
IoT Security in the Era of Artificial Intelligence

by

Dianqi Han

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved July 2022 by the
Graduate Supervisory Committee:

Yanchao Zhang, Chair
Martin Reisslein
Guoliang Xue

Junshan Zhang

ARIZONA STATE UNIVERSITY

August 2022

©2022 Dianqi Han

All Rights Reserved

ABSTRACT

The security of Internet-of-Things (IoT) is essential for its widespread adoption.

The recent advancement in Artificial Intelligence (AI) brings both challenges and

opportunities to IoT security. On the one hand, AI enables better security designs.

On the other hand, AI-based advanced attacks are more threatening than traditional

ones. This dissertation aims to study the dual effects of AI on IoT security, specifically

IoT device security and IoT communication security.

Particularly, this dissertation investigates three important topics: 1) security of

acoustic mobile authentication, 2) Deep Learning (DL)-guided jamming attacks on

cross-technology IoT networks, and 3) DL-powered scalable group-key establishment

for large IoT networks. Chapter 2 presents a thorough study on the security of acoustic

mobile authentication. In particular, this chapter proposes two mobile authentication

schemes identifying the user’s mobile device with its linear and nonlinear acoustic

fingerprints, respectively. Both schemes adopt the Data Mining (DM) techniques

to improve their identification accuracy. This chapter identifies a novel fingerprint-

emulation attack and proposes the dynamic challenge and response method as an

effective defense. A comprehensive comparison between two schemes in terms of

security, usability, and deployment is presented at the end of this chapter, which

suggests their respective suitable application scenarios. Chapter 3 identifies a novel

DL-guided predictive jamming attack named DeepJam. DeepJam targets at cross-

technology IoT networks and explores Deep Reinforcement Learning (DRL) to predict

the victim’s transmissions that are not subject to the Cross-Technology Interference

(CTI). This chapter also proposes two effective countermeasures against DeepJam

for resource capable and resource constrained IoT networks, respectively. Chapter 4

proposes a drone-aided DL-powered scalable group-key generation scheme, named

i

DroneKey, for large-scale IoT networks. DroneKey is a physical-layer key generation

scheme. In particular, DroneKey actively induces correlated changes to the wireless

signals received by a group of devices and explores DL techniques to extract a common

key from them. DroneKey significantly outperforms existing solutions in terms of the

scalability and key-generation rate.

ii

DEDICATION

To my parents, my beloved wife, and my soon-to-be-born daughter.

iii

ACKNOWLEDGMENTS

I owe my gratitude to the people who have accompanied me all the way here and

made this challenging journey so colorful and enjoyable.

First of all, I feel tremendously grateful to my advisor, Dr. Yanchao Zhang, for

his consistent support, guidance, and encouragement. Dr. Zhang, thank you for

opening the door of academic research for me and guiding me through this challenging

journey. You have set a great example as a scholar and advisor. I will benefit from

your supervision for the rest of my life.

I would also like to express my thanks to Dr. Martin Reisslein, Dr. Guoliang Xue,

and Dr. Junshan Zhang for serving on my dissertation committee. I really appreciate

their guidance and help.

I also give my thanks to Dr. Rui Zhang for his guidance in research and help in

life. I especially appreciate his detailed coaching in research, writing, and presentation

skills. It’s my great honor to work with him.

I would like to acknowledge my caring and inspiring friends and colleagues, including

Dr. Jinxue Zhang, Dr. Jingchao Sun, Dr. Xiaocong Jin, Dr. Yimin Chen, Dr. Tao Li,

Dr. Junwei Zhang, Dr. Xin Yao, Ang Li, Yan Zhang, Jiawei Li, and Yan (Ian) Zhang,

at Cyber and Network Security Group (CNSG).

My biggest thanks to my family! I thank my parents, Xianxia Du and Jingqiao Han,

for their unconditional love and uninterrupted support. I thank my parents-in-law,

Jie Sun and Hexian Xu, for their encouragement and understanding. A special thanks

goes to my beloved wife and best friend, Jingyi Xu, for being by my side all the time.

I also gratefully acknowledge the financial support I received from the National

Science Foundation through grant CNS-1619251, CNS-1824355, CNS-1933069, and

CNS-2055751.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . x

LIST OF FIGURES . xi

CHAPTER

1 INTRODUCTION . 1

2 THE SECURITY AND USABILITY OF ACOUSTIC MOBILE AU-

THENTICATION . 3

2.1 Overview . 3

2.2 System and Adversary Models . 5

2.2.1 A Generic Acoustic Mobile Authentication Model 5

2.2.2 Adversary Model . 7

2.3 FRC-based Mobile Authentication: Proximity-Proof 9

2.3.1 Attacks Against Proximity-Proof . 12

2.3.2 Proximity-Proof Design . 13

2.3.2.1 Acoustic Transmission of 2FA Response 13

2.3.2.2 FRC Fingerprinting . 16

2.3.2.3 Cross-Device Ranging . 22

2.3.2.4 Self-Proof Case . 25

2.3.3 Evaluation of Proximity-Proof . 25

2.3.3.1 Implementation . 26

2.3.3.2 Efficacy of Acoustic Fingerprinting 26

2.3.3.3 Security Against MiM attacks . 28

2.3.3.4 Security Against Co-Located Attacks 31

2.3.3.5 Security Against Fingerprint-Emulation Attack 33

v

CHAPTER Page

2.3.3.6 Countermeasure Against Fingerprint-Emulation Attack 34

2.4 ANP-based Mobile Authentication . 37

2.4.1 M-ANP Design . 38

2.4.1.1 Challenge audio . 38

2.4.1.2 Fingerprint extraction and matching 40

2.4.1.3 Overall performances of M-ANP . 44

2.4.2 SM-ANP Design . 45

2.4.2.1 Challenge audio . 45

2.4.2.2 Fingerprint extraction and matching 47

2.4.2.3 Parameters for SM-ANP . 48

2.4.2.4 Overall performances of SM-ANP 49

2.4.3 Attacks Against M-ANP and SM-ANP . 49

2.4.3.1 Fingerprint-Emulation Attack . 50

2.4.4 Dynamic Challenge-Response for M-ANP 50

2.4.4.1 ANP M-Print space . 51

2.4.4.2 System parameters . 52

2.4.4.3 Security analysis . 55

2.4.5 Dynamic Challenge-Response for SM-ANP 56

2.4.5.1 ANP SM-Print space. 56

2.4.5.2 System parameters . 57

2.5 Comparison between FRC and ANP Authentication Systems 59

2.6 Related Work . 60

2.7 Conclusion and Future Work . 62

vi

CHAPTER Page

3 DEEPJAM: DL-GUIDED JAMMING ATTACK ON CROSS-

TECHNOLOGY IOT NETWORKS . 64

3.1 Overview . 64

3.2 Background . 67

3.2.1 Zigbee MAC layer . 67

3.2.2 Cross-Technology Interference (CTI) Illustration 68

3.3 System and Adversary Models . 69

3.3.1 System Model . 69

3.3.2 Adversary Model . 70

3.4 Problem Formulation . 71

3.4.1 Slot Duration . 71

3.4.2 Slot Status . 72

3.4.3 DeepJam Basics . 74

3.5 DeepJam Details . 75

3.5.1 Reinforcement Learning . 75

3.5.1.1 Slot States . 76

3.5.1.2 Actions . 77

3.5.1.3 Rewards . 77

3.5.2 RL Algorithm of DeepJam . 78

3.6 Countermeasures . 81

3.7 Evaluation . 83

3.7.1 Evaluation Setup . 83

3.7.2 Efficiency of DeepJam . 85

3.7.2.1 Performance comparison . 85

vii

CHAPTER Page

3.7.2.2 Impact of WiFi traffic loads . 87

3.7.2.3 Impact of MAC and CCA methods 88

3.7.2.4 Impact of Zigbee devices’ amount ND 89

3.7.3 Latency . 90

3.7.4 Efficiency of Dynamic Network Configuration 90

3.8 Related Work . 91

3.9 Conclusion . 92

4 DRONEKEY: DRONE-AIDED DL-POWERED SCALABLE GROUP-

KEY ESTABLISHMENT FOR LARGE-SCALE IOT NETWORKS 93

4.1 Overview . 93

4.2 Background and Feasibility Study . 99

4.2.1 Background of CSI . 99

4.2.2 Feasibility Study . 100

4.3 System Overview and Adversary Model . 102

4.3.1 System Model . 102

4.3.2 DroneKey Workflow . 103

4.3.3 Adversary Model . 106

4.4 CSI Extraction and Processing . 107

4.4.1 CSI Extraction . 108

4.4.2 CSI Stream Processing . 108

4.5 Key-generation DNN . 111

4.5.1 GKG Dataset Generation . 112

4.5.2 GKG DNN Training . 114

4.6 Key Generation and Reconciliation . 117

viii

CHAPTER Page

4.6.1 Key-source Vector Generation . 117

4.6.2 Key-source Vector Quantification . 118

4.6.3 Reconciliation . 120

4.7 Security Analysis . 121

4.7.1 Security against Malicious-drone Attack 121

4.7.2 Security against Eavesdropping and Reproduction Attacks . . 121

4.8 Evaluation . 125

4.8.1 Implementation . 125

4.8.2 Performance Metrics . 126

4.8.2.1 Basic Experiment . 126

4.8.2.2 Impact of Network Scale. 128

4.8.2.3 Impact of Environmental Factors 130

4.8.3 Overhead of DroneKey . 132

4.8.4 Whole-network Group-key Generation . 134

4.9 Related Work . 135

4.10 Conclusion . 138

5 CONCLUSION AND SUMMARY . 140

REFERENCES . 141

ix

LIST OF TABLES

Table Page

1. Mobile Devices in Experiments. 44

2. The Overall Performance of M-ANP. 45

3. The Overall Performance of SM-ANP. 49

4. Pros & Cons of FRC and ANP Authentication Systems. 59

5. Performance with Different WiFi Traffic Loads. 87

6. Performance with Different MAC and CCA Methods. 88

7. Performance with Different Numbers of Zigbee Devices. 89

8. The Comparison between DroneKey and Representative prior Work. 94

9. The Impact of Environment Changes. 133

x

LIST OF FIGURES

Figure Page

1. A Generic Mobile Authentication System. 5

2. The Workflow of Proximity-Proof. 11

3. Attacks against Proximity-Proof. 14

4. Frequency Response Curves of the Speaker on a Samsung Galaxy S5,

Measured by Two Nexus 7. 17

5. F1 Scores for Different τ . 21

6. Illustration of Two-Way Acoustic Ranging. 22

7. The Acoustic Fingerprints of a Samsung Galaxy 5 Extracted by Different

Devices. 27

8. Distance between One Device’s Acoustic Fingerprints Extracted by Different

Login Devices. 28

9. Distance between Acoustic Fingerprints of Different Devices. 29

10. Resilience to MiM Attacks. 29

11. Distance between an Original Fingerprint and the Fingerprint Extracted

from a Replayed Audio. 30

12. Ranging Errors in Different Environments . 32

13. Success Rates under Different Distance. 32

14. Success Rates of the Fingerprint-Emulation Attack. 36

15. F1 Score Corresponding to Different κ and Threshold. 44

16. The Ratios of Distinguishable Elements. 55

17. Targeted CTI Context of DeepJam. 66

18. Zigbee and WiFi Channels. 68

19. Slot Status. 73

xi

Figure Page

20. DeepJam DNN Architecture. 79

21. Comparison of DeepJam, Random Jamming, and Reactive Jamming. 86

22. The Correlated CSI Streams. 101

23. The System Model of DroneKey. 103

24. The Workflow of DroneKey. 104

25. Raw and Processed Mag and Phase Streams. 109

26. The Architecture of a Key-Generation DNN. 115

27. The Impact of the Group-Coverage Area. 130

xii

Chapter 1

INTRODUCTION

Security guarantee is essential for the widespread adoption of IoT systems, and the

recent advancement in AI brings both challenges and opportunities to IoT security.

On the one hand, AI enables better security designs. On the other hand, AI-based

advanced attacks are more threatening than traditional ones. This dissertation aims

to study the dual effects of AI on IoT security, specifically IoT device security and

IoT communication security.

Chapter 2 investigates the security and usability of acoustic mobile authentication.

Mobile authentication explores the user’s mobile device as a proof of the user’s identity,

and acoustic mobile authentication identifies the user’s mobile device by fingerprinting

the hardware its acoustic components. Different hardware characteristics have be

investigated in previous acoustic fingerprinting schemes. This chapter try to answer

the question which of them is more suitable for mobile authentication. In particular,

this chapter proposes two acoustic mobile authentication schemes exploring acoustic

components’ linear and non-linear features, respectively. Their security, usability, and

deployment are compared using experimental evaluations and theoretical analysis.

In terms of security, this chapter identifies the novel fingerprint-emulation attack

and proposes the dynamic challenge and response mechanism as an effective defense.

Based on the comparison, this chapter concludes the suitable application scenarios for

each of these two schemes.

Chapter 3 studies the jamming attack on cross-technology IoT networks. IoT

networks in the future are expected to contain devices of different technologies such

1

as WiFi, Bluetooth, and Zigbee. These technologies may have frequency overlapping

channels in the free ISM band, and the Cross-Technology Interference (CTI) thus

happens. This chapter identifies a new vulnerability of cross-technology IoT networks.

In particular, this chapter proposes a new jamming attack named DeepJam. DeepJam

explores Deep Reinforcement Learning (DRL) to predict the victim’s transmissions

not subject to CTI and can thus launch the jam attack in a more stealthy manner.

The evaluation confirms DeepJam’s advantages over traditional jamming attacks. This

chapter proposes DL-based media access and dynamic network configuration as two

effective countermeasures against DeepJam.

Chapter 4 studies the scalable group-key establishment in large-scale mission-

critical IoT networks. Devices in a mission-critical IoT network frequently exchange

sensitive broadcast/multicast messages through the open wireless channel. A group key

is thus needed to authenticate and encrypt these communications. Existing group-key

generation schemes, however, are not scalable with the network size. Particularly,

their communication and computation overhead increases dramatically as the the

network size increases. This chapter proposes a scalable solution named DroneKey.

DroneKey actively induces correlated changes to the wireless signals received at a

group of devices with a flying drone. The DL technique is used to extract a common

key from these related wireless signals. The real-world evaluation with a prototype

of DroneKey confirms that DroneKey significantly outperforms existing solutions in

terms of scalability and the key-generation rate.

2

Chapter 2

THE SECURITY AND USABILITY OF ACOUSTIC MOBILE

AUTHENTICATION

2.1 Overview

Acoustic fingerprinting aims to identify a mobile device by its internal microphone(s)

and speaker(s). It is promising for two primary reasons. First, a typical mobile device,

such as the smartphone and smartwatch, has at least one microphone and one speaker.

Second, every microphone or speaker is a multi-stage audio signal processing system

consisting of multiple hardware elements, so it can be quite unique due to the hardware

imperfection introduced in the manufacturing process.

Different acoustic fingerprints have been explored. The Frequency Response Curve

(FRC), which is a linear feature of a speak or microphone and refers to the normalized

output gains over a given frequency range, was used in (Z. Zhou et al. 2014; Hristo

et al. 2014; D. Chen et al. 2017). Das et al. used Mel-Frequency Cepstral Coefficients

(MFCCs) of the output audio to identify a speaker or microphone (Das, Borisov, and

Caesar 2014). NAuth (X. Zhou et al. 2019) distinguishes different speaker-microphone

pairs with a nonlinear feature called Acoustic Nonlinear Pattern (ANP). The hardware

features of a device’s speaker, microphone, or speaker-microphone pair can be used as

the acoustic fingerprint, and I term the corresponding fingerprints as S-Print, M-Print,

and SM-Print, respectively.

3

Mobile authentication is one of the most appealing application scenarios of acoustic

fingerprinting. A mobile authentication system considers a user as legal if he1 can

prove the possession of a registered mobile device. Fig. 1 shows a generic acoustic

mobile authentication system. It consists of three parties: the prover P (the registered

mobile device of the user), the verifier V , and the server S. Without ambiguity, I also

denote the user owning the prover device by P . P starts an authentication instance

by sending a request with P’s ID to S. Then S sends a challenge to P via V, and

P returns a response corresponding to the challenge. P is authenticated if S verifies

that the response is associated with one of the registered devices, and vice versa. The

mobile device can act as both P and V in self-proof scenarios like the online account

login on a mobile device, in which case S directly communicates with the mobile

device.

Acoustic fingerprinting has been applied to mobile authentication in existing studies

(D. Chen et al. 2017; X. Zhou et al. 2019), but there are still two open questions:

1) which acoustic fingerprint technique is most suitable for mobile authentication;

2) the fingerprint of which acoustic element(s) (the speaker, microphone, or speaker-

microphone pair) should be used. To answer these two questions, the author identifies

the following three essential requirements for a sound acoustic mobile authentication

system.

• Accurate: the system can accurately identify mobile devices.

• Deployable: it is low-cost and can extract verifier-agnostic acoustic fingerprints.

In particular, the fingerprint of a mobile device should not be tied to a specific

verifier, which is very important in a large distributed system with many verifiers.

1No gender implication.

4

4. challenge

server

prover verifier

5. response

3
. c

h
al

le
n

ge

1. request

6
. r

e
sp

o
n

se

2
. r

eq
u

es
t

user

Figure 1. A generic mobile authentication system.

• Secure: it is highly resilient to possible attacks.

To extract a verifier-agnostic MFCC fingerprint of a prover, the verifier must be

equipped with a high-fidelity speaker or microphone which usually costs a few hundred

dollars or more. Since MFCC fingerprints do not satisfy the deployable requirement,

this chapter focuses on studying FRC and ANP fingerprints henceforth.

2.2 System and Adversary Models

2.2.1 A Generic Acoustic Mobile Authentication Model

A generic acoustic mobile authentication system consists of the prover P, the

verifier V, and the server S, as shown in Fig. 1. P is the user’s mobile device and

5

is registered to the system in the initialization stage. The registration can only be

conducted when the communication between P and S is guaranteed to be secure,

i.e., when the attacker can neither overhear nor tamper with the communication. To

register a mobile device, the user first sends S a registration request which contains

an identification proof such as the username and password. S verifies the request and

returns a challenge, and the user generates a response corresponding to the challenge

with P and submits the response. S extracts P ’s acoustic fingerprint from the response

and stores the fingerprint for future verification.

The author makes the following assumptions for the acoustic mobile authentication

system. First, V can communicate with S through a secure wireless or wired channel.

Second, P and V can communicate via a short-range wireless channel (e.g., Bluetooth,

WiFi, or acoustic channels) which is not necessarily secure.

The system can identify P with the acoustic fingerprint of its speaker, microphone,

or speaker-microphone pair which is termed as S-Print, M-Print, or SM-Print of P

using different challenges and responses. If S-Print is used, the challenge specifies

the input to P’s speaker whose output audio is the response. V records the audio

with a built-in microphone and forwards the response to S. If P is identified with its

M-Print, the challenge is an audio generated by V ’s speaker. P records the challenge

audio with the its microphone and submits the recorded audio as the response to S.

Finally, SM-Print involves P ’s speakers and microphones. The challenge specifies the

input to P ’s speaker, and P records the output audio with its microphone as response.

In addition, the response in S-Print is an audio, and those in M-Print and SM-Print

are audio files. To clarify the difference, the author terms the response in S-Print as

an A-response and that in M-Print or SM-Print as an F-response.

6

S-Print, M-Print, and SM-Print target different authentication scenarios. S-Print

and M-Print are suitable for proximity-based authentication systems in which a stand-

alone verifier is available to verify the proximity of P to V. The verifier can be a

smart lock in an access control system or a login terminal such as a laptop with

which the user tries to log into his online account. SM-Print is suitable for self-proof

authentication scenarios in which P directly communicates with S. For example, a

user may log into his online account on the mobile device which is also used as his

prover. In this case, the challenge audio specified by S is played by P ’s speaker and

recorded by P ’s microphone.

2.2.2 Adversary Model

This chapter considers an attacker A who attempts to be authenticated as P by

the system. The author has the following assumptions about A: 1) A has no access to

P and cannot compromise P , S, or V ; 2) A is aware of the used fingerprinting scheme

and has acquired some fingerprint(s) of P ; 3) A can launch the attack with advanced

equipment like high-fidelity speakers and microphones. This work focuses on the

security of exploring acoustic fingerprints for mobile authentication, and other security

mechanisms such as encryption and biometric-based verification are beyond the scope

of this report. The author thus considers the authentication system compromised if

A can bypass the acoustic-fingerprint verification.

A may obtain P ’s acoustic fingerprints through three practical ways. First, A can

overhear the communication between P and V if the channel between them is insecure.

For example, the prover in an S-Print authentication system transmits the response

audio to V through the insecure acoustic channel, and the audio can be captured

7

by any nearby microphones. A can thus obtain the response audio by deploying a

microphone around V and then use it to infer P’s acoustic fingerprint. In M-Print

and SM-Print systems, P may communicate with V through Wi-Fi or Bluetooth,

which are more secure than the acoustic channel. However, A still gets a chance to

obtain the communication content by launching some advanced attacks such as the

Man-in-the-Middle attack proposed in (Chen and Wu 2010). Second, A can deploy a

phishing website or application which also adopts acoustic authentication and requires

the user to reveal P ’s acoustic fingerprints. Finally, S must store P ’s fingerprint for

verification which may be exposed to A due to data leakage. The author considers

the following specific attacks in this reports.

• Random Impersonation. A impersonates P with his own mobile device P̂.

A can obtain the model of P and uses a device of the same model to launch the

attack.

• Replay Attack. A manages to obtain P ’s response and replays it to the system.

In particular, A starts an authentication instance with his own device P̂ and

sends a request containing P’s ID to S. When being asked for a response, A

submits P ’s response to S. An F-response, which is an audio file, can be directly

submitted through the short range wireless channel between P̂ and V . To submit

an A-response, A plays the response audio to V with P̂ ’s speaker.

• Co-located Attack. A starts an authentication instance at a verifier that is

close to P. When being asked for the response, A triggers P to generate and

submit the response, which is used for verification.

• Fingerprint-Emulation Attack.A manages to obtain one fingerprint of P

and then emulates it with his own mobile device. Specifically, A first starts an

authentication instance with his own mobile device and then submits a forged

8

response corresponding to the challenge to S for verification. If the target

authentication system uses M-Print or SM-Print for verification, A can submit

the forged F-response through the short-range wireless channel between A’s

mobile device and V. If the target authentication system adopts S-Print, A

plays the forged A-response with a high-fidelity speaker which does not distort

the forged A-response. By perfectly emulating one fingerprint of the prover P ,

A can be authenticated just as P .

2.3 FRC-based Mobile Authentication: Proximity-Proof

This section adopts mobile two-factor authentication (2FA) as the example context

to demonstrate FRC-based mobile authentication. Specifically, the author first pro-

poses Proximity-Proof, an automatic 2FA system that adopts the FRC-based mobile

authentication as the extra layer of security (Han et al. 2018) and then evaluate the

security and usability of Proximity-Proof. With comprehensive evaluations, the author

identifies the benefits and limitations of the FRC-based mobile authetnication.

Mobile 2FA adds the user’s smartphone or other mobile devices as the second

layer of security to secure online accounts, as passwords are increasingly easy to steal,

guess, or hack (RSASec12; RSABreach11). When a user tries to log into an online

system employing mobile 2FA, he enters username and password as usual. Then the

online system will verify whether the user have the pre-registered mobile device and

let him in if so. So mobile 2FA lets the user’s mobile device serve as another proof of

his identity and can keep the account safe even if the password is compromised.

Commercial mobile 2FA solutions such as Google 2-step verification (Google2),

Duo (Duo), and Encap Security all require user involvement. For example, a Duo

9

user needs to enroll his phone and install the Duo Mobile app there. There are three

authentication methods for the online system to verify the user’s possession of the

enrolled phone. First, the system can send a notification (called Duo Push) that the

user needs to approve in Duo Mobile. Second, the system can call the enrolled phone

for the user to answer and press a key to approve the login. Finally, the user can

enter a passcode on the login interface, which can be texted to the enrolled phone

by the system or generated in Duo Mobile. Other mobile 2FA solutions all adopt

similar authentication methods. Such demand for user interactions seriously affects

the experience of mobile users (Weir et al. 2009; Gunson et al. 2011), especially senior

citizens or those with disability such as blind and visually impaired users.

Proximity-Proof is motivated by the observation that the user response in each

aforementioned mobile 2FA technique is equivalent to transmitting some information

either directly or indirectly via the login device to the online system. The author refers

to such user information as the 2FA response for convenience, which is the passcode

in the third Duo authentication method or some unforgeable data incurred by the

legitimate user’s approval of the login attempt in the first and second Duo authenti-

cation methods. Zero user-phone interaction can thus be achieved by automatically

generating and then transmitting the 2FA response to the server. The workflow of

Proximity-Proof is shown in Fig. 2. The author assumes a general scenario in which a

web server processes login requests via a browser-based interface. The server-browser

communications are secured with traditional TLS-like mechanisms. Each legitimate

user enrolls his phone and also install the Proximity-Proof app. In this scenario, the

server S is the web server, the verifier V is the login device, and the prover P is still

the user’s phone.

10

username, password

challenge

second authentication
factor

 login
accepted or rejected

 web server login device prover phone

forward second
authentication factor

Figure 2. The workflow of Proximity-Proof.

Proximity-Proof leverages the prevalent acoustic components for 2FA response

transmission. FRC fingerprinting is enabled to counteract the replay attack, and

acoustic distance ranging method is adopted to defeat co-located attackers. Specifically,

the web server stores the FRC fingerprint of the enrolled phone’s microphone and

speaker. After verifying the 2FA response from a mobile device, which can also be

termed as prover, the login browser further involves a novel protocol developed by

us to extract the speaker fingerprint and microphone fingerprint of the prover. If

the extracted fingerprints match the stored copies, the web server considers that the

2FA response was generated by the enrolled phone. While extracting the speaker and

microphone fingerprints of the prover, the browser further measures the distance to

the prover by exchanging a few acoustic signals. If the estimated distance is above a

11

user-chosen safety threshold, the browser considers that the co-located attack may

have happened.

The web server only admits the attempted user when the 2FA response, the speaker

and microphone fingerprints, and the distance measurement all pass verifications.

Otherwise, it invokes the traditional mobile 2FA process as the fallback.

2.3.1 Attacks Against Proximity-Proof

This part discusses the attacks against Proximity-Proof and still considers the

four types of attacks introduced in Section 2.2.2. The random impersonation and

fingerprint-emulation attacks against Proximity-Proof are the same as demonstrated

previously, so the author only details the replay attack and co-located attacks in this

section. The author considers a more advanced replay attack against Proximity-Proof,

which is termed as the Man-in-the-Middle (MiM) attack.

• MiM attack: Fig. 3a illustrates the MiM attack, in which the attacker A is far

from the victim and his enrolled phone. But A sets up a high-speed, invisible

channel between the enrolled phone and the adversarial login device, e.g., by

having an accomplice or hidden eavesdropping device near the victim. When A

attempts to log in, the web server triggers the enrolled phone to generate an

automatic 2FA response which is relayed in real time to the login device via the

adversarial channel.

• Co-located attack: As shown in Fig. 3b, A in this scenario is physically

co-located with the victim such as in a library, a bar, a train, a campus cafeteria,

or other often crowded public venues. A’s attempted login again triggers an

12

automatic response from the enrolled phone, which can be directly received by

A’s login device.

The server considers the enrolled phone near the login device and then admits A

by mistake under both MiM and co-located attacks. As mentioned in (Karapanos

et al. 2015), the prior work (Shirvanian et al. 2014; Czeski et al. 2012; Karapanos

et al. 2015) cannot deal with MiM and co-located attacks. In contrast, Proximity-Proof

is designed to thwart them.

2.3.2 Proximity-Proof Design

In this section, the author details Proximity-Proof’s key components: acoustic

transmission, FRC fingerprinting, and cross-device ranging.

2.3.2.1 Acoustic Transmission of 2FA Response

Proximity-Proof transmits the 2FA response via acoustic signals emitted by the

enrolled phone’s speaker and received by the login device’s microphone. Note that

web browsers can access the host device’s speaker and microphone via the standard

Web Audio API. The author uses OFDM-based acoustic signals to cope with severe

channel conditions.

Proximity-Proof uses high-frequency inaudible signals to avoid disturbing users and

also explore the fact that the high-frequency band is usually very quiet according to the

prior work (Z. Zhou et al. 2014). My implementation and experiments use the frequency

band between 18 kHz and 20 kHz, which is thus used in my subsequent illustrations as

13

enrolled phone

eavesdropping &

relaying device

 login device

adversary

phone

adversary

adversary

adversary

user

(a) MiM attack.

enrolled phone

login device

user

adversary

(b) Co-located attack.

Figure 3. Attacks against Proximity-Proof.

14

an example. Proximity-Proof divides [18, 20] kHz into 20 non-overlapping sub-channels

with each spanning 100 Hz. The OFDM sub-carrier frequencies are fm = 18 + 0.1m

kHz for m ∈ [1, 20]. As in (Wang et al. 2016), Proximity-Proof uses On-Off Keying as

the modulation scheme for its simplicity, and the phone generates the n-th (n ≥ 1)

time-domain sample (Nandakumar et al. 2016) as

xn = A
20∑

m=1

Xm cos(2πnfm) , (2.1)

where A denotes the signal amplitude, and Xm is the m-th binary bit to transmit. xn

is sent via the phone speaker.

After receiving xn via its microphone, the browser performs a Fast Fourier transform

(FFT) to extract the amplitude of each sub-carrier signal component, denoted by Im

for sub-carrier fm. Since no signal is transmitted at 18 kHZ, the author denotes the

signal amplitude detected at 18 kHz by I0 and use it as a reference. The browser then

decodes Xm by comparing Im with I0. If the difference between Im and I0 exceeds a

predefined system threshold (e.g., 10 dB in my experiments), Xm is decoded as bit-1

and otherwise bit-0.

The author constructs a virtual packet from the 2FA response, which consists of

a preamble followed by data segments. The preamble is to help the login browser

locate the beginning of the virtual packet. Similar to (Wang et al. 2016), the author

uses a chirp signal (20ms long in my experiments) from 17 kHz to 19 kHz as the

preamble. A silence period (20ms in my experiments) is also added after the preamble

to avoid interference with the following data segment. The author also applies the

Reed-Solomon code RS(15,11) to encode the raw 2FA response to mitigate transmission

errors. The RS-coded 2FA response is further divided into data segments of 20 bits

with one for each OFDM sub-carrier. Each data segment is converted into an OFDM

symbol of duration 10ms, and a silence period of 10ms is added between adjacent

15

OFDM symbols to combat the inter-symbol-interference (ISI) and the multipath effect.

The author found in my experiments that the audio is initially heavily distorted,

so the author lets the speaker send a random audio signal of 20ms long before the

preamble to “warm up” itself.

The performance of my 2FA transmission scheme above can be briefly analyzed

as follows. Assume that the RS-coded 2FA response is L bits, where L is an integer

multiple of 20 after possible padding. It takes 20+20+20+10∗L/20+10∗(L/20−1) =

(50 + L)ms to transmit one virtual packet, corresponding to an effective data rate

of L
50+L

kb/s. Suppose that the virtual packet can be successfully decoded with

probability p. The phone speaker keeps sending the virtual packet for m ≥ 1 times,

where m is a system parameter. If the login browser still cannot successfully decode a

virtual packet with probability (1− p)m, it notifies the the authorb server to invoke

the traditional mobile 2FA authentication method.

2.3.2.2 FRC Fingerprinting

Now the author presents a novel technique for the login browser to extract the

speaker and microphone fingerprints of a mobile device which purports to be the

enrolled phone.

The feasibility of speaker and microphone FRC fingerprinting is rooted in the

imperfect manufacturing process that introduces unique mechanical and electronic

features into each speaker (or microphone). So each speaker (or microphone) has a

unique frequency response which measures the gain or attenuation at each frequency

and can identify the affiliated mobile device. The prior work (Z. Zhou et al. 2014; Das,

Borisov, and Caesar 2014) explores the frequency response as a hardware fingerprint

16

18 18.5 19 19.5 20

Frequency(kHz)

0

0.2

0.4

0.6

N
o

rm
a

liz
e

d
 a

m
p

lit
u

d
e

 fingerprint extracted by tablet 1

 fingerprint extracted by tablet 2

Figure 4. Frequency response curves of the speaker on a Samsung Galaxy S5, measured
by two Nexus 7.

to identify a smartphone, but the extracted frequency response is associated with a

speaker-microphone pair (i.e., the emitting speaker and the recording microphone)

rather than with an individual speaker or microphone. The author highlights this

issue with a simple experiment. Fig.4 shows the frequency responses of the speaker on

a Samsung Galaxy S5 smartphone, measured by two Nexus 7 tablets with the same

method in (Z. Zhou et al. 2014; Das, Borisov, and Caesar 2014). As I can see, the

two microphones yield very different frequency responses for the same speaker.

In the mobile 2FA context, the speaker is on the enrolled phone, while the

microphone is on an arbitrary login device available to the user (e.g., a personal

computer or a shared one in a library). If I use the same method in (Z. Zhou et

al. 2014; Das, Borisov, and Caesar 2014) to identify the enrolled phone, the extracted

frequency response is tied to the speaker of the enrolled phone and the microphone of

a particular login device. It follows that the online system must obtain the frequency

response associated with the enrolled phone and every possible login device the user

may use in the enrollment phase, which is highly unrealistic. So the prior work (Z.

Zhou et al. 2014; Das, Borisov, and Caesar 2014) is not applicable to my context.

17

my fingerprinting technique explores the following acoustic propagation model for

frequency f proposed in (Szabo 1994) and then refined in (D. Chen et al. 2017),

P (f, x) = L(f)L′(f)P0(f)e
λ(x) + noise (2.2)

where P0(f) represents the transmitted signal power, P (f, x) denotes the received

signal power at distance x from the speaker, L(f) and L′(f) denote the energy loss

due to the speaker and microphone, respectively, and λ(x) is a function of x that can

be obtained by fitting experimental data.

The above propagation model can be further simplified. In particular, I have

observed from my experiments that the ambient noise is insignificant at any frequency

beyond 18 kHZ. I further conducted an experiment to evaluate the SNR in a noisy

coffee house. I set the volume of a Samsung Galaxy S5 to 30 percent of its maximum

volume and used a flat stimulation (to be explained shortly) as the input to its speaker.

I used the other Samsung Galaxy S5, which was placed half a meter away (the expected

maximum safe working distance of Proximity-Proof), to record the audio. I found

that the received audio signal power is more than 20 dB higher than the ambient

noise. To minimize the impact of noise, I the leverage AudioManager API to set the

volume to the maximum.

I can obtain a refined acoustic propagation model as

P (f, x) ≈ L(f)L′(f)P0(f)e
λ(x) . (2.3)

Proximity-Proof explores an interactive protocol for the login browser to extract

the speaker and microphone fingerprints of the prover phone. My protocol uses a

flat stimulation as the input to the speakers of both the prover phone and login

device. The flat stimulation is composed of 20 sine waves whose frequencies range

from 18.1 kHz to 20 kHz in an equal increase of 0.1 kHz. In particular, the speaker

18

of the prover phone generates an audio to the flat stimulation, which is recorded by

the microphones on both the prover phone and the login device; then the speaker of

the login device generates an audio to the flat stimulation, which is recorded by the

microphones on both the prover phone and the login device as well. Let D denote the

prover phone and B the login device. I also use PXY (f) to denote the received power

at frequency f of the audio signal emitted by X and recorded by Y , where X and Y

can be either of B and D. Then I have the following equations

PDD(f) = LD(f)L
′
D(f)PD(f)e

λ(xDD), (2.4)

PDB(f) = LD(f)L
′
B(f)PD(f)e

λ(xDB), (2.5)

PBB(f) = LB(f)L
′
B(f)PB(f)e

λ(xBB), (2.6)

PBD(f) = LB(f)L
′
D(f)PB(f)e

λ(xBD), (2.7)

where PX is the transmission power at frequency f on device X, and xXY denote the

distance between the speaker of device X and the microphone of device Y .

Each enrolled phone can be uniquely identified by a vector of LD(f) and L′
D(f)

values for each frequency f in the flat stimulation. Directly obtaining LD(f) and

L′
D(f) involves estimating PD(f), PB(f), xDD, xDB, xBB, and xBD. I use a special

trick to avoid the error-prone parameter estimation. Let the signal measurements at

a reference frequency 18 kHz be denoted by RDD, RDB, RBB, and RBD, respectively.

I further use lX and l′X to denote the energy loss of the speaker and microphone of

device X at 18 kHz, respectively. Then I have

RDD = lDl
′
DPDe

f(xDD), (2.8)

RDB = lDl
′
BPDe

f(xDB), (2.9)

RBB = lBl
′
BPBe

f(xBB), (2.10)

RBD = lBL
′
lPBe

f(xBD). (2.11)

19

By combining Equations (2.4) to (2.11), I have

PDD(f)/RDD = (LD(f)/lD)(L
′
D(f)/l

′
D), (2.12)

PDB(f)/RDB = (LD(f)/lD)(L
′
B(f)/l

′
B), (2.13)

PBB(f)/RBB = (LB(f)/lB)(L
′
B(f)/l

′
B), (2.14)

PBD(f)/RBD = (LB(f)/lB)(L
′
D(f)/l

′
D). (2.15)

The prover phone needs to report its signal measurements PDD(f), PBD(f), RDD(f),

and RBD(f) to the login browser. By solving these equations, the login browser

can get Si(f) = LD(f)/lD and Mi(f) = L′
D(f)/l

′
D, based on which to obtain two 20-

dimension vectors, denoted by S and M for the prover phone’s speaker and microphone,

respectively. Then I normalize S and M as

Ŝ =
S√∑

f∈{18.1,18.2,...,20}kHz S
2
i (f)

, (2.16)

M̂ =
M√∑

f∈{18.1,18.2,...,20}kHzM
2
i (f)

, . (2.17)

The above fingerprinting process can be executed multiple times to improve estimate
accuracy, in which case the login browser uses the concatenation of average Ŝ and M̂
as the acoustic fingerprint of the prover phone. If the Euclidean distance between the
collected and legitimate acoustic fingerprints is above a threshold τ , the prover phone
is considered an imposter and rejected access.

I set the threshold τ = 0.4 in Proximity-Proof, which was obtained through

experiments. In particular, I used one Samsung tablet as the login terminal, one

Samsung S5 as the prover device, and five other devices as adversarial devices, including

one Samsung S5, one Samsung Note 5, one Huawei Honor 8, and two Google Nexus 6.

For each mobile device, I extracted its speaker and microphone fingerprints 20 times.

I chose 20 values, ranging from 0.1 to 2 with a step of 0.1, as candidate threshold

20

0 0.5 1 1.5 2

Threshold

0.2

0.4

0.6

0.8

F
1

 s
c
o

re

Figure 5. F1 scores for different τ .

values. Then I used F-measurement to evaluate each value, and the F1 scores were

calculated using the following equations.

F1 =
2

1

Recall
+

1

Precision

(2.18)

Precision =
TP

TP + FP
(2.19)

Recall =
TP

TP + FN
(2.20)

where TP and TF are the numbers of correctly recognized fingerprints of the prover

device and malicious devices, respectively; FN and FP are the numbers of incorrectly

recognized fingerprints of the prover device and malicious devices, respectively.

The F1 score is an important metric to evaluate the accuracy of the binary

classification method. A high F1 score ensures that both precision and recall are high.

The result demonstrated in Fig. 5 shows that τ = 0.4 achieves the highest F1 score.

Therefore, I adopt 0.4 as the threshold in my experiments. In practice, the parameter

τ can be further refined with more sophisticated machine learning algorithms and

much more mobile devices.

21

MB

dBB

login
device B

dDB

dBDSB

prover
phone D

MD SD
dDD

TB tBB

 B emits
audio local time

of B

 D s audio
arrives at B

local time
of D

TD

tDB

tDD tBD

Figure 6. Illustration of two-way acoustic ranging.

2.3.2.3 Cross-Device Ranging

Proximity-Proof estimates the distance between the prover phone and the login

device to withstand the co-located attack. The key motivation is that a user normally

puts his phone closer to himself than anyone else in a crowded public environment

(e.g., a library or cafeteria) where the co-located attack is more likely to occur. So

the distance between the enrolled phone and login device of the co-located attacker

should be sufficiently larger than that between the enrolled phone and login device

used by the legitimate user.

There are many cross-device ranging methods. For example, Frequency Modulated

Continuous Waveform (FMCW) has been used to accurately measure the distance

between two synchronized devices (Kulpa 2006; Derham et al. 2007). However, cross-

device synchronization is non-trivial (Wei and Zhang 2015; Wang and Shao 2013).

Even a small synchronization deviation of 1ms will lead to a measurement error of

30cm. A FMCW variant is presented in (Mao, He, and Qiu 2016) and does not require

cross-device synchronization; but this method is designed for devices equipped with

at least two speakers, which are not available on many COTS phones and tablets.

22

Proximity-Proof adopts the two-way sensing method in (Peng et al. 2007) to

measure the distance between two devices. Without the need for cross-device syn-

chronization, this method only requires that both devices have one speaker and one

microphone. Almost all COTS smartphones, tablets, laptops, and all-in-one PCs fulfill

this requirement. Fig. 6 shows the process of the two-way ranging method for clarity.

Here I assume that device D is the prover phone with microphone MD and speaker

SD, and device B is the login device with microphone MB and speaker SB.

The ranging process involving B and D both transmitting and recording audio

signals. Specifically, B sends short audios via SB at time TB, and so does the prover

phone D via SD at time TD. Meanwhile, both MB and MD start audio recording.

Then B analyzes the recorded audio to derive the arrival time of its own audio and

D’s audio, denoted by tBB and tDB, respectively. Similarly, D derives tBD and tDD. I

further donate the speed of sound by c and the distance between device X’s speaker

and device Y ’s microphone by dXY . The following equations are straightforward to

obtain,

dBB = c · (tBB − TB), (2.21)

dBD = c · (tDB − TB), (2.22)

dDB = c · (tBD − TD), (2.23)

dDD = c · (tDD − TD). (2.24)

23

The distance d̄BD between B and D is approximately equal to the average of dBD and

dDB.

D =
1

2
· (dBD + dDB)

=
c

2
· ((tDB − TB) + (tBD − TD))

=
c

2
· ((tDB − tDD − tBB + tBD)+

(tBB − TB) + (tDD − TD))

=
c

2
· ((tDB − tDD)− (tBB − tBD))+

1

2
· (dBB + dDD),

where dBB is the distance between SB and MB, and dDD is the distance between SD

and MD. The speaker-microphone distance is often fixed for a specific mobile device

model and can be known by checking the hardware specification. If d̄BD is within a

user-chosen safe threshold (say, 0.5m in my evaluation), the login browser (device)

can ascertain that no co-located attack is present with overwhelming probability.

I use chirp audio signals to address interference and overlap. In particular, B

and D emit up-chirp and down-chirp signals, respectively. The high auto-correlation

and low cross-correlation of down and up chirps allow both devices to distinguish

the audios from each other. To detect the audio arrival time, each device calculates

the correlation between recorded audio and reference chirp signals. The “peak” point

indicates the accurate arrival time.

In Proximity-Proof, the ranging and fingerprint procedures are conducted simul-

taneously. The frequency of the chirp signals used for ranging is between 16.5 kHz

and 17.5 kHz. The frequency of the fingerprinting audios is between 18 kHz and

20 kHz. I transmit the ranging and fingerprinting audios at the same time. In doing

so, Proximity-Proof can verify whether the ranging audio is from the enrolled phone.

24

2.3.2.4 Self-Proof Case

In Proximity-Proof, the login device is assumed to be different from the enrolled

phone. But it is also very common that people use the browsers on their enrolled

phones to access online accounts. Proximity-Proof can be easily modified to become

Self-Proof for accommodating this scenario. Self-Proof uses the same processes in

Proximity-Proof for automatic 2FA response transmission. However, with only one

speaker and one microphone available, I cannot extract their individual fingerprints

with the previous fingerprinting method in Section 2.3.2.2. Instead, I resort to the

existing method in (Z. Zhou et al. 2014; Das, Borisov, and Caesar 2014) to fingerprint

the speaker-microphone pair in each enrolled phone. More specifically, I can use the

flat stimulation as the input to the speaker and use the microphone to record the

audio. The login browser forwards the frequency response extracted from the audio

to the web server for comparison with the stored copy associated with the provided

username and password. Any significant difference above a system threshold will deny

the account access and invoke the traditional mobile 2FA procedure. Since a different

fingerprinting process is used in Self-Proof, a co-located attacker cannot overhear

the fingerprint of the enrolled phone, thus eliminating the need for acoustic distance

ranging in this context.

2.3.3 Evaluation of Proximity-Proof

In this section, I experimentally evaluate the effectiveness and security of Proximity-

Proof.

25

2.3.3.1 Implementation

I implemented a prototype of Proximity-Proof. Specifically, I used one Lenovo

E420 laptop as the login device and another Lenovo E420 laptop as the server. I chose

Google Chrome as the browser and wrote the browser-side implementation in HTML5.

I used thenavigator.mediaDevices.getUserMedia API to access the microphone and

record audios. I also used the HTML⟨audio⟩ element to access the speaker and

played a pre-record chirp audio file in the WAV format. No plugin was needed for the

browser.

2.3.3.2 Efficacy of Acoustic Fingerprinting

I used experiments to verify the uniqueness of acoustic fingerprints. Nine mobile

devices were used, including two Samsung Galaxy S5, two Google Nexus 6, two Nexus

7 tablets, one Huawei Honor 8, one iPhone SE, and one iPhone 5. I first chose a

Samsung Galaxy 5 as the user’s device and extracted its fingerprint with every other

device. The extracted acoustic fingerprints are shown in Fig. 7. As I can see, the

fingerprints of the same device extracted by different devices are very similar.

Next, I used a Nexus 7 tablet as the login device in the enrollment phase and

each of the other eight devices as a testing device. With the Nexus 7, I extracted

the acoustic fingerprint of each testing device, which emulates its fingerprint stored

at the web server. Then for each testing device, I used each other testing device as

an ad-hoc login device to extract its fingerprint 20 times in three months, resulting

in 140 runtime fingerprints for each testing device. In my experiments, the distance

between each testing device and each login device was randomly chosen between 10cm

26

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Samsung S5 A

Samsung S5 B

Huawei Honor 8

Google Nexus 6 A

Google Nexus 6 B

Nexus 7

iphone se

iphone 5

Figure 7. The acoustic fingerprints of a Samsung Galaxy 5 extracted by different
devices.

to 50cm with arbitrary device orientation. The testing and login devices were place

on the same table without any obstacle between them. Fig. 8 shows the Euclidean

distance between each runtime fingerprint and its corresponding copy stored at the

web server. In the box plot, the red bar inside each box depicts the median, and

the lower and upper edges of the box are the first and third quartiles, respectively.

The upper and lower ends of the whisker indicate the corresponding maximum and

minimum values, respectively. Only three of the 1,120 runtime fingerprints are more

than τ = 0.4 away from the corresponding stored copies. This result further confirms

that the web server can use any login device to extract the acoustic fingerprint of

an enrolled phone. Besides, the fingerprint of each testing device does not change

significantly in the three-month test window.

Fig.9 shows the Euclidean distance between the fingerprints of every two testing

devices extracted by the initial Nexus 7 tablet. Since the distance is always larger

than 0.4, acoustic fingerprints can effectively distinguish mobile devices of different

types and also of the same type.

27

G
al
ax

y
S5

A

G
al
ax

y
S5

B

H
on

or
 8

N
ex

us
 6

 A

N
ex

us
 6

 B

N
ex

us
 7

iP
ho

ne
 s
e

iP
ho

ne
 5

iPhone 5

iPhone se

Nexus 7

Nexus 6 B

Nexus 6 A

Honor 8

Galaxy S5 B

Galaxy S5 A
0

0.5

1

Figure 8. Distance between one device’s acoustic fingerprints extracted by different
login devices.

2.3.3.3 Security Against MiM attacks

I used one Samsung Galaxy S5 as the victim device and two Nexus 6 (one as the

monitoring device and the other as the replay device) to conduct the MiM attack.

The login device was a Nexus 7. However, apart from checking the one-time passcode,

the login device also verified the fingerprint of the prover phone (i.e., the Nexus 7

acting as the replay device). Fig. 10 compares the real fingerprint of the victim device

stored at the web server and the fingerprint extracted by the login browser. Since the

later one is actually the fingerprint of the relaying Nexus 7, I can see the significant

difference in Fig. 10, based on which the web server can easily deny the illegitimate

login request.

28

G
al
ax

y
S5

A

G
al
ax

y
S5

B

H
on

or
 8

N
ex

us
 6

 A

N
ex

us
 6

 B

N
ex

us
 7

iP
ho

ne
 s
e

iP
ho

ne
 5

iPhone 5

iPhone se

Nexus 7

Nexus 6 B

Nexus 6 A

Honor 8

Galaxy S5 B

Galaxy S5 A
0

0.5

1

Figure 9. Distance between acoustic fingerprints of different devices.

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1
 original fingerprint

 fingerprint from replayed audio

Figure 10. Resilience to MiM attacks.

29

G
al
ax

y
S5

A

G
al
ax

y
S5

B

H
on

or
 8

N
ex

us
 6

 A

N
ex

us
 6

 B

N
ex

us
 7

 A

N
ex

us
 7

 B

iP
ho

ne
 s
e

iP
ho

ne
 5

iPhone 5
iPhone se
Nexus 7 B
Nexus 7 A
Nexus 6 B
Nexus 6 A

Honor 8
Galaxy S5 B
Galaxy S5 A

0

0.5

1

Figure 11. Distance between an original fingerprint and the fingerprint extracted from
a replayed audio.

I further carried out the following experiment. For each pair of devices, say A and

B, I used B to record the audio generated by A and replayed the audio to the login

device. I then compared the fingerprint extracted from the replayed audio with the

original fingerprint of device A. Note that I do not consider the fingerprint extracted

from self-recorded audios because the attacker has no access to the user’s device. As I

can see from Fig. 11, the Euclidean distance is always larger than τ = 0.4 for each

pair of fingerprints, which indicate that Proximity-Proof can easily distinguish the

original audio from the one replayed by illegitimate devices with a proper threshold τ .

So Proximity-Proof can effectively defend against the MiM attack.

30

2.3.3.4 Security Against Co-Located Attacks

Now I report the accuracy of cross-device ranging and also the resilience of

Proximity-Proof to co-located attacks.

Since Proximity-Proof is designed for different devices to work under diverse

environments, I evaluated the accuracy of cross-device ranging in a wide range of

scenarios. Specifically, I used the ranging method to measure the distance between a

laptop-phone pair (L&P), a tablet-phone pair (T&P), and a phone-phone pair (P&P)

in an office, a bookstore, and a coffee house. I used a Lenovo Thinkpad E420 as the

laptop, a Nexus 7 as the tablet, and a Samsung Galaxy S5 as the phone. For each

device pair in each environment, I set the ground-truth distance as 0.5m, which is

Proximity-Proof’s default maximum working distance. I then run the ranging method

to measure their distance and calculate the distance errors for each case.

Fig. 12 shows the ranging errors in different environments, where the red points

depict the outliers which fall more than 1.5 times the interquartile range above the

third quartile or below the first quartile. I can see that the ranging accuracy for T&P

and P&P is quite high with the average error in both cases below 5cm in all three

environments. In contrast, the ranging accuracy for L&P is slightly lower with the

average error around 4.2cm, 6.2cm, and 6.3cm in the office, bookstore, and coffee

house, respectively. The reason is that the laptop’s microphone is at the top of the

screen, while its speaker is behind the keyboard. The distance between the laptop’s

speaker and microphone is affected by the screen-keyboard angle, which introduced

additional errors into the ranging result in comparison with the other two cases.

I used a Lenovo E420 laptop as the login device and an Samsung Galaxy S5 as the

user’s device to evaluate Proximity-Proof’s resilience to the co-located attack. The

31

P&P P&T P&L

2

3

4

5

6

E
rr

o
r(

c
m

)

(a) Office.
P&P P&T P&L

4

6

8

E
rr

o
r(

c
m

)

(b) Bookstore.
P&P P&T P&L

4

6

8

E
rr

o
r(

c
m

)

(c) Coffee house.

Figure 12. Ranging errors in different environments

0 20 40 60 80 100
Distance(cm)

0

0.2

0.4

0.6

0.8

1

S
uc

ce
ss

 r
at

e

Figure 13. Success rates under different distance.

volume of the Galaxy S5 was set to 30 percent of its maximum volume. I varied the

distance between the Galaxy S5 and the laptop from 10 cm to 1 m with a step length

of 10cm and run the authentication procedure 50 times for each distance. As I can

see from Fig. 13, when the distance is less than 40cm, the authentication attempt

succeeds for at least 98% of the cases. When the distance is 50 cm, the successful

authentication rate drops to around 80%, which is mainly caused by the ranging error.

Moreover, if an attacker launches the co-located attack from a distance of 60cm or

larger from the login device, almost none of his authentication attempts can succeed.

These results show that Proximity-Proof is highly secure against the co-located attack.

32

2.3.3.5 Security Against Fingerprint-Emulation Attack

I conduct the fingerprint-emulation attack as following. The nine mobile devices

were selected as the victim device one by one. For a chosen victim, I first used it to

generate the benign response. The fingerprint extracted from the benign response

was used as the fingerprint profile stored in the server. Then I inferred the response

spectrum and used the ultrasound speaker to forge the response audio. Since the flat

stimulation contains multiple tones at pre-selected frequencies with the same amplitude,

the response audio contains tones at the same frequencies with the stimulation. The

amplitude of each tone can be obtained by multiplying the amplitude of the stimulation

tone by the gain factor of the speaker at the corresponding frequency, which can

be obtained from the FRC fingerprint of the victim’s speaker and is known to the

attacker. I used the ultrasound speaker to reproduce the inferred response spectrum.

I assume that the attacker has obtained the two audio files, which are recorded by the

victim device, so the attacker can directly submit them to the server for authentication.

I generated 200 forged response audios for each victim and obtained totally 1,800

forged response from which I extracted 1,800 forged fingerprint samples. I calculated

the Euclidean distances between the 1,800 fingerprint samples and the corresponding

fingerprint profile. Only two distances were larger than 0.4, which is the threshold

adopted by Proximity-Proof to distinguish different devices. In other words, only

two forged responses were correctly identified as illegal. The high-fidelity ultrasound

speaker has a flat FRC in the frequency range used by acoustic fingerprints, and thus

it can reproduce the response spectrum and emulate the FRC of P’s speaker with

only a subtle distortion. Therefore, the fingerprint-emulation attack can achieve a

success rate as high as 99.8%.

33

2.3.3.6 Countermeasure Against Fingerprint-Emulation Attack

I propose a dynamic challenge-response mechanism as a defense against the

fingerprint-emulation attack. A mobile device has multiple acoustic fingerprints

corresponding to different challenges. The attack can thus be thwarted if the fingerprint

used in each authentication session has never been used before. Specifically, the server

stores multiple fingerprints of an enrolled device referred to as the fingerprint pool

and randomly selects a fingerprint for each authentication instance. Every fingerprint

can be used only once. The system can update the fingerprint pool when a secure

channel between the enrolled phone and the server is available. To eliminate the risk

of fingerprint exposure, the user must update the the fingerprint pool with fingerprints

that are not revealed to any authentication system.

The amount of a mobile device’s distinct fingerprints (referred to as the fingerprint

space) is the primary concern about the dynamic challenge-response defense. People

may use a mobile device for years, and thousands of authentication sessions may be

conducted during this period. If the fingerprint space is not big enough, the dynamic

challenge-response mechanism cannot be adopted.

Two distinct FRC fingerprints should not contain any common gain factor to be

distinguishable. In what follows, I first demonstrate how I quantify distinct FRC

fingerprints of the speaker and then provide the FRC fingerprint space of the speaker

through similar processes.

Since the FRC fingerprint of the speaker contains the speaker’s gain factors

at multiple frequencies, I first investigate the minimal number K of gain factors

needed for accurate device identification through experiments. In my experiments, I

selected the first m gain factors as the speaker’s FRC fingerprint and calculated the

34

corresponding accuracy for different values of m. For each m, I extracted the speaker’s

FRC fingerprint for 20 times for each of the nine mobile devices and obtained 180

fingerprint samples. I then identify the device associated with each fingerprint sample

and calculated the accuracy. I tested 20 values from 2 to 21 for m. The accuracy

increases with m. When m is larger than 10, mobile devices can be identified with

accuracy above 95%, and the benefit of further increasing m is insignificant when m

exceeds 10. I therefore chose K to be 10.

Next, I investigate the number of distinct gain factors of a speaker. I assume that

a fingerprint ⟨α1, α2, . . . , α10⟩ is chosen by the system. Here, αi is the ith gain factor

contained in the fingerprint, and I denote the frequency corresponding to αi by χi.

Under the dynamic challenge-response mechanism, the attacker cannot obtain any

αi. However, the attacker may have obtained α̂i whose corresponding frequency χ̂i

is close to χi and then use α̂i as αi to launch the fingerprint-emulation attack. The

difference between χ̂i and χi is denoted by ∆χi. Without loss of generality, I assume

that ∆χ1 = ∆χ2 = · · · = ∆χn = ∆χ.

The gain-factor variance of an acoustic component within a small frequency range

is insignificant even in the high frequency domain (Beranek and Mellow 2012). If ∆χ

is not sufficiently large, the two fingerprints ⟨α1, α2, . . . , α10⟩ and ⟨α̂1, α̂2, . . . , α̂10⟩ are

very likely to be indistinguishable, and thus the attacker is identified as legal user and

authenticated. I conducted an experiment to obtain the minimal ∆χ to defeat the

attack. I tested 10 values ranging from 10 Hz to 100 Hz with a step length of 10 Hz

and measured the success rate of the attack for each value of ∆χ. More specifically,

the nine devices were chosen as the victim one by one. For a chosen P, I randomly

selected 10 frequencies (χ1, ..., χ10) from the 21 frequencies used in Proximity-Proof.

The gain factors of the victim’s speaker on the selected frequencies were extracted

35

0 20 40 60 80 100

 (Hz)

0

0.2

0.4

0.6

0.8

1

S
u
c
c
e
s
s
 r

a
te

Figure 14. Success rates of the fingerprint-emulation attack.

as the fingerprint F . I then extracted the speaker’s fingerprint F̂ on frequencies

⟨χ1 +∆χ, ..., χ10 +∆χ⟩. The experiment was repeated 100 times for each device, and

I calculated the ratio that F̂ is not distinguishable from F (i.e., the success rate of

the attack) for each ∆χ. Fig. 14 shows my experiment results. The success rate of

the attack decreases with the increase of ∆χ, and the fingerprint-emulation attack

can be defeated (i.e., the success rate below 5%) when ∆χ is larger than 60 Hz. I

meet the requirement for ∆χ by choosing the fingerprint frequencies from a set of

predetermined values with sufficient gaps. In particular, 66 frequencies ranging from

18 kHz to 21.96 kHz with a step length of 60 Hz are chosen as the candidate frequencies.

For each authentication attempt, the system randomly selected 10 frequencies from

the candidate frequencies. Since each candidate frequency can be chosen only once,

the speaker has ⌊66/10⌋ = 6 distinct FRC fingerprints. This fingerprint space is

obviously too small for mobile authentication.

I conducted similar experiments and derived the FRC fingerprint space a micro-

phone is five. Therefore, FRC authentication systems are all still vulnerable to the

fingerprint-emulation attack due to the very small fingerprint space.

36

2.4 ANP-based Mobile Authentication

In this section, I demonstrate ANP-based mobile authentication systems and

experimentally evaluate their security and usability (Han et al. 2021). I still consider a

system consisting of the prover P , the verifier V , and the server S, as shown in Fig. 1.

ANP is a hardware feature of an acoustic element related to its nonlinear prop-

erties. Practical microphones and speakers on commodity mobile devices are only

approximately linear in the audible range due to cost considerations and exhibit

non-linearity in the non-audible range. In particular, I have

Sout =
∞∑
i=1

giS
i
in, (2.25)

where gi is called the ith-order non-constant nonlinear coefficient. According to

(Aurelle et al. 1996), {gi|i ≥ 1} are sensitive to the frequencies in Sin, and {gi|i ≥ 2}

are also sensitive to the power of individual frequency components in Sin. Given a

specific Sin, gi is determined by the nonlinear characteristic of the acoustic element.

Due to the nonlinear relation between the input and output signals, the output signal

contains new frequency components not present in the input signal (Roy, Hassanieh,

and Choudhury 2017; G. Zhang et al. 2017), and those new frequency components

are referred to as distortion components. The subsequent discussion refers to ANP as

the amplitudes of distortion components produced by the nonlinearity of the speaker,

microphone, or both. Different speakers or microphones have distinct ANPs for the

same input signals.

In the device-to-device authentication system NAuth (X. Zhou et al. 2019), ANP

is used to distinguish different speaker-microphone pairs. NAuth is quite effective in

the targeted application scenarios but is not verifier-agnostic. Here I extend NAuth

(X. Zhou et al. 2019) by introducing two ANP authentication systems, M-ANP and

37

SM-ANP, which identify P using the ANP fingerprints of its microphone and speaker-

microphone pair, respectively. I do not consider identifying P with its speaker’s

ANP fingerprint because it is difficult to extract verifier-agnostic ANP fingerprints

of a speaker. In particular, in order to extract a speaker’s fingerprint, a microphone

must be used to capture the speaker’s output audio. Most microphones, including

high-quality ones, exhibit significant nonlinearity in the high frequency domain. The

high-frequency audio that can invoke the speaker’s nonlinear distortion can also cause

distortion at the microphone. Therefore the distortion components in the recorded

audio is affected by the microphone and cannot be used to fingerprint the speaker

alone.

I consider random impersonation, replay, and fingerprint-emulation attacks against

M-ANP and SM-ANP. As demonstrated in Section 2.3.3, the co-located attack can be

easily defeated with acoustic distance ranging. So I does not discuss the co-located

attack in this chapter.

2.4.1 M-ANP Design

2.4.1.1 Challenge audio

M-ANP uses a high-frequency audio with two tones as the challenge audio played

by verifier V to prover P . In particular, the challenge audio Sin is generated as

Sin = A1 cos(2πf1t) + A2 cos(2πf2) . (2.26)

The nonlinearity of the microphone in COTS smartphones and smartwatches is

more significant in the high frequency range above 18 kHz (G. Zhang et al. 2017).

So I require f2 > f1 ≥ 18 kHz. Since the nonlinear coefficient gi in Eq. (2.25) of a

38

common microphone is negligible for i ≥ 3 (Roy, Hassanieh, and Choudhury 2017),

the nonlinear output of A’s microphone before low-pass filtering can be approximated

by

Sout ≈ g1Sin + g2S
2
in

=
g2
2
(A2

1 + A2
2) + g1A1 cos(2πf1t) + g1A2 cos(2πf2)

+
g2A

2
1

2
cos(4πf1t) +

g2A
2
2

2
cos(4πf2t)

+ g2A1A2

(
cos(2π(f2 + f1)t) + cos(2π(f2 − f1)t)

)
.

(2.27)

Since a typical microphone’s cutoff frequency is 22 kHz, the frequency components at

2f1, 2f2, and f2+f1 in Sout cannot be recorded. I additionally require f2−f1 < 18 kHz

so that the distortion component g2A1A2 cos(2π(f2 − f1)t) can not only be recorded

but also be differentiated from the two tones at f1 and f2, respectively. As I will see

shortly, this distortion component is used to construct the ANP fingerprint of P .

Verifier V cannot use an ordinary speaker to generate Sin. In particular, different

COTS speakers exhibit distinct and significant nonlinearity in the high-frequency

range above 18 kHz. So Sin would invoke the speaker’s nonlinear distortion that

would further result in many low-frequency distortion components in its output. Such

unwanted distortion components can be recorded and mixed with those induced by

P’s microphone. The fingerprint extracted from the recorded audio would thus be

tied to both P’s microphone and V’s speaker, which violates the verifier-agnostic

requirement.

I propose a cost-effective solution based on COTS ultrasound transducers which

each costs at most several US dollars. In particular, I let each verifier use two

ultrasound transducers with each generating a unique tone in Sin. Although ultrasound

transducers also exhibit nonlinearity, the resulting distortion components are in the

high-frequency range above 22 kHz and thus cannot be recorded by P ’s microphone.

39

To see this more clearly, consider an arbitrary transducer i ∈ [1, 2]. The input to

transducer i is an electrical signal A′
i cos(2πfit), and the corresponding nonlinear

output can be modeled as

Ti ≈ g1,iA
′
i cos(2πfit) + g2,i(A

′
i cos(2πfit))

2

= g1,iA
′
i cos(2πfit) +

g2,iA
′2
i

2
(1 + cos(4πfit)) ,

(2.28)

where g1,i and g2,i denote the first-order and second-order coefficients of transducer i,

respectively. Since I require that fi ≥ 18 kHz, the distortion component at 2fi cannot

be recorded by P ’s microphone. In addition, the DC component can be easily filtered

from the audio recording.

I further use a simple calibration to extract transducer-agnostic and thus verifier-

agnostic fingerprints. In particular, each g1,i corresponds to the gain of transducer i

which is a standard parameter in the technical specification of the transducer. Since

different transducers may have distinct gain factors, I set A′
i = Ai/g1,i. Therefore, the

effective output from transducer i with regard to A’s microphone is g1,iA′
i cos(2πfit) =

Ai cos(2πfit), which is exactly the challenge tone Ti I need in Eq. (2.26).

2.4.1.2 Fingerprint extraction and matching

The absolute amplitude of the distortion component at frequency f2−f1 cannot be

directly used as P ’s fingerprint due to the Automatic Gain Control (AGC) system in

common microphones. Specifically, the system automatically adjusts the microphone

gain according to the perceived sound volume. So the measured amplitude at frequency

f2− f1 may vary considerably for different verifiers and/or verifier-A distances instead

of equaling the ideal constant g2A1A2.

40

Since the AGC system affects all the frequency components almost equally

(GuptaMet04), I propose to use the relative amplitude as P’s fingerprint. For

this purpose, I add a reference tone A0 cos(2πf0t) to Sin, which is played by an ad-

ditional transducer at the verifier. Here, A0 and f0 are both system constants. I

require f0 much below 18 kHz and also any possible f2 − f1 so that A0 cos(2πf0t)

incurs negligible nonlinear distortion at the microphone. Then I define the fingerprint

element as the absolute amplitude of frequency f2 − f1 divided by that of frequency

f0.

M-Print uses κ ≥ 1 different challenge audios that differ in frequencies and/or

amplitudes in each authentication session, leading to κ fingerprint elements. P’s

fingerprint is extracted as ΘM = ⟨θ1, ..., θκ⟩, where θi denotes the fingerprint element

corresponding to the ith challenge audio. The larger κ, the longer the authentication

time, the higher distinguishable ΘM, the more reliable the authentication result, and

vice versa.

I also need to mitigate the impact of ambient noise to extract ΘM. For this purpose,

I let the verifier play each challenge audio for a duration of ω and then keep silent for

ω. Meanwhile, P ’s microphone kept recording with a sampling frequency of 44.1 kHz.

The ambient noise can be considered constant during this short duration (e.g., ω = 50

ms in my experiment). After applying fast Fourier transform to the audio captured by

P ’s microphone, I subtracted the noise spectrum in the silent period from the audio

spectrum in the non-silent period. The resulting differential spectrum was used to

extract the “noise-free” fingerprint for this challenge audio. This process was repeated

multiple times, and the average result was used as ΘM for final verification by the

authentication server.

41

I use the scaled Euclidean distance to compare two fingerprints to avoid the

dominance of large-valued elements. In particular, assume that the authentication

server stores an authentic fingerprint Θ′
M for the κ challenge audios. It compares Θ′

M

with the extracted ΘM by computing

diff(ΘM,Θ
′
M) =

√√√√ κ∑
l=1

(
θl − θ′l
θl + θ′l

)2

. (2.29)

If diff(ΘM,Θ
′
M) is no larger than a system threshold τM, the authentication server

considers the responses from P and authenticate the request. κ and τM are obtained

through experiments. I tested 20 candidate values ranging from 1 to 20 for κ. For

each value, I obtained the corresponding τM and calculated the identification accuracy.

I use the F1 score to obtain τM corresponding to a specific κ. Two Prowave

250ST160 transducer were used to generate the challenge, and two Agilent 33220A

signal generators were used to power the transducers. I chose 10 challenges that each

contains κ challenge audios. The frequencies of the challenge tones were randomly

selected, and the output voltages of the signal generators were fixed as 10 V. For

each of the 20 devices, I extracted its fingerprints corresponding to each of those 10

challenges for 20 times and totally got 4,000 testing fingerprint samples. The distance

between transducers and the device’s microphone, denoted by d, may also has impacts

on the amplitudes of distortion components and thus affects the ANP fingerprint. I

randomly chose a value between 10 cm and 25 cm as d in each experiment so that

the obtained κ and τM are robust to slight changes of d. Then the 20 devices were

chosen as P one by one. When a devices was chosen as P, the rest 19 devices were

considered unauthenticated, and I extracted P ’s fingerprints corresponding to the 10

selected challenges one more time as the reference fingerprints for later classification.

Then I tried 20 values ranging from 0.05 to 1 with a step of 0.05 as τM to identify

42

whether each testing sample comes from the prover. Based on the classification result,

I calculated the F1 scores corresponding to each τM as follows:

F1 score =
2

1

Recall
+

1

Precision

Precision =
TP

TP + FP

Recall =
TP

TP + FN

.

(2.30)

Here, TP denotes the number of fingerprint samples correctly recognized as being the

fingerprints of P ; FP and FN denote the number of fingerprint samples incorrectly

recognized as being and not being the fingerprints of P , respectively. For one evaluated

value of τM, I obtained 20 F1 scores with different devices chosen as P. I chose the

evaluated value with the highest average F1 score as τM.

The maximum average F1 scores corresponding to different κ are shown in Fig. 15a.

With the increase of κ, the maximum average F1 score increases. The system can

achieve an average F1 score of 0.96 with an average Precision of 97.6% and an average

Recall of 95.2% when κ is 12. However, the benefit of increasing κ is insignificant

when κ is larger than 12. In particular, the system achieve average F1 scores of 0.964

and 0.965 with κ equaling 13 and 14, respectively. Compared with the performance

adopting κ = 12, the average F1 score increases by less than 0.5%, while the challenge

audio length increases by more than 8%. To avoid unnecessary time consumption,

M-ANP adopts κ = 12. Fig. 15b shows the average F1 scores corresponding to different

thresholds when κ is 12. A threshold of 0.2 achieves the highest average F1 score, so

I adopt 0.2 as τM. With κ = 12 and τM = 0.2, I can identify the devices associated

with the 4,000 fingerprint samples with accuracy of 96.4%.

43

1 3 5 7 9 11 13 15 17 19
0

0.2

0.4

0.6

0.8

1

F
1 s

co
re

(a) F1 score corresponding to different κ.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
threshold

0

0.2

0.4

0.6

0.8

1

F
1 s

co
re

(b) F1 score corresponding to different
threshold (κ = 12).

Figure 15. F1 score corresponding to different κ and threshold.

2.4.1.3 Overall performances of M-ANP

I further evaluated M-ANP in three common scenarios with different noise volumes:

the office, the store, and the restaurant. Due to hardware constraints, I can only

conduct the experiment in the lab. So I recorded the ambient noise in those scenarios

and played the recording when I conducted the experiments to emulate those scenarios.

Android de-
vices (12)

Nexus 5 (2), Nexus 7 (2), Google Pixel 2 (2), Google
Pixel 3 (2), Samsung S5 (2), and Samsung S7 (2)

iOS devices
(8)

iPhone 5 (1), iPhone 5s (1), iPhone 6 (3), iPhone XR
(1), iPad 2 (2), and iPad 4 (1)

Table 1. Mobile devices in experiments.

I used the 20 mobile devices listed in 1 to evaluate the performance of M-ANP. I

randomly selected 10 challenges and extracted every device’s fingerprints corresponding

to each challenges for 80 times (20 times in each scenario). For each scenario, I had

obtained a testing set that contained 400 fingerprint samples. The 20 mobile devices

were selected as the prover one by one, and the rest 19 devices were considered

unauthentic. I extracted the chosen devices fingerprints corresponding to those 10

challenges without playing the recorded noise and used the extracted fingerprints as

44

M-Print Office Store Restaurant
Precision 97.2% 94.7% 94.1%
Recall 95.1% 93.7% 92.5 %
F1 score 0.96 0.94 0.93

Table 2. The overall performance of M-ANP.

the references. Then I distinguished whether the fingerprints in the testing sets are

associated to the prover or not and calculated the Precision and Recall. After all the

20 devices had been chosen as the prover, I calculated the averaged Precision and

Recall for each scenario, and the results are shown in Table 2. M-ANP performs best

in the office scenario. The performances in noisy scenarios, such as the store and

restaurant scenarios, are comparable to that in the office.

2.4.2 SM-ANP Design

2.4.2.1 Challenge audio

SM-ANP adopts the AM modulated signal used in NAuth (X. Zhou et al. 2019) as

the input to P ’s speaker. The challenge signal is obtained by modulating a baseband

signal of frequency fb upon a carrier signal of frequency fc and is represented by

Sin = Afc sin(2πfct)(1 + Afb sin(2πfbt)) . (2.31)

The challenge in SM-ANP specifies fc, fb, Afc , and Afb . I invoke the speaker on P

through a standard API which takes a discrete sequence of amplitude values sampled

from an sound wave as input and outputs the corresponding audio. For this purpose,

I sample Sin at a common speaker’s maximum sample rate fs = 48 kHz to obtain the

45

following sequence as the input to the speaker API:

Ŝin[i] = Afc sin(2πfci/fs)(1 + Afb sin(2πfbi/fs)) , (2.32)

where Ŝin[i] denotes the ith element for all i = 1, 2, Sin can invoke significant

nonlinear distortion of the speaker-microphone pair on P, which results in many

distortion components in the output of P’s microphone with a cutoff frequency

of 22 kHz. According to Eq. (2.25) and trigonometric expansion, these distortion

components are at frequencies nfc, mfb, and nfc ± mfb, where k,m, n ∈ N and

nfc,mfb, nfc ±mfb < 22 kHz (X. Zhou et al. 2019).

I carefully select fc and fb to enhance the nonlinear distortion components in the

microphone’s output. In particular, I find that many distortion frequencies are actually

the same for different combinations of k,m, and n. For example, if fc = 20 kHz and

fb = 5 kHz, I have 2fb = fc − 2fb = 10 kHz. Based on this observation, I can stack

up the distortion components so that their combined effect is more profound. For this

purpose, I set fc = nfb (n ∈ N+), resulting in ⌊22 kHz/fb⌋ distortion components at

frequencies {kfb|1 ≤ k ≤ ⌊22 kHz/fb⌋}).

The next issue is to decide the feasible values for fb and fc. Assume that Afc and

Afb are fixed for the time being. The microphone can record ⌊22 kHz/fb⌋ distortion

components, each corresponding to one fingerprint element of prover P . If fb is set too

large, very few fingerprint elements can be obtained and thus may be insufficient to

distinguish a large number of devices. On the other hand, if fb is set too small, there

may be too many distortion components whose amplitudes may be too small given the

fixed total power of the recorded audio, and such weak distortion components may be

indistinguishable from noise and thus would dramatically decrease the identification

accuracy. So I select fb from a range [fb,min, fb,max). In addition, the nonlinearity

of speakers and microphones is more significant in the inaudible domain, and the

46

cutoff frequency of the speaker in common mobile devices is 24 kHz. So I set

18 kHz ≤ fc < 24 kHz with fc being a multiple of fb.

In SM-ANP, prover P generates the audio with the highest possible volume to

maximize the nonlinear distortion. In particular, the strength of nonlinear distortions

is significantly affected by the modulation depth defined as ζ = Afb/Afc (G. Zhang

et al. 2017; X. Zhou et al. 2019), which should neither be too large nor too small.

SM-ANP selects ζ from a predetermined range [ζmin, ζmax), which can be empirically

determined as well. Once ζ is chosen, I maximize Afc and Afb under the constraint

that the maximum value of sample Ŝin[i] does not exceed the default peak value

defined by the operating system (e.g., 32767 in Android).

2.4.2.2 Fingerprint extraction and matching

Let θ′i denote the amplitude of the ith distortion component at frequency ifb for all

1 ≤ i ≤ β. I define the fingerprint of P for specific fb, fc, and ζ as ΘSM = ⟨θ1, . . . , θβ⟩,

where

θi =
θ′i√∑β
j=1 θ

′
j
2
. (2.33)

I use the normalized amplitudes instead of absolute values to counteract the impact of

the AGC system. I also adopt the method demonstrated in Section 2.4.1.2 to mitigate

the impact of ambient noise.

SM-ANP also uses the scaled Euclidean distance as in Eq. (2.29) to measure the

fingerprint similarity. If the calculated distance does not exceed a system threshold

τSM, the authentication server considers prover P and thus authentic, and vice versa.

47

2.4.2.3 Parameters for SM-ANP

I now explain how to obtain the pre-determined parameters of SM-ANP.

fmin
b , fmax

b , and τSM. The 12 android devices listed in Table 1 were used in the

experiment. I fixed ζ as 100% and tried 30 frequencies ranging from 100 Hz to 3 kHz

with a step length of 100 Hz as fb. For each frequency fb, I set fc = ⌈18 kHz
fb
⌉fb. I

obtained totally 30 challenges and used the F1 mesurement as in M-ANP to obtain

the corresponding τSM and average F1 score. The average F1 score is above 0.95

when fb is between 700 Hz and 2 kHz and dramatically lower when fb is out of this

range. I therefore chose 700 Hz and 2 kHz as fmin
b and fmax

b , respectively. Among the

16 frequencies within [fmin
b , fmax

b], I found that 0.15 is the optimal threshold for 10

of them, and the average F1 score under this threshold is above 0.95 for the rest 6

frequencies as well. Based on this finding, I chose τSM = 0.15. With τSM = 0.15, I

can identify the devices associated with the collected fingerprint with an accuracy of

95.3%.

ζmin and ζmax. The same 12 android devices were used in this experiment. The impact

of ζ is more significant when the amplitudes of the distortion components are small.

So I fixed fb and fc as 700 Hz and 18.2 kHz, respectively. I increased ζ from 50% to

150 % with a step length of 5% and obtained the corresponding averaged F1 score

for each value. I found that the averaged F1 score is above 0.95 when Md is between

75% and 110% and therefore chose ζmin = 75% and ζmax = 110%.

48

SM-Print Office Store Restaurant
Precision 96.3% 92.6% 93.1%
Recall 95.2% 92.1% 91.7 %
F1 score 0.96 0.92 0.92

Table 3. The overall performance of SM-ANP.

2.4.2.4 Overall performances of SM-ANP

I further evaluated SM-ANP in office, store, and restaurant scenarios with the

12 android devices. I randomly selected 10 challenges and used the same way as I

did with M-ANP to obtain the Precision and Recall of SM-ANP in three scenarios.

To avoid redundancy, I omit the description of the experiment details and only show

the results in Table 3. Similarly to M-ANP, SM-ANP performs best in the office and

comparably well in the store and restaurant. Since the speaker’s power is weaker

compared with the transducer’s, the dynamic noise’s impact to SM-ANP is more

significant.

2.4.3 Attacks Against M-ANP and SM-ANP

I consider random impersonation, replay, and fingerprint-emulation attacks against

M-ANP and SM-ANP. As demonstrated in Section 2.3.3, the co-located attack can be

easily defeated with acoustic distance ranging. So I does not discuss the co-located

attack in this chapter. The random impersonation is the same as demonstrated in

Section 2.2.2, so I omit its detail. M-ANP and SM-ANP both adopt F-response, so

the replay and fingerprint-emulation attacks are essentially the same. I only detail

the fingerprint-emulation attack in this section.

49

2.4.3.1 Fingerprint-Emulation Attack

In S-ANP and SM-ANP, prover P’s fingerprint partially reveals the spectrum

of the response. In S-ANP, the fingerprint reveals the amplitude ratio θ of the

distortion component to the reference tone. Attacker A can forge a response by

setting the amplitude of the distortion component as θ multiplied by the reference

tone’s amplitude. In SM-ANP, the fingerprint reveals the normalized amplitudes of

distortion components. Attacker A can forge the response by using each fingerprint

element as the amplitude of the corresponding distortion component. S-ANP and

SM-ANP both use F-response, so A can directly submit the forged response to the

system through the short range wireless channel between A and V .

The generation of the forged response is essentially the inverse process of fingerprint

extraction, so the fingerprint extracted from the forged response is identical to P’s

fingerprint. The system identifies A as P and is thus compromised.

2.4.4 Dynamic Challenge-Response for M-ANP

A straightforward defense against both replay and fingerprint-emulation attacks is

to let the authentication server issue unique challenge audios for different authentica-

tion sessions to prevent possibly exposed fingerprints from being used for launching

fingerprint-emulation attack. Specifically, the authentication server randomly selects

κ tone pairs as the challenge for each authentication session and never reuses the same

set of κ tone pairs in the future. However, even a subset of reused tone pairs can

be used to launch the fingerprint-emulation attack. In what follows, I first quantify

50

the amount of distinct tone pairs and then analyze the resilience of the dynamic

challenge-response M-ANP.

2.4.4.1 ANP M-Print space

To estimate the fingerprint space of M-Print, I first examine the impact of tone

frequencies and amplitudes on the distortion components (or equivalently fingerprint

elements). Consider two arbitrary challenge tones A1 cos(2πf1t) and A2 cos(2πf2t).

Ideally, this tone pair would result in a distortion component at frequency f2 − f1

with amplitude ai,j = g2A1A2. However, I observe from experiments that g2 is not a

constant but depends on A1, A2, f1, and f2. Due to ambient noise and measurement

errors, this distortion component may appear at a slightly different frequency and with

a slightly different amplitude. Even worse, it may be very similar to the distortion

component induced by a different tone pair, say A′
1 cos(2πf

′
1t) and A′

2 cos(2πf
′
2t).

To guarantee sufficient distinguishably among different distortion components, it

is necessary to ensure that no two tone pairs are very similar in both frequencies and

amplitudes. I thus have the following criteria: (1) max{|f1 − f ′
1|, |f2 − f ′

2|} ≥ hf ; (2)

max{|A1 −A′
1|, |A2 −A′

2|} ≥ ha. As long as at least one criterion is satisfied, the two

resulting distortion components can be distinguished with overwhelming probability.

I meet the above requirements by choosing the frequency and amplitude of each

challenge tone from a set of predetermined candidate tones with sufficient gaps. In

particular, let fmax and fmin denote the highest and lowest acoustic frequencies that can

induce significant nonlinear distortion of the microphone, respectively. For example, I

can set fmin = 18 kHz and fmax = 50 kHz according to (Roy, Hassanieh, and Choudhury

2017). The number of possible tone frequencies is then Nf = ⌈(fmax − fmin)/hf⌉. In

51

addition, let Amax and Amin denote the highest and lowest possible tone amplitudes,

respectively, leading to Na = ⌈(Amax − Amin)/ha⌉ possible amplitudes for each tone.

Amax depends on the maximum working voltage of the transducer, and Amin must

be sufficiently large to induce nontrivial nonlinear distortion and can be obtained

through experiments.

Given that f2 − f1 must be smaller than 18 kHz, I estimate the size of the

fingerprint space as follows. For simplicity, assume that 18 kHz can be divided

by hf such that λ = 18kHz
hf

. When f1 is smaller than fmax − 18 kHz, all the λ

frequencies within the range [f1, f1 + 18 kHz] can be used as f2. When f1 is larger

than fmax − 18 kHz, there are fmax−f1
hf

frequencies that can be used as f2. Therefore,

there are total λNf −λ(λ+1)/2 tone-frequency pairs. Since each tone has Na possible

amplitudes, there are ψM = (λNf − λ(λ+ 1)/2)N2
a distinct tone pairs, each leading to

a unique distortion component (or fingerprint element). Prover P may have Nmic ≥ 1

microphones. For example, iPhone models starting from 6s and 6s+ all have four

microphones. So I can have NM = NmicψM unique fingerprint elements of P , leading

to
(
NM
κ

)
distinct fingerprints in total for a challenge with κ audio.

2.4.4.2 System parameters

Now I discuss how I obtained Amin, hf , and ha through experiments involving the

same set of 20 devices shown in Table 1. Two Prowave 250ST160 transducers were

used to generate the challenge audio, and two Agilent 33220A signal generators were

used as the power supply.

I obtained the transducer’s minimum input voltage Vmin instead of Amin. I tried

17 voltages ranging from 2 V to 10 V with a step length of 0.5 V as the transducer’s

52

input voltage Vin. For each Vin value, I generated 10 challenges. The tone frequencies

of each challenge were randomly chosen, and the amplitudes of all the challenges tones

were fixed to g1Vin, where g1 denotes the gain factor of the transducer. I extracted

the 20 devices’ fingerprints corresponding to each of those challenges 20 times and

obtained 4,000 testing samples. Then the 20 devices were chosen as P one by one.

Given a chosen P, I extracted its fingerprints corresponding to those 10 challenges

one more time as the fingerprint profile stored in S which were used to classify the

4,000 testing samples. Based on the classification results, I calculated the F1 score. I

totally obtained 20 F1 scores for each Vin value and calculated the average F1 score.

The results show that the average F1 score increases as Vin increases and exceeds 0.95

when Vin is larger than 6 V. When Vin is lower than 5.5 V, the average F1 score is

below 0.78. Therefore, I chose Vmin =6 V and Amin = g1Vmin.

The choice of hf and ha should guarantee that a microphone’s fingerprints with

respect to different challenges are distinguishable, i.e., the distance between two

fingerprints is larger than the threshold τM. Since the transducer is powered by the

signal generator, the amplitude of the challenge tone is determined by the voltage

of the signal generator. I denote the voltage corresponding to amplitude Ai by Vi.

Since the second requirement for the amplitudes of challenge tones is equivalent to

max{|V1 − V ′
1 |, |V2 − V ′

2 |} ≥ hv, I obtained hv instead of ha. In M-ANP, the two most

similar fingerprints, denoted by Θ and Θ′, differ in only one element. Without loss of

generality, I assume they differ in the first element and model the distance between

the two fingerprints as

diff(Θ,Θ′) =
θ1 − θ′1
θ1 + θ′1

. (2.34)

Therefore, two fingerprint elements should be distinguishable if the scaled distance

between them is larger than τM. I seek to find the minimum values for ∆f and ∆V so

53

that the two elements corresponding to ⟨f1, A1, f2, A2⟩ and ⟨f1, A1, f2 +∆f, A2⟩

or the two elements corresponding to ⟨f1, A1, f2, A2⟩ and ⟨f1, A1, f2, A2 + g1∆V ⟩

are distinguishable.

I conducted an experiments with 20 mobile devices. I selected a base tone pair by

randomly selecting a tone frequency pair and fixing the amplitudes of each tone to Amin.

The base tone pair is denoted by ⟨f1, Amin, f2, Amin⟩. I extracted the fingerprint

elements of the 20 mobile devices corresponding to the base tone pair as the reference

elements. Then I increased ∆f from 200 Hz to 1 kHz with a step length of 50 Hz

and increased ∆V from 0.5 V to 4 V with a step length of 0.5 V. For each ∆f and

∆V , I extracted the fingerprint elements corresponding to ⟨f1, Amin, f2 +∆f, Amin⟩

and ⟨f1, Amin, f2, Amin + g1∆V ⟩ of each device for 20 times, where g1 is the gain

factor of the transducer. Totally 400 testing element samples for each individual

tone pair were obtained. I repeated the whole process 10 times with different base

tone pairs and calculated the scaled distances between each extracted element and

the corresponding reference element. If the distance is larger than τM, the extracted

element is considered distinguishable, and vice versa. Fig. 16a and Fig. 16b show the

ratios of distinguishable elements corresponding to each ∆f and ∆V , respectively. I

can see that more than 96.3% of fingerprint elements are distinguishable when ∆f is

no less than 800 Hz, and more than 95.5% of fingerprint elements are distinguishable

when ∆V is 4 V. So I adopt hf = 800 Hz and hv = 4 V.

Fingerprint space. Based on my experiment results, I estimate the fingerprint

space as follows. There are total Nf = ⌈(50 kHz − 18 kHz)/800 Hz⌉ = 40 feasible

tone frequencies. Since the maximum working voltage of the transducer is 20 V,

there are total Na = ⌈(20 V− 4 V)/5 V⌉ = 4 feasible tone amplitudes. Therefore, a

54

200 300 400 500 600 700 800 900 1000
 f (Hz)

0

0.2

0.4

0.6

0.8

1

ra
tio

(a) Frequency.

0.5 1 1.5 2 2.5 3 3.5 4
 V (V)

0

0.2

0.4

0.6

0.8

1

ra
tio

(b) Voltage.

Figure 16. The ratios of distinguishable elements.

mobile device with two microphones, like Samsung S7, has about NM =20,000 distinct

fingerprint elements and around 8× 1042 distinct fingerprints.

2.4.4.3 Security analysis

Now I analyze the resilience of dynamic challenge-response M-ANP to the

fingerprint-emulation attack. Assume that A has acquired ϵ fingerprints of P . A tries

to impersonate P and starts an authentication instance at V. S randomly selects a

fingerprint Fs from the fingerprint pool, returns the corresponding challenge, and asks

for the response. Since P fingerprints may contain common fingerprint elements, an

element of Fs is known to A if another fingerprint containing the element has been

exposed to A. The probability Pe that a specific fingerprint element in Fs has been

exposed can be estimated as

Pe = 1− (1− κ

NM
)ϵ . (2.35)

As shown in Section 2.4.4.1, A can successfully emulate Fs only if all the κ elements

in Fs are exposed. So the probability for this to occur is given by

Psuccess = P κ
e = (1− (1− κ

NM
)ϵ)κ. (2.36)

55

To achieve an attack success rate of 0.5, the attacker need obtain more than

5,000 fingerprints, which would take quite a long time and may not be feasible in

practice. Therefore, the dynamic challenge-response scheme for M-ANP is resilient to

the fingerprint-emulation attack.

2.4.5 Dynamic Challenge-Response for SM-ANP

Similar to M-ANP, SM-ANP can adopt the random challenge-response method

to withstand the fingerprint-emulation attack. For this purpose, S maintains a

set of fingerprints, referred to as a fingerprint pool, for each prover P. For each

authentication request concerning P , the server randomly chooses one fingerprint from

the pool and issues the corresponding challenge to P .

2.4.5.1 ANP SM-Print space.

Now I discuss the ANP SM-Print space, i.e., the number of possible fingerprints

for a single prover P in SM-ANP. Obviously, the scaled Euclidean distance between

any two fingerprints should be larger than the threshold τSM. Since each challenge

corresponds to a unique fingerprint, I can just estimate how many distinct challenges

in Eq. (2.31) there can be. I first consider the impact of fb. Although ideally all the

distortion frequencies should be multiples of fb ∈ [fb,min, fb,max) below 22 kHz, they

may vary slightly due to noise and measurement errors. I thus require a minimum gap

hfb between different fbs to ensure that their corresponding distortion frequencies can

be distinguished. This means that fb can take lfb = ⌈
fmax
b −fmin

b

hfb

⌉ values. Moreover, the

carrier frequency fc, Afb , and Afc all affect the amplitudes of distortion components.

56

For each given fb, I require fc to be a multiple of fb in [18, 24) kHz, so fc can take

lfc = ⌈6 kHz
fb
⌉ possible values. Afb and Afc are determined once the modulation depth

ζ = Afb/Afc is chosen from [ζmin, ζmax). I thus introduce a minimum gap hζ between

different modulation depths so that the corresponding distortion components at the

same frequencies can have sufficiently different amplitudes. This means that ζ can take

⌈f
max
b −fmin

b

hfb

⌉ values. Finally, I estimate the number of distinct SM-Print fingerprints

for each speaker-microphone pair on P as

ψSM = ⌈f
max
b − fmin

b

hfb
⌉ ×

lfb∑
i=1

⌈ 6 kHz
fb,min + ihfb

⌉ . (2.37)

As in latest smartphones or smartwatches, prover P may have m ≥ 1 speaker-

microphone pairs, leading to NSM = mψSM distinct fingerprints in total.

2.4.5.2 System parameters

I conducted experiments to obtain ζmin, ζmax, hfb , and hζ . 12 Android devices

shown in Table 1 were used in experiments.

ζmin and ζmax. Since the impact of ζ on the distortion component’s amplitude is more

significant when the distortion components’ amplitudes are small, I chose fb and fc to

be 700 Hz and 18.2 kHz, respectively. I increased ζ from 50% to 150 % with a step

length of 5% and obtained the corresponding F1 score for each ζ value. The F1 score

is above 0.95 when Md is between 75% and 110%. As a result, I chose ζmin = 75%

and ζmax = 110%.

hfb and hζ . I obtained the minimum values of ∆fb and ∆ζ so that the a device’s

fingerprints corresponding to ⟨fb +∆fb, ζ⟩ and ⟨fb, ζ +∆ζ⟩ are distinguishable from

the fingerprint corresponding to ⟨fb, ζ⟩. Since fb is within [700 Hz, 2 kHz], the length

of the fingerprint, i.e., the number of distortion components, is between 11 and 31. I

57

did not consider the length of 11 because 2 kHz is the only available fb for this length.

I first selected 20 challenges whose corresponding fingerprints are of different length.

The fb for the ith challenge is ⌊22kHz
11+i
⌋ and denoted by f i

b , and the corresponding

f i
c is ⌈18 kHz

fb
⌉fb. The length of the fingerprint corresponding to the ith challenge is

11 + i. The modulation depths of all the challenges are fixed as ζmin. I iteratively

chose one of the 12 devices as prover P and extracted its fingerprints corresponding

to those challenges as the reference fingerprints. I then extracted P’s fingerprints

corresponding to ⟨f i
b +∆f, ζmin⟩. I tested 20 values of ∆f ranging from 20 Hz to 400

Hz with a step length of 20 Hz. For each challenge, I extracted the P ’s fingerprints 20

times. If the extracted fingerprint has a different length from the reference fingerprint

or the distance between the extracted fingerprint and the reference fingerprint is larger

than τSM, the extracted fingerprint is considered distinguishable from the reference

fingerprint. Next, I extracted the P ’s fingerprints corresponding to ⟨f i
b , ζmin+∆ζ⟩ 20

times. I tested 20 values of ∆ζ ranging from 1% to 20% with a step length of 1%.

The results show that 97% fingerprints are distinguishable when ∆f is larger than 120

Hz, and 95% fingerprints are distinguishable when ∆ζ is larger than 6%. Therefore, I

choose hfb = 120 Hz and hζ = 6%.

Fingerprint space. Based on the obtained parameters, I estimate that a speaker-

microphone pair has approximately 580 distinguishable fingerprints. A mobile device

with two speakers and two microphones has approximately 2,320 fingerprints. The

fingerprint space is much smaller than that of ANP M-Print and may not be sufficiently

large for long-term mobile authentication. The main reason is that the mobile device’s

speaker has limited power and frequency ranges, leading to a relatively small number

of distinguishable challenges.

58

2.5 Comparison between FRC and ANP Authentication Systems

I summarize the pros and cons of FRC and ANP authentication systems in

Table 4. The accuracy is evaluated based on the ratio of acoustic fingerprints whose

corresponding devices are correctly identified. The deployability is evaluated based

on the hardware with which V must be equipped. The security is evaluated based

on whether the system is resilient to specific attacks (indexed as ’yes’ or ’no’) and

whether the dynamic challenge-response (shortened as dynamic C-R in the table) is

adoptable.

Fingerprint scheme Proxmity-
Proof

Proximity-
Proof

M-ANP SM-ANP

(cross-device) (self-device)
Accuracy 99.5% 99.3% 96.4% 95.3%

COTS None Ultrasound None
Deployability microphones transducers

and speakers

Security

Impersonation Yes
Replay Yes No No No

Co-located Yes (with acoustic distance ranging)
Fingerprint
emulation

No

Dynamic C-R Not adoptable Not
adoptable

Adoptable Not
adoptable

Table 4. Pros & cons of FRC and ANP authentication systems.

For the cross-device authentication scenarios, M-ANP is more secure than

Proximity-Proof. Thanks to the large fingerprint space, the dynamic challenge and

response mechanism can be enabled in M-ANP, and the most powerful fingerprint-

emulation attack can thus be defeated. However, Proximity-Proof is more deployable

in some application scenarios. Particularly, the verifier in an Proximity-Proof must has

a speaker and a microphone. In some application scenarios, speakers and microphones

59

are already installed in the device which can act as the verifier. For example, many

commercial smart lockers have speakers and microphones for the communication

purpose. In this case, Proximity-Proof can be integrated to the existing authentication

system without any hardware modification. In contrast, M-ANP requires several

ultrasound transducers to be installed on the verifier. Ultrasound transducers are

less common compared with commercial speakers and microphone. Hardware mod-

ification is almost unavoidable to integrate M-ANP to an existing authentication

system. Besides, M-ANP is more disturbing and less resilient to noise compared with

Proximity-Proof since it involves audible distortion components.

In the self-device authentication scenarios, SM-ANP and Proximity-Proof are both

accurate and deployable. They are robust to the random impersonation and co-located

attack but are vulnerable to the replay and fingerprint-emulation attacks, which are

actually the same. Although acoustic authentication is not guaranteed to be secure

in the self-device authentication scenarios, it can raise the bar for launching possible

attacks.

2.6 Related Work

Fingerprinting a mobile device with the unique features of its hardware components

has been a hot topic in recent years. The features of motion sensors are used to identify

the mobile device in (Dey et al. 2014; Das and Borisov 2016; Bojinov et al. 2014).

Dey et al. proposed to fingerprint the accelerometer with the bias of its reading (Dey

et al. 2014). Bojinove et al. used the calibration error of the accelerometer as its

fingerprint. Das et al. combined the features of the accelerometer and gyroscope to

identify the mobile device (Das and Borisov 2016). Ba et al. proposed to use the

60

Photo-Response Non-Uniformity of the camera as the mobile device’s fingerprint (Ba

et al. 2018). Researcher have also leveraged the imperfection of the WiFi chipset to

identify the mobile device (Brik et al. 2008; Polak, Dolatshahi, and Goeckel 2011;

Remley et al. 2005).

The author investigates identifying the mobile device with its acoustic elements.

There have been many studies on fingerprinting the acoustic elements. Zhou et al.,

Chen et al., and Han et al. all proposed to used the frequency response as the

fingerprint of the acoustic element (Z. Zhou et al. 2014; D. Chen et al. 2017; Han

et al. 2018). Das et al. proposed to use the mel-frequency cepstral coefficients to

identify an acoustic element (Das, Borisov, and Caesar 2014). The author’s study

is complementary to existing work, and the dynamic challenge-response mechanism

proposed in this chapter can also be applied to existing schemes to defend them

against the fingerprint exposure attack.

The nonlinearity of the acoustic element has been used for different purposes in

previous studies. Roy et al. studies the feasibility of leveraging the nonlinear distortion

of the microphone to record ultrasonic sounds (Roy, Hassanieh, and Choudhury 2017).

Zhang et al. and Roy et al. utilized the nonlinearity of microphones to issue inaudible

commands to the voice control system (G. Zhang et al. 2017; Roy et al. 2018). Lin et

al. proposed an ultrasonic positioning system for mobile devices using the nonlinearity

of the microphone (Lin, An, and Yang 2019). The most related work is NAuth (X.

Zhou et al. 2019). Zhou et al. proposed using ANP to verify the consistency of the

audio source in the device-to-device authentication context. Their scheme is quite

efficient in the targeted context, but it does not fulfill the verifier-agnostic requirement

of the distributed authentication system.

61

2.7 Conclusion and Future Work

In this report, I investigated the suitability of existing acoustic fingerprinting

schemes for mobile authentication in terms of security and usability. While I found

that all the schemes achieve sufficiently high identification accuracy for mobile au-

thentication, MFCC acoustic fingerprint schemes incur a prohibitive deployment

cost due to the need for expensive acoustic elements. In contrast, FRC and ANP

authentication systems are both low-cost and verifier-agnostic but are both vulnera-

ble to the fingerprint-emulation attack. To address these limitations, I proposed a

dynamic challenge-response mechanism as a strong defense. The proposed system can

thwart the fingerprint-emulation attack by not reusing acoustic fingerprints across

different authentication sessions. To evaluate whether the proposed mechanism can

be integrated into FRC and ANP authentication systems, I quantify the space of FRC

and ANP fingerprints of the speaker, microphone, and speaker-microphone pair on

the prover device. My experiment results show that ANP M-Print is the only scheme

with a sufficiently large fingerprint space to support dynamic challenge-response to

withstand the fingerprint-emulation attack.

Although the M-ANP fingerprint space is large enough for one authentication

system, it may not be sufficient if a user register the same mobile device for multiple

authentication systems. To defeat the fingerprint-emulation attack, a fingerprint

used in one authentication system cannot be reused in others, and the fingerprint

space assigned to each system dramatically decrease with the increase of system

numbers. For future work, I plan to adopt the zero-knowledge-proof technique to

reduce the risk of fingerprint and response leakage. Specifically, the system compare

the fingerprint associated with a request device and the stored copy without involving

62

any transmission of the fingerprints or responses, making it harder for the attacker to

obtain the prover device’s fingerprints and responses.

63

Chapter 3

DEEPJAM: DL-GUIDED JAMMING ATTACK ON CROSS-TECHNOLOGY IOT

NETWORKS

3.1 Overview

Jamming is a critical threat against wireless communications. Different jamming

attacks have been proposed for attackers with various capabilities(Y. Chen et al. 2009;

Wilhelm et al. 2011; Zhao et al. 2019), and there have also been many studies on

defeating or detecting jamming attacks (Yan et al. 2016; Chen, Zeng, and Mohapatra

2010). The current wireless environment has become much more complex than before

due to the surge of IoT devices all over the world, which results in new threats to

wireless security as shown in previous studies. The emerging deep learning technique

has demonstrated its efficacy in compromising wireless security (Shi, Davaslioglu,

and Sagduyu 2019; Shi, Erpek, et al. 2018). It is thus meaningful to investigate

whether the attacker can exploit the complex wireless environment and deep learning

technique to launch more effective jamming attacks and also devise corresponding

countermeasures.

The unlicensed frequency bands are now crowded with devices of different wireless

technologies. For example, WiFi, Zigbee, and Bluetooth all use the 2.4 GHz ISM

band. The Cross-Technology Interference (CTI) happens when different kinds of

wireless networks on the same frequency band are deployed at proximity. For instance,

previous work shows that the throughput of a Zigbee network may drop by more than

60% if a WiFi network coexists (Garroppo et al. 2011; Musaloiu-E and Terzis 2008).

64

I proposes DeepJam, a new deep learning-guided jamming attack that exploits

CTI in the complex wireless environment. I illustrate the basic idea of DeepJam

with an example CTI context shown in Fig. 17, where a WiFi network and a Zigbee

network coexist. I consider this context because of the prevalence of WiFi and Zigbee

networks, and my work can be extended to other scenarios in which CTI exists. The

WiFi network contains one Access Point (AP) and multiple WiFi devices, which

can be mobile devices, computers, or smart home devices. The Zigbee network

contains one coordinator and multiple Zigbee devices, and the network can be the

alarm system in a house or the temperature monitoring system in a factory. The

adversary aims to disrupt the Zigbee traffic from a specific device in an efficient

and stealthy manner. In this context, the victim’s transmission may fail with a

high probability when CTI happens. Therefore, reactive jamming, which generates a

jamming signal upon detection of any Zigbee preamble, is inefficient because it wastes

significant energy jamming the victim’s transmissions already disrupted by CTI and

also the transmissions of other Zigbee devices. Random jamming that transmits a

jamming signal regardless of the presence or absence of the victim’s transmissions is

not only more energy-inefficient but also easier to detect. By comparison, DeepJam

can significantly reduce the victim’s throughput with far fewer jamming signals by

only jamming the victim’s transmissions which are not subject to CTI and thus

achieve much more stealthy jamming than conventional random and reactive jamming

strategies.

It is challenging to accurately predict when jamming is necessary. The random

backoff periods and the asynchronous clocks of the WiFi and Zigbee networks result

in chaotic wireless traffic, making it difficult to capture the temporal traffic patterns.

I first investigate the Zigbee MAC protocol and propose a slotted formulation of

65

Wi-Fi
device

Zigbee
device

AP Coordinator

w1

w2 w3

z1

z2

z3

Figure 17. Targeted CTI context of DeepJam.

the jamming attack. By properly choosing the slot duration and carefully defining

the status and actions, I convert the jamming attack to a time series process. Then

I propose a deep learning-guided strategy to predict the attacker’s optimal action

in the coming slot according to sniffed traffic in the past. Deep learning has been

proven more efficient in solving time series problems than traditional machine learning

methods and thus is more suitable for DeepJam.

I evaluate the performance of DeepJam with comprehensive comparison with

random jamming and reactive jamming in different scenarios. The results show

that DeepJam significantly outperforms random jamming in all scenarios. Although

reactive jamming performs better than DeepJam in a simple system with one Zigbee

device, DeepJam outperforms reactive jamming in terms of efficiency and stealth when

there are multiple Zigbee devices, and its advantage becomes more significant with

the increase of the network complexity. For example, in a system that contains five

Zigbee devices, 42% of DeepJam’s jamming actions are necessary, while only 13% of

reactive jamming actions are necessary. Due to the random backoff mechanism of

66

the Zigbee network, DeepJam cannot fully jam the traffic of the victim device. But I

show that DeepJam can decrease the throughput of the victim by 60% in the worst

case and by 78% in the best case. I also propose two simple countermeasures against

DeepJam and evaluate their efficacy.

3.2 Background

3.2.1 Zigbee MAC layer

The Zigbee MAC layer is defined in IEEE 802.15.4. The network can be beacon-

disabled or beacon-enabled. The former adopts unslotted Carrier Sense Multiple

Access with Collision Avoidance (CSMA/CA) for media access control, and the latter

adopts slotted CSMA/CA. The acknowledgment (ACK) is optional in Zigbee MAC

layer. In a beacon-disabled Zigbee network, a device first conducts the Clear Channel

Assessment (CCA) to determine the channel status when it attempts to transmit a

MAC frame. The device immediately transmits the MAC frame when the channel

is idle. Otherwise, the device waits for a period and tries again. The backoff time

Bz is defined by an exponential backoff algorithm. In a beacon-enabled network, the

coordinator periodically generates beacons which divide the channel to superframes of

the same duration. A superframe contains a mandatory active period and an optional

inactive period, and the active period is equally divided into 16 slots. During the active

period, a device accesses the channel in a similar manner as in the beacon-disabled

Zigbee network, while the frame transmission must start at the beginning of one slot.

A Zigbee network can adopt Energy Detection (ED) or Carrier Sensing (CS)

for CCA. ED considers the channel busy if the energy level is above a predefined

67

threshold, while CS considers the channel busy only if Zigbee signals are detected.

Payload encryption is optional in Zigbee MAC layer, and the Frame Check Sum (FCS)

occupying the last 2 bytes of a MAC frame is used to detect bit errors. The MAC

frame header, which contains the source and destination MAC addresses, and FCS

are transmitted in plaintext.

3.2.2 Cross-Technology Interference (CTI) Illustration

As shown in Fig. 18, the Zigbee and WiFi channels overlap in frequency. For

example, the WiFi channel 6 uses the same frequency band as Zigbee channels 16-19.

Consequently, a WiFi network working on channel 6 may interfere with a Zigbee

network working on channel 18 if those two networks are deployed at proximity.

Figure 18. Zigbee and WiFi channels.

Previous studies have experimentally evaluated the interference between WiFi and

Zigbee networks (Garroppo et al. 2011; Musaloiu-E and Terzis 2008). Since a WiFi

transmitter’s power is more than 30 times larger than a Zigbee transmitter’s, Zigbee

signals’ impact on WiFi transmissions is insignificant. In contrast, WiFi signals have

significant impact on Zigbee transmissions. Although WiFi signals do not fully jam

Zigbee signals, the throughput of the Zigbee network may drop by 60% due to CTI.

68

3.3 System and Adversary Models

3.3.1 System Model

I consider a system in which a Zigbee network and a WiFi network coexist, and the

system model is shown in Fig. 17. The experimental result in (Garroppo et al. 2011)

shows that the cross-technology interference between Zigbee and Bluetooth networks

is insignificant, so I do not consider Bluetooth networks in my system. The WiFi

network follows IEEE 802.11 and contains one AP and multiple WiFi devices. The

Zigbee network follows IEEE 802.15.4 and contains one coordinator and multiple

Zigbee devices. Without loss of generality, I assume that the WiFi network keeps

working on WiFi channel 6 (with a center frequency of 2,437 MHz and bandwidth of 20

MHz), and the Zigbee network keeps working on channel 18 (with a center frequency

of 2,440 MHz and a bandwidth of 2 MHz). In this case, the WiFi network interferes

with the Zigbee network. IEEE 802.15.4 does not adopt frequency hopping, so the

Zigbee network does not hop to another channel due to the interference. Although

the WiFi network adopts channel hopping, the Zigbee signal’s power is too low to

cause significant interference to the WiFi network which thus does not change the

channel either.

I make the following assumptions about the Zigbee network. First, the Zigbee

network is busy and all the MAC frames are of the maximum length Lz to maximize

the data transmission rate. Lz equals 127 bytes as defined in 802.15.4. Second, I

assume that the network’s traffic load and pattern are both stable within a short

period (less than 1 min). For simplicity, I assume that the number of Zigbee MAC

frames generated (not transmitted) by a Zigbee device within a short period follows

69

the Poisson distribution, and the possibility that a device generates kz new MAC

frames within τ sec is formulated as

P (kz) =
e−λzτ (λzτ)

kz

kz!
, (3.1)

where λz is the arrival rate. The arrival rate varies with the device’s ongoing task, so

I only assume that λz is stable within a short period.

3.3.2 Adversary Model

I consider an attacker who is aware of the Zigbee channel by passive eavesdropping

and attempts to disrupt the traffic from a specific Zigbee device in a stealthy manner.

Particularly, the objective of the attacker is to reduce the throughput of the victim

device by a target percentage with as few jamming signals as possible. Without loss

of generality, I assume that the victim is z1 whose MAC address is known to the

attacker.

To launch the DeepJam attack, the attacker installs a monitor, which can be a

COTS Zigbee device, around the victim device. The monitor sniffs the Zigbee traffic,

measures the power level within the Zigbee channel, and also decodes any overheard

Zigbee MAC frame. Since the header and FCS of a Zigbee MAC frame are not

encrypted, the attacker is aware of the source device of the MAC frame and can also

verify whether the frame is corrupted by checking its FCS. If the attacker detects an

uncorrupted MAC frame of z1, it considers the frame being successfully transmitted.

Since the Zigbee traffic is assumed stable within a short period, the attacker

attempts to predict the victim’s traffic in the near future from the signal overheard in

the short past period. Specifically, the attacker uses the deep learning model to predict

70

when z1 may successfully transmit a MAC frame and then generates a predefined

jamming signal, which is fixed Gaussian noise in the targeted Zigbee channel, during

the predicted period. The power of the jamming signal is five times larger than that

of the Zigbee signal, which is sufficient to disrupt Zigbee transmissions but still much

weaker than the WiFi signal’s power. So the attacker’s action has no significant impact

on the WiFi network.

After taking a jamming action, the attacker can determine whether the action is

necessary. The signal captured by the adversarial monitor is mixed with the jamming

signals, but the attacker can subtract the jamming signal from the sniffed signal to

restore the original signal. The jamming action is necessary if the restored signal

contains z1’s uncorrupted MAC frame and is unnecessary otherwise.

3.4 Problem Formulation

I provide a slotted formulation of the jamming attack and an overview of DeepJam

in this section.

3.4.1 Slot Duration

I determine the slot duration based on the maximum MAC frame length Lz of the

Zigbee network. In particular, the slot duration Ts equals Tz/2, where Tz denotes the

time consumed to transmit a Zigbee MAC frame of length Lz.

The choice of the slot duration is critical. First, the slot must be short enough so

that the slot status space is of small size. Multiple MAC frames of the victim may

appear in one slot, and the slot’s status is defined based on the status of those frames

71

(corrupted or not). A proper slot duration must be short so that only a few MAC

frames of the victim may be present in one slot. Second, the slot must be long enough

so that the optimal action in a future slot is significantly impacted by only a small

number of passing slots.

A slot duration of Tz/2 satisfies the need. Since at most two MAC frames of the

victim may appear in a slot, the slot has only three possible status which are detailed

in Section 3.4.2. As demonstrated in Section 3.7, the number of slots that may have

significant impact on the coming slot is at most 10. The evaluation results show that

it is feasible to launch DeepJam in real time with a slot duration of Tz/2.

3.4.2 Slot Status

I define three slot status: IDLE, TRANSMISSION, and OCCUPY, based

on the attacker’s observation, and I use an example in Fig. 19 to illustrate how I

determine the slot status. Fig. 19 shows an example of the wireless traffic within 10

slots. The device transmits during blue periods and keeps silent during white periods.

For simplicity, I assume that only three devices, z1 (the victim Zigbee device), z2

(another Zigbee device), and w1 (a WiFi device), transmit within those 10 slots. The

attacker monitors the wireless signal within the Zigbee channel, measures the power

level within each slot, and decodes the signal captured in each slot.

In sloti−9, the power level is always below a threshold, and the attacker can

conclude that there is no wireless transmission within this slot and considers the slot

IDLE. In sloti−8 and sloti−1, the attacker can detect a MAC frame header containing

z1’s address, but the frame does not fully occupy the slot. Those two slots are

also considered IDLE. If the attacker detects a complete and uncorrupted MAC

72

z1
z2
w1

Sloti
TRANSMISS

ION

Sloti-1
IDLE

Sloti-2Sloti-3Sloti-4Sloti-5Sloti-6Sloti-7Sloti-8Sloti-9
OCCUPYOCCUPYOCCUPYIDLEIDLE IDLE

TRANSMISS
ION

OCCUPY

Figure 19. Slot status.

frame of z1, the first slot fully occupied by the frame, such as sloti−7, is considered

TRANSMISSION, and the following slot, such as sloti−6, is considered IDLE.

Apart from IDLE and TRANSMISSION slots, all the rest slots are considered

OCCUPY.

It is worth noting that the attacker may be uncertain about the status of a slot in

some cases. For example, the attacker cannot determine the status of sloti because

FCS has not been received yet. In this case, the attacker temporally considers sloti a

TRANSMISSION slot.

Three cases can result in an OCCUPY slot. First, z1 does not transmit, but

Wi-Fi devices or other Zigbee devices transmit in this slot. sloti−5 and sloti−4 belong

to the first case. Second, z1 transmits, but Wi-Fi devices transmit simultaneously.

Due to interference, the frame of z1 cannot be correctly decoded. sloti−3 belongs to

this case. Third, only z1 transmits in this slot, but the frame’s header is within the

previous slot and cannot be decoded due to interference. Consequently, the monitor, as

well as the destination device, cannot decode the source address correctly to recognize

the frame as z1’s. sloti−2 belongs to this case.

73

3.4.3 DeepJam Basics

The main idea of DeepJam is predicting the optimal action in a future slot based on

the observations in past slots. It takes time to process the captured signal and compute

the prediction. Therefore, the attacker cannot immediately obtain the status of a slot

and make a proper prediction at the beginning of the next slot. The experimental

result in Section 3.7 shows that the signal processing and prediction computation

can be done within one slot. Therefore, I add a gap of one slot between the most

recent channel observation and the prediction. To be more specific, within the ith

slot, the attacker first processes the signal captured in slot i− 1. Then the attacker

uses the observed channel status before and in slot i− 1 to predict the optimal action

he should take in slot i+ 1.

The attacker can take two actions, WAIT or JAM, in each slot. If the attacker

predicts that the coming slot is a TRANSMISSION slot, the attacker takes action

JAM by sending jamming signals in this slot. Otherwise, the attacker takes action

WAIT and keeps silent. Since no error correction code is adopted, jamming half of the

MAC frame, i.e., one slot, can disrupt the frame with a high probability. Attacker’s

actions also impact the channel status. If the attacker takes action JAM in slot i,

the channel status is OCCUPY no matter whether there is wireless traffic or not.

As I discussed in Section 3.3, the attacker can restore the original signal, so he can

determine whether his prediction for an ended slot is correct and thus amend the

prediction model.

74

3.5 DeepJam Details

DeepJam follows an online-learning process. In particular, the attacker takes

actions based on a prediction model and updates the model based on the results of

actions. It is well known that Reinforcement Learning (RL) (Sutton and Barto 2018)

is an effective solution to online-learning problems, so I adopts RL in DeepJam. This

section first briefly introduces RL and explains how I convert DeepJam to a typical

RL problem. Then I detail the DeepJam RL algorithm.

3.5.1 Reinforcement Learning

RL considers an agent who interacts with the environment in a sequence of time

slots and tries to maximize some notion of a cumulative reward (Sutton and Barto

2018). More specifically, the agent observes the state of the environment in the ith

slot, denoted by si. Based on the observation, the agent takes an action ai ∈ Asi ,

where Asi is the set of possible actions in state si. As a result of the action, the agent

gets a reward ri+1, and the environment state changes to si+1. The goal of the agent is

to maximize the cumulative reward Ri ≜
∑∞

j=i γ
j−irj+1, where γ ∈ (0, 1] is a discount

factor.

To convert DeepJam to a typical RL problem, I define the slot states, the attacker’s

actions, and the rewards as follows.

75

3.5.1.1 Slot States

Due to the MAC method, the channel status and the corresponding optimal action

of the ith slot are related to the previous slots. I thus abuse the notation and use

si to represent the state of slot i and refer to the channel status of all the slots that

significantly impact the optimal action in slot i. As shown in Section 3.4, the attacker

cannot immediately obtain the status of a slot and complete the prediction at the

beginning of the next slot. So si does not contain the channel status in slot i− 1. If

I consider NR slots before slot i except slot i − 1, si can be formulated as a 1×NR

vector < ui−NR−1, · · · , ui−2 >. Here uj ∈ {1, 2, 3} indicates the channel status of slot

j and is defined as follows:

uj =


1, if slot j is IDLE;

2, if slot j is OCCUPY;

3, if slot j is TRANSMISSION.

(3.2)

A large NR can achieve a high prediction accuracy but results in long converge

time. Since the temporal pattern of the wireless traffic comes from the exponential

backoff algorithm, I choose NR based on the maximum backoff periods of the WiFi

and Zigbee networks. Particularly, I calculate NR as:

NR = ⌈max(Dw,Dz)/Ts⌉ − 1, (3.3)

where Dw and Dz denote the maximum backoff periods in the WiFi and Zigbee

networks, respectively; Ts denotes the duration of a time slot.

76

3.5.1.2 Actions

I denote the attacker’s action in slot i with ai, where ai ∈ {JAM,WAIT}. The

details of JAM and WAIT actions have been given in Section 3.4.

3.5.1.3 Rewards

I define the reward of action ai based on the channel status of slot i. To be more

specific, if ai = JAM and slot i is TRANSMISSION, the attacker gets a reward

ri+1 = Rj ∈ (0, 1] for successfully jamming a MAC frame of the victim. If ai = WAIT

and slot i is IDLE or OCCUPY, the attacker gets a reward ri+1 = Rs ∈ [0, 1])

for saving energy. If ai = WAIT and slot i is TRANSMISSION, the attacker

misses a successfully transmitted MAC frame of the victim and receives a negative

reward ri+1 = Rm ∈ [−1, 0). If ai = JAM and slot i is IDLE or OCCUPY,

the attacker wastes energy on an unnecessary jamming and gets a negative reward

ri+1 = Rw ∈ [−1, 0].

Attackers can adjust Rj, Rs, Rm, and Rw based on their own constraints. For

example, if the energy limitation is a big concern, the attacker can adopt large absolute

values for Rw and Rs and adopt a small absolute value for Rm. Since hindering the

wireless communication should always be the primary goal of the attacker, Rj and

Rm cannot be zero.

77

3.5.2 RL Algorithm of DeepJam

DeepJam adopts Q-Learning (QL) (Watkins 1989), which is a popular RL algorithm,

to determine the optimal action in a future slot. QL aims to obtain a Q-function

Q(s, a) ≜ E[Ri|si = s, ai = a] (also called Q-value) to calculate the expected maximum

cumulative reward of taking action a at state s. The action with the maximum Q-value

is considered the optimal.

Traditional QL obtains Q-function in a tabular manner which results in long

converge time and thus is not suitable for DeepJam. More specifically, the QL

algorithm must go through all the combinations of slot states and actions to obtain

the Q-function. For example, consider the scenario in Section 3.7 where the slot state

contains the channel status of 10 slots with the slot duration around 2 ms. The QL

algorithm takes at least 2 ms ∗ 2 ∗ 310 ≈ 4 min to converge and obtain the Q-function.

The wireless traffic is highly dynamic, and the temporal pattern is very likely to have

changed before the algorithm converges. So DeepJam cannot use traditional QL.

I adopt Deep Q-Learning (DQL) (Goodfellow, Bengio, and Courville 2016) to

deal with the large state space and approximate the Q-function with a tailored Deep

Neural Network (DNN). The input to the DNN is the slot state, and the outputs

are the Q-values of taking JAM and WAIT actions in the slot. Fig. 20 shows the

structure of DeepJam DNN that contains one LSTM cell and two Fully Connected

(FC) Layers. I also show the input and output dimensions of each layer in the figure.

The LSTM cell (Hochreiter and Schmidhuber 1997) can capture long-time temporal

patterns of the wireless traffic. As mentioned in Section 3.5.1.1, the slot state si

contains the channel status of slots i−NR − 1 to i− 2. Since the slots earlier than

slot i−NR − 1 may also have non-trivial impact on the optimal action in slot i, I use

78

FC layer (32 Neuron)

FC layer (32 Neurons)

Output layer

LSTM cell hidden state

Q-value
of JAM

Q-value
of WAIT

slot state
(1✕NR)

(1✕NR)

(1✕32)

(1✕32)

Figure 20. DeepJam DNN architecture.

the LSTM cell to memorize those early slots without increasing the dimension of the

slot state. In particular, the LSTM cell contains four gates to maintain a hidden state

and calculate the output (Hochreiter and Schmidhuber 1997). The hidden state is

affected by the long-time history of inputs and is updated iteratively based on the

newly coming input. The four gates control how the hidden state is affected by the

newly coming input and how the output is affected by the hidden state. Therefore,

the long-time history of the wireless traffic is memorized by the hidden state of the

LSTM cell and contributes to the prediction of optimal actions. The input and output

of the LSTM cell are all 1 × NR vectors. The output of the LSTM cell is fed into

two FC layers, both of which contain 32 neurons and adopt the Rectified Liner Unit

(ReLU) function as the active functions. The output layer is a linear FC layer that

outputs the Q-values of JAM and WAIT actions.

DeepJam DNN is an estimation of the Q-function, and the training process

iteratively reduces the estimation error. The observation on slot i, including the

state, the action, and the reward, is one training sample, which is denoted by oi =<

si, ai, ri+1 >. I adopt the techniques of separate target network and batch gradient

79

descent to stabilize the training process. I maintain a target network whose structure

is the same as that of DeepJam DNN. The Q-values given by DeepJam DNN and

the target network are denoted by q(s, a; ΘQ) and q′(s, a; Θ′
Q), respectively. Here

ΘQ and Θ′
Q denote the parameter vectors of DeepJam DNN and the target network,

respectively; s denotes the slot state; a denotes the action. With oi as the training

sample, the loss function is defined as follows:

LQ(i, ΘQ) =(ri+1 + γmax
a
q′(si+1, a; Θ

′
Q)− q(si, ai; ΘQ))

2 (3.4)

Loss = (Rewardi+1 + D · max
action

Q′(si+1, action)−Q(si, actioni))
2 (3.5)

where γ ∈ (0, 1] is the discount factor. In each iteration, I update DeepJam DNN’s

parameter vector with a batch containing five training samples, and the batch is

denote by b =< oI(1), oI(2), oI(3), oI(4), oI(5) >, where I(j) is the slot index of the jth

training sample. I update ΘQ as

ΘQ ← ΘQ −
ρQ
5

5∑
j=1

∂LQ(I(j), ΘQ)

∂ΘQ

(3.6)

every iteration and replace Θ′
Q with ΘQ every NΘ iterations. Here ρQ is the learning

rate.

I adopt experience replay (Mnih et al. 2015) to accelerate the training pro-

cess. More specifically, I maintain a memory pool containing the observa-

tions on the latest 500 slots. In the training process, I select 20 batches that

are continuous in time from the memory pool. To be more specific, if the

first batch is b1 =< oI(1), oI(2), oI(3), oI(4), oI(5) >, the mth batch is bm =<

oI(1)+m−1, oI(2)+m−1, oI(3)+m−1, oI(4)+m−1, oI(5)+m−1 >. I use the 20 batches to update

the DNN parameter vector successively, and the whole process is referred to as one

80

epoch. An attacker can conduct multiple epochs in one slot according to his com-

putational capacity. To capture the long-time temporal pattern, I only initialize the

hidden state of the LSTM cell at the beginning of each epoch. I also update the target

network at the beginning of each epoch and keep it stable within one epoch. The

memory pool is updated at the beginning of each slot. I only take WAIT actions in

the first 21 +NR slots to collect training samples, and I use all the past slots as the

memory pool from slot 21 +NR to slot 501 +NR. Here NR is still the aforementioned

dimension of the slot state.

In case that DeepJam DNN gets stuck before converging to the optimal estimation

of the Q-function, I choose actions in an ϵ-greedy manner. In particular, I take action

a = argmaxa q(si, a; ΘQ) in slot i with a probability of 1− ϵ and take the other action

with a probability of ϵ. The hidden state of the LSTM cell is calculated with the

states of the 20 slots that are ahead of slot i. The pseudocode of the DeepJam RL

algorithm is given in Algorithm 1.

3.6 Countermeasures

I propose two countermeasures against DeepJam for networks with different

capabilities.

Networks with advanced devices which have powerful computing capacity can

defeat DeepJam by adopting deep learning-based MAC protocols. The victim device

can learn the attacker’s behavior pattern with DNN and thus predict the slots that are

less likely to be jammed. A more powerful victim can train a defense DNN in advance

with Generative Adversarial Network (GAN) (Goodfellow et al. 2014) which can even

mislead or manipulate the attacker’s behaviors. Specifically, the victim jointly trains

81

Algorithm 1: RL Algorithm of DeepJam
Initialize ϵ, ρQ, γ, NR

Initialize memory pool M
Initialize LSTM hidden state h, DNN parameter vector ΘQ

Copy ΘQ to target network parameter vector Θ′
Q

for slot i in DeepJam do
if i ≤ 21 +NR then

take action WAIT
else

Calculate LSTM hidden state hi
Input si to DNN and output q(si, a; ΘQ) for a ∈ {JAM,WAIT}
Take action according to ϵ-greedy policy
for each epoch do

Initialize LSTM hidden state
Randomly selected 20 continuous batches B
for each batch in B do
ΘQ ← ΘQ −

ρQ
5

∑5
j=1

∂LQ(I(j), ΘQ)

∂ΘQ

end for
Θ′

Q ← ΘQ

end for
end if
Process the signal obtained in slot i− 1
Update si−1, ai−1, and ri to M

end for

two DNNs, including an attack DNN and a defense DNN, in an adversarial manner.

Both DNNs take the traffic history as inputs. The attack DNN simulates the attacker

and predicts the optimal time to generate the next jamming signal just as DeepJam

does. The defense DNN predicts the optimal time to transmit the next MAC frame

and attempts to maximize the throughput of the victim. After sufficient rounds of

competitions, the defense DNN can capture the behavior pattern of the attacker, and

the victim can partially mitigate the attack’s impact by acting according to the defense

DNN’s prediction. However, most COTS IoT devices only have limited computing

capacity and thus cannot adopt the DNN-based countermeasure.

82

I also propose the dynamic network configuration as a simple yet effective coun-

termeasure against DeepJam. As demonstrated in Section 3.7, a sudden change of

wireless traffic can immediately and significantly harm the performance of DeepJam,

and it takes time for DeepJam DNN to converge again. The victim network can

introduce sudden changes to the wireless traffic by changing the network configuration

frequently. Consequently, the DeepJam DNN may never converge, and thus the im-

pact of DeepJam is weakened. my evaluation results show that the dynamic network

configuration can indeed harm the performance of DeepJam. However, the dynamic

network configuration may bring extra management burden to the network.

3.7 Evaluation

This section first introduces the evaluation setup, including the hardware and

software, evaluation metrics, parameter setting, and comparison method. Then I

evaluate my scheme in various scenarios. Since Zigbee networks in different application

scenarios may differ in MAC and CCA methods, I evaluate DeepJam’s performance

under different Zigbee network configurations. I also evaluate the impacts of the WiFi

network’s traffic load and the Zigbee network size. Finally, I evaluate the latency of

DeepJam and the efficiency of the countermeasure.

3.7.1 Evaluation Setup

I implemented DeepJam DNN with PyTorch 1.4 (PyTorch 2004). To make

minimum assumptions about the attacker’s ability, I conducted all the experiments

83

on a COTS personal computer. The computer is equipped with an Intel Core i7-3770

3.4 GHz CPU, where all the computations Ire conducted.

I used two metrics to evaluate DeepJam. The first is hit rate (HR) defined as

HR = Nh/Nj, (3.7)

where Nj denotes the number of slots that are predicted to be TRANSMISSION

and thus jammed by the attacker; Nh denotes the number of the victim’s MAC frames

that are corrupted not by the wireless signal of other devices but by the jamming

signal. In other words, Nh predictions among the Nj TRANSMISSION predictions

are correct, so HR reflects the prediction accuracy of the DeepJam DNN.

I define the second metric jam rate (JR) as

JR = Nh/(Nh +Ns), (3.8)

where Ns denotes the number of the victim’s MAC frames that are successfully

transmitted.

HR measures the ratio of necessary jamming actions, and JR measures the victim’s

throughput decrease due to jamming. The jamming attack is said to be efficient

if both HR and JR are high; i.e., the attacker can significantly reduce the victim’s

throughput with limited energy consumption.

I adopted 0.8, 0.1, -0.8, and -0.3 as Rj , Rs, Rm, and Rw, respectively. The discount

factor and the learning rate are 0.9 and 0.01, respectively. I trained the DNN for five

epochs in each slot. The slot duration Ts equals 2,128 µs, and slot state’s dimension

NR equals 10.

I compare DeepJam with conventional random jamming and reactive jamming as

follows. I first launch DeepJam for 10,000 slots among which N d
j slots are jammed

and calculate the HR and JR, denoted by HRd and JRd. Then I launch random

84

jamming and reactive jamming each for 10,000 slots, aiming to achieve the same jam

rate as DeepJam’s. To be more specific, I jam each slot with a probability of JRd in

random jamming and jam the slot that follows a slot containing a Zigbee preamble

with a probability of JRd in reactive jamming. The number of jamming actions token

in random jamming and reactive jamming are denoted by N ra
j and N re

j , respectively.

I also calculate the hit rates of random jamming and reactive jamming, denoted by

HRra and HRre, respectively. I define a metric jamming-efficiency gain (JEG)

for more straightforward comparison. The JEGs of DeepJam over random jamming

and reactive jamming are defined as JEGd/ra = N ra
j /N d

j and JEGd/re = N re
j /N d

j ,

respectively. JEG measures the advantage of DeepJam over random jamming and

reactive jamming in terms of the jamming actions’ efficiency.

3.7.2 Efficiency of DeepJam

In this subsection, I first compare DeepJam, random jamming, and reactive

jamming in a specific scenario. Then I evaluate the impact of multiple parameters.

3.7.2.1 Performance comparison

The initial configuration of the experiment was as follows. The arrival rate of the

WiFi network was λw = 500 fps. The Zigbee network contained three Zigbee devices,

was beacon-disabled, and adopted CS for CCA. I changed the configuration at slot

5,000 by adjusting λw to 300 fps. The HRs and JRs calculated for every 200 slots are

shown in Fig. 21.

85

0 2000 4000 6000 8000 10000

Time (slot)

0

0.2

0.4

0.6

0.8

P
e
rf

o
rm

a
n
c
e

JR (DeepJam)

HR (DeepJam)

HR (random)

HR (reactive)

Figure 21. Comparison of DeepJam, random jamming, and reactive jamming.

With the initial configuration, DeepJam converged after around 3,100 slots (about

6.3 sec) and achieved an HRd of 0.43 and a JRd of 0.68. The performance of DeepJam

dramatically decreased around slot 5,000 due to the sudden change of wireless traffic,

but DeepJam converged again after about 3.3 sec and achieved an HRd of 0.44 and

a JRd of 0.69. With short converge time, DeepJam can handle the highly dynamic

wireless traffic. DeepJam significantly outperformed random jamming and reactive

jamming with an JEGd/ra of 4.9 and an JEGd/re of 1.7.

To better understand the comparison between DeepJam and reactive jamming, it is

worth noting that reactive jamming is triggered by the detection of Zigbee preambles.

So reactive jamming wastes energy on jamming Zigbee traffic which is not from the

victim device. Besides, some corrupted Zigbee packets contain correct preambles which

also trigger a reactive jammer to launch unnecessary jamming. Therefore, DeepJam

improved the HR of reactive jamming by more than 1.7 times because it can identify

the uncorrupted packets of the victim more accurately.

86

3.7.2.2 Impact of WiFi traffic loads

In the experiment, the Zigbee network contained three Zigbee devices, was beacon-

disabled, and adopted CS for CCA. I first evaluated DeepJam with a congesting WiFi

network (λw = 1, 000 fps) and then repeated the evaluation with the busy and idle

WiFi networks (λw = 500 fps and λw = 100 fps, respectively). For each evaluation, I

launched DeepJam for 50 times. The average converge time and the average HRd and

JRd after convergence are shown in Table 5. The table also lists HRra, HRre, JEGd/ra,

and JEGd/re for comparison.

λw 1,000 fps 500 fps 100 fps
HRd 0.12 0.43 0.45
JRd 0.30 0.67 0.67
Converge time (sec) 15.5 6.9 6.7
HRra 0.03 0.07 0.09
HRre 0.14 0.23 0.26
JEGd/re 4.0 6.1 5.0
JEGd/re 0.86 1.8 1.7

Table 5. Performance with different WiFi traffic loads.

DeepJam performs well with the busy and idle WiFi networks, but its performance

in a congested WiFi network is less satisfactory. I found that 95% of the victim’s

frames were corrupted due to the interference of the congested WiFi network. So the

training samples, i.e., slots, containing uncorrupted transmissions were few, which

resulted in long converge time and poor performance. However, the throughput of

the victim is extremely low when it coexists with a congested WiFi network, so it

does not make sense for the attacker to launch the jamming attack in such a scenario.

DeepJam performs similarly with busy and idle WiFi networks. So I only considered

the busy WiFi network hereafter, which is more common in practice.

87

3.7.2.3 Impact of MAC and CCA methods

The Zigbee network in this experience contained three Zigbee devices, and the

WiFi network was busy. I considered four scenarios: a beacon-enabled Zigbee network

adopting CS (scenario 1), a beacon-enabled Zigbee network adopting ED (scenario 2),

a beacon-disabled Zigbee network adopting CS (scenario 3), and a beacon-disabled

Zigbee network adopting ED (scenario 4). I repeated DeepJam 50 times in each

scenario and calculated the average converge time, HRs, and JRs. The results are

shown in Table 6. The table also lists the corresponding HRra, HRre, JEGd/ra, and

JEGd/re for comparison.

Scenario 1 Scenario 2 Scenario 3 Scenario 4
HRd 0.37 0.40 0.45 0.44
JRd 0.65 0.64 0.72 0.72
Converge time (sec) 7.6 7.1 6.7 6.7
HRra 0.05 0.05 0.08 0.07
HRre 0.23 0.23 0.25 0.24
JEGd/ra 7.4 8.0 5.6 6.2
JEGd/re 1.6 1.7 1.8 1.8

Table 6. Performance with different MAC and CCA methods.

In all scenarios, DeepJam significantly outperformed random jamming and reactive

jamming in terms of energy efficiency and converged within 8 sec. CCA methods

had no significant impact on DeepJam, while the performance of DeepJam with

beacon-disabled Zigbee networks was slightly better than that with beacon-enabled

ones. The main reason is that slotted CSMA/CA is more complex than unslotted

CSMA/CA. In particular, the end of the backoff period is synchronized with slot

boundaries, and the device may conduct CCA multiple times before transmission even

though the channel is idle, resulting in more chaotic wireless traffic. So DeepJam

88

converged slower with beacon-enabled Zigbee networks, and HRd and JRd were both

lower as well. To evaluate DeepJam in the worst case, I considered beacon-enabled

Zigbee networks adopting CS hereafter.

3.7.2.4 Impact of Zigbee devices’ amount ND

This experiment considered a beacon-enabled Zigbee network adopting CS and

an busy WiFi network. I evaluated ND equal to 1, 2, 3, 4, or 5. For each value, I

launched DeepJam 50 times. The average HRs, JRs, and converge time are shown in

Table 7. The table also lists the corresponding HRra, HRre, JEGd/ra, and JEGd/re for

comparison.

ND 1 2 3 4 5
HRd 0.39 0.41 0.37 0.39 0.37
JRd 0.62 0.65 0.65 0.62 0.60
Converge time (sec) 6.3 6.3 6.7 6.7 6.3
HRra 0.23 0.19 0.08 0.06 0.05
HRre 0.71 0.32 0.24 0.18 0.13
JEGd/ra 1.7 2.2 5.6 6.5 7.4
JEGd/re 0.55 1.3 1.8 2.2 2.8

Table 7. Performance with different numbers of Zigbee devices.

DeepJam outperformed random jamming in all scenarios, and the advantage of

DeepJam over reactive jamming became more significant with the increase of ND

(especially for ND ≥ 3). DeepJam achieved an JEGd/re of 2.8 with ND equaled 5.

With the increase of ND, reactive jamming wasted more energy on jamming Zigbee

traffic that was not from the victim, thus decreasing the HRre. In contrast, the impact

of ND on DeepJam was negligible. HRd, JRd, and the converge time of DeepJam were

stable for different ND.

89

3.7.3 Latency

This section evaluated the latency of DeepJam. To launch DeepJam in real time,

the attacker needs to process the data captured in the previous slot, calculate the

output of the deep neural network, and update the deep neural network within one

slot, i.e., 2,128 µs. I denote the time taken to process the captured data, calculate the

DNN output, and update the DNN by Tp, Tc, and Tu, respectively. As mentioned in

Section 3.5, the attacker can finish the three tasks in parallel, so DeepJam is feasible in

real time if max(Tp, Tc, Tu) ≤ 2, 128 µs. As defined in 802.15.4, the interval between

two continuous MAC frames is 40 symbols during which the Zigbee device can process

a MAC frame. I assume that the attacker uses a COTS Zigbee receiver as the monitor,

so Tp is no more than 40 symbols, i.e., 640 µs. In all the aforementioned experiments,

the maximum values of Tc and Tu are 10 µs and 1,870 µs, respectively. Both are less

than 2,128 µs. Therefore, the real-time DeepJam attack is feasible.

3.7.4 Efficiency of Dynamic Network Configuration

Finally, I evaluated the efficacy of the dynamic network configuration countermea-

sure. This section reports the results for two configurations, the backoff unit and the

superframe length. I considered a beacon-enable Zigbee network that adopts CS and

contained 3 Zigbee devices in this experiment.

I first evaluated the efficacy of dynamic backoff units. The backoff units of the

Zigbee network were chosen from {20, 40, 60, 80, 100} samples, and the network

randomly changed the backoff unit every 2 sec. I launched DeepJam in this scenario

for 20 min. The average HRd and JRd were only 0.21 and 0.37, respectively; and the

90

JEGd/ra and JEGd/re were 2.3 and 0.78, respectively. Then I evaluated the dynamic

superframe length, which was randomly chosen from {10,240, 15,360, 20,480, 25,600}

µs every 2 sec. I also launched DeepJam in this scenario for 20 min. The average HRd

and JRd were only 0.16 and 0.23, respectively; and JEGd/ra and JEGd/re were 1.7 and

0.59, respectively.

The performance of DeepJam with dynamic network configurations was much

worse than that with stable network configurations. Due to the network-configuration

changes, the wireless traffic pattern always changed before DeepJam DNN converged,

which effectively weakened DeepJam’s impact. The evaluation results show that

dynamic network configuration is indeed an effective countermeasure against DeepJam.

3.8 Related Work

With the surge of IoT devices, the cross-technology interference has become

a critical problem. There have been many studies evaluating the impact of the

cross-technology interference (Garroppo et al. 2011; Musaloiu-E and Terzis 2008) or

exploring new media access control schemes to mitigate it (Yu, Wang, and Liew 2019;

Zhang and Shin 2011). In this chapter, I focus on another negative consequence of

the cross-technology interference, which makes the wireless network more vulnerable

to the jamming attack.

There has been significant research on jamming attacks and defenses. Traditional

jammers can be classified into constant jammers, deceptive jammers, random jammers,

and reactive jammers (Pelechrinis, Iliofotou, and Krishnamurthy 2010; W. Xu et

al. 2005). A reactive jammer only disrupts the targeted channel upon detection of a

specific signal such as the Zigbee MAC frame header, so it significantly outperforms

91

other categories of jammers in terms of efficiency. In spite of the strict real-time

requirement, researchers have successfully implemented the reactive jammer in the

real environment (Wilhelm et al. 2011). However, the reactive jammer becomes less

efficient in the CTI context. Specifically, the detection-based jamming strategy would

waste energy on jamming the victim’s transmissions which have been disrupted by

CTI and also the transmissions of other devices.

With the surge of deep learning, there have been recent studies adopting deep neural

networks to launch or mitigate the jamming attack (Shi, Sagduyu, et al. 2018; Slimeni

et al. 2015; Machuzak and Jayaweera 2016). The work in (Shi, Sagduyu, et al. 2018)

is the most related to DeepJam. Shi et al. (Shi, Sagduyu, et al. 2018) considered

a slotted cognitive network in which the victim accesses the channel with a deep

learning-based media access control method. They proposed a generative adversarial

network-based jamming strategy which is efficient as shown in their experimental

result. Unlike the scenario considered in (Shi, Sagduyu, et al. 2018), I consider a more

realistic, chaotic scenario with cross-technology interference, in which an unslotted

Wi-Fi network coexists with an unslotted Zigbee network.

3.9 Conclusion

This chapter presents the design of DeepJam, a deep learning-guided jamming

strategy which exploits CTI in complex wireless environments. Detailed evaluations

confirm that DeepJam is more stealthy and energy-efficient than conventional random

and reactive jamming strategies. I also propose two effective countermeasures against

DeepJam.

92

Chapter 4

DRONEKEY: DRONE-AIDED DL-POWERED SCALABLE GROUP-KEY

ESTABLISHMENT FOR LARGE-SCALE IOT NETWORKS

4.1 Overview

The Internet of Things (IoT) networks are finding massive applications in mission-

critical contexts, such as critical infrastructure monitoring, border control and pro-

tection, military reconnaissance, and surveillance. For example, an IoT network

containing thousands of devices is being used to improve the management effective-

ness of the Pendjari National Park over 2,755 km2. Intelligent factories, such as

the Tesla factory, use IoT networks with thousands of or more devices in a large

factory area to facilitate manufacturing process workflows. Moreover, the military

is actively exploring IoT networks for battlefield reconnaissance and border control.

These IoT networks are all large-scale in terms of both the coverage area and device

count. In this chapter, I consider such a large mission-critical IoT network formed by

many distributed groups, each comprising many densely deployed nearby IoT devices.

These devices communicate over the open wireless channel and frequently exchange

broadcast/multicast messages with group peers. So it is necessary to explore a unique

group key to secure broadcast/multicast messages in each group. This chapter focuses

on investigating sound schemes to establish/update the group key of each individual

group in such a large-scale IoT network.

Designing group-key generation (GKG) schemes for large-scale mission-critical

IoT networks faces some essential challenges. First, each group may contain several

93

Group Key- Randomness Real-world
size generation test evaluation

rate

DroneKey
10 89.5 bit/sec

Passed Yes50 50.0 bit/sec
100 36.2 bit/sec

Liu et al.(Liu et
al. 2014)

10 40 bit/sec Passed Yes

Wei et al.(Wei,
Zhu, and Ni 2012)

3 80 bit/sec Unknown Yes

Thai et al.(Thai,
Lee, and Quek
2015)

4 12 bit/sec Unknown No

Xu et al. (P. Xu
et al. 2016)

4 9.4 bit/sec Unknown No

Table 8. The comparison between DroneKey and representative prior work.

tens to hundreds of IoT nodes in a densely deployed network. So the GKG scheme

should be highly scalable to an arbitrary group size. Second, the IoT network can be

totally unattended in remote non-accessible areas, last very long time, and transmit

time-sensitive information. So the GKG scheme should be fast in quickly updating

all the group keys, which can translate into the requirement for a high group-key

generation rate. Third, but not the last, the IoT devices are mostly likely to be

battery-powered. So the GKG scheme should be efficient with low communication

and computation overhead.

Key generation based on wireless physical-layer (PHY) channel characteristics has

received tremendous attention as alternative methods to cryptographic techniques.

Most PHY-based methods such as (Mathur et al. 2008; Jana et al. 2009; Liu et

al. 2013) target pairwise-key generation between two wireless devices. In contrast to

cryptographic techniques based on computational hardness assumptions, these methods

rely on channel reciprocity which refers to that two wireless devices can observe highly

94

correlated variations of the wireless channel between them. Such correlated channel

variations can be used as a common randomness factor for extracting a pairwise key

between the two devices. As long as the eavesdropper is at least half wavelength away

from legitimate devices, it cannot observe the same channel variations for inferring

the pairwise key (Sayeed and Perrig 2008; Tope and McEachen 2001).

PHY-based GKG has also been studied as alternative methods to cryptographic

group-key generation. The most intuitive solution is to generate many PHY-based

pairwise keys to spread a group key across the group. The number of involved pairwise

keys must be greater than the number of devices and can be as large as hundreds in

my context. To defeat sophisticated attacks, each group key in a large-scale mission-

critical IoT network must be frequently updated, so are the involved massive pairwise

keys. The resulting computation and communication overhead is very high, making

this solution inefficient and impractical. Efficient PHY-based GKG is challenging

because the wireless channel variations between any two devices cannot be measured

by any other device more than half-wavelength away from both devices due to channel

reciprocity. It is nearly impossible to find a common wireless channel for many

distributed devices to extract a group key. Some recent schemes (Liu et al. 2014;

Thai, Lee, and Quek 2015; Jagadeesh, Joshi, and Rao 2021) try different ways to

spread the measurements of selected channels to the entire group of devices. These

schemes all require each device to transmit at least one probe packet, and all the

packet transmissions must be finished within the short channel-coherence time which

refers to the time duration in which the channel condition is considered non-varying.

So these schemes are not scalable to a large group. For example, the largest group

size reported in (Liu et al. 2014) is only 10. In addition, the group-key generation

rate highly depends on the channel randomness and is often not satisfactory. The

95

technique in (Liu et al. 2014) is the only one I beware that has passed the NIST

randomness test and been evaluated in real environments. Its group-key generation

rate is about 40 bit/sec according to their experimental setup with only 10 devices.

In this chapter, I propose DroneKey, a novel drone-aided PHY-based GKG

scheme for large-scale mission-critical IoT networks, which is highly scalable, fast,

and efficient. DroneKey explores drones which are increasingly popular and widely

expected to be prevalent equipment in mission-critical IoT systems. Whenever group-

key establishment/rekeying is needed, one or a few drones are dispatched to fly over

the IoT network area and perform random 3D movements while broadcasting wireless

signals to each group. Most drones have embedded WiFi transceivers, which can

be used for signal broadcasting. For a drone without one, a lightweight battery-

powered WiFi router attached to the drone can perform the broadcasting task. So

my scheme is practical in terms of hardware requirements. A group of devices can

receive the same broadcast signals and each extract a Channel State Information

(CSI) stream. A device’s CSI stream characterizes the dynamic variations of the

unique wireless channel between the device and drone, which is mainly induced by fast

drone movement. Although the CSI streams of different devices in a group depend

on their respective channels with the drone, they are all correlated with the drone’s

trajectory and thus indirectly correlated with each other. DroneKey aims to quickly

establish/refresh the group key of each individual group by mining this hidden CSI

correlation.

The design of DroneKey faces two critical challenges. First, the relation among

different CSI streams is highly complex and affected by many factors such as device

locations, hardware features, channel shadowing and fading, and multipath signal

propagation. So it is challenging to extract the hidden CSI correlation for establishing

96

a group key in a distributed fashion. Second, since the drone’s 3D trajectory is the

dominating randomness factor for the group key, a powerful adversary may video-tape

the drone movement to reconstruct the drone trajectory and then the group key. This

trajectory-reconstruction threat is unique to DroneKey.

DroneKey adopts a deep-learning approach with an obfuscation function to address

the above challenges. Within a group, one device is designated as the group head

which can be chosen based on any sophisticated cluster-head selection algorithm in

multi-hop wireless networks (Kang and Nguyen 2012; Thein and Thein 2010). All the

non-head devices in a group are called peer devices. Although some existing correlation

measurement algorithms can be used to measure the correlation between the head’s

and a peer’s CSI streams, they cannot extract a common secret key because their

output is just a single number between -1 and 1 indicating the correlation (Zar 2005;

Abdi 2007). Recent studies show that the Deep Neural Network (DNN) can capture

the correlation between two signals in a more sophisticated manner. For example, Wu

et al. explore DNN to capture the correlation between the gait observations of two

wearables on the same body but at different locations to infer one gait observation

from the other (Wu et al. 2020). So I are motivated to adopt DNN in the DroneKey

design.

DroneKey involves a one-time DNN training process in each group during the

network-initialization phase. In particular, after IoT devices are deployed, one or a

few drones are dispatched to traverse the network along random 3D trajectories while

broadcasting wireless signals that can be received by all devices in each group. Each

group head trains a unique DNN for each of its peer devices based on a confidential

obfuscation function, its own CSI stream, and the CSI stream submitted by the peer

device. The group head then sends the trained DNNs to the corresponding peer

97

devices over a secure channel (Section 4.3.2).2 Since the DNN of each peer device

is closely tied to its relative location to the group head, different peer devices have

diverse DNNs. But these DNNs are trained in a special way that each device in the

same group can obtain the same output as the group key by feeding its CSI stream

into its DNN. Since the obfuscation function is confidential, DroneKey guarantees that

a passive eavesdropper cannot infer the group key from reconstructed CSI streams

through the advanced trajectory-reconstruction attack. The training and distribution

of DNNs are conducted only once during network initialization and not needed in

each subsequent GKG instance. Whenever a new group key is needed, a drone is

dispatched to perform 3D random movement while broadcasting wireless signals to

IoT devices. Each device in a group just autonomously feeds the fresh CSI streams

extracted from new drone signals into their respective DNNs to obtain a new group

key without any interaction with each other.

Although DroneKey involves deep learning, the computational load for each IoT

device is still lightweight. In particular, the one-time DNN training process during

network initialization can be offloaded to a remote server if needed. In each subsequent

GKG instance, each group head only needs to perform one matrix multiplication and

a simple quantification operation to obtain the group key, and each peer device needs

to conduct one DNN forward computation and a similar quantification operation to

obtain the group key. Therefore, DroneKey is a feasible solution for large-scale IoT

networks, which may contain many resource-constrained devices.

I prototype DroneKey and thoroughly evaluate its performance in both indoor

and outdoor settings. The experimental results show that DroneKey can achieve key-

2Note that I only assume the availability of this secure channel during the network-initialization
phase, which cannot be used to distribute new group keys during network operations (Section 4.3.2).

98

generation rates above 75 bit/sec in all the evaluated scenarios, and all the generated

keys can pass the NIST randomness test. Table 8 shows the brief comparisons of

DroneKey with the prior work. DroneKey outperforms the state-of-the-art PHY-based

scheme (Liu et al. 2013) by more than 100% in terms of the key-generation rate for

networks of the same size and can achieve a compatible key-generation rate for a large-

scale IoT network 10 times larger than the networks considered in previous studies.

In addition, I estimate that DroneKey can update all the 256-bit group keys in a large

IoT network of 20,000 devices over a 1 km×1 km area within 42 minutes with just

one drone and 10 minutes with five drones. I also theoretically show that DroneKey

is robust to the RF eavesdropping attack and also the drone-trajectory-reconstruction

attack.

4.2 Background and Feasibility Study

4.2.1 Background of CSI

The PHY wireless channel characteristic at a specific frequency can be repre-

sented by the Channel Frequency Response (CFR). Given a transmitted signal whose

frequency-domain representation is X(f, t), the received signal can be represented

as Y (f, t) = H(f, t) × X(f, t) + N(f, t), where H(f, t) is the CFR at frequency f

measured at time t, and N(f, t) is the noise. H(f, t) is a complex value and can be

represented as H(f, t) = a(f, t)e2πϕ(f,t)j, where a(f, t) and ϕ(f, t) denote the magni-

tude attenuation and phase shift values, respectively. For brevity, I shall abbreviate

magnitude attenuation and phase shift to mag and phase, respectively.

99

CSI measures the CFRs of a wireless channel at the carrier frequency or multiple

subcarrier frequencies. Researchers have proposed many data-aided CSI-estimation

schemes that work with all prevalent wireless techniques (Coleri et al. 2002; Morelli

and Mengali 2001). In those schemes, a predefined pilot signal which is known to the

receiver is transmitted, and the receiver estimates the CSI from its received signal.

By adopting the existing generic CSI-estimation schemes, DroneKey can work with

all prevalent wireless techniques for IoT systems.

4.2.2 Feasibility Study

DroneKey depends on the premise that the CSI streams extracted from the

same broadcast signals but by different receivers are correlated. I use a preliminary

experiment to verify this feasibility. This experiment uses an N210 USRP, which is

attached to a DJI Matrice 100 drone, as the transmitter and two other B210 USRPs

placed three meters apart as two receivers. All the experiments in this chapter use

this DJI drone, so I omit the drone model hereafter. I fly the drone back and forth

between two receivers while the attached USRP keeps broadcasting WiFi packets.

The two receivers keep extracting CSI from each received packet. The two resulting

CSI streams are shown in Fig. 22. For a clear illustration, I process the raw streams

with methods demonstrated in Section 4.4 and only show the processed streams of

the 6th subcarrier here. There are obvious correlations between the two mag streams

and also the two phase streams. So it is quite feasible to extract a common key from

the two CSI streams.

In this chapter, DroneKey assumes wireless techniques based on orthogonal

frequency-division multiplexing (OFDM) which is implemented in all WiFi stan-

100

0 100 200 300 400

sample index

0

0.2

0.4

0.6

m
a
g
 v

a
lu

e

reciever 1

reciever 2

(a) Mag streams.

0 100 200 300 400

sample index

-0.2

0

0.2

0.4

0.6

p
h
a
s
e
 v

a
lu

e

reciever 1

reciever 2

(b) Phase stream.

Figure 22. The correlated CSI streams.

dards post 802.11b. DroneKey can be easily extended to all other prevalent wireless

techniques because they all support the extraction of CSI. The CSI of OFDM-based

wireless networks contains information about multiple subcarriers at different fre-

quencies. In this scenario, the drone movement is the dominating reason for the CSI

changes, and the CSI streams of different subcarriers at the same device are highly

correlated. So DroneKey only uses one subcarrier for group-key generation to ensure

sufficient key randomness. Hereafter, the term “CSI” refers to the CFR of the selected

subcarrier, and each CSI sample is represented with a mag value and a phase value.

101

4.3 System Overview and Adversary Model

4.3.1 System Model

I consider a large-scale IoT network containing thousands of static IoT devices

deployed over a large area for a mission-critical operation. The network is divided

into many distributed groups with each containing several tens to hundreds of nearby

devices. Once the network is deployed, it can be fully unattended during the long

network lifetime.

A drone denoted by D is periodically dispatched to traverse the entire network

along planned routes to refresh the group key of each device group in the network.

Subsequent illustrations focus on one group of devices as shown in Fig. 23. DroneKey

can support an arbitrary number of devices in each group. Without loss of generality,

I assume that the IoT network adopts OFDM-based WiFi for group communications

on the 2.4 GHz band as in the experimental evaluations, but DroneKey can be easily

extended to any other wireless technique (e.g., Bluetooth, Zigbee, and Lora) because

CSI measurement is universally supported.

One device in the group is selected as the group head with any sophisticated

cluster-head selection algorithm in multi-hop wireless networks, and the rest devices

in the group are called peer devices. The group head is denoted by H, and the ith

peer device is denoted by Pi. H needs to be within the communication range of all

the peer devices, but the peer devices do not need. In addition, I assume that the

drone has a large communication range that covers the entire group.

102

peer (P1)

peer (P2)

peer (Pn)

peer (Pn-1)

head (H)drone (D)

Figure 23. The system model of DroneKey.

4.3.2 DroneKey Workflow

DroneKey consists of a one-time initialization stage and subsequent group-key

generation stages, as shown in Fig. 24. The black solid arrows indicate the timelines

of the corresponding devices, and the dashed arrows represent the data exchanges

between devices. The blue color indicates that a data transmission is secured with a

pairwise secret key, and the red color means that a data transmission is in plain text.

The workflows of all the peer devices are the same. So I use the first peer device P1

as the example to demonstrate DroneKey hereafter.

In the initialization stage, D flies randomly within a predefined area while contin-

uously broadcasting WiFi packets. P1 and H each extracts a CSI stream from the

broadcast signal and processes the stream with methods detailed in Section 4.4.2. I

denote these two processed CSI streams of P1 and H by CR
1 and CR

H , respectively.

After obtaining CR
H , H acquires CR

1 from P1, generates a training dataset from CR
1 and

103

Figure 24. The workflow of DroneKey.

CR
H , and finally trains a DNN. The training process involves an obfuscation function

that can enhance DroneKey’s security. This DNN is for the group-key generation at P1,

and I denote it by G1. More details regarding the dataset generation and DNN training

are given in Section 4.5. Moreover, H determines the numbers of quantification bins

from CR
H and CR

1 , which is critical for the group-key generation stage; and the details

are demonstrated in Section 4.6.2. Finally, H sends G1 and the quantification-bin

numbers to P1. The transmissions of CR
1 , G1, and the quantification-bin number

are secured with the pairwise key that can be established with any cryptographic or

PHY-based method (Du et al. 2005; Liu et al. 2013; Diffie and Hellman 1976).

104

There are two remarks to make for network initialization. First, the training and

distribution of DNNs is a one-time process. Second, I only assume the security of

pairwise keys in the very short initialization phase to obviate the need for secure

pairwise-key update schemes. This means that such pairwise keys are unavailable

in subsequent network operations for securely delivering a new group key randomly

selected by the group head to its peer devices.

In each subsequent key-generation stage, P1 acquires the group key K by generating

its own primitive key and adjusting it according to the Error Correction Code (ECC)

broadcast by H. Particularly, D broadcasts WiFi packets while moving randomly, and

P1 and H obtain their processed CSI streams from the broadcast signals. I denote

these two CSI streams of P1 and H by CG
1 and CG

H , respectively. Then H generates

K from CG
H and broadcasts the ECC of K. Next, P1 uses CG

1 as the inputs to G1

and generates its primitive group key K1 from G1’s output. Due to the impacts

of the ambient noise, hardware flaws, and DNN estimation errors, K1 may not be

identical to K. So P1 adjusts K1 according to the ECC broadcast by H in the final

reconciliation step. In the key-generation stage, H and all the peer devices must

extract their CSI streams simultaneously so that their CSI streams are correlated and

can be used to generate a common secret key. Since I use the indexes of WiFi packets

to synchronize different devices’ CSI streams, H and the peer devices do not need to

have synchronous clocks, which is also an advantage of DroneKey over prior work.

DroneKey can renew the group key as needed by repeating the group-key generation

process.

105

4.3.3 Adversary Model

Like all prior PHY-based GKG schemes (Liu et al. 2014; Thai, Lee, and Quek 2015;

Jagadeesh, Joshi, and Rao 2021), I focus on establishing/updating group keys among

randomly deployed wireless devices to secure wireless broadcast/multicast messages.

Without loss of generality, I assume that the first peer device P1 is the attacker’s

target device, and the attacker—denoted by A—aims to obtain the group key K. I

assume a very powerful A with the following capabilities. First, A can deploy wireless

monitors close to H and P1, with which A can overhear all the wireless signals and

may be able to obtain similar copies of H’s and P1’s CSI streams. Second, A is aware

of H’s and P1’s locations and can obtain the trajectories of D with a spy camera.

As demonstrated later, the one-time initialization stage is as short as several

minutes, so it is very hard for the attacker to compromise DroneKey in this short

time window. In addition, the deployment of peer devices usually involves human

effort, and the initialization of a peer device is executed right after it is deployed. It

is reasonable to assume human aid available in the initialization stage. Therefore,

human-involved authentication schemes such as the code-based Bluetooth-like pairing

can be adopted to defeat attacks against the initialization stage. Note that the security

of the short network-initialization phase has been assumed in the extensive literature

such as random key predistribution schemes for sensor networks (Eschenauer and

Gligor 2002). I also assume that A cannot compromise H or P1, which is the same

with all the existing GKG studies. Otherwise, A can directly obtain the group key.

However, I have minimal assumptions about the security of D. In particular, A

can compromise D and control D’s trajectory and the broadcast signal. A can also

106

impersonate D with a malicious drone. Under these assumptions, I consider three

specific attacks as follows.

• Malicious-drone attack. A compromises D and fully controls D’s trajectory

and the broadcast signal. A can also use a malicious drone to mimic D. By

manipulating the drone’s trajectory and broadcast signal, A hopes to infer some

information about the group key K.

• Eavesdropping attack. A eavesdrops on the WiFi channel used by DroneKey

and tries to infer the group key K from the overheard signals.

• Reproduction attack (or drone-trajectory-reconstruction attack). A sets up

an environment similar to DroneKey’s and repeat P1’s initialization and key-

generation processes to reproduce K. Specifically, A flies a drone in the arranged

environment in the same trajectory as D’s and measures CSI streams at the

locations corresponding to those of H and P1. With the obtained CSI streams,

A generates dataset, trains DNN, and generates a secret key as DroneKey does,

hoping that the produced key is identical to K.

DroneKey cannot work when the jamming attack is launched. However, A cannot

obtain K via the jamming attack, and DroneKey still works once the jamming signals

are not present. Therefore, I do not consider the jamming attack in this chapter.

4.4 CSI Extraction and Processing

This section demonstrates the details of CSI extraction and processing. H and

P1 use the same method to extract and process their CSI streams in both stages

of DroneKey. Without loss of generality, I choose the 6th WiFi subcarrier for key

107

generation, and the CSI sample only contains the mag and phase values of this

subcarrier.

4.4.1 CSI Extraction

Among many existing CSI estimation schemes, DroneKey adopts the least-square

equalizer for its low computational complexity (Coleri et al. 2002; Morelli and Mengali

2001). Specifically, D broadcasts successive WiFi packets containing only packet

indexes. The preamble of each packet contains two copies of a predefined training

sample, denoted as XT . Given a received packet, the corresponding CSI sample is

denoted by c and estimated as

c =
Y1 + Y2
2XT

, (4.1)

where Y1 and Y2 are the two received training samples. I use the index of this packet

as c’s index, which can be used to synchronize different devices’ CSI streams. The

CSI sample rate λ, i.e., the number of CSI samples extracted within one second,

equals the packet transmission rate. The network works on the 2.4 GHz band and

can transmit around 140 continuous WiFi packets within one second. So λ is around

140 sample/sec.

4.4.2 CSI Stream Processing

H’s and P1’s raw CSI streams are heavily distorted due to the ambient noise and

hardware flaws. Figs. 25a and 25b show P1’s raw mag and phase streams extracted in

one experiment, in which D first keeps static and then moves randomly. The mag and

phase streams are both distorted by high-frequency noise, and there is a periodically

108

(a) Raw mag stream. (b) Raw phase stream.

(c) Processed mag stream. (d) Processed phase stream.

Figure 25. Raw and processed mag and phase streams.

changing offset in the phase stream. Moreover, some CSI samples corresponding to

heavily interpreted WiFi packets are missing, so the mag and phase streams are not

continuous in time. DroneKey processes the raw mag and phase streams with the

following three steps.

Missing-sample estimation. I detect missing CSI samples based on sample indexes,

estimate a missing sample with the uninterrupted samples around it, and insert the

estimated samples to the original stream.

Phase calibration. After obtaining the continuous CSI stream, I calibrate the phase

stream to remove the phase offset. The phase offset arises from the carrier-frequency

offsets and asynchronous clocks of the transmitter (i.e., drone D) and receiver. As

109

shown in Fig. 25b, the phase offset periodically changes with time. Therefore, I use

the phase samples extracted when the transmitter is static as a profile to calibrate the

phase stream. Specifically, I first estimate the phase-offset changing cycle, denoted as

T , from the profile and then calibrate the phase stream as

ϕn = ϕn − ϕ(n mod T), (4.2)

where ϕn is the nth phase sample in the stream.

For the convenience of phase calibration, I let D keep static for a period before

moving randomly when DroneKey conducts CSI extraction. Experimental results show

that T is always less than two seconds. So I set the static period of D as two seconds.

The profile samples are extracted when D is static and contain little information useful

for group-key generation. So I remove the profile samples from the CSI stream after

the phase calibration.

Low-pass filter. Finally, I remove the high-frequency noise in the mag and phase

streams with low-pass filters. The phase stream is more sensitive to noise and

environmental changes than the mag stream. So the mag and phase filters use different

cutoff frequencies. I denote the mag and phase cutoff frequencies by fA and fϕ,

respectively, which are obtained through experiments. In particular, I use an N210

USRP attached to the drone as the transmitter and two B210 USRPs placed together

as two receivers. The distance between the two receivers is less than three centimeters.

I fly the drone back and forth to the receivers randomly for 20 seconds while the

drone keeps broadcasting WiFi packets. Each receiver extracts one CSI stream and

processes it with missing-sample estimation and phase calibration. I denote these two

processed CSI streams by < A1,Φ1 > and < A2,Φ2 >, where Ai and Φi are the mag

and phase streams of the ith receiver, respectively. I first determine fA with A1 and

A2. The CSI sampling rate is 140 sample/sec. According to the Nyquist–Shannon

110

sampling theorem (Shannon 2001), the highest frequency of the signals contained

in the mag stream is 70 Hz. So I test 70 values ranging from 1 Hz to 70 Hz with a

step of 1 Hz for fA. I use each tested value as fA to filter A1 and A2 and calculate

the correlation between the two filtered mag streams. The distance between the two

receivers is less than half wavelength of the WiFi signal, and their CSI streams should

be highly correlated without the noise’s impact. So a good cutoff frequency should

achieve a high correlation value. However, a low cutoff frequency may filter out too

much information useful for key generation and thus reduce the key-generation rate.

Therefore, I adopt 15 Hz as fA because it is the maximum one among the values that

achieve correlations above 0.9. Similarly, I determine fΦ with Φ1 and Φ2 and adopt

20 Hz as fΦ. The processed mag and phase streams are shown in Figs. 25c and 25d,

respectively, which are continuous in time, smooth, free of noise, and can thus be used

for key generation.

4.5 Key-generation DNN

In the peer device P1’s initialization stage, the group head H trains a DNN for P1

after obtaining P1’s CSI stream CR
1 . Specifically, H first generates a GKG dataset S1

from CR
1 and H’s own CSI stream CR

H . It then trains P1’s DNN G1 with S1. Apart

from generating the dataset and training the DNN, H also determines the number of

quantification bins, which is critical for subsequent key-generation stages. However,

the determination process is closely related to the details of the key-generation stage,

so I defer its details to Section 4.6.2. This section first demonstrates the generation of

S1 and then details the training process of G1.

111

4.5.1 GKG Dataset Generation

I first discuss G1’s function, which determines how the GKG dataset S1 is generated.

In the key-generation stage, the group key K is generated from H’s CSI stream CG
H .

Device P1 uses its CSI stream CG
1 as G1’s input and generates a primitive group key

K1 from G1’s output. Therefore, G1 should be able to estimate some information

related to CG
H from CG

1 , so K1 can be similar to and can be adjusted to K in the

final reconciliation step. To achieve this goal, a training sample for G1 should contain

two elements generated from P1’s and H’s CSI streams, respectively. In the training

process, the element related to P1 is used as G1’s input, and the element related to

H is the target output. For consistence with machine learning concepts, I term the

elements related to P1 and H as the feature and label, respectively.

Now I illustrate the generation of one training sample, and S1 can be obtained by

repeating this process. The training sample contains a feature and a label, which are

two vectors denoted by V f and V l, respectively. I first randomly select a one-second

segment, i.e., 140 continuous CSI samples, from CR
1 and represent it by C̃R

1 . I use

the mag and phase values of the selected samples as the elements of V f which can

be represented as [a(1,1), a(1,2), ..., a(1,140), ϕ(1,1), ϕ(1,2), ..., ϕ(1,140)], where a(1,n) and ϕ(1,n)

are the mag and phase values of the nth CSI sample in C̃R
1 , respectively. Then I select

a one-second segment which is extracted simultaneously with C̃R
1 from CR

H . I use the

sample indexes to synchronize CR
H and CR

1 , and C̃R
1 can be easily obtained. I denote

the selected segment of CR
H by C̃R

H and generate V l from C̃R
H through a more complex

process.

C̃R
H cannot be directly used as the label for two reasons. First, it is hard for G1 to

accurately estimate the fine-grained channel information contained in C̃R
H . Second,

112

directly using C̃R
H as the label is not secure. If I use C̃R

H as the label, G1’s output is

the estimation of H’s CSI stream. As demonstrated later in Section 4.6, P1 obtains

its primitive group key K1 by quantifying G1’s output. Accordingly, I must generate

the group key by quantifying H’s CSI stream. In this case, a powerful attacker who

has obtained a similar copy of H’s CSI stream can easily infer the group key.

To address the aforementioned concerns, I generate V l from C̃R
H through down-

sampling and obfuscation. Specifically, I first down-sample C̃R
H with a ratio of

1 to 10, and the down-sampled segment can be represented as a vector Vd =

[a(H,5), a(H,15), ..., a(H,135), ϕ(H,5), ϕ(H,15), ..., ϕ(H,135)], where aH,n and ϕH,n are the mag

and phase values of the nth CSI sample in C̃R
H , respectively. Then I apply an obfusca-

tion function Λ to Vd to obtain the label vector V l = Λ(Vd). The obfuscation function

can be represented as

Λ(Vd) = VdO

= Vd

OA 0

0 OΦ


=

[
AHOA ΦHOΦ

]
(4.3)

Here, O is a 28×28 matrix and termed as an obfuscation matrix. OA and OΦ are both

14× 14 matrices. AH and ΦH are the first and second half parts of Vd, respectively.

The generated label V l is a 1× 28 vector. I term the whole process converting C̃R
H

to V l as label generation and denote it by Z(C̃R
H , O). H uses the same obfuscation

matrix to generate the group key-training datasets for all the peer devices.

I have two requirements for Λ. First, the information contained in each element

of Vd must be inherited by Λ(Vd). To satisfy this requirement, OA and OΦ must be

full-rank matrices. Second, for the convenience of key quantification demonstrated

later, the ranges of all the elements in AHOA must be the same, and ΦHOΦ should

113

fulfill the same requirement. Since the movement of D is random, the elements in

AH are independent and identically distributed variables with the minimum value

MinA and the maximum value MaxA. The elements in AΦ are also independent and

identically distributed variables with the minimum value MinΦ and the maximum

value MaxΦ. The second requirement can thus be satisfied by requiring that the

sum of OA’s elements and the sum of OΦ’s elements in the same column both equal

one. Besides, I require all the elements in O to be non-negative. With the carefully

designed OA and OΦ, the elements in AHOA are within the range [MinA, MaxA], and

ΦHOΦ’s elements are within the range [MinΦ,MaxΦ].

4.5.2 GKG DNN Training

I adopt a Convolutional Neural Network (CNN) as G1. Due to the random

movement of D, the relations between different CSI samples in the same CSI stream

are not significant, and CNN is thus more suitable for DroneKey than the Recurrent

Neural Network (RNN). G1 contains four hidden layers and one output layer, and

its architecture is shown in Fig. 26. The first hidden layer is a fully connected

layer containing 280 neurons. The second hidden layer is a 1D convolutional layer

without padding. The kernel size and step of the second hidden layer are 1× 5 and 5,

respectively. The third layer is another fully connected layer containing 112 neurons,

and the last hidden layer is a no-padding 1D convolutional layer whose kernel size and

step are 1× 4 and 2, respectively. The four hidden layers all use the ReLU function

as their activation functions. The fully connected output layer contains 28 neurons.

The dimensions of each layer’s input and output are also shown in Fig.26.

114

fully connected layer (280 neurons)

fully connected layer (112 neurons)

1D convolutional layer
(padding = 0, kernel = 5, step = 5)

output layer (28 neurons)

1D convolutional layer
(padding = 0, kernel = 4, step = 2)

feature vector 1 ✕280

1 ✕280

1 ✕56

1 ✕112

1 ✕55

estimated
label vector

1 ✕28

Figure 26. The architecture of a key-generation DNN.

In the training of G1, I adopt the scaled Mean Square Error Loss (MSELoss) as the

loss function. As demonstrated later in Section 4.6.2, H generates the group key K by

quantifying the elements of a key-source vector, denoted as Θ. G1’s output, denoted

as Θ1, is the estimation of Θ. P1 generates its primitive group key by quantifying Θ1’s

elements. Whether a GKG instance can succeed depends on Θ1’s worst element, i.e.,

the element with the largest estimation error. Therefore, I adopt MSELoss to balance

the errors of different elements in G1’s output. Besides, the first and second half parts

of Θ are generated from the mag and phase values, respectively, and they have different

ranges. So does G1’s output. Therefore, I scale the loss function so that the first and

second half parts of G1’s output evenly contribute to the loss value. In particular,

given a training sample whose feature and label vectors are V f = [vf1 , ...v
f
280] and

115

V l = [vl1, ..., v
l
28], respectively, G1’s output is represented as Gi(V

f) = [v̂l1, ..., v̂
l
28], and

the scaled MSELoss l(V l, Gi(V
f)) is calculated as

l(V l, G1(V
f)) =

1

14

14∑
n=1

(
vln − v̂ln

MaxA −MinA

)2

+
1

14

28∑
m=15

(
vlm − v̂lm

MaxΦ −MinΦ

)2.

(4.4)

Loss =
1

14

14∑
n=1

(
vn − v’n

MaxA −MinA
) +

1

14

28∑
m=15

(
vm − v’m

MaxP −MinP
) (4.5)

Here, MinA and MaxA are the minimum and maximum mag values of H’s CSI samples,

respectively. MinΦ and MaxΦ are the minimum and maximum phase values of H’s

CSI samples, respectively.

The training process of G1 consists of multiple epochs. I adopt the Stochastic

Gradient Descent (SGD) optimizer to update G1’s parameters in each epoch and

adopt cross-validation to avoid overfitting. In particular, I equally divide the training

dataset into 10 subsets and randomly select one of them as the validation set in

each epoch. Once the validation set is chosen, I iteratively use every training sample

in the rest nine subsets to calculate the gradients of G1’s parameters and update

these parameters accordingly. To accelerate the training process, I use the average

gradients calculated with 20 training samples to update G1’s parameters. At the end

of each epoch, I calculate the averaged loss value with the training samples in the

validation set and stop the training if the decrease of the loss value after this epoch is

not significant, e.g., when the loss value decreases by less than five percent.

116

4.6 Key Generation and Reconciliation

In the key-generation stage, H and P1 first manage to obtain two related CSI

streams from the same broadcast signals of D and then obtain the group key K through

key generation and reconciliation. I denote H’s and P1’s processed CSI streams by

CG
H and CG

1 , respectively. CG
H and CG

1 are synchronized with sample indexes. Assume

that CG
H and CG

1 are extracted within one second such that they each contains 140

CSI samples. I demonstrate how to generate K from CG
H and CG

1 in this section. To

generate a group key from CSI streams longer than one second, H and P1 can obtain

the key by segmenting their CSI streams, generating a key fragment from each CSI

segment, and finally piecing all the key fragments together in the order of time.

H can directly generate K from CG
H , and P1 acquires K with the aid of H. In

particular, H first generates a group key-source vector ΘH from CG
H . Then H acquires

K by quantifying ΘH ’s elements. Similarly, P1 also first generates its group key-source

vector Θ1 and then acquires its primitive group key K1 by quantifying Θ1’s elements.

Finally, P1 adjusts K1 according to the ECC broadcast by H and acquires K after key

reconciliation. In what follows, I first illustrate the generation of key-source vectors,

then how to quantify them, and finally the key reconciliation process.

4.6.1 Key-source Vector Generation

P1’s group key-source vector Θ1 must be similar to that of H’s (i.e., ΘH) so

that the difference between the extracted K1 and K is subtle and can be mitigated

by ECC. To fulfill this requirement, I use Z(CG
H , O) as ΘH and use G1(C

G
1) as Θ1.

Here, Z and O are the label-generation process and obfuscation matrix explained in

117

Section 4.5.1, respectively. G1(C
G
1) is the output of G1 with CG

1 as the input. As

introduced in Section 4.5.2, G1(C
G
1) is the estimation of Z(CG

H , O), so they are very

close. In addition, Θ1 and ΘH are both 1× 28 vectors.

4.6.2 Key-source Vector Quantification

H obtains K by quantifying the elements of ΘH , and P1 obtains K1 by quantifying

Θ1’s elements. I use ΘH ’s first element, denoted by θ(H,1), as an example to illustrate

the element quantification. I denote the the minimum and maximum values of θ(H,1)

by Minθ1 and Maxθ1 , respectively, and divide the range [Minθ1 ,Maxθ1] to multiple bins.

These bins are represented with a vector B1 = [b(1,0), b(1,1), b(1,2), ..., b(1,M1)], where

b(1,m−1) and b(1,m) are the upper and lower bounds of the mth bin, respectively. b(1,0)

equals Minθ1 , and b(1,M) equals Maxθ1 . M1 is the number of quantification bins for

θ(H,1). In practice, Minθ1 and Maxθ1 are estimated, and θ(H,1) may be outside the

range [Minθ1 ,Maxθ1]. Therefore, I quantify θ(H,1) as

Q(θ(H,1)) =


0, if θ(H,1) < Minθ1 ,

m, if b(1,m) < θ(H,1) ≤ b(1,m+1),

M − 1, if θ(H,1) > Maxθ1 .

(4.6)

H can extract log2(M1) key bits from Q(θ(H,1)) with the gray coding technique (Ye,

Reznik, and Shah 2006). Since Θ1’s first element θ(1,1) is the estimation of θ(H,1), I

also quantify θ(1,1) with B1.

Now I demonstrate how to obtain B1. I first look into the distribution of θ(H,1).

Since ΘH and the label vectors in S1 are all generated from H’s CSI streams with

the same process, I use the distribution of the label vector’s first element vl1 in S1

as the estimated distribution of θ(H,1). Let Fθ(H,1)
(x) = P (θ(H,1) ≤ x) denote θ(H,1)’s

118

Cumulative Distribution Function (CDF). I use the minimum and maximum values

of vl1 as Minθ1 and Maxθ1 , respectively. So b(1,0) and b(1,M) are obtained. Given the

number M1 of the quantification bins, the rest elements of B1 are determined as

Fθ1(b(1,m)) = m/M1. As demonstrated in Section 4.5.1, the first 14 elements of ΘH are

related to the mag values of CG
H with the same ranges. So I adopt the same number of

quantification bins for the first 14 elements of ΘH , which is denoted by MA. For the

same reason, the number of quantification bins for the last 14 elements of ΘH is the

same, which is denoted by MΦ. Since H uses MA and MΦ to quantify its key-source

vector, the peer devices in the network all use MA and MΦ for key-source vector

quantification.

MA and MΦ significantly affect the group key-generation rate. For example, I

can extract log2(MA) valid key bits from θ(H,1), and a large MA results in a high

key-generation rate. However, with the increase of MA, the key-mismatch rate between

H and P1 also increases. Specifically, θ(1,1) is the estimation of θ(H,1) with a deviation

δ(1,1). With the increase of MA, the sizes of quantification bins decrease, the possibility

that θ(1,1) and θ(H,1) fall to different bins increases, and the number of mismatched

key bits increases. If the mismatched key bits cannot be corrected by the ECC, the

group-key generation instance fails.

I determine the optimal values of MA and MΦ for P1 based on the success rate

of P1’s group-key generation and obtain the specific values with experiments. For

convenience of presentation, I term the key bits extracted from the first 14 elements

of ΘH and Θ1 as mag bits and term the key bits extracted from the rest elements

of ΘH and Θ1 as phase bits. A group key-generation instance is successful for P1

only if the mismatched key bits between K1 and K can be corrected by the ECC,

requiring that mismatched mag and phase bits be corrected. I determine MA based

119

on the mag-part success rate, i.e., the possibility that the mismatched mag bits are

correctable. Specifically, I test multiple values for MA and estimate the mag-part

success rate for each tested value with S1. Among the tested values whose mag-part

success rates are above a predefined threshold τs, I select the maximum one as MA.

The value of MΦ can be obtained with a similar experiment using the same threshold

value τs. The determined values of MA and MΦ guarantee that P1 can succeed with a

probability above τ 2s in a group key-generation instance. The details of the experiments

and the numerical results in different scenarios are given in Section 4.8.

The values of MA and MΦ determined with different peer devices’ CSI streams

may be different. After all the peer devices being initialized, DroneKey adopts the

minimum one among the many obtained values of MA as the final MA value and

determines the final MΦ value similarly.

4.6.3 Reconciliation

I use the final reconciliation step to mitigate the deviations between H’s and P ’s

secret keys. Specifically, H calculates K’s ECC, denoted by E(K), and broadcast it.

Then P1 adjusts K1 according to the received ECC. DroneKey adopts the BCH(31,15)

code (Bose and Ray-Chaudhuri 1960) in the evaluation, which allows three mismatched

key bits for every 16 key bits.

120

4.7 Security Analysis

4.7.1 Security against Malicious-drone Attack

In DroneKey, D merely keeps broadcasting wireless signals to serve as a source

for correlated channel randomness and has no other interaction with either the group

head or peer devices. This means that the attacker A gets no information about the

group key K from the compromised D.

A may also manipulate the drone’s trajectory by either compromising D or

mimicking D with a malicious drone, hoping to manipulate K. As long as the

predefined signal is broadcast, the correlation among devices’ CSI streams exists,

and a group key can be obtained by the head and all peer devices. Although the

generated group key is manipulated, A cannot infer the group key without knowing

the key-generation DNN and the obfuscation matrix.

In addition, A may manipulate the broadcast signal. In this case, the correlation

among devices’ CSI streams is broken. The number of unmatched bits between H

and P1 increases and cannot be corrected with the ECC. The GKG instance fails,

and all the devices stay with the old group key until a legitimate drone starts a new

GKG instance. The old group key is unknown to A, so DroneKey is not compromised

either.

4.7.2 Security against Eavesdropping and Reproduction Attacks

Before analyzing DroneKey’s security against eavesdropping and reproduction

attacks, I first discuss how to launch these two attacks effectively. I assume that A

121

is aware of DroneKey’s workflow and the locations of H and P1, so A can obtain

similar copies of H’s and P1’s CSI streams through eavesdropping or reproduction

attacks. Moreover, I assume that A has inferred MA and MΦ, which are the numbers

of quantification bins demonstrated in Section 4.6.2, through the reproduction attack.

Since the group key K is generated from H’s CSI stream CG
H , A tries to infer K from

the obtained copy of CG
H . In addition, I assume that A is lucky enough to obtain an

identical copy of CG
H . However, A has no information about the obfuscation matrix

and can only try random matrices.

I aim to give a lower bound for the number of attempts after which A can certainly

find a matrix, denoted by Ô, that is close enough to O and can thus be used as the

replacement of O to generate group keys. With the same format as O, Ô can be

represented as Ô =

ÔA 0

0 ÔΦ

. Since each element of the key-source vector is the dot

product of V G
d and the corresponding column of O, A can find Ô by searching for all

the columns, i.e., the columns of ÔA and ÔΦ. Here, V G
d is the vector obtained by down-

sampling CG
H and is represented as [aG(H,5), a

G
(H,15), ..., a

G
(H,135), ϕ

G
(H,5), ϕ

G
(H,15), ..., ϕ

G
(H,135)],

where aGH,n and ϕG
H,n are the mag and phase values of the nth CSI sample in CG

H ,

respectively.

I first investigate how many attempts are needed for the attacker to find ÔA’s

first column, which can be denoted by Ô(A,1) = [o1, o2, ..., o14]
′. Also, I represent the

mag values of V G
d as VA = [aG(H,5), a

G
(H,15), ..., a

G
(H,135)]. A uses Q(VAÔ(A,1)) to estimate

Q(θ(H,1)) and generates key bits from Q(VAÔ(A,1)) with gray coding. Here, Q denote

the quantification function, and θ(H,1) is the first element of the group key-source

vector ΘH . I can know θ(H,1) = VAO(A,1), where O(A,1) is the first column of OA. I

denote the key bits generated from θ(H,1) and V G
d O(A,1) as κ and κ̂, respectively. The

122

number of mismatched bits between κ and κ̂ must be less than
3 ∗ len(κ)

16
so that κ̂

can be corrected to κ according to its ECC. Here, len(κ) is the number of key bits

in κ. Experiments show that len(κ) is always less than 32, so κ and κ̂ differ by at

most one bit. In gray coding, two integers’ codes differ in one bit only if they are

adjacent, so I can get Q(θ(H,1))− 1 ≤ Q(VAÔ(A,1)) ≤ Q(θ(H,1)) + 1. For simplicity, I

assume that the quantification bins for Q(θ(H,1)) are of the same size. According to

Eq. (4.6), Ô(A,1) must satisfy the following requirement

VAÔ(A,1) − VAO(A,1) ≤
MaxA −MinA

MA

, (4.7)

where MinA and MaxA denote the minimum and maximum mag values of H’s CSI

samples, respectively. I denote Ô(A,1) −O(A,1) as µ, then I can know

VAµ = VA · µ′

= |VA||µ′| cosω

≤ MaxA −MinA

MA

,

(4.8)

where µ′ is the transpose of µ and ω is the angle between vectors VA and µ′. Since the

drone D’s movement is quite random, the VA’s direction and the angle ω are random.

VA’s elements are non-negative, and experimental results show that MA is always

more than eight. So I reformulate the requirement as

|(Ô(A,1) −O(A,1))
′| ≤ MaxA −MinA

MA ∗ |VA|

≤ MaxA −MinA

MA ∗min(|VA|)

=
1√
14
∗ MaxA −MinA

MA ∗MinA

=
1

8
√
14
∗ MaxA −MinA

MinA

.

(4.9)

Now I talk about A’s strategy searching for Ô(A,1). Without any information

about O(A,1), A’s best strategy is brute-force searching with a grain of
1

γ
, where γ is

123

a positive integer. Specifically, knowing that the sum of Ô(A,1)’s elements equals one,

A tries all the vectors like [
n1

γ
,
n2

γ
, ...,

n14

γ
]′, where ni is called the grain-amount of ith

element. All the grain-amounts are non-negative integers, and
∑14

i=1 ni = γ. Given a

grain
1

γ
, the number of vectors in the searching space can be calculated as

C(γ + 13, 13) =
(γ + 13)!

γ! ∗ 13!
, (4.10)

where γ must be sufficiently small so that at least one of the vectors in the searching

space is close enough to O(A,1) and meets the requirement in Eq. (4.9). Among all the

vectors in the searching space, I denote the one that is closest to O(A,1) as Vc. The

largest possible value of |(Vc−O(A,1)))
′| is
√
14

2γ
. Therefore, I formulate the requirement

for γ as √
14

2γ
≤ 1

8
√
14
∗ MaxA −MinA

MinA

, (4.11)

i.e.,

γ ≥ 56 ∗MinA

MaxA −MinA

. (4.12)

In my experiments, the value of
MinA

MaxA −MinA

is always greater than 0.3, so γ

must be greater than 17. According to Eq. (4.10), the searching space contains more

than 1× 108 vectors. Therefore, A needs to try at least 14× 108 vectors to obtain a

replacement matrix for OA and try even more vectors to obtain a replacement matrix

for O, which is extremely hard. In practice, there is a nontrivial deviation between CG
H

and A’s copy, which makes it even harder to obtain a replacement obfuscation matrix.

Therefore, DroneKey is robust to the eavesdropping and reproduction attacks.

124

4.8 Evaluation

I evaluate DroneKey in this section. In what follows, I first introduce the proto-

type implementation and then measure DroneKey’s key-generation rates in different

scenarios. I also evaluate the randomness and entropy of the generated keys with

the standard NIST runs test and the system overhead of DroneKey. Finally, I give a

theoretical estimation of the time consumed to generate and update the group keys

for a large-scale network based on experimental results.

4.8.1 Implementation

I implement the system in Fig. 23 with three USRPs and a DJI Matrice 100 drone.

Specifically, I attach one N210 USRP to the drone and use them together as D. I use

one B210 USRP as the group head H and another B210 USRP as the peer device P1.

The N210 USRP is connected to a laptop with an Ethernet cable, and the two B210

USRPs are connected to a desktop which has two Intel 4.2 GHz i5 processors where

all the computations are executed. I implement the CSI-estimation tool on GNU

Radio by modifying the open source code of the Wime project (Bloessl et al. 2018)

and implement the group key-generation DNN with PyTorch. The prototype is for

the purpose of evaluation. In practice, D can use its embedded WiFi transceiver or

an attached lightweight battery-powered WiFi router, instead of the USRP, for signal

broadcasting.

125

4.8.2 Performance Metrics

I use three performance metrics, including the key-generation rate, the group-

success rate, and the randomness of the generated keys. I define the key-generation

rate as the number of key bits generated from the CSI samples collected within one sec.

This definition is also adopted in previous studies (Arazi and Qi 2005; Liu et al. 2014;

Thai, Lee, and Quek 2015; Tang, Jiang, and Zou 2017). I define the group-success

rate as the possibility that all the peer devices in the group can obtain a common

key identical to the key generated by H. Correspondingly, I term the possibility

that a specific peer device can obtain the key generated by H as the peer device’s

individual-success rate. Without loss of generality, I assume that P1 is the peer

device whose individual-success rate is the lowest. As recommend by NIST (Rukhin

et al. 2001), I use the runs test for randomness checking and also measure the entropy

of generated key bits.

I conduct experiments with different configurations to evaluate DroneKey’s perfor-

mance in various scenarios. These experiments have the basic procedure and only differ

in specific settings. To avoid redundancy, I use a basic experiment to demonstrate the

common experimental procedure and then present the results for specific additional

settings.

4.8.2.1 Basic Experiment

I conduct the basic experiment in a regular one-story residential house. P1 is

placed 3 m away from H. Since D’s movement is limited by the cable connecting

USRP to the laptop, I fly the drone within a 2 m×2 m×2 m cubic area whose center is

126

around 4 m away from both P1 and H. Hereafter, I refer to the center of D’s moving

area as D’s location.

I first extract H’s and P1’s CSI streams for 5 min and obtain around 40,000 CSI

samples for each of them. Then I generate 10,000 training samples for the training

dataset S1 and train the group key-generation DNN G1.

I also determine the quantification bins’ numbers, i.e., MA andMΦ, from S1 through

massive virtual key-generation instances. For each virtual instance, I randomly select

two synchronized CSI segments, termed as a CSI-segment pair, with each containing

140 CSI samples from H’s and P1’s CSI streams. By repeating this process, I obtain

2,000 CSI-segment pairs. Then the 20 integers between 1 and 20 are used as MA in

turn to generate group keys from the 2,000 CSI-segment pairs. I consider a virtual

instance mag-part successful if the mag bits generated from P1’s segment can be

corrected to those generated from H’s segment with BCH(31,15). Finally, I choose

MA as the highest value whose mag-part success rate is above a threshold τs. Similarly,

I use the same threshold to determine MΦ, and P1’s individual-success rate is thus τ 2s .

Since group-success rate decreases exponentially with the decrease of the individual-

success rate, I adopt 99.5% as τs so that DroneKey can achieve an individual-success

rate above 99% for P1. MA and MΦ are thus set to 12 and 9, respectively, and the

corresponding key-generation rate is around 95 bit/sec.

Finally, I conduct real key-generation instances to verify that DroneKey can indeed

achieve the expected success rate and also check the randomness of the generated

keys. I extract H’s and P1’s CSI streams for 500 sec, which can be considered 500

continuous key-generation instances. For each instance, I extract and compare H’s

and P1’s keys. Only three of the 500 instances fail, and P1’s individual-success rate

is 99.4%, which is above the expectation. Then I piece together the 497 keys from

127

the successful instances in the order of time and obtain a binary sequence containing

around 47,000 bits. This binary sequence passes the runs test with a p-value of 0.69,

which is much larger than the threshold 0.1, and the entropy of each key bits was

0.99. Therefore, DroneKey can generate around 95 random key bits per sec for a peer

device while guaranteeing the individual-success rate of the device is above 99%.

I also measure the DNN training time in the basic experiment. A desktop which

has two Intel 4.1 GHz i5 processors can finish the training within 50 sec. Considering

that each peer device requires a unique DNN, the whole DNN training task for a large

group can cost several hours. This issue can be addressed by offloading the training

task to a remote server. A Dell 7920 Tower server with a Quadro RTX 5000 GPU

can finish the DNN training within 5 sec. For a group containing 100 devices, all the

peer devices’ DNNs can be trained within 8 min, which is acceptable for the one-time

group initialization.

I repeat the basic experiment in the outdoor environment, which is a backyard.

With the same requirement for individual-success rate, DroneKey achieves a key-

generation rate of 99 bit/sec, slightly better than in the indoor environment. This is

because the impact of multipath signals is less significant in the outdoor environment,

and the correlation between H’s and P1’s CSI streams is thus more significant. The

generated keys also pass the runs test with p-value of 0.73, and the entropy of each

key bits is 0.99.

4.8.2.2 Impact of Network Scale.

DroneKey’s performance also relates to the group size and the group-coverage

area.

128

Impact of Group Size. Since the key generations at different peer devices are

independent, the group size does not impact the individual-success rate of a specific

device. However, when the group size increases, the group-success rate may decrease

significantly. Therefore, I use the time consumed to generate 1,000 key bits as the

metric to evaluate the impact of the group size and denote it by Tt. Although a large-

scale IoT network may contain thousands of devices, the number of devices that are

within the communication range of a drone is much smaller. In this evaluation, I assume

that the group size is at most 100, which is much larger than the maximum group

size of 10 reported in previous studies. I also consider the outdoor environment which

is common for large-scale IoT network. I adopt the individual-success rate obtained

in the aforementioned experiment as the minimum individual-success rate of any peer

devices and can thus estimate the time consumption as Tt = 1000/(99 ∗ 0.99N) sec,

where N is the group size. The corresponding values of Tt for N equaling 10, 50, and

100 are 11.17 sec, 20.01 sec, and 27.6 sec, respectively. With the group size increasing

by 400% and 900%, the time consumption only increases by 79.05% and 147.09%,

respectively. For a dense network containing 100 devices, DroneKey can still generate

1,000 key bits within 30 sec. Therefore, DroneKey is scalable with the group size.

Impact of Group-coverage Area. To cover as many devices as possible, H should

be close to the center of the group, and so should D. Therefore, I measure the

group-coverage area with the distance between P1 and D. I first evaluate the group-

coverage’s impact in the indoor environment. In particular, I fix the distance between

H and D as 3 m and increase the distance between P1 and D from 3 m to 7 m

with a step of 0.5 m. Due to the constraints in the environment, I are unable to

evaluate longer distance settings. For each location of P1, I measure the corresponding

key-generation rate and show the results in Fig. 27. Then I repeat the experiment

129

5 10 15 20 25

distance between the drone and peer device (m)

60

80

100

120

K
G

R
 (

b
it
/s

e
c
)

outdoor

indoor

Figure 27. The impact of the group-coverage area.

in the outdoor environment and test 45 distance settings ranging from 3 m to 25 m

with a step of 0.5 m. The results are also shown in Fig. 27. All the generated keys

have passed the randomness check with p-values above 0.65. The results show that

the impact of the group-coverage area is not significant. For a peer device 25 m away

from D, DroneKey can still achieve a key-generation rate above 80 bit/sec. Therefore,

DroneKey is scalable in terms of the group-coverage area.

4.8.2.3 Impact of Environmental Factors

Since CSI is sensitive to environment changes, I evaluate the impact of environ-

mental factors with experiments. Environment changes are usually caused by the

relocation and movements of objects. I consider two common objects including persons

and furniture for the indoor environment, as well as two common objects including

persons and vehicles for the outdoor environment.

Impact of Indoor Environment Changes. I first measure the key-generation rate

of DroneKey in a static indoor environment and use the result as the reference for

comparison. In the experiments, H are placed 3 m away from P1, and D is 4 m away

from both H and P1. One person stands still during the experiment, and there is

130

a 2.5m (H)×2m(W)×1m(D) cabinet in the room. The person and the cabinet do

not block the Line On Sight (LOS) channel between H and D, denoted as channel

H2D, or the LOS channel between P1 and D, denoted as channel P2D. Then I let

the person move to three new locations, denoted as locations A, B, and C. Location

B blocks channel H2D; location C blocks the channel P2D, and location A does not

block either channel. I measure DroneKey’s key-generation rate with the person

standing still in each location. Specifically, I conduct 200 GKG instances for each

location and still uses the key-generation DNN obtained in the reference experiment

to extract the group key. Due to the person’s relocation, unmatched bits between H

and P1 increase, and many GKG instances fail with the key-generation rate equal

to 0 bit/sec. I calculate the average key-generation rate for each location and show

the result in Table 9. After that, the person returns to the original location in the

reference experiment, and I measure DroneKey’s key-generation rates with the cabinet

moved to locations A, B, and C. Finally, I let the person move in the area where

DroneKey is deployed along two trajectories and measure DroneKey’s key-generation

rates accordingly. The person does not block the two LOS channels along trajectory 1

but frequently cuts off the two channels along trajectory 2. Table 9 shows the results

measured in different settings. In the indoor environment, DroneKey’s key-generation

rate slightly decreases due to environment changes. Human movement has the most

significant impact, but DroneKey can still achieve a key-generation rate of 91 bit/sec.

Therefore, DroneKey is robust to indoor environment changes.

Impact of Outdoor Environment Changes. I first measure DroneKey’s key-

generation rate in a reference outdoor setting. Then I change some environmental

factors and measure the corresponding key-generation rates. The locations of H, D,

and P1 are fixed in all the experiments. H is placed 3 m away from P1, and D is 4 m

131

away from both H and P1. There are one person standing still and a static vehicle

in the reference setting, and neither blocks channel H2D or P2D. In the following

experiments, I first let the person stand still in three different locations, denoted as A,

B, and C, and measure the corresponding key-generation rates. Location B blocks

channel H2D; location C blocks the channel P2D; and location A does not block

either channel. Then I let the person return to the original location in the reference

setting, move the vehicle to locations A, B, and C, and measure the corresponding

key-generation rates. Finally, I measure DroneKey’s key-generation rates with a

person or a vehicle moving around. I evaluate trajectories 1 and 2 for the person and

3 and 4 for the vehicle. Trajectories 1 and 3 do not block the two LOS channels, while

trajectories 2 and 4 do. Table 9 shows the key-generation rates measured in different

settings. The movements and relocation of small objects such as humans have no

obvious impact on DroneKey in the outdoor environment. In contrast, the movement

and relocation of large objects, especially metal objects with flat surfaces such as

vehicles, can slightly decrease DroneKey’s key-generation rate. However, DroneKey

still achieves a key-generation rate of 90 bit/sec in the worst case, which significantly

outperforms the existing GKG schemes.

4.8.3 Overhead of DroneKey

This section evaluates DroneKey’s overhead, including the memory cost, the energy

consumption, and the computation and communication overhead.

Memory Cost. D stores the broadcast signal, which is less than 1 KB. H stores the

obfuscation matrix O, MA, and MΦ. MA and MΦ are two float-type numbers, and O

has 392 float-type none-zero elements. So the memory cost for H is less than 2 KB. A

132

Indoor factors Key-generation rate (bit/sec)
Indoor reference 95

Human locations A/B/C 95/95/94
Cabinet locations A/B/C 95/92/93
Human trajectories 1/2 93/91

Outdoor factors Key-generation rate (bit/sec)
Outdoor reference 99

Human locations A/B/C 99/99/97
Vehicle locations A/B/C 97/93/92
Human trajectories 1/2 99/96
Vehicle trajectories 3/4 95/90

Table 9. The impact of environment changes.

peer device stores a key-generation DNN, MA, and MΦ. The DNN contains around

86,000 parameters, each of which is a float-type number. So the memory cost for a

peer device is less than 0.5 MB. The memory cost is trivial for any of the devices

involved in DroneKey.

Energy Consumption. In DroneKey, D can return to a support station for battery

charging or get battery changes after each key-generation instance. So the energy

consumption is not a constraint for D. I only evaluate the energy consumption of the

head and peer devices. The energy consumption mainly results from the computation

and communication, so I evaluate the computation and communication overhead of

the head and peer devices instead.

Computation and Communication Overhead. Since the initialization is con-

ducted once, I only consider the key-generation stage. In one key-generation instance,

H broadcasts the ECC for one time, and no transmission is needed at the peer device.

Therefore, the communication overhead for the whole group is one transmission per

instance. Existing PHY-based GKG schemes all require each device to transmit at

least one probe packet (Liu et al. 2014; Thai, Lee, and Quek 2015; Wei, Zhu, and Ni

133

2012; P. Xu et al. 2016). The communication overhead of these schemes is at least n

transmissions per GKG instance, where n is the number of devices in the group. So

DroneKey has much lower communication overhead than existing GKG schemes.

For each key-generation instance, H needs to perform a matrix multiplication, and

a peer device needs to calculate the output of the key-generation DNN, which involves

three matrix-multiplication operations. The computation overhead of DroneKey is

slightly higher than that of existing PHY-based GKG schemes, which only involve

quantification operations. However, the sizes of the involved matrices are not large,

and the computation task can be easily handled by the processor of most IoT devices.

Therefore, the computation overhead does not impact the deployment of DroneKey.

4.8.4 Whole-network Group-key Generation

A large-scale IoT network consists of many distribute device groups, each of which

needs to refresh its group key frequently. I can estimate the total time it takes to

generate or update the group keys for the entire network based on previous results

for a single group. Assume that the network covers a 1 km×1 km square region in

which 20,000 IoT devices are deployed. The goal is to generate a group key of 256 bits

for each device group, which is a recommended key size of the Advanced Encryption

Standard (AES). Assume that a drone can cover a circle region with a diameter of

100 m (i.e., the typical WiFi transmission range at 2.4 GHz), each corresponding

to the coverage area of a group. The whole network can then be divided into 196

device groups, each containing about 100 IoT devices. I first discuss the scenario in

which only one drone is available. In this case, the drone flies to each device group

one by one to help generate a group key. The distance between the centers of two

134

adjacent device groups is around 71 m, and the speed of a COTS drone can be above

15 m/sec. So the drone movement between two adjacent groups can be finished within

5 sec. According to previous experimental results, the expected time of the drone’s

random movement for generating 256 key bits is 7.07 sec. Since the key-generation

and reconciliation steps do not involve the drone, the drone only needs to stay with

each group for no more than 8 sec. The total time consumption for generating the

group keys of all the groups can thus be estimated as 196× (5 sec+8 sec) = 2, 548 sec,

which is around 42 minutes. The communication range of the drone can be increased

by using a more powerful transmitter. In addition, multiple drones can be dispatched

to assist different groups in parallel. For example, if five drones are used, DroneKey

can update the group keys of the entire network within 10 minutes, which is short

enough for most application scenarios.

4.9 Related Work

Recently, researchers have proposed many GKG schemes for IoT networks. In

addition, a number of earlier GKG schemes proposed for wireless sensor networks can

also be applied to the IoT network. Those schemes mainly fall into two categories

based on cryptography and PHY information, respectively.

The schemes in the first category rely on cryptographic methods to secure the

group-key distribution or agreement. Tubaishat et al. propose a scheme based on

the multi-party Diffie–Hellman protocol (Tubaishat et al. 2004). In this scheme, a

head device generates the group key after accumulating the rest devices’ partial keys.

The transmissions of both partial keys and the final group key to each device rely

on pairwise key-based encryption. Public key cryptography is used to distribute the

135

group key in (Seo et al. 2014) and (Bao et al. 2014). Zhu et al. propose a scheme

that first establishes pairwise keys between the head device and each other device,

and then the group key can be distributed (Zhu, Setia, and Jajodia 2006). In the

context of large-scale IoT networks, a large amount of pairwise keys and public-private

key pairs involved in (Tubaishat et al. 2004; Seo et al. 2014; Bao et al. 2014; Zhu,

Setia, and Jajodia 2006) must be updated for each group-key update instance, making

those schemes impractical in the considered context. In contrast, DroneKey also

uses pairwise keys to secure the very short initialization stage and has no need for

pairwise-key updates, so it is a more practical GKG solution for large-scale IoT

networks.

Researchers have also proposed many cryptographic schemes not involving pairwise

keys. Wen et al. propose a Bloom’s matrix-based GKG scheme, in which a matrix

is pre-shared among a group of devices and can be used for subsequent group-key

generation (Wen et al. 2009). Teo et al. explore the Burmester-Desmedt group-key

agreement method to generate a common key for devices forming a circular hierarchical

group (Teo and Tan 2005). Those schemes require multiple rounds of communications

involving all the devices and also incur heavy computation load when the group size is

large. By comparison, DroneKey is efficient in both communication and computation.

In terms of the communication overhead, DroneKey only requires the group head

to broadcast the ECC in the group-key generation stage. As for the computation

load, the group head performs a matrix multiplication and a simple quantification

operation to obtain the group key, and each peer device conducts the DNN forward

computation for one time and a similar quantification operation to obtain the group

key. All the involved calculations are lightweight and suitable for resource-constrained

IoT devices.

136

The PHY-based GKG schemes adopt the channel variations of one or multiple

channels in the network as the randomness factor, from which the group key is

generated. The PHY information is first explored to establish pairwise keys between

two devices, and many secure and efficient schemes have been proposed (Hershey,

Hassan, and Yarlagadda 1995; Sayeed and Perrig 2008; Liu et al. 2013; J. Zhang

et al. 2016). There is also effort to achieve PHY-based GKG. The most intuitive

solution is generating enough pairwise keys which can be used to distribute a group

key from device to device. The scheme in (Li, Hu, and Hu 2019) follows this idea.

The authors propose to first establish pairwise keys between a virtual center node

and each of the rest nodes in a star network or between each node and its two

neighbors in a chain network. Then the pairwise keys are used to securely transmit a

random group key from device to device. Their scheme is not practical for large-scale

IoT networks because a huge number of pairwise keys must be established in each

group-key generation instance, which can consume significant time. Researchers have

also proposed to spread the measurements of selected channels to the entire group

of devices. Specifically, each device broadcasts a signal which can be obtained by

fusing the measurements of multiple channels (Liu et al. 2013; Thai, Lee, and Quek

2015) or splitting the measurement of one channel (P. Xu et al. 2016). A legitimate

device can infer the measurements of selected channels from the broadcast signals,

while an attacker cannot. However, these methods require that each device transmit

at least one probe packet in a group-key generation instance, and all the packets must

be transmitted within the short channel coherent time without interfering with each

other. So these schemes are not scalable to a large group in a dense IoT network

either.

137

4.10 Conclusion

In this chapter, I propose DroneKey, a drone-aided PHY-based GKG scheme for

large-scale mission-critical IoT networks. I use a randomly moving drone to introduce

a randomness factor, which can be acquired by the entire group of devices and thus be

used as the common randomness source for generating group keys. In particular, the

CSI streams extracted from the same broadcast signals but by different devices are

all correlated to the drone’s movement and inherently correlated with each other. I

adopt the deep-learning technique to capture the correlations among the CSI streams

of different devices in a group, which guarantee the consistency of their individually

generated keys. DroneKey involves a single broadcast message by the group head

and no other message exchange within the group, so it is highly scalable with the

group size. In case that a powerful attacker may obtain the drone’s trajectory and

infer the group key, I adopt an obfuscation function to enhance DroneKey’s security

and theoretically prove that DroneKey is robust against both eavesdropping and

trajectory-reproduction attacks.

I build a prototype and evaluate DroneKey’s performance in multiple scenarios.

DroneKey can achieve a group-key generation rate over 85 bit/sec in most evaluated

scenarios, significantly outperforming the state-of-the-art prior work. According to the

experimental results, DroneKey is scalable in terms of the group size and network scale.

Moreover, I estimate the time consumption of generating and updating group keys

for an extremely large-scale IoT network covering a region of 1 km2 and containing

20,000 devices. According to the estimation, the group-key update can be finished

within 43 minutes, and the time consumption can be further reduced to 10 minutes

138

by involving multiple drones that are equipped with signal amplifiers. In summary,

DroneKey is a scalable, fast, and efficient GKG solution for large-scale IoT networks.

139

Chapter 5

CONCLUSION AND SUMMARY

This dissertation is an attempt to improve the security of IoT systems with AI-

powered schemes and also sounds the alarm about the AI-posed threats to IoT security.

On the one hand, Chapters 2 and 4 are two examples of AI-powered IoT security

designs. In particular, data mining techniques are explored in Chapter 2 to improve

the device identification accuracy in acoustic mobile authentication. Deep neural

networks are used in Chapter 4 to extract a common key from indirectly related

wireless signals, which enables a scalable group key generation scheme. On the other

hand, DeepJam proposed in Chapter 3 shows that the advancement in AI also poses

new threats to IoT systems. This DL-guided jamming attack is more stealthy and

thus more threatening than traditional jamming attacks.

The work presented in this dissertation is far from perfect, and several challenges

remain to be addressed in the future research. First, integrating AI in IoT systems may

expose new attack surfaces. In particular, AI itself is vulnerable to many well-known

attacks such as adversarial samples, the backdoor attack, and membership inference,

so an AI-based system may also suffer from the same vulnerabilities. AI security in

the context of IoT will be one focus of my future research. Second, the adoption of

AI techniques such as deep learning places additional burdens on IoT systems. For

example, the DNN model training consumes non-trivial power and time, and an IoT

device needs extra memory to store the DNN model. A resource-constrained IoT

system may not be able to afford these costs. In light of this, efficient and sustainable

AI techniques for IoT will be another focus of my future research.

140

REFERENCES

Abdi, H. 2007. “The Kendall Rank Correlation Coefficient.” Encyclopedia of Measure-
ment and Statistics, 508–510.

Arazi, O., and H. Qi. 2005. “Self-certified group key generation for ad hoc clusters in
wireless sensor networks.” In IEEE INFOCOM. Miami, FL, March.

Aurelle, N., D. Guyomar, C. Richard, P. Gonnard, and L. Eyraud. 1996. “Nonlinear
behavior of an ultrasonic transducer.” Ultrasonics 34 (2-5): 187–191.

Ba, Z., S. Piao, X. Fu, D. Koutsonikolas, A. Mohaisen, and K. Ren. 2018. “ABC:
Enabling Smartphone Authentication with Built-in Camera.” In NDSS. San Diego,
CA, February.

Bao, X., J. Liu, L. She, and S. Zhang. 2014. “A key management scheme based on
grouping within cluster,” 3455–3460.

Beranek, L., and T. Mellow. 2012. Acoustics: sound fields and transducers. Academic
Press.

Bloessl, B., M. Segata, C. Sommer, and F. Dressler. 2018. “Performance assessment of
IEEE 802.11p with an open source SDR-based prototype.” IEEE Transactions
on Mobile Computing 17 (5): 1162–1175.

Bojinov, H., Y. Michalevsky, G. Nakibly, and D. Boneh. 2014. “Mobile device identifi-
cation via sensor fingerprinting.” arXiv preprint arXiv:1408.1416.

Bose, C., and D. Ray-Chaudhuri. 1960. “On a class of error correcting binary group
codes.” Information and control 3 (1): 68–79.

Brik, V., S. Banerjee, M. Gruteser, and S. Oh. 2008. “Wireless device identification
with radiometric signatures.” In ACM MobiCom, 116–127. San Francisco, CA,
September.

Chen, D., N. Zhang, Z. Qin, X. Mao, Z. Qin, X. Shen, and X. Li. 2017. “S2M: A
lightweight acoustic fingerprints-based wireless device authentication protocol.”
IEEE Internet of Things Journal 4 (1): 88–100.

Chen, S., K. Zeng, and P. Mohapatra. 2010. “Jamming-resistant communication:
channel surfing without negotiation.” In 2010 IEEE International Conference on
Communications, 1–6. IEEE.

141

Chen, W., and Q. Wu. 2010. “A proof of MITM vulnerability in public WLANs
guarded by captive portal.” Asia-Pacific Advanced Network 30:66–70.

Chen, Y., W. Xu, W. Trappe, and Y. Zhang. 2009. A Brief Survey of Jamming and
Defense Strategies, 1–26. Springer.

Coleri, S., M. Ergen, A. Puri, and A. Bahai. 2002. “Channel estimation techniques based
on pilot arrangement in OFDM systems.” IEEE Transactions on Broadcasting
48, no. 3 (September): 223–229.

Czeski, A., M. Dietz, T. Kohno, D. Wallach, and D. Balfanz. 2012. “Strengthening
User Authentication through Opportunistic Cryptographic Identity Assertions.”
In ACM CCS. Raleigh, NC, October.

Das, A., and N. Borisov. 2016. “Tracking mobile web users through motion sensors:
Attacks and defenses.” In NDSS. February, San Diego, CA.

Das, A., N. Borisov, and M. Caesar. 2014. “Do You Hear what I Hear?: Fingerprint-
ing Smart Devices Through Embedded Acoustic Components.” In ACM CCS.
Scottsdale, AZ, November.

Derham, T., S. Doughty, K. Woodbridge, and C. Baker. 2007. “Design and evaluation
of a low-cost multistatic netted radar system.” IET Radar, Sonar & Navigation
1, no. 5 (October).

Dey, S., N. Roy, W. Xu, R. Choudhury, and S. Nelakuditi. 2014. “AccelPrint: Imper-
fections of Accelerometners Maks Smartphones Trackable.” In NDSS. San Diego,
CA, February.

Diffie, W., and M. Hellman. 1976. “New directions in cryptography.” Transactions on
Information Theory 22 (6): 644–654.

Du, W., J. Deng, Y. Han, P. Varshney, J. Katz, and A. Khalili. 2005. “A pairwise key
predistribution scheme for wireless sensor networks.” Transactions on Information
and System Security (TISSEC) 8 (2): 228–258.

Eschenauer, L., and V. Gligor. 2002. “A key-management scheme for distributed sensor
networks.” In ACM CCS, 41–47. Washington, DC, November.

Garroppo, R., L. Gazzarrini, S. Giordano, and L. Tavanti. 2011. “Experimental assess-
ment of the coexistence of Wi-Fi, ZigBee, and Bluetooth devices.” In International
Symposium on a World of Wireless, Mobile and Multimedia Networks, 1–9. IEEE.

Goodfellow, I., Y. Bengio, and A. Courville, eds. 2016. Deep learning. MIT press.

142

Goodfellow, I., J. Pouget, M. Mirza, B. Xu, D. Wardeand S. Ozair, A. Courville, and
Y. Bengio. 2014. “Generative adversarial nets.” In Advances in neural information
processing systems, 2672–2680.

Gunson, N., D. Marshall, H. Morton, and M. Jack. 2011. “User perceptions of security
and usability of single-factor and two-factor authentication in automated telephone
banking.” Computers & Security 30, no. 4 (June): 208–220.

Han, D., Y. Chen, T. Li, R. Zhang, Y. Zhang, and T. Hedgpeth. 2018. “Proximity-
Proof: Secure and Usable Mobile Two-Factor Authentication.” In ACM MobiCom.
New Delhi, India, October.

Han, D., A. Li, L. Zhang, Y. Zhang, J. Li, T. Li, R. Zhang, and Y. Zhang. 2021.
“(In)secure Acoustic Mobile Authentication.” IEEE Transactions on Mobile Com-
puting.

Hershey, J., A. Hassan, and R. Yarlagadda. 1995. “Unconventional cryptographic
keying variable management.” IEEE Transactions on Communications 43 (1):
3–6.

Hochreiter, S., and J. Schmidhuber. 1997. “Long short-term memory.” Neural compu-
tation 9 (8): 1735–1780.

Hristo, B., M. Yan, N. Gabi, and B. Dan. 2014. “Mobile device identification via sensor
fingerprinting.” arXiv preprint arXiv:1408.1416.

Jagadeesh, H., R. Joshi, and M. Rao. 2021. “Group secret-key generation using
algebraic rings in wireless networks.” IEEE Transactions on Vehicular Technology
70 (2): 1538–1553.

Jana, S., S. Premnath, M. Clark, S. Kasera, N. Patwari, and S. Krishnamurthy. 2009.
“On the effectiveness of secret key extraction from wireless signal strength in real
environments.” In ACM MobiCom. Beijing, China, September.

Kang, S., and T. Nguyen. 2012. “Distance based thresholds for cluster head selection
in wireless sensor networks.” IEEE Communications Letters 16 (9): 1396–1399.

Karapanos, N., C. Marforio, C. Soriente, and S. Capkun. 2015. “Sound-Proof: Usable
Two-Factor Authentication Based on Ambient Sound.” In USENIX Security.
Washington, DC, August.

Kulpa, K. 2006. “Continuous wave radars-monostatic, multistatic and network.”
Advances in Sensing with Security Applications, 215–242.

143

Li, G., L. Hu, and A. Hu. 2019. “Lightweight group secret key generation leveraging
non-reconciled received signal strength in mobile wireless networks.” In IEEE
ICC, 1–6. Shanghai, China, May.

Lin, Q., Z. An, and L. Yang. 2019. “Rebooting Ultrasonic Positioning Systems for
Ultrasound-incapable Smart Devices.” In ACM MobiCom. Los Cabos, Mexico,
October.

Liu, H., Y. Wang, J. Yang, and Y. Chen. 2013. “Fast and practical secret key extraction
by exploiting channel response.” In IEEE INFOCOM. Turin, Italy, April.

Liu, H., J. Yang, Y. Wang, Y. Chen, and C. Koksal. 2014. “Group secret key generation
via received signal strength: Protocols, achievable rates, and implementation.”
IEEE Transactions on Mobile Computing 13 (12): 2820–2835.

Machuzak, S., and S. Jayaweera. 2016. “Reinforcement learning based anti-jamming
with wideband autonomous cognitive radios.” In 2016 IEEE/CIC International
Conference on Communications in China (ICCC), 1–5. IEEE.

Mao, W., J. He, and L. Qiu. 2016. “CAT: High-Precision Acoustic Motion Tracking.”
In ACM MobiCom. New York, NY, USA, October.

Mathur, S., W. Trappe, N. Mandayam, C. Ye, and A. Reznik. 2008. “Radio-telepathy:
Extracting a secret key from an unauthenticated wireless channel.” In ACM
MobiCom. San Francisco, California, September.

Mnih, V., K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, M. Bellemare, A. Graves, M.
Riedmiller, A. Fidjeland, and G. Ostrovski. 2015. “Human-level control through
deep reinforcement learning.” Nature 518 (7540): 529–533.

Morelli, M., and U. Mengali. 2001. “A comparison of pilot-aided channel estimation
methods for OFDM systems.” IEEE Transactions on Signal Processing 49, no.
12 (December): 3065–3073.

Musaloiu-E, R., and A. Terzis. 2008. “Minimising the effect of WiFi interference in
802.15. 4 wireless sensor networks.” International Journal of Sensor Networks 3
(1): 43–54.

Nandakumar, R., V. Iyer, D. Tan, and S. Gollakota. 2016. “FingerIO: Using Active
Sonar for Fine-Grained Finger Tracking.” In ACM CHI. San Jose, CA, May.

144

Pelechrinis, K., M. Iliofotou, and S. Krishnamurthy. 2010. “Denial of service attacks
in wireless networks: The case of jammers.” IEEE Communications surveys &
tutorials 13 (2): 245–257.

Peng, C., G. Shen, Y. Zhang, Y. Li, and K. Tan. 2007. “BeepBeep: A High Accuracy
Acoustic Ranging System using COTS Mobile Devices.” In ACM Sensys. Sydney,
Australia., November.

Polak, A., S. Dolatshahi, and D. Goeckel. 2011. “Identifying wireless users via trans-
mitter imperfections.” IEEE Journal on selected areas in communications 29 (7):
1469–1479.

PyTorch. 2004. Https://pytorch.org/.

Remley, K., C. Grosvenor, R. Johnk, D. Novotny, P. Hale, M. McKinley, A. Karygian-
nis, and E. Antonakakis. 2005. “Electromagnetic signatures of WLAN cards and
network security.” International Symposium on Signal Processing and Information
Technology, IEEE, 484–488.

Roy, N., H. Hassanieh, and R. Roy Choudhury. 2017. “Backdoor: Making microphones
hear inaudible sounds.” In ACM MobiSys. Niagara Falls, NY, June.

Roy, N., S. Shen, H. Hassanieh, and R. Choudhury. 2018. “Inaudible voice commands:
the long-range attack and defense.” In USENIX. Baltimore, MD, August.

Rukhin, A., J. Soto, J. Nechvatal, M. Smid, and E. Barker. 2001. A statistical test suite
for random and pseudorandom number generators for cryptographic applications.
Https://csrc.nist.gov/publications/detail/sp/800-22/rev-1a/final. Booz-allen and
hamilton inc mclean va.

Sayeed, A., and A. Perrig. 2008. “Secure wireless communications: Secret keys through
multipath.” In ICASSP. Las Vegas, NV, March.

Seo, S., J. Won, S. Sultana, and E. Bertino. 2014. “Effective key management in
dynamic wireless sensor networks.” Transactions on Information Forensics and
Security 10 (2): 371–383.

Shannon, C. 2001. “A mathematical theory of communication.” ACM SIGMOBILE
mobile computing and communications review 5 (1): 3–55.

Shi, Y., K. Davaslioglu, and Y. Sagduyu. 2019. “Generative adversarial network for
wireless signal spoofing.” In ACM Workshop on Wireless Security and Machine
Learning, 55–60.

145

Https://pytorch.org/
Https://csrc.nist.gov/publications/detail/sp/800-22/rev-1a/final

Shi, Y., T. Erpek, Y. Sagduyu, and J. Li. 2018. “Spectrum data poisoning with
adversarial deep learning.” In Military Communications Conference, 407–412.
IEEE.

Shi, Y., Y. Sagduyu, T. Erpek, K. Davaslioglu, Z. Lu, and J. Li. 2018. “Adversarial
deep learning for cognitive radio security: Jamming attack and defense strategies.”
In International Conference on Communications Workshops, 1–6. IEEE.

Shirvanian, M., S. Jarecki, N. Saxena, and N. Nathan. 2014. “Two-Factor Authentica-
tion Resilient to Server Compromise Using Mix-Bandwidth Devices.” In NDSS.
San Diego, CA, February.

Slimeni, F., B. Scheers, Z. Chtourou, and V. Le. 2015. “Jamming mitigation in cognitive
radio networks using a modified Q-learning algorithm.” In 2015 International
Conference on Military Communications and Information Systems (ICMCIS),
1–7. IEEE.

Sutton, R., and A. Barto. 2018. Reinforcement learning: An introduction. MIT press.

Szabo, T. 1994. “Time domain wave equations for lossy media obeying a frequency
power law.” The Journal of the Acoustical Society of America 96 (1): 492–500.

Tang, T., T. Jiang, and Wei. Zou. 2017. “Group secret key generation in physical layer,
protocols and achievable rates.” In IEEE ISCIT. Cairns, Australia, September.

Teo, J., and C. Tan. 2005. “Energy-efficient and scalable group key agreement for
large ad hoc networks.” In Proceedings of the 2nd ACM international workshop
on performance evaluation of wireless ad hoc, sensor, and ubiquitous networks,
114–121.

Thai, C., J. Lee, and T. Quek. 2015. “Secret group key generation in physical layer
for mesh topology.” In IEEE GLOBECOM. San Diego, CA, December.

Thein, M., and T. Thein. 2010. “An energy efficient cluster-head selection for wireless
sensor networks.” In IEEE ISMS, 287–291. Liverpool, UK, January.

Tope, M., and J. McEachen. 2001. “Unconditionally secure communications over
fading channels.” In IEEE MILCOM. McLean, VA, October.

Tubaishat, M., J. Yin, B. Panja, and S. Madria. 2004. “A secure hierarchical model
for sensor network.” Sigmod Record 33 (1): 7–13.

146

Wang, Q., K. Ren, M. Zhou, T. Lei, D. Koutsonikolas, and L. Su. 2016. “Messages
Behind the Sound: Real-Time Hidden Acoustic Signal Capture with Smartphones.”
In ACM MobiCom. New York City, NY, October.

Wang, W., and H. Shao. 2013. “Performance prediction of a synchronization link
for distributed aerospace wireless systems.” The Scientific World Journal 2013
(July).

Watkins, C. 1989. Learning from delayed rewards. King’s College, Cambridge.

Wei, T., and X. Zhang. 2015. “mtrack: High-precision passive tracking using millimeter
wave radios.” In ACM MobiCom. Paris, France, September.

Wei, Y., C. Zhu, and J. Ni. 2012. “Group secret key generation algorithm from wireless
signal strength.” In IEEE ICICSE, 239–245. Zhengzhou, China, April.

Weir, C., G. Douglas, T. Richardson, and M. Jack. 2009. “Usable security: User
preferences for authentication methods in eBanking and the effects of experience.”
Interacting with Computers 22, no. 3 (October): 153–164.

Wen, M., Y. Zheng, W. Ye, K. Chen, and W. Qiu. 2009. “A key management protocol
with robust continuity for sensor networks.” Computer Standards & Interfaces 31
(4): 642–647.

Wilhelm, M., I. Martinovic, J. Schmitt, and V. Lenders. 2011. “Short paper: reactive
jamming in wireless networks: how realistic is the threat?” In WiSec. Hamburg,
Germany, June.

Wu, Y., Q. Lin, H. Jia, M. Hassan, and W. Hu. 2020. “Auto-Key: Using autoencoder
to speed up gait-based key generation in body area networks.” ACM, Interactive,
Mobile, Wearable and Ubiquitous Technologies 4 (1): 1–23.

Xu, P., K. Cumanan, Z. Ding, X. Dai, and K. Leung. 2016. “Group secret key generation
in wireless networks: algorithms and rate optimization.” IEEE Transactions on
Information Forensics and Security 11 (8): 1831–1846.

Xu, W., W. Trappe, Y. Zhang, and T. Wood. 2005. “The feasibility of launching
and detecting jamming attacks in wireless networks.” In ACM MobiHoc. Urbana-
Champaign, IL, May.

Yan, Q., H. Zeng, T. Jiang, M. Li, W. Lou, and T. Hou. 2016. “Jamming resilient
communication using MIMO interference cancellation.” IEEE Transactions on
Information Forensics and Security 11 (7): 1486–1499.

147

Ye, C., A. Reznik, and Y. Shah. 2006. “Extracting secrecy from jointly Gaussian
random variables.” In IEEE ISIT. Seattle, WA, July.

Yu, Y., T. Wang, and S. Liew. 2019. “Deep-reinforcement learning multiple access for
heterogeneous wireless networks.” Journal on Selected Areas in Communications
37 (6): 1277–1290.

Zar, J. 2005. “Spearman rank correlation.” Encyclopedia of Biostatistics 7.

Zhang, G., C.Yan, X. Ji, T. Zhang, T. Zhang, and W. Xu. 2017. “DolphinAttack:
Inaudible voice commands.” In ACM CCS. Dallas,TX, October.

Zhang, J., A. Marshall, R. Woods, and T. Duong. 2016. “Efficient key generation by
exploiting randomness from channel responses of individual OFDM subcarriers.”
IEEE Transactions on Communications 64 (6): 2578–2588.

Zhang, X., and K. Shin. 2011. “Enabling coexistence of heterogeneous wireless systems:
Case for ZigBee and WiFi.” In Proceedings of the Twelfth ACM International
Symposium on Mobile Ad Hoc Networking and Computing, 1–11.

Zhao, S., Z. Lu, Z. Luo, and Y. Liu. 2019. “Orthogonality-Sabotaging Attacks against
OFDMA-based Wireless Networks.” In INFOCOM. Paris, France: IEEE, April.

Zhou, X., X. Ji, C. Yan, J. Deng, and W. Xu. 2019. “NAuth: Secure Face-to-Face
Device Authentication via Nonlinearity.” In INFOCOM. Paris, France, April.

Zhou, Z., W. Diao, X. Liu, and K. Zhang. 2014. “Acoustic Fingerprinting Revis-
ited: Generate Stable Device ID Stealthy with Inaudible Sound.” In ACM CCS.
Scottsdale, AZ, November.

Zhu, S., S. Setia, and S. Jajodia. 2006. “LEAP+: Efficient security mechanisms for
large-scale distributed sensor networks.” Transactions on Sensor Networks 2 (4):
500–528.

148

	Table of Contents
	List of Tables
	List of Figures
	Chapter
	1 Introduction
	2 The Security and Usability of Acoustic Mobile Authentication
	2.1 Overview
	2.2 System and Adversary Models
	2.2.1 A Generic Acoustic Mobile Authentication Model
	2.2.2 Adversary Model

	2.3 FRC-based Mobile Authentication: Proximity-Proof
	2.3.1 Attacks Against Proximity-Proof
	2.3.2 Proximity-Proof Design
	2.3.2.1 Acoustic Transmission of 2FA Response
	2.3.2.2 FRC Fingerprinting
	2.3.2.3 Cross-Device Ranging
	2.3.2.4 Self-Proof Case

	2.3.3 Evaluation of Proximity-Proof
	2.3.3.1 Implementation
	2.3.3.2 Efficacy of Acoustic Fingerprinting
	2.3.3.3 Security Against MiM attacks
	2.3.3.4 Security Against Co-Located Attacks
	2.3.3.5 Security Against Fingerprint-Emulation Attack
	2.3.3.6 Countermeasure Against Fingerprint-Emulation Attack

	2.4 ANP-based Mobile Authentication
	2.4.1 M-ANP Design
	2.4.1.1 Challenge audio
	2.4.1.2 Fingerprint extraction and matching
	2.4.1.3 Overall performances of M-ANP

	2.4.2 SM-ANP Design
	2.4.2.1 Challenge audio
	2.4.2.2 Fingerprint extraction and matching
	2.4.2.3 Parameters for SM-ANP
	2.4.2.4 Overall performances of SM-ANP

	2.4.3 Attacks Against M-ANP and SM-ANP
	2.4.3.1 Fingerprint-Emulation Attack

	2.4.4 Dynamic Challenge-Response for M-ANP
	2.4.4.1 ANP M-Print space
	2.4.4.2 System parameters
	2.4.4.3 Security analysis

	2.4.5 Dynamic Challenge-Response for SM-ANP
	2.4.5.1 ANP SM-Print space.
	2.4.5.2 System parameters

	2.5 Comparison between FRC and ANP Authentication Systems
	2.6 Related Work
	2.7 Conclusion and Future Work

	3 DeepJam: DL-Guided Jamming Attack on Cross-Technology IoT Networks
	3.1 Overview
	3.2 Background
	3.2.1 Zigbee MAC layer
	3.2.2 Cross-Technology Interference (CTI) Illustration

	3.3 System and Adversary Models
	3.3.1 System Model
	3.3.2 Adversary Model

	3.4 Problem Formulation
	3.4.1 Slot Duration
	3.4.2 Slot Status
	3.4.3 DeepJam Basics

	3.5 DeepJam Details
	3.5.1 Reinforcement Learning
	3.5.1.1 Slot States
	3.5.1.2 Actions
	3.5.1.3 Rewards

	3.5.2 RL Algorithm of DeepJam

	3.6 Countermeasures
	3.7 Evaluation
	3.7.1 Evaluation Setup
	3.7.2 Efficiency of DeepJam
	3.7.2.1 Performance comparison
	3.7.2.2 Impact of WiFi traffic loads
	3.7.2.3 Impact of MAC and CCA methods
	3.7.2.4 Impact of Zigbee devices' amount ND

	3.7.3 Latency
	3.7.4 Efficiency of Dynamic Network Configuration

	3.8 Related Work
	3.9 Conclusion

	4 DroneKey: Drone-Aided DL-Powered Scalable Group-Key Establishment for Large-Scale IoT Networks
	4.1 Overview
	4.2 Background and Feasibility Study
	4.2.1 Background of CSI
	4.2.2 Feasibility Study

	4.3 System Overview and Adversary Model
	4.3.1 System Model
	4.3.2 DroneKey Workflow
	4.3.3 Adversary Model

	4.4 CSI Extraction and Processing
	4.4.1 CSI Extraction
	4.4.2 CSI Stream Processing

	4.5 Key-generation DNN
	4.5.1 GKG Dataset Generation
	4.5.2 GKG DNN Training

	4.6 Key Generation and Reconciliation
	4.6.1 Key-source Vector Generation
	4.6.2 Key-source Vector Quantification
	4.6.3 Reconciliation

	4.7 Security Analysis
	4.7.1 Security against Malicious-drone Attack
	4.7.2 Security against Eavesdropping and Reproduction Attacks

	4.8 Evaluation
	4.8.1 Implementation
	4.8.2 Performance Metrics
	4.8.2.1 Basic Experiment
	4.8.2.2 Impact of Network Scale.
	4.8.2.3 Impact of Environmental Factors

	4.8.3 Overhead of DroneKey
	4.8.4 Whole-network Group-key Generation

	4.9 Related Work
	4.10 Conclusion

	5 Conclusion and Summary

	References

