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ABSTRACT

A remarkable phenomenon in contemporary physics is quantum scarring in clas-

sically chaotic systems, where the wave functions tend to concentrate on classical

periodic orbits. Quantum scarring has been studied for more than four decades, but

the problem of efficiently detecting quantum scars has remained to be challenging,

relying mostly on human visualization of wave function patterns. This paper develops

a machine learning approach to detecting quantum scars in an automated and highly

efficient manner. In particular, this paper exploits Meta learning. The first step is

to construct a few-shot classification algorithm, under the requirement that the one-

shot classification accuracy be larger than 90%. Then propose a scheme based on a

combination of neural networks to improve the accuracy. This paper shows that the

machine learning scheme can find the correct quantum scars from thousands images

of wave functions, without any human intervention, regardless of the symmetry of

the underlying classical system. This will be the first application of Meta learning to

quantum systems.

Interacting spin networks are fundamental to quantum computing. Data-based

tomography of time-independent spin networks has been achieved, but an open chal-

lenge is to ascertain the structures of time-dependent spin networks using time series

measurements taken locally from a small subset of the spins. Physically, the dy-

namical evolution of a spin network under time-dependent driving or perturbation

is described by the Heisenberg equation of motion. Motivated by this basic fact,

this paper articulates a physics-enhanced machine learning framework whose core is

Heisenberg neural networks. This paper demonstrates that, from local measurements,

not only the local Hamiltonian can be recovered but the Hamiltonian reflecting the

interacting structure of the whole system can also be faithfully reconstructed. Using

Heisenberg neural machine on spin networks of a variety of structures. In the extreme
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case where measurements are taken from only one spin, the achieved tomography fi-

delity values can reach about 90%. The developed machine learning framework is

applicable to any time-dependent systems whose quantum dynamical evolution is

governed by the Heisenberg equation of motion.
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sition to Chaos in the Hénon-Heiles System . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.7 Effect of Increasing the Number N of Training Parameter Values on

the Adaptable Prediction Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.8 Prediction Performance of an HNN with Two Input Parameter Channels 81

3.9 Parameter-cognizant HNN Trained for the One-dimensional Morse Sys-

tem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1 Three- and Four- Spins Systems and the Machine Learning Architecture 98

4.2 Tomography Performance of HENN for Cyclic Networks of n = 3, 4,

and 5 Spins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3 Tomography Fidelity Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.4 Prediction Performance of HENN for a Network of Four Spins with

Long-range Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.5 Fidelity of Predicting Random Spin Systems from Observing One Spin

or Two Spins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.6 Network Tomography Fidelity under Gaussian Noise . . . . . . . . . . . . . . . . . . 116

4.7 HENN Based Tomography of a Single-spin System . . . . . . . . . . . . . . . . . . . 125

4.8 HENN Based Tomography of a Three-spin Chain System . . . . . . . . . . . . . 126

5.1 Convolutional Neural Network (CNN) Based Quantum Scar Detector . . 139

xii



Figure Page

5.2 Confusion Matrix Associated with Detection of Quantum Scars in the

Chaotic Heart Billiard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.3 Emergence of a Meta-learning Based Quantum Scar Detector . . . . . . . . . 147

5.4 Semiclassical Characterization of the Relativistic Quantum Scarring

States Detected by the Meta-learning Algorithm . . . . . . . . . . . . . . . . . . . . . 150

5.5 Types of Quantum Scarring States in the Chaotic Africa Billiard and

Confusion Matrix of Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.6 Machine-learning Detection of Quantum Scars in the Chaotic Africa

Billiard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.7 Semiclassical Quantification of the Machine-learning Detected Rela-

tivistic Quantum Scars in the Chaotic Africa Billiard . . . . . . . . . . . . . . . . . 155

5.8 Schematic Illustration of Image Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.9 Detailed Structure of the Convolutional Neural Network (CNN) Used

in Our Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.10 Few Shot Classification Errors Versus the Number of Training Epochs . 164

xiii



Chapter 1

INTRODUCTION

1.1 Classical Perspective of Relativistic Quantum Chaos

When chaos meets with (nonrelativistic) quantum mechanics, a set of signatures

is left behind [1, 2, 3]. For example, in a closed chaotic Hamiltonian system, the prob-

ability for an infinitesimal separation between two neighboring energy levels dimin-

ishes [4, 5, 6], in contrast to an integrable system where this probability is most pro-

nounced. In a closed chaotic billiard system, the eigen-wavefunctions can concentrate

about the unstable periodic orbits that are the fundamental building blocks of classical

chaos - the phenomenon of quantum scarring [7, 8]. In electronic transport through a

quantum dot structure whose geometry generates chaos in the classical limit, the fluc-

tuations in the quantum transmission or conductance can be greatly smoothed out in

comparison with the situation where the dot geometry produces classically integrable

dynamics [9]. Classical chaos can also lead to localization of the wavefunctions [10].

The study of the manifestations of classical chaos in the corresponding (nonrelativis-

tic) quantum system constitutes the field of quantum chaos [1, 2, 3], which has been

active for four decades.

Recently, relativistic quantum chaos (RQC) [11, 12] has emerged as a field to study

the signatures of classical chaos in relativistic quantum systems. The main motivation

for RQC came from the tremendous interest in and development of two-dimensional

(2D) Dirac materials [13, 14] such as graphene [15, 16, 17, 18, 19, 20, 21] and topo-

logical insulators [22]. The energy bands of these materials typically contain a Dirac

cone structure, stipulating a linear energy-momentum dispersion relation near a Dirac

1



point. In this energy regime, the quasiparticles of the materials are pseudospin-1/2

fermions and are described by the massless Dirac equation for a two-component pseu-

dospinor. Studies of RQC have revealed a relatively stronger suppression of chaos in

relativistic quantum than in nonrelativistic quantum systems. For example, in a

study [23] on electronic transport through quantum dots that exhibit different types

of classical scattering dynamics (e.g., integrable or chaotic), in the Schrödinger sys-

tem, classical chaos can dramatically smooth out the sharp fluctuations associated

with resonances in quantum transmission or conductance that would be present if

the classical dynamics were integrable, a phenomenon that can be exploited for chaos

based modulation or control of quantum transport characteristics [24, 25]. However,

in a relativistic quantum graphene dot, sharp resonances are still present in the trans-

mission even when the corresponding classical dynamics become fully chaotic [23].

Another example is persistent currents [26, 27, 28, 29], permanent currents in the

absence of any external power source, in a ring domain with a central magnetic flux

that breaks the time reversal symmetry. The currents have been observed in a variety

of nonrelativistic quantum material systems [30, 31, 32, 33, 34, 35, 36, 37]. Random

impurities in metallic or semiconductor systems tend to diminish the persistent cur-

rents [38, 39, 40, 41, 42, 43, 44, 45], where they decay exponentially to zero as the

disorder strength is increased. In fact, in a Schrödinger ring system, boundary de-

formations leading to classical chaos typically destroy persistent currents [46, 47] as

effectively as random disorder. However, in graphene or other Dirac materials, persis-

tent currents were found to be robust [48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60].

A theoretical study demonstrated that, in Dirac ring systems, even when there are

substantial boundary deformations leading to fully developed chaos in the classical

limit, persistent currents of comparable magnitude with that in the integrable ring

system can arise (henceforth the term “superpersistent currents”) [46, 47]. From the
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point of view of the quantum signatures of classical chaos, it can be understood that

the signatures of chaos are less pronounced in the Dirac ring system as compared

with the corresponding Schrödinger ring.

To establish the weakening of chaos in relativistic quantum systems on a compre-

hensive analysis of the out-of-time-order correlator (OTOC) [61]. Historically, OTOC

was proposed in the field of superconductivity [62]. In basic quantum mechanics,

OTOC measures the degree of commutation between two operators, which can be used

to characterize diverse physical phenomena such as operator spreading [63, 64], growth

in quantum entanglement [65, 66], and nuclear magnetic resonances [67]. Recently,

the study of OTOC has attracted a great deal of attention due to its relevance to a

large number of fields in physics. For example, OTOC has been employed to search

for the quantum butterfly effect in many body systems such as those described by the

Ising model [68, 69] and the Sachdev-Ye-Kitaev (SYK) model [70, 71]. In high energy

physics, OTOC has been exploited to establish the correspondence between conformal

field theory (CFT) and holography [72]. More recently, OTOC has been introduced

into the field of quantum chaos [72, 65, 70, 73, 74, 75, 76, 77, 68, 71, 66, 67, 69].

To our knowledge, all existing studies on OTOC to uncover and characterize the sig-

natures of classical chaos were for nonrelativistic quantum systems described by the

Schrödinger equation.

We focus on the semiclassical regime in which the plane wave approximation

is valid and Fresnel’s law is applicable [78]. Intuitively, due to the total absence

of backscattering of massless spin-1/2 particles [79, 80] and the purely relativistic

quantum phenomenon of Klein tunneling [81, 82, 83], the decay of the spinor wave

would be enhanced when comparing with that of classical electromagnetic waves from

the same cavity, so trapping of the former would seem impossible. Indeed, a detailed

scaling analysis of the ratio of the mean escape time of an electromagnetic wave to that
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of a spin-1/2 wave reveals that, for both integrable and chaotic cavities, in the regime

of large effective refractive index values (n� 1), the ratio is proportional to n but in

the regime of n� 1, the ratio is inversely proportional to n. This means that, in these

two asymptotic regimes, the averaging lifetime of the spin-1/2 wave is indeed much

smaller than that of the electromagnetic wave. The surprising phenomenon is that,

in between the two asymptotic regimes, an interval in n emerges, in which the ratio is

about one, indicating that the spin-1/2 wave can live as long as the electromagnetic

counterpart. This means that, high Q can be achieved for spin-1/2 particles. Since the

constant ratio also holds for classical chaotic cavities, non-isotropic coherent emission

can be expected. The finding suggests strongly that the two microlasing conditions

for photons can be fulfilled for spin-1/2 particles. Our analysis provides insights

into Dirac electronics and photonics, and has potential applications in developing

unconventional cavity laser designs based on Dirac photonic crystals, and optical-like

electronics with 2D Dirac materials.

1.2 Scattering and Transport in Dirac Materials

We investigate atomic collapse in pseudospin-1 Dirac material systems whose en-

ergy band structure constitutes a pair of Dirac cones and a flat band through the conic

intersecting point [84, 85]. We obtain analytic solutions of the Dirac-Weyl equation

for the three-component spinor in the presence of a Coulomb impurity and derive

a general criterion for the occurrence of atomic collapse in terms of the normalized

strength of Coulomb interaction and the angular momentum quantum number. In

particular, for the lowest angular momentum state, the solution coincides with that

for pseudospin-1/2 systems, but with a reduction in the density of resonance peaks.

For higher angular momentum states, the underlying pseudospin-1 wave functions ex-

hibit a singularity at the point of zero kinetic energy. Divergence of the local density
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of states associated with the flat band leads to an inverse square type of singularity

in the conductivity. These results provide insights into the physics of the two-body

problem for relativistic quantum pseudospin-1 quasiparticle systems.

In Chapter 2, we study confinement of quasiparticles in a cavity in an α-T3 lattice,

which can be created by applying a step electrostatic potential, the boundary of which

divides the lattice system into two regions, as shown in Fig. 2.1(b) [86]. Experimen-

tally, such a structure can be generated by a STM-tip induced potential [87, 88, 89, 90]

or through the method of doping [91]. The geometric shape of the cavity can be cho-

sen to generate integrable (e.g., a circle), mixed (e.g., an ellipse), or chaotic (e.g., a

stadium) dynamics in the classical limit. In order to confine an electron inside the

cavity, its energy should be far away from the Klein tunneling regime that occurs for

E ≈ U/2 for graphene [83, 92, 93, 94, 95, 96, 89] and pseudospin-1 materials [96]. For

the confinement problem to have physical and applied significance, we focus on the

quantum-dot regime where the effect of Klein tunneling is weak [97, 78, 98]. Firstly,

we choose the incident energy E such that it is much smaller than the electric poten-

tial: |E| � |U |, as shown by the energy band structure in Fig. 2.1(c), so as to avoid

the Klein tunneling regime. The wavevector inside the cavity is thus much larger

than that outside. Secondly, we choose the size of the cavity such that the system

in the quantum-dot regime defined by k0R � 1 � V R, where k0 is the wavevec-

tor outside, R is the effective size (radius) of the cavity, and V = U/vg is some

normalized potential strength (with vg being the group velocity). In this regime,

outside of the cavity the wave characteristics of the quasiparticles dominate but in-

side the cavity the particle nature becomes important - there are then carriers in the

cavity. The linear dispersion relation associated with the Dirac cones is E = vgk0.

The electron motion inside the cavity can be studied in terms of Dirac electron op-

tics [99, 100, 101, 92, 102, 103, 104, 105, 106, 107, 108, 109, 110, 87, 111, 112, 113,
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114, 115, 89, 116, 117, 118, 119, 120, 121, 122, 123]. As the value of the pseudospin

parameter α increases from zero to one, the nature of the quasiparticles of the system

changes from pseudospin-1/2 to hybrid and finally to pseudospin-1. For α 6= 0, 1, the

time reversal symmetry (T-symmetry) is broken [124].

We uncover a chaos based mechanism to modulate pseudospin [125]. Focusing

on graphene, we exploit the principle of mutual coupling between a waveguide and a

nearby cavity. The idea is originated from optics, where the asymmetric configuration

of coupled waveguide and microcavity is commonly used to induce Fano resonances in

various optical devices [126, 127, 128, 129]. Figure illustrates such a transport system,

where the graphene waveguide, a channel-like structure through which pseudospin-

1/2 quasiparticles propagate, can be fabricated by applying some properly designed

electrical potential [130, 131, 132, 133] and has been experimentally realized [105, 111].

Experimentally, a dielectric cavity in graphene can also be created through an external

gate potential [87, 88, 89, 91, 90], as in scattering [80, 108, 110, 134]. In our work, the

shape of the cavity is chosen such that the corresponding classical dynamics are fully

chaotic ((e.g., the shape of Africa) [6, 135]. Due to the proximity of the waveguide and

cavity, there is interaction between them, forming bonding and anti-bonding states

and effectively generating an artificial molecular structure on graphene [136, 137].

We investigate the “complete” optical responses of 2D Dirac materials with a flat

band [138], in the sense that both the real and imaginary parts of the optical con-

ductivity are derived, using the α-T3 lattice as a paradigmatic model system of such

materials. This lattice is formed by adding an atom at the center of each unit cell

of the honeycomb graphene lattice [139], where the low energy excitations can be

described by the pseudospin-1 Dirac-Weyl equation. The parameter α characterizes

the interaction strength between the central atom and any of its nearest neighbors,

relative to that between two neighboring atoms at the vertices of the hexagonal cell.
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For α = 0 there is no coupling between the central atom and a vertex , so the lat-

tice degenerates to graphene with pseudospin-1/2 quasiparticles. As the value of α

increases from zero to one, a flat band through the conic interaction of the two Dirac

cones emerges and its physical influences become progressively pronounced [140, 141].

For α = 1, the lattice generates pseudospin-1 quasiparticles. The flat band can lead

to physical phenomena such as the divergence of conductivity [142, 143, 84]. Under a

continuous approximation, an α-T3 lattice can be treated as a thin layer with certain

surface conductivity. Unlike graphene, here the surface conductivity is contributed to

by three types of transitions between the bands: intraband transition, cone-to-cone

transition, and flat-band-to-cone transition. Previously, the optical conductivity of

α-T3 lattice was “partially” studied in the sense that only the real part of the con-

ductivity has been derived [141, 144, 145, 146]. Considering that the imaginary part

can affect the optical response significantly and is therefore important for developing

α-T3 lattice based optical devices, we are led to derive a complete conductivity for-

mula with both the real and imaginary parts. The formula is verified through two

independent approaches and leads to two previously uncovered phenomena. First,

while the intraband transition leads to TM polarized waves at low frequencies (1-10

THz), TE polarized waves can emerge at high frequencies (100-300 THz), due to

the two interband transitions. Second, the unique flat-band-to-cone transition gen-

erates multi-frequency TE propagating waves for α ∈ (0.4, 0.6) and a strong optical

response for α = 1. These phenomena are confirmed through studying the behaviors

of propagating surface wave and scattering.

1.3 Physics Enhanced Machine Learning and Few Shot Classification

In Chapter 3, we address adaptability, a fundamental issue in machine learning, of

Hamiltonian neural networks [147]. More precisely, we consider the situation where
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a target Hamiltonian system can experience slow drift or sudden changes in some

parameters. Slow environmental variations can lead to adiabatic parameter drift-

ing, while external disturbances can lead to sudden parameter changes. We ask if

it is possible to design HNNs, which are trained with data from a small number of

parameter values of the target system, to have the predictive power for parameter

values that are not in the training set. Inspired by the recent work on predicting

critical transitions and collapse in dissipative dynamical systems based on reservoir

computing [148, 149, 150, 151, 152], we articulate a class of HNNs whose input layer

contains a set of channels that are specifically used for inputting the values of the

distinct parameters of interest to the neural network. The number of the parameter

channels is equal to the number of freely varying parameters in the target Hamilto-

nian system. The simplest case is where the target system has a single bifurcation

or control parameter so only one input parameter channel to the neural network is

necessary. We demonstrate that, by incorporating such a parameter channel into a

feed-forward type of HNNs and conducting training using time series data from a

small number of bifurcation parameter values (e.g., four), we effectively make the

HNN adaptable to parameter variations. That is, the so-trained HNN has inherited

the rules governing the dynamical evolution of the target Hamiltonian system. When

a parameter value of interest, which is not in the training parameter set, is fed into the

HNN through the parameter channel, the machine is capable of generating dynam-

ical behaviors that statistically match those of the target system at this particular

parameter value. The HNN has thus become adaptable because it has never been ex-

posed to any information or data from the target system at this parameter value, yet

the neural machine can reproduce the dynamical behavior. Using the Hénon-Heiles

model as a prototypical target Hamiltonian system, we demonstrate that our adapt-

able HNN can successfully predict the dynamical behaviors, integrable or chaotic, for

8



any parameter values that are reasonably close to those in the training parameter set.

Remarkably, by feeding a systematically varying set of bifurcation parameter values

into the parameter channel, the HNN can successfully predict the transition to chaos

in the target Hamiltonian system, which we characterize using two measures: the

ensemble maximum Lyapunov exponent and the alignment index. It is worth empha-

sizing that, in the existing literature on HNNs [153, 154, 155, 156, 157], training and

prediction are done at the same set of parameter values of the target Hamiltonian

system, but our work goes beyond by making the HNN significantly more powerful

with enhanced and expanded predictability.

In this Chapter 4, we solve a general class of inverse problems in spins systems by

exploiting machine learning [158, 159]. Our work was partly inspired by the recent

work on the classical Hamiltonian Neural Networks (HNNs) [160, 153, 155, 156],

where the basic idea is to introduce a physics-based, customized loss function to

“force” the dynamical evolution of the system to follow that stipulated by the classical

Hamilton’s equations. However, the existing HNNs are not directly applicable to

quantum Hamiltonians, thereby requiring new approaches. Our idea originates from

the basic physical consideration that the dynamical evolution of spins systems is

governed by the Heisenberg equations of motion. We are thus motivated to develop a

class of Heisenberg Neural Networks (HENNs) by exploiting deep learning to predict

the Hamiltonian but under the constraint of the Heisenberg equations of motion. The

HENNs have the advantage of guaranteeing that the underlying quantum evolution

possesses the Hermitian structure. Our assumptions for the quantum Hamiltonian are

listed as follows. (i) Quantum Hamiltonian varies continuously with time, a situation

that can be expected to hold in experiments in general. (ii) The measured spins are

coupled with the rest of the spins directly or indirectly. (iii) There are no Pauli terms

in the Hamiltonian commute with each other.
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In this Chapter 5, we exploit Meta learning [161] to develop an automated and

efficient quantum scar detector. The essence of Meta machine learning is to encode

“previous experience” into a pretrained neural network so that it can quickly adapt

to new input. Meta learning has found broad applications in regression, classification

and reinforcement learning. Our idea is to exploit some existing data sets to train

the neural network, which can be completely unrelated to quantum systems but

with images similar to scarring patterns. In this regard, the Omniglot dataset [162]

widely used in the field of image classification stands out as an excellent choice.

Our strategy is to train a “preliminary” version of the neural network that has the

ability to distinguish different classes of noisy images from the Omniglot dataset and

then perform few-shot classification to further train the neural network with a small

number of quantum scars. A pertinent issue is that standard Meta learning algorithms

can only be used to classify but not detect patterns. Our solution is to use an

ensemble of neural networks. In particular, non-scarring states as input to the neural

networks can be used as references with significantly different statistical features than

those associated with scarring states, thereby accomplishing the detection task. We

demonstrate that the neural network so trained can detect and classify quantum

scars with remarkable efficiency and accuracy even with limited training data of

actual quantum scars. Our Meta-learning based approach not only solves a long-

standing problem in the field of quantum chaos, but can also be generalized to address

challenging image detection and classification problems in other fields.

1.4 Outline of This Thesis

In Chapter 1, we give the introduction and background for the systems and phe-

nomena we investigate. In Chapter 2, we study the quantum scattering of an electri-

cally generated potential cavity in the quantum-dot regime, we find that the regime
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of small α values offers the best confinement possible among the spectrum of α− T3

materials. In Chapter 3, we introduce a class of HNNs capable of adaptable pre-

diction of nonlinear physical systems: by training the neural network based on time

series from a small number of bifurcation-parameter values of the target Hamiltonian

system, the HNN can predict the dynamical states at other parameter values. In

Chapter 4, we articulate a physics-enhanced machine-learning framework whose core

is Heisenberg neural networks. In particular, we develop a deep learning algorithm

according to some physics-motivated loss function based on the Heisenberg equation.

In Chapter 5, we show that the Meta learning scheme can find the correct quantum

scars from thousands images of wavefunctions without any human intervention.
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Chapter 2

ELECTRICAL CONFINEMENT IN A SPECTRUM OF DIRAC MATERIALS

WITH CLASSICALLY INTEGRABLE, MIXED, AND CHAOTIC DYNAMICS

An emergent class of two-dimensional Dirac materials is α-T3 lattices that can be

realized by adding an atom at the center of each unit cell of a lattice with T3 symmetry.

The interaction strength α between this atom and any of its nearest neighbors is

a parameter that can be continuously tuned between zero and one to generate a

spectrum of materials. We investigate the fundamentally important and practically

relevant issue of quasiparticle confinement for the entire spectrum of α-T3 materials.

Except for the two end points, i.e., α = 0, 1, which correspond to the graphene and

pseudospin-1 lattices, respectively, the time-reversal symmetry is broken, leading to

the removal of level degeneracy and facilitating confinement. Taking the approach

of quantum scattering off an electrically generated potential cavity in the quantum-

dot regime, we characterize confinement by identifying and examining the scattering

resonances. We study a number of cavities with characteristically distinct classical

dynamics: circular, annular, elliptical and stadium cavities. For the circular and

annular cavities with classically integrable and mixed dynamics, respectively, the

scattering matrix can be analytically obtained, so the scattering cross sections and the

Wigner-Smith time delay associated with the resonances can be calculated to quantify

confinement. For the elliptical and stadium cavities with mixed and chaotic dynamics

in the classical limit, respectively, the scattering-matrix approach is infeasible, so we

adopt an efficient numerical method to calculate the scattering wavefunctions and

experimentally accessible measures of confinement such as the magnetic moment.

The main finding is that, for all the cases, the regime of small α values offers the

12



best confinement possible among the spectrum of α-T3 materials, which is general

and holds regardless of the nature of the corresponding classical dynamics.

2.1 Introduction

There has been tremendous development of research on two-dimensional (2D)

Dirac materials since the experimental realization of graphene [15, 17, 19, 163]. A

distinct characteristic of the low-energy excitations in 2D Dirac materials is the pseu-

dospin degree of freedom. A variety of such materials have been studied, suggesting

that a continuous spectrum of pseudospin quasiparticles may exist in these materials

and may be experimentally realized. At the lower end of the spectrum is graphene,

whose energy band structure constitutes a pair of Dirac cones with the corresponding

low-energy excitations being pseudospin-1/2 particles, which are described by a two-

component spinor wavefunction governed by the standard 2D Dirac equation [19].

At the high end of the spectrum are Dirac materials with a T3 symmetry, whose

energy band contains a pair of Dirac cones and a flat band through the conic inter-

secting point [139]. Because of the existence of three distinct bands, the low-energy

excitations need to be described by a spinor wavefunction of three components, cor-

responding effectively to pseudospin-1 quasiparticles that obey the Dirac-Weyl equa-

tion. In between the pseudospin-1/2 and pseudospin-1 extremes lies a spectrum of

pseudospin quasiparticles that can be generated by the corresponding spectrum of

α-T3 lattices [140, 141, 164, 165, 145, 124, 166, 167, 168, 98, 169].

The relativistic quantum behaviors of α-T3 particles are described by the gener-

alized Dirac-Weyl equation with a three-component spinor, where the original 2 × 2

Pauli matrices (for pseudospin-1/2 particles) are replaced by a set of 3 × 3 matrices

- the set of generalized Pauli matrices. Figure 2.1(a) illustrates the structure of an

α-T3 lattice with a T3 symmetry, where the unit cell is essentially that of the graphene
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honeycomb lattice with an additional atom at the center of the hexagon. There are

then three nonequivalent atoms in the α-T3 unit cell, where α is a parameter charac-

terizing the coupling strength between the central atom and any of the six atoms at

the vertices of the hexagon [140]. Especially, if in the graphene lattice the nearest-

neighbor interaction energy is t, then the interaction energy between the central atom

and one on the hexagon is αt.

The possible values of α range from zero to one. For α = 0, the presence of the

central atom has no effect on the hexagonal lattice, so the whole lattice effectively

reduces to that of graphene with pseudospin-1/2 quasiparticles. For α = 1, the

interaction energy between the central atom and one on the hexagon is identical to

that of the nearest neighbor interaction in the graphene lattice, so the α-T3 lattice

possesses the full T3 symmetry with pseudospin-1 particles. For α ∈ (0, 1), the α-T3

lattice is essentially a hybrid between the graphene and pseudospin-1 lattices [164].

For convenience, we call α the pseudospin parameter.

Experimentally, one way to realize α-T3 hybrid and pseudospin-1 systems through

photonic crystals [170, 171, 172]. The three nonequivalent atoms can be simulated

by using coupled waveguides generated by laser inscription [172]. Different lattice

constants can be used to build a quantum dot structure [173]. Electronic materials

can also be exploited to generate pseudospin-1 lattice systems such as transition-

metal oxide SrTiO3/SrIrO3/SrTiO3 trilayer heterostructures [174], SrCu2(BO3)2 [175]

or graphene-In2Te2 [176].

In potential device applications of α-T3 materials, a fundamental issue is how

to effectively confine the quasiparticles in an enclosure. Similar to optics [177],

such a structure can be exploited for storage and energy transfer in spintronics

and valleytronics [178, 179]. However, even in a perfectly circular cavity gener-

ated by, e.g., an electrostatic potential, confinement of pseudospin-1/2 particles in
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graphene is already a non-trivial issue [78], due to the phenomenon of Klein tunnel-

ing [83, 92, 93, 94, 95, 96, 89]. To confine pseudospin-1 particles is also difficult, due to

super-Klein tunneling [96] in which particles can penetrate through a high and wide

potential barrier at any angle. Confinement becomes even more difficult in realistic

situations where geometric deformations from the circular shape are inevitable, which

can lead to chaotic dynamics in the classical limit [180, 181, 129]. What are the gen-

eral features of confining pseudospin quasiparticles of the α-T3 lattice in comparison

with the confinement of pseudospin-1/2 and pseudospin-1 particles? The purpose of

this paper is to address this question that not only is useful for gaining understand-

ing into the fundamental physics of the quasiparticles in the exotic 2D materials but

also has implications to developing future α-T3 material based electronic/spintronic

devices.

To be concrete, we study confinement of quasiparticles in a cavity in an α-T3 lat-

tice, which can be created by applying a step electrostatic potential, the boundary of

which divides the lattice system into two regions, as shown in Fig. 2.1(b). Experimen-

tally, such a structure can be generated by a STM-tip induced potential [87, 88, 89, 90]

or through the method of doping [91]. The geometric shape of the cavity can be cho-

sen to generate integrable (e.g., a circle), mixed (e.g., an ellipse), or chaotic (e.g., a

stadium) dynamics in the classical limit. In order to confine an electron inside the

cavity, its energy should be far away from the Klein tunneling regime that occurs for

E ≈ U/2 for graphene [83, 92, 93, 94, 95, 96, 89] and pseudospin-1 materials [96]. For

the confinement problem to have physical and applied significance, we focus on the

quantum-dot regime where the effect of Klein tunneling is weak [97, 78, 98]. Firstly,

we choose the incident energy E such that it is much smaller than the electric poten-

tial: |E| � |U |, as shown by the energy band structure in Fig. 2.1(c), so as to avoid

the Klein tunneling regime. The wavevector inside the cavity is thus much larger
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(b)
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Figure 2.1: Illustration of an α-T3 lattice, confinement cavity, and the energy band
structure. (a) An α-T3 lattice, where A, B and C represent the three non-equivalent
atoms, labeled as red, blue and green circles. The hopping energy between A and B
(solid line) is t, and that between B and C (dashed line) is αt. (b) A circular cavity
(blue) in an α-T3 sheet (gray), which can be realized through an externally applied
electric potential. Two geometric regions are specified: one outside and another inside
the cavity. (c) For pseudospin-1/2 system (α = 0), energy-band structure for scat-
tering, where carriers dominate inside the cavity, forming a quantum-dot structure.
Blue and red lines correspond to the two different linear dispersion relationship which
associate with two non-equivalent atoms [83]. The horizontal gray line illustrates the
incident energy, which is much lower than the potential height.

than that outside. Secondly, we choose the size of the cavity such that the system

in the quantum-dot regime defined by k0R � 1 � V R, where k0 is the wavevec-

tor outside, R is the effective size (radius) of the cavity, and V = U/vg is some

normalized potential strength (with vg being the group velocity). In this regime,

outside of the cavity the wave characteristics of the quasiparticles dominate but in-

side the cavity the particle nature becomes important - there are then carriers in the

cavity. The linear dispersion relation associated with the Dirac cones is E = vgk0.

The electron motion inside the cavity can be studied in terms of Dirac electron op-
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tics [99, 100, 101, 92, 102, 103, 104, 105, 106, 107, 108, 109, 110, 87, 111, 112, 113,

114, 115, 89, 116, 117, 118, 119, 120, 121, 122, 123]. As the value of the pseudospin

parameter α increases from zero to one, the nature of the quasiparticles of the system

changes from pseudospin-1/2 to hybrid and finally to pseudospin-1. For α 6= 0, 1, the

time reversal symmetry (T-symmetry) is broken [124].

The main finding of this paper is that, in the quantum-dot regime, among the

possible α-T3 materials, the strongest or optimal confinement occurs for hybrid ma-

terials in between the pseudospin-1/2 and pseudospin-1 limits but near the graphene

end, i.e., for some value of α ≤ 0. This result holds not only for the perfectly circular

cavity with classical integrable dynamics, but also for deformed cavities with mixed or

chaotic dynamics in the classical limit. Contributing factors to this phenomenon in-

clude T-symmetry breaking in the hybrid material and unconventional wavefunction

behaviors as induced by the boundary conditions.

In Sec. 2.2, we analyze the scattering process from circular cavity for α-T3 ma-

terials by calculating the quasibound states and the far-field behavior. Especially,

because of the circular symmetry, in the quantum-dot regime there are quasibound

states with nonzero angular momentum whose lifetime is infinite, and the confinement

efficacy is determined the number of such states. We find that, for the hybrid sys-

tem, because of the T-symmetry breaking, more such quasibound states can emerge

as compared with the graphene and pseudospin-1 limits. In Sec. 2.3, we study the

annular cavity for which the scattering process can still be understood analytically.

Calculation of the Wigner-Smith time delay for different values of α and different

potential profiles indicates that, for certain potential profile, maximum confinement

occurs for a small but non-zero value of α. Finally, in Sec. 2.4, we study confinement

in deformed cavities with classical mixed and chaotic dynamics, which find applica-

tions in enhancing directional emission. In this case, all the quasibound states have
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a finite lifetime. However, practically, confinement is still possible, which can be

characterized by physically measurable quantities such as the magnetic moment.

2.2 Confinement in a Circular Cavity

We consider the tight-binding model for a free α-T3 particle and derive the corre-

sponding continuum Hamiltonian. In the tight-binding framework, the Bloch Hamil-

tonian of the α-T3 lattice system is given by

H(k) =


0 fk 0

f ∗k 0 αfk

0 αf ∗k 0

 (2.1)

where

fk = −t[eikyat + 2e−ikyat/2 cos(
√

3/2kxat)]

and at is the lattice constant. Expanding fk at zero yields fk ≈ vg(νkx − iky),

where vg = 3att/2 and ν = ± is the valley index. Imposing the normalization

t → t/
√

1 + α2, we get the continuum model for low-energy excitations in the α-T3

lattice as

H = vgS
α · p, (2.2)

where Sα denotes the generalized Pauli matrices that depend on the material param-

eter α. The details for solving the corresponding eigenvalue problem are presented in

Appendix 2.6.

Quantum scattering from a circular cavity has been studied for graphene (α =

0) [80, 108, 110, 134] and pseudospin-1 (α = 1) [96, 182] systems. There has also

been a study of scattering from a centrally symmetric potential in α-T3 materials [169].

Because of the circular symmetry in the potential profile, the scattering problem can

be solved analytically.
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The Hamiltonian for a general α-T3 lattice with a circular cavity is

H = vgS
α · p + vgVΘ(R− r), (2.3)

where V is potential height, Θ is Heaviside step function, and Sα are the generalized

Pauli matrices that depend on the parameter α (detailed in Appendix 2.6). For this

Hamiltonian, the three-component spinor wavefunction can be obtained analytically

(Appendix 2.7).

Let q be the wavevector inside the cavity. The linear dispersion relation gives

qvg = k0vg − V . In the quantum-dot regime k0R � 1 � V R, we have |k0| �

|q|. In the language of Dirac electron optics, waves inside the cavity will have a

large relative refractive index, rendering existent a critical angle for total internal

reflection [97, 78, 98], which makes confinement possible.

There are different ways to characterize confinement quantitatively. For example,

we can use the total scattering cross section defined as

σ(θ′) =

∮
|f(θ, θ′)|2dθ, (2.4)

where θ′ is the incident angle, θ specifies the direction of measurement, and f(θ, θ′) is

determined by the far field behavior of the scattering wave (Appendix 2.6). A large

total cross section corresponds to stronger scattering. Alternatively, the wavefunction

inside the cavity can be used to quantify confinement. With the analytically obtained

three-component spinor wavefunction Ψ = (ψA, ψB, ψC)T inside the cavity, we have

the average density of state (DOS) as

DOS =

∫
cavity

(
|ψA|2 + |ψB|2 + |ψC |2

)
. (2.5)

We can normalize the DOS to unit area after integration. In experiments, information

about the average DOS can be obtained through conductivity measurement [87, 88,
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89, 90]. Another useful quantity to characterize confinement is the Wigner-Smith

time delay [183, 184] defined through the scattering matrix S:

τ = −i~Tr

(
S†
∂S

∂E

)
. (2.6)

A large positive value of τ is indicative of a confinement state [185].

We consider the quantum-dot regime k0R� 1� V R where the incident wavevec-

tor is infinitesimally small for a fixed potential height but the wavevector is large inside

the cavity. (In terms of the small wavelength inside the cavity, this regime can be

called the semiclassical regime.) Figure 2.2(a) shows, in the parameter plane (α,k0R),

the total scattering cross section σ with color-coded values. We see that σ exhibits

peak values, each corresponding to a quasibound state. The dominant peaks arise in

the small k0R regime and depend on the value of α as well. The result in Fig. 2.2(a)

suggests that, in the quantum-dot regime, as the value of α is varied, there can be

drastic changes in the quantum states from the point of view of confinement. This can

be further seen in Fig. 2.2(b) that shows, for three different values of α (α = 0, 0.1, 1),

σ versus k0R. While there are peaks in 10−1 < k0R < 101 for all three cases, in the

small region 10−2 < k0R < 10−1, only the α = 0.1 case has seen a peak. The existence

of a strong quasibound state in 10−2 < k0R < 10−1 for α = 0.1 (but not for α = 0

or α = 1) is further demonstrated by the average DOS and the Wigner-Smith time

delay versus k0R, as shown in Figs. 2.2(c) and 2.2(d), respectively.

A heuristic understanding of the emergence of strong confinement states associated

with α-T3 scattering in the hybrid system can be gained by examining the far-field

behavior such as backscattering. For graphene, due to the π/2 Berry phase, in the

low energy regime backscattering is ruled out [79, 108]. For pseudospin-1 systems,

scattering in the far field is isotropic [96]. A question is: what is the far-field behavior

in the scattering of α-T3 particles for 0 < α < 1? To address this question, we analyze
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Figure 2.2: Scattering of α-T3 particles in the regime of small incident wavevectors.
The circular electrical cavity has V R = 30. (a) Color-coded values of the scattering
cross section σ in the parameter plane (k0R,α), where a local peak (resonance) in σ
indicates the existence of a quasi-bound state and the inverse of the half width of the
peak is proportional to the lifetime of the state. There is dominance of resonant peaks
in the regime of small α values. (b-d) Behaviors of σ, average DOS, and Wigner-Smith
time delay versus k0R for three values of α: 0, 0.1, and 1. In the region of small k0R
values, only the α = 0.1 case exhibits a strong peak, indicating a superior ability for
α-T3 material with α = 0.1 to confine electrons to those of graphene and pseudospin-1
materials.

different scattering channels. For pseudospin-1/2 system (graphene), there are two

lowest angular momentum states: ±1/2. The counterparts of these states in α-T3

scattering in the hybrid system are l = 1 and l = 0. Let Al be the scattering wave

amplitude with angular momentum l. In the semiclassical regime, only the l = 0

and l = 1 channels contribute [80] to Al. For pseudospin-1 scattering, because of T-
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symmetry preservation, we have A0 � A1 = A−1. For the hybrid system [α ∈ (0, 1)],

both A0 and A1 can be appreciable.

In the low energy regime, the angular scattering cross section is given by

dσ

dθ
≈ 2

πk0

∣∣A0 + A1e
iθ
∣∣2 . (2.7)

For graphene, the coefficients A0 and A1 are replaced by A−1/2 and A1/2 with A−1/2 =

A1/2, leading to vanishing scattering cross section for θ = π. For pseudospin-1 scat-

tering, the lowest angular momentum mode is l = 0. In this case, scattering is

isotropic [96]. For the hybrid system, in the quantum-dot regime, the dominant

scattering channels are still l = 0 and l = 1 but, differing from pseudospin-1/2 or

pseudospin-1 scattering, the scattering channels are dependent upon each other. As

a result, backscattering will be enhanced even when the value of α is small (but not

equal to zero) (see Appendix 2.7 for details).

To characterize enhancement in backscattering, we define the ratio between the

values of the angular scattering cross section at angles zero and π:

δ =
dσ/dθ|θ=π
dσ/dθ|θ=0

, (2.8)

as the enhancement factor, which can be calculated numerically from the scattering

matrix. Figure 2.3 shows, for two values of k0R, δ versus α. In each case, there exists

a range of α values in which backscattering is enhanced (δ > 1). Remarkably, in each

case there is a peak in δ. For small values of α, the enhancement factor is given by

δ ∝ α4(k0R)−2. (2.9)

At the peak, we have δ � 1, so backscattering is greatly enhanced. This provides an

explanation for the emergence of a quasibound state at the corresponding value of α.

We examine quasibound states in hybrid material systems in more detail. For

plane wave scattering, while there is mixing among scattering associated with dif-

ferent angular-momentum channels as characterized by the scattering matrix, at a
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Figure 2.3: Enhancement of backscattering from a circular cavity in the hybrid
systems. (a) Enhancement ratio δ versus α for two values of k0R. In each case, a
peak in δ arises, signifying strong enhancement of backscattering. For the case of
k0R = 0.01, the peak appears at α ≈ 0.1 with the enhancement ratio exceeding
103. As shown in the inset, a polar representation of the normalized differential
cross section for k0R = 0.01 and V R = 30, in the low energy regime, there is no
backscattering for pseudospin-1/2 and pseudospin-1 scattering is isotropic. However,
in certain hybrid systems, strong backscattering can arise with diminishing forward
scattering.
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resonance scattering depends strongly on the angular momentum [80, 186]. Let Bl

be the coefficient of the spinor wavefunction inside the cavity associated with angular

momentum l. Each quasibound state corresponds to a maximum in Bl. For scattering

in an infinite plane, the lifetime of the quasibound states can be infinite. The confine-

ment quality is thus determined by the number of quasibound states. To estimate this

number for a hybrid system, we begin with the degenerate states for pseudospin-1/2

and pseudospin-1 systems as a result of T-symmetry preservation (Appendix 2.7),

where the degeneracy is broken for α 6= 0, 1. The number of quasibound states will

then be larger for the hybrid system than for graphene or the pseudospin-1 system.

For α → 0 and α → 1, the behavior of broken degeneracy can be studied nu-

merically and analytically. To facilitate numerical computations, we fix the incident

angle and vary the potential height V . The existence of the confinement states for

the first few angular momentum values in the (α, V R) parameter plane are shown

in Fig. 2.4. As the value of α is increased from zero, there is fast separation of the

originally degenerate states. For α → 1, restoration of the degeneracy occurs in a

slower manner. Thus, for small values of α, we expect a more dramatic deviation in

the behaviors of the quantum states from those of graphene.

In the quantum-dot regime, the asymptotic behavior of the scattering wavefunc-

tion associated with each resonance (or quasibound state) can be obtained analyti-

cally, e.g, through the method of level doubling [186, 187] (Appendix 2.7). The energy

separation in the two limiting regimes is given by

∆l ∝ α2l/(k0R), for α→ 0 and l 6= 0,

∆l ∝ (1− α)k0R/l, for α→ 1 and l 6= 0. (2.10)

For α→ 0, the amount of level separation follows a quadratic dependence on α with

the quantity k0R � 1 in the denominator. As a result, the amount of separation
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Figure 2.4: Quasibound states associated with the first few angular momentum
channels in the parameter plane (α, V R). In the limit α→ 0, level degeneracy occurs
in the way of l → −l + 1. In the opposite limit α → 1, degeneracy follows the rule
l → −l. The amount of level separation depends quadratically on α as its value is
increased from zero, but the dependence becomes linear as α approaches one. This
indicates the emergence of more quasibound states in the small α regime, implying a
strong confinement ability there.

grows quickly as α is increased from zero. Near the pseudospin-1 limit, the amount

of the separation has a linear dependence on k0R(1−α) and thus decreases slowly to

zero as the value of α approaches one. Numerical support for these analytic estimates

is given in Fig. 2.4.

The quick increase in the number of quasibound states as the value of α is increased

from zero implies a strong confinement ability of α-T3 materials near the graphene

end.
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2.3 Confinement in an Annular Cavity

In the fields of microcavity optics and quantum chaos, annular cavity is a com-

monly studied type of structures for confinement [188, 189, 123] because it offers a

convenient and systematic way to generate the whole spectrum of classical behaviors

ranging from integrable dynamics to chaos. In particular, the system is integrable

when the two circles are concentric (ring cavity). Mixed classical dynamics with coex-

istence of Kolmogorov–Arnold–Moser (KAM) islands and chaos arise when there is a

small displacement between the centers of the two circles. Fully developed chaotic dy-

namics occur when the displacement is sufficiently large. An appealing feature of the

annular structure is that the quantum scattering matrix can be analytically calculated

for all cases of classical dynamics through a proper coordinate transform [123].

To generate an annular structure on an α-T3 sheet, we apply the following electrical

potential:

V (r) = V1Θ(R1 − r)Θ(|r− ξ|) + V2Θ(R2 − |r− ξ|), (2.11)

where the two circles have radius R1 and R2, respectively, and their centers are lo-

cated at O and O′ with the displacement vector ξ = O′−O between them. A simple

change of coordinates gives ξ = (ξ, 0), which aligns the displacement in the x direc-

tion. Figures 2.5(a1-c1) illustrate three representative annular profiles corresponding

to three different values of ξ. For the integrable dynamics case of ξ = 0, due to the

perfect circular symmetry in the potential, there is no mixing among the states with

different angular momenta. (Analytic formulas for the scattering matrix and cross

sections for this case are given in Appendix 2.8.) For ξ 6= 0, the circular symmetry

is broken and the classical dynamics contain a chaotic component. For example, for

the potential profile in Fig. 2.5(b1), we have checked that the classical phase space

contains both KAM tori and chaotic regions, but for a a larger value of ξ [e.g., the
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Figure 2.5: Three types of annular cavities and the behaviors of the corresponding
total scattering cross section. (a1) A ring cavity (ξ = 0), where the two boundaries
divide the lattice into three regions and the classical dynamics are integrable. (a2) The
corresponding total cross section σ versus the dimensionless quantity k0R1 for different
values of α for the parameter setting R2/R1 = 0.6 and ξ = 0. (b1) Confinement
geometry for ξR1 = 0.1, where O and O′ are the centers of the outer and inner circles,
respectively. In this case, the classical dynamics are mixed. (b2) The corresponding
total scattering cross section. (c1) Potential profile for ξR1 = 0.3, where the classical
dynamics are fully chaotic and (c2) the corresponding scattering cross section. For all
three types of cavities, there is a resonant peak in the total cross section for α = 0.1,
but no such peak appears for α = 0 or α = 1, implying a much stronger ability to
confine electrons for the α-T3 (α = 0.1) cavity than for the graphene or pseudospin-1
cavity. Fully developed classical chaos can smooth out the resonance to some extent,
but it is still pronounced.
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case of Fig. 2.5(c1)], all KAM tori have been destroyed, leading to fully developed

chaos [188]. (Appendix 2.9 gives the analytic formulas of some key quantities char-

acterizing relativistic quantum chaotic scattering in this case.)
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Figure 2.6: Comparison of confinement abilities among three material systems in
an eccentric annular cavity. Shown are the total cross section and the Wigner-Smith
time delay versus the normalized potential height β for a fixed incident energy. The
parameter setting is V1R1 = −10β and V2R1 = 40β, k0R1 = 0.1, and ξR1 = 0.05
(a1-c1) Total scattering cross section and (a2-c2) Wigner-Smith time delay versus β
for α = 0, α = 0.1, and α = 1, respectively. Among the three cases, the hybrid
system (α = 0.1) exhibits more resonant peaks than the other two cases, indicating
a stronger confinement ability.

For convenience, we choose the radius R1 of the outer circle as the characteristic

length of the system. Figures 2.5(a2-c2) show the total scattering cross section versus

the quantity k0R1 for the three cases in Figs. 2.5(a1-c1), respectively, where each

panel contains results for three values of α: 0, 0.1, and 1. In all three cases of the

potential profile, in the range of k0R1 values plotted, for α = 0 or α = 1, there is no
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resonance. However, for α = 0.1, there is a strong resonant peak about k0R1 = 10−2

for all three cases. The resonance is relatively sharp when the classical dynamics

are integrable and mixed, as shown in Figs. 2.5(a2) and 2.5(b2), respectively. Fully

developed chaos can smooth out the resonance to certain extent, but it is still quite

pronounced, as shown in Fig. 2.5(c2).

To characterize the confinement quality for different cavity geometries and for

different values of α, we fix the incident energy and increase the normalized poten-

tial height β from zero, which is defined through V1R1 = −10β and V2R1 = 40β.

Figure 2.6 shows, for ξR1 = 0.05 (mixed classical dynamics), the total cross section

and the Wigner-Smith time delay versus β in the range β ∈ [0.9, 1, 1] for three values

of α. In all three cases, there are a number of resonant peaks, each corresponding

to a quasibound state, where the inverse of the width of a resonant peak determines

the lifetime of the state. Simply counting the number of resonant peaks in all three

cases, we find that the hybrid material system has more as compared with either the

graphene or the pseudospin-1 material. The reason, as in the case of a circular cavity,

is that, for α 6= 0, 1, the broken T-symmetry makes the originally degenerate states

(for α = 0 or 1) nondegenerate.

To further characterize the confinement, we integrate the curves of the Wigner-

Smith time delay in Figs. 2.6(a2-c2) - an approach often employed to quantify con-

finement in optical cavities [190, 191, 185]:

τ =
1

β2 − β1

∫ β2

β1

τ(k0, β)dβ. (2.12)

Roughly, the so obtained average time delay corresponds to the number of quasibound

states contained in the integration interval. To be systematic, we calculate the integral

in the parameter plane (α, ξR1), as shown in the color-coded graph in Fig. 2.7(a).

We observe a region of relatively higher values of τ (brighter color) for 0 < α <
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Figure 2.7: Confinement for different α-T3 materials and different annular cavity
geometries. (a) Color-coded value of the integrated Winger-Smith time delay τ in the
parameter plane (α, ξR1). For α in the vicinity of 0.2 and small values of ξ, τ attains
relatively large values. Computationally, the 2D parameter plane is represented by
a grid. For each grid point, the integration is carried out with respect to β for
β ∈ [0.4, 1.6]. Varying the integration interval does not change the result significantly.
(b) The value of τ versus α for four values of the geometric parameter ξR1. Regardless
of the geometry, best confinement occurs for α-T3 materials with the value of α in
the vicinity of 0.2.

0.5 and ξR1 ≤ 0.15, indicating that a stronger confinement can be achieved for

the corresponding lattice structure and cavity geometry. For a fixed geometry, the

confinement ability exhibits a non-monotonous behavior as the value of α is increased

from zero to one, as shown in Fig. 2.7(b) for four different annular cavities.
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2.4 Effect of Geometric Deformations on Confinement

2.4.1 Confinement in Deformed Cavities with Distinct Classical Dynamics:

Numerical Demonstration

We have demonstrated that the family of annular cavities, regardless of the cor-

responding classical dynamics, is able to confine α-T3 particles. Can confinement

be achieved in more general cavities with their geometrical shape deformed from

the circular shape, such as the elliptical cavity with mixed classical dynamics or the

stadium-shaped chaotic cavity (a paradigm in the field of quantum chaos [2, 11, 12])?

(There is quantum chaotic scattering [192, 193, 194, 195, 196, 23] in this case.) For

pseudospin-1/2 particles, previous studies based on the method of finite-domain scat-

tering (by setting zero the wavevector outside of the cavity) revealed that confinement

modes can exist in the stadium cavity [197, 198, 199, 200]. Geometrically, the ellip-

tical and stadium cavities can be generated through continuous deformation of the

circular cavity. To quantitatively assess the effect of geometric deformation on con-

finement, we carry out a comparative analysis of the confinement quality of α-T3

particles in the circular, elliptical, and stadium cavities. During this section, chaos

means the dynamics for classical billiard system, free particles moving inside a billiard

with special geometry and spin degree is exclude. However, for quantum calculation

of α-T3 particles, we will naturally take spin into account.

While the scattering of α-T3 particles in the circular and annular cavities can be

solved analytically, for a deformed cavity without the circular symmetry, analytic

solutions are not feasible. In fact, to our knowledge, there were no previous numer-

ical methods for solving the generalized Dirac-Weyl equation for α-T3 particles that

are neither pseudospin-1/2 nor pseudospin-1. Taking advantage of a recently devel-

oped computational method [201] for pseudospin-1 particles based on the multiple
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Figure 2.8: Resonances and DOS patterns calculated from the MMP method for
three types of cavities for pseudospin-1/2 wave. The top, middle, and bottom rows
correspond to the circular, elliptical, and stadium-shaped cavities with classically
integrable, mixed, and chaotic dynamics, respectively. For a meaningful comparison,
the areas of the cavities are set equal: πab = πR2 for the ellipse, where a and
b are respectively the semimajor and semiminor axes (eccentricity γ = a/b), and
πr2

0 + 2l0r0 = πR2 for the stadium, where l0 is the length of the straight segment and
r0 is the radius of the semicircle. In the left column, the normalized energy parameter
is V R for the circular cavity, V a for the elliptical cavity, and V r0 for the stadium. (a1-
c1) The DOS at an arbitrary point in the cavity versus the energy parameter for the
three types of cavities, respectively. In (a1), the incident wavevector is k0R = 1/10
and the nearly periodic resonant peaks correspond to different angular momentum
states. (a2) A representative DOS pattern associated with a resonant peak, where the
square root of the DOS is color-coded. In (b1), the eccentricity of the elliptical cavity
is γ = 1.1 and the incident wavevector is k0a =

√
1.1/10. (b2) Color-coded square

root of the DOS pattern for a resonant state. In (c1), the stadium cavity has A = πR2,

r0/l0 = 1, and L = 2πr0 + 2l0, and the incident wavevector is k0r0 =
√
π/(π + 2)/10.

(c2) Color-coded square root of the DOS pattern for a representative resonant state.

multipole (MMP) method in optics [202, 203, 204, 205, 206], we have developed an

efficient computational method [201] to solve the spinor wavefunctions associated with

the scattering of α-T3 particles from an arbitrary geometric domain (Appendix 2.10).

The basic idea is to place two sets of fictitious “poles,” one inside the cavity and
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another outside, which are regarded as the sources for generating the scattering wave-

function. The multiple set of poles (henceforth the term “multiple multipole”) can

be determined by matching the wavefunctions at the cavity boundary. From the

so-calculated scattering wavefunctions, we get the density of states (DOS) as a func-

tion of some energy-related parameter of the system, where each peak in the DOS

corresponds to a quasibound state. (The details of the MMP method for quantum

scattering associated with the generalized Dirac-Weyl equation for α-T3 particles are

given in Appendix 2.10.)

Figure 2.8 illustrates, for α = 0 and three types of cavities (circular, elliptical, and

stadium-shaped), DOS versus some normalized energy parameter and the represen-

tative DOS patterns in the physical domain corresponding to a pronounced resonant

state. The three cavities have the same area. Shown in the left column is the average

DOS per unit area inside the cavity versus an energy parameter for the three cavities.

In each case, in the interval of the energy parameter, there are a number of distinct

peaks in the DOS plot, each corresponding to a quasibound state. The right column

shows, for each case, the DOS pattern associated with a typical pronounced resonant

peak. Note that, for α = 0, both components of the spinor wavefunction are contin-

uous across the cavity boundary. These results, which are obtained from our MMP

method, agree with the previous results for scattering of pseudospin-1/2 particles in

graphene [197, 198, 199, 200].

2.4.2 Recurrence of Period-2 Type of Quasibound Modes

In quantum confinement, a fundamental issue is recurrence where, as the wavevec-

tor varies, a particular resonant state can arise periodically at a distinct set of energy

or wavevector values. In bounded systems, e.g., the stadium cavity with classical

chaotic dynamics that has played a paradigmatic role in the study of the phenomenon
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of scarring in nonrelativistic quantum mechanics [8], scars associated with certain pe-

riodic orbits can recur, which can be described by the Gutzwiller formula [2, 3].

Recurrence of quantum scars can also arise in graphene billiard systems [207]. In rel-

ativistic quantum billiard systems with T-symmetry breaking [6], chiral scars of mass-

less spin-1/2 fermions for certain classes of periodic orbits can arise [135, 208, 209],

which can recur with the energy or the wavevector. In open (scattering) systems

with quasibound states, there are still relationships among the classical period or-

bits, the wavefunctions, and directional emission in nonrelativistic quantum systems,

but the current understanding is that recurrence of the quasibound states is un-

likely [210, 211, 129]. Can this conventional wisdom be applied to α-T3 particles in a

cavity?

Our answer to the above question is surprisingly a “no,” as we have found a class

of “period-2” for α-T3 particles that can actually recur. In general, quantum scars are

referred to as the unusually high concentrations of the wavefunction along the clas-

sical periodic orbits [8]. Period-2 means particle hit with one boundary and bounce

back. Especially, for the elliptical cavity, we find that these modes correspond to

the spinor wavefunctions concentrated along the minor axis of the cavity, as shown

in Figs. 2.9(a) and 2.9(b) for two cavities with different values of eccentricity, where

the insets illustrate the corresponding classical orbits. For convenience, we fix the

incident energy E and vary the height V of the electric potential so as to system-

atically increase the wavevector q inside the cavity. We find that, regardless of the

geometric shape of the cavity and of the value of α, the period-2 mode can repeat-

edly occur in a periodic fashion. Figure 2.9(a) shows, for eccentricity value γ = 1.1,

α = 1/3 (red asterisks) and α = 1 (purple asterisks), the wavevector value at which

the mode emerges versus the index of the recurring mode. A similar plot is displayed

in Fig. 2.9(b) for γ = 1.5, α = 2/3 (red asterisks) and α = 1 (purple asterisks). The
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Figure 2.9: Recurrence of a class of quasibound state in elliptical cavities. The
quasibound state concentrates near the minor axis of the cavity, corresponding to a
period-2 type of classical orbits. (a) Dimensionless wavevector value qb at which such
a quasibound state emerges versus the index of the resonant energy level for γ = 1.1,
where two types of α-T3 waves are shown: α = 1/3 (purple asterisks) and α = 1 (red
asterisks). Insert: one type of period-2 orbit, with wavefunction localized along the
blue line.(b) Similar plots but for γ = 1.5, α = 2/3 (purple asterisks) and α = 1
(red asterisks). The right panels show representative spinor wavefunction patterns
for some specific values of q as indicated in the panels on the left.

spinor wavefunction patterns associated with some representative recurring modes

are shown on the right-hand side of Figs. 2.9(a) and 2.9(b). We find that the spacing

in the wavevector for recurrence follows certain rules:

∆q = 2π/L, for α = 1, (2.13)

∆q = π/L, for α ∈ (0, 1), (2.14)

where L = 2b is the length of the minor axis of the elliptical cavity. These resem-

ble the semiclassical rules for quantum scars in closed chaotic systems [2, 3]. For

α 6= 1 in which the T-symmetry is broken, the frequency in the wavevector for the

quasibound mode to occur is twice of that for pseudospin-1 system (α = 1). Beyond
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T-symmetry breaking, we notice that such phenomena happens regardless of period-2

orbits. Similar phenomena arise in Schrödinger equation.

We remark that, in Fig. 2.8, a few relatively low excited states are presented.

Some relatively high states are shown in Fig. 2.9. In particular, in Fig. 2.9(a), we

have qb ≈ 40, where b is the dimension of the cavity and q is the wavevector inside.

The setting puts the system in the quantum dot regime, as the wavevector inside the

cavity is large. As shown in the right panels of Fig. 2.9, there are many nodes inside

the cavity and the period-2 mode corresponds to a highly exited state. We see that,

because of the small wavelength, deformation and classical chaos can have an effect

on the states, driving the wavefunction towards concentrating along some classical

periodic orbits.

2.4.3 Characterization of Confinement by Magnetic Moment

For the circular and annular cavities, we have used the Wigner-Smith delay time

and the total scattering cross section to quantify confinement, which can be calcu-

lated from the analytic scattering matrix. For a mixed or chaotic cavity, while the

scattering wavefunctions for α-T3 particles can be numerically calculated using the

MMP method, it does not yield the scattering matrix. For a given state, the degree

of confinement is directly related to the peak width of the DOS distribution. How-

ever, counting peak numbers and estimating their width are not reliable, especially

when the distributions overlap. We thus seek alternative measures to characterize

confinement.

One experimentally accessible measure is the magnetic moment [212, 213, 214]

defined as

µB = −e
2

∫
(r× j)d2r, (2.15)

where r is the position, j is the current, and the integration is with respect to the
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interior of the cavity. In Ref. [213], it was shown that in topological insulators with

impurities, only the states with a large magnetic moment can survive. The robustness

of the states against impurities can be measured by the magnetic moment, justifying

its use to characterize the degree of confinement.

For the α-T3 wave, the associated current is given by j = vgΨ
†SαΨ with the

following components in the 2D Cartesian coordinates:

jx = 2vgRe [ψ∗B(ψA cosφ+ ψC sinφ)] ,

jy = −2vgIm [ψ∗B(ψA cosφ− ψC sinφ)] .

(2.16)

We compare the confinement properties for three types of cavities with distinct clas-

sical dynamics: circular (integrable), elliptical (mixed), and stadium (fully chaotic)

cavities. The size parameters for these cavities are the same as those in Fig. 2.8. We

fix the incident wavevector k0R = 0.1, change the potential height V , and calculate

the magnetic moment for each quasi-bound state. Since the current is proportional

to the square of the wavefunction, for each state we normalize the magnetic moment

by |Ψ|2 to get the average:

µB =
1

N

N∑
i=1

|
∫

r× jd2r|∫
|Ψ|2d2r

, (2.17)

where the sum is over all quasibound states in a wavevector range. Figure 2.10 shows,

for the three types of cavities, the average magnetic moment versus α. Note that,

because of the unbroken T-symmetry for α = 0, 1, the net current is zero and so the

corresponding average magnetic moment is zero.

For α < 0.1, confinement is strengthened as the value of α is increased. For

α > 0.2, the opposite trend occurs: confinement is weakened as α becomes larger.

For all three cavities, the maximum value of µB is achieved for α ≈ 0.1, indicating

the strongest possible confinement there among the possible α-T3 materials.
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Figure 2.10: Average magnetic moments µB versus α for three different cavities
with characteristically distinct classical dynamics. The incident wavevector is set to
be k0R = 0.1 for the circular cavity. The areas of the other two cavities are the same
as that of the circular cavity, and the corresponding wavevectors are set as in Fig. 2.8.
The elliptical cavity has eccentricity γ = 1.1 and the parameters of the stadium cavity
are r0/l0 = 1 and L = 2πr0 + 2l0. The normalized magnetic moment is averaged for
V R ∈ [20, 40], in which there are hundreds of quasibound states for all three cavities.
The average magnetic moment is zero for α = 0 or α = 1 because of T-symmetry
preservation, and is maximized for a small but non-zero value of α. This indicates
that, among the possible α-T3 materials, one with the strongest possible confinement
occurs in the regime of small (but non-zero) α values.

Certain features of Fig. 2.10 can be heuristically understood, as follows. In general,

wavefunctions concentrating along the boundary will contribute to a large magnetic

moment and hence, strong confinement. For small values of α, the third spinor

component ψC is proportional to αh with h being a kind of Bessel function. However,

the boundary condition stipulates h ∝ α−2. As a result, the third component along
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the boundary is proportional to α−1, leading to a larger magnetic moment for small

but non-zero values of α. Note that, in the original definition Eq. (2.15), the magnetic

moment depends on both the magnitude of the current j and the position r. While the

T-symmetry is broken for all three cavities for α ≤ 0, for the elliptical and stadium

cavities, there is one additional broken symmetry: the circular symmetry. As a result,

the average magnetic moments are larger than that for the circular cavity.

2.5 Conclusion and Discussion

Given a specific type of quantum materials, the issue of confinement of quasipar-

ticles is of both fundamental importance and applied value. We have addressed the

confinement issue in α-T3 materials that represent a broad spectrum of state-of-the-

art 2D Dirac materials. In terms of the lattice interaction parameter α whose value

lies in the unit interval, graphene with pseudospin-1/2 quasiparticles is at the lower

end of the spectrum (α = 0) while at the other end sits the pseudospin-1 material

(α = 1). Exactly at the two ends of the spectrum, the T-symmetry is preserved

but for any material in between, the symmetry is broken. While experimental real-

izations of α-T3 materials have been achieved only at the two ends of the spectrum,

advances in nanotechnologies and materials science may make it possible to create the

2D Dirac-Weyl materials with arbitrary values of α in the near future. A pertinent

theoretical question is thus what kind of α-T3 materials would have the best con-

finement property, especially in the quantum-dot regime. In general, associated with

T-symmetry breaking is broken level degeneracy, facilitating confinement. It is thus

intuitively expected that any α-T3 material for α 6= 0 would have better confinement

properties than graphene and the pseudospin-1 lattice. We have indeed observed this

feature. In fact, we have found that optimal confinement is achieved for materials

near the graphene end, i.e., those with small and non-zero α values.
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The general approach we have undertaken in this study is quantum scattering from

a cavity generated by a purely static electric potential. Focusing on the quantum-dot

regime, we have studied a number of cavities with characteristically distinct classical

dynamics: circular, annular, elliptical, and stadium cavities. For the circular cavity

with classical integrable dynamics, the scattering matrix can be analytically obtained,

making feasible a confinement analysis based on the scattering cross sections and the

Wigner-Smith time delay. Typically, a number of resonant peaks arise in the plots

of these quantities versus some energy-related parameter and a relatively sharp reso-

nant peak corresponds to strong confinement, as has been verified by an analysis of

backscattering and level separation. For the eccentric annular cavity that can gen-

erate the full spectrum of classical dynamics ranging from integrable to chaotic, the

scattering matrix can still be analytically calculated through some proper coordinate

transform. For the elliptical and stadium cavities, where the classical dynamics are

mixed for the former and fully chaotic for the latter, the scattering matrix approach

is infeasible. We have adopted an efficient numerical method, the MMP method,

to deal with these cavities. In particular, the method enables the three-component

spinor wavefunction for an arbitrary value of α to be numerically computed, based

on which experimentally accessible measures of confinement such as the magnetic

moment can be calculated. Through analyzing the magnetic moment, we find that,

for small α values, for the confined modes, the third component of the spinor wave-

function is typically larger than the other two components, generating wavefunctions

concentrating along the cavity boundary with a large magnetic moment.

For all these cases, we have found that in the region of small α values (α < 0.1),

confinement is enhanced as the value of α is increased. For α > 0.2, confinement is

weakened with a continuous increase in the value of α. Thus, for the α-T3 lattice

system, the best confinement is achieved for a small but non-zero value of α. This

40



phenomenon is general and holds regardless of the nature of the classical dynamics.

2.6 Potential Scattering of α-T3 Particles: Basics

Free space solutions. In the free space, the Hamiltonian for α-T3 wave is

H = vgS
α · p, (2.18)

where Sα = (Sαx , S
α
y ) are 3×3 generalized Pauli matrices. The two matrices, together

with the third one Sαz , obey the Levi-Civita symbol in three dimensions. For massless

quasiparticles in α-T3 materials, the matrix Sαz does not arise in the Hamiltonian.

Letting φ = tan−1 α, we have

Sαx =


0 cosφ 0

cosφ 0 sinφ

0 sinφ 0

 , (2.19)

Sαy = −i


0 cosφ 0

− cosφ 0 sinφ

0 − sinφ 0

 . (2.20)

For φ = 0, Sαx and Sαy reduce to the 2×2 Pauli matrices for pseudospin-1/2 particles.

For φ = π/4, the Hamiltonian reduces to that for pseudospin-1 particles. For α ≤ 0,

we have sinφ ≈ α.

In the polar coordinates, the eigenequation becomes
0 cosφL̂− 0

cosφL̂+ 0 sinφL̂−

0 sinφL̂+ 0




cosφhl−1e
−iθ

iκhl

− sinφhl+1e
iθ

 eilθ

= E


cosφhl−1e

−iθ

iκhl

− sinφhl+1e
iθ

 eilθ,

(2.21)
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where

L̂± = −ie±iθ
(
∂r ± i

∂θ
r

)
. (2.22)

and κ = sign(k) is the band index.

Comparing with the solutions for the pseudospin-1/2 system, we have that hl are

the Bessel type of functions. Let h
(0)
l = Jl be the Bessel function, and h

(1)
l = H

(1)
l

and h
(2)
l = H

(2)
l be the first and second kind of Hankel functions. Furthermore, we

let

kψ
(0,1,2)
l (r) ≡ 1√

2π


cosφh

(0,1,2)
l−1 (kr)e−iθ

iκh
(0,1,2)
l (kr)

− sinφh
(0,1,2)
l+1 (kr)eiθ

 eilθ, (2.23)

where r = (r, θ).

Boundary conditions. For a finite potential, we write the three-component spinor

wavefunction as

Ψ(r, θ) =


ψA

ψB

ψC

 =


RA(r)e−iθ

RB(r)

RC(r)eiθ

 eilθ, (2.24)

where RA(r), RB(r), and RC(r) are the corresponding radial components. The

eigenequation HΨ = EΨ thus becomes

−ivg


0 cosφ

(
d
dr

+ l
r

)
0

cosφ
(
d
dr
− l−1

r

)
0 sinφ

(
d
dr

+ l+1
r

)
0 sinφ

(
d
dr
− l

r

)
0



RA(r)

RB(r)

RC(r)



= [E − V (r)]


RA(r)

RB(r)

RC(r)

 .

(2.25)

Suppose the change in the potential at the cavity boundary r = R is finite. Integrating

Eq. (2.25) in the infinitesimal interval r ∈ [R− η,R + η], where η ∼ 0, we obtain
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RB(R− η) = RB(R + η),

cosφRA(R− η) + sinφRC(R− η) = sinφRA(R + η) + cosφRC(R + η).(2.26)

Together with the angular part of the spinor wavefunction, we get the boundary

conditions as

ψ<B = ψ>B ,

cosφψ<Ae
iθ + sinφψ<Ce

−iθ = cosφψ>Ae
iθ + sinφψ>Ce

−iθ.

(2.27)

where < and > denote the wavefunctions inside and outside of the boundary, re-

spectively. Note that, across the boundary, the second spinor component must be

continuous, but only a linear combination of the first and third components is re-

quired to be continuous.

The current density for α-T3 particles is

j = vgΨ
†SαΨ, (2.28)

whose components are given by

jx = 2vg Re [ψ∗B(ψA cosφ+ ψC sinφ)] ,

jy = −2vg Im [ψ∗B(ψA cosφ− ψC sinφ)] .

(2.29)

Elastic scattering theory. For scattering of α-T3 particles from a potential, the

general wavefunction can be written as

Ψ = Ψin + Ψout

=
∑
l

al

[
kψ

(2)
l +

∑
l′

Sll′
kψ(1)

]

=
∑
l

al

[
2 kψ

(0)
l +

∑
l′

(Sll′ − δll′) kψ(1)

]
,

(2.30)
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where the incident and reflected waves are expressed as the second and first kinds

of Hankel functions, respectively, Sll′ is the scattering matrix between incident wave

with angular momentum l and scattering wave with angular momentum l′. Let Tll′ ≡

Sll′ − δll′ and χin ≡
∑

l al
kψ

(0)
l . For certain choice of al, χin corresponds to the plane

wave. The far-field behavior of the wavefunction is

lim
k0r�1

Ψ = χin +
f(θ, θ′)√
−ir


cosφe−iθ

κ

sinφeiθ

 eikr. (2.31)

Comparing with the assumption in Eq. (2.30), we get

f(θ, θ′)√
−ir


cosφe−iθ

κ

sinφeiθ

 eikr = lim
kr�1

∑
l

al
∑
l′

Tll′


cosφH

(1)
l′−1(kr)e−iθ

iκH
(1)
l′ (kr)

− sinφH
(1)
l′+1(kr)eiθ

 eil
′θ. (2.32)

Using the asymptotic property of the Hankel function [215]

H
(1)
l (z) ≈

√
2

πz
exp

[
i

(
z − 1

2
lπ − 1

4
π

)]
(2.33)

and comparing both sides of Eq. (2.32), we get

fl(θ, θ
′) =

√
2

πk

∑
l

∑
l′

alTll′(−i)l
′
eil

′θ

=

√
2

πk

∑
l

fl(θ
′)eilθ

(2.34)

where

fl(θ
′) =

∑
m

amTml(−i)l. (2.35)

Once the scattering matrix has been obtained, we can analyze the far-field behaviors.

For example, the differential cross section is

dσ

dθ
= |f(θ, θ′)|2 =

2

πk

∣∣∣∣∣∑
l

fl(θ
′)eilθ

∣∣∣∣∣ (2.36)
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and the total scattering cross section is given by

σ(θ′) =

∮
dθ|f(θ, θ′)|2 =

4

k

∑
ll′

al(TT
†)ll′a

∗
l′ . (2.37)

2.7 Scattering from a Circular Cavity

Solution of scattering wavefunctions. the Incident wave is

χin(r) =
1√
2


cosφ exp(iθ′)

κ0

sinφ exp(−iθ′)

 eik0r cos θ, (2.38)

where θ′ is the incident angle and k0 = |E|/vg is the incident wavevector. Using the

Jacobi-Anger identity [215]

eiz cos θ ≡
∞∑

l=−∞

ilJl(z)eilθ, (2.39)

we can expand the plane wave in the polar coordinates as

χin(r) =
1√
2

∑
l

il−1


cosφJl−1(k0r)e

i(l−1)θ

iκ0Jl(k0r)e
ilθ

− sinφJl+1(k0r)e
i(l+1)θ


=
√
π

l=∞∑
l=−∞

il−1 k0ψ
(0)
l .

(2.40)

From Fig. 2.1, there are two regions. In region I (outside of the cavity), the wavevector

is k and the band index is κ0 = SignE. Inside the cavity, the wavevector is q =

|E − V |/vg and the band index is κ1 = Sign(E − V ). The wavefunction in region I is

Ψ(I)(r) = χin(r) +
√
π

∞∑
l=−∞

il−1Al
k0ψ

(1)
l , (2.41)

where Al’s are the expansion coefficients. Similarly, in region II, we have

Ψ(II)(r) =
√
π

∞∑
l=−∞

il−1Bl
qψ

(0)
l . (2.42)
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Imposing boundary conditions and matching the wavefunctions for each angular mo-

mentum channel, we get

BlJl(qR) = κ0κ1[Jl(k0R) + AlH
(1)
l (k0R)],

BlX
(0)
l (qR) = X

(0)
l (k0R) + AlX

(1)
l (k0R),

(2.43)

where

X
(0,1,2)
l = cos2 φh

(0,1,2)
l−1 − sin2 φh

(0,1,2)
l+1 . (2.44)

We thus have

Al = − Jl(qR)X
(0)
l (k0R)− κ0κ1X

(0)
l (qR)Jl(k0R)

Jl(qR)X
(1)
l (k0R)− κ0κ1X

(0)
l (qR)H

(1)
l (k0R)

,

Bl =
H

(1)
l (k0R)X

(0)
l (k0R)−X(1)

l (k0R)Jl(k0R)

H
(1)
l (k0R)X

(0)
l (qR)− κ0κ1X

(1)
l (k0R)Jl(qR)

.

(2.45)

Recalling the definition of the scattering matrix Scd

Ψ(I) =
∞∑

l=−∞

al

(
k0ψ

(2)
l + Scdl

k0ψ
(1)
l

)
(2.46)

and comparing this with Eq. (2.41), we obtain

Scdl = 1 + 2Al = −Jl(qR)X
(2)
l (k0R)− κ0κ1X

(0)
l (qR)H

(2)
l (k0R)

Jl(qR)X
(1)
l (k0R)− κ0κ1X

(0)
l (qR)H

(1)
l (k0R)

. (2.47)

From Eqs. (2.36) and (2.37), we obtain the differential cross section as

dσ

dθ
=

1

πk0

∣∣∣∣∣∑
l

(Scdl − 1)eilθ

∣∣∣∣∣
2

(2.48)

and the following total scattering cross section

σ =
2

k0

∑
l

∣∣Scdl − 1
∣∣2 , (2.49)

where the factor (2/k0) is the result of plane wave normalization.
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Far field properties. In the quantum-dot regime k0R � 1, for pseudospin-1/2

scattering the main contribution to the scattering wavefunction comes from the ±1/2

angular momentum channels. For pseudospin-1 scattering [96], the main contribution

comes from the lowest angular momentum channel l = 0. For α-T3 scattering, we

have

A1 = − J1(qR)X
(0)
1 (k0R)− κ0κ1X

(0)
1 (qR)J1(k0R)

J1(qR)X
(1)
1 (k0R)− κ0κ1X

(0)
1 (qR)H

(1)
l (k0R)

. (2.50)

Recall the asymptotic properties of the Bessel and Hankel functions [215]:

lim
z→0

J0(z) ≈ 1, (2.51)

lim
z→0

Jl(z) ≈ 1

Γ(l + 1)

(
1

2
z

)l
, (2.52)

lim
z→0

H
(1)
0 (z) ≈ −H(2)

0 (z) ≈ 2i

π
ln(z), (2.53)

lim
z→0

H
(1)
l (z) ≈ −H(2)(z) ≈ − i

π
Γ(l)

(
1

2
z

)−l
, (2.54)

for l > 0. For negative values of l, we have J−l = (−1)lJl and H
(1,2)
−l = (−1)lH

(1,2)
l .

We treat α as a perturbation parameter. For α ≤ 0, the dominant perturbation term

is J1(qR)H
(1)
1 (k0R) in the denominator of Eq. (2.50), which has the form α2H

(1)
2 (k0R).

We get

A1 =
A

(α=0)
1

1 + ηα2/(k0R)
, (2.55)

where η is a parameter. Note that A1 decays fast in the quantum-dot regime. The

backscattering ratio is given by

δ =
dσ/dθ|θ=π
dσ/dθ|θ=0

=
|A0 − A1|2

|A0 + A1|2
∝ α4(k0R)−2. (2.56)

Low field property and level degeneracy. We analyze the maximum value of

Bl. For l 6= 0, the maximum occurs when the denominator of Eq. (2.45) vanishes. In
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the pseudospin-1/2 case α = 0, Eq. (2.43) becomes

BlJl(qR) = κ0κ1[Jl(k0R) + AlH
(1)
l (k0R)],

BlJl−1(qR) = Jl−1(k0R) + AlH
(1)
l−1(k0R).

(2.57)

Using the transform l → −l + 1 and noting J−l = (−1)lJl and H
(1)
−l = (−1)lH

(1)
l , we

get B−l+1 = κ0κ1Bl and A−l+1 = Al. For pseudospin-1 (α = 1) scattering, Eq. (2.43)

becomes

BlJl(qR) = κ0κ1[Jl(k0R) + AlH
(1)
l (k0R)],

Bl(Jl−1(qR)− Jl+1(qR)) = Jl−1(k0R)− Jl+1(k0R) + Al(Hl−1(k0R)−Hl+1(k0R)).

(2.58)

With l→ −l and using J−l = (−1)lJl and H
(1)
−l = (−1)lH

(1)
l , we get A−l = Al and

B−l = Bl. The wave function is degenerate with respect to the transform l→ −l.

For a general α-T3 system, Eq. (2.43) contains the parameter α. We have

BlJl(qR) = κ0κ1[Jl(k0R) + AlH
(1)
l (k0R)],

BlX
(0)
l (qR) = X

(0)
l (k0R) + AlX

(1)
l (k0R).

(2.59)

For α ≤ 0, we have α ≈ sinφ and, hence,

X
(1)
l ≈ H

(1)
l−1

[
1 + ηl(l − 1)

( α

kR

)2
]
, (2.60)

where η is a parameter. In the numerator of Bl, X
(1)
l (k0R) cancels off Jl(k0R) for

small k0R and l 6= 0. The denominator has a similar behavior as in the far field case:

H
(1)
l (k0R)Jl(qR) = κ0κ1H

(1)
l−1

[
1 + ηl(l − 1)

(
α

k0R

)2
]
J

(1)
l (qR). (2.61)

To satisfy this equation for small values of α, we consider q → q+ ∆l. Comparing

the two sides of the equations, we get

∆l ∝
α2l

k0R
, (2.62)
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for l > 0. For α close to one, we have cosφ ≈ cos(π/4) + (α − 1) sin(π/4). Follow-

ing a similar analysis, we have that H
(1)
l+1(k0R) in the denominator is dominant and

H
(1)
l (k0R) is a perturbation. We get

∆l ∝ (1− α)
k0R

l
For |l| > 0. (2.63)

2.8 Scattering of α-T3 Wave from a Ring Cavity

Consider the ring cavity in Fig. 2.5(a1), where two boundaries divide the whole

space into three regions. The wavevectors in the three regions are k0 = |E|/vg,

k1 = |E − V1|/vg, and k2 = |E − V2|/vg with the respective band indices κ0 = signE,

κ1 = sign(E − V1), and κ2 = sign(E − V2). The wavefunctions in the three regions

are given by

Ψ(I)(r) =
∞∑

l=−∞

(
k0ψ

(2)
l + Sringl

k0ψ
(1)
l

)
, (2.64)

Ψ(II)(r) =
∞∑

l=−∞

Cl

(
k1ψ

(2)
l + Scdl

k1ψ
(1)
l

)
, (2.65)

Ψ(III)(r) =
∞∑

l=−∞

Dl
k2ψ

(0)
l . (2.66)

Let El = ClS
cd
l . Matching the boundary conditions for each angular momentum

channel, we get
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

κ1H
(2)
l (k1R2) −κ2Jl(k2R2) κ1H

(1)
l (k1R2) 0

X
(2)
l (k1R2) X

(0)
l (k2R2) X

(1)
l (k1R2) 0

κ1H
(2)
l (k1R1) 0 κ1H

(1)
l (k1R1) −κ0H

(1)
l (k0R1)

X
(2)
l (k1R1) 0 X

(1)
l (k1R1) −X(1)

l (k0R1)





Cl

Dl

El

Sringl



=



0

0

κ0H
(2)
l (k0R1)

X
(2)
l (k0R1)


.

(2.67)

The solutions of the coefficients are

Cl = κ0κ1
H

(2)
l (k0R1) +H

(1)
l (k0R1)Scdl

H
(2)
l (k1R1) +H

(1)
l (k1R1)Scdl

,

Dl = κ0κ1Cl
H

(2)
l (k1R2) +H

(1)
l (k1R2)Scdl

Jl(k2R2)
. (2.68)

We thus get the scattering matrix for the ring cavity as

Sringl = −κ0xlH
(2)
l (k0R1)− κ1ylX

(2)
l (k0R1)

κ0xlH
(1)
l (k0R1)− κ1ylX

(1)
l (k0R1)

. (2.69)

where

xl = X
(2)
l (k1R1) +X

(1)
l (k1R1)Scdl ,

yl = H
(2)
l +H

(1)
l (k1R1)Scdl ,

with Scdl given by Eq. (2.47).

2.9 Scattering of α-T3 Wave from an Eccentric Circular Cavity

Similar to scattering from a ring cavity, in an eccentric circular cavity there are

three distinct regions with wavevectors k0, k1 and k2. Because of the eccentricity,
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there is mixing of wavefunctions from different angular-momentum channels. We can

write

Ψ(I)(r) =
∞∑

l=−∞

a0
l

[
k0ψ

(2)
l +

∞∑
l′=−∞

Sll′
k0ψ

(1)
l′

]
, (2.70)

Ψ(II)(r) =
∞∑

l=−∞

∞∑
m=−∞

la1
m

[
k1ψ

(2)
l +

∞∑
m′=−∞

Sodmm′
k1ψ

(1)
l′

]
, (2.71)

where Sod is the scattering matrix for the inner circle, a transformed version of the

inner circle in the corresponding ring cavity:

Sod = U−1ScdU, (2.72)

where the transformation matrix is U = [Ulµ] = [Jµ−l(k1ξ)] and its inverse is U−1 =

[U−1
ml ] = [Jm−l(k1ξ)]. We match the boundary conditions

a0
lX

(2)
l (k0R1)δlm = la1

mX
(2)
m (k1R1) +

∑
j

la1
jS

od
jmX

(1)
m (k1R1),

iκ0

[
a0
lHl(k0R1)δlm

]
= iκ1

[
la1
mH

(2)
m (k1R1) +

∑
j

la1
jS

od
jmH

(1)
m (k1R1)

]
,

(2.73)

and define

A0 = [a0
l δlm],A = [la1

m],

C(1,2) = [X
(1,2)
l (k0R1)δlm],D = [H

(1,2)
l (k0R1)δlm],

c(1,2) = [X
(1,2)
l (k1R1)δlm],d = [H

(1,2)
l (k1R1)δlm].

(2.74)

Equation (2.73) can be rewritten as a matrix equation

A0C(2) + A0SC1 = Ac(2) + ASodc(1),

κ0

[
A0D(2) + A0SD

]
= κ1

[
Ad2 + ASodd(1)

]
.

(2.75)

We obtain

S = −D(2) − κ0κ1D(2)E
D(1) − κ0κ1D(1)E

, (2.76)
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where E = F−1D, F and G are defined as

F = c(2) + Sodc(1),

G = d(2) + Sodd(1),

and

A =
A0C(2) + A0SC(1)

c(2) + Scdc(1)
, (2.77)

with A0 being the coefficient for the incident wave.

2.10 MMP Method for Solving α-T3 Wave Scattering from an Arbitrary Domain

We describe a generalized MMP method that can be used to solve the scattering

of α-T3 wave in an efficient way. The method was originated in optics [202, 203, 204,

205, 206] and recently adopted for pseudospin-1 wave scattering [201]. Consider the

simple case of a single scattering cavity, where the regions outside of and inside it

are denoted as I and II, respectively, with wavevectors k1 and k2 as well as band

indices κ1 and κ2. Suppose a plane spinor wave is incident on the cavity, which can

be written as

χin(r) =


χin
A

χin
B

χin
C

 =
1√
2


cosφ exp(−iθ′)

κ0

sinφ exp(iθ′)

 eik0r cos θ. (2.78)

To calculate the scattering wavefunction, we place a number of “poles” inside and

outside of the cavity, as shown in Fig. 2.11. Poles inside and outside of the cavity

are labeled as mII and mI, respectively, with their total numbers MII and MI. Each

pole is treated as a fictitious source. To avoid the problem of singularity at a source,

the scattering wave function outside of the cavity is given as the superposition of the

waves from all the poles inside the cavity, while the wavefunction inside the cavity

52



is determined by the poles outside, as illustrated in Figs. 2.11(a-c). For a fictitious

source, the base function is

Ψl(r) =
1√
2π


cosφh

(0,1,2)
l−1 (kr)e−iθ

iκh
(0,1,2)
l (kr)

− sinφh
(0,1,2)
l+1 (kr)eiθ

 eilθ, (2.79)

where h
(0,1,2)
l (z) denotes some type of Bessel function. For each source, we choose

the outgoing wave as the basis, i.e., the Hankel function of the first kind: H
(1)
l . The

wavefunction outside of the cavity can be written in terms of the poles inside as

Ψ(I)(r) =


ψ

(I)
A

ψ
(I)
B

ψ
(I)
C

 =
∑
mII

∑
l

FmII
l


cosφH

(1)
l−1(k0dmII

)e−iθmII

iκ0H
(1)
l (k0dmII

)

− sinφH
(1)
l+1(k0dmII

)eiθmII

 eilθmII , (2.80)

where

dmII
≡ |dmII

| = |r− rmII
|,

θmII
≡ Angle(r− rmII

),

and FmII
l is the expansion coefficient for the eigenvector from the mIIth pole with

angular momentum index l located at rmII
.

Similarly, the wave function inside the cavity is determined by the poles outside

of the cavity:

Ψ(II)(r) =


ψ

(II)
A

ψ
(II)
B

ψ
(II)
C

 =
∑
mI

∑
l

FmI
l


cosφH

(1)
l−1(qdmI

)e−iθmI

iκ1H
(1)
l (qdmI

)

− sinφH
(1)
l+1(qdmI

)eiθmI

 eilθmI , (2.81)

where

dmI
≡ |dmI

| = |r− rmI
|, and

θmI
≡ Angle(r− rmI

).
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Figure 2.11: Illustration of MMP method for α-T3 wave scattering and validation.
(a-c) Distributions of interior and exterior poles for the circular, elliptical, and sta-
dium cavities, respectively. For each cavity, the solid curve represents the cavity
boundary Γ, and the regions outside of and inside the cavity are labeled as I and II,
respectively. (d) For the circular cavity, analytically obtained local density of state
(LDOS) versus the potential parameter V R at the test point (r = 0.9 and θ = π/3)
specified by the green pentagram in (a). (e) The LDOS at the same point obtained
from MMP. The agreement between the results in (d) and (e) is excellent.

To match the boundary conditions, the three components of the spinor wavefunction

must satisfy

(
χin
B + ψ

(I)
B

) ∣∣∣
r∈Γ

= ψ
(II)
B

∣∣∣
r∈Γ

,[
cosφ

(
χin
A + ψ

(I)
A

)
+ sinφ

(
χin
C + ψ

(I)
C

)] ∣∣∣
r∈Γ

=(
cosφψ

(II)
A + sinφψ

(II)
C

) ∣∣∣
r∈Γ

.

Expanding this equation in terms of the poles and the corresponding eigenvectors,

54



we obtain

∑
mII

∑
l

jP
(I)
lmII

FmII
l −

∑
mI

jP
(II)
lmI
FmI
l = − jχin

B ,∑
mII

∑
l

jQ
(I)
lmII

FmII
l −

∑
mI

jQ
(II)
lmI
FmI
l = (2.82)

−
(
cosφ jχin

A + sinφ jχin
C

)
,

where

jP
(I)
lmII

= iκ0H
(1)
l (k0|rj − rmII

|)eilθmII ,

jP
(II)
lmI

= iκ1H
(1)
l (k1|rj − rmI

|)eilθmI , (2.83)

jQ
(I)
lmII

= cos2 φH
(1)
l−1(k0|rj − rmII

|)ei(l−1)θmII

− sin2 φH
(1)
l+1(k0|rj − rmII

|)ei(l+1)θmII ,

jQ
(II)
lmI

= cos2 φH
(1)
l−1(k1|rj − rmI

|)ei(l−1)θmI

− sin2 φH
(1)
l+1(k1|rj − rmI

|)ei(l+1)θmI ,

and

jχin
A,B,C = χin

A,B,C(rj). (2.84)

We discretize the boundary into J points. For each point, we truncate the angular

momentum as l ∈ [−L,L]. Let NL = 2L+1 be the number of eigenvectors associated

with different values of the angular momentum and let N = NL × (MI + MII) =

NI +NII. The boundary conditions lead to the following matrix equation

M2J×N · FN×1 = −G2J×1, (2.85)

where M can be expanded in terms of the matrices P and Q, which are typically not
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square matrices:

M2J×N =


P(I) −P(II)

Q(I) −Q(II)


2J×N

. (2.86)

The two vectors in Eq. (2.85) are given by
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FN×1 =



F 1II
−L

...

F 1II
l

F 2II
l

...

FMII
l

...

FMII
L

F 1I
−L

...

F 1I
l

F 2I
l

...

FMI
l

...

FMI
L


N×1

,G2J×1 =



jχin
B

...

jχin
B

...

Jχin
B

cosφ 1χin
A + sinφ 1χin

A

...

cosφ jχin
A + sinφ jχin

A

...

cosφ Jχin
A + sinφ Jχin

A


2J×1

, (2.87)

and the matrices P and Q are given by
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P(λ) =



1P
(λ)
−L1λ

· · · 1P
(λ)
−LMλ

· · · 1P
(λ)
l1λ
· · · 1P

(λ)
lMλ
· · · 1P

(λ)
LMλ

2P
(λ)
−L1λ

· · · 2P
(λ)
−LMλ

· · · 2P
(λ)
l1λ
· · · 2P

(λ)
lMλ
· · · 2P

(λ)
LMλ

... · · · ... · · · ... · · · ... · · · ...

jP
(λ)
−L1λ

· · · jP (λ)
−LMλ

· · · jP (λ)
l1λ
· · · jP (λ)

lMλ
· · · jP (λ)

LMλ

... · · · ... · · · ... · · · ... · · · ...

JP
(λ)
−L1λ

· · · JP (λ)
−LMλ

· · · JP (λ)
l1λ
· · · JP (λ)

lMλ
· · · JP (λ)

LMλ


J×Nλ

, (2.88)

and

Q(λ) =



1Q
(λ)
−L1λ

· · · 1Q
(λ)
−LMλ

· · · 1Q
(λ)
l1λ
· · · 1Q

(λ)
lMλ
· · · 1Q

(λ)
LMλ

2Q
(λ)
−L1λ

· · · 2Q
(λ)
−LMλ

· · · 2Q
(λ)
l1λ
· · · 2Q

(λ)
lMλ
· · · 2Q

(λ)
LMλ

... · · · ... · · · ... · · · ... · · · ...

jQ
(λ)
−L1λ

· · · jQ(λ)
−LMλ

· · · jQ(λ)
l1λ
· · · jQ(λ)

lMλ
· · · jQ(λ)

LMλ

... · · · ... · · · ... · · · ... · · · ...

JQ
(λ)
−L1λ

· · · JQ(λ)
−LMλ

· · · JQ(λ)
l1λ
· · · JQ(λ)

lMλ
· · · JQ(λ)

LMλ


J×Nλ

, (2.89)
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where λ ∈ {I, II} and λ = {I, II} − λ.

Because of the finite truncation, the total basis is not complete, so Eq. (2.86)

can be satisfied only approximately. To achieve high accuracy requires J � N .

Equation (2.86) can be solved by the pseudo-inverse method [F = −pinv(M ∗G) in

Matlab].

From the expansion coefficients F, we can get the scattering wavefunction in the

whole space. To validate the MMP method, we set α = 1/3 in the circular cavity and

calculate the local density of states (LDOS) as a function of the parameter V R both

analytically and using the MMP method. The results are shown in Figs. 2.11(d) and

2.11(e). There is a good agreement between the results.

The error of the MMP method can be estimated as

SSE =
‖M ∗ F + G‖
‖G‖

. (2.90)

For the circular and the elliptical cavities, the relative errors are typically smaller

than 10−5. For the stadium cavity, the error is bounded by 0.05. In the quantum-dot

regime where the wavevector inside the cavity is large, a large number of poles are

needed and they should be placed as close to the boundary as possible.

2.11 Appendix

Following are the relevant publication on the topics presented in this

chapter

C.-D. Han, H.-Y. Xu, and Y.-C. Lai*, “Electrical confinement in a spectrum of

two-dimensional Dirac materials with classically integrable, mixed, and chaotic dy-

namics,” Physical Review Research 2, 013116, (2020).
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Chapter 3

ADAPTABLE HAMILTONIAN NEURAL NETWORKS

The rapid growth of research in exploiting machine learning to predict chaotic

systems has revived a recent interest in Hamiltonian Neural Networks (HNNs) with

physical constraints defined by the Hamilton’s equations of motion, which represent

a major class of physics-enhanced neural networks. We introduce a class of HNNs

capable of adaptable prediction of nonlinear physical systems: by training the neural

network based on time series from a small number of bifurcation-parameter values

of the target Hamiltonian system, the HNN can predict the dynamical states at

other parameter values, where the network has not been exposed to any information

about the system at these parameter values. The architecture of the HNN differs

from the previous ones in that we incorporate an input parameter channel, rendering

the HNN parameter–cognizant. We demonstrate, using paradigmatic Hamiltonian

systems, that training the HNN using time series from as few as four parameter values

bestows the neural machine with the ability to predict the state of the target system

in an entire parameter interval. Utilizing the ensemble maximum Lyapunov exponent

and the alignment index as indicators, we show that our parameter-cognizant HNN

can successfully predict the route of transition to chaos. Physics-enhanced machine

learning is a forefront area of research, and our adaptable HNNs provide an approach

to understanding machine learning with broad applications.

3.1 Introduction

A daunting challenge in machine learning is the lack of understanding of the inner

working of the artificial neural networks. As machine learning has been increasingly
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incorporated into many vital structures and systems that support the functioning of

the modern society, it is imperative to develop a general understanding of the inner

gears of the underlying neural networks. For example, feed-forward neural networks

or multilayer perceptrons constitute the fundamentals of modern deep learning ma-

chines with broad applications in image, video and audio processing [216]. Such a

neural machine typically consists of an input layer, a large number of hidden lay-

ers, and an output layer. From the input layer on, nodes in the same layer do not

interact with each other, but they are connected with the nodes in the next layer

via a set of weights and biases whose values are determined through training, where

the paradigmatic method of stochastic gradient descent (SGD) [217] is often used.

How the networks in different layers work together to solve a specific problem re-

mains unknown. In another line of research, reservoir computing, a class of recurrent

neural networks [218, 219, 220, 221], has gained considerable momentum since 2017

as a powerful paradigm for model-free, fully data driven prediction of nonlinear and

chaotic dynamical systems [222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233,

234, 235, 236, 237, 238]. A reservoir computing machine constitutes an input layer,

a single hidden layer, and an output layer. Differing from the network structure of a

multilayer perceptron, the network in the hidden layer of a reservoir computing ma-

chine has a complex topology in which the nodes are coupled with each other following

some probability distribution. Another difference is that, in feed-forward neural net-

works, only the weights and biases connecting the hidden layer and the output layer

neurons are determined by training, while in reservoir computing those parameters as

well as the weights of the complex network in the hidden layer are pre-defined. A well

trained reservoir machine can generate accurate prediction of the state evolution of a

chaotic system for a duration that is typically several times longer than that which

can be achieved using the traditional methodologies in nonlinear time series analysis.
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This is remarkable, considering the hallmark of chaos: sensitive dependence on initial

conditions, which rules out long-term prediction. Yet, there is little understanding

of how the internal network dynamics of reservoir computing machines behave or

“manage” to replicate accurately (for some amount of time) the chaotic evolution of

the true system.

At the present, to develop a general explainable framework to encompass vari-

ous types of machine learning is not feasible. In this regard, a promising direction

of pursuit is the so-called physics-enhanced machine learning, in which the neural

networks are designed to solve specific physics problems with the goal to enhance

the learning efficiency through exploiting the underlying physical principles or con-

straints. The idea was articulated almost three decades ago [160], when the princi-

ple of Hamiltonian mechanics was incorporated into the design of neural networks,

leading to Hamiltonian Neural Networks (HNNs) that have recently gained renewed

attention [153, 154, 155, 156, 157]. Comparing with traditional neural networks, in an

HNN, the energy is conserved. It has been demonstrated that, an HNN can be trained

to possess the power to predict the dynamical evolution of the target Hamiltonian

system in both integrable and chaotic regimes, provided that the network is trained

with data taken from the same set of parameter values at which the prediction is to

be made [153, 154, 155, 156, 157]. Recently the principle of HNN has been gener-

alized [239] to systems described by the Lagrangian equation of motion [240] and a

general type of ordinary differential equations [241] or coordinate transforms [242, 243]

with applications in robotics [244, 245].

In this paper, we address adaptability, a fundamental issue in machine learning,

of Hamiltonian neural networks. More precisely, we consider the situation where a

target Hamiltonian system can experience slow drift or sudden changes in some pa-

rameters. Slow environmental variations can lead to adiabatic parameter drifting,
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while external disturbances can lead to sudden parameter changes. We ask if it is

possible to design HNNs, which are trained with data from a small number of param-

eter values of the target system, to have the predictive power for parameter values

that are not in the training set. Inspired by the recent work on predicting critical

transitions and collapse in dissipative dynamical systems based on reservoir comput-

ing [148, 149, 150, 151, 152], we articulate a class of HNNs whose input layer contains

a set of channels that are specifically used for inputting the values of the distinct

parameters of interest to the neural network. The number of the parameter channels

is equal to the number of freely varying parameters in the target Hamiltonian sys-

tem. The simplest case is where the target system has a single bifurcation or control

parameter so only one input parameter channel to the neural network is necessary.

We demonstrate that, by incorporating such a parameter channel into a feed-forward

type of HNNs and conducting training using time series data from a small number of

bifurcation parameter values (e.g., four), we effectively make the HNN adaptable to

parameter variations. That is, the so-trained HNN has inherited the rules governing

the dynamical evolution of the target Hamiltonian system. When a parameter value

of interest, which is not in the training parameter set, is fed into the HNN through

the parameter channel, the machine is capable of generating dynamical behaviors

that statistically match those of the target system at this particular parameter value.

The HNN has thus become adaptable because it has never been exposed to any in-

formation or data from the target system at this parameter value, yet the neural

machine can reproduce the dynamical behavior. Using the Hénon-Heiles model as a

prototypical target Hamiltonian system, we demonstrate that our adaptable HNN can

successfully predict the dynamical behaviors, integrable or chaotic, for any parameter

values that are reasonably close to those in the training parameter set. Remark-

ably, by feeding a systematically varying set of bifurcation parameter values into the
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parameter channel, the HNN can successfully predict the transition to chaos in the

target Hamiltonian system, which we characterize using two measures: the ensemble

maximum Lyapunov exponent and the alignment index. It is worth emphasizing that,

in the existing literature on HNNs [153, 154, 155, 156, 157], training and prediction

are done at the same set of parameter values of the target Hamiltonian system, but

our work goes beyond by making the HNN significantly more powerful with enhanced

and expanded predictability.

We remark that, in physics, machine learning has been exploited to solve difficult

problems in particle physics [246, 247], quantum many-body systems [248], inverse

design in optical systems [249], and quantum information [250, 158]. However, the

working mechanisms of the underlying neural networks remain largely unknown [251].

The physics enhanced HNNs studied here are different from these applications, as we

focus on exploiting physical principles to enable neural networks with unprecedented

predictive power with respect to parameter variations.

In Sec. 3.2, we describe the architecture of the articulated parameter-cognizant

HNNs and the method of training. In Sec. 3.3, we present results of predicting the

dynamical behavior of the Hénon-Heiles system in a wide parameter region, including

the transition to chaos based on calculating the ensemble maximum Lyapunov expo-

nent and the minimum alignment index. In general, the prediction accuracy depends

on how “close” the desired parameter value is to the training regime. In Sec. 3.4, we

address a number of pertinent issues such as the choosing of the training parameter

values, multiple parameter channels, and HNNs for a Hamiltonian system defined by

the one-dimensional Morse potential. A summarizing discussion and speculations are

offered in Sec. 3.5.

64



3.2 Parameter-cognizant Hamiltonian Neural Networks

The central idea for physics-enhanced machine learning is to “force” the dynam-

ical evolution of the neural network to follow certain physical rules or constraints,

examples of which are Hamilton’s equations of motion [153, 154, 155, 156, 157], La-

grangian equations [240], or the principle of least action [252, 253]. In particular, the

structure of HNNs is such that the underlying neural dynamical system is effectively a

Hamiltonian system for which the energy is conserved during the evolution. Different

from previous work [153, 154, 155, 156, 157], the bifurcation parameter of the target

Hamiltonian system serves as an input “variable” to the neural network through an

additional input channel so that the HNN learns to associate the input time series

with the specific value of the bifurcation parameter. Using time series from a small

number of distinct bifurcation parameter values to train the HNN, it can gain the

ability to “sense” the changes in the dynamics (or dynamical “climate”) of the target

system with the bifurcation parameter.

The structure of our articulated parameter-cognizant HNN is shown in Fig. 3.1,

where the input contains three parts: the position and momentum variables of the

target system, and the bifurcation parameter. To be concrete, we use two hidden

layers, where each layer contains 200 artificial neurons (nodes). The third layer is

the output, which contains a single node whose dynamical state corresponds to the

Hamiltonian of the target system. Let y denote the set of dynamical variables of each

layer. The transform from the dynamical variables in the ith layer to those in the

(i+ 1)th layer follows the following rule:

yi+1 = σi(W i · yi + bi), (3.1)

where σi is a given nonlinear activation function, W i is the weight matrix and bi is

bias vector associated with the neurons in the ith layer, which are to be determined
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Figure 3.1: Structure of parameter-cognizant HNN. The input channels are denoted
by the blue circles, which are connected to the first hidden layer (purple circles). The
blue circle denoted by “α” is the parameter input channel that feeds the value of
the bifurcation parameter of the target Hamiltonian system, together with the time
series q(t) and p(t) through the corresponding input channels, into the first hidden
layer. There are two hidden layers. The output variables are the partial derivatives
of the Hamiltonian of the target system with respect to the canonical coordinates
and momenta, together with the Hamiltonian, which determine the dynamical state
at the next time step.

through training. We set the output as the spatial derivatives of the input variables

to force the dynamics of the neural network to follow the Hamilton’s equations of

motion. The derivatives are calculated through the back prorogation algorithm. Once

the output is known, the loss function defined as

L =

∥∥∥∥∂H∂q
+
dpreal

dt

∥∥∥∥+

∥∥∥∥∂H∂p
− dqreal

dt

∥∥∥∥ , (3.2)

can be calculated. Through the training process, we optimize the weights and biases

in Eq. (3.1) by minimizing the loss function. This is done by using the standard SGD

method [217]. The whole process from network construction and training to carrying

out the prediction is accomplished by using the open source package Tensorflow and

Keras [254, 255].

Table 3.1 summarizes the structure and parameters of our HNN. It has about
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Table 3.1: Specifications of HNN

Description Values

Number of hiden layers 2

Neurons per layer 200

Optimizer Adam

Epochs 500

Activation functioin tanh

40,000 unknown parameters to be optimally determined through training. The com-

putation can be quite efficient even without using parallel or GPU acceleration. The

anticipation is that, after training with time series data from a small number of dis-

tinct bifurcation parameter values, the HNN can predict the dynamical behavior of

the target Hamiltonian system in a wide parameter interval, where the parameter

variations are implemented through the input parameter channel to the HNN.

3.3 Adaptable Hamiltonian Neural Networks for Predicting Transition to Chaos

To test the adaptability of our parameter-cognizant HNN for predicting state evo-

lution and dynamical transitions in Hamiltonian systems, we use the paradigmatic

Hénon-Heiles model [256]. It is a two-degrees-of-freedom system for investigating

distinct types of Hamiltonian dynamics including integrable, mixed, and chaotic be-

haviors and the transitions among them. It was originated from the gravitational

three-body system [256], with applications in contexts such as molecular dynam-

ics [257, 258, 259].
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Figure 3.2: Distinct types of dynamical behaviors in the Hénon-Heiles system. The
energy value is E = 1/6. (a-d) Integrable, mixed, small and largely chaotic dynamics
for α = 0, 0.7, 0.9, and 1.0, respectively, on the Poincaré surface of section defined
by q1 = 0.

3.3.1 System Description

The Hénon-Heiles Hamiltonian is

H =
1

2

(
p2

1 + p2
2

)
+

1

2

(
q2

1 + q2
2

)
+ α

(
q2

1q2 −
1

3
q3

2

)
, (3.3)

where q1 and q2 denote the coordinates, p1 and p2 are the corresponding momenta,

α > 0 is a bifurcation parameter that sets the magnitude of the nonlinear potential

function describing, e.g., the dissociation energy in molecules [257, 258, 259]. The
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dynamics of system Eq. (3.3) depend not only on α, but also on the energy E of the

system that is conserved during the dynamical evolution. The maximum value of the

potential function is Emax = 1/(6α2). For α = 0, Emax diverges, so all trajectories

are bounded. For α > 0, if the particle energy exceeds Emax, the Hamiltonian system

becomes open with scattering trajectories that can escape to infinity. To train the

adaptable HNN, bounded trajectories are required, so we set 0 ≤ α ≤ 1 and E ≤ 1/6.

(For particle energy above the threshold, chaotic scattering dynamics and fractal

geometry can arise [260, 261, 262].) As the value of α increases from zero to one,

characteristically different dynamical behaviors can arise, such as integrable, mixed,

and chaotic. In particular, for α = 0, the nonlinear term in Eq. (3.3) disappears

and the system becomes a harmonic oscillator - an integrable system. In this case,

the entire phase space contains periodic and quasiperiodic orbits only, as shown in

Fig. 3.2(a). As α increases from zero, the system becomes nonlinear and chaotic seas

amid the Kol’mogorov-Arnol’d-Moser (KAM) islands can arise in the phase space,

giving rise to mixed dynamics, as shown in Fig. 3.2(b) for α = 0.7 and E = 1/6. For

α = 0.9, α = 1 and E = 1/6, most trajectories in the phase space are chaotic, as

shown in Figs. 3.2(c) and 3.2(d).

3.3.2 Training and Testing of Adaptability

Our goal of training is to “instill” certain adaptable power into the HNN. To

achieve this, we choose a number of distinct values of the bifurcation parameter

α. For each α value, we randomly choose initial conditions with energy below the

escape threshold Emax and numerically integrate the Hamilton’s equations of motion

to generate particle trajectories in the phase space. Because of the mixed dynamics,

the training data contain both integrable and chaotic orbits. Specifically, the time

interval of the trajectory is 0 ≤ t ≤ 1000, which contains hundreds of oscillation
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Table 3.2: List of training parameters for Hénon-Heiles system

Description Values

Neural network ensembles 20

Energy samples 7

Orbit per energy 1

Orbit length 1000

Time step 0.1

Training parameter set α ∈ {0.2, 0.4, 0.6, 0.8}

cycles, and we collect training data using the sampling time step dt = 0.1. The

energy associated with the training data is maintained to be constant to within 10−6.

In general, the weights and biases of the adaptable HNN determined by the SGD

method depend on the training data set. To reduce the prediction error, an ensemble

of HNNs can be used [152]. Concretely, for each value of α, we generate 20 different

sets of data for training, leading to an ensemble of 20 HNNs. The parameter setting

for training is listed in Tab. 3.2.

After the training, all the weights and biases in Eq. (3.1) are determined. The

Hamiltonian and its derivatives for each network in the HNN ensemble can be eval-

uated for any input, leading to the average derivative values. To characterize the

prediction accuracy for different values of the bifurcation parameter, we use the root-

mean square error (RMSE) that can be calculated from the difference between the

HNN predicted and the true orbits. For α = 0, the motion is integrable so the pre-

dicted orbit is always close to some real orbit, leading to exceedingly small errors.

In this case, we take advantage of one feature of HNNs that it directly yields the

Hamiltonian function, from which the potential function can be calculated. It is thus

convenient to use the relative error between the predicted potential function and the
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true one to characterize the HNN performance, which is defined as

〈∆V 〉 ≡ |Vpred − Vreal|
Vreal

, (3.4)

where the average is taken in the region of Vreal < 1/6. The predicted potential

profile is given by Vpred = Hpred − C, where C = min(Hpred) so that the minimum

value of Vpred is zero. Note that the average in Eq. (3.4) is calculated from an integral

in a 2D domain in the physical space, for which the boundary of the domain needs

to be specified. A natural choice of the criterion to set the boundary would be

V (x, y) < Emax = 1/6, but occasionally the predicted orbit will diverge. Numerically,

there are different ways to overcome this difficulty. For example, if the boundary

is set according to the criterion: max(Vpred, Vreal) < 1/6, then almost all orbits are

bounded, rendering calculable the error 〈∆V 〉.

We demonstrate that HNN can be used to reconstruct the Hamiltonian of the

target system. Consider phase-space points for H(α, q1, q2, p1, p2) < 1/6 and expand

the Hamiltonian about the origin using the Taylor series:

Hpred(α) =
∑

i1,i2,i3,i4

βi1i2i3i4(α)qi11 q
i2
2 p

i3
1 p

i4
2 , (3.5)

where β’s are the expansion coefficients, and the sum is taken according to 0 ≤

sum(i1, i2, i3, i4) ≤ 3, which contains in total 35 terms. Comparing with true Hamil-

tonian Eq. (3.3), only six terms are non-zero.

We train the HNN at four values of the parameter: α ∈ {0.2, 0.4, 0.6, 0.8}. For

each α value, we choose seven random initial conditions with their energies below the

threshold. Figure 3.3(a) shows the relative error in predicting the potential function

for α ∈ (0, 1). The interval in α can be divided into two parts: the shaded region

α ∈ [0.2, 0.8] that contains the four values of α used in training, and the blank

regions on both side of the shaded region. In the shaded region, the relative error
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Figure 3.3: (a) Relative error in predicting the potential function of the Hénon-Heiles
system. Shown is the error versus the bifurcation parameter α in the unit interval.
The HNN is trained with time series data from four values of α: α ∈ {0.2, 0.4, 0.6, 0.8}
(the four green pentagons). In the shaded region that contains these four values of
α, the relative error is less than 2%, demonstrating the adaptability of the HNN in
predicting the target Hamiltonian system for parameter values not in the training
set. The adaptability extends even outside the shaded region but with larger error
(still within 8% though). (b) Coefficients of the Taylor expansion for Hpred versus the
bifurcation parameter α, where β2000, β0200, β0020 and β0002 correspond to the first
four square terms in Eq. (3.3) whose true value is 1/2, and β2100 and β0300 correspond
to the two cubic terms that are proportional to α. Other terms in the expansion do
not appear in the original Hamiltonian, among which the first two largest ones are
β3000 and β1200 that correspond to other cubic potential terms.

is less than 2%, but the error increases away from the shaded region. Figure 3.3(b)

shows the expansion coefficients for the predicted Hamiltonian. Comparing with

the terms in the real Hamiltonian, our HNN predicts accurately the linear terms.

For the nonlinear terms, the HNN reproduces the behavior with the variation in the

bifurcation parameter α, where the errors are small in the shaded region in Fig. 3.3(b)

but relatively large outside the region.

To examine the adaptability of our parameter-cognizant HNN in more detail, we
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Figure 3.4: Testing the adaptability of HNN for parameter values in between two
training points. (a,b) True and predicted contour maps of the potential function for
α = 0.7, respectively, where the latter is obtained by extracting the Hamiltonian at
different positions with constant momentum input with normalization. (c,d) True
and predicted orbits from the initial condition [q1, q2, p1, p2] = [0, 0, 1/

√
6, 1/
√

6],
respectively, which are quasiperiodic.

take, for example, α = 0.7 in between the two training points α = 0.6 and α = 0.8,

for which the vast majority of the orbits with energy E = 1/6 are quasiperiodic, as
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can be seen from Fig. 3.2(b). Figures 3.4(a) and 3.4(b) show the true and predicted

potential functions for E < 1/6, respectively, which are essentially indistinguishable.

Figures 3.4(c) and 3.4(d) show some representative true and predicted orbits starting

from the same initial condition, which agree with each other qualitatively but differ in

detail. Particularly worth emphasizing is the fact that for the predicted quasiperiodic

orbit, the energy can be maintained at a constant value. In fact, we have tested

the method of reservoir computing [222, 223, 224, 225, 226, 227, 228, 229, 230, 231,

232, 233, 234, 235, 236, 237, 238] for predicting the orbit and find that, while it

typically yields a more accurate orbit in short time (e.g., a few cycles), in the long

run the energy is not conserved and the prediction error becomes large. Overall, since

the testing bifurcation parameter value α = 0.7 is sandwiched between two training

points, our parameter-cognizant HNN exhibits a strong adaptability.

For α = 1, with energy E = 1/6, most of the orbits are chaotic, where the portion

of the KAM islands in the phase space becomes relatively insignificant, as shown in

Fig. 3.2(d). In the case, the contour map of the true potential function has a triangular

shape, as shown in Fig. 3.5(a). The predicted potential contour map is shown in

Fig. 3.5(b), which agrees reasonably well with the true one. Figures 3.5(c) and 3.5(d)

show a true and the predicted chaotic orbits from the same initial condition. While

their details are different, the HNN predicts correctly that the orbit is chaotic. In

fact, as will be shown in Sec. 3.3.3, for the two quantities characterizing the statistical

behavior of the orbit, e.g, the maximum Lyapunov exponent and the alignment index,

the predicted orbit yields the same results as those from the true orbit. In general,

the closer the testing parameter value is to one of the training points, the higher the

prediction accuracy.
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Figure 3.5: Testing the adaptability of HNN for parameter values outside the
training interval. (a,b) True and predicted contour maps of the potential func-
tion for α = 1. (c,d) True and predicted orbits from the same initial condition
[q1, q2, p1, p2] = [0, 0, 1/

√
6, 1/
√

6], which differ in detail but are both chaotic.

3.3.3 Adaptable Prediction of a Hamiltonian System

In a typical Hamiltonian system, the route of transition to ergodicity as a non-

linearity parameter increases is as follows [263]. In the weak nonlinear regime, the
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system is integrable, where the motions are quasiperiodic and occur on tori generated

by different initial conditions, as illustrated in Fig. 3.2(a) for the Hénon-Heiles sys-

tem. As the nonlinearity parameter α increases, chaotic seas of various sizes emerge,

leading to a mixed phase space, as exemplified in Fig. 3.2(b). In the regime of strong

nonlinearity, e.g., α = 1, most of the phase space constitutes chaotic seas with only a

small fraction still occupied by KAM islands, as shown in Fig. 3.2(c) and (d). Here

we provide strong evidence for the adaptability of our parameter-cognizant HNN by

demonstrating that it can accurately predict the transition scenario, with training

conducted based on time series from only a handful values of the nonlinearity param-

eter.

Distinct from dissipative systems in which random initial conditions in the basin

of attraction of an attractor (periodic or chaotic) lead to trajectories that all end up

in the same attractor, in Hamiltonian systems different initial conditions typically

lead to different dynamically invariant sets. Because of this feature of Hamiltonian

systems, to investigate the transition scenario, computations from initial conditions

in the whole phase space leading to a statistical assessment and characterization of

the resulting orbits are necessary. We focus on two statistical quantities: the largest

Lyapunov exponent and the minimum alignment index, where the former character-

izes the exponential separation rate of infinitesimally close trajectories and the latter

measures the relative “closeness” of two arbitrary vectors along the trajectory (e.g.,

whether they become parallel, anti-parallel, or neither) [264]. For a chaotic trajec-

tory, an infinitesimal vector stretches or contracts exponentially along the unstable

or the stable direction, respectively. As a result, a random vector will approach the

unstable direction along the trajectory and two random vectors will align with each

other quickly. In particular, given two initial vectors u0
1 and u0

2, after i time steps,
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they become ui1 and ui2, respectively. The minimum alignment index is defined as

γi ≡ min(‖ui1 + ui2‖, ‖ui1 − ui2‖). (3.6)

When chaos sets in, the value of γi will quickly approach zero with time.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15
(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
-10

10
0

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1
(c)

Figure 3.6: Test of adaptability of parameter-cognizant HNN in predicting transi-
tion to chaos in the Hénon-Heiles system. (a-c) The ensemble maximum Lyapunov
exponent λM , the ensemble minimum alignment index γm together with the threshold
10−8, and the fraction fc of chaos in the phase space versus the nonlinearity param-
eter α, respectively. Transition to chaos occurs about α ≤ 0.7. The orange and
blue colors correspond to the true and HNN predicted results, respectively. There is
a reasonable agreement between the predicted and true behaviors, attesting to the
adaptable predictive power of the HNN.

For a properly trained HNN with its weights and biases determined, the output

contains the predicted Hamiltonian whose partial derivatives with respect to the co-

ordinate and momentum vectors can be calculated directly based on the architecture

of the neural network. These partial derivatives constitute the velocity field of the
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underlying dynamical system, whose Jacobian matrix can then be determined, from

which the machine predicted Lyapunov exponents and the alignment index can then

be calculated (see Appendix 3.6). The true values of the Lyapunov exponents and

the minimum alignment index can be calculated directly from the original Hamilto-

nian (3.3) of the target system.

In our calculation, we take 100 equally spaced values of the bifurcation parameter

in the unit interval: α ∈ [0, 1]. For each α value, we choose 200 random initial

conditions and calculate, for each initial condition, the values of the largest Lyapunov

exponent and the minimum alignment index. A trajectory is deemed chaotic [265] if

the largest exponent is positive and the minimum alignment index is less than 10−8.

We denote the maximum Lyapunov exponent and the minimum alignment index from

the ensemble of 200 trajectories as λM and γm, respectively, which are functions of

α. Another quantity of interest is the fraction of chaotic trajectories, denoted as fc,

which also depends on α. The triplet of characterizing quantities, λM , γm, and fc,

can be calculated from the HNN and from the original Hamiltonian as a function of

α. A comparison can then be made to assess the adaptable power of prediction of

our parameter-cognizant HNN.

Figures 3.6(a-c) show the machine predicted and true values of λM , γm, and fc

versus α, respectively, for particle energy E = 1/6. It can be seen that chaos arises

for α ≤ 0.7, at which λM becomes positive, γm decreases to 10−8, and fc begins to

increase from zero. In Fig. 3.6(a), the true value of λM for 0 ≤ α < 0.7 is essentially

zero, but the HNN predicted λM is slightly positive. The remarkable feature is that

both types of λM value begins to increase appreciably for α > 0.7. In fact, there is a

reasonable agreement between the true and predicted behavior of λM . Similar features

are present in the behaviors of γm and fc versus α, as shown in Figs. 3.6(b) and 3.6(c),

respectively. These results are strong evidence that our parameter-cognizant HNN
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is capable of adaptable prediction of distinct dynamical behaviors in Hamiltonian

systems.

3.4 Issues Pertinent to Adaptability of Hamiltonian Neural Networks

We address the adaptability of HNNs by asking the following three questions.

First, can the adaptability of HNNs be enhanced by increasing the number of train-

ing values of the bifurcation parameter? Second, can adaptability be achieved with

multiple parameter channels? Third, does adaptability hold for different target Hamil-

tonian systems?

3.4.1 Effect of Number of Training Parameter Values

So far, we have used four distinct values of the bifurcation parameter to train our

parameter-cognizant HNN. We now investigate if the adaptability can be enhanced by

increasing the number of training parameter values. Here by “enhancement” we mean

a reduction in the overall errors of predicting the Hamiltonian in a parameter interval

that contains values not in the training set. To test this, we conduct the following

numerical experiment. We choose N ≥ 3 training parameter values and, for each

parameter value, we train the HNN M times using an ensemble of time series collected

from M energy values below the threshold (10 time series from 10 random initial

conditions with energy below the threshold). To make the comparison meaningful,

we choose the values of M and N such that NM is approximately constant. In

particular, for Simulation #1, we set N = 3: α = 0.25, 0.5 and 0.75, and M = 9.

For Simulation #2, we choose N = 4: α = 0.2, 0.4, 0.6, and 0.8, and M = 7. For

Simulation #3, we have N = 5: α = 0.1, 0.3, 0.5, 0.7, and 0.9, and M = 5. For

each simulation, we calculate the ensemble error 〈∆V 〉 in predicting the potential

function as defined in Eq. (3.4) for 0 ≤ α ≤ 1. The results are shown in Fig. 3.7. It
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Figure 3.7: Effect of increasing the number N of training parameter values on the
adaptable prediction error. Shown are the ensemble errors 〈∆V 〉 in predicting the
potential function for the three simulation settings explained in the text. Increasing
N beyond four does not lead to a significant reduction in the errors, indicating that
the HNN has already acquired the needed adaptability with training at four different
values of the bifurcation parameter.

can be seen that the errors for N = 3 are generally larger than those for N > 3, but

the errors for the two cases (N = 4 and 5) are approximately the same, indicating

that increasing N above four will not lead to a significant reduction in the errors of

adaptable prediction. That is, by training with multiple time series from four values of

the bifurcation parameter, the HNN has already acquired the necessary adaptability

for predicting the system behavior at other nearby parameter values.
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Figure 3.8: Prediction performance of an HNN with two input parameter channels.
The target Hamiltonian system is given by the asymmetric Hénon-Heiles system as
defined by Eq. (3.7). Shown is the color-coded ensemble prediction error 〈∆V 〉 in
the (α1, α2) plane. Training is conducted at the 16 points indicated by the green
pentagons. The prediction error is small (< 5%) in the central region (α1, α2) ∈
[0.2, 0.8].

3.4.2 HNNs with Two Parameter Channels

We construct parameter-cognizant HNNs with more than one parameter channel.

For this purpose, we modify the Hénon-Heiles Hamiltonian Eq. (3.3) to

H =
1

2

(
p2

1 + p2
2

)
+

1

2

(
q2

1 + q2
2

)
+ α1q

2
1q2 −

α2

3
q3

2, (3.7)

where α1 and α2 are two independent bifurcation parameters, requiring two inde-

pendent parameter input channels to the HNN. The energy threshold for bounded

motions can be evaluated numerically. We conduct training for a number of com-
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binations of α1 and α2 values: α1, α2 ∈ {0.2, 0.4, 0.6, 0.8}. The training data are

generated as follows: for each parameter pair, we choose five energy values below the

threshold and, for each energy value, a single time series is collected. After the train-

ing is done, we predict the potential function for α1, α2 ∈ [0, 1] with the interval 0.1

in each direction of parameter variation. Figure 3.8 shows the color-coded ensemble

prediction error 〈∆V 〉 in the (α1, α2) plane. For some combinations of α1 and α2 with

a relatively large difference in their values, the threshold energy is less than 1/6. For

such cases, the integration domain in Eq. (3.4) is modified accordingly based on the

threshold value. It can be seen that, in the parameter region (α1, α2) ∈ (0.2, 0.8), the

prediction error is about 5%, while the errors outside the region tend to increase. At

the two off-diagonal corners, the errors are the largest, due to the strong asymme-

try in the potential profile. Figure 3.8 demonstrates that HNNs with two parameter

channels can be trained to be adaptable for prediction.

3.4.3 HNNs for a Diatomic Molecule System

We consider a different target Hamiltonian system, a system defined by the

one-dimensional Morse potential that describes the interaction between diatomic

molecule [266]. This system was previously used in the study of chaotic scatter-

ing [267, 268]. The Hamiltonian is given by

H =
p2
x

2
+ V (x) ≡ p2

x

2
+ [1− exp(−a(x− x0))]2 − 1, (3.8)

where the potential function V (x) has a minimum value at x = x0 with V (x0) = −1

and V (x → ∞) → 0. Taking the minimum potential value as the reference point

for energy E, all orbits are bounded for E < 1. We set x0 = 1 and choose a as the

bifurcation parameter. The training data are generated from four different values of

a: a = 0.5, 1.0, 2.0, and 4.0 where, for each training parameter value, an ensemble of

82



0 1 2 3 4 5
-1

-0.5

0
(a)

0 0.5 1 1.5 2 2.5 3

-1

-0.5

0

0.5

1
(b)

Figure 3.9: Parameter-cognizant HNN trained for the one-dimensional Morse sys-
tem. (a) Shown are the predicted potential profiles for a = 1.0, 1.5, and 2.0 (solid
curves), together with the corresponding true profiles (dashed curves). The predicted
potential function for a = 1.5 is not the interpolation of those for a = 1.0 and a = 2.0,
attesting to the adaptable predictive power of the HNN. (b) True and predicted orbits
in phase space from [x, px] = [1, 1].

five values of energy is used, resulting an ensemble of 20 independent time series. The

time span for each time series is 0 ≤ t ≤ 100 with the sampling time step ∆t = 0.1.
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Figure 3.9 shows the predicted potential profile for a = 1.5, together with those

for the two training points a = 1 and a = 2. The result is accurate for x around the

minimum potential point, but large errors arise when the position is far away from the

minimum point. A plausible reason is that, for large values of x, the potential varies

slowly, resulting in small changes in the momentum. As a result, the corresponding

portions of the time series exhibit less variation, leading to large prediction errors

by the HNN. The trained HNN has apparently gained certain adaptability, as the

prediction result for a = 1.5 is not the interpolation of those for a = 1.0 and a = 2.0.

3.5 Discussion

Developing adaptable machine learning in general has broad applications to criti-

cal problems of current interest. For example, a problem of paramount importance is

to predict how a system may behave in the future when some key parameters of the

system may have drifted, based on information that is available at the present. As

an example, suppose an ecosystem is currently in a normal state. Due to the envi-

ronmental deterioration, some of its parameters such as the carrying capacity and/or

the species decay rates will have drifted in the future. Is it possible to predict if the

system will collapse when certain amount of parameter drift has occurred, when the

system equations are not known and the only available information is time series data

that can be measured prior to but including the present? Adaptable machine learning

offers a possible solution. For example, it has been demonstrated recently [152] that

incorporating a parameter-cognizant mechanism into reservoir computing machines

enables prediction of possible critical transition and system collapse in the future for

any given amount of parameter drift. However, the state-of-the-art reservoir com-

puting schemes under intensive current research [222, 223, 224, 225, 226, 227, 228,

229, 230, 231, 232, 233, 234, 235, 236, 237, 238] do not taken into account physi-
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cal constraints such as energy conservation, so they are suitable but for dissipative

dynamical systems.

Combining the laws of physics and traditional machine learning has the potential

to significantly enhance the performance and predictive power of neural networks. It

has been demonstrated recently that enforcing the Hamilton’s equations of motion in

the traditional feed-forward neural networks can lead to improvement in the prediction

accuracy for Hamiltonian systems in both integrable and chaotic regimes [153, 154,

155, 156, 157]. In these studies, training and prediction are conducted for the same set

of parameter values of the target Hamiltonian system, so the underlying Hamiltonian

neural networks are not adaptable in the sense that they are not capable of predicting

the dynamical behavior of the system at a different parameter setting.

Do adaptable HNNs that we have developed have any practical significance? From

the point of view of making predictions of the future states of Hamiltonian systems

subject to parameter drifting, the answer is perhaps no. The main reason is that

HNNs require all coordinate and momentum time series. For example, one may be

interested in predicting whether a complicated many-body astrophysical system may

lose its stability and become mostly chaotic in the future, where the only available

information is the position and momentum measurements prior to or at the present

when the system is still in a mostly integrable regime. As the laws of physics for this

system are known, the data required for training is not a lesser burden than knowing

the Hamiltonian itself. Nonetheless, our work generates insights into the working of

HNNs, as follows.

Our parameter-cognizant, adaptable HNNs have a parameter input channel to

the standard multilayer network with the loss function stipulated by the Hamilton’s

equations of motion, and are capable of successful prediction of transition to chaos in

Hamiltonian systems. In particular, through training with coordinate and momentum
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time series from four different values of the bifurcation (nonlinearity) parameter, the

machine gains adaptability as evidenced by its successful prediction of the dynamical

behavior of the target system in an entire parameter interval containing the training

parameter values. That is, the benefits of training are that the HNN has learned

not only the dynamical “climate” of the target Hamiltonian system but also how

the “climate” changes with the bifurcation parameter. Machine learning can thus be

viewed as a process by which the neural network self-adjusts its dynamical evolution

rules to incorporate those of the target system.

When systematically varying values of the bifurcation parameter are fed into the

HNN, it can predict the transition to chaos from a mostly integrable regime, as

determined by the ensemble maximum Lyapunov exponent and minimum alignment

index as well as the fraction of chaos as a function of the bifurcation parameter.

For a single parameter channel, the adaptable predictive power is achieved insofar

as the training parameter set contains at least three or four distinct values. For an

HNN with duplex parameter channels, the size of the required training parameter set

should be at least four by four. Adaptable prediction has also been accomplished for a

different Hamiltonian system defined by the Morse potential function. We expect the

principle of designing parameter-cognizant HNNs and the training method devised in

this paper to hold for general Hamiltonian systems.

One issue is the dependence of the energy surface on the bifurcation parameter.

As the parameter changes continuously, the energy surface will evolve accordingly. If

we intend to predict the system dynamics for some specific value of the bifurcation

parameter for a fixed energy value, the training data sets should contain time series

collected from a larger energy value to cover the pertinent phase space region at the

desired energy value.

It should also be noted that, using HNNs to predict the transition from integrable
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dynamics to chaos in the Hénon-Heiles system was first reported [156], which relied on

using energy E as the control parameter for a fixed value of the nonlinearity parameter

(e.g., α = 1). Here we have studied the transition using α as the bifurcation parameter

for a fixed energy value (e.g., E = 1/6). The two routes are equivalent because the

Hénon-Heiles system Eq. (3.3) possesses a three-fold symmetry in the configuration

space. Such an equivalence also arises in systems whose potential function contains

nonlinear square terms, e.g., the classical φ4 or FPU model [269, 270]. However,

for the two-parameters Hamiltonian Eq. (3.7) studied in this paper, the three-fold

symmetry is broken, destroying the equivalence between varying the nonlinearity

parameter and energy. In fact, for Hamiltonian systems such as the Morse and double-

pendulum systems, the equivalence does not hold either [266, 268, 271]. Our adaptable

HNN does not rely on any such equivalence, and can be effective in predicting the

transition to chaos in any type of Hamiltonian systems.

3.6 Algorithm for Calculating the Lyapunov Exponent and Alignment Index of

Hamiltonian Neural Networks

Given a dynamical system dx/dt = f(x), the Jacobi matrix is given by J = ∂f/∂x.

For a Hamiltonian system, the dynamical variables are x ≡ [q,p]T and

f(q,p) =

[
∂H

∂p
,−∂H

∂q

]
. (3.9)

For an HNN, in principle, the Hamiltonian H is given by a sequence of operations of

the neural network with the weights and biases in Eq. (3.1) determined by training.

An alternative but efficient approach to calculating the Jacobian matrix J is the

finite-difference method. In particular, for a given initial condition, we generate an

orbit of N points with time interval dt and calculate J at each time step. Let the

sequence of Jacobian matrices be denoted as J (t0),J (t1), · · · ,J (tN), and let Y(t0)
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be the identity matrix I. If the phase space of the target Hamiltonian system is D-

dimensional (D = 4 for the Hénon-Heiles system), there are D Lyapunov exponents.

Let λ be the vector of the D Lyapunov exponents: λ ≡ (λ1, λ2, . . . , λD)T and set the

initial values of the exponents to be zero: λ(t0) = (0, 0, . . . , 0)T . After N steps, we

have

Y(tN) = J (tN) · Y(tN−1). (3.10)

Carrying out the QR decomposition of the matrix Y(tN) with the resulting ma-

trices denoted as Q and R, we have

λj(tN) = λj(tN−1) + log |Rjj|, (3.11)

Y(tN) = Q, (3.12)

where Rjj is the jth diagonal element of the matrix R. The Lyapunov exponents are

given by

λj = lim
N→∞

λj(tN)

Ndt
, j = 1, . . . , D. (3.13)

The maximum Lyapunov exponent is λM = maxj(λj).

To calculate the alignment index, we introduce a matrix M and set it to be

the identity matrix at the initial time: M(t0) = I. Let u1(t0) = [1, 0, 0, 0]T and

u2(t0) = [0, 1, 0, 0]T be two linearly independent vectors at the initial time. After N

steps, we have

M(tN) = (I + J (tN)dt) · M(tN−1),

u1,2(tN) =M(tN) · u1,2(t0).

(3.14)

Normalizing the vectors u1,2(tN) by their respective magnitude to have the unit

length, we obtain the minimum alignment index as

γm = lim
N→∞

min(‖u1(tN) + u2(tN)‖, ‖u1(tN)− u2(tN)‖). (3.15)
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3.7 Appendix

Following are the relevant publication on the topics presented in this

chapter

C.-D. Han, B. Glaz, M. Haile, and Y.-C. Lai*, “Adaptable Hamiltonian neural

networks,” Physical Review Research 3, 023156, (2021).
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Chapter 4

TOMOGRAPHY OF TIME-DEPENDENT QUANTUM HAMILTONIANS WITH

MACHINE LEARNING

Interacting quantum Hamiltonians are fundamental to quantum computing. Data-

based tomography of time-independent quantum Hamiltonians has been achieved, but

an open challenge is to ascertain the structures of time-dependent quantum Hamilto-

nians using time series measurements taken locally from a small subset of the spins.

Physically, the dynamical evolution of a spin system under time-dependent driving

or perturbation is described by the Heisenberg equation of motion. Motivated by

this basic fact, we articulate a physics-enhanced machine-learning framework whose

core is Heisenberg neural networks. In particular, we develop a deep learning al-

gorithm according to some physics-motivated loss function based on the Heisenberg

equation, which “forces” the neural network to follow the quantum evolution of the

spin variables. We demonstrate that, from local measurements, not only can the local

Hamiltonian be recovered, but the Hamiltonian reflecting the interacting structure of

the whole system can also be faithfully reconstructed. We test our Heisenberg neural

machine on spin systems of a variety of structures. In the extreme case in which

measurements are taken from only one spin, the achieved tomography fidelity values

can reach about 90%. The developed machine-learning framework is applicable to

any time-dependent systems whose quantum dynamical evolution is governed by the

Heisenberg equation of motion.
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4.1 Introduction

Quantum computation based on spin is a fundamental component of quantum

information science and technology [272]. Recently, it has been demonstrated that

manipulating 50 spins can generate the computational capability beyond any kind of

classical computers, leads to quantum supremacy [273, 274]. From a network point

of view, the information exchange between any pair of spins can be regarded as a

link between the two spins. When the interactions associated with all spin pairs are

taken into account, the end result is effectively a network, giving rise to the subfield

called qubit or spin system [275, 276, 277]. Experimentally, a multispin coupling

system can be realized using cavity quantum electrodynamics [278], ion traps [279],

or superconducting qubits [273, 274].

There are two types of quantum Hamiltonians: time-dependent or time-dependent.

In the former case, the system can be decomposed into a sequence of quantum

gates [280], resembling a classical circuit structure. Since the Hamiltonian is con-

stant over time, this effectively leads to quantum adiabatic computing systems, where

quantum computing algorithms can be performed on the ground states [281]. For

time-dependent Hamiltonians, both the spin coupling and an external, time-varying

field [282] or an output control signal [283] are present. It was argued that in time-

varying spins systems, the problem of switch off can be mitigated and the com-

putation speed can be enhanced [284]. In general, an external field can serve to

increase the computational capacity even for relatively simple spins system struc-

tures [283, 285]. However, it is challenging to analyze and realize time-dependent

control of spins systems. Recently, the idea of embedding a time-dependent Hamil-

tonians into a time independent one was studied, but the generality or universal

applicability of this approach remains unknown [286, 287]. In addition, deep neural-
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network based techniques to quantum state classification and reconstruction have

been proposed [288, 289].

In recent years, the inverse problem of spins systems has attracted a great deal

of attention. The basic question is, given only limited access to the system, i.e., only

part of the system can be measured, can the global structure of the spins system be

determined? Previous efforts focused on monitoring the Hamiltonian as a function

of time through the eigenstate realization algorithm (ERA) [290, 291], compressive

sensing [292, 293], machine learning [286, 287], or quantum quench [294]. The basic

idea is to find the coefficients of the power series terms constituting the Hamiltonian

in some basis. However, when applying to time-dependent quantum Hamiltonians,

these approaches are limited to systems of a single spin or those with a special type

of external field [293, 295, 296]. The general difficulty is that the functional form

of the time signal generates an optimization problem in infinite dimensions [297],

rendering inapplicable any optimization algorithm designed for finding a finite number

of parameters. For the methods based on the eigenstates, difficulties arise when the

system changes too fast with time [290, 291, 296]. Recently, in [298] the author

verified different methods to reconstruct time-independent quantum Hamiltonians.

A method based on unsupervised learning was proposed in [299]

In this paper, we solve a general class of inverse problems in spins systems by

exploiting machine learning [158]. Our work was partly inspired by the recent work

on the classical Hamiltonian Neural Networks (HNNs) [160, 153, 155, 156], where the

basic idea is to introduce a physics-based, customized loss function to “force” the

dynamical evolution of the system to follow that stipulated by the classical Hamil-

ton’s equations. However, the existing HNNs are not directly applicable to quantum

Hamiltonians, thereby requiring new approaches. Our idea originates from the ba-

sic physical consideration that the dynamical evolution of spins systems is governed
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by the Heisenberg equations of motion. We are thus motivated to develop a class

of Heisenberg Neural Networks (HENNs) by exploiting deep learning to predict the

Hamiltonian but under the constraint of the Heisenberg equations of motion. The

HENNs have the advantage of guaranteeing that the underlying quantum evolution

possesses the Hermitian structure. Our assumptions for the quantum Hamiltonian

are listed as follows. (i) Quantum Hamiltonian varies continuously with time, a situ-

ation that can be expected to hold in experiments in general. (ii) The measured spins

are coupled with the rest of the spins directly or indirectly. (iii) There are no Pauli

terms in the Hamiltonian commute with each other.

Our main results are the following. The original time-dependent quantum Hamil-

tonians whose structure is to be determined based on incomplete local measurements

and the HENN that is an artificial neural network for predicting the Hamiltonian

of the original system. We treat the dynamical evolution of the original system in

terms of both Schrödinger and Heisenberg pictures. We demonstrate that, with only

local measurements, the local Hamiltonian can be recovered, similar to the solution

of the local Hamiltonian learning problem [296]. In particular, defining the tomogra-

phy fidelity as the ratio between the correctly predicted links and the total possible

number of links in the underlying spins systems, we find that the fidelity can reach

90% even when the number of spins measured is much smaller than the system size.

In fact, the predicted Hamiltonian contains the global information about the coupling

profile of the original quantum Hamiltonians. We note that the problem of network

reconstruction or tomography has been well studied in classical nonlinear dynamical

systems [300, 301, 302, 303, 304], and there was also a study of structure identifica-

tion for time-independent quantum Hamiltonians [305]. Our work goes beyond the

relevant literature in that we have successfully articulated and validated a general

machine learning framework of quantum tomography for time-dependent quantum
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Hamiltonians.

Before presenting the details of our work, we offer four remarks.

Remark 1. It is worth noting that the problem of initialization in quantum Hamil-

tonians tomography is challenging and has not been solved. The current state of the

field is that, even when measurement is done locally, initial state preparation for the

whole system is still required. This is the case for algorithms such as ERA [290, 291].

Even for the problem of local Hamiltonian recovery, the requirement is that initially

the system be in an eigenstate [296]. To our knowledge, the only case where ini-

tial state preparation is not required is when the spins system structure is already

known [306]. The new feature of our work is a machine-learning approach to tomog-

raphy of time-dependent quantum Hamiltonians without any prior knowledge about

the network structure. As in the existing studies treating time-independent quantum

Hamiltonians [290, 291, 292, 293, 286, 287], a large number of given initial states is

required. However, state preparation methods are nowadays available [307, 308, 309].

Remark 2. One of the relating topics is called quantum process tomography

(QPT) [310, 311]. The idea is detecting the system information based on observa-

tions. The procedure are describing as follows: Preparing an initial quantum state,

perform observation and then repeat for different initial states until it’s enough for

matrix inversion. This method needs 16n number of observations, which is expo-

nential growth as we increasing the number of spins n, but the measurement can

be performed locally to reconstruct the Hamiltonian. The idea is widely used for

time independent Hamiltonian. Some experiments for 2 or 3 spins systems are shown

in [312, 313, 314].

Remark 3. Recently, another paper used a Recurrent Neural Network (RNN) to

learn the time dependent and time independent quantum Hamiltonian from single

spin measurement [315]. Comparing with our results, in [315] the structure for the
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spins system assumed to be known and in our paper we try to detect the coupling

structure. Another difference is that in [315] they use recurrent neural network,

comparing with HENN the training is time consuming.

In Sec. 4.2, we describe the HENN learning framework. In Sec. 4.3, we test our

machine-learning method using a variety of time-dependent quantum Hamiltonians,

which include networks with short- or long-range interactions and two quantum gates.

In Appendix 4.5, we present analytic results with HENNs for one- and three-spin

systems.

4.2 Time-dependent Quantum Hamiltonians and Heisenberg Neural Networks

Consider a system of spins coupled by an external field. The Hamiltonian is

H(t) = h(1) + f(t)h(2), (4.1)

where h(1,2) represent the time-independent Hamiltonian and f(t) is a continuous

function of time that is the result of the application of a time-dependent electrical

or magnetic field. Suppose the system is initially in the state |ψ0〉 at t = 0. In the

Schrödinger picture where the state evolves with time but the operators are time-

invariant, at time t the expectation value of an operator A is given by 〈A〉t. In the

Heisenberg picture where the state does not change with time but the operators do,

an operator evolves according to the Heisenberg equation

dAH

dt
= i[HH(t), AH(t)], (4.2)

where the superscript H specifies that the corresponding matrix is in the Heisenberg

picture, HH(t) = U †t,0H(t)Ut,0, and Ut,0 and H(t) do not commute with each other

due to the time dependence. Once HH(t) is known, the corresponding Hamiltonian in

the Schrödinger picture H(t) can be determined. The goal is to solve the Heisenberg

equation based the observations of A.
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Since Eq. (4.2) is a set of linear equations in HH(t), for any time t the equations

are solvable if the number of non-equivalent equations is no less than the number of

unknown elements. That is, the non-commutative operators at all times, AH(t), are

required to be known. This is a key difference from time-independent systems, where

HH(t) = H so one operator at any time, AH(t), can be used as the non-commutative

operator. In this case, once the observations (e.g., time series) are sufficient, the

Hamiltonian can be fully determined [290, 291].

The number of independent elements in the Hamiltonian matrix provides another

angle to appreciate the complexity of the problem. In particular, for a system with

n spins, at a specific time t, the Hamiltonian in Eq. (4.1) can be represented by

a Hermitian matrix in terms of the N = 2n linearly independent states. There are

altogether N2 = 4n bases for an N×N Hamiltonian matrix that is Hermitian. To fully

solve Eq. (4.2) will thus need all the 4n measurements at a given time. For example,

for a two-spin system, there are four linearly independent states, so in principle 16

observations are needed. These observations can be generated by the direct product

of the Pauli matrices Sα,β = σ1
α ⊗ σ2

β, where α and β are integers ranging from 0 to

3, which correspond to the identity and the three Pauli matrices σx, σy, σz. For these

16 matrices, one is an identity that commutes with all other matrices. Consequently,

we need at least 2N − 1 = 4n − 1 measurements to fully determine the Hamiltonian.

When the quantum states of all spins can be measured, it is straightforward to

obtain the Hamiltonian matrix through Eq. (4.2). A difficult situation is that only

a small fraction of the spins in the network, e.g., one or two, can be measured.

Experimentally, measurements or observations have been reported for one-, two-, and

three-spin systems [316, 317, 318]. The pertinent question is, what can we learn about

the whole network system when only local measurements in some subspace of the full
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space are available? To address this question, we decompose the Hamiltonian as

H = Ho +Hi︸ ︷︷ ︸
Ho′

+Hh, (4.3)

where Ho is the subspace Hamiltonian for the observed spins, Hi represents the in-

teraction between the observed and the nonobservable spins, and Hh is Hamiltonian

for the nonobservable spins. Let Ho′ ≡ Ho + Hi, which is the sub-Hamiltonian that

contains information directly related to the observed spins.

Take a three-spin system as an example, as shown in Fig. 4.1(a). The three spins

are labeled with 1, 2, 3 and we assume that only the first spin can be measured. The

subspace of Ho contains 3 bases corresponding to the Pauli matrices for the first spin

Ho = σ1, and Hi contains two-body interactions between the first spin and the second

or the third spin and the three-body interaction:

Hi = σ1(σ2 + σ3 + σ2σ3).

The subspace Hamiltonian Hh contains the Pauli matrices for the second and third

spins as well as the two-body interaction between them: Hh = σ2+σ3+σ2σ3. Overall,

this is a three-node spin system, where the nodal interactions represent different links.

For each node, three independent quantities (the three Pauli matrices) are needed to

characterize the spin polarization, which generate different combinations of coupling.

A unique feature of spin systems, which is not present in classical complex networks,

is that one link can couple more than two nodes.

The decomposition scheme in (4.3) is valid only in the Schrödinger picture. In

the Heisenberg picture, different subspace are mixed together in the time evolution,

so all the subspace must be simultaneously determined. For limited observations, the

solutions of the Heisenberg equation can be nonunique. To overcome this difficulty,

we exploit machine learning to predict the Hamiltonian. Inspired by the work of HNN
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Figure 4.1: Three- and four- spins systems and the machine learning architecture.
(a) Schematic illustration of local observation of the Hamiltonian in a three-spin
system. Say only one node or spin (the red one) can be observed, which corresponds
to the Hamiltonian Ho. The Hamiltonian for the nonobservable nodes and their
interactions are labeled as Hh. (b) Machine learning (neural network) architecture,
where the nodes in the hidden layers are represented by black squares, the input
and output are denoted by open squares, and the various weighted links (solid line
segments) connect the input to the output. The input is one-dimensional: it is simply
the time variable t. The output constitutes the elements of the matrix HH(t) whose
size is determined by the size of the spin system. The weight associated with each
link is calculated by the auto-gradient method to minimize the custom loss Eq. (4.4).
(c1-c3) Possible architectures of a 4-spin system, where the filled circle represents the
observable spin in the network. The networks in (c1-c3) have a chain, a cyclic, and
a tree structure, respectively. For n = 3 and n = 5, structures similar to those in
(c1-c3) exist.

whose loss function is based on the Hamilton’s equations of motion [160, 153, 155,

156] for time-independent spin systems, we articulate a general class of HENNs that

conform with the Heisenberg equations of motion with broad applicability to both

time-dependent and time-independent spin systems.

Figure 4.1(b) shows our neural network architecture with two hidden layers. The

input is one-dimensional: it is simply the time t. Each layer is a convolution of the

preceding layer: al = τ(Wl · al−1 + bl), where al is the state vector of the lth layer,

98



W is the weighted matrix connecting layers l and l − 1, bl is the bias vector of layer

l, τ is a nonlinear activation function, e.g., τ = tanh. The matrix W and the bias

vector bl are to be determined through training based on spin measurements. The

output is the Hamiltonian matrix in the Heisenberg picture. In our study, we use

two hidden layers, each with 200 nodes. The neural network is built by Tensorflow

and the Keras package [255]. We use the Stochastic Gradient Descent (SGD) and

adaptive momentum (Adam) methods to determine the optimal weighted matrix Wl

and the bias vector bl by minimizing an appropriate loss function [319]. In particular,

we define our loss function as the mean square error in the time derivatives of the

observation as

L =
∑

Observations

∣∣∣〈Ȧ(t)〉real − 〈Ȧ(t)〉pred

∣∣∣2 , (4.4)

where Ȧpred(t) = i[HH(t), A(t)], and the matrix HH(t) is the output of the HENN.

Once the time derivatives for some given observations are known, we input them

to the loss function as the target to train the HENN and subsequently to predict

the Hamiltonian. Due to incomplete measurement and finite optimization steps, the

predicted Hamiltonian varies over different rounds of training. It is thus necessary to

take the statistical average of the prediction and to calculate the variance.

The training data are time series of measurements. After the time series is known

we can get the corresponding derivative for the loss function. Therefore, the total

number of training data is the product of three thing, number of linear independent

states, number of observations, number of time discrete points. In Table 4.1 we show

the number of training data for each part. For example, for a chain structure with

n = 4 and observing one spin, the number of training data is 300× 3× 100 = 90, 000.

Since HENN are trained for a specific structure. Once the Hamiltonian change the

neural network need to be retrained.
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Table 4.1: List of training parameters for HENN

Description Values

Number of initial states for n = 3, 4 and 5 100, 300, 1100

Number of observations for one,two spins 3, 15

Time discrete points 100

It can be shown that the sub-Hamiltonian Ho′ in Eq. (4.3) containing information

directly related to the observed spins can be recovered [296]. For the subsystem not

directly related to the observed spin, its Hamiltonian Hh cannot be fully recovered.

However, we can show that, in the subspace of Hh, if the machine predicted coupling

value between two nodes is smaller than some threshold, then it effectively indicates

null coupling. This means that our HENN is capable of determining the coupling

configuration for the quantum Hamiltonian based on if the predicted Hamiltonian

matrix elements are zero or finite, providing a solution to the tomography problem for

the whole system. In particular, the tomography contains two types of information:

whether the spins are coupled and if so, how they are coupled. The first one is related

to the spatial structure of the network, as exemplified in Fig. 4.1(a), where spin 1 is

coupled to spin 2 and 3. The second type of information gives the the type of coupling

among all possible coupling configurations determined by the spin polarization vector

at each node.

The prediction phase of our HENN thus consists of the following steps.

First, for a given quantum spin system, we take measurement A from some part

of the system and calculate the corresponding matrix elements AH(t) based on the

linear equation

〈ψ0|AH(t)|ψ0〉 = 〈A〉t.

To obtain the matrix elements, the number of linearly independent initial states must
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be larger than the number of independent elements of the matrix. Specifically, for a

spin system with n spins, at least 4n linearly independent initial states are needed.

Second, we build up a neural network as in Fig. 4.1(b) with input time t and output

as the matrix elements HH(t). We train the network using the loss function defined

in Eq. (4.4). After the HENN is properly trained, we evaluate the Hamiltonian for a

given time series, and convert it into the Schrödinger picture. The coupling among

the nodes can be obtained from the decomposition

H(t) = c0(t)I +
∑
i,j

cij(t)σ
i
j,

+
∑
i,j,k,m

cijkm(t)σijσ
k
m + · · · ≡

∑
i

ci(t)Si, (4.5)

where Si is the basis of the N -dimensional Hamiltonian matrix and ci(t) is the corre-

sponding coupling coefficients at time t. We choose Si to be the direct product of the

Pauli matrices plus the identity matrix. The coefficients ci(t) determine the coupling

configuration of the system.

Third, after obtaining the time series of the coupling coefficients, we take the time

average for each basis ci =
∫ t

0
|ci(t)|dt and normalize them by their maximum value.

We set some threshold: any value above which indicates an existent coupling between

the corresponding spins.

To better illustrate our HENN based machine learning procedure, in Appendix 4.5,

we present two explicit examples for HENN predicted Hamiltonian: a one-spin system

and a three-spin system.

4.3 Results

We test the predictive power of the proposed HENNs for a number of spin systems.

As noted, in a quantum spin system, the concept of links can be quite different from

those in classical networks. In particular, one link is referred to as a specific way of
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coupling in the underlying spin system. For a system with n spins, the total number

of linearly independent states is 2n. The total number of independent elements in the

Hamiltonian matrix is 4n, which is the total number of possible ways of coupling in

the system. The links are generated by the direct products of the Pauli and identity

matrices. The types of links include self-coupling, two-body interactions and long-

range interactions. A quantity to characterize the machine-learning performance is

the tomography fidelity, defined as the ratio between the number of correctly predicted

links and the total possible number of links. Disregarding the identity matrix, we

define the tomography fidelity as

Ft =
4n − 1− (# of missing links)

4n − 1
, (4.6)

where the tomography is meaningful for Ft > 50%. A more useful characterizing

quantity is the success in identifying the structure of Hh, as this is proof that the

method can not only yield the structure of the subsystem from which measurements

are taken (Ho′), but also information about the complementary subsystem from which

no observations are made (Hh), so that information about the whole system can be

obtained. This alternative fidelity measure is defined as

Ft′ =
4n

′ − 1− (# of missing links)

4n′ − 1
. (4.7)

where n′ = n − nobs and nobs is the number of spins from which observations are

taken.

Another quantity is measuring the fidelity for local Hamiltonian Fo′ defined as

Fo′ = 1−
‖Ho′(pred) −Ho′(real)‖

‖Ho′(real)‖
, (4.8)

where Ho′(real) and Ho′(pred) are the real and predicted local Hamiltonian, respectively.
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4.3.1 Tomography of Spin Systems Based on Two-body Interactions

The sub-Hamiltonians h(1) and h(2) in (4.1) of a spin system with two-body inter-

actions are given by

h(1,2) =
n∑
i=1

3∑
j=1

c
(1,2)
ij σij+

n∑
i=1

n∑
j=i+1

3∑
m=1

3∑
l=1

wijc
(1,2)
ijmlσ

i
mσ

j
l ,

(4.9)

where c’s are random numbers between 0 and 1. The superscript of σ indicates the

number of spins, which varies from 1 to n, the subscripts 1, 2, 3 denote the x, y and z

components of the spin, respectively, wij is the ijth element of the adjacency matrix

as in a conventional, undirected network, where wij = 1 indicates there is coupling

between spin i and spin j, otherwise wij = 0. The first term of h contains self-

couplings, and the second term contains two-body couplings. Due to the exponential

growth of the computational overload with the number of spins in the network, we

limit out study to networks with n ≤ 5 spins. The Hamiltonian (4.9) arises in a variety

of physical situations such as the Heisenberg model or spin glass systems [320, 321].

The time dependence in the general Hamiltonian (4.1) is introduced into the network

with the following “driving” function of time:

f(t) = sin(ωt+ 2πφ), (4.10)

where ω and φ are random numbers whose values are taken between zero and one.

We test HENNs with the three structures shown in Figs. 4.1(a) and 4.1(c1-c3).

The main difference among them lies in the degree of the observed node. For example,

for the networks in Figs. 4.1(c1-c3), the degree of the observed spin is 9, 18, and 27,

respectively. To generate the data, we choose 100, 300 and 1, 100 random initial

conditions for n = 3, 4 and 5. For each initial condition, we numerically integrate
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the Heisenberg equation (4.2) for 0 < t < 5, and extract from this time interval 100

equally spaced points as the measurement data. The calculated time series for a given

initial state correspond to observations of σx, σy and σz for the specific local spin in

the network from which measurements are taken. We take the time derivative defined

in Eq. (4.4) as the loss function for training the HENN. Following the steps described

in Sec. 4.2, we obtain the predicted interaction structure of the network. Comparing

with the actual structure gives the tomography fidelity. Since the fidelity may vary

for a different Hamiltonian, for each specific type of networks, we repeat this process

100 times.

Figure 4.2(a) shows the results of reconstructing the cyclic network of three spins

in Fig. 4.1(a), where the degree of each node is 18 (excluding self-interactions) and

there are 64 distinct links in the network. What is displayed is the average predicted

coupling value c versus the link index, and the blue and red dots denote the exis-

tent and null links, respectively. The dashed horizontal line defined at 10% of the

maximum coupling value can separate majority of the existent from majority of the

null links. Figures 4.2(b) and 4.2(c) show the results from similar cyclic networks but

with four and five spins, respectively, with the same legends as those in Fig. 4.2(a).

These results indicate that, even when measurements are taken from only one spin,

the coupling structure of the time-dependent Hamiltonian can be predicted by our

HENN with a reasonably high accuracy.

A heuristic reason that the HENN is able to predict the structure of the spin sys-

tem correctly from only local measurements is as follows. Recall that the input to the

HENN is time, a continuous variable. The differential property of the neural network

guarantees that the predicted Hamiltonian must be continuous and the time change

for the predicted Hamiltonian must follow the Heisenberg equation as stipulated by

the physically meaningful loss function. With these constrains, data from different
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Figure 4.2: Tomography performance of HENN for cyclic networks of n = 3, 4, and
5 spins. The network structure is given in Fig. 4.1(a). (a) Reconstructed coupling
value c versus the total number of possible links. The result is for one of the spin
systems with the average tomography fidelity value from 100 random realizations.
The abscissa represents the number of possible links for n = 3, where the basis
ranges from σ1

0 ⊗ σ2
0 ⊗ σ3

1 to σ1
3 ⊗ σ2

3 ⊗ σ3
3, where the total number of possible links

is 4n − 1 = 63 (with the identity matrix taken away). The blue dots represent the
true, existent links, while nonexistent or null links are denoted as the red dots. The
horizontal dashed line is taken at the 10% of the predicted maximum coupling value.
(b,c) Results from n = 4 and 5, respectively, with the same legends. In all cases, the
horizontal dashed line can serve as a threshold for separating majority of the existent
links from majority of the null links, attesting to the ability of the machine-learning
scheme to infer the whole network structure from local measurements only.

time will instill the correct physical relationships among the dynamical variables into

the neural network. As a result, the difficulty of non-uniqueness of the solutions when

solving the linear equations is overcome.

To further characterize the performance of HENNs for different network structures,

we calculate the average fidelity measures for nine distinct networks that include the
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(a)

(b)

(c)

Figure 4.3: Tomography fidelity measure. (a) Average tomography fidelity Ft and
the standard deviation for nine distinct networks of three types of structures in
Figs. 4.1(c1-c3), respectively, each with n = 3, 4, and 5 spins. In all cases, local
measurements from only one spin are taken. (b) Average alternative tomography
fidelity Ft′ for n = 4 and 5, corresponding to n′ = 3 and 4, respectively. (The results
from n = 3 contain large statistical errors because of the the relatively small size
of the system and thus are not shown so that the results for n = 4 and 5 can be
seen clearly). In all cases, the fidelity values are above 80%, indicating the predictive
power of HENN. (c) The accuracy for predicted Hamiltonians that is directly related
to the observed spins Ho′ . For n = 3, 4 and 5 spins, each contains 48, 192 and 768
time series to compare.
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chain, cyclic, and tree structures in Figs. 4.1(c1-c3), respectively, each with n = 3,

4, and 5 spins, as shown in Figs. 4.3(a), 4.3(b) and 4.3 (c) for the measures Ft,

Ft′ and Fo′ , respectively. For the network structures in Figs. 4.1(c1-c3), the degrees

of the measurement spin are 9, 18, and 27, respectively. For a fixed number of

spins in the network, the fidelity value decreases with the degree of the measurement

spin. The reason are listed as follows: Firstly, a higher degree for the observed spins

means the measurements time series is more complicated. Our calculation shows

that the tomography for the Hamiltonian directly connected to the observed node

Fo′ is relatively the same, but the predicted power for the hidden structure decreases.

Another note is that for n = 3, cyclic structure and tree structure has the same degree.

For n = 3 tree structure, we find HENN will assume there is coupling between two

non observed spins but in reality there is not. Thus the tomography fidelity is small

for tree structure than cyclic structure.

Note that the measure Ft is defined for the whole network, which takes into account

not only the links between the measurement spin and the nonobservable spins, but

also the links among the nonobservable spins, where the latter are characterized by

the alternative tomography fidelity measure Ft′ . Since this measure is purely for the

nonobservable spins from which no measurements are taken, we expect its value to be

lower than that of Ft, as shown in Fig. 4.3(b). In spite of the reduction in comparison

with Ft, the values of Ft′ for n = 4 and n = 5 are still relatively high: approximately

80% and larger, attesting to the power of our HENN scheme to extract information

from the nonobservable spins.

The accuracy for predicted Hamiltonians that is directly related to the observed

spin is shown in Figure. 4.3 (c). Take four spins system as an example. There are

3 for the self-coupling, 27 two-body interactions, 81 three-body interactions and 81

four-body interactions. Thus we can get 192 time series to compare. In Figure. 4.3
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(c) for different structures and different numbers of spins, Fo′ is larger than 90%.

For spins system with tree structures, the fidelity is slightly lower than the other

two structures, and as we increasing the system size, the variance becomes larger.

However, there is no clear difference between size and structure effects.

Another issue is the effect for different driving functions. We choose three different

driving functions f(t) = t/5, f(t) = sin(πt/5) and f(t) = exp[−(t−2.5)2] at t ∈ [0, 5]

as an example. Each of the driving represent linear, sinusoidal and Gaussian pulse.

Using the example for a cyclic structure with one spin as measurement shown in

Fig. 4.1 (c2). The fidelity for tomography Ft, Ft′ and Hamiltonian Fo′ shown in

Table. 4.2.

Firstly, these results indicate that for simple deriving functions f(t) = t/5 the

fidelity is higher than others. Secondly, in Table. 4.2 the sinusoidal and Gaussian

pulse contains one period. Comparing with Fig. 4.3 the fidelity is slightly higher.

Since at Fig. 4.3 we randomly generated ω through 0 to 1 so the maximum contains

two oscillation periods. It proves that for a more complex driving functions that has

more oscillations, the errors can increase quickly.

Based on our setting, the measurement time series must start from t = 0, since

the Hamiltonian we predict is in the Heisenberg picture. To get the coupling profile

of the spins system, we need to change the Hamiltonian into the Schrödinger picture.

If the time series at the beginning is missed, then even we can use the HENN to

get the Hamiltonian in Heisenberg picture, change it to Schrödinger picture will be

challenging. The spacing for the time series may not be the same. As long as it can

maintain enough accuracy for the derivative.

Utilizing two-body coupling spin to evaluate the performance of the HENNs has

certain limitations. In particular, for a given network structure, when the number of

spins increases, the error appears to decrease, due mostly to the exponential growth
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Table 4.2: Tomography fidelity under different driving functions

f(t) = t/5 f(t) = sin
(
π
5
t
) f(t) =

exp[−(t− 2.5)2]

Ft 97.4%± 1.7% 96.7%± 1.7% 96.3%± 2.4%

Ft′ 90.7%± 6.4% 88.3%± 6.5% 87.9%± 7.3%

Fo′ 98.0%± 1.0% 96.6%± 1.3% 95.5%± 1.9%

in the total possible number of links in the network, which is an artifact. In some

cases, the prediction results can be trivial as the system size increases. For exam-

ple, if all the two-body couplings are null, then for n = 3, the tomography fidelity

value will be about 40% because approximately 60% of the links are of the two-body

type. Similarly, for n = 4 and 5, approximately 20% and 5% of the links are of the

two-body type, leading to artificial fidelity values of about 80% and 95%, respec-

tively. Comparing with the results in Fig. 4.3, for n = 3 and 4, the trivial prediction

gives lower fidelity values, but the difference diminishes for n = 5. Consequently,

based solely on two-body interactions, that the tomography fidelity increases with

the system size is not synonymous to a better performance of the algorithm for larger

systems. For accurate tomography of quantum spin systems, long-range interactions

must be included.

4.3.2 Tomography of Quantum Spin Systems with Long-range Interactions

We consider the more general Hamiltonian that contains all short- and long-range

interactions. Physical applications include the development of quantum gates such as

the Toffoli or the Fredkin gate that requires three-body interaction [322], spin glass

with infinite-range interactions [321], and quantum computing that requires high

coherence [318, 323]. We decompose the Hamiltonian into two components, h(1,2), as
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in Eq.(4.1), which are given by

h(1,2) =
3∑

i1,i2,··· ,in=0

rc
(1,2)
i1i2···inσ

1
i1
σ2
i2
· · ·σnin , (4.11)

where c
(1,2)
i1i2···in are random numbers between 0 and 1, and r takes on the values of one

or zero with equal probabilities. The network comes into existence only for r = 1. The

function f(t) rendering the system time-dependent is chosen according to Eq. (4.10).

We consider systems with n = 3, 4 or 5 spins with 100, 300 and 1100 random

initial conditions, respectively. Observing one spin leads to time series of σx, σy and

σz from this spin. If two spins can be measured, we choose the observation variable

to be σ1
α ⊗ σ2

β, where α and β are integers from zero to three, corresponding to the

identity and the three Pauli matrices, respectively. Excluding the identity operation,

we have 15 measured time series of 100 equally spacing points in the time interval

0 < t < 5.

Following the procedure described in Sec. 4.2, we train the HENN to predict

the coupling configurations of the spin systems with long-range interactions. Unlike

the case where only two-body interactions are taken into account, here the links are

chosen randomly: we consider all possible links and any specific link exists or does

not exist with equal probabilities. Figure 4.4 shows the prediction performance for a

network of n = 4 spins, where panels (a) and (b) correspond to the cases of measuring

one and two spins, respectively. When only one spin is measured [Fig. 4.4(a)], most

of the existent and nonexistent links can be distinguished by the 10% threshold line,

yet there are still quite a few links that are on the “wrong” side. When two spins

are measured, the prediction accuracy is higher as there are far fewer incorrectly

predicted links. This is intuitively reasonable as measuring more spins is equivalent

to imposing more constraints on the predicted Hamiltonian so as to improve the

prediction accuracy.
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Figure 4.4: Prediction performance of HENN for a network of four spins with long-
range interactions. (a) Reconstructed coupling coefficients versus based on time series
measured from one spin only. The results are from one realization of the spin system
with the fidelity value equal to the average fidelity value over 100 random realizations.
The legends are the same as those in Fig. 4.2. (b) The corresponding results when
two spins are observed with the time series as described in the text.

Figure 4.5 shows the fidelity measure of predicting random networks of n = 3,

4, and 5 spins, from observing one spin or two spins. As shown in Fig. 4.5(a), the

fidelity value decreases as the number of spins increases. This is expected because,

when observing a fixed number of spins, a larger system means more nonobservable
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(a)

(b)

Figure 4.5: Fidelity of predicting random spin systems from observing one spin or
two spins. (a) Average tomography fidelity Ft and the standard deviation. Each data
point is the result of averaging over 100 random initial-condition realizations. (b)
The corresponding results for Ft′ . In the case of observing one spin, results for n = 3
contain large fluctuations. When two spins are observed, only the five-spin system
generates reasonable values of Ft′ . In general, observing two spins leads to higher
fidelity values.

spins and leads to larger prediction uncertainties. Another expected feature is that,

for a fixed system size, observing two spins leads to higher fidelity values [about

95% in Fig. 4.5(a)] as compared with the case of observing one spin [about 85% in
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Fig. 4.5(a)]. Figure 4.5(b) shows that the fidelity measure with respect to the hidden

structure exceeds 50%, indicating that the interactions among the nonobservable spins

can be predicted with statistical confidence. In fact, as stipulated by Eq. (4.11), our

HENN can predict not only the existence of the interactions but also their strength

as characterized by the coefficients c
(1,2)
i1i2···in .

4.3.3 Tomography of Quantum Gates

We apply our HENN framework to a class of systems that are fundamental to

quantum computing: quantum logic gates. Such a gate typically consists of two

or three coupled spins [272]. To be concrete, we consider the Toffoli and Fredkin

gates with three spins [322] and demonstrate that HENN can perform the tomog-

raphy. Experimentally, these quantum logic gates can be implemented with optical

devices [324, 325] or superconducting qubits [326].

Toffoli gate is a Control-Control Not gate, i.e., when the first and second spins

have the signal |11〉, the third spin will flip [322], which requires certain time, e.g.,

t = 1. By this time, the evolution operator is

UToffoli =

I6

X(t = 1)

 , (4.12)

where I6 is the 6× 6 identity matrix,

X(t = 1) =

0 1

1 0

 (4.13)

flips the third spin, and the off-diagonal blocks are zero. Similarly, the time evolution

operator for the Fredkin gate is

UFredkin =


I5

X(t = 1)

1

 . (4.14)
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A physical constraint for X(t) is that, at t = 0, the system does not evolve, so

X(t = 0) = I2. To build such a time evolution operator, one can use the underlying

time-independent Hamiltonian as a base (Appendix 4.6), where the elements of X(t)

are periodic functions with the fundamental frequency as the flipping rate. Searching

for possible forms of X(t) is a basic issue in designing quantum logic gates [286, 287].

To demonstrate the applicability of HENN to quantum logic gates in a concrete

manner, we choose X(t) as

X(t) =
1

2

 1 + exp(iπt) 1− exp(3iπt)

1− exp(3iπt) 1 + exp(iπt)

 (4.15)

to generate the time-dependent Hamiltonian. For training, we generate time series

from t = 0 to t = 1 with the time step dt = 0.01 from 100 random initial conditions,

and the time evolution of the dynamical variables of the third spin is taken as the

measurements. For comparison, we calculate the tomography fidelity for both time-

dependent and the corresponding time-independent systems.

Table 4.3: Tomography fidelity for Toffoli and Fredkin gates

Toffoli gate Fredkin gate

Time-dependent 81%± 3% 87%± 3%

Time-independent 85%± 4% 92%± 3%

Table 4.3 lists the values of the tomography fidelity for both Toffoli and Fredkin

gates. It can be seen that the average tomography fidelity for the Fredkin gate is

larger than that for the Toffoli gate. Both gates have seven links, but the Fredkin

gate has more three-body coupling terms than the Toffoli gate. This means that, for

the Fredkin gate, more links are directly connected to the observed spin. When the

system becomes time-independent, the fidelity values are slightly higher.
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4.3.4 Quantum Tomography under Noise

Noise arising from random coupling with the environment will impact the quality

of quantum tomography. Previously, the issue of noise was studied in the context

of Hamiltonian learning [290, 296]. Here, we study the effect of noise on our HENN

based quantum tomography. A relevant point is that HENN can predict the correct

form but only of the local Hamiltonian, so the Hamiltonian for the whole spin system

cannot be uniquely determined. This is similar to obtaining the local Hamiltonian

from local observations [296].

As a concrete example, we study a cyclic network of four spins, where measure-

ments are taken from only one spin, which are subject to additive white Gaussian

noise. The local Hamiltonian Ho constitutes the three Pauli matrices for the observed

spin, giving rise to three measured time series. The Hamiltonian Ho′ consists of the

three Pauli matrices for the observed spin and all the interactions that involve the

observed spin. In particular, there are 27 two-body interactions, 81 three-body inter-

actions and 81 four-body interactions. As a result, Ho′ can generate a total of 192

time series. From a different perspective, for a four spin system, the total number of

dynamical variables is 256. When we measure one spin so that the other three spins

are not observed, Hh contains one fourth of the dynamical variables (43) while Ho′

has the remaining.

Figure 4.6 shows that the fidelity value decreases, albeit slowly, as the noise am-

plitude increases. The robustness of HENN against weak noise roots in the goal

of HENN: finding one Hamiltonian that minimizes the loss function. However, for

strong noise, the derivatives in the Heisenberg equation will generate unstable solu-

tions. Figure 4.6 also reveals the similarity between local Hamiltonian recovery and

the tomography of the whole system. In particular, it demonstrates that HENN can
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Figure 4.6: Network tomography fidelity under Gaussian noise. The system is a
cyclic network of four spins constructed according to Eq. (4.9), where measurements
are taken from one node. The additive white Gaussian noise has the variance σ =
0.06, which is approximately one third of the average variation of the measured time
series. The two sets of data represent the two fidelity measures Ft and Fo′ versus the
noise amplitude, where Fo′ characterizes the difference between the recovered local
Hamiltonian and the true one.

recover not only the local Hamiltonian, but also the hidden structure of the spin

system which is not a simple extension of the local Hamiltonian.

4.4 Discussion

In quantum tomography, learning time-dependent systems from partial and lim-

ited measurements remains a challenge, as it requires optimization in an infinite-

dimensional space. Machine learning provides a potentially viable solution. Be-

cause of the underlying physics of the spin systems, it is necessary to incorporate the

physical constraints into the learning algorithms. Historically, the idea of develop-

ing physics informed artificial neural networks was conceived almost three decades

ago [160], but it has recently attracted a revived interest, particularly in the context

of HNNs [153, 155, 156]. Our idea is that, for time-dependent quantum systems,
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the Heisenberg representation is natural in which the operators evolve with time as

governed by the Heisenberg equation. Neural networks taking into account the phys-

ical constraints manifested as the Heisenberg equation may thus provide an approach

to tomography of time-dependent quantum systems. Using spin systems that have

been exploited extensively in quantum computing as a paradigm, we have developed

a class of Heisenberg Neural Networks (HENNs) and demonstrated that, based on

the time series measurements of local spin variables, not only the local Hamiltonian

but that of the whole spin system can be faithfully determined. The method is ef-

fective even when measurements are conducted on a small part of the system, e.g.,

measuring one spin in a five-spin system. Considering that the existing algorithms

on quantum tomography of spin systems were designed for networks whose structures

are completely known [327, 306, 328], our work represents a useful complement.

For quantum tomography of time-dependent interacting spin systems, we have

tested a variety of network structures. In general, the tomography fidelity depends

on the interacting structure of the network. For example, it is inversely proportional

to the degree of the spin from which measurements are taken (Fig. 4.3) when the

spin system is relatively dense, as a large degree means more interactions with the

nonobservable spins. The fidelity value also depends on the number of observed spins

relative to the total number of spins in the network where, naturally, measuring more

spins can lead to higher fidelity values (e.g., Fig. 4.5). Indeed, a comparison of the

tomography results from the Toffoli gate with those from the Fredkin gate reveals

explicitly that more coupling links with the spin being measured lead to increased

fidelity values, when the spin system is relatively sparse.

A number of factors can affect the tomography accuracy. For the spin systems

studied, the choices of the coupling and the time dependence as characterized by

the driving function f(t) are arbitrary. Our study has revealed that the tomography
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quality does not depend on the time signal insofar as the length of the measured time

series is proper, but the HENN predicted Hamiltonian tends to deviate from the true

one after approximately half of the driving period. If the time series are too short,

e.g., a fraction of the driving period, or if the time series are too long, e.g., more than

a few driving periods, the resulting fidelity value would decrease. Another factor that

can affect the fidelity is heterogeneity in the couplings in the network. For the results

in this paper, the distribution of the couplings in the spin system is assumed to be

uniform, where the typical fidelity value achieved is about 90%. However, we find

that large variations in the coupling strengths can make the HENN ineffective. The

ratio between self- and mutual couplings can also affect the tomography, where if the

former dominate the latter, the errors in the tomography can be reduced.

Possible extensions of this work are as follows. Firstly, when implementing the

HENN, the initial states must be specified with a number of constraints. That is,

it is necessary to know the initial quantum state of each spin initially. For time-

independent systems, quantum tomography of spin systems is possible even if the

initial states are not completely specified [306] or if the dimension of the system

with a given coupling structure needs to be determined [329, 330]. However, to

our knowledge such methods are limited in time independent structure. Such as

in [306] They consider a problem to reconstruct a time independent Hamiltonian

for a specific structure. Since the structure is known, the matrix representation for

observable at time t can be expanded to a few unknown parameters. Once the time

series for measurements is long enough the original Hamiltonian and initial states

can be constructed. It would be useful to study if these approaches can be extended

to time-dependent systems with partial initial conditions or incomplete information

about the system.

The second issue is scalability. For spins system with n spins HENN requires
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4n of measurements, which exponential growth as we increase the number of spins.

Calculating the matrix representation for the observations A(t) is time-consuming.

Another issue arises in the prediction part. For large system the predicted Hamil-

tonian will contain more terms thus make the neural network very large. Recently,

neural networks with more than 100 billions parameters have been constructed [331],

with applications to large systems with 100 spins [296]. In general, to scale our HENN

algorithm to large time-dependent spin systems remains to be a challenge.

Thirdly is about the effect of Noise. In Noisy Quantum (NISQ) [332, 333], one

of the goals is to extract the maximum quantum computational power from current

devices. In [274] the fidelity for a two-spin gate is larger than 99%, but fidelity

drops when quantum computing run multi cycles. In our paper the noise effect

is relatively large due to the derivative is taken on the time series contains noise.

One way to reduce the noise is using signal processing technics. Use low-pass filter,

which only allows the low frequency signal pass. Another possible way is to change

the loss function, since the noise appears in 〈Ȧ(t)〉real. We can change it a matrix

form L =
∑

Observations

∥∥∥Ȧ(H)(t)real − Ȧ(H)(t)pred

∥∥∥2

and use matrix inversion technics to

calculating A(H)(t) and its corresponding time derivative Ȧ(H)(t). During the matrix

inversion process, when the number of initial states is sufficiently large, which means

the number of equations are much larger than the number of unknown parameters, the

computed matrix AH(t) should converge to the real one. Therefore, we can decrease

the noise effect by taking observations on more linearly independent states for unbias

Gaussian noise.

Fourthly, In classical mechanics, integrating Hamiltonian system can often be stiff,

a concept that usually refers to differential equations where we have to take very small

time-steps of integration so that the numerical solution remain stable [334]. Symplec-

tic integrators are especially interesting in order to respect the conserved quantities
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in Hamiltonian systems, thereby usually being more stable and structure-preserving

than non-symplectic one. For example, the simplest symplectic integrator is the well-

known leapfrog method, also known as the Stömer-Verlet integrator [335]. However,

even the best integrators remain severely challenged by phenomena as intuitive as a

mechanical rebound or a slingshot effect, which are more severe forms of stiffness.

Such numerical issues are almost doomed to conflict with the inherently approximate

nature of a learning algorithm. Recently there has one symplectic recurrent neural

networks (SRNNs) [239]. In the three-body problem, the SRNN-trained Hamiltonian

compensates for discretization errors. It can even outperform numerically solving

the ODE using the true Hamiltonian at the same time-step size. We notice that we

need Baker–Campbell–Hausdorff formula for time-dependent Hamiltonian to change

the Hamiltonian from Heisenberg picture to Schrödinger picture [336]. It may be

interesting to implement corresponding algorithms to maintain integral accuracy in

quantum mechanics.

Recently, there have been efforts in understanding machine learning (the field of

explainable machine learning), and physics-enhanced machine learning represents a

useful perspective [251]. The HENN articulated in this paper, which includes time

correlation, provides an effective way to ascertain and understand the hidden struc-

tures in the neural network. As such, our HENN may be exploited as a paradigm for

explainable machine learning.

4.5 Examples of Heisenberg Neural Networks

We present a number of examples for which the HENN can be explicitly con-

structed.
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4.5.1 One Spin System

The Hamiltonian of a single spin system under a periodic driving is

H(t) = σx sin(t). (4.16)

We use the convention σx = σ+ + σ− and σy = i(−σ+ + σ−), where σ+,− correspond

to the creation and annihilation operators, respectively. In the basis |1〉 and |0〉, the

matrix expressions of σx and σy are

σx =

0 1

1 0

 and σy =

0 −i

i 0

 . (4.17)

The third spin operator is defined by σz|1〉 = |1〉 and σz|0〉 = −|0〉.

The HENN for the one-spin system can be constructed by following the three

steps described in Sec. 4.2, as follows.

Step 1: We generate random initial conditions |ψ0〉 given by

ψ0 =
1

r1 + r2

(√
r1 exp(i2πθ1)
√
r2 exp(i2πθ2)

)
=

(
φ11 + iφ12

φ21 + iφ22

)
, (4.18)

where r1,2 are the initial probabilities in the respective state, θ1,2 are the corresponding

phase variables, both r1,2 and θ1,2 are uniform random numbers between zero and one.

In the machine learning algorithm, all quantities are real, so it is necessary to convert

the wavefunction into the summation for the real and imaginary parts.

The time evolution of ψ0 is governed by the Schrödinger equation. The expectation

value of operator A is given by 〈ψt|A|ψt〉. In the Heisenberg picture, the states do

not change but the operators change with time. We expand the operator AH(t) in

the basis |1〉 and |0〉, with the corresponding matrix AH(t). The Hermitian property

of AH stipulates it must contain 4 independent elements

AH(t) =

 AH1 (t) AH2 (t) + iAH3 (t)

AH2 (t)− iAH3 (t) AH4 (t)

 . (4.19)
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Both the Schrödinger and Heisenberg pictures should give the same physical results.

We have

(φ11 − iφ12, φ21 − iφ22)

 AH1 (t) AH2 (t) + iAH3 (t)

AH2 (t)− iAH3 (t) AH4 (t)


(
φ11 + iφ12

φ21 + iφ22

)
= 〈ψt|A|ψt〉.

(4.20)

The unknown elements AH(t) appear in the equation in a linear fashion:

AH1 (t)(φ2
11 + φ2

12) + AH2 (t)(2φ11φ21 + 2φ12φ22) + AH3 (t)(2φ12φ21 − 2φ11φ22)

+AH4 (t)(φ2
21 + φ2

22) = 〈ψt|A|ψt〉.
(4.21)

At least four different initial conditions are required to solve this equation, and a

further increase in the number of states changes little the result. We take A to be a

Pauli matrix. It expectation value versus time for a given initial state is illustrated

in in Fig. 4.7(a).

Step 2: Let the Hamiltonian of the unknown system be H(t). The corresponding

operator in the Heisenberg picture is HH(t). Expanding the operator in the basis, we

get

HH(t) =

 HH
1 (t) HH

2 (t) + iHH
3 (t)

HH
2 (t)− iHH

3 (t) HH
4 (t)

 . (4.22)

The quantum evolution is governed by the Heisenberg equation:

dAH(t)

dt
= i[HH(t), AH(t)]. (4.23)

For a given initial state, the Heisenberg equation can be written in the matrix form

as

d

dt
〈A〉t = iψ†0

[
HH(t)AH(t)− AH(t)HH(t)

]
ψ0. (4.24)
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Expanding the right side, we get a summation of 24 terms. As the system size is

increased, the number in the summation grows quickly. Through the matrix product,

we get

d

dt
〈A〉t = TφφA(t)H(t), (4.25)

where

φ = [φ11, φ12, φ21, φ22]T ,

A(t) = [AH1 (t), AH2 (t), AH3 (t), AH4 (t)]T ,

H(t) = [HH
1 (t), HH

2 (t), HH
3 (t), HH

4 (t)]T ,

and T is tensor of rank four (with dimension 4× 4 × 4× 4), which depends only on

the dimension of the system and is defined as

TφφA(t)H(t) =
∑
i,j,m,n

TijmnφnφmAj(t)Hi(t). (4.26)

The left side of Eq. (4.24) contains the derivatives of the measurements, which

can be determined from the observations. On the right side, A(t) and φ are known,

so the unknown quantity is H(t).

In the HENN, we set the input dimension as one and the output is H(t). We

choose the batch size to be the number of measurement points times the number of

different initial states. The loss function is

L =
∑

A=σx,σy ,σz

∣∣∣〈Ȧ(t)〉real − TφφA(t)H(t)
∣∣∣2 . (4.27)

We build the neural network from the Keras Tensorflow package [255], where the

input is connected to two dense layers. Constructing this customized loss function is

equivalent to designating a loss function with different weights.
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Step 3: After the HENN is trained, we input a time series from 0 to 5 and predict

the Hamiltonian. The prediction is carried out in the Heisenberg picture, which can

be converted into the corresponding Hamiltonian in the Schrödinger picture. This

can be done through an iteration process.

From the Hamiltonian in the Schrödinger picture, we can get the coefficients in

each base through

H(t) = c0(t)I2 + c1(t)σx + c2(t)σy + c3(t)σz. (4.28)

Writing it in a general form H(t) =
∑

i Sici(t), where S = I2, σx, σy, σz, we have

that ci(t)’s contain all the information about the Hamiltonian. The predicted ci(t)

in a given basis are shown Fig. 4.7(b). The agreement between the solid (predicted)

and dashed (true) curves is proof that the HENN can recover the Hamiltonian of the

original system through observations.

The coupling configuration can be determined through

ci =

∫
|ci(t)|dt. (4.29)

If there exists a coupling between the spin components, the corresponding coefficient

ci(t) should be non-zero, giving rise to a non-zero value of ci. Figure 4.7(c) shows the

time averaged result of ci(t), which has a pronounced value in σx, in agreement with

the original Hamiltonian (4.16).

4.5.2 A Three-spin Chain

We consider three interacting spins on a chain, with measurements taken from the

first spin, as shown in Fig. 4.8. The Hamiltonian is

H(t) = sin(t)

(
3∑
i=1

2∑
j=1

σij +
2∑
i=1

3∑
l=1

2∑
m=1

σilσ
i+1
m

)
. (4.30)
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Figure 4.7: HENN based tomography of a single-spin system. (a) Time series of
σx, σy and σz, where the initial state is (|1〉 + i|0〉)/

√
2. The dots correspond to the

sampled measurements. (b) The predicted Hamiltonian in the Schrödinger picture,
where the three curves correspond to the decomposition in the three base states and
the dashed curves are the true values. (c) Time average of the absolute value of ci(t)
in different base states. The existent links are marked by the blue color, and the
nonexistent ones by red, where the threshold for determining the existent links is
10% of the maximum value.

There are couplings between spins one and two, and between spins two and three.

For each coupling, there are six links.

The HENN can be constructed following the three steps.

Step 1: The system contains 23 independent states: |111〉, |110〉, |011〉 · · · |000〉. The

initial conditions are chosen according to Eq. (4.18), with the difference that here
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Figure 4.8: HENN based tomography of a three-spin chain system. (a) Schematic
illustration of the chain, where measurements are taken from the left spin. (b) Time

series of σ1
x, σ

1
y and σ1

z from the initial state |1〉+i|0〉√
2
|11〉, where the dots correspond to

the sampled measurement time series. (c) Predicted Hamiltonian in the Schrödinger
picture after decomposition into different interaction terms, where σ1

xσ
2
x and σ1

xσ
3
x

are the couplings between the observed node and the nonobservable nodes, which
agree with the true Hamiltonian terms (dashed traces). The term σ2

xσ
3
x specifies the

coupling between the two nonobservable nodes, and the predicted Hamiltonian is not
similar to the true function sin(t) but not zero either, so the HENN does predict the
existence of this interaction. (d) Time average of the absolute value of the coefficients
ci(t) associated with different interaction terms, where the existent links are marked
blue and the nonexistent ones red. The threshold for distinguishing the existent from
nonexistent links is set to be 10% of the maximum coefficient value, as indicated by
the horizontal dashed line.

there are eight dimensions. Since observations are taken from the first spin, we write

σ1
x = σ1

+ + σ1
−, where the creation and annihilation operators act only on the first

spin. The matrix expression for σ1
x is

σ1
x = σx ⊗ I4.

Similarly, we can get the matrices for σ1
y and σ1

z . For a given initial state, we cal-

culate the expectation values of the three observables on the first spin, as shown in

Fig. 4.8(b).
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Step 2: Similar to the one-spin system, the Heisenberg equation is

d

dt
〈A〉t = TφφA(t)H(t), (4.31)

where φ is a vector of 2× 23 = 16 elements, A(t) and H(t) contain 43 = 64 elements,

and T is a tensor of rank four with the dimension 64× 64× 16× 16:

TφφA(t)H(t) =
∑
i,j,m,n

TijmnφnφmAj(t)Hi(t). (4.32)

We build up the HENN according to the same loss function as in the case of a

single-spin system, predict the Hamiltonian, and convert it to the Schrödinger picture.

The Hamiltonian can be decomposed as

H(t) = c0(t)I +
∑
i,j

ci,j(t)σ
i
j

+
∑
i,j,m,n

cijmn(t)σijσ
m
n

+
∑

i,j,m,n,k,l

cijmnkl(t)σ
i
jσ

m
n σ

k
l .

(4.33)

The decomposition becomes cumbersome for systems with more than one spin. we

thus write this as the direct product of the Pauli matrices plus the identity matrix.

For example, the two-body coupling σ1
1σ

2
2 can be written as σ1

1 ⊗ σ2
2 ⊗ σ3

0.

Figure 4.8(c) shows the predicted Hamiltonian in several base states. The Hamil-

tonian for the coupling σ1
xσ

2
x can be compared with the sinusoidal function sin(t).

The coupling term σ1
xσ

3
x is non-existent in the original system, so it should be com-

pared with zero. The agreement indicates that the local Hamiltonian between the

observed spin and the nonobservable spins can be recovered. Note that σ2
xσ

3
x repre-

sents a coupling between the two nonobservable nodes, whose true value is sin(t), but

the predicted Hamiltonian is not close to it. Nonetheless, the non-zero value of the

predicted term indicates the existence of the coupling term σ2
xσ

3
x.
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Step 3: After decomposing the Hamiltonian in different terms, we take the time

average of each and normalize them, as shown in Fig. 4.8(d). The ideal case is that

all the blue points have the value one and all the red points are zero. First, the

Hamiltonian Eq. (4.30) contains self-couplings in x and y but not in z, which are

indicated by the first three bars in Fig. 4.8(d). For the nonobservable spins, there are

errors in predicting the self-coupling terms. Second, there are two-body interactions

between spins one and two, and between spin two and three, but not between one and

three, where each existent interaction has six terms of coupling. The predicted results

for the couplings involving the first spin are more accurate than those between the

nonobservable spins. Third, the true Hamiltonian does not include any three-body

interactions, so all such terms should be zero.

The results in Fig. 4.8 indicate that our HENN can perform accurate tomography

of the three spin chain.

4.6 Time-independent Toffoli and Fredkin Gates

The Hamiltonian for the time-independent Toffoli gate is

HToffoli =
π

8
(I2 − σ1

3)(I2 − σ2
3)(I2 − σ3

1). (4.34)

The corresponding time evolution operator is

UToffoli =

I6

X0(t)

 , (4.35)

where

X0(t) =
1

2

1 + exp(iπt) 1− exp(iπt)

1− exp(iπt) 1 + exp(iπt)

 . (4.36)

The Hamiltonian for the time-independent Fredkin gate is

HFredkin =
π

8
(I2 − σ1)

[
I4 −

3∑
α=1

σα2 σ
α
3

]
, (4.37)
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with

UFredkin =


I5

X0(t)

1

 . (4.38)

4.7 Appendix

Following are the relevant publication on the topics presented in this

chapter

C.-D. Han, B. Glaz, M. Haile, and Y.-C. Lai*, “Tomography of time-dependent

quantum Hamiltonians with machine learning,” Physical Review A 104, 062404,

(2021).
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Chapter 5

META MACHINE-LEARNING BASED QUANTUM SCAR DETECTOR

A remarkable phenomenon in contemporary physics is quantum scarring in sys-

tems whose classical dynamics are chaotic, where certain wavefunctions tend to con-

centrate on classical periodic orbits of low periods. Quantum scarring has been stud-

ied for more than four decades, but detecting quantum scars still mostly relies on

human visualization of the wavefunction patterns. The widespread and successful

applications of machine learning in many branches of physics suggest the possibil-

ity of using artificial neural networks for automated detection of quantum scars.

Conventional machine learning often requires substantial training data, but for quan-

tum scars this poses a significant challenge: in typical systems the available distinct

quantum scarring states are rare. We develop a Meta machine-learning approach to

accurately detecting quantum scars in a fully automated and highly efficient fash-

ion. In particular, taking advantage of some standard large dataset such as Omniglot

from the field of image classification, we train a “preliminary” version of the neural

network that has the ability to distinguish different classes of noisy images. We then

perform few-shot classification to further train the neural network but with a small

number of quantum scars. We demonstrate that the Meta learning scheme can find

the correct quantum scars from thousands images of wavefunctions without any hu-

man intervention, regardless of the symmetry of the underlying system. Our success

opens the door to exploiting Meta learning to solve challenging image detection and

classification problems in other fields of science and engineering.
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5.1 Introduction

In the field of quantum chaos that studies the quantum manifestations of classical

chaos [3, 2], wavefunction scarring is a fundamental phenomenon that has been ex-

tensively investigated. Here the term “scarring” is referred to as the unusually high

concentrations of the wavefunctions about certain classical periodic orbits. In this

regard, if the underlying classical dynamics are integrable with stable periodic orbits,

non-uniformly distributed wavefunctions about these orbits are expected. What is

surprising is quantum scarring in systems whose classical dynamics are fully chaotic,

where all periodic orbits are unstable so, intuitively, it seems not possible for the

wavefunctions to concentrate about them. From another viewpoint, because of the

intrinsic ergodicity associated with chaos, a classical trajectory generates a uniform

distribution in the phase space (accordingly in the physical space as well), so the

intuition would be that the quantum wavefunctions should also have a uniform dis-

tribution in space. It was first discovered by McDonald and Kaufman [7] when solving

the Helmholtz equation in the classically chaotic stadium billiard that there are eigen-

states whose wavefunctions are highly non-uniform and in fact tend to concentrate on

some classical unstable periodic orbits. A more detailed study by Heller [8] confirmed

the phenomenon, who gave the name “quantum scars” to the non-uniform wavefunc-

tions. A theory for quantum scars based on the semiclassical Green’s function was

developed by Bogomolny [337] and Berry [338].

There are a variety of physical systems in which the phenomenon of quantum

scarring can occur. For example, in graphene, the low energy excitations are gov-

erned by the Dirac equation [15, 17, 19] and correspond to massless particles, where

relativistic quantum scars can arise [207, 11, 12]. Solutions of the Dirac equation in

classically chaotic billiards also revealed a distinct class of relativistic quantum scars
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- chiral scars that require two complete cycles for their wavefunctions to return to

their original values [135, 208, 209, 339]. Quantum scarring can also occur in open

or transport systems such as quantum dots, where the scarred states are referred to

as quantum pointer states [340, 341, 342, 343, 344, 345, 346]. In micro cavity lasing

systems, quasibound states in a deformed cavity are scarring states with strong di-

rectional emission [181, 347, 129, 348]. Quite recently, scarring has been uncovered

in quantum many-body systems, where certain special eigenstates were found to con-

centrate in certain parts of the Hilbert space [349, 350, 351, 352, 353, 354, 355], which

were named as quantum many-body scars that are highly relevant to multiple qubit

systems in quantum information science and technology.

In the study of quantum chaos, to identify quantum scarring states has been a

challenging problem. The conventional approach has been “manual,” where one first

generates a large number of eigenstates and then visually check to see if an eigenstate

is a scarring state based on information about the classical periodic orbits. This

can be an extremely difficult task, for two reasons. First, scarring states are rare in

a typical quantum system. For example, in a chaotic billiard, only approximately

5% to 10% of the eigenstates are quantum scars. Compounding the difficulty is

the different classes of quantum scars, where each class corresponds to a different

group of classical periodic orbits. For a given class, quantum scarring states are even

more rare. For example, when chiral scars were first discovered [135], more than

104 eigenstates were examined visually by human eyes. The second reason is that

the wavefunction patterns associated with quantum scars can be complicated with a

significant random or noisy component. As a result, labeling the quantum scars is a

hard task with significant uncertainties for the human eyes.

In recent years, deep learning has enjoyed great success in visual object recog-

nition, object detection, and many other domains [216]. Deep Convolutional Neural
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Networks (DCNNs) were introduced for image recognition, the training of which often

requires very large datasets [356]. For example, in Ref. [356], the authors considered

1000 classes, which required more than one million images as the training data. In

physics, DCNNs have been adopted in different areas to solve problems associated

with a large number of images [158], such as jet tagging [357, 358], neutrino event

classifier [359], gravity lenses [360], and identification of symmetry-breaking states

from SEM images [361]. A convolution-like neural network structure has also been

developed to solve problems in quantum many-body physics [248]. Quite recently,

a machine learning based quantum chaos detector was proposed [362]. In applica-

tions where such massive datasets are not available, machine learning based on small

datasets has also been developed, especially for the classification task [363, 162, 364]

where only a small number of labeled examples per class (a few shots) are required.

Since only small training data are required for classification, such machine-learning

schemes find broad applications, e.g., learning and detecting rare events [365, 366].

The remarkable success of machine learning in image recognition and pattern clas-

sification naturally leads to the idea of developing a neural-network based quantum

scar detector. However, even as the image classification algorithms have become more

powerful, detecting and classifying quantum scars remain to be an open and difficult

problem, due to the availability of a small number of quantum scarring patterns and

the lack of distinction between quantum scars and conventional wavefunctions. In-

tuitively, since each type of quantum scars corresponds to a unique class of classical

periodic orbits, if we select some scarring states as the training data, the neural

network so trained should be able to make the correct classification when an image

contains a similar pattern is presented as the input to the network. However, this

simple approach may not be workable for detecting quantum scars because it is dif-

ficult to find them in the first place and obtaining a large number of training images

133



is practically impossible. To develop a machine-learning based automated quantum

scar detector, this difficulty must be overcome.

In this paper, we exploit Meta learning [161] to develop an automated and ef-

ficient quantum scar detector. The essence of Meta machine learning is to encode

“previous experience” into a pretrained neural network so that it can quickly adapt

to new input. Meta learning has found broad applications in regression, classification

and reinforcement learning. Our idea is to exploit some existing data sets to train

the neural network, which can be completely unrelated to quantum systems but with

images similar to scarring patterns. In this regard, the Omniglot dataset [162] widely

used in the field of image classification stands out as an excellent choice. Our strat-

egy is to train a “preliminary” version of the neural network that has the ability to

distinguish different classes of noisy images from the Omniglot dataset and then per-

form few-shot classification to further train the neural network with a small number

of quantum scars. A pertinent issue is that standard Meta learning algorithms can

only be used to classify but not detect patterns. Our solution is to use an ensemble

of neural networks. In particular, non-scarring states as input to the neural networks

can be used as references with significantly different statistical features than those

associated with scarring states, thereby accomplishing the detection task. We demon-

strate that the neural network so trained can detect and classify quantum scars with

remarkable efficiency and accuracy even with limited training data of actual quantum

scars. Our Meta-learning based approach not only solves a long-standing problem in

the field of quantum chaos, but can also be generalized to address challenging image

detection and classification problems in other fields.

In Sec. 5.2, we describe a prototypical relativistic quantum billiard system and

articulate the basic training procedures for neural networks. In particular, we detail

the construction of our quantum-scar detector based on Meta learning (Sec. 5.2.2)
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and few-shot classification (Sec. 5.2.3). In Sec. 5.3, we use two types of chaotic Dirac

billiard systems to demonstrate the feasibility and power of Meta learning in detecting

and classifying relativistic quantum scars. Conclusions and discussions are presented

in Sec. 5.4.

5.2 Methods: Relativistic Quantum Scars and Machine Learning Algorithms

5.2.1 Relativistic Quantum Scarring in Chaotic Billiard Systems

We use the standard setting of 2D billiard systems [7, 367, 1] to generate quantum

scars. In the classical limit, a particle moves freely inside the billiard, experiencing

elastic reflections from the hard-wall boundary. The geometric shape of the boundary

determines the nature of the classical dynamics. For example, the dynamics in a

circular billiard are integrable but those in a stadium, Africa, or heart-shaped billiard

are chaotic. To be concrete, we focus on the relativistic quantum regime as described

by the massless Dirac equation. For a chaotic billiard, there are standard methods to

calculate the relativistic quantum eigenvalues and eigenstates such as those based on

the boundary integrals [368, 6] and conformal mapping [369, 135].

We consider the situation where the particle has spin-1/2 and a vertical magnetic

flux [208] is applied through the billiard region, whose strength α is effectively an

externally adjustable parameter: different sets of spinor wavefunctions can be gen-

erated by changing the value of α. Possessing such an experimentally controllable

parameter has two advantages. First, from the point of view of machine learning, the

neural network can be trained with one set of the wavefunction patterns and then be

tested using datasets from different parameter values, enabling the full power of the

learning process to be revealed and exploited. Second, through testing the datasets

from different values of α, the statistical properties of the detected quantum scars
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can be calculated and compared with the semiclassical prediction [208].

Our working examples are the class of billiards with fully chaotic dynamics in

the classical limit [369, 135], whose boundary is defined by the following conformal

mapping of a unit circle in the complex plane z ≡ x+ iy to the complex w ≡ u+ iv

plane:

w(z) =
z + bz2 + ceiδz3

√
1 + 2b2 + 3c2

, (5.1)

where b, c, and δ are parameters, and the the origin in the z plane maps to the origin

in the w plane. For example, for b = 0.49, c = δ = 0, the billiard has the shape of a

heart, which possesses an inverse symmetry with respect to the x axis. For b = c = 0.2

and δ = π/3, the billiard has the shape of Africa. For a massless relativistic spin-1/2

particle inside the billiard, the Hamiltonian is [208]

Ĥ = vF σ̂ ·
(
p̂− q

c
A
)

+ V (u, v)σ̂z, (5.2)

where vF is the Fermi velocity, σ = (σx, σy) and σz are the Pauli matrices, the hard-

wall confining potential V (u, v) is zero inside and infinite outside the billiard region,

and A is the vector potential. If the magnetic flux is Φ, the vector potential is given

by

A(u, v) =
Φ

2π

(
∂F

∂v
,−∂F

∂u

)
, (5.3)

where α = qΦ/(hc) is the normalized flux strength and the function F (u, v) is deter-

mined by the flux profile in the (u, v) plane. For example, for a singular flux through

the origin, F (u, v) can be solved from the Poisson-like equation [370]:

∇2
µνF = −2πδ(u, v).

The eigenvalue problem Hψ = Eψ, where ψ is the two-component spinor, can be

solved by employing the mapping method [135, 208], where the analytically solvable

spinor wavefunctions in the hard-wall circular billiard in the z plane are transformed
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to those in the w plane through the conformal mapping. The accuracy of this method

depends on the size of the wavefunctions base. In particular, an arbitrarily large

number of analytic eigenstates can be written down in the z plane. When transformed

into the w plane, a smaller but still large number of eigenstates can be obtained with

a preset, desired accuracy. In our work, for each α value in the unit interval, we

use 40000 base eigenstates in the circular billiard in the z plane. For the heart and

Africa billiards in the w plane, we use the first 15, 000 and the first 10, 000 eigenstates,

respectively. The eigenstates are labeled by the integer n.

We represent each eigenstate ψ(n) by an image, where the probability distribution

for a uniformly spaced, rectangular grid of points is evaluated and the probability is

set to zero for points outside the billiard region. For the heart-shaped and Africa

billiards, the image sizes are 202 × 232 and 201 × 148, respectively. From the point

of view of pattern recognition, the eigenstates can be quite distinct. For example,

quantum scarring states, the detection of which is the aim of this work, are those

whose probability distribution is concentrated about certain classical periodic orbits

and are rare. There are also quantum states with certain patterns that do not cor-

respond to any periodic orbits, such as the boundary states. In fact, the majority of

the eigenstates do not have any recognizable patterns.

Quantum scarring states are relatively more pronounced in the semiclassical limit

n� 1. Numerically, for both types of chaotic billiards, we find that the first scarring

states, which correspond to classical periodic orbits of period two, emerge at n ≈ 200.

As the period increases, the corresponding scarring states occur in a more semiclassical

regime. For example, scarring states corresponding to classical periodic orbits of

period four or five begin to arise for n ≈ 1000. Figure 5.1(a) presents, for the heart

billiard, the quantum states with n = 8480 and n = 8523 for α = 0.5, where the

n = 8480 eigenstate is localized about a square-like periodic orbit and belongs to a
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scarring state of period four, while the n = 8523 eigenstate is approximately uniform

in the billiard with no apparent pattern that can be deemed as a non-scarring state.

A few distinct classes of quantum scarring states are shown in Fig. 5.1(b).

It should be noted that, in a classical chaotic system, the number of unstable

periodic orbits increases exponentially with the period at the rate of the topological

entropy [371]. Within a finite and relatively large period, the number of unstable

periodic orbits can be quite large. However, quantum scarring states corresponding

to periodic orbits of even moderately large periods tend to be unstable [372]. As a

result, the study of quantum scars has mostly been limited to the quantum states

that concentrate on classical periodic orbits of low periods.

5.2.2 Meta Learning

In the physical space (i.e., the billiard domain), the probability distribution of a

quantum scarring state focusing on a classical periodic orbit of a low period resem-

bles the image of a simple language character. To develop a machine-learning based

quantum scar detector, we take advantage of this resemblance by exploiting Meta

learning [161], an image classification algorithm that has attracted a great deal of

recent interest. In the field of image classification, an often used and somewhat stan-

dard dataset is Omniglot [162], which contains more than one thousand handwritten

characters taken from different languages. The basic principle underlying our work is

then that a machine-learning algorithm that is able to distinguish the characters in

Omniglot can be effectively transferred to detecting quantum scars.

Our specific idea is as follows. Since it is practically infeasible to have a train-

ing dataset that contains a large number of quantum scarring states, the problem

of identifying quantum scars is similar to the tasks that Meta learning algorithms

are designed to solve, e.g., image classification for the Omniglot dataset [161]. A
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Figure 5.1: Convolutional Neural Network (CNN) based quantum scar detector. (a)
Two specific eigenstates (images) from the chaotic heart billiard as the input to the
CNN. The upper and lower left states correspond to a scarring and non-scarring state,
respectively. The CNN contains convolutional layers and fully connected layers, and
the output is an N -dimensional vector whose elements represent the probabilities for
the input wavefunction to belong to the corresponding class. (b) Six types of scarring
states in a heart billiard, where the corresponding periods of the classical periodic
orbits are denoted by Roman numbers. (c) The averages and variances of the output
probabilities from a small ensemble of ten neural network realizations.
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Meta learning algorithm aims to encode “previous experience” in a pretrained neural

network such that it can quickly adapt to new images. To encode the “previous expe-

rience,” training from a large dataset containing many different patterns is necessary.

We can thus use the images in Omniglot as the “substituting” training set. Since

there is a unique pattern associated with each type of quantum scars, the problem is

essentially one of supervised learning. Utilizing certain images from Omniglot as the

training data, we can find the images whose patterns correspond to a specific type of

quantum scars.

Our Meta-learning based training process consists of three major components.

The first component is image processing as described in Appendix 5.5, where we

add noise to each image in the Omniglot dataset to generate a set of images whose

patterns resemble those of quantum scars. We then perform image processing for some

quantum eigenstates from a chaotic billiard, after which each eigenstate is represented

by a matrix of dimension 100× 100 with binary elements. The images so created are

used as the inputs to the CNN.

The second component is to conduct training based on the Omniglot dataset to

determine the weights and biases of the CNN. In particular, our CNN consists of

four convolutional and two fully connected layers. Each convolution layer creates

a kernel that is convoluted with the layer input to produce a tensor of outputs.

The activation function is chosen to be ReLU - the rectified linear unit. After the

convolution stage, we apply layer flattening and change the tensor to a large vector.

A linear transformation takes this vector to the final output v, whose dimension is

equal to the total number of classes in the system. We use the softmax function to

normalized v:

pi =
exp(vi)∑
i exp(vi)

, (5.4)

where pi is the normalized probability for the input that belongs to class i. The loss
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function in the training process is taken to be the cross entropy. The whole process

can be implemented in Python with the open source package Tensorflow [254].

Initially, the weights and biases are randomly chosen from a normal distribution la-

beled as θ(w, b). In the training process, we first use the modified, noise-contaminated

Omniglot dataset to find a pretrained neural network, denoted as θ0(w, b), which

readily results in different image classes. We use the Reptile algorithm to renew the

weights and biases in each step until some criterion is met [373] (see Appendix 5.6 for

the algorithmic details). To avoid overfitting for the Omniglot dataset, we monitor

the test error from each step, as detailed in Appendix 5.8. The training based on the

Omniglot dataset is deemed complete when the global minimum is reached.

The third component is training based on certain actual quantum scarring states.

In particular, after training with Omniglot which yields a neural network θ0(w, b), we

perform further training by using the few-shot classification algorithm with a small

number of actual images of quantum scars as the training dataset (see Sec. 5.2.3

below). Since θ0(w, b) already has the ability to distinguish different classes of noisy

images in the Omniglot dataset, the neural network can quickly adapt to quantum

scarring states.

When all three components of the training process are completed, the CNN is

effectively a mapping from the wavefunctions to the probability for each class of scars.

Figure 5.1(c) shows the prediction probability for the two images in Fig. 5.1(a), where

the average is taken from an ensemble of ten neural network realizations (see Sec. 5.3.1

for detail) with different combinations of quantum scars as the training data. Since

the particular scarring pattern (n = 8480) corresponds to a period-4 orbit, a high

value of the probability for the class IV-1 is achieved. For the non-scarring states

(n = 8523), while there is a relatively large probability to associate it with a period-5

scarring state, the variance is large, making the association highly uncertain. The
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distinct statistical behaviors for scarring and non-scarring states are initial indication

that our Meta-learning based method has the ability to detect quantum scars.

5.2.3 Few Shot Classification

Physically significant quantum scarring states that have been studied in the past

are typically those corresponding to classical periodic orbits of low periods and thus

consist of a few classes. From the point of view of image processing, the number of

classes to be classified is small and there are only a few images available in each class.

The few-shot classification algorithm is designed to deal with such problems [363, 162,

364]. Say the target contains N different classes and each class has at least K + 1

images with K being a small integer. We randomly choose K+1 images in each class,

train the neural network using the first K images, and then use the trained network

to classify the last image. For the Omniglot dataset, a 95% accuracy can be achieved

even for N = 5 and K = 1, and the accuracy can reach 99% if K is increased to

K = 5. In general, for a fixed N value, increasing the value of K can improve the

accuracy. However, for a fixed K value, a larger value of N leads to a lower accuracy

as more classes require more images to train the network.

Table 5.1: Few shot classification accuracy of detecting relativistic quantum scars
in the chaotic heart billiard

Shot number Accuracy

K = 1 90.16%± 1.41%

K = 2 95.30%± 0.68%

K = 5 98.58%± 0.32%

To test the power of few-shot classification in detecting quantum scars, we take

the heart billiard as an example, where six distinct classes of scars are shown in

Fig. 5.1(b). We create an image dataset where each class contains 10 images taken
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Figure 5.2: Confusion matrix associated with detection of quantum scars in the
chaotic heart billiard. The horizontal and vertical axes are the labels of the real
and detected classes, respectively. The various probabilities are color-coded as de-
fined by the color bar on the right, where the diagonal and off-diagonal elements are
the probabilities of correct and incorrect detection of different classes of quantum
scars, respectively. The detection accuracies (the values of the diagonal elements) are
generally close to 100% except for the V-1 scars - see text for an explanation.

from the eigenstates whose energy index n ∈ [1000, 15000]. We obtain the pretrained

neural network θ0 by using Meta learning and conduct further training using the

actual quantum-scar images. To be concrete, we fix N = 6 and vary K. For K = 1,

we randomly choose two image from each class, where the first and second images are

used for training and testing, respectively. The training and testing datasets are thus

extremely small. To obtain the accuracy, we repeat this process (i.e., training θ0)

1000 times and calculate the ratio of the number of correctly labeled images to the

total number of test images in all the trials. The average ratio and the corresponding
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variance are obtained by using ten realizations of the neural network θ0. Table 5.1

lists the accuracy versus the shot number K, where a 90% accuracy is achieved even

for K = 1. The somewhat lower accuracy than that of classifying the characters in

the Omniglot dataset is due to the “noisy” nature of the images of quantum scars,

where the scarring patterns are not sharp but have local fluctuations. As the shot

number K increases, the scar-detection accuracy improves.

Another quantity characterizing the detection performance is the confusion matrix

whose diagonal and off-diagonal elements are the probabilities of correct and incorrect

detection of different classes of quantum scars, respectively. Figure 5.2 shows, for

K = 1, the confusion matrix for the six classes of quantum scars from the chaotic

heart billiard, where the Roman letters indicate the periods of the underlying classical

periodic orbits and the arabic numbers represent distinct configurations of the orbits.

For five out of the six classes (except type V-1), the detection accuracy is close to

100%. The accuracy for type V-I scars is somewhat lower, where occasionally the

machine-learning algorithm would erroneously classify such a scar as belonging to

class II or III. From Fig. 5.1(b), it can be seen that this error may be expected for

two reasons: (1) the relatively long period of the corresponding classical periodic

orbits leads to a relatively low concentration of the spinor wavefunction around the

orbits and (2) the type V-1 scars have approximately the same edges with those in

class II or III.

5.3 Results

We use two types of chaotic Dirac billiard systems to demonstrate the feasibility

and power of Meta learning in detecting and classifying relativistic quantum scars.
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5.3.1 Chaotic Heart Billiard

In Sec. 5.2.3, we articulate the idea of adapting the method of few-shot classifica-

tion to detect quantum scars from a chaotic billiard. For a target set of six distinct

scars in the chaotic heart billiard, the one-shot accuracy is close to 90%. Here we

extend the method to finding desired quantum scars from a large number of wave-

functions.

There can be a large variety of spatial distributions of the eigenstates of a chaotic

Dirac billiard. Visually, most eigenstates have a random distribution and they do

not exhibit any discernible pattern. For those eigen wavefunctions that do, they

can be quantum scars associated with periodic orbits of high periods or boundary

states. From the point of view of machine-learning based detection of scars, such

a dataset is unbalanced because the number of non-scarring states is much larger

than that of the actual scarring states. In computer science, this problem associated

with object detection is well known [374], where the number of “real” objects in the

training dataset is extraordinarily small. An intuitive solution is to treat the non-

scarring states as a new class of objects when implementing the few-shot classification

algorithm, but there are limitations due to the unbalanced nature of the dataset.

We develop an alternative approach to addressing this issue of unbalanced dataset.

After the CNN is properly trained, we input an additional quantum scarring pattern

to the neural network. Ideally the prediction should be robust, meaning that the

normalized probability should have a high concentration about this pattern. Since

this non-scarring image does not belong to any of the classes that the neural network

has learned from the training process, when other eigenstates are inputted to the

neural network, the overall prediction probability will be lower. Another feature that

can be exploited, as can be seen from Fig. 5.1(c), is that the variances of the output
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probabilities with nonscarring states as the input are typically large. Our general

quantum-scar detector is built on these two features.

For the chaotic heart billiard, the training data are the eigenwavefunctions gen-

erated at α = 0, where two quantum scars are chosen for each training class: one at

low energy (n ≈ 2000) and another at high energy (n ≈ 104). We perform one-shot

classification and train the neural networks. Since each class contains two images,

there are 26 possible neural networks. The testing data consist of eigenwavefunctions

from α = 0.25 or α = 0.5. For a quantum state n inputted to the ith neural network,

the output is denoted as pj, where j is the scar index. We multiply the results from

different neural networks to find the scarring state that maximizes the product:

ξ(n) = max
j

(∏
i

p
(i)
j (n)

)
. (5.5)

As an illustrative example, we consider two quantum states: n = 8480 (a scarring

state) and n = 8523 (a nonscarring state) for α = 0.5. The average and variance of

p for the distinct scar indices are shown in Fig. 5.1(c). We use an ensemble of ten

neural networks for the one-shot (K = 1) scheme. For the scarring state n = 8480, the

predicted p value concentrates on the corresponding type of scar, where the product

in Eq. (5.5) achieves maximum for the IV-1 scar class with ξ(n = 8480) = 0.23. For

the nonscarring state, the p value does not concentrate at any scar index and the

variance from different neural networks is large. We get ξ(n = 8523) = 4.3 × 10−5.

There is then a four orders-of-magnitude difference in the ξ values for the scarring

and nonscarring states, rendering accurate and reliable detection of the scarring state.

To detect the scarring states from all available quantum states for α = 0.5, we

use the ensemble of neural networks and sweep through the states. Figure 5.3(a)

shows ξ(n) versus n for n ∈ [4000, 4100], where a nearly eight-orders-of-magnitude

difference in the ξ(n) values emerges among the quantum states. Setting a threshold,
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Figure 5.3: Emergence of a Meta-learning based quantum scar detector. Shown
is ξ(n) versus the eigenstate index n for the chaotic heart billiard for α = 0.5. (a)
The results are for n ∈ [4000, 4100] (a relatively low energy interval), where the scar
types are distinguished by the different colored symbols and the horizontal dashed
line at 5 × 10−3 indicates the detection threshold. The eigenstates with ξ(n) values
above the threshold are deemed to be quantum scars. Some representative scarring
states detected are displayed above the panel. The agreement between the detected
states and the ground truth is perfect. (b) Same as (a) but for n ∈ [14000, 14100] - a
higher-energy interval.

e.g., at 5× 10−3 (the horizontal dashed line), we deem those states whose ξ(n) above

the threshold as quantum scars, as verified by the corresponding distinct scarring

patterns above Fig. 5.3(a). Similar results have been obtained for n ∈ [14000, 14100],

as shown in Fig. 5.3(b). The results in Fig. 5.3 thus indicate the viability of a Meta-

learning quantum scar detector based on evaluating the values of ξ(n).

To verify if the scarring states found are truly relativistic quantum scars, we

exploit a criterion from semiclassical theory. In particular, the semiclassical theory
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for relativistic quantum billiard systems [135, 208] predicts that the recurrent interval

in the wavevector must obey the following rule:

∆k =


2π(∆n− 2Wα)/L, even bounces,

2π(∆n− 2Wα + ∆β)/L, odd bounces,

(5.6)

where L is the length of the classical orbit associated with the scarring state and W

is the winding number. For the scarring states corresponding to classical periodic

orbits with an odd number of bounces or reflections from the billiard boundary, the

quantity ∆β takes on the value of 1/2, so the spacing in the wavevector for such

scarring states to occur is π/L.

Table 5.2 presents the statistics of different types of quantum scarring states de-

tected. The simulation setting is as follows. The training datasets are the same as

those described in Sec. 5.2.3, which are associated with zero magnetic flux α = 0. Ten

neural networks are trained for one-shot classification. The test datasets are associ-

ated with α = 0.25 and α = 0.5 with states whose level index ranges from n = 4000

to n = 15000. The types of scarring states in Tab. 5.2 are those corresponding to

classical periodic orbits II, III, and IV-1. The reference wavevector k0 is chosen from

a scarring state with the maximum value of ξ(n) for n ∈ [9000, 10000]. For example,

for orbits II, there are approximately 300 scarring states. Out of the 11, 000 available

eigenstates in the chaotic heart billiard, approximately 5% are quantum scars. To

verify that the machine-detected scarring states are true quantum scars, we select a

few energy intervals and identify visually the scarring states. The percentage of the

scarring states identified this way is consistent with that of the scarring states found

by machine learning.

A convenient semiclassical quantity to characterize the recurrence of a quantum
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Table 5.2: Statistics of quantum scars in the heart billiard system detected by
machine learning

Scar index ∆k k0 Number

II (α = 0.25) 1.4810 190.9758 271

II (α = 0.5) 1.4810 199.8387 303

III (α = 0.25) 1.1687 197.3900 61

III (α = 0.5) 1.1687 199.4852 51

IV-1 (α = 0.25) 1.0843 197.4324 26

IV-1 (α = 0.5) 1.0843 192.9035 40

scarring state is the following winding number [135]

η =
|kn − k0|

δk
−
[
|kn − k0|

δk

]
, (5.7)

where δk = 2π/L, [x] denotes the largest integer less than or equal to x, k0 is the

wavevector of a reference scarring state (usually of high energy). Figure 5.4 shows the

value of η for a large number of scarring states of three types: type II, type III, and

type IV-1, where type-II scars are the most abundant. As shown in Figs. 5.4(a) and

5.4(b) for α = 0.25 and α = 0.5, respectively, the winding number of type-II scars are

either zero or one are zero. For this type of scars, because of the even bounce numbers

of the underling classical orbits off the billiard wall, it is not possible for the quantum

states to have η = 1/2. For type-III scars, the winding numbers are zero or one are

one for α = 0.25, as shown in Fig. 5.4(c). However, because of their odd bounces

with the billiard wall, scarring states with η = 0.5 can arise for α = 0.5, as shown in

Fig. 5.4(d). For type-IV-1 scars, η = 0.5 occurs for magnetic flux value α = 0.25 but

not for α = 0.5, as shown in Figs. 5.4(e) and 5.4(f), respectively. These features of

the relativistic quantum scars have been understood theoretically based on a detailed

analysis of the geometric phases [208]. It is remarkable that our Meta-learning based
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Figure 5.4: Semiclassical characterization of the relativistic quantum scarring states
detected by the Meta-learning algorithm. Shown are the values of the semiclassical
winding number η for three types of scars, where the top, middle, and bottom rows
correspond to type-II, type-III, and type-IV-1 scars, respectively. A magnetic flux is
present: α = 0.25 (the left column) and α = 0.5 (right column). A geometric-phase
based semiclassical theory [208] stipulates that for all types of scars, the values of η
can be zero or one, and η = 0.5 is not possible for type-II scars, but can occur for type-
III (type IV-1) scars under magnetic flux α = 0.5 (α = 0.25). The various quantum
scars detected by the machine-learning algorithm obey these rules remarkably well,
signifying high detection accuracy.

algorithm can reliably detect the different types of the scarring states with the correct

semiclassical characteristic features.

A few remarks are in order. First, from Fig. 5.3, it can be seen that most detected

quantum scars are associated with classical periodic orbits of low periods, due to

the fact that these scarring states are more pronounced than those corresponding to

periodic orbits of high periods. This is consistent with the semiclassical theory of
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quantum scars [337, 338].

Second, we use an ensemble of neural networks to combine the accuracy mea-

sures, where each is trained based on Meta-learning with one-shot classification. The

training thus requires more than one image per class. For two images per class, we

can generate 26 combinations so the training data is sufficient for scar detection. In

simulations, we find that choosing two scars with one at relatively low energy and

another at high energy can help diversify the neural-network outputs to increase the

detection accuracy.

Third, Fig. 5.3 demonstrates the working of the scar detector in the energy interval

with the level index ranging from 4000 to 15000. In a lower energy interval, e.g.,

n ≈ 1000, the degree of quantum scarring in terms of the wavefunction concentration

is relatively weak. Especially, the difference in the values of ξ(n) between scarring

and nonscarring states is small, making detecting scars difficult. However, this is

expected as quantum scars are more pronounced in the relatively high energy regime,

the so-called semiclassical regime where both quantum and classical behaviors are

relevant [337, 338].

Fourth, an advantage of the neural-network based scar detector is that all types

of scars can be detected based on a single threshold, as exemplified in Fig. 5.3. A

large threshold means that a small number of states can be found with high accuracy.

Decreasing the threshold can lead to more “scarring” states but the accuracy may

be compromised. In principle, we can still pick only those states with the highest ξ

values as the scarring states.

5.3.2 The Africa Billiard

The Africa billiard system has fully chaotic dynamics in the classical limit and

exhibits relatively more complicated quantum scarring states than the chaotic heart
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Figure 5.5: Types of quantum scarring states in the chaotic Africa billiard and
confusion matrix of classification. (a) Eight different types of scars in the Africa
billiard and (b) confusion matrix between the true and predicted labels from one
shot classification. The diagonal elements have large values, indicating high overall
accuracies of the predictions of the neural network. Some off diagonal elements are
non-negligible, e.g., those between type-II-2 and type-II-3 scars.

billiard. Figure 5.5(a) shows eight types of scars. We extend the few-shot classification

algorithm by setting N = 8 and selecting 10 images for each class for α ∈ [0, 0.1] from

our quantum-scar dataset. By varying K and repeating the process 1000 times,

we obtain the average accuracy, as listed in Tab. 5.3. Due to the large number of
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Table 5.3: Few shot classification accuracy for scarring states in the chaotic Africa
billiard

Shot number Accuracy

K = 1 78.14%± 1.64%

K = 2 85.44%± 1.15%

K = 5 93.00%± 0.96%

Table 5.4: Characteristics of representative relativistic quantum scars in the Africa
billiard

Scar index ∆k k0 Collected number

II-2 1.6558 198.1712 41

II-3 1.6427 195.5084 89

III-1 1.2313 191.8086 59

IV-2 1.0699 191.5694 25

scarring states and the relatively more sophisticated geometric shape of the Africa

billiard (than the chaotic heart billiard), the accuracy for one shot classification is

somewhat lower: less than 80%. The accuracy can be improved by increasing the

number of images for training.

Figure 5.5(b) shows the confusion matrix under one-shot classification, where the

large diagonal values indicate that most predictions are correct. Nonetheless, some off-

diagonal values are not negligible. For example, the algorithm appears to be “easily

confused” by type-II-2 and type-II-3 scars, because the concentration patterns of their

spinor wavefunctions are similar, as shown in Fig. 5.5(a). In fact, the different kinds

of type-II scars all have a straight line pattern and this leads to the confusion. We

also note that the accuracy for type-III-2 scars is the lowest, due to their similarity

to the type-V scars.

We build a scar detector based on two-shot classification, due to its reasonable
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Figure 5.6: Machine-learning detection of quantum scars in the chaotic Africa bil-
liard. Shown is ξ versus the mode index for α = 0.25 for (a) n ∈ [6100, 6200] and (b)
n ∈ [8400, 8500], where the horizontal dashed line indicates the detection threshold
2× 10−3. Points above the threshold correspond to the detected scarring states with
some representatives shown above the panel.

accuracy, as shown in Tab. 5.3. The number of images per class in the training set

is set to be three and the scarring states used for training are associated with the

magnetic flux in the interval α ∈ [0, 0.1]. Figure 5.6 shows ξ(n) for n ∈ [6100, 6200]

and α = 0.25. We set the threshold to be 2× 10−3 and those quantum states whose

ξ values are larger than the threshold are deemed as scarring states. The detection

results for n ∈ [8400, 8500] are shown in Fig. 5.6(b). As in the case of the chaotic

heart billiard, most detected quantum scars correspond to classical periodic orbits of

low periods. We then calculate the η values for each type of scars from Eq. (5.7),

where k0 is chosen to be associated with the eigenstate with the largest ξ(n) value
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Figure 5.7: Semiclassical quantification of the machine-learning detected relativistic
quantum scars in the chaotic Africa billiard. Shown in the semiclassical winding
number η for scars of types (a) II-2, (b) II-3, (c) III-1, and (d) blue IV-2. Due to the
presence of a magnetic flux, only blue IV-2 scars can have η = 0.5. The statistical
behaviors of the detected quantum scars agree well with the semiclassical predictions.

for n ∈ [9000, 10000]. The results for some representative scars detected from the

energy-level range n ∈ [4000, 10000] are shown in Fig. 5.7 with their basic properties

listed in Tab. 5.4. For all scars displayed (for α = 0.25), the η values are either zero

or one, except the type-IV-2 scars where η = 1/2 can occur, which agrees well with
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the semiclassical prediction [208].

5.4 Discussion

In spite of the fundamental importance of the phenomenon of quantum scarring,

identifying such states from a large number of eigenstates has been a laborious task

since the beginning of the field of quantum chaos, relying mostly on going through all

the available wavefunction patterns one after another and performing a visual check

of each pattern. This task has been well known to practitioners of quantum chaos. To

develop a fully automated method to accurately detect quantum scars is thus highly

desired, as it will enable a more systematic and comprehensive study of the exotic

quantum states. This paper accomplishes this goal by developing a machine-learning

based quantum-scar detector. While it may seem straightforward to adopt some

conventional deep neural networks for image recognition to the problem of quantum

scar detection, a significant challenge lies in the requirement of extensive training data,

as quantum scattering states are rare. We have met this challenge by articulating a

Meta-learning approach based on few-shot classification of quantum scarring states,

which allows the neural machine to learn the hidden structure for each class and

quickly adapt to the new class even with a quite small number of images of the scarring

states. We have tested this approach using two paradigmatic relativistic quantum

billiard systems subject to a magnetic flux, which exhibit fully developed chaos in the

classical limit. Using a previously developed conformal-mapping method [135, 208]

to calculate a large number of quantum states in each system, we have demonstrated

the power of our Meta-learning method for accurate detection of quantum scars.

Our fully automated quantum-scar detection framework consists of two major

steps. The first step is to use neural networks to classify quantum scars. In particular,

we apply few-shot Meta learning by designating a number of images per class in
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the training dataset, e.g., a few different classes of quantum scarring states in a

chaotic Dirac billiard. For one-shot classification, the achieved accuracy can already

be about 80%, which can be improved by increasing the number of shots. The overall

classification accuracy can be characterized by the confusion matrix. In general,

the accuracies for quantum scars associated with classical periodic orbits of short

periods are higher than those with longer periods. The next step is to exploit the

few shot classification algorithm to detect quantum scars by monitoring the predicted

probability difference between scarring and non-scarring states. For quantum scars,

due to the high few-shot classification accuracy, the probability distributions are well

localized and large with small variances, but the opposite occur for non-scarring

states. Utilizing an ensemble of neural networks allows us to define a statistical

measure, whereas a quantum eigenstate can be faithfully deemed as a scarring state

if this measure exceeds a well defined threshold. Utilizing a quantity derived from

the semiclassical theory, we have demonstrated that the quantum scars detected are

the correct scarring states. Our Meta-learning based quantum-scar detector is thus

accurate, efficient, and fully automated.

We discuss a few pertinent issues. First, to build a general machine-learning based

quantum-scar detector, it is necessary to choose some representative quantum scars

as the training dataset. The training accuracy can depend on the specific scarring

states, e.g., whether they are from the same or different energy regimes. For example,

for the chaotic heart billiard system, two scars per class are needed for training. We

find that, if one scar is chosen from the low-energy regime and another from the high-

energy regime, high accuracy can be achieved. The intuitive reason is that quantum

scarring states from drastically energy regimes tend to be maximally distinct in their

patterns, thereby enhancing the learning capability of the neural network.

The second issue concerns about the number of images per class required for the
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few-shot classification algorithm. Accuracy can be improved by increasing the number

of such images but the training dataset also becomes larger, thereby increasing the

computational complexity. Our empirical experience is that the number of images

should be chosen such that the classification accuracy is about 90%. For example, for

the chaotic heart billiard with six classes of quantum scars, using one image per class

in the training dataset already suffices. For the chaotic African billiard, two-shot

classification is needed to achieve the desired accuracy. For an ensemble of neural

networks, various combinations of the training data are needed. As a result, the

number of images per class should be at least one more than the shot number.

The third issue is about the non-scarring states. An alternative idea is to treat

them as another class of “scars.” However, non-scarring quantum states tend to be

uniform and typically do not possess any unique feature. Treating them as a class of

scarring states can lead to large classification errors.

The fourth issue is about overfitting in the Meta-learning algorithm. In our work,

the neural networks are trained based on the Omniglot dataset and transferred to

quantum scars. If a neural network performs well in Omniglot dataset, when execut-

ing transfer learning to quantum scarring states, overfitting can arise, reducing the

classification accuracy. Our empirical method is to monitor the test error to ensure

that it does not exceed a certain (small) threshold.

The fifth issue is about the necessity to use machine learning for automated detec-

tion of quantum scars. Can some filtering techniques be used, e.g., based on counting

the probability value of the quantum wavefunction along a classical periodic orbit?

This is in general infeasible because, from an image processing point of view, quan-

tum scars are extremely noisy. Moreover, setting a proper region to estimate the

probabilities requires a threshold, which can be difficult as the degree of localization

of the scarring wavefunction depends on the energy. Even worse, the wavefunction
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associated with a quantum scarring state may not follow a classical periodic orbit

exactly. To our knowledge, exploiting machine learning for quantum-scar detection

represents the best strategy at the present.

Taken together, in the field of quantum chaos, finding quantum scars usually

relies on human visualization. To develop a machine-learning framework typically re-

quires extensive training data, but quantum scarring states are typically rare, posing

a significant challenge. Taking advantage of Meta learning, a special class of machine

learning for image recognition and classification, we have developed a fully automated

quantum scar detector and demonstrated its working with a remarkably small num-

ber of scar images for training. Our detection algorithm requires no fine tuning of

the parameters of the neural networks and is effective in a broad energy range that

contains many thousands of eigenstates. The framework developed in this paper can

be readily generalized and extended to solving difficult image processing problems in

other disciplines of science and engineering.

5.5 Data Processing

We use the Omniglot dataset to obtain the basic neural network before training

with quantum scars, which contains more than one thousand handwritten characters

from different languages [162]. While some quantum scars resemble certain characters,

their details can be quite different. The left panel in Fig. 5.8(a) shows the Greek

character α in the Omniglot dataset, which has a well-defined structure in that each

stroke has a similar width. The left panel of Fig. 5.8(b) shows a period-4 quantum

scar, which differs significantly from the α character and is noisy. To use the Omniglot

dataset to train the neural networks for detecting quantum scars, image pre-processing

is necessary to reduce the difference in details.

An image is represented by a matrix defined on a grid of pixels, so a white pixel
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Figure 5.8: Schematic illustration of image processing. (a) Left panel: a representa-
tive image in the Omniglot dataset with the Greek character α of size 105×105 pixels.
Right panel: the image after the transform. (b) Left: a quantum scar image of size
202× 234 from the chaotic heart billiard. Right: the image after data processing and
resizing. With image processing, the detailed patterns the Omniglot and quantum
scar images become similar. (c,d) Two steps of the Meta learning algorithm, respec-
tively. The first step (c) is to start from a neural network with random weights and
biases θ to find the optimal network denoted as θ0 that quickly adapts to randomly
selected classes in the Omniglot dataset. The second step (d) is to perform training
with quantum scars. Due to the similarity between the processed Omniglot character
and quantum scar images, adaptation of the neural network θ0 to quantum scars can
be achieved with only a small number of images.

can be defined as zero and a black pixel is represented by one. Our data processing

for each image in the Omniglot dataset consists of the following steps: (i) converting

an image to a matrix of dimension 108 × 108, (ii) adding a uniform noise between
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0 to 1 for each element, (iii) smoothing the image with low-frequency filtering, (iv)

setting the maximum 4% of points in the matrix as black and others as white, and

(v) using the PIL package in Python to resize the image to 100 × 100. For low-

pass filtering, we use Fast Fourier Transform (FFT) to transform the matrix into a

coefficient vector, one component for each frequency, set the coefficients for the top

10% of the frequency range to zero, then perform the inverse FFT. To process the

quantum scarring images, we first calculate the density ψ = ψ2
1 + ψ2

2 of the spinor

wavefunction, assuming that the wavefunction outside the cavity is zero. We then

set the points with the top 4% values of the density to be one (black) and others to

zero (white), and use the PIL package in Python to resize the image to 100 × 100.

The right panels in Figs. 5.8(a) and 5.8(b) show the images after processing for the

α character and the period-4 quantum scars, respectively. It can be seen that the

processing has resulted in similar patterns for the Omniglot character and quantum

scar. A heuristic reason for this similarity is that the neural network trained with

the Omniglot dataset performs classification by extracting line segments as features.

With image processing, both the Omniglot characters and quantum scars contain line

segments as features.

5.6 Meta Learning Algorithm

There are two categories of Meta learning algorithms: metric [364] and optimiza-

tion [161, 373] based. We adopt the optimization-based approach, where θ denotes

the training parameter set in the convolutional neural network. We aim to find a pre-

trained neural network, denoted as θ0, such that the loss is minimized after operation

Uk
τ (θ) - k steps of gradient descent based on task τ . Let S be the cross entropy loss.

The goal can then be formulated as minθ S[Uk
τ (θ)] for all τ .

Different methods are available to solve the optimization problem. One is Model-
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Agnostic Meta-Learning (MAML) [161], which can give higher accuracy. The method

requires computing the gradient for the iterative equation Uk(θ), which is time con-

suming when k > 1. An approximate method is Reptile [373]. For the Omniglot

and Mini-imagenet datasets, Reptile is computationally efficient but the accuracy is

slightly compromised in comparison with that of MAML.

Figure 5.8(c) and 5.8(d) illustrate, respectively, the two basic steps involved in our

Meta-learning procedure. Starting from a neural network with randomly generated

weights and biases denoted as θ, we use the images from the Omniglot dataset to

train the network to find an optimal network denoted as θ0, as shown in Fig. 5.8(c).

In the second step [Fig. 5.8(d)], we start from θ0 and perform training with quantum

scars. Since the Omniglot dataset is large, θ0 that has been trained to adapt to any

image class in the dataset, can quickly adapt to quantum scars.

Algorithm 1 Reptile - batched version

Initialized θ

for iteration = 1, 2, ... do

Sample task τ1, τ2, ..., τm

for i = 1,2, ... do

compute Wi = Uk
τi

(θ)

end for

Update: θ ← θ + β 1
m

∑m
i=1(Wi − θ)

end for

The Reptile method is illustrated in Algorithm 1. Initially, all the weights and

biases are randomly chosen. A loop is employed to update θ until the desired neural

network θ0 is found. In each epoch, the network θ is updated, as follows. The first

step is to randomly generate N classes from the processed Omniglot dataset, where

each class contains K images, so the labeled dataset has NK images. The second step
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Figure 5.9: Detailed structure of the convolutional neural network (CNN) used in
our study. The CNN contains four convolutional layers, each layer having a 3 × 3
convolutional kernel with stride equal to 2 and zero padding, followed by ReLU and
batch normalization.

is to generate five tasks, each containing ten images that are randomly chosen and

can be repeated. The third step is to perform stochastic gradient descent (SGD) and

Adam for each task. Let Uk(θ) denote the stochastic gradient updating for k steps on

cross-entropy loss with the initial parameter set θ, which returns the final parameter

set. During this training process, we set k = 5. The fourth step is to update θ based

on the average. The learning rate β decays linearly with the number of epochs, e.g.,

β = 10−3 for the first epoch and β = 0 at the last epoch. After each epoch, θ is saved

and SGD is performed for quantum scar images. The testing accuracy can then be

calculated. The cutoff point can be found based on hyperparameter optimization as

described in Appendix 5.8.

5.7 Neural Network Architecture

The Convolutional neural network used in our study is illustrated in Fig. 5.9, which

contains four convolutional layers. Each layer is followed by Batch Normalization

(BN) to avoid overfitting [375]. We use ReLU as the nonlinear activation function,

which is applied after the batch normalization. Each convolutional layers contains 64

kernels of size 3× 3. When applying convolutional kernels, we use stride 2 and zero
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Figure 5.10: Few shot classification errors versus the number of training epochs.
The error is the average from a moving window of 200 epochs. (a,b) The results
for the quantum scars from the chaotic heart and Africa billiards, respectively. The
cutoff point is determined by the empirical criterion that the testing error reaches the
minimum. Further updating the neural network can lead to overfitting.
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padding. The whole neural network contains approximately 105 training parameters.

5.8 Hyperparameter Optimization

Since the neural network with the parameter set θ is optimized with the processed

Omniglot dataset, too many training steps can lead to overfitting for the Omniglot

dataset and reduce the training accuracy for quantum scars. Our solution is to

monitor the test error at each epoch. Specifically, for each epoch, we save θ, perform

a few-shot classification for quantum scars, and calculate the classification error. The

error can have large fluctuations due to the small quantum-scar testing set, so we

take the average over 200 steps. Figure 5.10(a) and 5.10(b) show the classification

error versus the number of epochs for the quantum scars in the chaotic heart and

African billiards, respectively. For quantum scars from the heart billiard, the number

of classes is 6, the total number of iteration is 104, and the error reaches a minimum

for about 2000 steps for all K values. The cutoff point is then set to be 2000. For

quantum scars from the Africa billiard, the number of classes is 8, the total number

of iterations is 2 × 104, and the cutoff points for K = 1, 2 and 5 are 104, 5000 and

2000, respectively. When performing the hyperparameter optimization, the number

of available quantum scars is also limited. In our computations, the number of images

per class in the quantum scar dataset is fixed to be K+1 to achieve data consistency.
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Hentschel. Quality factors and dynamical tunneling in annular microcavities.
Phys. Rev. A, 79(6):063804, 2009.

[190] Alexey Yamilov and Hui Cao. Density of resonant states and a manifestation
of photonic band structure in small clusters of spherical particles. Phys. Rev.
B, 68(8):085111, 2003.

[191] Matthieu Davy, Zhou Shi, Jing Wang, Xiaojun Cheng, and Azriel Z Genack.
Transmission eigenchannels and the densities of states of random media. Phys.
Rev. Lett., 114(3):033901, 2015.
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