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Methods: 

Historical Weather and Soil Data Analysis 

SRER NEON Data: Data including rain, soil moisture, dew point, atmospheric RH and 

atmospheric T were obtained from online NEON repositories 

(https://data.neonscience.org/data-products/explore). Soil VSWC data were not available 

or complete from these datasets before Jan. 2018 and after Jul. 2020. RH and T data from 

the SRER was collected using the Vaisala HUMICAP® HMP155 probe. At 2-meter 

height, this probe can measure RH from 0-95% with an uncertainty of 1% and T in a 

range of -80 to 60°C with an accuracy of at least 0.4°C. Volumetric soil water content 

(VSWC, cm3 water/cm3 soil) was measured using the Sentek TriSCAN EnviroSCAN soil 

moisture probe. Each probe was calibrated in an external laboratory by site and depth. 

The EnviroSCAN measures at multiple depths; however, to best determine how 

atmospheric variables impacted soil moisture, the sensor closest to the surface (6 cm 

depth, installed vertically) was used. At this depth, NEON reported a maximum 

uncertainty of 0.21 cm3/cm3 from Jan. 2018 – Apr. 2018 and 0.07 cm3/cm3 from Apr. 

2018 – present.  

 

DBG Data: Unpublished data from the DBG including rain, dew point, atmospheric RH 

and T were obtained directly from K. Hultine. Rain, RH, and T data are based on near 

surface (2 m above soil surface) sensors on an onsite meteorological station.  

 

Data Analysis: NEON and DBG data were analyzed using both Microsoft Excel and 

MATLAB. Large data sets were solely analyzed in MATLAB. Both data sets were 
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processed and missing, incomplete, or potentially inaccurate data as indicated by NEON 

metadata were removed. Some RH, T, precipitation, and soil moisture data from the 

SRER was not processed. These data included RH, T and VSWC data from before 2018 

and after July 2020, which was largely incomplete, and precipitation data from prior to 

2018 which was also missing some data points. Fog and dew analyses were performed on 

the complete unfiltered data set remaining. To remove confounding variables for analyses 

of smaller NRM events, VSWC, T and RH data were filtered to remove rainy days (>0.05 

mm precipitation). Linear regression models were performed using the MATLAB fitlm 

function (Math Works, Inc.). 

 
 
Results: 
 
Historical Weather Characterization of Sites 

 Given the importance of moisture events in dryland regions, we have endeavored 

to characterize the frequency and duration of moisture events at both sites and the typical 

conditions under which they occur. From 2019 and 2020, in keeping with the aridity of 

both locations, the SRER received significantly more precipitation than the DBG (Figure 

4). Overall, 2020 was a drier year at both sites. Both sites saw an increase in precipitation 

during the winter months in both 2019 and 2020.  

 Heatmaps of historical weather records from both DBG and SRER show elevated 

atmospheric relative humidity occurs most frequently at lower atmospheric T (Figure 5). 

The DBG, an arid scrubland, is characterized by higher T and generally lower RH. 

Similarly, the semi-arid SRER has lower T on average and generally higher RH.  
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Furthermore, over half the days in a year (50% of days at the DBG and 70% of days at 

the SRER) reached a maximum RH above 50% (Figure 6). Typically, periods of high RH 

occurred at nighttime and co-occurred with lower T. At the SRER and DBG respectively, 

the average T when the RH exceeds 75% is 11.1°C and 10.5°C. A fog or dew event may 

occur at each site, depending on wind conditions, if the dew point equals or exceeds the 

T. To estimate the frequency and duration of fog and dew at both sites, there were three 

potential thresholds by which to make estimates: a conservative threshold of dewpoint ≥ 

T, a semi-conservative threshold of dewpoint + 2.5 °C ≥ T, and a broader threshold of 

dewpoint + 4°C ≥ T (American Meteorological Society, 2020). The semi-conservative 

estimation was used to consider natural variation caused by other weather factors such as 

humid or cold winds, which can increase the likelihood of dew formation. Rainy days 

Figure 4: Cumulative precipitation from winter 2019 through fall 2020 at both the 
DBG (Blue) and the SRER (Orange). Seasons were ascribed as follows: Jan. – 
Mar. (Winter), Apr. – Jun. (Spring), Aug. – Sep. (Summer), and Oct. -Dec. (Fall). 
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were calculated to be any day with cumulative precipitation >0.005 mm. These analyses 

indicated that fog and dew events primarily occurred in winter seasons at the SRER, 

typically from late October through April (Figure 7). Further analyses indicated that, at 

the DBG, fog and dew conditions occurred most frequently at and in the hours before 6 

am then trailed off rapidly to a low point around 1 pm (Figure 8A). At the SRER, 

however, fog and dew conditions occurred most frequently around 5 am, but otherwise 

followed the same general diurnal trend (Figure 8B).  

 As there were no soil moisture sensors at the DBG weather station, soil moisture 

data was only analyzed from the SRER from Jan. 2018 – Dec. 2020. While NEON 

provided data from deeper sensors, the soil moisture sensor data used was from the 

sensor placed closest to the surface at a depth of 6 cm. Rainy days were not excluded 

from this data set. The volumetric soil water content (VSWC) of the soil represents the 

amount of water in grams per gram of soil. 

Analyses of this soil moisture data indicated that the soil at the SRER site 

equilibrated to a VSWC of approximately 0.02 cm3/cm3 during prolonged dry periods 

(Figure 7). Most large moisture events (> 0.02 cm3/cm3 above a VSWC of 0.02 cm3/cm3) 

occurred from Jul.–Oct. both years and less frequently during winter months from Nov. – 

Feb., potentially co-occurring with rainfall which also followed similar trends during 

those periods (Figure 4, 7). 
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A 

B 

Figure 5: Heatmaps of daily maximum RH against minimum T at the DBG (A) 
and SRER (B) from Jan. 2018 - Dec. 2019. Counts indicate the maximum RH 
and minimum T of each day. 
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Figure 6: A) Annual cumulative hours at each RH at the SRER from Jan. 2018- Dec. 2018 
(blue bars) and Jan. 2019-Dec. 2019 (brown bars). B) Annual cumulative volumetric soil 
water content at the SRER from Jan. 2018- Dec. 2018 and Jan. 2019-Dec. 2019. 
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 To remove confounding variables introduced by rainfall, fog, and dew, on the 

connection between atmospheric RH, atmospheric T and VSWC, SRER data was 

processed to remove rainy days and fog and dew periods as described in the Chapter 2 

methods. Plots of atmospheric RH and T against VSWC, did not show any clear trends 

(Figure 9A, B). However, linear regression models of both datasets indicated that RH had 

a slight positive correlation with VSWC, and T had a slight negative correlation. A linear 

regression model of VSWC = 0.0254 + 0.00019(RH) had a p-value of 1.56 x 10-128. 

 

Figure 7: Left Axis: Potential fog and dew events at the SRER from Jul 2018-Jul 2020 
(Green). Fog and dew events occurring during rainy days (cumulative rainfall < 0.005 
mm, Red). Each Event represent a half-hour period. Potential fog and dew events were 
calculated to be any hourly period where average atmospheric T conditions dropped 
below the threshold of the dewpoint + 2.5 °C. Right Axis: Volumetric soil water content 
(cm3 of water/cm3 of soil, Blue) read at a depth of 6 cm and cumulative rainfall (m, 
Purple). 
 

m 0 
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Figure 8: Dew point data was used to estimate the diurnal cycle of potential fog and dew 
events at the DBG from Aug. 2016 – Dec. 2020 (A) and at the SRER from Jan. 2019 - 
Dec. 2020 (B). Potential fog and dew events were calculated to be any hourly period 
where average atmospheric temperature conditions dropped below the threshold of the 
dewpoint + 2.5 °C. 
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A 

B 

Figure 9: Data from the SRER from Jul. 2018 – Aug. 2020 were analyzed to remove 
periods of rainfall, and potential fog and dew. Each data point represents a 30-minute 
period. Volumetric Soil Water Content (VSWC) was measured using a Sentek TriSCAN 
EnviroSCAN soil moisture sensor inserted at a depth of 6 cm. A) VSWC was plotted 
against atmospheric RH collected at a height of ~ 2m above the soil surface and the 
linear fit, VSWC = 0.0254 + 0.00019(RH), was plotted. B) VSWC was plotted against 
atmospheric T collected at a height of ~ 2m above the soil surface and the linear fit, 
VSWC = 0.0419 + -0.0002(T), was plotted. 
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and an R2 value of 0.109. The low p-value indicates that there is a significant, if very 

small, positive correlation between RH and VSWC; however, the low R2 value indicates 

that the model is insufficient to make any meaningful predictions of VSWC from RH. A 

similar linear regression model of VSWC = 0.0419 + -0.0002(T) had a p-value of 1.58 x 

10-25 and an R2 value of 0.0214, indicating a significant, but unpredictive negative 

correlation between T and VSWC at the SRER.  

To determine if changes in VSWC are correlated with any atmospheric variables, 

the changes in VSWC (ΔVSWC) for each 30-minute period were compared to RH, T, 

and the changes in both variables over each equivalent 30-minute period (ΔRH and ΔT, 

respectively). Plots of ΔVSWC against RH, ΔRH, T and ΔT (Figures 10A, 10B, 11A, and 

11B) showed no clear correlations between ΔVSWC and any variable.  Linear regression 

models of each dataset were performed; however, only small, significant positive or 

negative correlations were found. However, the comparison of RH and ΔVSWC did 

demonstrate greater scatter above 75% RH and, similarly, as T lowered the scatter of T 

against ΔVSWC also seemed to increase in breadth. 

 

Discussion 

Historical Weather Data Analyses 

Atmospheric RH and soil water content were evaluated at the SRER to determine 

if the frequency and duration of NRM events could be determined using historical 

atmospheric RH conditions. Analyses of the RH data from both sites indicated that there 

are hundreds of hours of elevated RH at both the DBG and  
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Figure 10: VSWC and RH data from Figure 9A was analyzed to determine the 
change in both variables across 30-minute periods. A) ΔVSWC was plotted 
against atmospheric RH. B) ΔVSWC was plotted against ΔAtmospheric RH. 
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Figure 11: VSWC and atmospheric T data from Figure 9B was analyzed to 
determine the change in both variables across 30-minute periods. A) ΔVSWC 
was plotted against atmospheric T. B) ΔVSWC was plotted against 
ΔAtmospheric T. 
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SRER (Figure 5, 6). And, while both sites primarily experience lower relative humidity, 

there are significant quantities of time that each site spends above 75%, 85% and even 

90% RH.  

 Overall, the lack of any significant predictive power on VSWC between either 

atmospheric T or atmospheric RH indicates two potential possibilites. While it is possible 

that soil moisture is only very slightly affected by either variable, positively 

by RH and negatively by T, it seems unlikely as other previous research has found direct 

correlations between elevated RH and NRM events. Another reason that VSWC seems 

unaffected by atmospheric inputs could be the depth of the soil moisture sensor. At 6 cm 

depths, it is likely that only very large water inputs such as rainfall will affect soil 

moisture readings. This is somewhat supported by the soil moisture trend (Figure 7, 

Appendix B Figure 21).  However, some soil moisture events did occur at higher 

humidities as the comparisons of RH and ΔVSWC did have greater scatter above 75% 

RH. If these events are due to the elevated humidities, it could be indicative that only 

longer periods of high humidities could impact soil moisture at that 6 cm depth 

(Appendix C Figure 23, 24), the NEON standard. In that case, particularly in dryland 

regions, it may be necessary to employ more sensitive soil moisture sensors, capable of 

measuring smaller changes in soil moisture with less uncertainty, much closer to the 

surface in order to determine how and when NRM events may be occurring and to what 

degree these events could impact the very near surface soils. 

While fog and dew conditions are far less frequent than elevated RH, NRM events 

could still be occurring during high RH events that do not fall to low enough T to reach 

the dew point. Neither soil water vapor adsorption nor deliquescence rely on T to drive 
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their occurrence and could therefore be occurring during these elevated RH events if soil 

conditions are appropriate. However, without models to demonstrate how the VSWC of 

the soil changes with RH, it is not possible to estimate how these other NRM sources 

impact the soils at these sites without soil moisture data. 

Comparing the precipitation and soil moisture data at the SRER indicates that the 

majority of large soil moisture events (> 0.02 increase in VSWC) are likely due to 

rainfall. Additionally, these large soil moisture events tended to have significant lag times 

before returning to the typical ‘dry’ VSWC of the soil at the SRER which appears to be 

around 0.02 VSWC. However, smaller increases in VSWC occurred throughout the year 

and during the lag times of larger events. While some of these events may also be 

indicative of rainfall, others may be indicative of small fog and dew events, particularly 

those that occurred during the early spring when rainfall tended to be lower. Although it 

is possible for some NRM events to have occurred based on the soil moisture data, it is 

difficult to deconvolve the effects of rainfall on soil moisture. To do so, specific 

laboratory testing of how VSWC changes with RH for the soil at a given site is 

necessary. 
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CHAPTER 3 

EARTHPOD SENSOR ARRAYS 

Introduction 

While remote sensing can provide insights into even relatively small phenomena 

like vegetative cover, it excels at providing data and readings at broader spatial scales. 

Local measurement systems can gather data on much finer scales, but are less suited to 

gathering broader, regional measurements (Bogena et al., 2007). Proximal soil property 

sensing is particularly valuable to understanding the specific characteristics of 

heterogenous microclimates and ecosystems such as those found in drylands, but is not 

enough to deeply characterize the environmental dynamics of these regions (Rossel et al., 

2011). Environmental Sensor Networks (ESNs) may provide a solution. ESNs use arrays 

of sensor nodes that can provide measurements of more variables on significantly finer 

spatial and temporal scales than remote sensing and bridge the gap between local 

environmental variables and their distribution over broad areas (Zerger et al., 2010; 

Bogena et al., 2007). ESNs have the added benefit of providing and storing data in real-

time. Besides providing situational awareness, live-streaming and hosting data over the 

internet provides the distinct advantage of being able to readily respond to events of 

interest or even, as sensor networks develop, remotely modify measurement techniques 

and methods to better respond to real-time events (Liang et al., 2005; Zerger et al., 2010; 

Bogena et al., 2007).  

In drylands, where environmental variables can vary between microclimates on 

submeter scales and can change based on broader climate or ecological factors on the 

scale of hundreds of hectares, ESNs are essential to any deep understanding of regional 
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soil dynamics (Browning et al., 2015). Previous work applying ESNs to dryland regions 

has primarily focused on agricultural applications. ESNs measuring soil water dynamics 

over large areas on fine scales have successfully been applied to agricultural field sites in 

the northwestern U.S. (Gasch et al., 2017). Outside of agricultural work, ESNs applied to 

dryland regions still typically focus on characterizing water dynamics, particularly water 

pulses, to better understand vegetative growth, desertification, and erosion in North 

American desert regions (Collins et al., 2014; Browning et al., 2015). ESNs with a 

specific focus on measuring environmental variables of relevance to microbial growth 

and activity are an essential link between local microbial studies and cross-scale analyses 

of regional and global dryland microbial elemental cycling. 

 To that end, an ESN, with nodes termed EarthPods, focused on atmospheric RH, 

pressure, and T was designed for use in very near surface (< 6 cm) measurements. These 

EarthPods were also equipped with two invasive sensors to measure soil moisture, T, and 

RH. This chapter focuses on the design and testing of these EarthPods and provides 

recommendations for sampling schemes in the future. 
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Computing 

The primary computing device used in the construction of the EarthPods was the 

Adafruit Feather MO WIFI. This board uses an ATSAMD21G18 ARM Cortex MO 

microcontroller, which is fully compatible with the Arduino IDE used to program each 

pod. The MO is also equipped with an ATWINC1500 network controller, capable of 

streaming data packets over a WiFi network. 

The Feather is attached to a larger board equipped with a variety of other essential 

capabilities and interfaces for sensors and data storage. Each board is equipped with an 

Adafruit SDIO MicroSD Card reader for backup data storage and dedicated SPI and I2C 

buses for interfacing with external sensors. In particular, the I2C bus is easily accessible 

at the top of the board and can be used for a far larger variety of sensors than were 

equipped to the EarthPods here. 

 
Figure 12: Schematic of EarthPod Boards Designed by Cole Baurer and Katrina Davis 
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Packaging 

 The EarthPod packaging was designed to both protect the boards from inclement 

weather and allow sufficient airflow for internal, protected atmospheric sensors. 

 

 
Figure 13: Schematic of EarthPod Casing Designed by Cole Baurer 

 
The upper shield of the EarthPod casing was designed to address these potential issues. 

The rain shield protects sensitive electronics from rain and high T and the vented shield 

allows airflow into and out of the inner chamber of the EarthPod, allowing cooling and 

atmospheric equilibration for sensors. The main body of the casing was designed to both 

protect the boards and allow easy access for charging, programming, and repair. In 

addition, the whole casing is elevated by 1 cm on four rubber feet to avoid low-level 

running water and maintain stability. 

 

Sensors 

 Internally, the EarthPods were equipped with both and Si7021-A20 I2C 

atmospheric RH and T sensor and an SPL06-007 pressure and T sensor. The Si7021-A20 
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sensor can take readings of RH between 0-80% to at least 3% accuracy and T between -

10 to 80°C to at least 0.4°C accuracy. Similarly, the SPL06-007 sensor can report 

pressures of 300-1100 hPa to 1 hPa accuracy and T of -40 to 85°C to at least 0.5°C 

accuracy. 

 
Figure 14: Schematic of Capacitive Soil Sensor Designed by Katrina Davis 

 
 Two external sensors were attached to the EarthPods. The Adafruit AM2315 

Encased Atmospheric Temperature and Humidity sensor and a new capacitive soil 

moisture sensor designed by Katrina Davis. Both sensors use capacitive measurement 

systems to determine the RH of the air or soil moisture, respectively. The AM2315 is 

capable of measuring RH of 0-100% to at least 3% accuracy and T of -20 to 80°C to at 

least 0.3°C. 

 The newly designed soil moisture sensor (Figure 14), uses a voltage divider to 

measure the capacitance of the surrounding soil at two depths, 2 cm and 5 cm. This 

system of measurement works using the soil as one of two resistors that make up the 

voltage divider. As the water content of the soil increases, so too does the dielectric 

constant of the soil. As the dielectric constant increases the voltage output through the 

voltage divider decreases, resulting in a reading reflecting an inverse relationship 

between moisture and voltage. The dielectric constant of soil is, however, extremely 
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variable. Various other soil characteristics, including soil texture and porosity, mineral 

content, and T, can all impact these readings. It is therefore necessary to calibrate these 

sensors to site-specific soils prior to deploying in field environments.  

 

Laboratory Manipulation Methods 

 The AM2315 was tested to determine its ability to assess soil moisture during a 

soil core dry down experiment. A soil core was collected and the AM2315 was inserted 

to a depth of 1-3 cm. The 800g core was wetted using ~18 g of water, until the surface of 

the core visually appeared near or at saturation. The soil core was then allowed to dry 

over the course of 5 days at room T (20 – 24°C) and soil RH and T were taken every 3 

minutes. These tests indicated that the AM2315 was fully capable of seeing small and 

rapid changes in soil RH (Figure 15). 

Humidity chambers were composed of sterilized Coleman 48-quart performance 

coolers. Saturated salt solutions maintained a constant RH in the headspace of the 

humidity chamber (MgNO3 53%, NaCl 76%, and K2SO4 98% RH at 10°C; Rockland, 

1960). Soil samples were collected and dried overnight at 105°C. EarthPod soil moisture 

and RH probes were inserted at a depth of 2 cm and 0-2 cm into the dried soil, 

respectively. Over a 3-day period from Oct. 9th-11th, the soil sample was placed in each of 

the three humidity chambers for at least 12 h each in order from lowest to highest 

humidity. In between each humidity chamber, soil samples were dried overnight at 60°C. 

From Oct. 13th-15th this process was repeated with the 53% and 98% humidity chambers. 

During the first 60°C drying process, overnight from Oct. 9th-10th, the EarthPods and 

their sensor were kept inserted. Atmospheric RH and T and soil moisture data was 
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collected during each humidity manipulation and during the first drying step. Soil RH and 

T data was not collected until Oct. 13th-15th due to battery issues.  

 Data collected from each EarthPod was streamed to a dedicated DeepGIS sensor 

page, http://sensors.deepgis.org:4000/. Data was processed in MATLAB. Linear 

regression models were performed using the fitlm function and first order polynomial 

curves were fit using the MATLAB Curve Fitting App.  

Sampling and Calibration 

Prior to deploying the EarthPods, the AM2315 was tested for its ability to assess 

soil RH. The resulting data indicated that while soil RH began increasing immediately 

following the wetting event, the drying of the soil core is mimicked closely by the soil 

RH measured by the AM2315. There is some lag time post-wetting, prior to the 

maximum RH reading; however, this is likely due to the time it takes for water vapor 

from the wetting event to move down to the active sensing region from 1 – 3 cm depths. 
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EarthPods were deployed in soil for testing. While the casing was placed directly 

on the soil surface (elevated by the rubber feet by ~ 1 cm) giving atmospheric T and RH 

readings at ~ 5 cm above the soil surface, the AM2315 sensor was deployed directly into 

the soil, reading the RH and T over a range of approximately 0-2 cm below the soil’s 

surface. The novel soil moisture probe was inserted such that each strip read the 

capacitance of the soil at 2 and 5 cm respectively. The AM2315 and the novel soil 

moisture probe were both inserted and stabilized in the soil with a brief wetting event. 

Data was streamed to ThingSpeak using the ThingSpeak Arduino library. 

Figure 15: Test of the Ability of the AM2315 to assess Soil RH. The sensor was inserted 
from 1-3 cm depth and water was added to a soil core until the surface was at or near 
saturation. Cores were dried at room temperature over the course of a 5-day period.  Soil 
RH (gray) was collected every 3 minutes. Core weight (initial-blue, dry down-orange) 
was collected using a Mettler Toledo M13001t scale. 
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Data collected over the course of 3 days of deployment indicated that surface soil 

T and atmospheric T were very tightly correlated and that, although the soil RH started in 

a higher range due to the insertion procedure, it quickly equilibrated to a diurnal cycle 

reaching a maximum around the same maximum RH as the atmospheric RH and a 

minimum ~ 20% above the minimum atmospheric RH (Figure 16). 

 Using soil from the same location, it was also possible to calibrate the novel soil 

moisture sensor to make a model estimating the gravimetric water content of the soil 

(Figure 17). Soil was dried overnight at 105°C. The dried soil was then weighed (90 g) 

and water was added stepwise (4.5 g or 5% of total soil weight) until the soil reached 

saturation. A first order polynomial function, f(x) = -0.07459x + 1059, was fit to the data 

using the MATLAB Curve Fitting Tool. The R-Square value of 0.9939 and the RMSE of 

0.006527 indicate that the calibration curve could give an accurate estimation of soil 

gravimetric water content between 0 and 0.2, completely dry and saturated respectively. 
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Figure 16: During the first outdoor EarthPod installation and test, data was collected 
between 9/14 and 9/17. Atmospheric T and RH (Blue and Orange, respectively) were 
collected inside the EarthPod housing and Soil T, and Soil RH (Gray and Yellow, 
respectively) were collected by the AM2315 sensor inserted from 0-2 cm depth. 

 
To determine if sustained periods of elevated RH could directly impact gravimetric soil 

water content (GSWC, g of water/g of soil), soil samples were placed progressively in 

three humidity chambers with increasing RH as described in the methods section. 

EarthPod sensor arrays were placed in the humidity chambers and soil samples to  
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Figure 17: Calibration curve of novel moisture sensor reading against gravimetric water 
content. Each point, from right to left, represents approximately a 5% by soil weight 
addition of water. A first order polynomial fit was found using the MATLAB Curve fitting 
tool. 

monitor both atmospheric and soil variables. Plots of GSWC and atmospheric RH (Figure 

18, A) show a positive correlation between the experienced atmospheric RH and the 

GSWC. A linear regression model of this data set indicates that a model of GSWC = -

0.0165 + 0.0004 Atmospheric RH) with a P-value of 0 and an R2 value of 0.736. This 

also supports that atmospheric RH has a positive correlation with GSWC, but that the 

model has insufficient predictive power. From this initial analysis of the soil RH 

measurements compared to the GSWC, we observe the soil RH, which remains at or very  
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Figure 18: Gravimetric Soil Water Content, RH and T data were collected with EarthPod 
sensor arrays in humidity chambers at 56%, 75%, and 98% RH. GSWC was calculated using 
the linear fit model described in chapter 3. A) GSWC (Blue, left axis), Atmospheric RH 
(Orange, right axis), and Soil RH (Magenta, right axis). B) GSWC (Blue, left axis), 
Atmospheric T (Orange, right axis), and Soil T (Magenta, right axis). 
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near 0 from Oct. 13th- 15th is not predictive in the change in the GSWC readings provided 

by the novel soil moisture sensor. 

 An analysis of the atmospheric T against measured GSWC (Figure 18, B), 

indicates that there is a strong negative correlation between the GSWC readings by the 

novel soil moisture sensor and the atmospheric T. A linear regression model of these 

variables indicates that a model of GSWC = 0.016388 + -0.00059983 (Atmospheric RH) 

with a p-value of 0 and an R2 value of 0.975. As opposed to previous models, this 

indicates both a significant negative correlation between atmospheric T and measured 

GSWC and that the linear regression model of atmospheric T has some degree of 

predictive power for GSWC. A linear polynomial fit was made to compare these two 

variables (Figure 19, A), this model indicated that of the observed data points the model 

closely fit within error as demonstrated by an RMSE of 0.0020.  

 A similar analysis was performed to compare soil T and GSWC (Figure 19, B 

from Oct.13th -15th). Plots of these variables indicated a similar but more consistent 

negative correlation as with atmospheric T.  Similarly, fitting a linear regression (Figure 

19, B) indicated a fit of GSWC = -0.0003154(Soil T) + 0.01478.  
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Figure 19: Gravimetric soil water content (GSWC) was calculated using the calibration 
curve in Figure 17. GSWC and T data from Figure 18 were analyzed using the MATLAB 
Curve Fitting App to fit first order polynomial curves. A) GSWC was plotted against 
atmospheric T data. The function f(x) = -0.0005996x + 0.01639 fit the data with an R2 
value of 0.9751 and an RMSE value of 0.001998. B) GSWC was plotted against soil T 
data. The function f(x) = -0.0003154x + 0.01478 fit the data with an R2 value of 0.5465 
and an RMSE value of 0.001338. 
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Discussion: 

 The data collected in the humidity chamber manipulations implied some small 

correlation between increased RH and GSWC. However, since the change in GSWC 

appears to be approximately the same during each event while RH changes significantly, 

it is likely that some other factor is driving the change in GSWC reading. Similarly, since 

the soil RH does not seem to change during these humidity events, it may be possible that 

there is no actual change in soil moisture and that some other variable is affecting the 

measured value of the capacitive soil moisture sensor. It is also possible that the depth of 

both the soil moisture sensor and the RH sensor (2 cm), although closer to the surface 

than the sensors array at the SRER, still precludes any sensing of very surficial NRM soil 

moisture events. 

However, the T data seems to provide an answer to these questions. While the 

humidity chamber manipulations suggests a strong, predictive correlation between soil 

moisture and atmospheric T, it is more likely that the capacitive soil moisture sensor 

readings are affected by changes in T. The soil moisture sensor functions by measuring 

the dielectric constant of the soil and, while this constant is strongly impacted by soil 

moisture, it is also sensitive to other variables including T. In particular, the large 

negative change in GSWC during the drying step from Oct. 9th-10th (Figure 18 B), which 

brought the GSWC down to a below 0 reading, indicates that T is also impacting the soil 

dielectric constant of the soil confounding the actual value. It is therefore important to 

further test and develop the novel soil moisture sensor to determine what specific T 

effects have on soils and calibrate the sensors such that changes in T do not obscure 

actual soil moisture readings. Fortunately, the strong, significant correlations found here 
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using the linear regression of T and gravimetric water content can be used to calibrate the 

soil moisture sensors for future research with some changes as new sensors are 

developed. In particular, these sensors have have the potential to charecterize small, 

surface soil water inputs that may directly impact microbial activity in these regions. 

Further development and testing is needed; however, this work lays the foundation for 

microbial studies that correlate dryland microclimates with specific, correlated microbial 

activities on the genetic and transcriptomic level. 
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CHAPTER 4 

CONCLUSIONS 

While rainfall proved to be the largest factor in increasing soil moisture (Figure 

7), especially for large increases in water content, > 0.02 VSWC, NRM events are not 

precluded from impacting dryland soils. Particularly for surficial soil (0-2 cm), potential 

fog and dew events may occur with enough frequency beyond rainfall events that they 

impact microbial metabolisms and elemental cycling that occurs in dryland soils (Figure 

7). While both sites spent significant quantities of time at elevated RH, surprisingly, only 

small correlations were found between atmospheric RH and soil water content. This is 

opposed to previous research performed on NRM moisture, which demonstrated 

significant correlations between increasing RH and surface litter moisture events as 

measured by leaf wetness sensors (Evans et al., 2020). While these correlations were 

statistically significant, the models proved insufficient to predict when a soil moisture 

event could occur based solely on RH data. To some extent, these results could be 

expected. A potential explanation for these results could be the uncertainty in the soil 

water content. The SRER data reported a minimum uncertainty of around 7% water 

content, which for the extremely small changes in soil moisture that could be expected 

from NRM events, could easily obscure any significant changes in water content that 

occurred due to RH. However, the more likely explanation for the lack of connection 

between these two variables is that the only soil moisture data available from the SRER 

was read at a minimum depth of 6 cm, which could simply be too deep for the 

atmospheric variables to have any clear impact on soil conditions (Appendix C Figure 

24). It is therefore important to further test and develop novel soil moisture sensors with 
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greater sensitivities and to emplace ESNs with moisture sensors at much shallower depths 

to catch the small changes in the very surface soils. 

While the EarthPod ESN is a step in this direction it is important to determine 

what specific T effects have on soil moisture readings for the novel moisture probe. 

Using the linear regression found in Figure 19B, it should be possible to calibrate the 

sensors such that changes in T do not obscure actual soil moisture readings.  

Future work in drylands will benefit greatly from the greater understanding of 

NRM and environmental variables that ESN networks like EarthPods provide. In 

particular, microbial studies require a deeper understanding of the environments that they 

are performed in. Despite the profound importance dryland microbial systems have for 

global cycling of CNS, dryland regions are critically under sampled for gene-based 

analyses. As of April 2021, the 16,462 terrestrial samples in the JGI Genomes Online 

Database (GOLD https://gold.jgi.doe.gov/), only 430 biosamples were taken from 

drylands, representing only ~2% of the total catalog. The impact of NRM moisture on 

these systems is also under sampled. However, without a deeper understanding of how 

these NRM events occur, novel gene-based studies will not be able to determine the 

impact NRM moisture may have on global elemental cycling. 
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APPENDIX A 

CELL COUNTS FROM THE DBG AND SRER 
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The heterogeneity of soil microclimates in dryland regions likely has great impact 
on the microbial populations that live there. Therefore, some preliminary research was 
performed on the microbial populations of soils from bare and canopy-covered samples 
from both the DBG and SRER to determine what differences there were between the two 
sites and their own microclimates. 

Cell counts were performed in triplicate on soil samples from both sites. These 
counts were performed to calculate the cells/g of each soil sample. Cells/g was chosen as 
a metric over cells/ml to represent the impact of any differences more accurately in 
compaction, soil grain size and soil composition differences. Samples were taken from 
beneath a tree canopy or shrub canopy and nearby bare plots at the SRER and DBG, 
respectively. Samples were fixed in ~2% PFA overnight at 4°C. Fixed cell count samples 
were centrifuged for 15 min at 4500xg and resuspended in 1x PBS. Samples were left 
overnight then centrifuged again for 15 min at 4500xg and resuspended in 1x PBS. 
Samples were washed twice more in PBS for 15 min each. Samples were then 
resuspended in 1:1 ethanol-PBS and stored at 4°C. 

To begin the separation, samples were centrifuged for 15 min at 4500xg and the 
supernatant was carefully poured off. Sample tubes were then weighed, and each sample 
were portioned into 2 ml microcentrifuge tubes before being weighed again. 400 μL of 
2.5% NaCl was added to each sample tube, then 50 μL detergent mix (100 mM EDTA, 
100 mM sodium pyrophosphate, and 1% Tween 80 [v/v]) and 50 μL methanol were 
added to each. Negative controls were made with just the 2.5% NaCl, methanol and 
detergent mix. Each sample was vortexed for 15 min at max speed (3200 rpm) and the 
resulting solutions were sonicated on ice at 282 W/cm2 pulsing on and off for 20 sec in 2 
second increments. Two high-density solutions of Nycodenz were prepared in deionized 
water to densities of 1.16 g/cm3 and 1.27 g/cm3.  To create high density gradients for 
each sample, 2 ml of the 1.27 g/cm3 solution was pipetted into a 15 ml tube then 2 ml of 
the 1.16 g/cm3 Nycodenz solution was carefully layered on top. Samples were then 
carefully layered onto individual density gradients with a wide gauge needle and 
centrifuged at 4500xg at 4°C for 90 min. The cell-containing layer was then removed 
from the density gradient, diluted 1:20 or 1:100, and then filtered. Filters were then 
stained with 400 μL of 5ug/ml DAPI for 15 min and washed 3x with 5ml of 1x PBS. 
Filters were then mounted on slides with filtered 2:1 citifluor to TE buffer and imaged. 
Cells were directly counted using a reticle grid measuring 250 μm2 in multiple different 
fields of view (FOV) per sample. The average of these counts was calculated and the 
number of cells per filter was calculated by comparing the size of the reticle grid to the 
size of the filter and applying that ratio to the average count. Cells/g were calculated by 
taking the ratio of cells to grams of soil per sample. 

The cell count data (Figure 20) indicates that the locations underneath shrub 
canopies provided an environment where more microbes could grow. This could be 
because of the ‘island of fertility’ effect creating a larger pool of C and N (Mudrak et al. 
2014) and the tendency for litter to collect beneath these canopies (Throop and Belnap 
2019), but it could also be due to shade of the canopies creating slightly more temperate 
microclimates with lower T and higher RH. The difference in cells density at the SRER 
and DBG may also be explained by the climate at both sites. The SRER is a semi-arid 
site, characterized by higher precipitation, overall lower T and higher RH than the arid 
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DBG site. This difference in climate seems to be represented by the lower cell counts at 
the DBG regardless of sample location. 

 
 

 
 
 
 
 
 
 

 

 

 

 
 
 
 
 
 
 
 
 
Figure 20: Microbial cell counts of samples from the SRER and DBG sites. Samples were 
collected from both bare, uncovered areas and under canopy locations. Under canopy 
locations were taken from beneath creosote bush at the DBG and mesquite canopies at 
the SRER. 
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APPENDIX B 

LABORATORY HUMIDITY MANIPULATIONS AND CORE SET UP 
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To test the ability of the AM2315 Relative Humidity and Temperature sensor’s 
ability to measure soil RH, to observe the effect of larger direct wetting events on soil 
RH, and to test how rapidly elevated RH could impact soil RH, two experiments were 
performed on soil cores.  

First a soil core was dried at 60°C over 3 days and three AM2315 sensors 
emplaced at increasing depths: 0-2 cm, 2-4 cm and 4-6 cm. The surface of the soil core 
was wet to saturation, ~ 18 ml water, and the drying process was observed 6 days at room 
temperature. Immediately, the sensors at 0-2 cm depth and 2-4 cm depth increased in RH 
rapidly with the surface sensor reaching a maximum of 82% RH within 5 hours and the 
mid-depth core reaching a maximum relative humidity of 42% RH within 30 hours 
(Figure 21). The deepest sensor did not experience an increase in RH until 51 hours 
following the direct wetting event and eventually stabilized at a RH of ~12%, 133 hours 
following the direct wetting event. 

As depth increases, the data indicates it takes longer for soil RH to reach its 
maximum value as a result of a wetting event. In particular, the data suggests that a 
greater than 4 cm depth for sensor placement for these soil cores will not see a change in 
soil RH from a large wetting event for more than 2 days. As a result of this experiment, 

Figure 21: Soil core soil RH response to direct surface wetting at varying depths: 0-2 cm 
(Gray), 2-4 cm (Orange), and 4-6 cm (Blue). Three AM2315 sensors were placed in the 
soil core, one at each depth. Cores were wetted until surface reached saturation, ~ 18 ml, 
and allowed to dry at room temperature. 
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RH sensors for smaller wetting event experiments and humidity manipulations which 
could reasonably be assumed to have smaller, less penetrative changes in humidity did 
not include sensors below 4 cm depth. 

Figure 22: Soil core soil RH response to humidity manipulation in a 75% humidity 
chamber. Two AM2315 sensors were emplaced at 0-2 cm depth (Blue) and 2-4 cm depth 
(Orange). The soil core was then placed in an NaCl-based humidity chamber and soil RH 
response was observed at room temperature. 
 
 To determine if and to what extent elevated atmospheric RH could increase soil 
RH, another soil core was dried as described above and prepared with 2 AM2315 sensors 
at 0-2 cm depth and 2-4 cm depth. This core was then placed in a 75% NaCl-based 
humidity chamber and observed over the course of 3 days. 
 While the humidity chamber was, prior to the experiment, kept at 75% RH, 
opening the chamber to place the core caused the chamber’s humidity to drop. The 
chamber took ~ 3 hours to regenerate to 75% RH. Following the core’s placement in the 
humidity chamber, the surface sensor began to read increases in soil RH within 4 hours (1 
hour since the humidity chamber had returned to 75% RH) (Figure 22). The deeper 
sensor began reading increases in soil RH within 12 hours of elevated humidity (9 hours 
since the humidity chamber had returned to 75% RH). Once soil RH began increasing, 
both sensors saw increases in soil RH until the experiment ended. 
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 In conjunction with the prior direct wetting experiment, the data from these RH 
manipulations indicates that surface soil RH is most rapidly impacted by both direct 
wetting and elevated humidities. While this is somewhat unsurprising, it is important to 
consider that the data indicates that deeper RH and moisture sensors may not see input 
from elevated RH or even direct wetting events until long periods of time have passed. 
Especially since the liquid water input from NRM events is likely to be small, it is very 
possible that events will not last for long enough durations for deeper sensors to see them. 
Furthermore, in field settings, particularly during higher temperature seasons, evaporation 
may play a greater role than in these room temperature experiments and further increase 
the length of time it takes for deeper sensors to see moisture input from elevated RH or 
NRM events. 
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APPENDIX C 

SOIL RELATIVE HUMIDITY EVENTS BY DURATION AND DEPTH 
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 To determine if the duration of elevated RH events (> 75% RH) was impacting 
the VSWC measured by the NEON soil moisture sensors at a depth of 6 cm at the SRER, 
the NEON data analyzed in Figure 10 were assessed to plot event duration as well 
(Figure 23). These data indicated that, while the majority of events were below 10 hours 
in duration, those events where relative humidity was consistently high for durations 
longer that 10 hours seemed to also be correlated with increased scatter in ΔVSWC, 
particularly at humidities above 90%. 

Figure 23: The duration of elevated RH events (>75%) when comparing ΔVSWC against 
RH at the SRER from Jul. 2018 – Aug. 2020 as described in Figure 10. Individual points 
represent a 30-min period. The duration of the elevated RH event prior to each point is 
indicated by color. 
 
 To determine the frequency of elevated humidity event durations lasting long 
enough to impact soil moisture sensors, a coupled analyses of laboratory data on soil 
moisture collected in Appendix B and the SRER RH data from Jul. 2018 – Aug. 2020 
analyzed in Chapter 2 was performed (Figure 24). This data indicated that most elevated 
RH events would impact measured soil moisture by probes at depths ranging from 0-4 
cm. However, no events lasted long enough that soil moisture sensors at depths >4 cm 
would see appreciable increases in soil moisture as indicated by Figures 21 and 22. 
 These analyses provide further evidence that future work, research campaigns, 
and ESNs should emplace shallower soil moisture sensors to accurately measure the 
changes in soil moisture due to NRM events. 
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Figure 24: The frequency of durations of contiguous elevated RH events (>75%) at the 
SRER from Jul. 2018 – Aug. 2020. Each event indicates a 30-minute contiguous period of 
elevated humidity. Red lines indicate the duration of an elevated RH event required for 
sensors at a given depth to see increases in soil RH as determined in Appendix B and 
Figure 22. Below a depth of 4 cm, even large soil wetting events mimicking rainfall as in 
Appendix B, Figure 21 do not see an appreciable increase in soil RH until a 51-hour 
duration has elapsed. 
 


