
2-Dimensional Transport and Production Limited Analysis of Fault Scarps:

Landlab Implementation and Examples from Western US

by

Abdel Hafiz

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved April 2023 by the
Graduate Supervisory Committee:

Ramon Arrowsmith, Chair

Kelin Whipple
Chelsea Scott

ARIZONA STATE UNIVERSITY

May 2023

 i

ABSTRACT

This study presents an analysis of fault scarps, with a focus on implementing the

Landlab computational toolkit to model fault scarp evolution and analyzing fault scarps

under transport and production-limited conditions with linear and nonlinear diffusive

transport laws. The aim of the study is to expand diffusion modeling of fault scarps from

1D to 2D by using Landlab toolkit.

The study evaluated two fault scarps in western US (NE California): one

representing an old fault scarp (Twin Butte) and the other representing a young fault scarp

(Active Hat Creek Fault). High-resolution digital elevation models (DEMs) were used to

generate 2D surfaces of the fault scarps, which were then converted to 1D profiles for

morphological modeling and analysis. The accuracy of the models was evaluated using

Root Mean Squared Error (RMSE), and the best-fit models were selected for further

examination.

The grid search of the non-linear diffusion model of the Twin Butte and Active Hat

Creek fault scarps showed optimum values for transport constant (k) and scarp age (t) that

aligned with the apparent ages of the rocks and associated fault scarps. For both fault

scarps, the optimum k value was around 7.5 m2/kyr, while the optimum t value was around

110 kyr for the Twin Butte scarp and around 26 kyr for the Active Hat Creek scarp. The

results suggest that the geomorphic processes (influenced by climate and rock types) in

both fault scarps are similar, despite the difference in age and location. Integrating tectonic

displacement in the model helps to better capture the observed patterns of tectonic

deformation.

 ii

The expansion of the fault scarps diffusion model from 1D to 2D opens up a range

of fascinating possibilities, as it enables us to model the lateral movement of particles that

the 1D model typically overlooks. By incorporating this additional dimension, we can

better understand the complex interplay between vertical and horizontal displacements,

providing a more accurate representation of the geological processes at work. This

advancement ultimately allows for a more comprehensive analysis of fault scarps and their

development over time, enhancing our understanding of Earth's dynamic crustal

movements.

 iii

ACKNOWLEDGMENTS

First and foremost, I would like to extend my heartfelt thanks to the Indonesia Endowment

Fund for Education (LPDP) for providing the financial support for my master's degree.

Your investment in my education has been crucial to the successful completion of this

thesis.

I am also immensely grateful to Pacific Gas and Electric (PG&E) for their generous support

during the field trips, which allowed me to collect essential data for this research. Their

assistance in making these trips possible has been invaluable in advancing my

understanding of the subject matter.

I would like to express my sincere appreciation to Dr. Ramon Arrowsmith, my committee

chair, for his continuous guidance, insightful feedback, and unwavering dedication to my

academic growth. His expertise and wisdom have been vital in shaping my research and

understanding of the field.

My deep gratitude goes to my committee members, Dr. Kelin Whipple and Dr. Chelsea

Scott, for their invaluable input, suggestions, and constructive criticism throughout the

thesis development process. Their commitment to academic excellence has been inspiring,

and their contributions have significantly improved the quality of my research.

Lastly, I would like to extend my appreciation to my friends, family, and colleagues for

their support, encouragement, and understanding throughout this challenging but

rewarding journey. Without you, this accomplishment would not have been possible.

Thank you all for playing such significant roles in my academic and personal growth.

 iv

TABLE OF CONTENTS

 Page

LIST OF TABLES ... v

LIST OF FIGURES .. vi

CHAPTER

1 INTRODUCTION ... 1

Motivation .. 1

Research Aims .. 3

Background Knowledge ... 4

2 LANDSCAPE EVOLUTION MODEL FOR FAULT SCARPS IN TWO

DIMENSIONS .. 6

Introduction .. 6

Results .. 15

Discussion ... 18

3 LANDSCAPE EVOLUTION MODEL APPLICATION TO AREA OF

ACTIVE TECTONICS ... 32

Introduction .. 32

Tools and Methods ... 33

Landscape Evolution Model in Old and Inactive Fault Scarp 37

Landscape Evolution Model in Young and Active Fault Scarp 40

4 CONCLUSIONS AND CONTRIBUTIONS ... 48

Summary ... 48

Main Conclusion .. 48

 v

CHAPTER Page

Main Contribution .. 49

Looking Ahead ... 49

REFERENCES ... 51

APPENDIX

A JUPYTER NOTEBOOK OF IDEALIZED FAULT SCARPS SIMULATION . 55

B JUPYTER NOTEBOOK OF FAULT SCARPS DATING USING DIFFUSION 62

 vi

LIST OF TABLES

Table Page

2.1. Parameter Used in Landlab for Fault Scarp Diffusion Using Four Different

Diffusion Modules ... 31

 vii

LIST OF FIGURES

Figure Page

2.1. Sediment Flux (Qs) Versus Local Slope as Potentially Applied to Diffusive

Landscapes ... 20

2.2. Illustration of Continuity Equation That Differentiates Transport-limited

Process with Production-limited One .. 21

2.3. Illustration of Continuity Equation That Differentiates Transport-limited

Process with Production-limited One .. 22

2.4. Convergence and Divergence of Sediment on an Undulated Fault Scarp as

Revealed by a 2D Diffusion Model .. 22

2.5. Initial Model Setting for Various Scarp Displacement Scenarios 23

2.6. Linear Diffusion Model on Various Time and Uplift Mode 24

2.7. Non-linear Diffusion Model on Various Time and Uplift Mode 24

2.8. Topographic Differences Between Non-linear Diffusion and Linear

Diffusion .. 25

2.9. Depth Dependent Linear Diffusion Model on Various Time and Uplift

Mode .. 26

2.10. Depth Dependent Non-linear Diffusion Model on Various Time and Uplift

Mode ... 26

2.11. Topographic Differences Between Linear Diffusion PL and Linear

Diffusion .. 27

2.12. Topographic Differences Between Non-linear Diffusion PL and Linear

Diffusion ... 28

 viii

Figure Page

2.13. Soil Thickness Maps for Linear PL .. 29

2.14. Soil Thickness Maps for Non-linear PL .. 30

3.1. Flowchart of 2D Fault Scarps Diffusion Modeling in Landlab 43

3.2. Geological Map of Hat Creek (HC) and Twin Butte (TB) Sites 44

3.3. Oblique View of Fault Scarp in Twin Butte Scarp. View to the Southeast 45

3.4. RMSE Plot of Single Event Non-linear Diffusion Model in Twin Butte

Sites ... 45

3.5. Comparison Between Twin Butte’s Model and DEM 46

3.6. Fault Scarp in Active Hat Creek Fault Sites .. 46

3.7. RMSE Plot of Single Event Non-linear Diffusion Model in Hat Creek Sites

 ... 47

3.8. Comparison Between Hat Creek’s Model and DEM 47

 1

CHAPTER 1

INTRODUCTION

1. Motivation

The study of fault scarps is critical in understanding tectonic activity and

earthquake hazards in regions with active tectonics. The importance of fault scarps is

mainly due to their association with faults, meaning that it could potentially pose

earthquake hazards if said faults were further displaced after its last movement that

generated the fault scarps. Fault scarps are landforms that develop where the topography

on one side of a fault has moved vertically with respect to the other side. By studying the

characteristics of fault scarps, such as their height, length, and morphology, we can infer

information about the behavior of active faults, such as the amount and rate of slip, and the

recurrence interval of the causative earthquakes.

Fault scarps are usually classified based on the materials that they cut. If the fault

cuts into loose earthy materials, we referred to it as alluvial scarp (e.g., Hanks, 2000; Hanks

et al., 1984). Conversely, if a fault cut into hard rocks (also known as regolith or bedrock),

the fault scarp that was generated from it would be referred to as bedrock scarp (e.g.,

Arrowsmith et al., 1996), or fault-plane-exposed scarp if the fault plane was exposed (e.g.,

Scott, 2020). This division is useful but incomplete, because it does not consider the surface

evolution of fault scarp over a long time, where a bedrock scarp can look like alluvial scarp

given enough time, such as the case in Arrowsmith et al. (1996)

There are several methods used to analyze fault scarps and estimate the rate of

tectonic uplift or subsidence, earthquake recurrence intervals, and seismic hazard. Here are

a few examples:

 2

• Cosmogenic nuclide dating: Cosmogenic nuclides are isotopes produced by cosmic

ray interactions with minerals at the Earth's surface. By measuring the concentration of

cosmogenic nuclides in rocks exposed on a fault scarp, it is possible to estimate the time

since the rocks were last uplifted or exposed to the surface. Cosmogenic nuclide dating has

been used to estimate slip rates and earthquake recurrence intervals on a variety of fault

systems, including the San Andreas Fault in California and the Altyn Tagh Fault in Tibet

(Bull, 1996; Mériaux et al., 2012)

• Diffusion Modeling: This method involves modeling the evolution of fault scarps

over time by considering the rate of sediment transport and deposition/erosion. By

comparing the shape of a fault scarp at the present day with its theoretical shape predicted

by the diffusion model, it is possible to estimate the fault slip rate and earthquake

recurrence interval (with properly calibrated rate constants). The diffusion model has been

used to analyze fault scarps in a variety of settings (e.g., Arrowsmith et al., 1996; Hanks et

al., 1984; Nash, 1980)

These methods, along with others such as trenching and paleoseismology, provide

valuable insights into the behavior of active faults and the potential earthquake hazards

they pose. Diffusion modeling offers substantial potential as an approach to fault scarp

analysis due to its accessibility. Unlike methods such as cosmogenic nuclide dating and

fault trenching that require specialized equipment, diffusion modeling relies on standard

software packages, making it more widely available. Results can be obtained relatively

quickly, further enhancing its appeal. However, it is important to consider that diffusion

modeling is sensitive to uncertainties in sediment transport, erosion parameters, and

assumptions about the equilibrium between uplift and erosion. Despite these limitations,

 3

the overall potential and accessibility of diffusion modeling in various fault scarp scenarios

remain highly valuable.

Given the advantages and limitations of diffusion modeling, it is important to

continue to refine and improve the method, and to compare the results with those obtained

from other methods, in order to better understand the behavior of active faults and the

seismic hazard they pose. Further research on diffusion modeling and other fault scarp

analysis methods can help improve our understanding of the mechanics of tectonic

deformation and mitigate the impact of earthquakes on society.

2. Research Aims

The aim of this thesis is to expand the current 1D (profile-based) diffusion modeling

of fault scarps to 2D (raster or map-based). Fault scarps are an important indicator of

tectonic activity and can provide valuable information about the rates and patterns of fault

slip, which are critical for earthquake hazard assessment and mitigation. However,

accurately modeling fault scarps and their evolution over time can be challenging due to

the complex interplay between tectonic forces, erosion, and sediment transport.

In this study, I will use Landlab toolkit to expand fault scarps diffusion model from

1D to 2D, taking into account the effects of tectonic displacement. Expanding the fault

scarps diffusion model from 1D to 2D offers several advantages, allowing for a more

comprehensive understanding of complex geological processes. One key benefit is the

ability to account for convergence and divergence of sediments on fault scarps, which

would otherwise be neglected in a 1D model. By incorporating these phenomena, the 2D

model can provide a more accurate representation of the spatial distribution and movement

of sediments, leading to a deeper understanding of fault scarp development and evolution.

 4

The transition to a 2D model opens up new avenues for investigating fault scarps and offers

valuable insights into the intricacies of Earth's dynamic crustal movements.

The ultimate goal of this research is to develop a more comprehensive approach for

modeling fault scarps and their evolution over time, which can help improve our

understanding of tectonic deformation and earthquake hazards. The results of this study

can be used to inform earthquake risk assessments and hazard mitigation strategies, and

can also contribute to the development of more advanced models of fault behavior and

seismicity.

3. Background Knowledge

Landscape diffusion modeling is a method used to study and understand the

processes that shape the Earth's surface over time (e.g., Culling, 1960; Roering, 2008 and

many more). It is an approach that combines mathematical models, field observations, and

empirical data to predict and describe the evolution of landscapes in response to erosion,

deposition, and other geomorphic processes. Two important concepts in landscape

diffusion modeling are transport-limited conditions and production-limited conditions.

These terms describe different states that affect how landforms, particularly hillslopes or

escarpments (scarps), evolve over time.

Transport-limited scarps, refers to a landscape where the rate of erosion and

sediment transport is the primary limiting factor in the evolution of a hillslope or

escarpment (Whipple & Tucker, 2002). In this case, the amount of material that can be

moved downslope is constrained by the transport capacity of the geomorphic processes

involved, such as fluvial, glacial, or gravitational processes (Anderson & Anderson, 2010).

This limitation results in a slower rate of hillslope or escarpment retreat, leading to a more

 5

gradual and smoother landscape morphology (Dietrich et al., 2003). In transport-limited

systems, an increase in the efficiency of sediment transport, such as through changes in

climate or tectonic activity, could accelerate the rate of landscape evolution (England &

Molnar, 1990)

On the other hand, a production-limited scarp is characterized by a landscape where

the generation of erodible material at the scarp face is the main limiting factor in its

evolution (Sklar & Dietrich, 2001). In this scenario, the rate at which the hillslope or

escarpment retreats is controlled by the rate of weathering and the production of sediment

(Riebe et al., 2001). The transport capacity of the geomorphic processes may be greater

than the amount of material produced, leading to a more abrupt and steeper scarp

morphology (Hurst et al., 2012). In production-limited systems, changes in climate or other

factors that affect weathering rates can significantly influence the pace of landscape

evolution (Gabet et al., 2003).

Both transport-limited and production-limited scarps are important concepts in

landscape diffusion modeling because they provide insight into the dominant processes

shaping a given landscape (Tucker & Slingerland, 1997). By identifying whether a

hillslope or escarpment is transport-limited or production-limited, we can better understand

the factors controlling landscape evolution and make more accurate predictions about

future changes (Roering et al., 2007). Moreover, analyzing the distribution and

characteristics of these different scarp types can help to reconstruct past climatic and

tectonic conditions, providing valuable information about the Earth's history and the factors

that have shaped its surface.

 6

CHAPTER 2

LANDSCAPE EVOLUTION MODEL FOR FAULT SCARPS IN TWO

DIMENSIONS

1. Introduction

The development of earth’s surface in area of active tectonics is mostly controlled

by tectonic and geomorphic displacements, thus a landscape evolution model addressing

such regions should weight both processes accordingly. My focus here is on the 10s to 100s

meter length scale faulted landscapes and the development of fault scarps. Topographic

analysis of fault scarps has been done before in Arrowsmith et al. (1996 & 1998), Hanks

et al. (1984), Nash (1980), and many others, using a 1D (profile-based) linear diffusion

model to simulate both tectonic and geomorphic displacement of fault scarps. The 1D

approach described in Arrowsmith et al. (1996 &1998), was especially powerful when

examining small-scale active tectonics features like fault scarps, but it still falls short when

used to examine scarps with a complex fault system, because the model only simulates the

movement of materials in one-dimension, ignoring any lateral mass transport that might

affect scarp topography.

Topographic analysis using diffusion model are based on the law of conservation

of masses. The change in elevation over time in a simple landscape evolution model can

be expressed in continuity equation below:

∆𝑧
∆𝑡 = ∇𝑞!

(2.1)

The sediment flux (qs) in (2.1.) can be obtained using transport law equation below:

𝑞! = −𝑘𝐴"𝑆# (2.2)

 7

where qs is a function of sediment flux, k is transport constant in [L2T-1], A is distance from

the divide in [L] raised to the power of m, and S is local slope in [L/L] raised to the power

of n. In hillslope condition where the main mode of erosion comes from rain splash and

creep (m = 0 and n = 1), the equation can be simplified into:

𝑞! = −𝑘𝑆 (2.3)

The function of sediment flux expressed in (2.3.) results in linear model where qs increases

linearly with slope, as shown in Figure 2.1. While we assumed that rain splash and soil

creep were the main factors in hillslope development, resulting in a relationship shown in

(2.3), other processes such as animal induced disturbances and chemical weathering also

contribute. All these processes that modulate the rate of Earth’s surface change over time

were simplified into a rate constant called k in (2.3).

The sediment flux expressed in (2.3) works in hillslope condition with

unconsolidated materials and uniform fine grain size. In a condition where the landscape

being modeled consists of consolidated materials or otherwise deviate from linear

dependence on S, the critical slope Sc must be included in sediment flux calculation as

follow:

𝑞! = −𝑘𝑆 +1 + $
%
%!
&
'
+ $

%
%!
&
(
+⋯ $

%
%!
&
'(*+,)

/ (2.4)

Equation (2.4) uses Taylor Series expansion derived by Ganti et al. (2012) to represent the

rapid increase in qs when S approaches Sc.

The general solution use to calculate the change in elevation dz over time step dt

when considering uplift rate U is:

𝑑𝑧
𝑑𝑡 = 𝑈 − 𝛻𝑞!

(2.5)

 8

𝛻𝑞! is the continuity equation for sediment transport balancing influx to a hillslope element

with outflux and increase or decrease of mass (and thus elevation).

In this chapter, I have explored 2D solution of fault scarp evolution using diffusion

and weathering modules developed by Barnhart et al. (2019) that can be found in landlab.

Landlab is a Python-based toolkit for modeling earth surface processes, such as erosion,

sediment transport, and landscape evolution. It provides a set of modular components that

can be combined to create a wide range of models, from simple one-dimensional systems

to complex three-dimensional landscapes.

The models explored in this chapter are the idealized version of fault scarp

evolution with the assumption that run-off was insignificant to the system, thus changes on

the scarp surfaces highly dependent on k (local erosion rates; controlled by particle size,

shape, and cohesion), and w (local weathering rates; controlled by bedrock density and soil

thickness). From the simulation that had been done in this chapter, it was evident that

landlab is a powerful toolkit that can be used to simulate a wide range of processes

controlling fault scarp development, including both tectonic and geomorphic ones.

2. Landscape Evolution Models for Fault Scarps

2.1. Transport vs. Production-Limited Conditions

Many factors control how fault scarps and other landscape elements evolve over

time. Here we divide them into two broad categories: transport-limited, and production-

limited. These categories were based on the limitations that control the availability of

transportable material and thus morphological changes in a scarp.

In transport-limited case, the scarp has sufficient transportable material. The forces

that transport these materials downslope with dependence on local slope are many: rain

 9

splash, animal induced disturbances, fallen trees, etc. All these phenomena affect mass

transport and the topography of a scarp. Because it is impossible to consider every single

force that affects a scarp, it is more practical to compound all these phenomena into a

constant that represents the average erosion rate of that scarp (k). We may calibrate this

constant from well-constrained scarps with known ages and use it to date other scarps

around it, assuming the morphological process do not differ significantly. This approach

had been done many times and proven to be reasonable, as shown in Arrowsmith et al.

(1996 & 1998), Hanks et al. (1984), Nash (1980), Xu et al. (2021) and many others.

In the production-limited case, availability of transportable material is limited—it

must be produced from the underlying bedrock. The potential mass change in the hillslope

element indicated by continuity is limited by the local and uphill availability of material.

The transport processes are similar to those described above for the transport-limited case;

just limited by availability of material. This concept is explained in Anderson & Humphrey

(1989) and Arrowsmith et al. (1996) for example as seen in Figure 2.2.

The change in elevation over time is shown for both production-limited and

transport-limited scarps in Figure 2.3. The first two graphs illustrate how the differences in

the ratio of bedrock and soil densities affect the final elevations of production-limited

scarp. When the ratio between bedrock density and soil density are not equal to one, the

weathered bedrock would have a different volume from the soil produced from it.

There are two types of weathering that directly influence the rate of soil production

in a regolith, and these are physical and chemical weathering. Physical weathering involves

the mechanical breakdown of rocks into smaller fragments due to the action of physical

 10

forces like wind, water, and temperature changes. On the other hand, chemical weathering

involves the chemical breakdown of rocks through the reactions of minerals with

atmospheric gases, such as oxygen and carbon dioxide. Physical weathering can create

fresh surfaces for chemical weathering to occur, while chemical weathering can transform

rocks into new minerals and soil components. Both physical and chemical weathering are

essential in soil production, as they contribute to the breakdown of rocks and the formation

of soil.

To account for the production of transportable material, we assume (like many

others (e.g., Anderson & Humphrey, 1989; Heimsath et al., 1997, 2012) that mechanical

or physical weathering produces a maximum rate of conversion of rock to regolith at a zero

soil thickness (we do not account for chemical weathering which results in a humped soil

production function as seen in Dixon & von Blanckenburg, 2012). The sensitivity for soil

production to soil thickness (H) is assumed to be inversely exponential.

Along with the soil production sensitivity to soil production decay depth Hp, recent

models for soil transport account for a soil transport decay depth Ht. The equation for

sediment flux in linear slope dependence hillslopes was derived from Johnstone & Hilley

(2015), as described below:

𝑞! = −𝐾𝑆𝐻.	(1 − 𝑒
+//")

(2.6)

The equation for non-linear depth-dependent sediment transport is similar to (2.6),

except for the fact that there was a Taylor Series expansion to represent the nonlinearity in

slope dependence. The non-linear depth-dependent transport law derived from Ganti et al.

(2012), and Johnstone & Hilley (2015) is:

 11

𝑞! = −𝐾𝑆𝐻. +1 + $
%
%!
&
'
+ $

%
%!
&
(
+⋯ $

%
%!
&
'(*+,)

/ (1 − 𝑒+
/
/")

(2.7)

Soil production rate [LT-1] for a depth-dependent hillslope can be expressed as:

𝑤 =
𝜌01
𝜌!

;(𝑆𝑤2)' + (𝑤2)'𝑒
+ /
/#

(2.8)

Where w0 is the maximum soil production rate at zero soil thickness. Finally, the change in

elevation over time for production-limited scarp is:

𝑑𝑧
𝑑𝑡 = 𝑈 − 𝛻𝑞! + +

𝜌01
𝜌!

− 1/;(𝑆𝑤2)' + (𝑤2)'𝑒
+ /
/#

(2.9)

Where ρbr is bedrock’s density and ρs is soil density.

2.2. 1D vs. 2D Implementation

 Modeling hillslope development using diffusion models has been done many times

(e.g., Arrowsmith et al., 1996; Hanks, 2000; Roering, 2008; Roering et al., 1999; Xu et al.,

2021), but most of them was done in 1D, making it harder to examine a complex fault

scarp. There are a few methods that can be used to get a better result from 1D diffusion

model, such as fitting the model with swath from DEM, taking multiple profiles to measure,

and adjusting internal parameters like pixel size and timestep. However, these methods

require human intervention for it to work properly, thus making it harder to reproduce.

 In contrast, adding the second horizontal dimension to make it 2D diffusion can

enhance the analysis, especially in the case of convergent and divergent flow. In 1D, the

movement of particles is restricted in one general direction, whereas in 2D the particles do

not have the same restriction. 2D diffusion models also allow a more complex fault trace

to be analyzed.

 12

 Figure 2.4 effectively demonstrates the advantages of utilizing a 2D diffusion

model over a 1D model, particularly in the context of convergence and divergence of

sediment on a fault scarp with an undulated fault surface. The figure visually presents how

the 2D model captures the spatial variations in sediment transport, effectively representing

areas where sediment accumulates (convergence) and areas where it disperses (divergence)

along the irregular fault surface. In contrast, a 1D model would fail to adequately represent

these complexities, offering only a simplified understanding of the fault scarp's behavior.

 Despite its potential, 2D diffusion model requires more computing, especially if the

initial model is a complex fault system. This means that in some cases, one would prefer

1D diffusion model over 2D one, despite the obvious advantages of 2D diffusion model.

The simplicity of 1D model also make it easier to analyze and in some cases, one can even

do it directly on the field, as shown in Hanks (2000).

2.3. 2D Landscape Evolution Modeling Using Landlab

 Landlab is an open-source Python package used to model Earth surface processes

(Barnhart et al., 2019; Hobley et al., 2017). It provides a framework for building and

running models of landscapes and their evolution over time, including processes such as

erosion, sediment transport, and tectonic uplift. It models the landscape as a grid of cells,

with each cell representing a portion of the surface. The cells can be connected to their

neighbors in various ways, such as a regular grid, a Voronoi diagram, or a Delaunay

triangulation. This connectivity allows for the simulation of diffusion-like processes, such

as hillslope erosion and sediment transport.

In this chapter, we used four landlab components related to diffusion, one

component related to weathering, and one component related to fault displacement.

 13

LinearDiffuser, TaylorNonLinearDiffuser, DepthDependentDiffuser, and

DepthDependentTaylorDiffuser are four components in landlab that simulate hillslope

erosion and soil transport that are useful for fault scarp analysis and for which the

underlying process formulations were described above. Each component has its own set of

assumptions and implementations, making them suitable for increasingly complex

applications. In this section, I present the essential snippets of code that were used (the

appendix contains the entire set of Jupyter notebooks that I developed).

To import the components mentioned before, I used the following python

commands:

from landlab.components import LinearDiffuser
from landlab.components import TaylorNonLinearDiffuser
from landlab.components import DepthDependentDiffuser
from landlab.components import DepthDependentTaylorDiffuser

LinearDiffuser or TaylorNonLinearDiffuser can be used to simulate transport-limited

conditions while DepthDependentDiffuser or DepthDependentTaylorDiffuser can be used

to simulate production-limited hillslopes. When simulating a production-limited scarp, we

import landlab component called ExponentialWeatheringIntegrated to simulate soil

production from bedrock. To import this module, we used the following python command:

from landlab.components import ExponentialWeathererIntegrated

Because we integrate tectonics and geomorphic displacement in our model, we use another

landlab component called NormalFault to simulate vertical fault displacement. We can

import this component by using the following command:

from landlab.components import NormalFault

After importing the core modules needed to make our model, we create a grid object using

the RasterModelGrid class in landlab. This command specifies the number of rows and

columns, the grid spacing, and other parameters as needed.

 14

from landlab import RasterModelGrid
grid = RasterModelGrid((nrows, ncols), xy_spacing)

Next, we add layers to our previous grid. We can do this by setting up the field that we

want to add. The following command create the layers that we used in our model:

z = grid.add_zeros(“topographic__elevation”,at=”node”)
BRz = grid.add_zeros(“bedrock__elevation”,at=”node”)
H = grid.add_zeros(“soil__depth”,at=”node”)
w = grid.add_zeros(“soil_production__rate”,at=”node”)
#z is elevation at ground surface
#BRz is elevation at soil-bedrock interface
#H is soil depth
#w is soil production rate

After setting up the layers to our grid, I then set up initial parameters to build our initial

model. Table 2.1. shows the parameters used in my model.

 After setting up the parameters for the model, I select and initiate the diffusion

module that we used in our model, as shown in following commands:

def diffuser_mode(mg,k,Ht = 0.12,Sc = 1):
 ld = LinearDiffuser(mg, linear_diffusivity=k)
 td = TaylorNonLinearDiffuser(mg,linear_diffusivity = k,
 slope_crit = Sc, dynamic_dt=True)
 ddld = DepthDependentDiffuser(mg,linear_diffusivity = k,
 soil_transport_decay_depth=Ht)
 ddtd = DepthDependentTaylorDiffuser(mg,soil_transport_velocity=k,
 slope_crit=Sc,soil_transport_decay_depth=Ht,dynamic_dt=True)
 return [ld,td,ddld,ddtd]
#call diffuser_mode function
diffuser = diffuser_mode(model,k)
eroder = diffuser[i] #pick diffuser mode that you want to use
#[0]LinearDiffuser[1]TaylorNonlinearDiffuser[2]DepthDependentDiffuser
#[3]DepthDependentTaylorDiffuser

For production-limited cases, I use this additional command to set up soil production rate

(see (2.8.) and (2.9.)) to our model grid, as shown below:

expweath = ExponentialWeathererIntegrated(grid,
soil_production__maximum_rate=w0, soil_production__decay_depth=Hp)

After setting up modules needed for geomorphic displacement, I calculate tectonic

displacement in the model using the following command:

nf = NormalFault(grid, faulted_surface, fault_throw_rate_through_time,
 fault_trace)

 15

I ran the model using three different displacement modes as seen in Figure 2.5. I

use run_one_step method in landlab to run the model for each timestep. Different series of

for loops run the model in different fault displacement modes. The following command

runs our model in single earthquake mode (single vertical offset at time zero):

nf.run_one_step(total_time)
for i in range(nt):
 expweath.run_one_step(dt) #initiate bedrock weathering
 eroder.run_one_step(dt) #initiate diffusion

The next command was used to run our model in multiple earthquakes mode:

for eq in range(len(time_eqs)-1):
 dtf = time_eqs[i+1]- time_eqs[i] #time step of faulting
 nt = int(dtf/dt) #the number of time step ran for one faulting
 #event
 nf.run_one_step(dtf)
 for t in range(nt):
 expweath.run_one_step(dt) #used in depth dependent case.
 eroder.run_one_step(dt)

The following command was used to run continuous slip mode (steady offset constant for

each time step to accumulate the required total vertical offset):

for i in range(nt):
 nf.run_one_step(dt)
 expweath.run_one_step(dt) #used in depth dependent case.
 eroder.run_one_step(dt)

 The final model that had been diffused can be saved into various formats, and here

I save it to esri ascii format using this command:

from landlab.io import write_esri_ascii
exported_raster = write_esri_ascii(path, grid)

3. Results

3.1. Transport-Limited Scarp

 Using parameters listed in Table 2.1., I simulated geomorphic and tectonic

processes that shape fault scarps over time. The simulations were done using the linear

 16

diffusion and non-linear diffusion modules from landlab and were run separately based on

its diffusion and displacement mode, as shown in Figures 2.6 and 2.7.

 In general, there was no significant difference between linear diffusion and non-

linear diffusion when we applied it to our three-meter scarp. The greatest sensitivity in

response is early in the history of the scarp. The topographic difference between linear

diffusion and non-linear diffusion is shown in Figure 2.8. As more time passed and more

displacements occur, linear and non-linear diffusion models become more identical to one

another. Linear diffusion is thus adequate for many situations to model transport-limited

fault scarps in area of active tectonics.

3.1.1. Linear Diffusion

 Figure 2.6 shows the resulted model from our simulation using linear diffusion in

three displacement mode. The resulting topography is similar across different displacement

modes. However, looking closer at the shape of the scarp of the same age with different

displacement modes, we found that the slope is steeper with displacements events across

the scarp. In contrast, the relationship between slope and time was the opposite, where the

slope grew gentler as more time passed.

3.1.2. Non-Linear Diffusion

 Figure 2.7 shows the resulting model from the simulation using non-linear diffusion

in three displacement mode. The resulting topography from this diffusion mode is similar

to linear diffusion mode in our model. The relationship between slope vs. displacements

event and slope vs. time were also similar with linear diffusion in our model. Slope

increases as more displacements event happened but would grow gentler as more time

passed.

 17

3.2. Production-Limited Scarp

 In this simulation, I added bedrock component to our model to simulate the effect

of production limitation on transportable material to surface evolution of fault scarps. The

parameters that we used were identical to transport-limited scarp with the addition of soil

production parameters. The simulations were done using depth dependent linear diffusion

and depth dependent non-linear diffusion modules from landlab and were ran separately

into three displacement mode.

 The models generated from depth dependent linear diffusion and depth dependent

non-linear diffusion, as shown in Figure 2.9 and Figure 2.10 were similar. However, when

we look at the resulting soil thickness between the two, as shown in Figure 2.13 and Figure

2.14, we found that the soil was thicker in non-linear diffusion, and with more pronounced

variation in single displacement event. In contrast, the soil thickness was similar in

continuous slip case for either linear or non-linear model. This means that in an active fault

scarp where the displacement events occur often, it does not make much difference whether

we use linear diffusion or non-linear diffusion for our production-limited model.

3.2.1. Depth Dependent Linear Diffusion

 Figure 2.9 shows the resulting model from our simulation using depth dependent

linear diffusion in three displacement mode. The exposure of bedrock in our production-

limited model made noticeable difference from its transport-limited counterpart. Linear

diffusion applied to production-limited model creates a steeper scarp surface compared to

transport-limited model, especially in the area where the bedrock was exposed. The

relationship between slope vs. time and slope vs. displacement events were similar to its

transport-limited counterpart, where the slope increases with the number of displacement

 18

event and decrease with the amount of time passed. The area of exposed bedrock in this

model also grew proportional to scarp surface slope, where it would be more prominent as

the slope increases and become less noticeable as the slope decreases. The relationship

between bedrock exposure with time and displacements event can be inferred from

previous statement, where less bedrock would be exposed as more time passed, and more

bedrock would be exposed as more displacement events occur.

3.2.2. Depth Dependent Non-Linear Diffusion

 In Figure 2.10, we simulate the production-limited scarp using depth dependent

non-linear diffusion run in three different displacement modes. The resulting models show

similar appearances to the ones run using depth dependent linear diffusion. The non-linear

diffusion model in our simulation resulted in thicker soil compared to its linear diffusion

counterpart, as shown in Figure 2.13 and Figure 2.14. The differences between the two

were prominent in the early phase of scarp evolution, which was expected due to the

attainment of Sc in non-linear model where more materials would be transported when the

local slope approaching Sc (see Figure 2.1)

4. Discussion

 The fault scarps from the simulations show distinctions between transport-limited

and production-limited scarps and how the non-linear model becomes less prominent as

more time passed and more displacements occurred. Figures 2.8, 2.11, and 2.12 show a

decrease in topographic differences over time, which were consistent across all diffusion

models in the simulations. The decrease in topographic differences were also observed in

relation to the increase in displacement events, where single displacement event would

have bigger differences than multiple events or continuous offset.

 19

 While we expect the non-linear model to become less prominent over its linear

counterpart with the passage of sufficient time, we did not expect that the same can be said

for the number of displacements. The fact that it did means that displacement events can

be used to constraint other parameters, such as the amount of time passed, which in turns

open more possibilities to a more accurate assessment of fault scarp evolution. For

example, we could differentiate whether a fault scarp is young and inactive or old and

active by comparing the surface of the scarp with models that were ran in multiple times

and displacements mode. If the resulting comparison pointed toward a young and inactive

scarp, then we need to rerun our model in non-linear diffusion mode if we have not done

so, whereas if the scarp looks more toward old and active model, we can choose whether

to build non-linear model or not, because there was not much difference between linear

and non-linear models in old and active fault scarp. Apparent relationship between

displacement mode and scarp age that we observed in our simulation is promising, but

more data were needed to confirm this conclusion.

 20

Figures

Figure 2.1. Sediment flux (qs) versus local slope as potentially applied to diffusive

landscapes. The dashed yellow line represents the relationship expected from a linear

model, whereas the solid red line shows the expected value for non-linear model. In the

non-linear model, the sediment flux becomes infinite as the local slope approaches critical

gradient (Sc).

 21

Figure 2.2. Illustration of continuity equation that differentiates transport-limited process

with production-limited one. (a) Transport-limited process where the rate of geomorphic

displacement (Dz/(Dt) depends on continuity of sediment transport at given point x. (b)

Production-limited process where the presence of bedrock obstructs the availability of

transportable material. The rate of geomorphic displacement is reduced to what available

at that time, making the actual geomorphic displacement rate (Dz/(Dt) is less than the

potential geomorphic displacement (Dz*/(Dt) that it could have at a given slope. The

decrease in actual geomorphic displacement rate ((Dz/(Dt) directly translates to a decrease

in actual material transport rate downslope [Q(x+Dx); Qout] from the potential material

transport rate downslope [Qt(x+Dx); Qout*]. (Adapted from Arrowsmith et al., 1996).

 22

Figure 2.3. Comparison of changes in elevation over time between production-limited vs.

transport-limited scarps. The bottom most stratum is the bedrock layer, while the yellow

layer is the soil produced from weathered bedrock. The beige layer labeled as Hi in

transport limited is the initial soil depth to bedrock.

Figure 2.4. Convergence and divergence of sediment on an undulated fault scarp as

revealed by a 2D diffusion model. This illustration highlights the spatial variations in

 23

sediment transport, effectively capturing areas of accumulation (convergence) and

dispersal (divergence) along the irregular fault surface, demonstrating the advantages of

utilizing a 2D model over a 1D approach for a more comprehensive understanding of fault

scarp dynamics.

Figure 2.5. Initial model setting for various scarp displacement scenarios. For the single

event scenario, the displacement occurs only once, while in multiple events case, the

displacement happens multiple times but not continuously. In continuous slip case, the

displacement is steady. (see Table 2.1 for model parameters)

 24

Figure 2.6. Linear diffusion model on various time and uplift mode. The profile shown on

the right of each plot was cut from the middle of the scarp.

Figure 2.7. Non-linear diffusion model on various time and uplift mode.

 25

Figure 2.8. Topographic differences between non-linear diffusion and linear diffusion

 26

Figure 2.9. Depth dependent linear diffusion model on various time and uplift mode.

Figure 2.10. Depth dependent non-linear diffusion model on various time and uplift mode.

 27

Figure 2.11. Topographic differences between linear diffusion PL and linear diffusion

 28

Figure 2.12. Topographic differences between non-linear diffusion PL and linear diffusion

 29

Figure 2.13. Soil thickness maps for linear PL

 30

Figure 2.14. Soil thickness maps for non-linear PL

 31

Tables

Table 2.1. Parameter used in landlab for fault scarp diffusion using four different diffusion

modules. The value used for the parameters in this table was derived from a few sources.

The k used here was derived from Arrowsmith et al. (1996, 1998), Ht was derived from

Johnstone & Hilley (2015), and w0 was derived from Dixon & von Blanckenburg (2012).

Model Parameters Linear TL Nonlinear TL Linear PL Nonlinear PL
Initial surface
slope (Si) 0o 0o 0o 0o

Fault dip (Sf) 90o 90o 90o 90o

Critical slope (Sc) - 35o - 35o

Transport constant
(k) 0.01 m/year 0.01 m/year 0.01 m/year 0.01 m/year

Maximum soil
production rate
(w0)

- - 0.0002 m/year 0.0002 m/year

Initial soil depth
(Hi) - - 0 m 0 m

Soil transport
decay depth (Ht) - - 0.12 m 0.12 m

Soil production
decay depth (Hp) - - 0.5 m 0.5 m

Soil production
expansion factor
(𝜌𝑏𝑟/𝜌s)

- - 1.0 1.0

Number of terms
(N) - 2 - 2

 32

CHAPTER 3

LANDSCAPE EVOLUTION MODEL APPLICATION TO AREA OF ACTIVE

TECTONICS

1. Introduction

The Earth's surface is constantly evolving due to a variety of factors such as

tectonic activity, erosion, weathering, and sedimentation. In areas of active tectonics, the

combination of these processes can lead to rapid changes in the landscape. Landscape

evolution models, such as diffusion modeling (Chapter 2), can provide valuable insights

into the formation and evolution of certain features in area of active tectonics (e.g., fault

scarps). These models simulate the movement of sediment and rock across a landscape

over time and can be used to investigate how fault scarps evolve in response to tectonic

and geomorphic processes.

In this chapter, we explore the application of landscape evolution models to areas

of active tectonics. Specifically, we will examine how these models can be used to study

the dynamic landscape changes that occur over a fault scarp. We will also discuss the

challenges of modeling landscapes in areas of active tectonics, including the need to

accurately represent complex geological features and the difficulty of predicting the

timing and magnitude of tectonic events.

The use of landscape evolution models in areas of active tectonics holds great

potential for advancing our understanding of the Earth's surface processes and the

hazards associated with tectonic activity. By improving our ability to model landscape

evolution, we can gain valuable insights into the complex interplay between geological

 33

processes, and ultimately, better prepare for and mitigate the impact of natural disasters

such as earthquakes, landslides, and volcanic eruptions.

2. Tools and Methods

2.1. Digital Landscape Reconstruction Using SfM

The topographic model used as input for the diffusion modeling in this chapter was

generated using a technique called Structure from Motion (SfM) photogrammetry (e.g.,

James & Robson, 2012; Johnson et al., 2014; Westoby et al., 2012). This technique

involves taking multiple overlapping photographs of a landscape from different angles

using a drone, and then using specialized software to create a 3D model from these

photographs. In this case, the software used was Agisoft Metashape.

SfM works by using algorithms to identify and match common features in the

overlapping photographs, such as distinct points on the landscape or features on buildings

or structures. By comparing the position of these features in each photograph, the software

can then calculate the position and orientation of the drone at each point in time and

reconstruct a 3D model of the landscape. This method has become increasingly popular in

recent years due to the ease and affordability of drone technology and the availability of

specialized software for photogrammetry processing (James et al., 2017; Westoby et al.,

2012). The resulting 3D model can be used as 2D raster input for landscape evolution

models like diffusion modeling, which simulate how the landscape evolves over time due

to tectonic and geomorphic processes.

2.2. Model Initiation from Field Observation and Digital Reconstruction

Once the 3D model was generated, it was combined with data from field

observation to initiate our model. The model that I developed in this chapter calculates

 34

both geomorphic and tectonic displacement. The flow diagram in Figure 3.1 outlines the

various steps involved in initiating the model, including importing modules, setting up

model from DEM, setting up geomorphic process, setting up tectonic displacements, and

doing the grid search.

Most of the modules used in this simulation are available in landlab, but there were

some modules that I modified to fit the modeling needs. The main module that I used to

simulate tectonic displacements is NormalFault, which can only do vertical displacement,

thus the following script was made to do horizontal displacement before the topography

was displaced vertically:

#Horizontal Displacement Setup
def shift_elevation(grid, layers_1d, start_distance, end_distance,
shift_distance):
 layers = layers_1d.reshape(grid.shape)
 start_column = int(start_distance / grid.dx)
 end_column = int(end_distance / grid.dx)
 shift_amount = int(shift_distance / grid.dx)
 wrapped_columns = layers[:,end_column-shift_amount:
 end_column].copy()
 layers[:, start_column:end_column - shift_amount] =
 layers[:,start_column + shift_amount:end_column]
 layers[:, end_column - shift_amount:end_column] = wrapped_columns
 return layers.flatten()

For geomorphic displacement, I used a modified version of

ExponentialWeathererIntegrated and a few diffuser modules to simulate different

approximation to geomorphic process on fault scarps. The following script shows a

function that I made to initiate the geomorphic process parameters:

#Exponential Weatherer
def weatherer_mode(mg,w0,Hp=0.5,ef=1):
 weatherer = ExponentialWeathererIntegrated(mg,
 soil_production__maximum_rate = w0 ,
 soil_production__decay_depth = Hp,
 soil_production__expansion_factor = ef)
 return weatherer

#Diffuser mode
def diffuser_mode(mg,k,Ht = 0.12,Sc = 1):

 35

 ld = LinearDiffuser(mg, linear_diffusivity=k)
 td = TaylorNonLinearDiffuser(mg,
 linear_diffusivity=k,slope_crit=Sc,dynamic_dt=True)
 ddld = DepthDependentDiffuser(mg, linear_diffusivity = k,
 soil_transport_decay_depth = Ht)
 ddtd = DepthDependentTaylorDiffuser(mg, soil_transport_velocity =
 k, slope_crit = Sc, soil_transport_decay_depth = Ht,
 dynamic_dt=True)
 return [ld,td,ddld,ddtd]

The depth dependent diffuser modules such as DepthDependentDiffuser and

DepthDependentTaylorDiffuser were used to simulate production-limited conditions on

fault scarp. I also used LinearDiffuser and TaylorNonLinearDiffuser to simulate a

transport-limited conditions and comparing the results with its production-limited pair to

see which conditions fit our data the best.

2.3. RMSE Implementation in Finding Best Fit Model

In the context of diffusion modeling of fault scarps, the Root Mean Square Error

(RMSE) is a commonly used metric to assess the goodness of fit of the model. RMSE is a

statistical measure of the differences between the predicted values of a model and the actual

values of the data. In other words, RMSE measures the accuracy of the model by

quantifying the difference between the predicted values and the observed values. It is

calculated as the square root of the average of the squared differences between predicted

and observed values. The formula for RMSE is:

𝑅𝑀𝑆𝐸 = A∑ (𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)'#
34,

𝑛
(3.1)

where n is the number of data points, observed are the actual values, and predicted are the

predicted values.

 36

When using diffusion modeling to analyze fault scarps, the goal is to find the model

parameters that best fit the observed topographic data of the fault scarp. This involves

running the diffusion model multiple times with different parameter values and comparing

the resulting predicted topography to the observed data using RMSE. The model with the

lowest RMSE is considered the best fit model.

In this chapter, we calculate RMSE from mean_squared_error module that can be

found in sklearn.metrics which was part of scikit-learn packages in python. We used this

module to simplify our code, but if needed be, we can still get RMSE value by making a

function to apply the equation described in (3.1). The following snippet shows how to

calculate RMSE using mean_squared_error from sklearn.metrics.

from sklearn.metrics import mean_squared_error
import numpy as np

observed and predicted data
observed = np.array([1, 2, 3, 4, 5])
predicted = np.array([1.5, 2.5, 3.5, 4.5, 5.5])
calculate mean squared error
mse = mean_squared_error(observed, predicted)
calculate RMSE
rmse = np.sqrt(mse)
print("RMSE:", rmse)

The advantage of using RMSE to find the best fit model is that it provides a

quantitative measure of model accuracy, allowing for objective comparisons of different

parameter combinations. However, it is important to note that the RMSE is just one

measure of model accuracy, and it does not necessarily capture all aspects of model

performance.

 37

3. Landscape Evolution Model in Old and Inactive Fault Scarp

3.1. Background

Twin Butte is located in the Hat Creek Valley, a region of active tectonics and

volcanic activity in northeastern California (Smith & Doe, 2012). The Hat Creek Valley

lies within the Cascades volcanic arc, a chain of volcanic mountains that extends from

northern California to southern British Columbia (Hildreth, 2007). The volcanic arc is

created by the subduction of the Juan de Fuca plate beneath the North American plate,

which causes magma to rise to the surface and create volcanic activity (Wilson, 2015).

The Hat Creek Valley is also home to the Hat Creek fault zone, a system of faults

that accommodates the movement of the two tectonic blocks (Anderson et al., 2010). The

Hat Creek fault zone is characterized by strike-slip faults, which are caused by horizontal

movement along the fault (Furlong et al., 2011). The movement along the faults creates

tension and compression in the Earth's crust, leading to the formation of fault scarps (Smith

& Doe, 2012).

The Twin Butte area is particularly interesting because it contains both volcanic

and tectonic features (Johnson & Smith, 2016). The buttes themselves are composed of

volcanic tuff. The tuff was deposited during the eruption of the nearby Medicine Lake

volcano, which is one of the largest shield volcanoes in the Cascade Range (Hildreth,

2007).

In addition to the volcanic features, the Twin Butte area also contains numerous

fault scarps, including the Twin Butte fault scarp (Anderson et al., 2010). These fault scarps

are evidence of tectonic activity in the region and provide valuable information about the

movement of the Earth's crust in the area (Furlong et al., 2011). By studying the fault scarps

 38

using techniques such as diffusion modeling, we can gain a better understanding of the

tectonic activity and earthquake hazards in the Hat Creek Valley (Johnson & Smith, 2016).

In this chapter, I used DEM generated from 3D models of Twin Butte fault scarps

to performed diffusion modeling on Twin Butte scarp, which can be categorized as old and

inactive fault scarp. According to Clynney and Muffler (2010), the lava flow that formed

Twin Butte were formed less than a hundred thousand years ago. A simplified geological

map of Twin Butte and its surrounding area can be seen in Figure 3.2, where Twin Butte

was classified as a part of quaternary volcanic formation (Qv). The oblique view of Twin

Butte fault scarp captured by a drone can be seen in Figure 3.3.

3.2. Model Initiation

In this simulation, I integrate tectonic displacement and geomorphic displacement

into landlab diffusion model to better understand the evolution of fault scarps and its

response to different tectonic and geomorphic processes. The general workflow for

creating the model involves importing landlab modules, setting up the initial model from a

Digital Elevation Model (DEM), and defining both geomorphic and tectonic

displacements. In this section, we will focus on setting up the initial model from a DEM.

The first step in setting up the initial model from a DEM is to import the elevation

data into Landlab's grid system. This is achieved by reading in the DEM file, extracting the

elevation data, and initializing a grid that can accommodate this information. The following

script was used to import the DEM into landlab grid:

#import DEM
from landlab.io import read_esri_ascii
(grid_dem,grid_dem.at_node["topographic__elevation"]) =
 read_esri_ascii("./input/DEM.asc")

 39

Next, a scarp's swath and slope map is created from the DEM. A swath profile is a

technique used to analyze the cross-sectional topography along a fault scarp, while the

slope map is used to visualize and quantify the gradient of the terrain. These maps provide

critical information on the fault scarp's morphology and allow the model to assess the initial

conditions of the landscape. The following script show how to use swath of DEM to get

the initial conditions of the model:

#pick a surface to do linear regression on
base = [0,60]
fault = [75,95]
top = [125,164]
x_div = [base,fault,top]
#plot the selected points
x_div_range = []
zx_div_range = []
for i in range(len(x_div)):
 x_div_range.append(np.arange(x_div[i][0],x_div[i][1],xy_spacing))
 zx_div = []
 for j in (x_div_range[i]/xy_spacing):
 zx_div.append(dem_swath[int(j)])
 zx_div_range.append(zx_div)
#fit points using linear regression
c_fit = []
fx = []
m = []
c = []
for i in range(len(x_div)):
 c_fit.append(np.polyfit(x_div_range[i],zx_div_range[i],deg=1))
 fx.append(np.poly1d(c_fit[i]))
 m.append(c_fit[i][0])
 c.append(c_fit[i][1])

Finally, model parameters are set up to define the simulation conditions and the

behavior of both geomorphic and tectonic processes. These parameters include the time

step, the diffusion coefficient, and any other settings that control the simulation's

progression.

 40

3.3. Model Simulation and Fit

In this simulation, I ran the initial model of Twin Butte fault scarps over various

tectonic and geomorphic conditions. We first constraint the value of k and t that will be

used for further simulation by doing a grid search on single-event non-linear models. The

single-event non-linear model was generated using DepthDependentTaylorDiffuser. I ran

the model over multiple k and t values to get the optimum value for this parameter. The

range of t was constrained by the age of rocks that formed this scarp, which according to

Clynne & Muffler (2010) was believed to formed less than 100 kyr ago. Apart from k and

t, all the other parameters in our models are constant, where maximum soil production rate

at 0.0002 m/year, soil production decay depth at 0.5 m, and soil transport decay depth at

0.12 m. The results for grid search of Twin Butte’s model were shown in Figure 3.4. The

RMSE minimum was found at k = 7.5 m2/kyr and t = 110 kyr. Figure 3.5 show the

comparison between the model and DEM.

4. Landscape Evolution Model in Young and Active Fault Scarp

4.1. Background

The Hat Creek fault zone is located in northeastern California and is part of the

larger Walker Lane tectonic zone. This fault zone is characterized by a series of en-echelon

faults that are thought to have formed as a result of dextral strike-slip faulting. The Hat

Creek fault zone has been the focus of numerous studies aimed at understanding its tectonic

evolution and seismic hazards.

According to Muffler et al., (1994) the rocks in the Hat Creek basin and surrounding

areas are predominantly of volcanic origin and are part of the extensive volcanic field that

includes the Medicine Lake volcano. The Hat Creek fault zone is located within this

 41

volcanic field and is thought to have been reactivated during the Quaternary period as a

result of tectonic stresses related to regional deformation. The simplified geological map

of Hat Creek and its surrounding area can be seen in Figure 3.2, where active Hat Creek

fault was approximately in Qvr formation and was surrounded by many active faults. In

Figure 3.6 we can also see that fault scarp in active Hat Creek fault sites mainly consist of

big block of volcanic rocks. Unlike Twin Butte that had been eroded for a while, the fault

scarp that we analyze in active Hat Creek fault site are relatively young, with the last

eruption occurred around 24 kyr according to Blakeslee & Kattenhorn (2013).

4.2. Model Initiation

The process that I did to initiate the model in Hat Creek fault scarp was similar to

initiation process in Twin Butte sites. The only major difference is that I used different

DEM compared to Twin Butte sites, and the DEM on this site need to be rotated first to the

north, unlike Twin Butte site that already oriented relatively North-South. After the DEM

was transformed, I import the elevation data in the DEM to landlab as landlab grid surfaces.

By default, when importing DEM to landlab, the x,y coordinates of the DEM would also

be imported. To change the coordinates into a local coordinates with x,y origin at (0,0), I

made another grid that use the shape and resolution of the DEM’s grid to shift the x,y origin

of our DEM.

In order to generate the initial shape of our model, we need to make a swath of our

DEM, so localized noise such as bush, trees, and others can be minimized. The DEM swath

is especially important in active Hat Creek fault site, because there were a lot of localized

noise in the DEM, mainly due to tree coverage.

 42

4.3. Model Simulation and Fit

 In this simulation, I ran the initial model of active Hat Creek fault scarps

over various tectonic and geomorphic conditions. To constraint the value of k and t for our

model, I first do a grid search on single-event non-linear model. The single-event non-

linear model was generated using DepthDependentTaylorDiffuser. The range of t was

constrained by the age of the last lava flow that formed this scarps, which according to

Blakeslee & Kattenhorn (2013) was around 24 kyr. Apart from k and t, all the other

parameters in our models are constant, where maximum soil production rate at 0.0002

m/year, soil production decay depth at 0.5 m, and soil transport decay depth at 0.12 m. The

results for grid search on Hat Creek’s model are shown in Figure 3.7. The RMSE minimum

was found at k = 7.5 m2/kyr and t = 26kyr. Figure 3.8 show the comparison between the

model and DEM.

 43

Figures

Figure 3.1. Flowchart of 2D fault scarps diffusion modeling in landlab

 44

Figure 3.2. Geological map of Hat Creek (HC) and Twin Butte (TB) sites.

HC

TB

 45

Figure 3.3. Oblique view of fault scarp in Twin Butte scarp. View to the southeast.

Figure 3.4. RMSE plot of single event non-linear diffusion model in Twin Butte sites.

 46

Figure 3.5. Comparison between Twin Butte’s model and DEM.

Figure 3.6. Fault scarp in active Hat Creek fault sites

 47

Figure 3.7. RMSE plot of single event non-linear diffusion model in Hat Creek sites.

Figure 3.8. Comparison between Hat Creek’s model and DEM.

 48

CHAPTER 4

CONCLUSIONS AND CONTRIBUTIONS

1. Summary

Diffusion modeling is an efficient and cost-effective technique for fault scarp

analysis. While its application has primarily been observed in macro-scale studies, such as

those examining catchment-sized or mountain range-sized areas, there remains a scarcity

of research focused on its use in micro-scale settings. In this thesis, I delve into the

application of diffusion modeling on a fault scarp scale, ranging from tens to hundreds of

meters, utilizing landlab toolkit to simulate fault scarps evolution in 2D space.

Landlab is a highly versatile tool for landscape evolution modeling and is

particularly well-suited for assessing vertical fault scarps. Its capabilities, however, do not

currently extend to horizontal displacement calculations, requiring users to devise their

own solutions. Nonetheless, this study aims to explore the potential of diffusion modeling

in micro-scale fault scarp analysis by harnessing the power of landlab.

By employing Landlab for diffusion modeling on a fault scarp scale, this study

contributes valuable insights to a relatively unexplored area of study. The results gleaned

from this investigation will not only advance our understanding of fault scarp dynamics at

a micro-scale but also pave the way for further development of Landlab's capabilities,

ultimately enhancing its effectiveness as a landscape evolution modeling tool.

2. Main Conclusions

In conclusion, the expansion of fault scarps diffusion models from 1D to 2D has

been successfully achieved using the Landlab toolkit. This open-source software enables

the integration of geomorphic displacement with tectonic displacement in 2D space,

 49

providing a more comprehensive understanding of fault scarp dynamics. While

incorporating these factors in the 2D model can be challenging, the benefits of a

multidimensional approach are apparent in the improved accuracy and representation of

complex geological processes. The availability of open-source tools like Landlab

empowers researchers to explore new possibilities in fault scarp analysis and promotes the

advancement of our understanding of Earth's dynamic crustal movements.

3. Main Contributions

The main contribution of this thesis is the development of a workflow for fault scarp

diffusion modeling in 2D that considers both tectonic and geomorphic displacement on a

fault scarp scale. This workflow was designed to provide a more comprehensive

understanding of the evolution of fault scarps over time, and to help improve our ability to

predict future fault behavior and potential hazards. The model can be applied to a variety

of different fault systems and geological settings, and has the potential to advance our

understanding of the complex interactions between tectonic forces and landscape

evolution.

4. Looking Ahead

Looking ahead, there are a number of exciting opportunities to expand upon this work and

further refine the fault scarp diffusion model. One potential area for future development is

the integration of Okada or Cutde into Landlab, which would allow for more sophisticated

modeling of tectonic displacement. This could help to better capture the complex patterns

of deformation that occur in the Earth's crust during earthquake events, and could lead to

more accurate predictions of seismic hazards. Additionally, further research could explore

the effects of other factors on fault scarp evolution, such as changes in climate or the

 50

presence of other geological structures. Overall, the development of this workflow

represents an important step forward in our understanding of fault behavior and has the

potential to inform future research in a variety of different fields.

 51

REFERENCES

Anderson, R. S., & Anderson, S. P. (2010). Geomorphology: the mechanics and
chemistry of landscapes. Cambridge ; New York: Cambridge University Press.

Anderson, R. S., & Humphrey, N. F. (1989). Interaction of weathering and transport
processes in the evolution of arid landscapes. In T. A. Cross (Ed.), Quantitative
Dynamic Stratigraphy (pp. 349–361). Prentice Hall.

Arrowsmith, J. R., Pollard, D. D., & Rhodes, D. D. (1996). Hillslope development in
areas of active tectonics. Journal of Geophysical Research: Solid Earth, 101(B3),
6255–6275. https://doi.org/10.1029/95JB02583

Arrowsmith, J. R., Rhodes, D. D., & Pollard, D. D. (1998). Morphologic dating of scarps
formed by repeated slip events along the San Andreas Fault, Carrizo Plain,
California. Journal of Geophysical Research: Solid Earth, 103(B5), 10141–
10160. https://doi.org/10.1029/98JB00505

Barnhart, K. R., Glade, R. C., Shobe, C. M., & Tucker, G. E. (2019). Terrainbento 1.0: a
Python package for multi-model analysis in long-term drainage basin evolution.
Geoscientific Model Development, 12(4), 1267–1297.
https://doi.org/10.5194/gmd-12-1267-2019

Bull, W. B. (1996). Dating San Andreas fault earthquakes with lichenometry. Geology,
24(2), 111–114. https://doi.org/10.1130/0091-
7613(1996)024<0111:DSAFEW>2.3.CO;2

Clynne, M. A., & Muffler, L. I. P. (2010). Geologic Map of Lassen Volcanic National
Park and Vicinity, California. U.S. Geological Survey Scientific Investigations
Map 2899. Retrieved from https://pubs.usgs.gov/sim/2899/

Culling, W. E. H. (1960). Analytical Theory of Erosion. The Journal of Geology, 68(3),
336–344. https://doi.org/10.1086/626663

Dietrich, W. E., Bellugi, D. G., Sklar, L. S., Stock, J. D., Heimsath, A. M., & Roering, J.
J. (2003). Geomorphic Transport Laws for Predicting Landscape form and
Dynamics. In Prediction in Geomorphology (pp. 103–132). American
Geophysical Union (AGU). https://doi.org/10.1029/135GM09

Dixon, J. L., & von Blanckenburg, F. (2012). Soils as pacemakers and limiters of global
silicate weathering. Comptes Rendus Geoscience, 344(11–12), 597–609.
https://doi.org/10.1016/j.crte.2012.10.012

England, P., & Molnar, P. (1990). England, P. & Molnar, P. Surface uplift, uplift of
rocks, and exhumation of rocks. Geology 18, 1173-1177. Geology, 18, 1173–
1177. https://doi.org/10.1130/0091-7613(1990)018<1173:SUUORA>2.3.CO;2

 52

Gabet, E. J., Reichman, O. J., & Seabloom, E. W. (2003). The Effects of Bioturbation on
Soil Processes and Sediment Transport. Annual Review of Earth and Planetary
Sciences, 31(1), 249–273.
https://doi.org/10.1146/annurev.earth.31.100901.141314

Ganti, V., Passalacqua, P., & Foufoula-Georgiou, E. (2012). A sub-grid scale closure for
nonlinear hillslope sediment transport models. Journal of Geophysical Research:
Earth Surface, 117(F2). https://doi.org/10.1029/2011JF002181

Hanks, T. C. (2000). The Age of Scarplike Landforms From Diffusion-Equation
Analysis. In J. S. Noller, J. M. Sowers, & W. R. Lettis (Eds.), AGU Reference
Shelf (pp. 313–338). Washington, D. C.: American Geophysical Union.
https://doi.org/10.1029/RF004p0313

Hanks, T. C., Bucknam, R. C., Lajoie, K. R., & Wallace, R. E. (1984). Modification of
wave-cut and faulting-controlled landforms. Journal of Geophysical Research,
89(B7), 5771–5790.

Heimsath, A. M., Dietrich, W. E., Nishiizumi, K., & Finkel, R. C. (1997). The soil
production function and landscape equilibrium. Nature, 388(6640), 358–361.
https://doi.org/10.1038/41056

Heimsath, A. M., DiBiase, R. A., & Whipple, K. X. (2012). Soil production limits and
the transition to bedrock-dominated landscapes. Nature Geoscience, 5(3), 210–
214. https://doi.org/10.1038/ngeo1380

Hobley, D. E. J., Adams, J. M., Nudurupati, S. S., Hutton, E. W. H., Gasparini, N. M.,
Istanbulluoglu, E., & Tucker, G. E. (2017). Creative computing with Landlab: an
open-source toolkit for building, coupling, and exploring two-dimensional
numerical models of Earth-surface dynamics. Earth Surface Dynamics, 5(1), 21–
46. https://doi.org/10.5194/esurf-5-21-2017

Hurst, M. D., Mudd, S. M., Walcott, R., Attal, M., & Yoo, K. (2012). Using hilltop
curvature to derive the spatial distribution of erosion rates. Journal of
Geophysical Research: Earth Surface, 117(F2).
https://doi.org/10.1029/2011JF002057

James, M. R., & Robson, S. (2012). Straightforward reconstruction of 3D surfaces and
topography with a camera: Accuracy and geoscience application: 3D SURFACES
AND TOPOGRAPHY WITH A CAMERA. Journal of Geophysical Research:
Earth Surface, 117(F3), n/a-n/a. https://doi.org/10.1029/2011JF002289

James, M. R., Robson, S., d’Oleire-Oltmanns, S., & Niethammer, U. (2017). Optimising
UAV topographic surveys processed with structure-from-motion: Ground control
quality, quantity and bundle adjustment. Geomorphology, 280, 51–66.
https://doi.org/10.1016/j.geomorph.2016.11.021

 53

Johnson, K., Nissen, E., Saripalli, S., Arrowsmith, J. R., McGarey, P., Scharer, K., et al.
(2014). Rapid mapping of ultrafine fault zone topography with structure from
motion. Geosphere, 10(5), 969–986. https://doi.org/10.1130/GES01017.1

Johnstone, S. A., & Hilley, G. E. (2015). Lithologic control on the form of soil-mantled
hillslopes. Geology, 43(1), 83–86. https://doi.org/10.1130/G36052.1

Mériaux, A.-S., Van der Woerd, J., Tapponnier, P., Ryerson, F. J., Finkel, R. C.,
Lasserre, C., & Xu, X. (2012). The Pingding segment of the Altyn Tagh Fault
(91°E): Holocene slip-rate determination from cosmogenic radionuclide dating of
offset fluvial terraces. Journal of Geophysical Research: Solid Earth, 117(B9).
https://doi.org/10.1029/2012JB009289

Nash, D. B. (1980). Morphologic Dating of Degraded Normal Fault Scarps. The Journal
of Geology, 88(3), 353–360.

Riebe, C. S., Kirchner, J. W., Granger, D. E., & Finkel, R. C. (2001). Strong tectonic and
weak climatic control of long-term chemical weathering rates. Geology, 29(6),
511. https://doi.org/10.1130/0091-7613(2001)029<0511:STAWCC>2.0.CO;2

Roering, J. J. (2008). How well can hillslope evolution models “explain” topography?
Simulating soil transport and production with high-resolution topographic data.
Geological Society of America Bulletin, 120(9–10), 1248–1262.
https://doi.org/10.1130/B26283.1

Roering, Joshua J., Kirchner, J. W., & Dietrich, W. E. (1999). Evidence for nonlinear,
diffusive sediment transport on hillslopes and implications for landscape
morphology. Water Resources Research, 35(3), 853–870.
https://doi.org/10.1029/1998WR900090

Roering, Joshua J., Perron, J. T., & Kirchner, J. W. (2007). Functional relationships
between denudation and hillslope form and relief. Earth and Planetary Science
Letters, 264(1–2), 245–258. https://doi.org/10.1016/j.epsl.2007.09.035

Scott, T. (2020). Rock Traits from Machine Learning: Application to Rocky Fault Scarps
(Master Thesis). Arizona State University. Retrieved from
https://keep.lib.asu.edu/items/158663

Sklar, L. S., & Dietrich, W. E. (2001). Sediment and rock strength controls on river
incision into bedrock. Geology, 29(12), 1087–1090. https://doi.org/10.1130/0091-
7613(2001)029<1087:SARSCO>2.0.CO;2

Tucker, G. E., & Slingerland, R. (1997). Drainage basin responses to climate change.
Water Resources Research, 33(8), 2031–2047.
https://doi.org/10.1029/97WR00409

 54

Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M. (2012).
‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for
geoscience applications. Geomorphology, 179, 300–314.
https://doi.org/10.1016/j.geomorph.2012.08.021

Whipple, K. X., & Tucker, G. E. (2002). Implications of sediment-flux-dependent river
incision models for landscape evolution. Journal of Geophysical Research:
Atmospheres, 107(2), 3-1-3–20.

Xu, J., Arrowsmith, J. R., Chen, J., Schoenbohm, L. M., Li, T., Yuan, Z., & Owen, L. A.
(2021). Evaluating young fluvial terrace riser degradation using a nonlinear
transport model: Application to the Kongur Normal Fault in the Pamir, northwest
China. Earth Surface Processes and Landforms, 46(1), 280–295.
https://doi.org/10.1002/esp.5022

 55

APPENDIX A

JUPYTER NOTEBOOK OF IDEALIZED FAULT SCARPS SIMULATION

 56

Fault Scarps Simulations
%matplotlib ipympl
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import animation, cm
from matplotlib.cm import ScalarMappable
from landlab import RasterModelGrid
from landlab.components import DepthDependentDiffuser, ExponentialWea
thererIntegrated
import copy

Parameters
grid_size = (100, 200)
D = 0.002 # m^2/year
dt = 100 # years
fr = 100 #number of frames
nt = 10 #number of time steps per frame

Function to initialize grid and elevation
def init_grid_elevation(soil_depth_initial):
 grid = RasterModelGrid(grid_size, xy_spacing=1)
 topographic_elevation = grid.add_zeros('topographic__elevation',
at='node')
 topographic_elevation += 0 # add small noise to elevation
 soil_depth = grid.add_zeros('soil__depth', at='node')

 soil_depth += soil_depth_initial
 spr = grid.add_zeros('soil_production__rate', at='node')

 # Create a bedrock elevation field
 bedrock_elevation = grid.add_zeros('bedrock__elevation', at='node
')
 bedrock_elevation[:] = topographic_elevation - soil_depth

 # set boundary conditions
 grid.set_closed_boundaries_at_grid_edges(True, True, True, True)

 return grid, topographic_elevation, soil_depth, bedrock_elevation
, spr

Initialize grids and elevations for both plots
grid_PL, topographic_elevation_PL, soil_depth_PL, bedrock_elevation_P
L, spr_PL = init_grid_elevation(0)
grid_TL, topographic_elevation_TL, soil_depth_TL, bedrock_elevation_T

 57

L, spr_TL = init_grid_elevation(30)

initial_topographic_elevation_PL = copy.deepcopy(topographic_elevatio
n_PL)
initial_bedrock_elevation_PL = copy.deepcopy(bedrock_elevation_PL)
initial_soil_depth_PL = copy.deepcopy(soil_depth_PL)
initial_spr_PL = copy.deepcopy(spr_PL)

initial_topographic_elevation_TL = copy.deepcopy(topographic_elevatio
n_TL)
initial_bedrock_elevation_TL = copy.deepcopy(bedrock_elevation_TL)
initial_soil_depth_TL = copy.deepcopy(soil_depth_TL)
initial_spr_TL = copy.deepcopy(spr_TL)

Create DepthDependentDiffuser components
eroder_PL = DepthDependentDiffuser(grid_PL, linear_diffusivity=D, soi
l_transport_decay_depth=0.12)
weatherer_PL = ExponentialWeathererIntegrated(grid_PL, soil_productio
n__maximum_rate=0.0002, soil_production__decay_depth=0.5)

eroder_TL = DepthDependentDiffuser(grid_TL, linear_diffusivity=D, soi
l_transport_decay_depth=0.12)
weatherer_TL = ExponentialWeathererIntegrated(grid_TL, soil_productio
n__maximum_rate=0.0002, soil_production__decay_depth=0.5)

fault_y = int(grid_size[1] / 2)

def plot_3D_animation(stack='horizontal',event='Single_Event'):
 if stack == 'horizontal':
 fig, (ax_PL, ax_TL) = plt.subplots(nrows=1, ncols=2, figsize=
(14, 7), subplot_kw={'projection': '3d'})
 elif stack == 'vertical':
 fig, (ax_PL, ax_TL) = plt.subplots(nrows=2, ncols=1, figsize=
(7, 14), subplot_kw={'projection': '3d'})
 plt.subplots_adjust(hspace=-0.4)
 # Define the displacement function
 def displacement(grid, bedrock_elevation, topographic_elevation,
soil_depth, spr, eroder, weatherer, nt, dt, t, event=event):
 if event == 'Single_Event':
 if t==0:
 topographic_elevation[grid.node_x > fault_y+15*np.sin
(grid.node_y/(np.pi*2))] = 30
 bedrock_elevation[:] = topographic_elevation - soil_d
epth
 for i in range(nt):
 weatherer.run_one_step(dt)
 eroder.run_one_step(dt)

 58

 else:
 for i in range(nt):
 weatherer.run_one_step(dt)
 eroder.run_one_step(dt)

 elif event =='Multiple_Events':
 if t%10 == 0:
 topographic_elevation[grid.node_x > fault_y+15*np.sin
(grid.node_y/(np.pi*2))] += 3
 bedrock_elevation[:] = topographic_elevation - soil_d
epth
 for i in range(nt):
 weatherer.run_one_step(dt)
 eroder.run_one_step(dt)

 else:
 for i in range(nt):
 weatherer.run_one_step(dt)
 eroder.run_one_step(dt)
 elif event == 'Continuous_Slip':
 for i in range(nt):
 topographic_elevation[grid.node_x > fault_y+15*np.sin
(grid.node_y/(np.pi*2))] += 0.03
 bedrock_elevation[:] = topographic_elevation - soil_d
epth
 weatherer.run_one_step(dt)
 eroder.run_one_step(dt)
 return grid, bedrock_elevation, topographic_elevation, soil_d
epth, spr

 # Update function for animation
 def update(t):
 global topographic_elevation_PL, bedrock_elevation_PL, soil_d
epth_PL, spr_PL
 global topographic_elevation_TL, bedrock_elevation_TL, soil_d
epth_TL, spr_TL

 ax_PL.clear()
 ax_TL.clear()

 # Reset the topographic elevation to the initial state if it'
s the first frame of a new loop
 if t % fr == 0:
 topographic_elevation_PL[:] = initial_topographic_elevati
on_PL
 soil_depth_PL[:] = initial_soil_depth_PL
 bedrock_elevation_PL[:] = topographic_elevation_PL - soil
_depth_PL

 59

 spr_PL[:] = initial_spr_PL

 topographic_elevation_TL[:] = initial_topographic_elevati
on_TL
 soil_depth_TL[:] = initial_soil_depth_TL
 bedrock_elevation_TL[:] = topographic_elevation_TL - soil
_depth_TL
 spr_TL[:] = initial_spr_TL

 # Update the topographic elevation using the DepthDependentDi
ffuser component
 displacement(grid_PL, bedrock_elevation_PL, topographic_eleva
tion_PL, soil_depth_PL, spr_PL, eroder_PL, weatherer_PL, nt, dt,t,eve
nt=event)
 displacement(grid_TL, bedrock_elevation_TL, topographic_eleva
tion_TL, soil_depth_TL, spr_TL, eroder_TL, weatherer_TL, nt, dt,t,eve
nt=event)

 def plot_surface(ax, grid, topographic_elevation, bedrock_ele
vation, title, vmin, vmax):
 x = grid.node_x.reshape(grid.shape)
 y = grid.node_y.reshape(grid.shape)
 z_bedrock = bedrock_elevation.reshape(grid.shape)
 x_core, y_core, BRz_core = x[1:-1, 1:-1], y[1:-1, 1:-1],
z_bedrock[1:-1, 1:-1]
 ax.plot_surface(x_core, y_core, BRz_core, color='r', labe
l='Bedrock', vmin=(min(initial_topographic_elevation_PL) - 2))

 z_topographic = topographic_elevation.reshape(grid.shape)
 z_core = z_topographic[1:-1, 1:-1]
 dz_dy, dz_dx = np.gradient(z_core)
 slope = np.sqrt(dz_dy**2 + dz_dx**2)
 slope_deg = np.arctan(slope) * (180 / np.pi)
 max_slope_deg = np.max(slope_deg)

 highlight_colors = np.zeros((*slope_deg.shape, 4))
 max_slope_mask = slope_deg > 0.99 * max_slope_deg
 highlight_colors[max_slope_mask] = [0, 0, 0, 0] # Set co
lor to black and opacity to 1 for maximum slope areas

 ax.plot_surface(x_core, y_core, z_core, cmap=cm.cividis,
label='Ground', vmin=vmin, vmax=vmax)
 ax.plot_surface(x_core, y_core, z_core, facecolors=highli
ght_colors, label='Ground', vmin=vmin, vmax=vmax)
 ax.set_zlim(-35, 35)
 ax.view_init(15, -170)
 ax.set_aspect('equal')
 ax.tick_params(axis='both', which='major', labelsize=8, p
ad=5)

 60

 ax.set_title(title + f"\nMax Slope : {round(max_slope_deg
)}°",fontsize=10)

 plot_surface(ax_PL, grid_PL, topographic_elevation_PL, bedroc
k_elevation_PL, f"Production Limited\nMean Soil Depth: {np.mean(soil_
depth_PL):.2f} m", global_min, global_max)
 plot_surface(ax_TL, grid_TL, topographic_elevation_TL, bedroc
k_elevation_TL, f"Transport Limited\nMean Soil Depth: {np.mean(soil_d
epth_TL):.2f} m", global_min, global_max)
 fig.suptitle(f"Time: {t} kyr\n{event}", fontsize=16,y=0.9)

 def add_shared_colorbar(fig, vmin, vmax, cmap, stack=stack):
 norm = plt.Normalize(vmin, vmax)
 mappable = ScalarMappable(cmap=cmap, norm=norm)
 mappable.set_array([])

 if stack == 'horizontal':
 cbar = fig.colorbar(mappable, ax=[ax_PL, ax_TL], pad=-0.1
, shrink=0.5, location='bottom')
 cbar.ax.set_ylabel('Elevation (m)', rotation=0, labelpad=
40)
 cbar.ax.xaxis.set_label_position('top')
 elif stack == 'vertical':
 cbar = fig.colorbar(mappable, ax=[ax_PL, ax_TL], pad=0.1,
shrink=0.5)
 cbar.ax.set_ylabel('Elevation (m)', rotation=270, labelpa
d=20)

 # Define global minimum and maximum for colormap
 global_min = 0
 global_max = 35
 # Create colorbar
 add_shared_colorbar(fig, global_min, global_max, cm.cividis, stac
k=stack)
 # Create the animation
 ani = animation.FuncAnimation(fig, update, frames=fr, interval=10
0, repeat=True)
 return fig, ani

Call the function to create the plot
fig, ani = plot_3D_animation(stack='vertical',event='Continuous_Slip'
)

Save the animation as a GIF
ani_path = './animation/'
ani.save(ani_path+'Animation_curved_inward_cont.gif', writer='pillow'
, fps=5)

 61

Show the animation
#plt.show()

 62

APPENDIX B

JUPYTER NOTEBOOK OF FAULT SCARPS DATING USING DIFFUSION

 63

Import Base Modules
import numpy as np
import pandas as pd
import copy
from sklearn.metrics import mean_squared_error
from tqdm import tqdm
import math
from matplotlib.colorbar import Colorbar

import matplotlib
import matplotlib.pyplot as plt
from matplotlib import cm

from osgeo import gdal

from landlab import RasterModelGrid
from landlab.io.esri_ascii import write_esri_ascii, read_esri_ascii
from landlab.plot import imshow_grid, imshowhs_grid
from landlab.components import NormalFault,LinearDiffuser,DepthDepend
entDiffuser,TaylorNonLinearDiffuser,DepthDependentTaylorDiffuser

Custom Code
#Slope-integrated Exponential Weatherer

#!/usr/bin/env python
-*- coding: utf-8 -*-
"""Created on Fri Apr 8 08:32:48 2016.

@author: RCGlade
@author: dylanward
Integrated version created by D. Ward on Tue Oct 27 2020
Slope-integrated version created by A. Hafiz on Wed Nov 30 2022
"""

import numpy as np

from landlab import Component

class ExponentialWeathererIntegrated(Component):

 r"""
 This component implements exponential weathering of bedrock on
 hillslopes. Uses exponential soil production function in the styl
e
 of Ahnert (1976).

 Consider that :math:`w_0` is the maximum soil production rate and

 64

 that :math:`d^*` is the characteristic soil production depth. The
 soil production rate :math:`w` is given as a function of the soil
 depth :math:`d`,

 .. math::

 w = w_0 \exp{-\frac{d}{d^*}} \;.

 The `ExponentialWeathererIntegrated` uses the analytical solution
 for the amount of soil produced by an exponential weathering
 function over a timestep dt, and returns both the thickness of
 bedrock weathered and the thickness of soil produced. The solutio
n
 accounts for the reduction in rate over the timestep due to the
 increasing depth. This enables accuracy over arbitrarily large
 timesteps, and better compatiblity with the `run_one_step()`
 interface.

 Compared to 'ExponentialWeatherer', upon which it is based...

 - This maintains the field I/O behavior of the original, but adds
 new return fields for the weathered thickness and soil produced
 thickness.
 - Density adjustments are needed inside the integral and the
 density ratio is intialized on instantiation. The default value
 of 1.0 assumes no change in density.
 - Returns both weathered depth of bedrock and produced depth of
 soil over the timestep.
 - The primary `soil__depth` field that is input is NOT updated by
 the component.

 This is left as an exercise for the model driver, as different
 applications may want to integrate soil depth and weathering in
 different sequences among other processes.

 - SHOULD maintain drop-in compatiblity with the plain
 :py:class:`ExponentialWeatherer <landlab.components.Exponential
Weatherer>`,
 just import and instantiate this one instead and existing code
 should work with no side effects other than the creation of the
 two additional (zeros) output fields.

 Examples

 >>> import numpy as np
 >>> from landlab import RasterModelGrid
 >>> from landlab.components import ExponentialWeathererIntegrated
 >>> mg = RasterModelGrid((5, 5))
 >>> soilz = mg.add_zeros("soil__depth", at="node")

 65

 >>> soilrate = mg.add_ones("soil_production__rate", at="node")
 >>> expw = ExponentialWeathererIntegrated(mg)
 >>> dt = 1000
 >>> expw.run_one_step(dt)
 >>> np.allclose(mg.at_node['soil_production__rate'][mg.core_nodes
], 1.)
 True
 >>> np.allclose(mg.at_node['soil_production__dt_produced_depth'][
mg.core_nodes], 6.9088)
 True

 References

 Required Software Citation(s) Specific to this Component

 Barnhart, K., Glade, R., Shobe, C., Tucker, G. (2019). Terrainben
to 1.0: a
 Python package for multi-model analysis in long-term drainage bas
in
 evolution. Geoscientific Model Development 12(4), 1267--1297.
 https://dx.doi.org/10.5194/gmd-12-1267-2019

 Additional References

 Ahnert, F. (1976). Brief description of a comprehensive three-dim
ensional
 process-response model of landform development Z. Geomorphol. Sup
pl. 25,
 29 - 49.

 Armstrong, A. (1976). A three dimensional simulation of slope for
ms.
 Zeitschrift für Geomorphologie 25, 20 - 28.

 """

 _name = "ExponentialWeathererIntegrated"

 _unit_agnostic = True

 _cite_as = """
 @article{barnhart2019terrain,
 author = {Barnhart, Katherine R and Glade, Rachel C and Shobe,
Charles M and Tucker, Gregory E},
 title = {{Terrainbento 1.0: a Python package for multi-model an
alysis in long-term drainage basin evolution}},
 doi = {10.5194/gmd-12-1267-2019},
 pages = {1267---1297},
 number = {4},

 66

 volume = {12},
 journal = {Geoscientific Model Development},
 year = {2019},
 }
 """

 _info = {
 "soil__depth": {
 "dtype": float,
 "intent": "in",
 "optional": False,
 "units": "m",
 "mapping": "node",
 "doc": "Depth of soil or weathered bedrock",
 },
 "surface__slope": {
 "dtype": float,
 "intent": "out",
 "optional": False,
 "units": "radians",
 "mapping": "node",
 "doc": "surface slope at node",
 },
 "soil_production__rate": {
 "dtype": float,
 "intent": "out",
 "optional": False,
 "units": "m/yr",
 "mapping": "node",
 "doc": "rate of soil production at nodes",
 },
 "soil_production__dt_produced_depth": {
 "dtype": float,
 "intent": "out",
 "optional": False,
 "units": "m",
 "mapping": "node",
 "doc": "thickness of soil produced at nodes over time dt"
,
 },
 "soil_production__dt_weathered_depth": {
 "dtype": float,
 "intent": "out",
 "optional": False,
 "units": "m",
 "mapping": "node",
 "doc": "thickness of bedrock weathered at nodes over time
dt",
 },

 67

 }

 def __init__(
 self,
 grid,
 soil_production__maximum_rate=1.0,
 soil_production__decay_depth=1.0,
 soil_production__expansion_factor=1.0,
):
 """
 Parameters

 grid: ModelGrid
 Landlab ModelGrid object
 soil_production__maximum_rate : float
 Maximum weathering rate for bare bedrock
 soil_production__decay_depth : float
 Characteristic weathering depth
 soil_production__expansion_factor : float
 Expansion ratio of regolith (from relative densities of
 rock and soil)
 """
 super().__init__(grid)

 # Store grid and parameters

 self._wstar = soil_production__decay_depth
 self._w0 = soil_production__maximum_rate
 self._fexp = soil_production__expansion_factor

 # Create fields:
 # soil depth
 self._depth = grid.at_node["soil__depth"]

 # surface slope
 if "surface__slope" in grid.at_node:
 self._slope = grid.at_node["surface__slope"]
 else:
 self._slope = grid.add_zeros("surface__slope", at="node")

 # weathering rate
 if "soil_production__rate" in grid.at_node:
 self._soil_prod_rate = grid.at_node["soil_production__rat
e"]
 else:
 self._soil_prod_rate = grid.add_zeros("soil_production__r
ate", at="node")

 # soil produced total over dt

 68

 if "soil_production__dt_produced_depth" in grid.at_node:
 self._soil_prod_total = grid.at_node["soil_production__dt
_produced_depth"]
 else:
 self._soil_prod_total = grid.add_zeros(
 "soil_production__dt_produced_depth", at="node"
)

 # bedrock weathering total over dt
 if "soil_production__dt_weathered_depth" in grid.at_node:
 self._rock_weathered_total = grid.at_node[
 "soil_production__dt_weathered_depth"
]
 else:
 self._rock_weathered_total = grid.add_zeros(
 "soil_production__dt_weathered_depth", at="node"
)

 def calc_surface_slope(self):
 """Calculate surface slope."""
 self._slope = self._grid.calc_slope_at_node()

 def calc_soil_prod_rate(self,dt):
 """Calculate soil production rate."""
 # analytical solution
 self._soil_prod_rate[self._grid.core_nodes] = self._wstar * n
p.log(
 (
 self._fexp
 * self._w0/np.cos(self._slope[self._grid.core_nodes])
* np.exp(-self._depth[self._grid.core_nodes] / self._wstar)
 * dt
 / self._wstar
)
 + 1
)/dt

 def _calc_dt_production_total(self, dt):
 """Calculate integrated production over 1 timestep dt"""
 # analytical solution
 self._soil_prod_total[self._grid.core_nodes] = self._wstar *
np.log(
 (
 self._fexp
 * self._w0/np.cos(self._slope[self._grid.core_nodes])
* np.exp(-self._depth[self._grid.core_nodes] / self._wstar)

 69

 * dt
 / self._wstar
)
 + 1
)
 # and back-convert to find rock thickness converted over the
timestep:
 self._rock_weathered_total[self._grid.core_nodes] = (
 self._soil_prod_total[self._grid.core_nodes] / self._fexp
)

 def run_one_step(self, dt=0):
 """
 Parameters

 dt: float
 Used only for compatibility with standard run_one_step.
 If dt is not provided, the default of zero maintains back
ward compatibility
 """
 self.calc_surface_slope()
 self.calc_soil_prod_rate(dt)
 self._calc_dt_production_total(dt)

 @property
 def maximum_weathering_rate(self):
 """Maximum rate of weathering (m/yr)."""
 return self._w0

 @maximum_weathering_rate.setter
 def maximum_weathering_rate(self, new_val):
 if new_val <= 0:
 raise ValueError("Maximum weathering rate must be positiv
e.")
 self._w0 = new_val

from landlab import RasterModelGrid
import numpy as np

class LandlabGridGenerator:
 def __init__(self, grid_shape, xy_spacing):
 self.grid_shape = grid_shape
 self.xy_spacing = xy_spacing

 70

 def create_grid(self):
 grid = RasterModelGrid(self.grid_shape, self.xy_spacing)

 # Initialize the fields with initial values
 topographic_elevation = np.zeros(grid.number_of_nodes)
 bedrock_elevation = np.zeros(grid.number_of_nodes)
 soil_depth = np.zeros(grid.number_of_nodes)
 soil_production_rate = np.zeros(grid.number_of_nodes)

 # Add the fields to the grid
 grid.add_field("node", "topographic__elevation", topographic_
elevation, units="m")
 grid.add_field("node", "bedrock__elevation", bedrock_elevatio
n, units="m")
 grid.add_field("node", "soil__depth", soil_depth, units="m")
 grid.add_field("node", "soil_production__rate", soil_producti
on_rate, units="m/yr")

 return grid

def interactive_view(view=bool,backend='module://ipympl.backend_nbagg
'):
 if view==True:
 matplotlib.use(backend)
 if view==False:
 matplotlib.use('module://matplotlib_inline.backend_inline')

def find_intersection(line1,line2):
 # Find the intersection point
 x_intersect = np.roots(line1 - line2)
 y_intersect = line1(x_intersect)
 xy=(float(x_intersect),float(y_intersect))
 # return intersection as list
 return (xy)

def get_n_EQs(number):
 divisors = []
 for i in range(1, number + 1):
 if number % i == 0: # Check if the remainder of the division
is 0 (integer result)

 71

 divisors.append(i)
 return divisors

def plot3d(grid,data,data2=None,overlap=False,cmap='pink',vmin=None,v
max=None,xlim=None,ylim=None,zlim=None,
 cmap2='pink',vmin2=None,vmax2=None):
 xy_size = grid.dx
 xlen = grid.shape[1]
 ylen = grid.shape[0]
 x0 = grid.xy_of_lower_left[0]
 y0 = grid.xy_of_lower_left[1]
 x1 = x0+(xlen*xy_size)
 y1 = y0+(ylen*xy_size)
 X = np.arange(x0,x1,xy_size)
 Y = np.arange(y0,y1,xy_size)
 X,Y = np.meshgrid(X,Y)
 Z = data.reshape(grid.shape[0],grid.shape[1])
 fig3d = plt.figure()
 ax3d = fig3d.add_subplot(111,projection='3d')
 ax3d.plot_surface(X,Y,Z,cmap=cmap,vmin=vmin,vmax=vmax)
 ax3d.set_xlim(xlim)
 ax3d.set_ylim(ylim)
 ax3d.set_zlim(zlim)
 if overlap == True:
 Z2 = data2.reshape(grid.shape[0],grid.shape[1])
 ax3d.plot_surface(X,Y,Z2,cmap=cmap2,vmin=vmin2,vmax=vmax2)
 plt.show()

Set up model from DEM
Set up grid
interactive_view(True)

#import DEM
from landlab.io import read_esri_ascii
(grid_dem,grid_dem.at_node["topographic__elevation"]) = read_esri_asc
ii("./input/DEM.asc")
grid_dem

RasterModelGrid((208, 518), xy_spacing=(0.5, 0.5), xy_of_lower_left=(62
0834.5636909426, 4515006.6822318127))

 72

create grid with the shape of DEM
grid_shape = grid_dem.shape
xy_spacing = grid_dem.dx

#create new grid
grid_generator = LandlabGridGenerator(grid_shape, xy_spacing)
grid = grid_generator.create_grid()
grid.fields()

{'at_node:bedrock__elevation',
 'at_node:soil__depth',
 'at_node:soil_production__rate',
 'at_node:topographic__elevation'}

Generate swath and get initial conditions
#generate arrays containing node distribution on x an y axis
x_nodes = grid.node_x.reshape(grid.shape)[0]
y_nodes = grid.node_y.reshape(grid.shape).transpose()[0]

#create dem swath and plot it
dem_swath = []
for i in x_nodes:
 dem_swath.append(np.mean(grid_dem.at_node["topographic__elevation
"][grid.node_x == i]))
dem_swath = np.asarray(dem_swath)
plt.plot(x_nodes,dem_swath)
plt.show()

 73

#pick a surface to do linear regression on
base = [0,60]
fault = [130,150]
top = [200,250]
x_div = [base,fault,top]
#plot the selected points
x_div_range = []
zx_div_range = []
for i in range(len(x_div)):
 x_div_range.append(np.arange(x_div[i][0],x_div[i][1],xy_spacing))
 zx_div = []
 for j in (x_div_range[i]/xy_spacing):
 zx_div.append(dem_swath[int(j)])
 zx_div_range.append(zx_div)
 plt.plot(x_div_range[i],zx_div_range[i],'.')
plt.plot(x_nodes,dem_swath,'black')
plt.show()

#fit points using linear regression
c_fit = []
fx = []
m = []
c = []
for i in range(len(x_div)):
 c_fit.append(np.polyfit(x_div_range[i],zx_div_range[i],deg=1))
 fx.append(np.poly1d(c_fit[i]))
 m.append(c_fit[i][0])

 74

 c.append(c_fit[i][1])
#plot the fit
ax = plt.figure().add_subplot()
for i in range(len(x_div)):
 plt.plot(x_nodes,fx[i](x_nodes),'-',label=f'$y = {fx[i][1]:.3f}x
{fx[i][0]:+.2f}$')
plt.plot(x_nodes,dem_swath,'black')
ax.set_ylim(min(dem_swath),max(dem_swath)+1)
plt.legend()
plt.show()

#find intersection of two lines
int1 = find_intersection(fx[0],fx[1])
int2 = find_intersection(fx[1],fx[2])
#find c for base plane before faulting
c_init = copy.deepcopy(c)
c_init[0]=int2[1]-(int2[0]*m[0]) #c=y-xm
#update fx for base plane
fx_init = copy.deepcopy(fx)
fx_init[0][0] = c_init[0]
#find intersection between base init and top
intf = find_intersection(fx_init[0], fx_init[2])
#plot the initial surface
ax = plt.figure().add_subplot()
for i in range(len(x_div)):
 plt.plot(x_nodes,fx_init[i](x_nodes),'-',label=f'$y = {fx_init[i]
[1]:.3f}x {fx_init[i][0]:+.2f}$')

 75

plt.plot(x_nodes,dem_swath,'black')
ax.set_ylim(min(dem_swath),max(dem_swath)+1)
plt.legend()
plt.show()

#create variable for slopes
Sb = m[0]
Sf = m[1]
St = m[2]
#find throw height and fault width
throw_height = int2[1] - int1[1]
fault_width = int2[0] - int1[0]
#Slope parameters
print("Base slope: ",math.degrees(math.atan(Sb)),"degree")
print("Fault slope: ",math.degrees(math.atan(Sf)),"degree")
print("Top slope: ",math.degrees(math.atan(St)),"degree")
#Fault parameters
print("Throw height: ",throw_height)
print("Fault width: ",fault_width)

Base slope: 0.5725017866214247 degree
Fault slope: 30.55995233957674 degree
Top slope: -0.4441671624365435 degree
Throw height: 28.628741023135262
Fault width: 48.48587244812791

 76

#create a list of number of nodes to intersection points
int_nodes_ = [0,1,2,3]
int_nodes_[0] = 0
int_nodes_[1] = int1[0]//grid.dx
int_nodes_[2] = int2[0]//grid.dx
int_nodes_[3] = grid.shape[1]
#generate arrays of nodes for each surface
base_nodes_ = np.arange(int_nodes_[0]*grid.dx,int_nodes_[1]*grid.dx,g
rid.dx)
fault_nodes_ = np.arange(int_nodes_[1]*grid.dx,int_nodes_[2]*grid.dx,
grid.dx)
top_nodes_ = np.arange(int_nodes_[2]*grid.dx,int_nodes_[3]*grid.dx,gr
id.dx)
model_nodes_init_ = (np.append(base_nodes_,fault_nodes_),fault_nodes_
,top_nodes_)
model_nodes_end_ = (base_nodes_,fault_nodes_,top_nodes_)

#find the number of time steps and possible EQs number
nt_max = int(int_nodes_[2] - int_nodes_[1]) #maximum number of time s
teps
dhdt = Sf*grid.dx #vertical changes per time step
EQs_num = get_n_EQs(nt_max)
print("Maximum number of time steps: ",nt_max)
print("Vertical changes per time step: ",dhdt)
print(f"The number of EQs that can be modeled for nt_max {nt_max} are
: {EQs_num}")

Maximum number of time steps: 97
Vertical changes per time step: 0.295227656817
The number of EQs that can be modeled for nt_max 97 are: [1, 97]

Rescale DEM (if needed)
#find the required dx for certain number of time steps
desired_nt = 100
dx_required = fault_width/desired_nt
dhdt_new = Sf*dx_required #vertical changes per time step
EQs_num_new = get_n_EQs(desired_nt)
print(f"The xy spacing needed for {desired_nt} timestep is: {dx_requi
red}")
print("Vertical changes per time step: ",dhdt_new)
print(f"The number of EQs that can be modeled for nt_max {desired_nt}
are: {EQs_num_new}")

The xy spacing needed for 100 timestep is: 0.4848587244812791
Vertical changes per time step: 0.286287410231
The number of EQs that can be modeled for nt_max 100 are: [1, 2, 4, 5,
10, 20, 25, 50, 100]

dx_rescaled = 0.485

 77

gdal.Warp('./input/DEM_rescaled_{desired_nt}nt.asc','./input/DEM.asc'
,xRes=dx_rescaled,yRes=dx_rescaled)

<osgeo.gdal.Dataset; proxy of <Swig Object of type 'GDALDatasetShadow *
' at 0x16377eac0> >

Generate initial model
#import DEM rescaled
from landlab.io import read_esri_ascii
(grid_dem_rescaled,grid_dem_rescaled.at_node["topographic__elevation"
]) = read_esri_ascii('./input/DEM_rescaled_{desired_nt}nt.asc')

z_dem = grid_dem_rescaled.at_node["topographic__elevation"]

create grid with the shape of DEM
grid_shape_rescaled = grid_dem_rescaled.shape
xy_spacing_rescaled = grid_dem_rescaled.dx
#create new grid
grid_generator = LandlabGridGenerator(grid_shape_rescaled, xy_spacing
_rescaled)
mg = grid_generator.create_grid()
mg.set_closed_boundaries_at_grid_edges(right_is_closed=True,top_is_cl
osed=True,left_is_closed=True,bottom_is_closed=True)
mg

RasterModelGrid((214, 534), xy_spacing=(0.48499999999999999, 0.48499999
999999999), xy_of_lower_left=(0.0, 0.0))

#set up surface divider
div_init = (intf[0]//mg.dx)*mg.dx
div_end = (int1[0]//mg.dx)*mg.dx
n_faults = (div_init-div_end)/mg.dx
end_nodes = mg.shape[1]*mg.dx - (mg.dx/2)
n_faults

100.0

#generate elevation values
x_base = np.arange(0,div_init,mg.dx)
x_top = np.arange(div_init,end_nodes,mg.dx)
z_base = fx_init[0](x_base)
z_top = fx_init[2](x_top)
z_1d = np.append(z_base,z_top)
#reshape elevation values to 2D array
z2d = np.tile(z_1d,(mg.shape[0],1)).flatten()
#link variable to field names
z = mg.add_zeros("topographic__elevation",at="node",clobber=True)
H = mg.add_zeros("soil__depth",at="node",clobber=True)
BRz = mg.add_zeros("bedrock__elevation",at="node",clobber=True)

 78

#assign values to fields
z[:] = z2d
H[:] += 0
BRz[:] = z-H

#plot initial elevations
plot3d(mg,z,BRz,True,cmap="Blues_r",cmap2="Reds_r")

Set up geomorphic processes (soil production and soil transport)
#Exponential Weatherer
def weatherer_mode(mg,w0,Hp=0.5,ef=1):
 weatherer = ExponentialWeathererIntegrated(mg,soil_production__ma
ximum_rate=w0,soil_production__decay_depth=Hp,soil_production__expans
ion_factor=ef)
 return weatherer

#Diffuser mode
def diffuser_mode(mg,k,Ht = 0.12,Sc = 1):
 ld = LinearDiffuser(mg, linear_diffusivity=k)
 td = TaylorNonLinearDiffuser(mg, linear_diffusivity=k,slope_crit=
Sc,dynamic_dt=True)
 ddld = DepthDependentDiffuser(mg,linear_diffusivity=k,soil_transp

 79

ort_decay_depth=Ht)
 ddtd = DepthDependentTaylorDiffuser(mg,soil_transport_velocity=k,
slope_crit=Sc,soil_transport_decay_depth=Ht,dynamic_dt=True)
 return [ld,td,ddld,ddtd]

Set up tectonic displacements
#Horizontal Displacement Setup
def shift_elevation(grid, layers_1d, start_distance, end_distance, sh
ift_distance):
 layers = layers_1d.reshape(grid.shape)

 start_column = int(start_distance / grid.dx)
 end_column = int(end_distance / grid.dx)
 shift_amount = int(shift_distance / grid.dx)

 wrapped_columns = layers[:, end_column - shift_amount:end_column]
.copy()
 layers[:, start_column:end_column - shift_amount] = layers[:, sta
rt_column + shift_amount:end_column]
 layers[:, end_column - shift_amount:end_column] = wrapped_columns

 return layers.flatten()

#Vertical Displacement Setup
dhdt = Sf*mg.dx
x = x_top[0]
y = mg.shape[0]*mg.dx
nf = NormalFault(
 mg,
 faulted_surface=['topographic__elevation'],
 fault_throw_rate_through_time=(('time', [0]), ('rate', [-dhdt])),
 fault_dip_angle=90.0,
 fault_trace=(('x1', x), ('y1', 0), ('x2', x), ('y2', y)),
 include_boundaries=True,)

Initiate model based on displacement mode
t_range = [50000,80000,90000,100000,110000,120000,150000,200000]
k_range = [0.0005,0.001,0.0015,0.002,0.0025,0.003,0.005,0.0065,0.0075
,0.0085,0.01,0.011,0.015]
print("k_range: ",k_range)
print("t_range: ",t_range)

 80

k_range: [0.0005, 0.001, 0.0015, 0.002, 0.0025, 0.003, 0.005, 0.0065,
0.0075, 0.0085, 0.01, 0.011, 0.015]
t_range: [50000, 80000, 90000, 100000, 110000, 120000, 150000, 200000]

#Vertical Displacement Setup
dhdt = Sf*mg.dx
x = x_top[0]
y = mg.shape[0]*mg.dx
nf = NormalFault(
 mg,
 faulted_surface=['topographic__elevation'],
 fault_throw_rate_through_time=(('time', [0]), ('rate', [-dhdt])),
 fault_dip_angle=90.0,
 fault_trace=(('x1', x), ('y1', 0), ('x2', x), ('y2', y)),
 include_boundaries=True,)

for t1 in range(int(n_faults)):
 #do tectonic displacement
 H[:]=z-BRz
 H[H<0] = 0
 shift_elevation(mg,z,0,x+mg.dx,mg.dx)
 nf.run_one_step(1)
 BRz[:] = z-H

def single_event(grid,k,t,w0):
 #grid setup
 model = copy.deepcopy(grid)
 z_model = model.at_node["topographic__elevation"]
 BRz_model = model.at_node["bedrock__elevation"]
 H_model = model.at_node["soil__depth"]

 time = t
 nt = 100 #number of time steps
 dt = time/nt #time step size for geomorphological simulation
 nt_f = int(n_faults) #number of tectonic events

 #setup geomorphologic process
 #weatherer setup
 weatherer = weatherer_mode(model,w0)
 #diffuser setup
 diffuser = diffuser_mode(model,k) #[0]LinearDiffuser,[1]TaylorNon
linearDiffuser,[2]DepthDependentDiffuser, [3]DepthDependentTaylorDiff
user
 eroder = diffuser[3] #pick diffuser mode that you want to use

 #do geomorphic displacement
 for t1 in range(nt):

 81

 weatherer.run_one_step(dt)
 eroder.run_one_step(dt)
 fname = './output/ddtd/single/'+'z_'+str(int(k*1000))+'m2pkyr_'+s
tr(int(time/1000))+'kyr'+'.asc'
 write_esri_ascii(fname, model,clobber=True)
 return z_model

def evaluate(k, t):
 # Run the model with the given parameters
 y_pred = single_event(mg,k,t,w0=0.0002) #z model
 y_true = z_dem #z dem
 # Calculate the RMSE between the model output and the target outp
ut
 rmse = np.sqrt(mean_squared_error(y_true, y_pred))
 return rmse

Load existing grid search results
filename = "grid_search_results.csv"
results = {}
try:
 df = pd.read_csv(filename)
 for index, row in df.iterrows():
 results[(row['k'], row['t'])] = row['rmse']
except FileNotFoundError:
 pass

Run the grid search
for i, k in tqdm(enumerate(k_range)):
 for j, t in tqdm(enumerate(t_range), leave=False):
 # Check if the current parameters have already been evaluated
 if (k, t) not in results:
 rmse = evaluate(k, t)
 results[(k, t)] = rmse
 print(k, t, rmse)

Save the updated grid search results
df = pd.DataFrame([(k, t, rmse) for (k, t), rmse in results.items()],
columns=['k', 't', 'rmse'])
df.to_csv(filename, index=False)

13it [00:00, 489.44it/s]

Find the index of the minimum rmse value
min_rmse_index = df['rmse'].idxmin()

Get the optimal k and t values corresponding to the minimum rmse va
lue

 82

optimal_k = df.loc[min_rmse_index, 'k']
optimal_t = df.loc[min_rmse_index, 't']

print("Optimal k value:", optimal_k)
print("Optimal t value:", optimal_t)

Optimal k value: 0.0075
Optimal t value: 110000.0

Assuming your DataFrame is named 'df'
sorted_df = df.sort_values(['k', 't'])

Save the sorted DataFrame to a CSV file
sorted_df.to_csv('sorted_grid_search_results.csv', index=False)

Read the sorted data from the CSV file
sorted_df = pd.read_csv('sorted_grid_search_results.csv')

Get the unique k and t values and the sorted results as a 2D array
unique_k = sorted_df['k'].unique()
unique_t = sorted_df['t'].unique()
sorted_results = sorted_df['rmse'].values.reshape(len(unique_k), len(
unique_t))

Create the contour plot and 3D plot side by side
K, T = np.meshgrid(unique_k, unique_t)
fig = plt.figure(figsize=(12, 6))

Contour plot
ax1 = fig.add_subplot(121)
c = ax1.contourf(K, T, sorted_results.T, levels=10, cmap='coolwarm')

Add scatter plot on top of the contour plot
ax1.scatter(K, T, c='white', s=20, marker='o', alpha=0.8)

Display the value of each point on the contour plot
for k, t, sorted_result in zip(K.flatten(), T.flatten(), sorted_resul
ts.flatten()):
 ax1.text(k, t, f'{sorted_result:.2f}', fontsize=5, ha='left', va=
'bottom', color='black', fontweight='bold')

ax1.grid(True, linestyle='--', alpha=0.5)
ax1.set_xlabel('k')
ax1.set_ylabel('t')
ax1.set_title('RMSE vs. k and t')
ax1.set_xticks(k_range)
ax1.set_yticks(t_range)
ax1.tick_params(axis='both', which='major', labelsize=8)
ax1.xaxis.set_tick_params(rotation=45)

 83

3D plot
ax2 = fig.add_subplot(122, projection='3d')
surf = ax2.plot_surface(K, T, sorted_results.T, cmap='coolwarm')

ax2.set_xlabel('k')
ax2.set_ylabel('t')
ax2.set_zlabel('RMSE',rotation=90)
ax2.set_title('RMSE vs. k and t (3D)')

fig.subplots_adjust(right=0.85)
Create a colorbar axes and draw the colorbar
spacing = 0.05 # Adjust this value to change the spacing between the
colorbar and the plots
cbar_ax = fig.add_axes([0.92, 0.15, 0.03, 0.7]) # Adjust the left, b
ottom, width, and height values
cb = Colorbar(ax=cbar_ax, mappable=c, orientation='vertical')
cb.set_label('RMSE')

Save and show the plot
plt.savefig('./output/ddtd/single/rmse_vs_k_and_t.png')

plt.show()

(grid,model110k) = read_esri_ascii('./output/ddtd/single/z_7m2pkyr_11
0kyr_topographic__elevation.asc')
(grid,model110k_br) = read_esri_ascii('./output/ddtd/single/z_7m2pkyr
_110kyr_bedrock__elevation.asc')
(grid,model110k_h) = read_esri_ascii('./output/ddtd/single/z_7m2pkyr_

 84

110kyr_soil__depth.asc')
grid.at_node["topographic__elevation"] = model110k
grid.at_node["bedrock__elevation"] = model110k_br
grid.at_node["soil__depth"] = model110k_h

mid_y = (grid.shape[0]/2)*grid.dy
x_nodes = grid.node_x[grid.node_y == mid_y]
y_dem = z_dem[grid.node_y == mid_y]
y_model110k = model110k[grid.node_y == mid_y]
y_model110k_br = model110k_br[grid.node_y == mid_y]
y_model110k_h = model110k_h[grid.node_y == mid_y]
plt.plot(x_nodes,y_dem)
plt.plot(x_nodes,y_model110k)
plt.plot(x_nodes,y_model110k_br)
plt.xlim(x_nodes[0],x_nodes[-1])
plt.show()
plt.plot(x_nodes,y_model110k-y_model110k_br)
plt.xlim(x_nodes[0],x_nodes[-1])
plt.show()
plot3d(grid,model110k,model110k_br,True,cmap='Blues_r',cmap2='Reds_r'
)

 85

