
Theory and Analysis of Taxation and Regulation

Design in Energy Markets

by

Felipe Alberto Gómez Trejos

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved March 2023 by the
Graduate Supervisory Committee:

Daniel Silverman, Chair
Stephie Fried

Gustavo Ventura
Nicolai Kuminoff

ARIZONA STATE UNIVERSITY

May 2023



©2023 Felipe Alberto Gómez Trejos

All Rights Reserved



ABSTRACT

Energy markets are central for sustaining modern day productive activities. They

are also essential contributors to climate change due to their generalized reliance

on fossil fuels. How does power demand uncertainty matter for welfare of different

approaches to market-based regulation of emissions? Do institutional design features of

energy markets matter for cost-effectiveness of subsidies to wind investments? Should

the government subsidize production or investment goods in order to incentivize wind

investments at the least welfare cost? I address these questions by using plant-level

survey data and high frequency variation in power consumption to estimate a dynamic

model of industry equilibrium in the context of the U.S. electricity sector. I show

that the choice between policy instruments depends on how firms and consumers

balance unpredictable output volatility (higher with carbon taxes) vs. price volatility

(higher with cap-and-trade regulation). Over a wide range of policy-relevant abatement

targets, I find carbon taxes outperform cap-and-trade in terms of welfare. I also find

that structuring subsidies based on key features of the type of procurement contracts

associated to wind projects leads to major reductions in public expenditures in terms

of subsidy payments to wind developers without undermining investment incentives.

Last, I find that subsidizing production can increase average yearly investment rates in

wind capacity up to 2.5 percentage points over mean investment rates under alternative

subsidies to capital.

i



DEDICATION

To God, my family, Diana, academic mentors, and friends who made it possible

for me to have the privilege of achieving this milestone.

ii



CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

PREFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

CHAPTER

1 CAP-AND-TRADE VS. CARBON TAXES: INDUSTRY DYNAMICS

AND THE ROLE OF DEMAND RISK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The Role of Demand Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 A Simple Two-period Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.1 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.2 Carbon Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.3 Equilibrium with Carbon Policy . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3.4 Characterization of Competitive Equilibrium . . . . . . . . . . . . . . 23

1.3.5 Plant-level Output Decisions at the Margin . . . . . . . . . . . . . . . . 26

1.3.6 Permit Price Dynamics and Hotelling’s Rule . . . . . . . . . . . . . . . 27

1.3.7 Welfare Measure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.4.1 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.4.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.4.3 Estimation and Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.4.3.1 Step 1: Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.4.3.2 Step 2: Estimation and Identification . . . . . . . . . . . . . . . 36

iii



CHAPTER Page

1.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

1.6.1 Market Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

1.6.2 Endogenous Capital Investment, Entry, and Exit . . . . . . . . . . 57

1.7 Concluding Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2 DO VERTICAL ARRANGEMENTS MATTER FOR COST-

EFFECTIVENESS OF OUTPUT SUBSIDIES? . . . . . . . . . . . . . . . . . . . . . . 62

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.2 Baseline Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.2.1 Characterization of the Optimal Investment Rule . . . . . . . . . . 69

2.2.2 Relation with Tobin’s Marginal Q . . . . . . . . . . . . . . . . . . . . . . . . 71

2.3 Subsidies and the Role of Contract Design . . . . . . . . . . . . . . . . . . . . . . 73

2.3.1 Fixed-volume vs. Pay-as-produced Contracts . . . . . . . . . . . . . . 73

2.4 Policy Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.4.1 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.4.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.4.3 Identification and Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.4.3.1 Step 1: Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.4.3.2 Step 2: Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.6 Concluding Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3 SHOULD WE SUBSIDIZE PRODUCTION OR INVESTMENT

GOODS? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

iv



CHAPTER Page

3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.2.1 Production Tax Credit vs. Investment Tax Credit . . . . . . . . . 93

3.2.2 Characterization of the Optimal Investment Rule . . . . . . . . . . 94

3.3 Policy Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.3.1 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.3.3 Identification and Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.3.3.1 Step 1: Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.3.3.2 Step 2: Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.6 Concluding Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

APPENDIX

A CHAPTER 1: CAP-AND-TRADE VS. CARBON TAXES: INDUSTRY

DYNAMICS AND THE ROLE OF DEMAND RISK . . . . . . . . . . . . . . . . . 117

B CHAPTER 2: DO VERTICAL ARRANGEMENTS MATTER FOR

COST-EFFECTIVENESS OF OUTPUT SUBSIDIES? . . . . . . . . . . . . . . . . 128

v



LIST OF TABLES

Table Page

1. Emissions and Preferences Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2. GW Capacity Limits (EIA, 2017) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3. Target Moments for SMM Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4. SMM Estimation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5. Key Untargeted Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6. Calibrated Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7. SMM Estimation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8. Calibrated Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9. SMM Estimation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

10. Sensitivity Analysis for Model-Dependent Moments . . . . . . . . . . . . . . . . . . . . . . . 121

vi



LIST OF FIGURES

Figure Page

1. Different Output Allocations and Prices across Control Modes . . . . . . . . . . . . . 12

2. Permit Prices Are Constant in the Absence of Demand Risk . . . . . . . . . . . . . . . 13

3. J-Statistic Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4. Comparative Welfare Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5. Probability Density Functions of Policy Revenues . . . . . . . . . . . . . . . . . . . . . . . . . 45

6. Aggregate Welfare Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7. Effects on the Electricity Market across Regulatory Regimes . . . . . . . . . . . . . . 48

8. Emissions across Regulatory Regimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

9. Welfare Effects of Different Abatement Targets across Control Modes . . . . . . 50

10. Graphical Interpretation of Energy Type Decision Rule . . . . . . . . . . . . . . . . . . . 71

11. Contract Prices, Investment Rates and Subsidy Payments . . . . . . . . . . . . . . . . . 84

12. Total Subsidy Payments across Contract Types. . . . . . . . . . . . . . . . . . . . . . . . . . . 85

13. Relative Performance of Production vs. Investment Tax Credit . . . . . . . . . . . . 106

14. Energy Shares under Different in Natural Gas Prices . . . . . . . . . . . . . . . . . . . . . . 122

15. Welfare Effects under Different in Natural Gas Prices . . . . . . . . . . . . . . . . . . . . . 123

16. Probability Density Function of Total Generation . . . . . . . . . . . . . . . . . . . . . . . . . 124

17. Probability Density Function of Avg. Hourly Electricity Prices . . . . . . . . . . . . 125

18. Probability Density Function of Total Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . 126

19. Probability Density Function of Permit Prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

vii



PREFACE

The welfare consequences of price versus quantity-based regulation are known to

differ when information about marginal benefits or costs of abatement is imperfect.

Does uncertainty about demand for the polluting good also matter for welfare of

these two approaches to regulation? In chapter 1, I use plant-level survey data and

high frequency variation in power consumption to assess the dynamic implications of

uncertainty about future demand for the relative welfare consequences of carbon taxes

and cap-and-trade regulation. I address this question in the context of the electricity

sector where demand risk is particularly salient. I show that the choice between

policy instruments depends on how firms and consumers balance unpredictable output

volatility (higher with carbon taxes) vs. price volatility (higher with cap-and-trade

regulation). Over a wide range of policy-relevant abatement targets, I find carbon

taxes outperform cap-and-trade in terms of welfare.

Financial incentives like the Production Tax Credit are central initiatives behind

wind power as the leading renewable energy source in the U.S. But do institutional

design features of energy markets matter for cost-effectiveness of subsidies to wind

investments? In chapter 2, I answer this question by investigating how the design

of procurement contracts that are typically used by wind developers affects their

investment incentives. Using unit-level data from wind farm production and installed

capacity, I find that structuring subsidies based on key features of the type of pro-

curement contracts associated to wind projects leads to major reductions in public

expenditures in terms of subsidy payments to wind developers without undermining

their investment incentives.

viii



 

The U.S. federal government is known to have a history of heavily subsidizing 

the wind power industry. Subsidies either to output (Production Tax Credit) or 

investment goods (Investment Tax Credit) have been critical to replace emissions-

intensive technologies with wind power. Which type of subsidy is best to incentivize 

wind investments at the least cost? In chapter 3, I use plant-level data of wind facilities 

from the Texas electricity market to develop and estimate a model of investment 

decisions that accounts for productivity shocks at the wind farm level and prudent 

behavior of developers. I find that subsidizing production can increase average yearly 

investment rates in wind capacity up to 2.5 percentage points over mean investment 

rates under alternative subsidies to capital. This is driven by precautionary savings 

that developers accumulate to smooth out potential future shocks to investment 

income when adverse weather conditions lead to low subsidy payments.

ix



Chapter 1

CAP-AND-TRADE VS. CARBON TAXES: INDUSTRY DYNAMICS AND THE

ROLE OF DEMAND RISK

1.1 Introduction

The U.S. has traditionally relied on permit systems as the market-based policy of

choice for mitigating emissions1. However, there is ongoing debate about the welfare

advantages of quantity versus price-based regulation dating back to seminal work from

Weitzman (1974). Literature has focused on understanding how information gaps and

genuine uncertainty about marginal benefits and marginal costs of abatement matter

for the choice of the policy instrument(e.g. Aldy and Armitage (2022) Pizer and Prest

(2020), Laffont (1977), Yohe (1978)). Still, the role of uncertainty about demand for

the polluting good in regulation design remains an unstudied question. This paper

brings a new dimension to the debate by analyzing how risk from shocks to demand

matter for the choice of the regulation mode. I show that, with cap-and-trade, demand

uncertainty creates permit price volatility which affects welfare because it distorts

production decisions by exposing the firm to uncertain permit prices. Therefore, the

welfare-maximizing control mode depends on how firms and consumers balance output

volatility vs. price volatility of the polluting good.

1California runs a joint permit program with Quebec that regulates emissions from electric
generators and stationary sources (e.g. refineries, cement production facilities, oil and natural gas
drilling entities, glass manufacturing firms, and food-processing plants). Alternatively, the Regional
Greenhouse Gas Initiative (RGGI) in the Northeast section of the U.S. exclusively regulates carbon
emissions from power generators with nameplate capacity above 25MW.
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Demand risk is particularly salient in the electricity sector because demand is closely

tied to unpredictable weather conditions (Bushnell and Novan (2021), Borenstein et

al. (2019), and Schaeffer et al. (2012)). This dependence maps exogenous weather

uncertainty into demand for AC and heating services. Additionally, it also makes net

consumption from entities with access to distributed generation (e.g. rooftop solar

and wind turbines) more dependant on uncertain weather shocks. A feature of the

electricity sector that reinforces demand risk is the fact that these markets clear on

extremely high frequency basis when feasible options for large-scale battery storage

are especially limited. With access to large-scale battery storage, firms would be able

to carry over production surpluses for consumption during periods of high demand

shocks. The lack of large scale storage capabilities implies that supply must commit

to accommodate all unpredictable variation in demand. Given that electricity is the

second largest industry in terms of U.S. carbon emissions (approximately 25% as of

2019), understanding the role of demand risk for the choice of the policy instrument

should be at the heart of emissions regulation design.

To understand how demand uncertainty matters for relative welfare consequences

between price and quantity-based regulation, I develop a dynamic equilibrium model

of the electricity sector with aggregate shocks to power demand. The economy is

inhabited by heterogeneous electricity producers. Firms own multiple power plants

which differ based on fuel type (e.g. coal, natural gas, nuclear, etc), costs, and

capacity limits. Capacity limits act as upper bounds for production and are central

to model the mix of fuel inputs that firms use to meet demand. The composition

of the fuel mix matters for aggregate emissions because the emissions intensity of

2



electricity production depends on how fuel inputs are mixed in the production process2.

Additionally, firms incur in cycling costs at the power plant level which constitute

adjustment costs in production. These result from the additional mechanical effort

that is exerted by generators to modify the rate of production. This additional

mechanical effort is costly because it consumes in the process electricity or fuel inputs.

Accounting for unit-level cycling costs is important because it makes production

decisions inherently dynamic. Furthermore, I model electricity as a non-storable good.

As previously discussed, this is important because it precludes firms from carrying

over production surpluses that would otherwise smooth out adjustments in production

(which are costly due to cycling costs) in response to demand shocks.

I use this framework to separately analyze dynamic equilibrium effects of counter-

factual carbon taxes and cap-and-trade. My approach to modeling permit systems

accounts for several features of how cap-and-trade regulation operates. First, the gov-

ernment sets an emissions cap to the aggregate level of emissions within a compliance

cycle. It then auctions permits to firms in the first period of the compliance cycle, but

allows firms to trade their initial endowments of permits on a period-by-period basis

as they learn the realized history of demand shocks. Second, firms trade permits as

financial assets that have value to them because they can be used either to: i) avoid

abatement costs when such costs are high relative to permit prices, and ii) minimize

expected present value of emissions costs to the firm through banking and borrowing

of allowances. Third, I model permit trading under uncertain allowance prices due

to demand risk in the electricity sector. Firms are forward-looking and have rational

expectations of permit prices in equilibrium. Hence, my model allows me to keep

2e.g. coal generates on average 1 ton of emissions per MWh while natural gas just .44 tons per
MWh

3



track of how demand shocks in the electricity market drive permit price dynamics and

subsequent supply adjustments in response to changes in permit prices.

The model captures the key tension between carbon taxes and cap-and-trade. On

one hand, output prices in equilibrium are more volatile with cap-and-trade regulation.

A positive demand shock increases electricity prices which incentivizes firms to increase

the usage of emissions-intensive power plants. However, the unexpected rise in

emissions increases permit prices which reinforces the initial increase in electricity

prices. This unpredictable volatility in electricity prices induces costly production

adjustments in generation at the unit level due to the existence of cycling costs. In

contrast, with a carbon tax the emissions price is fixed. Therefore, a carbon tax leads

to lower electricity price volatility which is beneficial to firms.

On the other hand, unpredictable volatility in aggregate output is lower with

cap-and-trade. This is because a positive demand shock increases permit prices which

increase the marginal cost of using fossil fuel plants. The unexpected increase in

demand is partially offset with a contraction in supply. Differences in aggregate

output volatility matter to firms and consumers because fuel mixes in equilibrium

differ across control modes. First, larger output volatility that comes with carbon

taxes translates into more usage of high marginal cost plants. Second, different fuel

mixes translate into differences in emissions and climate benefits. Determination of

the right policy instrument becomes a quantitative question and depends on how

firms and consumers balance aggregate output volatility vs. output price volatility after

accounting for equilibrium effects. This generalizes results from traditional Weitzman-

style frameworks where the choice of the policy instrument depends exclusively on

the relative slopes of marginal costs and marginal benefits of abatement.

4



I estimate the model to compare welfare effects of permit systems and carbon taxes

for the case of ERCOT3. I design a Simulated Method of Moments strategy to estimate

structural parameters which relies on three data sources. For supply side parameters,

I use data on the universe of ERCOT firms (271 firms) from the EIA-860 and EIA-930

surveys which provide granular unit-level data on plant ownership, generation, fuel

type and input consumption, fuel costs, and capacity limits. To identify unit-level cost

parameters, I exploit time variation in generation data at the power plant level across

all plants owned by the same firm along with variation in engineering estimates of

cycling costs across fuel types. My estimation results show that, on average, natural

gas plants are costlier to operate at the margin than coal-fired plants (these are

the two main fossil fuel energy sources). However, dispersion around the mean is

larger in marginal costs of natural gas units relative to coal-fired plants. For demand

side parameters, I exploit time variation in hourly electricity consumption from load

time series to identify key parameters that regulate average hourly consumption and

demand shock size.

I use the estimated model to design a policy experiment that allows me to quantify

the difference in welfare between price and quantity-based regulation. In the policy

experiment, I simulate the history of power demand shocks for an entire year in hourly

time blocks. This is to account for the high frequency nature of equilibrium realization

in electricity markets. Then, I separately solve the model under both regulatory regimes

to examine how welfare effects quantitatively differ. In my framework, the welfare

measure encapsulates four key components: aggregate firms’ profits, consumer surplus,

3ERCOT (Electric Reliability Council of Texas) is the Regional Transmission Organization
supplying ∼90% of Texas electricity demand and second largest U.S. market in generating capacity
per consumer.

5



climate benefits, and policy revenues. The simulation procedure allows addressing

a wide variety of interesting counterfactual scenarios that include a quantitative

assessment of the key primitives of the model driving welfare differences between

control modes.

I find that for a wide range of abatement targets consistent with policy goals

from active U.S. permit systems, carbon taxes outperform cap-and-trade in terms

of welfare. Conditional on the emissions target, the difference in welfare oscillates

between 9% and 16% of business-as-usual industry profits. This finding underscores

the importance of rethinking the leading role that has been assigned to permit systems

over carbon taxes in key U.S. energy markets. I also show that the distribution of

plant-level costs across units of different energy types is the key primitive determining

the welfare-maximizing policy instrument. In particular, I show that this result can

be reverted with a sufficiently large increase in natural gas prices (i.e. a rightward

shift in the distribution of marginal costs of natural gas plants). Last, I discuss how

the qualitative prediction of the policy experiment is robust to other extensions of the

model including market power and endogenous investments in capacity.

This paper contributes to three different strands of economic literature. First, it

is tightly connected to research on price versus quantity based regulation. Previous

efforts focus on the role of: i) information asymmetries between regulators and firms

(e.g. Laffont (1977) and Weitzman (1974)), ii) aggregate uncertainty about marginal

costs and marginal benefits of abatement or firm-level productivity (e.g. Stranlund

and Ben-Haim (2008) and Kelly (2005)), and iii) uncertainty from updating policy

or hybrid regulation design on the choice of policy instruments (e.g. Weitzman

6



(2020) and Fell et al. (2012))4. Two recent developments that address sources of

aggregate uncertainty have been studies from Aldy and Armitage (2022) and Pizer

and Prest (2020). Aldy and Armitage (2022) consider uncertainty in permit prices

due to abatement cost shocks that undermines efficiency of cap-and-trade regulation

because firms err on their forecasts of permit prices and fail to achieve cost-effective

abatement. Alternatively, Pizer and Prest (2020) account for uncertainty arising

from unpredictable policy updating as firms and government learn the true marginal

benefits and costs of abatement. They show that the welfare advantage depends on

how firms formulate expectations of policy updates instead of relative slopes between

marginal costs and benefits of abatement. However, none of these papers addresses

the key role of uncertainty in output demand.

A distinctive feature of my paper is to consider an environment where a private

good (i.e. electricity) is bundled together with a public good (i.e. abatement) so

that the source of uncertainty is about future market demand of the private good.

Therefore, demand uncertainty in the market of the private good matters for the choice

of the policy instrument because it translates into permit price uncertainty under

cap-and-trade regulation given that future cumulative emissions are unknown. Under

price-based regulation, demand risk in the market of the private good is irrelevant for

the emissions price given that the carbon tax is exogenously fixed by the government

and publicly announced. Kelly (2005) considered a similar equilibrium setting with

productivity shocks in the output market. However, unlike Kelly (2005), in my

4See Heutel (2020), Weitzman (2020), Karp (2019), Mideksa and Weitzman (2019), Requate et
al. (2019), Weitzman (2017), Kollenberg and Taschini (2016), Boleslavsky and Kelly (2014), Fell et
al. (2012), Montero (2008), Karp and Zhang (2005), Kelly (2005), Newell et al. (2005), Moledina
et al. (2003), Newell and Pizer (2003), Kaplow and Shavell (2002), Montero (2002), Pizer (2002),
Williams (2002), Yates (2002), Hoel and Karp (2001), Yates and Cronshaw (2001), Yohe (1978),
Laffont (1977), Weitzman (1974).
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model unpredictable volatility in cap-and-trade permit prices matters for welfare

differences across control modes because it is costly to firms due to the existence of

adjustment costs in production (i.e. cycling costs). This also means that genuine

demand randomness is relevant for the choice of policy instruments even when firms

have the same expectation about such randomness – something that is impossible in

Weitzman (1974) and Laffont (1977). My simulation results provide first estimates

of welfare differences between price and quantity-based regulation of emissions from

electricity markets.

Additionally, I contribute to research on permit trading in cap-and-trade markets

that: i) examines the role of market design features on price dynamics (e.g. Burtraw

et al. (2022), Dardati (2016), Wood and Jotzo (2011), Murray et al. (2009), Ellerman

and Buchner (2008), Jacoby and Ellerman (2004)), ii) analyzes the implications of

uncertainty in emissions and permit prices (e.g. Borenstein et al. (2019) and Cantillon

and Slechten (2018)), and iii) empirically assesses the welfare and distributional

consequences of cap-and-trade regulation (e.g. Fowlie et al. (2016), Fowlie (2010), and

Carlson et al. (2000)). The closest article to my paper in this section of economic

literature is that of Toyama (2019) where he develops an equilibrium model of

dynamic trading with banking and transaction costs for regulating electric utilities.

Although I do not account for transaction costs, I differentiate from Toyama (2019)

by incorporating aggregate uncertainty and equilibrium dynamics in both permit

and electricity markets. More generally, I depart from previously cited work by

developing and estimating an asset pricing model for carbon allowances that allows

an integrated assessment of welfare effects from cap-and-trade by accounting for: i)

dynamic equilibrium interactions between the electricity and allowance markets, ii)
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uncertainty in permit prices, iii) rational expectations from forward-looking firms, and

iv) banking/borrowing of allowances within compliance cycles.

Last, I advance literature on the effects of regulation on energy markets, particularly

for wholesale electricity. Previous work has examined the role of regulation on

competition (e.g. Cicala (2022)), investment on clean energy technology (e.g. Bushnell

et al. (2008)), distributional effects of environmental policy and welfare (e.g. Linn and

McCormack (2019), Cicala (2015), Holland and Mansur (2008), Mansur (2008), and

Carlson et al. (2000)). Previous empirical work from Cullen and Mansur (2017), Fabra

and Reguant (2014), and Fowlie (2010) specifically examines effects of market-based

regulation of emissions. However, these papers do not explore the role of demand

uncertainty on the choice of the policy instrument. A distinctive feature of my paper

is that it investigates how the interaction between demand uncertainty with key

supply-side frictions as output non-storability, capacity limits, and dynamic cycling

costs matters for welfare consequences of emissions regulation.

I structure the paper as follows. Section 1.2 describes from a conceptual perspective

the key mechanism. I lay down the analytical model in Section 1.3. Section 1.4

describes the policy experiment and estimation strategy. I analyze results in Section

1.5. Section 1.6 extends the main analysis from this paper along other dimensions

that have been previously studied in literature. Finally, I draw concluding remarks in

Section 1.7.
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1.2 The Role of Demand Risk

1.2.1 A Simple Two-period Model

I discuss a stylized two-period model that elaborates on the role of demand uncertainty.

With demand risk, output price volatility is lower with carbon taxes, but aggregate

output volatility is lower with cap-and-trade regulation. The choice of the policy

instrument depends on how firms and consumers balance aggregate output volatility

vs. output price volatility.

Consider good y with upward sloping supply curve S. Associated to good y is a

negative externality in the form of emissions that arise as a byproduct of production.

Producers sell each unit of y at a price p to consumers with downward-sloping market

demand. Consider two periods in this setup and suppose that demand unexpectedly

increases from D1 in period 1 to D2 in period 2.

Panel a) in Figure 1 shows equilibrium effects in the output market with quantity-

based regulation of emissions. The government caps the level of emissions at M̄ and

requires firms to purchase a permit at the unit price of x for each unit of emissions

generated. Firms are legally bounded to fully cover their total emissions by the end

of period 2. Therefore, the supply curve in period 1 is S(x = x1) to account for

the fact that firms purchase allowances at a price of x1 to cover a portion of their

current emissions. Equilibrium output and price levels are denoted by yx1 and px1 ,

respectively. Since demand unexpectedly increases in period 2, permit prices must

increase from x1 to x2 for the permit market to clear given that the emissions cap is

fixed at M̄ and firms are generating more emissions to meet higher output demand.
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The increase in permit prices shifts supply upwards to S(x = x2) because firms need

to buy allowances at price x2 to have all emissions covered by the end of period 2.

Therefore, the adjustment on permit prices cancels out the effect of the unexpected

increase in demand on output 5. Production in period 2, denoted by yx2 , is equal

to output in period 1 and the increase in permit prices reinforces the effect of the

demand shock on the output price which increases to px2 .

To understand how output allocations are systematically different between reg-

ulatory regimes, panel b) shows the equilibrium effects of the same demand shock

with price-based regulation. With an emissions tax, the government exogenously sets

a per unit price of emissions that must be payed by firms. To enable a consistent

comparison between control modes, suppose the government levies a tax τ = E(x) so

that the comparison takes place between regulation modes that are ‘price-equivalent’

in expectation. This means that x1 < τ = E(x) < x2. The supply curve is S(τ = E(x))

with output in period 1 denoted by yτ1 . Moreover, since τ > x1, then output allocations

and prices across control modes differ because yτ1 < yx1 and pτ1 > px1 . In period 2,

demand unexpectedly rises to D2 so output and price increase to yτ2 and pτ2, respec-

tively. In this case, supply does not adjust in response to the demand shock because

the emissions price τ is exogenous. This implies that output allocations and prices

between regulatory regimes also differ in period 2 because yτ2 > yx2 and pτ2 < px2 .

5The increase in permit prices need not fully offset the increase on output of unexpectedly higher
demand.
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yx2 = yx1

px1

px2

D1

D2

S(x = x1)
S(x = x2)

Output (y)

Price (p) a) Permit system

yx1 = yx2

yτ1 yτ2

pτ1

pτ2

D1

D2

S(τ = E(x))

Output (y)

Price (p) b) Emissions tax

Figure 1. Different output allocations and prices across control modes

Note: D1 and D2 represent demand in periods 1 and 2, respectively. Lines S(x = x1) and S(x = x2)
correspond to supply when the price of permits is x1 in period 1 and x2 in period 2, respectively.
Line S(τ = E(x)) represents supply under a hypothetical carbon tax τ = E(x) equal to the expected
price of permits. The changes in prices and quantities correspond to the equilibrium effects of an
unexpected increase in demand from D1 and D2.
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x1

x̄ = τ0

x2

M̄

md
1 m̄d

md
2

Permits (m)

Price (x)

Figure 2. Permit prices are constant in the absence of demand risk

Note: md
1 and md

2 represent permit demand in periods 1 and 2 at prices x1 and x2, respectively.
Line m̄d corresponds to demand in both periods after arbitrage has eliminated price differences in
time. Line M̄ represents the fixed supply of permits. A carbon tax τ0 is equivalent to a permit
system with allowance prices constant at x̄.

I show in Figure 2 what would happen if consumers and firms had perfect foresight

– i.e. no demand risk – and intertemporal trade of allowances is possible. The x-axis

measures the stock of permits m available on a period-by-period basis. Demand

for allowances in period 1 and 2 is represented by md
1 and md

2, respectively. Supply

of allowances is perfectly inelastic at M̄ to capture the fact that permits exist in a

fixed amount. Moreover, demand for permits in period 2 is higher to rationalize the

fact that the price of permits increases in period 2 from x1 to x2 due to the positive

demand shock in the output sector.
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With perfect foresight, such situation cannot be sustained as an equilibrium

outcome. This is because firms would realize there are arbitrage opportunities in the

permit market: they can make profits at zero risk by purchasing permits in period 1

and selling them in period 2 at a higher price. This increases permit demand in period

1 and decrease it in period 2 until the price of allowances is constant at x̄ throughout

both periods. An alternative price-equivalent emissions tax would set the Pigouvian

tax τ0 equal to x̄ so output allocations and prices are invariant with respect to the

regulatory regime. This means that policy instruments are equivalent and the welfare

would is zero without demand risk.

The previous exercise explains why with demand risk, output price volatility

is lower with carbon taxes, but aggregate output volatility is lower with cap-and-

trade regulation. The difference in welfare effects across control modes will depend

on how firms and consumers balance aggregate output volatility vs. output price

volatility in equilibrium. My model in Section 1.3 formalizes the policy trade-off.

This contrasts with Weitzman (1974) and subsequent literature where the welfare

meximizing regulation mode depends on relative slopes of marginal costs and benefits

of abatement. This is because in my framework, uncertainty is about future demand

of the private good (electricity) with which the public good (abatement) is bundled

with rather than uncertainty or information deficits about the marginal value and

marginal costs of abatement.

1.3 Model

Consider a model with S heterogeneous firms. Each energy provider s ∈ {1, ..., S}

has access to ns power plants. Moreover, each unit i ∈ {1, ..., ns} produces with a
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different energy type, so plant-wise marginal costs within firms are heterogeneous

across units. Time is discrete and indexed by t ∈ {1, ..., T}. The electricity market is

competitive which means that power producers take electricity prices as given when

making production decisions6.

Firm s earns profits at the power plant level from producing electricity and

consequently selling it in the wholesale market. Specifically, it receives a price pt per

unit of output yits that is produced and sold with unit i in period t. Moreover, power

producer s incurs in a cost of cis per unit of output produced with energy type i.

I model three key supply-side frictions that are important technological features

of firms in electricity markets. First, plant-level cycling costs are adjustment costs

in production that result from the additional mechanical effort exerted on a turbine

to change how much power it generates. This process consumes additional fuel or

electricity to change the operating rate of rotors within the turbines. Also, cycling

dynamics cause additional tear and wear of equipment which translates into higher

maintenance costs at the unit level. I incorporate quadratic cycling costs at the plant

level by modeling operating profits of firm s at period t from unit i as follows,

ptyits − cisyits − αis(yits − yi,t−1,s)
2, αis > 0.

Dynamic cycling costs allow interior solutions at the unit level by introducing

convexity in production costs. Otherwise, plant-level generation decisions would be

band-bang solutions. If pt > cis, the power plant produces at full capacity. Else,

6See Section 1.6 for a discussion about the implications of allowing oligopolistic competition in
this environment
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it shuts down. Second, capacity limits are upper bounds to production at the unit

level. These hard limits ymax
is result from the physical properties of generators (e.g.

maximum rate of rotor rotation, length of blades, energy type, etc.) and act as a

constraint on technological feasibility, i.e.

0 ≤ yits ≤ ymax
is , ∀i = 1, ..., ns, t = 1, ..., T, s = 1, ..., S.

Capacity limits determine what capacity is available in the grid per energy type.

This affects the energy mix used to meet electricity demand. The resulting energy

mix is important for determining the total level of emissions because different energy

types have different levels of carbon-intensity (e.g. generation with coal produces more

emissions per MWh than with natural gas). Last, to model output non-storability, I

require that the market clears on each period so that all output is consumed. Hence,

supply continuously accommodates demand and electricity prices adjust accordingly

so that the system is always balanced7.

To model demand risk, I specify a constant price-elasticity market demand8,

ln(Dt) = ln(zt)− βln(pt), ∀t = 1, ..., T (1.1)

where Dt represents demanded quantity at t and β is the absolute value of price-

elasticity. Realizations of zt capture exogenous period-by-period shocks to demand

7This will be explicitly specified in the definition of equilibrium.

8This structural specification is consistent with empirical literature on electricity demand estima-
tion. For instance, see Ito (2014).
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and are drawn from a finite state space Z. I assume realizations of the demand shock

follow a Markov process π(zt|zt−1) of degree 1. This feature introduces persistence in

the endogenous stochastic dynamics of prices and quantities along the equilibrium

time path.

In a business-as-usual (BAU) environment with no carbon policy intervention,

firm s makes production decisions to maximize the expected discounted present value

of unit-level profits across all power plants owned by the firm subject to capacity

limits. Formally, let δ be the discount factor, zt denote the history of demand shocks

until period t, Q(zt) the probability of observing history zt, Zt the set of histories

for the demand shock until t, and ns the number of energy units available to firm

s9. Firm s chooses contingent production plans {yits(zt)}ns,T
i,t=1 while taking as given

electricity prices and the Markov process for the demand shock to solve the following

profit-maximization problem10,

9Observe that since Z is finite, then Q is a measure defined over a finite set of outcomes.
Additionally, Q(zt) can be directly calculated for any given history zt using the Markov process
π(zt|zt−1).

10The decision timeline within periods is as follows. First, period t begins and the demand shock zt
is realized. Secondly, firms observe the realization zt and proceed to make production decisions from
period t. This means that prices from period t are available to firms for making optimal decisions at
t. Finally, period t ends and firms enter period t+ 1.
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max
{yits(zt)}ns,T

i,t=1

∑
zT∈ZT

Q(zT )
T∑
t=1

δt−1

ns∑
i=1

[
pt(z

t)yits(z
t)− cisyits(z

t)− αis(yits(z
t)

− yi,t−1,s(z
t−1))2

]
s.t. 0 ≤ yits(z

t) ≤ ymax
is , ∀i = 1, ..., ns, ∀t = 1, ..., T, ∀zt ∈ Zt

z0, {yi0s}ns

i=1 — given.
(1.2)

The model accommodates heterogeneity in production costs and capacity limits

across units and firms through problem (1.2). The realization of endogenous variables

at t depends on the history of shocks due to the existence of dynamic cycling costs

at the unit level. This makes contingent production plans and equilibrium prices

dependant on all past history.

Carbon emissions of power producer s are a linear combination of its plant-wise

generation levels from period 1 through T ,

T∑
t=1

ns∑
i=1

ψiyits(z
t). (1.3)

Each emissions rate ψi regulates how much metric tons of emissions are generated

with one unit of output produced at unit of energy type i. For instance, this means

that emission rates of wind or solar energy units are 0. Additionally, it also implies

that emissions rates for coal-fired and natural gas-fired plants are positive.
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1.3.1 Equilibrium

In a competitive equilibrium, production plans {yits(zt)}ns,T
i,t=1 across firms s = 1, ..., S,

electricity consumption {Dt(z
t)}Tt=1, and prices {pt(zt)}Tt=1 satisfy the following two

conditions for a given set of initial values z0, {yi0s}S,ns

s,i=1:

1. Taking prices {pt(zt)}Tt=1 and the Markov process π(zt|zt−1) for the demand

shock as given, each power producer s solves problem (1.2).

2. At each zt ∈ Zt, the electricity market clears:
∑S

s=1

∑ns

i=1 yits(z
t) = Dt(z

t) for

all t = 1, ..., T .

1.3.2 Carbon Policy

Carbon tax — In a carbon tax regime, each emitter s pays a per unit tax τ per

metric ton of carbon emissions. The carbon tax increases plant-wise marginal costs at

fossil fuel units consistently with their specific degree of emissions intensity ψi. Since

there is heterogeneity in costs across fuel types and firms, firms will adjust production

levels and energy mixes in response to the emissions tax τ .

Taking prices and the Markov process of demand shocks zt as given, the competitive

firm solves the following profit-maximization problem,
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max
{yits(zt)}ns,T

i,t=1

∑
zT∈ZT

Q(zT )
T∑
t=1

δt−1

ns∑
i=1

[
pt(z

t)yits(z
t)− (cis + τψi)yits(z

t)−

αis(yits(z
t)− yi,t−1,s(z

t−1))2
]

s.t. 0 ≤ yits(z
t) ≤ ymax

is , ∀i = 1, ..., ns, ∀t = 1, ..., T, ∀zt ∈ Zt

z0, {yi0s}ns

i=1 — given.

(1.4)

Cap-and-trade — With a permit system, I model allowance holdings as an

additional decision in the firm’s profit maximization problem. The firm must purchase

an allowance for each unit of emissions generated. The permit price is an equilibrium

object that fluctuates stochastically on a period-by-period basis depending on the

history of shocks to power demand. This introduces an additional layer of uncertainty

in the firm’s decision making problem (relative to a carbon tax regime) because future

permit prices are unknown to the power producer. I assume the permit market is

competitive.

A regulator exogenously sets the emissions cap M for a full compliance cycle that

runs from t = 1 through T . Allowances are auctioned off to firms at price x1 at the

beginning of period 1. Subsequently, firms are allowed to trade their allowances in

a permit market at any period t ≤ T 11. In period T , producers must validate all

emissions generated throughout the compliance period by surrendering an amount of

permits equal to the volume of emissions produced during the compliance cycle. This

means they must hold enough permits by the end of the expiration date T to cover

the complete amount of individual emissions generated from t = 1 through T .

11The share of M which producer s receives at the permit auction is exogenous.
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The timing of allowance holdings decisions is as follows. Let mts denote the stock

of permits with which firm s enters period t. The firm observes the realization of

zt and proceeds afterwards to choose the amount of permits mt+1,s for period t+ 1.

Any engagement in trade at t is conducted by firms at the competitive price xt. This

implies that net expenses of acquiring allowances by firm s at t is,

xt(z
t)(mt+1,s(z

t)−mts(z
t−1)).

At any time t, the firm can either be a net buyer or net seller of allowances (or

not engage in trade at all). Intertemporal trade through banking and borrowing of

allowances is also possible since firms can buy permits at t to resell them in the future

or accumulate negative stocks of permits for as long as t < T .

The fact that power producers must surrender allowances at the expiration date T

means that each firm s faces the following environmental compliance constraint which

must hold independently of whatever history of demand shocks is realized,

T∑
t=1

ns∑
i=1

ψiyits(z
t) = mTs(z

T−1), ∀zT ∈ ZT . (1.5)

Firms make production and allowance holdings decisions to: i) maximize expected

present value of unit-level profits across all owned units, and ii) minimize the expected

cost of permit transactions. This means that each firm s chooses contingent production

plans {yits(zt)}ns,T
i,t=1 and allowance holdings decisions {mt+1,s(z

t)}Tt=1 while taking as

given prices {pt(zt), xt(zt)}Tt=1 and the Markov process of the demand shock π(zt|zt−1)

to solve,
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max
{yits(zt),mt+1,s(zt)}

nS,T
i,t=1

∑
zT∈ZT

Q(zT )
T∑
t=1

δt−1

{
ns∑
i=1

[
pt(z

t)yits(z
t)− cisyits(z

t)−

}
{
αis(yits(z

t)− yi,t−1,s(z
t−1))2

]
− xt(z

t)
(
mt+1,s(z

t)−mts(z
t−1)

)}

s.t. 0 ≤ yits(z
t) ≤ ymax

is , ∀i = 1, ..., ns,∀t = 1, ..., T, ∀zt ∈ Zt

T∑
t=1

ns∑
i=1

ψiyits(z
t) = mTs(z

T−1), ∀zT ∈ ZT

z0,m1s, {yi0s}ns

i=1 — given.
(1.6)

1.3.3 Equilibrium with Carbon Policy

Carbon tax — In competitive equilibrium, production plans {yits(zt)}ns,T
i,t=1 across

firms s = 1, ..., S, electricity consumption {Dt(z
t)}Tt=1, and prices {pt(zt)}Tt=1 satisfy

the following two conditions for a given per-unit carbon tax τ and set of initial values

z0 and {yi0s}S,ns

s,i=1:

1. Taking prices {pt(zt)}Tt=1 and the Markov process π(zt|zt−1) for the demand

shock as given, each power producer s solves problem (1.4).

2. At each zt ∈ Zt, the electricity market clears, i.e.
∑S

s=1

∑ns

i=1 yits(z
t) = Dt(z

t)

for all t = 1, ..., T .

Cap-and-trade — In competitive equilibrium, production plans {yits(zt)}ns,T
i,t=1 and

allowance holdings {mt+1,s(z
t)}Tt=1 across firms s = 1, ..., S, electricity consumption
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{Dt(z
t)}Tt=1, and prices {pt(zt), xt(zt)}Tt=1 satisfy the following two conditions for a

given emissions cap M and set of initial values z0 and {m1s, yi0s}S,ns

s,i=1:

1. Taking prices {pt(zt), xt(zt)}Tt=1 and the Markov process π(zt|zt−1) for the de-

mand shock as given, each power producer s solves problem (1.6).

2. Power and allowance markets clear, i.e.
∑S

s=1

∑ns

i=1 yits(z
t) = Dt(z

t) for all

zt ∈ Zt and t = 1, ..., T ; and
∑S

s=1mTs(z
T−1) =M for all zT ∈ ZT , respectively.

1.3.4 Characterization of Competitive Equilibrium

Carbon tax — Competitive equilibrium is characterized by the following set of

equations describing electricity price dynamics and firms’ optimal production decisions

at the extensive (i.e. which power units operate at a given moment) and intensive

(how much to produce at each operating unit) margins12.

Firm’s production decision. For all t = 1, ..., T, s = 1, ..., S, i = 1, ..., ns and zt ∈ Zt:

pt(z
t)− cis − 2αis(yits(z

t)− yi,t−1,s(z
t−1))+

2αisδ · E
[
yi,t+1,s(z

t+1)− yits(z
t)|zt

]

> ψiτ, iff yits = ymax

is

< ψiτ, iff yits = 0

= ψiτ, iff 0 < yits(z
t) < ymax

is .

(1.7)

Market-clearing (output). For all t = 1, ..., T and zt ∈ Zt:

12Details on a step-by-step derivation of the equilibrium characterization are provided in Section
A.1.1 of the Appendix.
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zt
pt(zt)β

=
S∑

s=1

ns∑
i=1

yits(z
t). (1.8)

Expression (1.7) characterizes the firm’s optimal production decision for a given

electricity price pt(zt). In the case of an interior solution, it states that firm s should

choose output yits(zt) at plant i and period t so that the expected marginal profits of

an additional unit of output equals the associated costs of emissions. Equation (1.8)

states that in equilibrium aggregate demand must equal electricity output across firms

and power units. The characterization is complete with the set of initial conditions

z0 and {yi0s}ns

i=1 for all s = 1, ..., S. An analogous equilibrium characterization of the

BAU setup can be obtained simply by setting the carbon tax τ to zero in (1.7).

Cap-and-trade — Let µs(z
T ) denote the Lagrange multiplier associated to the

environmental compliance constraint (1.5) from firm s. The corresponding characteri-

zation of competitive equilibrium under cap-and-trade is described as follows.

Allowance price dynamics. For all t = 1, ..., T and zt ∈ Zt:



xt(z
t) = δ · E [xt+1(z

t+1)|zt] , ∀ t = 1, ..., T − 2

xT−1(z
T−1) = δ · E[xT (zT )|zT−1] + E

[
µs(z

T )

δT−2
|zT−1

]
xT (z

T ) = µs(z
T ), ∀s = 1, ..., S.

(1.9)

Firm’s production decision. For all t = 1, ..., T, s = 1, ..., S, i = 1, ..., ns, z
t ∈ Zt:
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pt(z
t)− cis − 2αis(yits(z

t)− yi,t−1,s(z
t−1)) +

2αisδ · E
[
yi,t+1,s(z

t+1)− yits(z
t)|zt

]


> ψiE
[
µs(z

T )

δt−1
|zt
]
, iff yits = ymax

is

< ψiE
[
µs(z

T )

δt−1
|zt
]
, iff yits = 0

= ψiE
[
µs(z

T )

δt−1
|zt
]
, iff 0 < yits(z

t) < ymax
is .

(1.10)

Market-clearing (output). For all t = 1, ..., T and zt ∈ Zt:

zt
pt(zt)β

=
S∑

s=1

ns∑
i=1

yits(z
t).

Market-clearing (permits). For all t = 1, ..., T and zt ∈ Zt:

T∑
t=1

S∑
s=1

ns∑
i=1

ψiyits(z
t) =M. (1.11)

Equations (1.10) and (1.8) describe equilibrium dynamics for output and electricity

prices. Condition (1.11) requires market-clearing in the permit sector. Equation

(1.9) dictates the dynamics of permit prices. These conditions along with the set

of initial values z0 and m1s, {yi0s}ns

i=1 for all s = 1, ..., S complete the equilibrium

characterization. The last equation in (1.9) states that in equilibrium, the value

to the firm of an additional permit must be equated across power producers to the

competitive permit price at the expiration date T . Otherwise, incentives to trade

would persist as firms with low permit valuations would be willing to sell allowances

to firms with higher permit valuations.
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1.3.5 Plant-level Output Decisions at the Margin

The equilibrium characterization is key for understanding how output allocations are

systematically different between control modes. Specifically, it implies the following

relationship between permit price at the expiration date and information available at

period t13,

E
[
xT (z

T )|zt
]
=

δT−t−1

δ2(T−t)−1 + 1
xt(z

t), ∀t = 1, ..., T − 2. (1.12)

Using the fact that xT (zT ) = µs(z
T ) and substituting equation (1.12) into condition

(1.10) allows us to connect unit-level output decisions at t with contemporaneous

allowance prices xt(zt). Hence, output decisions at the margin with C&T are charac-

terized as follows14,

pt(z
t)− cis − 2αis(yits(z

t)− yi,t−1,s(z
t−1)) +

2αisδ · E
[
yi,t+1,s(z

t+1)− yits(z
t)|zt

]︸ ︷︷ ︸
Unit-level expected marginal profits

=
δT−2t

1 + δ2(T−t)−1︸ ︷︷ ︸
Uncertainty wedge

· ψixt(z
t)︸ ︷︷ ︸

Emissions cost

, ∀t = 1, ..., T − 2.

(1.13)

The analogous condition with a carbon tax (see equation (1.7)) is,

13See derivation of equation (1.12) in Section A.1.1 of the Appendix.

14For ease of explanation, I restrict attention to the case of interior solution, but the same logic
applies directly to the cases with corner solutions at the unit level.
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pt(z
t)− cis − 2αis(yits(z

t)− yi,t−1,s(z
t−1)) +

2αisδ · E
[
yi,t+1,s(z

t+1)− yits(z
t)|zt

]︸ ︷︷ ︸
Unit-level expected marginal profits

= ψiτ︸︷︷︸
Emissions cost

, ∀t = 1, ..., T.
(1.14)

Equation (1.14) indicates that with a carbon tax, firms make unit-level production

decisions that equate expected marginal profits to the associated emissions costs.

However, in a permit system the effect of such emissions costs is weighted by an

additional uncertainty wedge that dampens the impact of contemporaneous emissions

prices on output decisions at carbon-intensive units. This is because with price-

based regulation, all relevant abatement incentives to firms are encapsulated in the

exogenously fixed and publicly known carbon tax. However, with quantity-based

regulation, firms consider both contemporaneous and future (unknown) allowance

prices to make current abatement decisions due to the fact that firms are legally

bounded to fully cover emissions only at the expiration date T of the compliance

cycle. Therefore, the current permit price will not be as relevant for current abatement

decisions with cap-and-trade regulation as a carbon tax is with price-based regulation.

The fact that abatement decisions are fundamentally different across control modes

means that expected emissions prices can also differ between price and quantity-based

regulation even if we compare policies that in expectation implement the same level

of cumulative emissions.

1.3.6 Permit Price Dynamics and Hotelling’s Rule

A property of this model is that the equilibrium time path of allowance prices is

consistent in expectation with Hotelling’s Rule. According to Hotelling (1931), an
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exhaustible known commodity with no substitutes would experience a price growth

rate equal to the inverse of the discount factor δ. Carbon allowances satisfy this set

of characteristics given that their publicly known supply M is fixed throughout the

compliance cycle by the environmental regulator. These permits become more scarce

as power producers generate emissions that need to be eventually covered with a fixed

endowment of allowances. This is a consequence of efficient trading in the permit

market. Additionally, this result is independent of the initial allocation of permits.

To obtain a version of Hotelling’s Rule in expectation for allowances prices, recall

from the equilibrium characterization that15,

xt(z
t) = δ · E

[
xt+1(z

t+1)|zt
]
, ∀t = 1, ..., T − 2

or, equivalently,

E
[
xt+1(z

t+1)− xt(z
t)

xt(zt)
+ 1 | zt

]
=

1

δ
. (1.15)

The existence of shocks to aggregate demand implies that a smooth Hotelling time

path for prices is not possible. Still, (1.15) shows it will hold for the expected growth

rate of allowance prices in equilibrium. Because of rational expectations, Hotelling’s

Rule operates as a non-arbitrage condition implying that in equilibrium firms exploit

all possible gains from intertemporal trade of permits given the information available.

Without demand uncertainty, the analogous equation for allowance price dynamics in

equilibrium would be,

15See Section A.1.1 of the Appendix for details on the derivation.
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xt = δ · xt+1, ∀t = 1, ..., T − 2

which is equivalent to the original deterministic version of Hotelling’s Rule,

xt+1 − xt
xt

+ 1 =
1

δ
.

1.3.7 Welfare Measure

I consider a welfare measure that accounts for total value of firms, expected present

value of consumer surplus, expected climate change benefits, and expected policy

revenues. I define such measure of ex-ante welfare as follows,

S∑
s=1

Vs︸ ︷︷ ︸
Value of firms

+
∑

zT∈ZT

Q(zT )
T∑
t=1

δt−1

∫ Y ∗
t (zt)

0

[(
zt

Yt(zt)

)1/β

− p∗t (z
t)

]
dYt(z

t)︸ ︷︷ ︸
Expected consumer’s surplus

+
∑

zT∈ZT

Q(zT )
T∑
t=1

δt−1SCC
S∑

s=1

ns∑
i=1

ψi(y
bau
its (zt)− yits(z

t))︸ ︷︷ ︸
Expected climate change benefits

+
∑

zT∈ZT

Q(zT )R(zT )︸ ︷︷ ︸
Expected policy revenues

.

(1.16)

Let Vs represent the value of firm s – i.e. the expected discounted present value of

profits from firm s in competitive equilibrium. Parameter SCC represents the social

cost of carbon, ybauits (z
t) stands for output at unit i and time t from firm s in BAU,

and (p∗t (zt), Y ∗
t (z

t)) denotes the equilibrium electricity price and quantity at period t,
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respectively. Term R(zT ) represents policy revenues conditional on history zT . In the

case of a carbon tax, this has the following functional form,

R(zT ) =
T∑
t=1

δt−1τ

S∑
s=1

ns∑
i=1

ψi(y
bau
its (zt)− yits(z

t))

while under a permit system, policy revenues emanate from permits being auctioned

off to firms at price x116,

R(zT ) = x1

S∑
s=1

m1s.

This welfare measure highlights a key trade-off in carbon policy design that explains

why welfare effects from any given regulation mode are ambiguous. On one hand,

higher carbon taxes or tighter emissions caps increase climate change benefits by

reducing emissions at fossil fuel units through higher emissions prices. However, either

policy also reduces firm profits and consumer surplus through lower generation in

equilibrium at higher electricity prices (through increases in marginal costs at fossil

fuel units). The sign of welfare effects from carbon pricing (either price or quantity

instruments) depends on which one of the previous two forces is dominant.

Most importantly, the welfare measure captures how firms and consumers balance

aggregate output volatility vs. output price volatility when choosing between price and

quantity-based instruments. Specifically, it is possible to choose the per unit tax τ and

the emissions cap M such that in expectation total cumulative emissions are the same

across control modes. This fixes the value of expected climate benefits. With carbon

16Although x1 is a predetermined initial value for the sequence of realized permit prices, it but
must be consistent with the exogenous emissions cap M .
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taxes, lower output price volatility benefits firms (due to unit-level cycling costs) but

higher output volatility is detrimental to consumers that are averse to consumption

risk. With cap-and-trade it is the opposite situation: higher output price volatility is

detrimental for firms, but lower aggregate output volatility is benefitial for consumers.

These two opposing forces will drive differences in welfare across control modes. Any

difference in average emissions prices between control modes translates into a transfer

of wealth from firms and consumers to the government but is irrelevant for aggregate

welfare differences.

1.4 Simulation

1.4.1 Experiment Design

The goal of the policy experiment is to enable a quantitative comparison of welfare

effects between control modes. I simulate the sequence of shocks to power demand

{zt}Tt=1 and solve the model under BAU. Then, I fix the simulated history of demand

shocks {zt}Tt=1 and separately solve the model for each of the two policy counterfacturals

– i.e. a carbon tax and a cap-and-trade. I benchmark outcomes under each policy

scenario against BAU in order to isolate the causal welfare effects of carbon regulation

under each alternative regulatory mode.

To enable a consistent comparison between regulatory regimes, I consider carbon

taxes and permit systems that are price-equivalent in expectation. The natural way

to implement this principle is by adequately choosing the per unit carbon tax τ and

emissions cap M such that average emissions prices are the same across counterfactual
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control modes – i.e. choosing the policy variables to compare welfare outcomes between

control modes to satisfy τ = E(xt(zt)).

The basic steps for implementing the simulation procedure are as follows:

1. Simulate 1,000 different sequences for the history of demand shocks.

2. At each simulated history j, solve the model for the BAU setup. Compute

average welfare w0.

3. Define a set of values {τk}Kk=1 for the carbon tax. At each τk, solve the model

for all J histories of the demand shock and compute average welfare wk(τk).

4. At each k = 1, ..., K, for each j history choose the emissions cap Mjk such that

the average price of allowances matches τk. Calculate average welfare wk(Mk)

across all j.

5. Compare wk(τk)− w0 to wk(Mk)− w0 for all k = 1, ..., K.

I solve the model for a full compliance cycle spanning an entire year in hourly time

blocks. Additionally, I model electricity residual demand – i.e. total demand minus

generation from wind and solar capacity – because power production from wind and

solar is determined by exogenous weather conditions – e.g. speed of wind or availability

of sunlight – rather than equilibrium electricity prices. Hence, subtracting generation

from wind and solar to total demand allows to explicitly account for residual demand

uncertainty that emanates from limited capacity to predict future output from solar

stations and wind farms.

32



1.4.2 Data

ERCOT is the grographic market where 90% of Texas electricity consumption takes

place. It is also the second largest U.S. power grid in terms of generating capacity

per consumer. I use three main data sources from the universe of ERCOT firms in

the quantitative analysis17. First, I use EIA-860 and EIA-923 2017 surveys to collect

plant-level data on technological attributes from ERCOT firms. These are mandatory

reports US power producers submitted on a monthly basis to the Energy Information

Administration (EIA). The reports include data at the power plant level on unit

identifier, electricity production, fuel costs (per energy source), fuel consumption and

stocks, regulation status, energy-type emissions rates, and generation capacity limits,

among other information. Approximately, 97% of 2017 ERCOT residual demand was

met from power generated either from coal (∼39%), natural gas (∼45%), or nuclear

(∼13%) sources. As such, I abstract in the quantitative exercise from any other inputs

different from these three – e.g. diesel or biomass.

Second, I use 2017 ERCOT data on hourly load (in MWh) and average hourly

prices at the system level. This dataset includes information about hourly power

consumption at the aggregate and zonal level – i.e. North, North Central, South,

South Central, and West zones. Data on aggregate load combined with EIA-860

information about solar and wind shares in total generation are used for computing

the relevant residual electricity demand moments.

17See EIA (2017) and ERCOT (2017).
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1.4.3 Estimation and Identification

I implement a two-step procedure to estimate structural parameters. First, I calibrate

emissions rates ψi, price-elasticity of demand β, social cost of carbon SCC, and capacity

limits ymax
is using available engineering or reduced-form estimates. Second, I design

a SMM approach to estimate unit-level marginal cost and cycling cost parameters

(cis, αis). On the demand side, I adopt the following parametrization of equation (1.1)

in the SMM strategy to estimate the demand intercept ρ0 and shock size ζ18.


ln(Dt) = (ρ0 + εt)︸ ︷︷ ︸

=ln(zt)

−βln(pt)

E(εt) = 0 and εt ∈ {−ζ, 0, ζ} , ∀t.

(1.17)

1.4.3.1 Step 1: Calibration

I report calibrated parameters in Table 1 and Table 2. Data on average emission

rates are available only at the energy type level but not at the unit level. Hence, I

assume emissions rates at units using the same fuel type to be equal across firms.

To compute average emissions rates, I use estimates from EIA data that correspond

to 2.21 lbs/kWh for coal and 0.98 lbs/kWh for natural gas units. I convert these

estimates to units in tons/MWh. This implies average emissions rates of 1 ton/MWh

for coal and .44 tons/MWh for natural gas (see Table 1). I annualize the hourly

discount factor to be consistent with a yearly discount of .98 by setting δ consistently

18By definition, ρ0 + εt = ln(zt). Therefore, εt follows a zero-mean Markov process of degree 1
since it inherits the stochastic properties of zt.
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with δ365·24 = .98. Additionally, I use the upper bound reduced-form estimate for

price-elasticity of electricity demand in Ito (2014).

Values for parameters ymax
is in Table 2 correspond to the maximum capacity limit of

unit of type i from firm s. I calibrate these values using unit level engineering estimates

of nameplate capacity for all ERCOT firms in the EIA surveys. Additionally, I map

energy portfolios at the firm level into the economic environment by consolidating

the firm’s total installed capacity per energy type into one power. For instance, a

firm with two natural gas units of 100 MW capacity and three coal units of 50 MW

capacity in the data would have one natural gas unit of 200 MW capacity and one

coal unit of 150 MW capacity in this simulation setup.

Table 1. Emissions and preferences parameters

Parameter Definition Value Source

(ψ1, ψ2, ψ3) Emission rates (1, .44, 0) EIA (2018)
β Price-elasticity of demand .034 Ito (2014)
δ Discount factor ∼1 Assumption

SCC Social Cost of Carbon 51 EPA (2021)

Note: This table reports externally calibrated values I take from existing estimates. Emissions rates
are expressed as CO2ton/MWh. Parameters ψ1, ψ2, ψ3 correspond to average emissions rates at coal,
natural gas, and nuclear power units, respectively.

I consolidate total capacity of firms that own only one energy type (natural gas or

coal-fired units) into two separate atomistic firms: one that owns a single coal unit

and a second one with a single natural gas unit. Since firms that own a single type of

fossil fuel technology can only abate emissions by cutting down production, this is

without loss of generality in terms of how the model captures firm responses to carbon
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prices. I model individually all other power producers that own installed capacity in

two or more energy types.

Table 2. GW capacity limits (EIA, 2017)

Parameter Power producer Value

(ymax
11 , ymax

21 , ymax
31 ) Luminant Generation Company, LLC. (8.594, 3.846, 2.430)

(ymax
12 , ymax

22 ) NRG Texas Power, LLC. (4.587, 6.424)
(ymax

13 , ymax
23 ) Southwestern Public Service Co (1.773,1.681)

(ymax
14 , ymax

24 ) City of San Antonio - (TX) (2.376, 3.775)
(ymax

15 , ymax
25 ) Lower Colorado River Authority (1.690, 2.049)

(ymax
16 , ymax

26 ) Southwestern Electric Power Co (1.837, 1.423)
(ymax

17 , ymax
27 ) Single-plant firm – coal (5.210, 0)

(ymax
18 , ymax

28 ) Single-plant firm – natural gas (0, 26.131)

Note: This table reports externally calibrated values I take from engineering estimates of nameplate
capacity from the EIA 860 and EIA 930 surveys. All numbers are in Gigawatt units (GW).

1.4.3.2 Step 2: Estimation and Identification

I use a Simulated Method of Moments (SMM) strategy to estimate the rest of structural

parameters. To implement the SMM, I define a set of key moments for estimating

each parameter of interest and use a number of moments equal to the number of

parameters to be estimated. Then, I simulate the exogenous variation within the

model – i.e. the history of demand shocks {εt}Tt=1 – to compute the simulated moments

obtained from solving the economic model by using the equilibrium characterization

in Section 1.3.4. Subsequently, I find the parameters that allow matching each of

these model-dependent moments to those calculated from the data.
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Table 3. Target moments for SMM estimation

Parameter Target Moment
Model Data

Unit-level marginal costs (cis)
Luminant Generation Company Energy mix (72.5, .8, 26.7) (72.8, .5, 26.7)

Avg. coal power production 5,869 5,869
NRG Texas Power Energy mix (85.3, 14.7) (85.3, 14.7)

Avg. coal power production 2,774 2,774
Southwestern Public Servico Co. Energy mix (83.8, 16.2) (83.9, 16.1)

Avg. coal power production 1,113 1,113
City of San Antonio - (TX) Energy mix (61.9, 38.1) (61.9, 38.1)

Avg. coal power production 1,086 1,086
Lower Colorado River Authority Energy mix (60.1, 39.9) (60.1, 39.9)

Avg. coal power production 1,032 1,032
Southwestern Electric Power Co. Energy mix (95.7, 4.3) (95.4, 4.6)

Avg. coal power production 1,125 1,123
Single-plant firm – coal Avg. coal power production 3,647 3,647
Single-plant firm – natural gas Avg. natgas power production 13,834 13,834

Unit-level cycling costs (αis)
Luminant Generation Company Avg. cycling cost/MW cap. (141, 101, 339) (142, 100, 339)
NRG Texas Power Avg. cycling cost/MW cap. (141, 100) (142, 100)
Southwestern Public Servico Co. Avg. cycling cost/MW cap. (142, 99) (142, 100)
City of San Antonio - (TX) Avg. cycling cost/MW cap. (142, 100) (142, 100)
Lower Colorado River Authority Avg. cycling cost/MW cap. (141, 101) (142, 100)
Southwestern Electric Power Co. Avg. cycling cost/MW cap. (142, 100) (142, 100)
Single-plant firm – coal Avg. cycling cost/MW cap. 142 142
Single-plant firm – natural gas Avg. cycling cost/MW cap. 100 100

Power demand
Demand Intercept, ρ0 Avg. hourly consumption 33,442 33,442
Demand shock size, ζ S.D. hourly consumption 7,482 7,481

Note: This table reports targets used for estimating each of the firm-level and demand parameters. Column
‘Parameter’ defines the parameter group in italic and the firm’s name to which the specific parameter is
associated to in standard font. Column ‘Target’ defines the moments to match in the data. Energy mixes (in
% points) are at the firm level. Avg. coal/natgas power production (in MWh) and avg. cycling costs per
MW capacity are at the hourly level. For vectors with energy mix and cycling cost data, first slots are for
coal units, second slots are for natural gas units, and third slots (if any) are for nuclear units. Mean and
standard deviation (S.D.) of hourly (residual) electricity consumption are at the system level. Column
‘Moment’ compares model-dependent moments to those calculated from the data.
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I rely on a SMM approach given that it is not possible to compute closed form

analytical solutions of the key moments directly from the economic model. Instead,

I compute the model-dependent moments with a simulation technique that exploits

demand shocks as the key source of exogenous variation behind equilibrium dynamics.

I report estimation results in Table 3 and Table 4. In Table 3, I define moments

used to estimate each parameter and report the goodness-of-fit19. In Table 4, I report

estimated values and bootstrapped standard errors. For supply side parameters, I

exploit time variation in plant-level generation across power units owned by the same

firm along with variation in cycling costs across energy types to estimate unit-level

marginal cost parameter cis and cycling cost parameter αis. I do this by jointly

estimating unit level cost parameters (cis, αis)
ns
i=1 at the firm level to match the

following set of key moments: i) annual share of coal and natural gas power at the

firm level (ns − 1 moments), ii) average hourly production of coal power at the firm

level (1 moment), and iii) average cycling costs per MW capacity at the fuel type level

(ns moments). I use the same empirical moment to estimate cycling cost parameters

of units with the same fuel type because data is available at the energy type level but

not at the firm level. For demand side parameters, I exploit time variation in hourly

electricity consumption at the system level to identify ρ0 and ζ. I do this by jointly

estimating (ρ0, ζ) to match the mean and variance of hourly electricity consumption

at the system level.

I use firm-level energy mix as a key moment for estimating marginal costs cis

given that shares of coal and natural gas electricity within firms are determined by

19See Section A.1.2 of the Appendix for a sensitivity analysis of how each model-dependent
moment changes with a 1% change in estimated parameters.
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relative production costs between power plants. Since the same energy mix can be

consistent with multiple combinations of unit-level production levels, I also use average

generation at the coal-fired plant to complete the set of moments that allow estimating

plant-level marginal costs cis.

Table 4. SMM estimation results

Parameter Notation Estimate S.E.

Unit-level marginal costs
Luminant Generation Company, LLC (c11, c21, c31) (22.14, 27.51, .01) (5.269, 11.191, 4.652)
NRG Texas Power, LLC (c12, c22) (23.30, 41.13) (1.428, .607)
Southwestern Public Servico Co. (c13, c23) (24.39, 30.93) (1.455, 8.341)
City of San Antonio - (TX) (c14, c24) (24.44, 80.55) (.403, 25.647)
Lower Colorado River Authority (c15, c25) (24.39, 47.23) (1.413, 16.405)
Southwestern Electric Power Co (c16, c26) (24.39, 38.89) (1.064, 4.965)
Single-plant firm – coal c17 23.84 1.2× 10−15

Single-plant firm – natural gas c28 44.37 1.0× 10−17

Unit-level cycling costs
Luminant Generation Company, LLC (α11, α21, α31) (1.12, .01, .94) (.496, .355, .001)
NRG Texas Power, LLC (α12, α22) (1.35, .01) (.328, .001)
Southwestern Public Servico Co. (α13, α23) (.05, .02) (.003, .001)
City of San Antonio-(TX) (α14, α24) (.03, .01) (.001, .004)
Lower Colorado River Authority (α15, α25) (.05, .02) (.002, .003)
Southwestern Electric Power Co (α16, α26) (.05, .02) (.002, .002)
Single-plant firm – coal α17 .44 1.0× 10−13

Single-plant firm – natural gas α28 .01 1.4× 10−13

Power demand
Demand Intercept ρ0 10.53 .001
Demand shock size ζ .27 .050

Note: This table reports estimation results for each firm-level and demand parameter. Column ‘Parameter’
defines the parameter group and the firm’s name to which the specific parameter is associated to. Column
‘Notation’ reports parameters as defined in the model. Column ‘S.E.’ reports bootstrapped standard errors
clustered at the unit level for supply-side parameters. For vectors with cost parameters, first slots are for
coal units, second slots are for natural gas units, and third slots (if any) are for nuclear units.
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On the demand side, I use the hourly average in electricity consumption as the

moment to estimate ρ0 given that the demand shock εt has zero mean. Additionally, I

estimate ζ using the variance of hourly power consumption as key moment because

larger demand shocks increase volatility of power consumption in equilibrium, and

vice versa.

I show in Figure 3 how the value of the J-statistic (i.e. the estimated value of the

distance between the model-dependent moments and their empirical values in the

data) changes with perturbations to estimated parameter values in all four categories

of parameters. To keep the reporting of sensitivity analysis results succinct, for cost

parameters I only show results for the case of NRG Texas Power Co. The J-statistic

is zero at the estimated parameter values from Table 4 because the model is exactly

identified (i.e. same number of moments as parameters to estimate) so that each

moment is exactly matched (see Table 3). For purposes of model identification, these

results indicate that the value of the J-statistic indeed achieves a global minimum

at the vector of estimated parameters over the relevant parametric space. Moreover,

Table 5 shows that the model performs well matching other key moments that were

not directly targeted in the estimation procedure given that their empirical values fall

within the 95% confidence intervals generated by the model.

Table 5. Key untargeted moments

Definition Model 95% CI Data (2017)
Avg. hourly price ($/MWh) 31.2 28.1 – 34.3 28.3

Avg. emissions (tons) 207,050,000 202,899,770 – 211,200,230 210,151,200

Note: This table reports key untargeted moments from solving the economic model parametrized
with the vector of estimated parameters. Empirical moments in the data fall within the 95%
confidence intervals.
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(a) Marginal cost at natural gas plant (c22)
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(b) Cycling cost parameter at natural gas plant
(α22)
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(c) Demand intercept ρ0
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(d) Shock size ζ

Figure 3. J-statistic Sensitivity Analysis

Note: This figure shows how the value of the J-statistic changes with perturbations to estimated
parameter values in all four categories of estimated parameters. The J-statistic is zero at the
estimated parameter values from Table 4 because the model is exactly identified (i.e. same number
of moments as parameters to estimate). Cost parameters correspond to estimation results for NRG
Texas Power Co.
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1.5 Simulation Results

In this section I quantitatively assess the performance of carbon taxes and cap-and-

trade regulation on welfare grounds. To do this, I compare price and quantity-based

regulation using two alternative criteria. First, I present results that compare regulation

modes with the same price of emissions in expectation (i.e. τ = E0(xt(z
t)). Then,

I present and focus on results that compare policy instruments that implement, in

expectation, the same level of cumulative emissions. These are the key results from

the policy experiment as real-world regulation is designed based on emissions targets

rather than price targets.

Over a wide range of policy relevant emissions targets or prices, carbon taxes have

higher welfare. Still, the distributional consequences between consumers and firms

are sensible with respect to the point of comparison. This is because by comparing

emissions-equivalent policies, climate benefits are (by construction) equalized across

control modes. However, climate benefits are also allowed to vary across control modes

when comparing price-equivalent policies.

Figure 4 decomposes welfare effects from Figure 6 into the key components of the

welfare measure defined by (1.16) in Section 1.3.7. Implications for equilibrium prices,

allocations and energy mix are reported in Figure 7 and Figure 8.
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(b) Policy Effect on Consumer Surplus
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(c) Climate Change Benefits
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(d) Policy Revenues

Figure 4. Comparative Welfare Analysis

Note: This figure shows the policy effects across alternative control modes on each of the
components of the welfare measure from equation (1.16), i.e. firms’ profits (a), consumer surplus (b),
climate benefits (c), and policy revenues (d). The dashed line represents policy effects from a carbon
tax while the dotted line corresponds to effects from a permit system.
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Panel (a) in Figure 4 measures the change on firms’ profits in equilibrium – i.e.

relative to BAU – in response to different levels of average emissions prices (which

is τ in the case of a carbon tax). Carbon taxes are more costly to firms than price-

equivalent permit systems. This is because of the uncertainty wedge that affects firms

under cap-and-trade regulation (see equation (1.13)). Intertemporal trade of permits

dampens the effect of allowance prices on contemporaneous output decisions at the

plant level because firms consider both current and future permit prices for making

contemporaneous abatement decisions. Hence, with cap-and-trade emissions prices

are less distortive to firms relative to a price-equivalent carbon tax which lacks this

intertemporal link.

Panel (b) measures the change in expected present value of consumer surplus

in response to average emissions prices. Carbon prices have detrimental effects on

consumer welfare because of lower consumption at higher post-policy electricity prices

(see Figure 7). However, quantitative differences in expected consumer surplus between

regulation modes are negligible. This is consistent with the fact that production (on a

yearly basis) and hourly electricity prices are, on average, similar between regulatory

regimes (see Figure 7).

Panel (c) shows expected climate benefits from carbon pricing as a function of

average emissions prices. Climate benefits have been quantified as total carbon

reductions (relative to BAU emissions) valued at a social cost of carbon of $51. From

equations (1.13) and (1.14), higher emissions prices generate larger abatement at

the unit level (via decreases in production) which translate into more benefits from

emissions avoided due to the policy. Moreover, climate benefits are non-trivially higher

under carbon taxes because firms abate more aggressively in the carbon tax case (see
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Figure 8) by replacing generation from coal-fired units towards natural gas (see Figure

7) which is a less emissions intensive fuel.

Figure 5. Probability Density Functions of Policy Revenues

Note: This figure shows the estimated probability density functions of policy revenues between
alternative regulatory regimes for different levels of expected carbon prices. Blue histograms are for
pdfs under carbon taxes while orange histograms are for pdfs under cap-and-trade systems. The
Figure shows that the distance in means across control modes grows larger as the expected carbon
price increases.
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Panel (d) reports expected policy revenues between regulatory regimes as a function

of average carbon prices. Quantitative findings show expected revenues in equilibrium

are strictly increasing on average carbon prices. Regime-wise probability density

functions of policy revenues in Figure 5 indicate these are higher, on average, with

permit systems. This is because of higher expected emissions in the C&T case at any

given expected carbon price.

Figure 6 aggregates distributional impacts of market-based carbon regulation from

Figure 4. Carbon taxes have higher welfare at expected emissions prices below $63,

while permit systems dominate for average prices above the cutoff. Under cap-and-

trade, welfare effects are smaller at expected carbon prices below the cutoff because

of lower climate benefits and policy revenues relative to carbon taxes. Welfare effects

at the low end of average emissions prices are negative with permit systems because

climate benefits and policy revenues are offset by the detrimental effects of regulation

on consumer surplus and firms’ profits. However, above the cutoff these become larger

relative to welfare effects from a carbon tax because of the increasing difference in

firms’ profits and policy revenues across control modes.

Results from Figure 6 can be used to derive policy implications from regulatory

design that draws upon policy parameters consistent with allowance prices from active

U.S. cap-and-trade systems. For instance, the settlement price for CA cap-and-trade

allowances for Feb. 2022 auction closed at $29.15. Alternatively, the clearing price

of RGGI permits for Mar. 2022 auction settled at $13.5. Results show that from

a Utilitarian planner’s perspective, a carbon tax is preferred for a wide range of

expected carbon prices that is consistent with permit prices observed in RGGI and CA

cap-and-trade markets. The dominance of carbon taxes over price-equivalent permit
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systems is more pronounced at average emissions prices closer to RGGI prices given

that the welfare gap increases from 6.7% at $29.5/CO2ton to 13.6% of BAU industry

profits at $13.5/CO2ton20.
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(a) Total Welfare Effect
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(b) Welfare Gap

Figure 6. Aggregate Welfare Effects

Note: This figure aggregates in panel (a) the policy effects on each of the components of the welfare
measure from equation (1.16) across alternative control modes. The dashed line represents welfare
effects from a carbon tax while the dotted line corresponds to effects from a permit system. Panel
(b) plots the difference in welfare effects between regulatory regimes. Positive differences mean that
a carbon tax has higher welfare effects, and vice versa..

20See Section A.1.4 of the Appendix for additional results on the estimated density functions of
endogenous outcomes.
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(a) Output
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(b) Prices
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(c) % Output Produced with Coal
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(d) % Output Produced with Natural Gas

Figure 7. Effects on the Electricity Market across Regulatory Regimes

Note: This figure compares policy effects on the electricity market across alternative control modes.
Panel (a) plots policy effects on avg. hourly output, panel (b) shows effects on avg. hourly electricity
prices, panel (c) plots the response in the share of coal-produced electricity and panel (d) shows the
effect on the share of natural gas-produced power. The dashed line represents policy effects from a
carbon tax while the dotted line corresponds to effects from a permit system.
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Figure 8. Emissions across Regulatory Regimes

Note: This figure compares total expected emissions between alternative control modes. The dashed
line represents policy effects from a carbon tax while the dotted line corresponds to effects from a
permit system. In both cases, expected emissions decrease as a result of higher average carbon prices
(either from higher carbon taxes or lower emissions caps).
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(a) Policy effect on value of firms
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(b) Policy effect on consumer surplus
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(c) Policy Revenues
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Figure 9. Welfare Effects of Different Abatement Targets across Control Modes

Note. This figure shows the policy effects across alternative control modes on the following
components of welfare in equation (1.16): firms’ profits (a), consumer surplus (b), policy revenues
(c), and total welfare (d). The dashed line represents policy effects from a carbon tax while the
dotted line corresponds to effects from a permit system. The 1.05% abatement level corresponds to
the target consistent with avg. year-over-year reductions in total U.S. emissions. The 4.27%
abatement level corresponds to the target consistent with a 60% of 1990 emissions by 2030.
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In Figure 9, I construct the equilibrium relationships between welfare and market

outcomes as functions of expected emissions. This is consistent with comparing regu-

lation modes that are emissions-equivalent – i.e. total emissions from the compliance

cycle are the same in expectation. These are the key quantitative results from the

experiment. From a policy perspective, focus on these findings is of key importance

given that in practice policy goals from emissions regulation are set as abatement

targets rather than price targets. Panel (d) aggregates the distributional implications

of alternative regulation modes in panels (a), (b), and (c) into total welfare effects

(relative to BAU).

Results in Figure 9 capture the welfare implications of how firms and consumers

balance aggregate output volatility vs. output price volatility. Panel (a) shows that

firms’ profits are significantly higher with a carbon tax. This is because with alternative

cap-and-trade regulation, electricity price volatility is higher and this induces costly

adjustments in production due to the existence of cycling costs. Additionally, panel

(b) shows that consumer surplus is higher with carbon taxes even if aggregate output

volatility is larger with price-based regulation. This is because, in equilibrium, the

difference in average emissions prices also matters for consumer surplus. As Figure 8

shows, average emissions prices are significantly higher with cap-and-trade regulation.

This offsets the welfare gain from lower unpredictable volatility in consumption with

permit systems. At the aggregate level, this difference if average emissions prices is

irrelevant for welfare effects because it constitutes a transfer of wealth from consumers

to the government. Therefore, the fact that firms favor carbon taxes due to lower

output price volatility becomes the quantitatively key channel that drives differences

in welfare across regulation modes.
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I draw upon policy goals from the California cap-and-trade market to benchmark

this analysis with emissions targets from active U.S. permit systems. California set

an emissions target of 40% below 1990 levels by 2030. This requires a year-over-year

4.27% emissions reduction from 2019 through 203021. Results in Figure 9 imply that

implementing a 4.27% abatement target with a carbon tax delivers a welfare gain of

16.4% of BAU industry profits relative to using a permit system. An abatement target

consistent with the 2005-2019 historical average of year-over-year changes in state

emissions sets the policy goal at a 1.05% abatement rate. The welfare gain of using

carbon taxes falls to 7.6% of BAU profits. At this abatement target, a price instrument

is welfare-enhancing while a quantity instrument would be welfare-deteriorating. These

results indicate that for a wide range of abatement targets consistent with current

policy goals, carbon taxes outperform cap-and-trade in terms of welfare. Last, these

results vary in their degree of sensibility to different parameters of the model. In

particular, the welfare ranking crucially depends on the joint distribution of unit-level

marginal costs across fuel types (see Section A.1.3 of the Appendix for a sensitivity

analysis).

1.6 Discussion

Market power and endogenous capital investments are two important avenues that

have been studied in related literature. I analyze how the model in section 1.3 can

be extended to account for both of these dimensions. I also assess the robustness

21According to estimates from the California ARB, 1990 carbon emissions were 427 MMT while
2019 emissions were 418.2 MMT. Conservative calculations using 414.2 MMT for 2019 yields a 4.27%
abatement rate.
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of the key analytical and quantitative implications from the main analysis to the

incorporation of these extensions.

1.6.1 Market Power

Several research efforts have studied the role of market power in energy markets. Some

of these studies go back to the early years of restructured electricity markets22. Others

have focused on how market power can interact with the bidding mechanism that

regulates the design of restructured markets, generation costs, vertical arrangements

or other features of the industry23.

In this section, I extend the model from Section 1.3.2 to account for strategic

behavior of firms in their production decisions. I show that even in such augmented

model, market power does not interact with the uncertainty wedge in permit systems.

This implies that the mechanism driving discrepancies in welfare between price and

quantity based regulation operates exactly as in the competitive case.

Assume there exist S oligopolistic firms that play a dynamic Cournot game.

Moreover, consider the existence of a competitive fringe with a continuum of price-

taking firms. Total demand D̄t is perfectly inelastic from period to period and is

jointly met by strategic and competitive firms. However, oligopolistic firms face a

downward-sloping residual demand curve (i.e. the difference between total demand

less supply from producers in the competitive fringe) since price-taking firms in the

22E.g. Borenstein et al. (2002).

23E.g. Cicala (2022), Ito and Reguant (2016), Reguant (2014), Bushnell et al. (2008), and Hortaçsu
and Puller (2008).
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competitive fringe optimally adjust their production plans to price changes. I specify

the following reduced-form inverse residual demand that is faced by oligopolistic firms,

pt =
D̄t −

∑S
s=1

∑ns

j=1 yjts

Y c
t

(1.18)

where Y c
t =

∫ 1

0

∑ns

j=1 y
c
jtsds represents total output from firms in the competitive

fringe. Equation (1.18) indicates that prices fall either if oligopolistic firms unilaterally

increase output or total production in the competitive fringe increases, and viceversa.

With a carbon tax, competitive firms maximize expected profits according to (1.4).

However, an oligopolistic firm s solves the following problem for a given strategy

profile of the production decisions from the other firms,



max
{yits(zt)}ns,T

i,t=1

∑
zT∈ZT

Q(zT )
T∑
t=1

δt−1

ns∑
i=1

[(
D̄t −

∑S
s=1

∑ns

j=1 yjts(z
t)

Y c
t (z

t)

)
︸ ︷︷ ︸

=pt(zt)

yits(z
t)−

(cis + τψis)yits(z
t)− αis(yits(z

t)− yi,t−1,s(z
t−1))2

]
s.t. 0 ≤ yits(z

t) ≤ ymax
is , ∀i = 1, ..., ns,∀t = 1, ..., T, ∀zt ∈ Zt

z0, {yi0s}ns

i=1 — given.
(1.19)

The key difference with a competitive firm is that the strategic producer considers

in its profit function the effect on prices from individual output decisions. This is

captured by the residual demand equation. However, competitive firms take prices as

given which means that prices in their profit maximization problems are independent

of any individual decision-making process.
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With a permit system, competitive firms maximize expected profits according to

(1.6). Alternatively, an oligopolistic firm solves the following problem while taking as

given the strategy profile of other firms,



max
{yits(zt),mt+1,s(zt)}

nS,T
i,t=1

∑
zT∈ZT

Q(zT )
T∑
t=1

δt−1


ns∑
i=1

[(
D̄t −

∑S
s

∑ns

j yjts(z
t)

Y c
t (z

t)

)
︸ ︷︷ ︸

=pt(zt)

yits(z
t)

{
− cisyits(z

t)− αis(yits(z
t)− yi,t−1,s(z

t−1))2

]
− xt(z

t)
(
mt+1,s(z

t)−mts(z
t−1)

)}

s.t. 0 ≤ yits(z
t) ≤ ymax

is , ∀i = 1, ..., ns,∀t = 1, ..., T, ∀zt ∈ Zt

T∑
t=1

ns∑
i=1

ψiyits(z
t) = mTs(z

T−1), ∀zT ∈ ZT

z0,m1s, {yi0s}ns

i=1 — given.
(1.20)

An equilibrium in this augmented environment is a set of contingent quantities

and prices such that the following holds. First, best responses from oligopolistic

firms constitute a Subgame Perfect Nash Equilibrium. Second, contingent plans from

firms in the competitive fringe maximize expected profits while taking prices as given.

Last, for the carbon tax case the electricity market clears on a period-by-period

basis24. Alternatively, in a cap-and-trade setup the permit market clears as well at

the expiration date T .

24Observe this means that firms in the competitive fringe meet whatever portion of demand that
is not met by oligopolistic firms.

55



Optimization problems in (1.19) and (1.20) both show oligopolistic firms realize

that their optimal production decisions have influence on electricity prices. For the

C&T case, unit-level production decisions at the intensive margin from oligopolistic

firm s are characterized by the following Euler condition,

D̄t −
∑S

s=1

∑ns

j ̸=i yjts(z
t)

Y c
t (z

t)
− 2yits(z

t)

Y c
t (z

t)︸ ︷︷ ︸
Output-price interaction

− cis − 2αis(yits(z
t)− yi,t−1,s(z

t−1)) +

2αisδ · E
[
yi,t+1,s(z

t+1)− yits(z
t)|zt

]
=

δT−2t

1 + δ2(T−t)−1︸ ︷︷ ︸
Uncertainty wedge

· ψisxt(z
t)︸ ︷︷ ︸

Emissions cost

, ∀t = 1, ..., T − 2.

(1.21)

However, the analogous Euler equation in a carbon tax environment with per unit

tax τ is instead given by,

D̄t −
∑S

s=1

∑ns

j ̸=i yjts(z
t)

Y c
t (z

t)
− 2yits(z

t)

Y c
t (z

t)︸ ︷︷ ︸
Output-price interaction

− cis − 2αis(yits(z
t)− yi,t−1,s(z

t−1)) +

2αisδ · E
[
yi,t+1,s(z

t+1)− yits(z
t)|zt

]
= ψisτ︸︷︷︸

Emissions cost

, ∀t = 1, ..., T − 2.

(1.22)

The analogous expressions for firms in the competitive fringe are the same as (1.13)

and (1.14) from the benchmark framework. Direct comparison of equations (1.13)

with (1.21) and (1.14) with (1.22) proves an important fact: the size of the uncertainty

wedge in output allocations between regulatory regimes is independent of the degree

of market competition. This implies that the mechanism driving differences in welfare

between control modes is immune to the possibility of strategic behavior in production

decisions from ERCOT firms.
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With oligopolistic firms, output is lower and electricity prices are higher in equi-

librium relative to the competitive benchmark from Section 1.3. However, electricity

demand is considerably price-inelastic at high frequency intervals25 For quantitative

results in this paper, a price-elasticity of demand of β = 0.034 implies that a per-

centage point increase in prices leads to a decrease in electricity consumption of just

.034 percentage points. Hence, we would need non-trivial electricity price increases

relative to competitive prices from Section 1.5 in order to observe quantitatively

relevant differences in equilibrium output and welfare from accomodating strategic

firm behavior. Such prices would not align with observed hourly electricity prices in

ERCOT data.

1.6.2 Endogenous Capital Investment, Entry, and Exit

There is a large body of literature that studies long-term effects of carbon policy

on emissions abatement via adjustments on the investment margin of firms and

entrepreneurs26. In this section, I augment the benchmark model from Section

1.3.2 to endogenize capital investment decisions. The natural way is by endogeneizing

investment decisions in capacity per energy type. This will also allow me to accomodate

firm-level entry and exit dynamics. I prove that endogenizing firms’ investment

decisions does not affect the size of the wedge in output allocations between regulatory

regimes. This implies that the mechanism driving differences in welfare between

control modes is independent of capital dynamics.

25The policy experiment uses hourly realizations of electricity demand for the quantitative results.

26E.g. Barrage (2020), Fried (2018), Fowlie et al. (2016), Golosov et al. (2014).
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Let n be the number of energy types (or technologies) available in the economy

with which to produce electricity. At the beginning of period t, firms observe the

demand shock zt. Knowing history zt, producers choose unit-level capacity per plant

of energy type i for period t+ 1. I represent this dynamic decision with ȳi,t+1,s(z
t).

Moreover, firms face adjustment costs on capital investments besides the regular costs

of acquiring necessary machinery and equipment27. These adjustment costs of capital

increase with the size of investment relative to the existent capital stock at the unit

level. I model this feature by assuming that total investment costs are given by a

strictly increasing, strictly convex C1 function G(ȳi,t+1,s − ȳits).

In this augmented environment, a competitive firm that operates under a carbon

tax solves the following problem while taking prices as given,



max
{yits(zt),ȳi,t+1,s(zt)}n,T

i,t=1

∑
zT∈ZT

Q(zT )
T∑
t=1

δt−1

n∑
i=1

[
pt(z

t)yits(z
t)− (cis + τψis)yits(z

t)

− αis(yits(z
t)− yi,t−1,s(z

t−1))2 −G(ȳi,t+1,s(z
t)− ȳits(z

t−1))
]

s.t. 0 ≤ yits(z
t) ≤ ȳits(z

t−1), ∀i = 1, ..., n, ∀t = 1, ..., T, ∀zt ∈ Zt

z0, {yi0s, ȳi1s}ni=1 — given.
(1.23)

Alternatively, a price-taking firm under a C&T system solves the following problem,

27These adjustment costs are necessary for having positive bounded levels of capacity per energy
type at the unit level. See Hayashi (1982b).
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max
{yits(zt),ȳi,t+1,s(zt),mt+1,s(zt)}n,T

i,t=1

∑
zT∈ZT

Q(zT )
T∑
t=1

δt−1

{
n∑

i=1

[
pt(z

t)yits(z
t)− cisyits(z

t)

}
{
− αis(yits(z

t)− yi,t−1,s(z
t−1))2 −G(ȳi,t+1,s(z

t)− ȳits(z
t−1))

]
− xt(z

t)(mt+1,s(z
t){

−mts(z
t−1))

}

s.t. 0 ≤ yits(z
t) ≤ ȳits(z

t−1), ∀i = 1, ..., n, ∀t = 1, ..., T, ∀zt ∈ Zt

T∑
t=1

n∑
i=1

ψisyits(z
t) = mTs(z

T−1), ∀zT ∈ ZT

z0,m1s, {yi0s, ȳi1s}ni=1 — given.
(1.24)

In this augmented environment, competitive equilibrium dynamics imply that

the equations regulating how differences in output allocations translate into welfare

discrepancies between carbon taxes and permit systems are still described by (1.14)

and (1.13), respectively. The only difference is that contingent production plans at

the unit level are now technologically constrained by endogenous capacity limits. This

implies that the size of the wedge in output allocations between regulatory regimes is

independent of endogenous capital dynamics.

Quantitative results on welfare differences between control modes are robust

to whether investment dynamics are endogenous or exogenous28. This is because

quantitative results from comparing relative welfare across price-equivalent control

modes tacitly account for such investment responses. Since emissions prices across

regulation modes are the same on average, adjustments on the investment margin are

28This is not the case with welfare levels because with endogenous investment decisions firms can
adjust their mix of energy units to further minimize the policy costs.
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also in line with each other. This implies that quantitatively relevant discrepancies in

welfare would still generate from demand risk driving differences in output allocations

between regulatory regimes rather than differences on investment decisions.

1.7 Concluding Remarks

Traditional thinking in economic literature has predominantly been to consider im-

perfect information about marginal benefits and marginal costs of abatement as the

leading source of differences in welfare between policy instruments. Weitzman-style

analyses determine the welfare-maximizing regulatory regime by comparing relative

slopes between marginal costs and marginal benefits of abatement given the existence

of idiosyncratic shocks at the firm-level. I analyzed the dynamic implications of

demand uncertainty about the polluting goods as a fundamentally and empirically

relevant source of uncertainty that matters for the choice of the policy instrument.

With uncertainty about future output demand, demand risk distorts production

decisions through unpredictably volatile permit prices in the case of quantity-based

regulation. Therefore, the choice of the policy instrument depends on how firms and

consumers balance aggregate output volatility vs. output price volatility, not on the

relative slopes of marginal benefits and marginal costs of abatement.

I implemented a policy experiment with plant-level data from the Texas electricity

market. For a wide range of abatement targets consistent with policy goals from active

U.S. permit systems, I find that carbon taxes outperform cap-and-trade in terms of

welfare. Similar qualitative results could be expected for other power markets with

quantitatively similar demand uncertainty, energy composition of installed capacity

and plant-wise marginal costs per fuel type. This finding underscores the importance
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of rethinking the leading role that has been assigned to permit systems over carbon

taxes in key U.S. energy markets.
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Chapter 2

DO VERTICAL ARRANGEMENTS MATTER FOR COST-EFFECTIVENESS OF

OUTPUT SUBSIDIES?

2.1 Introduction

The relevance of wind power as a key energy source for the economy has significantly

increased during the last two decades. As of 2000, generation from wind as a percentage

of total U.S. power production barely reached 0.1%. By 2020, that share had increased

to 8.4%. The growing reliance on wind power as an alternative to thermal generation

has been reinforced by a wide variety of state and federal-level initiatives that subsidize

investments in wind capacity. The Production Tax Credit (PTC), a subsidy program

for non fossil fuel facilities extended until 2025 under the $386B climate package of

the Inflation Reduction Act, is a leading example of such initiatives.

This expansive trend has motivated the necessity to develop bilateral procurement

contracts that wind developers use as a channel to access financing. This is because

wholesale electricity prices are volatile and uncertain. Therefore, debt investors are

generally reluctant to finance wind projects without some guarantee that the stream

of revenues can predictably cover financing costs. Developers achieve this by locking

a price for electricity that will be eventually produced by the wind project through

the use of procurement contracts with a future buyer. In this paper, I investigate how

the structure of procurement contracts matters for cost-effectiveness of policies that

subsidize wind investments (e.g. the PTC).
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Developers typically rely on two central types of contract structures for providing

proof of creditworthiness29. First, pay-as-produced contracts are negotiated directly

with a utility offtaker, who commits to buy electricity from the project at a fixed

price per MWh whenever the unit is available for production30. Alternatively, in

fixed-volume contracts the developer agrees to deliver a specific quantity of output on

a period-by-period basis. These contracts are negotiated by her either with a utility

offtaker or a financial institution. In the case of financial institutions, the bank acts as

a hedging party that swaps the stream of floating payments received by the developer

in the wholesale market for a stream of fixed payments.

These features of market institutional design imply that a fixed-volume contract

represents a commitment on a deliverable quantity and a price from both parties,

while a pay-as-produced agreement requires just a commitment to a price. Hence,

contract types interact differently with investment incentives because fixed-volume

contracts expose the developer to a non-linear pricing schedule: i) a predetermined

contract price for production within the volume limit, and ii) an uncertain market

price for generation beyond that threshold. This implies that output subsidies have

different impacts in investment incentives depending on the type of contract held by

the developer.

To understand how these features of procurement contracts matter for cost-

effectiveness of subsidies to wind investments, I develop an analytical framework

to model the extensive and intensive margins of investment decisions in intermittent

29As of 2018, more than 90% of existing wind projects had been developed either under a Power
Purchase Agreement (either physical or syntethic) or a bank hedge. See Bartlett (2019)

30Production at wind farms depends on exogenous weather conditions (e.g. consistent availability
and speed of wind).
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renewable sources (e.g. solar and wind). I use this model to investigate the differenti-

ated effects of contract type on investment incentives of the developer. This allows

to study how output subsidies (e.g. the PTC) have different effects on investment

decisions that depend on the type of contract associated to the project. Subsequently, I

exploit variation in unit-level production and installed capacity data from the universe

of ERCOT firms to estimate structural parameters of the model31. ERCOT is the U.S.

power market with the most wind turbine generation and installed capacity. I use the

estimated model to quantify the decrease in expected payments to wind developers,

given an investment rate target, from using an alternative subsidy scheme where

payments are conditional on contract types relative to a standard subsidy structure

with a fixed output subsidy that is independent of contract types.

This paper delivers two key findings. First, the subsidy scheme that minimizes total

public expenditures for a given investment target conditions transfers to developers

on contract type. Specifically, for projects under fixed-volume contracts, a subsidy per

unit of output is allotted only to production units beyond the volume limit. However,

all output units from projects associated to pay-as-produced agreements receive the

same fixed subsidy. The per unit subsidy to projects with fixed-volume contracts is

larger than for pay-as-produced agreements to account for endogenous selection into

contract types. Second, I find for the Texas wind power industry that implementing

this alternative subsidy structure leads to major reductions in expected transfers to

developers without undermining investment incentives. For instance, a 10% investment

rate is consistent with a decrease in expected subsidy payments of ∼50% relative to

standard subsidy policies with fixed payments per unit of output that are independent

31Electric Reliability Council of Texas (ERCOT) is the regional market that supplies ∼90% of
Texas electricity demand.
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of contract types. This is important because in practice such subsidy payments are

typically funded with distorting taxes on consumers or firms.

This paper is closely related to studies from several strands of literature. First,

this paper advances environmental literature on the effects of financial incentives

on wind investments32. Second, I contribute to research that assesses the role of

institutional design features of energy markets (e.g. procurement contracts) on

investment outcomes33. Last, this study contributes to work on optimal capital

accumulation theory in presence of risk and capital adjustment costs34. This paper

departs from existing literature by investigating how the link between procurement

contract design and investment incentives at the extensive (i.e. energy type decision)

and intensive margins (i.e. plant size) matters for cost-effectiveness of output subsidies

like the PTC.

I structure the paper as follows. Section 2.2 develops the baseline analytical model.

Section 2.3 extends the baseline framework to model the effect of alternative contract

design on investment incentives. Section 2.4 describes the data, simulation, and

estimation procedure. I report quantitative findings in Section 2.5. Last, I draw

concluding remarks in Section 2.6.

32See Aldy et al. (2018), Schmalensee (2016), Fell and Linn (2013), Hitaj (2013), Schmalensee
(2012), Yin and Powers (2010), Bird et al. (2005)

33See Joskow (1987) and more recently Cicala (2015)

34See Dixit et al. (1999), Dixit et al. (1999), Abel et al. (1996), Dixit (1995); Kaslow and Pindyck
(1994); Pindyck (1993); He and Pindyck (1992), Pindyck (1991), and Hayashi (1982a)
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2.2 Baseline Model

Consider an infinite horizon setup with discrete time where a power producer engages

in an investment project. The project consists in building a new power plant and

requires the firm to make decisions along the following two dimensions: energy type

of the plant and size of the investment – i.e. its capacity limit m. Specifically, the

firm can decide between a fossil fuel unit (e.g. a natural gas plant) or a “green energy"

unit (e.g. a wind farm).

There are two key differences between both energy types. Firstly, fossil fuel

units have positive marginal costs of production while green energy units have zero35.

Marginal costs c(q) for fossil fuel units are positive because the plant needs to meet

fuel input requirements per unit of output at a price of q in order to produce electricity.

The firm is competitive in both electricity and fuel input markets, and the price of fuel

inputs q follows a first order Markov process π(·|q). The electricity price p is given

to the competitive firm and follows an i.i.d. process J with constant mean. Second,

production at fossil fuel unit is endogenous and takes place whenever p ≥ c(q) – in

which case the power unit produces at maximum capacity m. However, production

at the green energy unit is exogenous as it depends on local weather conditions36.

Particularly, assume that the capacity factor θ ∈ [0, 1] associated to the green energy

unit follows a first order Markov process H(·|θ) with constant mean37.

35This is consistent with the fact that electricity produced at wind turbines or solar panels bears
negligible costs at the intensive margin.

36Generation at solar stations and wind farms depends on availability of sunlight and wind speed,
respectively.

37Capacity factor is defined as the proportion of a unit’s capacity m that is used for production
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Let i ∈ {f, g} where i = f indexes the fossil fuel unit and i = g represents the

green energy plant. Here, Fi represents the dollar cost of acquiring investment goods

for adding an extra capacity unit at plant of energy type i. Following Hayashi (1982a),

the developer also incurs in installation costs for increasing plant-level capacity. Thus,

total capital costs of increasing current installed capacity from m to m′ in the following

period at plant i are given by,

Fi · (m′ −m)︸ ︷︷ ︸
Cost of investment goods

+ Gi

(
m′ −m

m

)
︸ ︷︷ ︸
Installation costs

, G′
i > 0, G′′

i > 0. (2.1)

Convex costs in capital accumulation capture how investment costs depend on the

size of the investment relative to current capacity. These adjustment costs play a key

role in determining the dynamics of power plant size. A higher degree of convexity

implies smaller investments and lower capacity m′ that becomes available the period

after investments are realized.

The firm’s investment decision encompasses two mutually exclusive choices. First,

after observing contemporaneous prices p and q, the firm can decide to: i) build the

fossil fuel unit, or ii) build the green energy plant. Conditional on the energy type

decision, the firm makes subsequent period-by-period investments in capacity. If the

firm decides to build the fossil fuel unit, it earns the expected payoff Vf (0, q) described

by the following Bellman equation38,

at a given period. For instance, a 1 MW capacity wind turbine running at a 50% capacity factor
for a given hourly period means that the turbine generated .5 MWh during that time frame. Put
differently, θ indicates how fully a unit’s capacity is used.

38I{p≥c(q)} is an indicator variable that takes the value of 1 whenever p ≥ c(q) and 0 otherwise.
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Vf (m, q) = max
m′≥0

{
I{p≥c(q)} · (p− c(q))m− Ff · (m′ −m)

}
{
−Gf

(
m′ −m

m

)
+ β

∫
p′∈P

∫
q′∈Q

Vf (m
′, q′)π(dq′|q)J(dp′)

} (2.2)

with (m, q) as state variables and where β ∈ (0, 1) represents the discount factor.

Alternatively, the firm can choose to build the green energy unit. Choosing this action

makes the firm earn the expected payoff Vg(0, θ) given by the following equation with

state (m, θ),

Vg(m, θ) = max
m′≥0

{
θmp− Fg · (m′ −m)−Gg

(
m′ −m

m

)
+

}
{
β

∫
θ∈Θ

∫
p′∈P

Vg(m
′, θ′)H(dθ′|θ)J(dp′)

} (2.3)

Hence, a profit-maximizing firm chooses the alternative that maximizes expected

payoff given current electricity and fossil fuel prices. Using (2.2), (2.3), the investment

problem of a competitive developer can be defined with the following Bellman equation,

V (q, θ) = max {Vf (0, q)), Vg(0, θ)} . (2.4)

Equation (2.4) captures the fact that the firm’s investment decision is multidimensional.

This is because a developer chooses the unit’s energy type upon observing current

period fossil fuel prices. Then, it makes subsequent plant capacity decisions on a

period-by-period basis to maximize the expected discounted value of a project.
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2.2.1 Characterization of the Optimal Investment Rule

The optimal investment rule encompasses both dimensions of the firm’s investment

decision. I provide and discuss a characterization of such solution while leaving all

corresponding proofs to the Appendix in Section B.1.

When building a new power plant, the firm chooses between a fossil fuel unit or an

intermittent one. Therefore, conditional on building the fossil fuel unit, plant capacity

dynamics are given by the following Euler equation,

− Ff −
1

m
G

′

f (∆
′) + βEq

[
I{p′≥c(q′)} · (p′ − c(q′))

]
+ βFf −

β

(1 + ∆′)m
Eq

[
G

′

f (∆
′′)(1 + ∆′′)

]
= 0

(2.5)

where ∆′ = (m′ − m)/m denotes the investment rate. Alternatively, building an

intermittent unit means that plant capacity dynamics are characterized as follows39,

− Fg −
1

m
G

′

g(∆
′) + βEθ [θ

′p′] + βFg −
β

(1 + ∆′)m
Eθ

[
G

′

g(∆
′′)(1 + ∆′′)

]
= 0. (2.6)

Equations (2.5) and (2.6) plus the corresponding initial values fully determine plant

capacity dynamics conditional on a particular energy type chosen by the developer.

39See Section B.1 for a derivation of Euler conditions (2.5) and (2.6).
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The next step is to characterize the energy type decision. To do so, it is useful

to notice that Vf(0, q) is continuous and decreasing in the fossil fuel price q. If

Vf (0, 0) ≥ Vg(0, θ), there exists a reservation price q∗(θ) defined as 40,

q∗(θ) = inf {q | Vf (0, q) = Vg(0, θ)} . (2.7)

The reservation price is key for determining the firm’s energy type decision. A

firm builds the fossil fuel unit if q ≤ q∗(θ). Otherwise, q > q∗(θ) and the developer

builds the intermittent green energy unit instead. Intuitively, if fossil fuel prices are

above a threshold given by the reservation price q∗(θ), the cost of acquiring fuel inputs

for producing output is so high that it renders the investment project less profitable

relative to building a zero marginal cost intermittent unit. Moreover, since fossil fuel

prices are time-persistent, it is likely that they remain high in the future as well. I

summarize this optimal investment rule characterization in Theorem 1.

Theorem 1. The following rule characterizes optimal firm investment decisions:

1. If q ≤ q∗(θ), the developer chooses to build a fossil fuel unit and subsequent

period-by-period capacity investments are chosen accordingly to (2.5).

2. Else, q > q∗(θ) and the developer chooses to build the intermittent green en-

ergy plant. Subsequent period-by-period capacity investments are determined in

accordance to (2.6).

Figure 10 provides a graphical interpretation of the result of Theorem 1. For a

given capacity factor θ that captures the current state of weather conditions, if fossil

40See Section B.1 for a proof on these claims.
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fuel prices are such that the firm’s marginal costs from the fossil fuel unit are higher

than the threshold c(q∗), the power producer builds the renewable intermittent unit.

Otherwise, it would be more profitable to build the fossil fuel unit. This baseline

model provides the ideal starting point for examining how the commercial structure

in contracting will interact with the investment decisions of the developer.

Vg(0, θ)

Vf (0, q)

Fuel price (q)

Expected payoff ($)

Set i = f ← q∗(θ)→ Set i = g

Figure 10. Graphical Interpretation of Energy Type Decision Rule

Note: This figure illustrates the energy type decisions rule. Upon knowing current weather
conditions summarized by θ, is fossil fuel prices are above the reservation price q∗(θ), the developer
builds a green energy unit (i.e. sets i = g). Otherwise, it builds a fossil fuel unit (i.e. sets i = f).

2.2.2 Relation with Tobin’s Marginal Q

This theory can be connected to the strand of literature related to Tobin’s marginal q

in Tobin (1969) and its neoclassical interpretation. Following Hayashi (1982a), the

existence of capital adjustment costs is fundamental to establish this connection since
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Tobin’s idea that investment rate depends on the ratio of the market value of new

additional investment commodities to their replacement cost – i.e. the q-ratio – is

conceptually equivalent to optimal capital accumulation with adjustment costs.

Consider the plant-level optimal capacity problem conditional on the developer

choosing to invest in a green energy unit. Tobin’s marginal q – which I represent with

Q – is equal to the marginal value of one unit of capital installed at the intermittent

unit. Therefore, define Q as,

Q = −Fg + βE
[
∂Vf (m

′; θ′, p′)

∂m′

]
. (2.8)

Inserting definition (2.8) in the FOC of problem (2.2) with respect to capital level m′

yields,

Q =
1

m
G

′

g

(
m′ −m

m

)
(2.9)

or, equivalently,

m′ −m︸ ︷︷ ︸
Investment

= m
(
G

′

g

)−1

(mQ) (2.10)

which means that period-by-period investment is a function of Tobin’s marginal q.

Additionally, the Envelope Condition of problem (2.3) with respect to capital m can

be combined with (2.9), (2.10) and substituted into the definition of Q to obtain the

following law of motion41,

41I provide a proof on this derivation in Section B.1.
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Q = βEθ (θ
′p′)− (1− β)Fg + Eθ

{[
1 +

(
G

′

g

)−1

(m′Q′)

]
m′Q′

}
(2.11)

which captures the time persistence of Tobin’s marginal q used to determine the

investment rate. A similar procedure can be used to obtain the analogous expression

for the case of the fossil fuel unit from problem (2.2).

2.3 Subsidies and the Role of Contract Design

2.3.1 Fixed-volume vs. Pay-as-produced Contracts

The analysis so far assumes developers sell production at floating prices directly into

wholesale markets. However, developers typically lock their output price through

procurement contracts so that debt investors who provide financing can use this as a

guarantee that they can predictably recover financing costs from project revenues. In

this section, I model how the contract structure (fixed-volume or pay-as-produced)

matters for investment incentives of wind developers at the extensive and intensive

margins. This is important for understanding how output subsidies – e.g. the PTC

– can have heterogeneous effects on such margins depending on the contract type

associated to the project.

Consider a fixed per unit output subsidy s > 0. A wind developer entering a

fixed-volume contract with deliverable quantity y and price py earns the payoff V y
g (0, θ)

specified by the Bellman equation,
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V y
g (m, θ) = max

m′≥0

I{m>0} ·

(py + s)y + (p+ s)(θm− y)︸ ︷︷ ︸
Fixed-volume effect

− Fg · (m′ −m)

{
−Gg

(
m′ −m

m

)
+ β

∫
θ∈Θ

∫
p′∈P

V y
g (m

′, θ′)H(dθ′|θ)J(dp′)
}
.

(2.12)

Equation (2.12) incorporates the effect on the firm’s stream of revenues of the fixed-

volume feature. The developer commits to deliver a volume of electricity y per period

at a price py. Any output shortfall relative to delivery obligations is covered with

electricity from the wholesale market bought at the spot price p. This means that

the developer is exposed to volume risk – i.e. the probability of falling below delivery

obligation y and having to cover the shortfall at a spot price higher than py. The

decision m′ optimally balances between insufficient generation (relative to y) and

likelihood of significant unhedged production.

Alternatively, a wind developer entering a pay-as-produced contract that pays p0

per unit of output instead earns a payoff V 0
g (0, θ) according to the Bellman equation,

V 0
g (m, θ) = max

m′≥0
{(p0 + s)θm− Fg · (m′ −m){{

−Gg

(
m′ −m

m

)
+ β

∫
θ∈Θ

V 0
g (m

′, θ′)H(dθ′|θ)
}
.

(2.13)

Equation (2.13) indicates that the firm under a pay-as-produced arrangement earns

the per unit price p0 whenever the wind plant is available for production. Moreover,

since the utility offtaker buys whatever output is generated by the project, the contract

removes all volume risk from the developer’s side. This is because a pay-as-produced
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arrangement represents a commitment to a price p0 per MWh. However, with a

fixed-volume contract the commitment is both on a price py and a quantity y to trade.

Theorem 2 draws upon (2.12) and (2.13) to derive the key analytical predictions

of the model. This result highlights the importance of the commercial structure of

contracts. Both insights have been summarized in Corollary 2.3.1.

Theorem 2. Optimal dynamics of wind capacity investments are dictated by the

following equations,

1. Fixed-volume contract:

− Fg −
1

m
G

′

g(∆
′) + βEθ [(p

′ + s)θ′] +

βFg +
β

(1 + ∆′)m
Eθ

[
G

′

g(∆
′′)(1 + ∆′′)

]
= 0

(2.14)

2. ’Pay-as-produced’ contract:

− Fg −
1

m
G

′

g(∆
′) + β(p0 + s)Eθ(θ

′)+

βFg +
β

(1 + ∆′)m
Eθ

[
G

′

g(∆
′′)(1 + ∆′′)

]
= 0

(2.15)

Proof. To obtain the Euler condition for the case of a fixed-volume contract, take the

FOC with respect to m′ in (2.12) to verify that,

− Fg −
1

m
G

′

g

(
m′ −m

m

)
+ βEθ

[
∂V y

g (m
′; θ′, p′)

∂m′

]
= 0. (2.16)

Moreover, by the Envelope Theorem,
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∂V y
g (m; θ, p)

∂m
= I{m>0}(p+ s)θ + Fg +G

′

g

(
m′ −m

m

)
· m

′

m2
. (2.17)

Iterate (2.17) one period ahead and substitute into (2.16) to obtain (2.14). The

procedure for the case of a ’pay-as-produced’ contract is analogous: the resulting FOC

has the same functional form as (2.16), but the Envelope condition is instead given by,

I{m>0}(p0 + s)θ + Fg +G
′

g

(
m′ −m

m

)
· m

′

m2
=
∂V 0

g (m; θ)

∂m
. (2.18)

Iterate (2.18) one period ahead and substitute into the corresponding FOC to obtain

(2.15).

Corollary 1. Output subsidies to production units that receive price py under the

fixed-volume contract have no effect on optimal capacity decisions at the intensive

margin. Moreover, if E(p′) > p0, the optimal rate of investment ∆′ is larger in projects

with a fixed-volume contract. Otherwise, it is larger at projects under a pay-as-produced

agreement.

Proof. The first claim is immediate from equation (2.14). The second claim is a

consequence of using Eθ(p
′θ′) = E(p′)Eθ(θ

′) in (2.14) and comparing to (2.15). Notice

that Eθ(p
′θ′) = E(p′)Eθ(θ

′) follows from the fact that p′ and θ′ are independently

drawn.
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Even though contract prices are parameters of the model, not any configuration is

consistent with selection of developers into contract types. Selection exists because

given a state θ, the expected payoff of the project is different across contract types.

This implies that wind developers will choose the contract type that maximizes the

expected payoff given the state. Hence, a combination of contract prices that is

consistent with selection is one under which developers are indifferent across contract

types, i.e. V y
g (0, θ) = V 0

g (0, θ). Otherwise, developers would only accept the profit-

maximizing contract type. In that case, the buying side in the transaction would have

incentives to offer a lower contract price as long as the wedge in expected payoffs

across contract types remains.

2.4 Policy Experiment

2.4.1 Experiment Design

The goal of the policy experiment is to understand how subsidy payments change

depending on the type of contract held by the developer. This will allow to determine

payments conditional on contract type that can be designed to subsidize wind invest-

ments at the least possible cost. Since contract design affects how output subsidies

impact investment incentives, this implies that for an arbitrary investment target

there exists a cost-minimizing subsidy scheme of payments that is conditional on

contract type.

The basic steps for implementing the policy experiment are as follows:
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1. Simulate 1,000 different histories for capacity factor and wholesale price realiza-

tions.

2. Set deliverable quantity y and pay-as-produced contract price p0. Define a set

of values {sk}Kk=1 for the per-unit subsidy. At each sk, solve the developer’s

problem under a pay-as-produced contract (i.e. problem (2.13)).

3. At each sk, find the contract price py at which the project’s expected payoff for

the developer is independent of the contract type, i.e. V y
g (0; θ, p) = V 0

g (0; θ).

4. For an arbitrary investment rate, compare expected subsidy payments between

contracts types.

I use equations (2.14) and (2.15) to compute numerical solutions for the policy

functions of investment. Then, I use these policy functions to evaluate (2.12) and

(2.13) to calculate the numerical solution of V y
g (0, θ) and V 0

g (0, θ) in steps 2. and 3.

Given the policy functions and V 0
g (0, θ) from step 2, I implement in step 3 an iterative

approach for computing the contract price py by starting from an arbitrary initial

value so that V y
g (0, θ) equals V 0

g (0, θ).

2.4.2 Data

ERCOT, which manages ∼ 90% of Texas electricity generation, is the U.S. power

market that has experienced the largest increase in wind power capacity. This makes

it an ideal empirical study case for this paper. I use three main data sources from

the universe of ERCOT firms in the quantitative analysis. First, I use the 2019

EIA-860 and EIA-923 surveys to collect plant-level data on technological attributes

from ERCOT wind firms. These are mandatory reports US power producers submit
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on a monthly and annual basis to the Energy Information Administration (EIA). The

reports include data at the power plant level on unit identifier, electricity production,

fuel costs (per energy source), fuel consumption and stocks, regulation status, energy-

type emissions rates, and generation capacity limits, among other information. Second,

I use ERCOT 2019 data on hourly load (in MWh) and balancing prices at the system

level. This dataset includes information about hourly prices and power consumption

at the aggregate and zonal level – i.e. North, North Central, South, South Central,

and West zones.

2.4.3 Identification and Estimation

To estimate structural parameters, I define the necessary parametrizations for model

primitives. First, I consider the following functional form of installation costs,

Gg

(
m′ −m

m

)
= αg

(
m′ −m

m

)2

, m > 0. (2.19)

Additionally, I define the following AR(1) structure and i.i.d. process to parametrize

the stochastic processes for the capacity factor and wholesale prices, respectively,

θ′ = ρ0 + ρ1θ + ε′, ε′ ∼ unif [−b, b] . (2.20)

p′ ∼ gamma[k, γ] (2.21)
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I implement the estimation strategy in two steps. First, I calibrate the discount

factor β, contract price p0, and deliverable quantity y. Then, I use a Simulated Method

of Moments (SMM) approach to estimate the unit cost of capacity Fg, installation

costs parameter αg, autoregression intercept ρ0, autocorrelation parameter ρ1, and

white noise parameter b.

2.4.3.1 Step 1: Calibration

I report calibrated parameters in Table 8. I set the annual discount factor at β = .98.

Additionally, I consider a contract price for pay-as-produced arrangements at a 10%

discount relative to prevailing average wholesale prices. Last, I consider a deliverable

quantity y parameter in line with average production from per MW of capacity

available at wind farms in ERCOT.

Table 6. Calibrated parameters

Parameter Definition Value Source

β Discount factor .98 Assumption
p0 Contract price 34.2 Assumption
y Deliverable quantity 843 EIA (2021)

Note: This table reports values of externally calibrated parameters. Units of deliverable quantity y
are in MWh per month. The contract price is expressed in dollars per MWh.

2.4.3.2 Step 2: Estimation

I report estimation results and goodness-of-fit in Table 7. I use a SMM strategy

to estimate the rest of structural parameters. To implement the SMM, I define a
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set of key moments for estimating each parameter of interest and use a number of

moments equal to the number of parameters to be estimated. Then, I simulate the

exogenous variation within the model – i.e. the history of shocks to electricity prices

and capacity factor – to compute the simulated moments obtained from solving the

economic model. Subsequently, I find the parameters that allow matching each of

these model-dependent moments to those calculated from the data. I rely on a SMM

approach given that it is not possible to compute analytical solutions of the key

moments used to estimate cost parameters (Fg, αg).

For technological parameters, I exploit cross-sectional variation in installed capacity

across wind power firms to identify unit cost of capacity Fg. In addition, I use time

variation in installed capacity within firms to identify installation cost parameter αg. I

do this by jointly estimating (Fg, αg) to match average installed capacity across firms

and average within-firm investment rate in wind capacity, respectively.

I estimate structural parameters of the stochastic processes for the capacity factor

and wholesale prices using the following procedure. First, I exploit cross-sectional

variation across wind power firms and time variation within firms in capacity factor

data to identify parameters of the Markov process (2.20). I do this by jointly estimating

(ρ0, ρ1, b) to match the following set of moments: i) average capacity factor across

wind power firms, average within-firm (first order) autocorrelation of capacity factor

realizations across firms, and iii) average variance of within-firm capacity factor

realizations across producers. Then, I exploit time variation in 2019 day-ahead

ERCOT electricity prices to identify parameters of the i.i.d. process (2.21) by jointly

estimating (k, γ) to match the mean and variance of hourly day-ahead market prices.
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Table 7. SMM estimation results

Parameter Definition Estimate Target Moment
Model Data

Fg Unit cost of 1.76 Avg. installed 200 200
capacity (.52) capacity (MW)

αg Installation cost .43 Avg. investment 3.7 3.7
parameter (.05) rate (%)

ρ0 Autoregression .20 Avg. capacity 35 35
intercept (.01) factor (%)

ρ1 Autocorrelation .42 First-order .42 .42
parameter (.11) autocorrelation

b White noise .24 Variance capacity .03 .03
parameter (.07) factor

k Shape parameter 1.76 Avg. day-ahead 38 38
(.2) electricity price

γ Scale parameter 21.54 Std. dev. day-ahead 28.6 28.6
(3.4) electricity price

Note: This table reports SMM estimation results for structural parameters that were not calibrated
in Step 1. Empirical moments are calculated from installed capacity data from ERCOT wind power
producers in the EIA-860 and EIA-923 surveys. Values in parenthesis from column ’Estimate’
correspond to bootstrapped standard errors.

2.5 Results

I report main results in Figure 11 and Figure 12. Panel (a) in Figure 11 shows the set

of contract price configurations that account for selection intro contracts types. This

is because at any pair of prices in the blue dashed line, wind developers earn the same

expected payoff independently of the contract type. An increase in contract prices

of pay-as-produced agreements p0 requires higher prices of fixed-volume contracts in

order for expected payoffs to remain equivalent across contract types.
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Panel (b) shows how the set of contract price configurations that account for

selection into contract types changes with different deliverable quantities specified in

the fixed-volume agreement. Given a contract price p0 for pay-as-produced agreements,

higher deliverable quantities imply that developers incur in more costs to develop

larger wind farms to meet contract obligations. This requires a higher fixed-volume

contract price py for developers to remain indifferent across contract types.

Panel (c) reports how the investment rate of a project under a pay-as-produced

contract changes with an increase of the contract price p0. A higher contract price

p0 increases the profitability of adding more capacity units and incentivizes larger

investment rates. However, the investment rate of projects under a fixed volume

contract is independent of contract prices as the profitability of adding an extra unit

of capacity depends only on average wholesale prices – see equation (2.14).

Panel (d) considers the case in which subsidy payments are conditional on contract

types. Subsidies to capacity investments do not affect incentives at the extensive

margin for projects under fixed-volume contracts (see Corollary 2.3.1). Therefore, an

alternative design to output-based subsidization policies with fixed per-unit transfers

(e.g. the PTC) is to only subsidize output units beyond the volume limit in the case

of projects under fixed volume contracts. Panel (d) shows that the contract-wise

subsidy payment per MWh needed for developers to be indifferent across contract

types would be significantly larger for fixed-volume contracts to account for selection

into contracts.
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Figure 11. Contract Prices, Investment Rates and Subsidy Payments

Note: This figure shows simulation results on contract prices, investment rates in wind capacity, and
per unit subsidies across contract types. The blue dashed represents results for wind developers on
pay-as-produced agreements while the red dotted line reports results for the case of fixed-volume
contracts.

84



Figure 12 delivers the key policy implication. It shows that if subsidy payments

were structured accordingly with results from panel (d) in Figure 11, it is possible to

design a subsidy scheme that implements a given investment target at a significantly

lower cost in terms of payments issued to wind developers. This is because under

this alternative subsidization design, wind developers under fixed volume contracts

receive the output subsidy only for production beyond the volume limit. Therefore,

total payments are lower at any given investment rate even if subsidies per MWh are

higher than the payments issued to developers with pay-as-produced contracts.
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Figure 12. Total Subsidy Payments across Contract Types

Note: This figure shows simulation results on total subsidy payments to developers across contract
types under the proposed alternative subsidization scheme. The blue dashed represents results for
wind developers on pay-as-produced agreements while the red dotted line reports results for the case
of fixed-volume contracts.
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Business-as-usual subsidization policy under initiatives like the PTC provide the

same fixed subsidy per MWh independently of the contract type under which the

wind farm is developed. However, from a point of view of policy cost-effectiveness,

these results imply that conditioning subsidy payments based on contract types can

translate into major savings in terms of tax revenues allotted to wind developers that

hold fixed-volume contracts. This is important as such reductions in policy costs do

not undermine investment incentives in capacity at the intensive margin for developers

holding fixed-volume contracts.

2.6 Concluding Remarks

For more than three decades, the Production Tax Credit has constituted a primary

channel through which the federal government allocates subsidies to wind investments.

In this paper, I have shown that conditioning such subsidy payments based on contract

types can significantly reduce the amount of tax revenues needed to implement any

given investment target in wind generating capacity. This is because in the case of of

wind projects associated to fixed-volume contracts, output subsidies to production

within the volume limits have no effect on investment incentives in capacity at the

intensive margin. Therefore, significant reductions in transfers to wind developers can

be achieved through an alternative incentives scheme that only subsidizes production

beyond the volume limit in the case of wind developers holding fixed-volume contracts

– without undermining investment incentives from wind project developments.

Future iterations of this project will extend the analytical framework in this paper

to an equilibrium model that incorporates electricity demand and generation from

thermal power plants. The purpose of extending the analysis along this dimension
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will be to account for the effect of output subsidies from the Production Tax Credit

on equilibrium electricity prices. This is important as the downward adjustment on

equilibrium prices will partially offset the effect of output subsidies on investment

incentives at the intensive margin of wind developers holding fixed-volume contracts.

Additionally, it will allow to derive policy implications about the advantages of subsidy

schemes that condition payments on contract type from the viewpoint of an equilibrium

welfare analysis.
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Chapter 3

SHOULD WE SUBSIDIZE PRODUCTION OR INVESTMENT GOODS?

3.1 Introduction

The U.S. federal government has an established history of heavily subsidizing the

wind power industry. Just in 2019, it allocated $4.7B worth of subsidies. Moreover, its

commitment went a step further when it allocated a major proportion of the $386B

climate package of the recently passed Inflation Reduction Act (henceforth, the ‘Act’)

to incentivize investments in clean energy like wind power. Two key components of

this climate package are the extensions of the Production Tax Credit (PTC) and the

Investment Tax Credit (ITC) in Section 45 and Section 48 of the Act, respectively.

Under the PTC, wind developers are eligible for $26/MWh of output for 10 years

after completion of the wind facility (in 2022 dollars). Alternatively, under the

ITC taxpayers qualify for a subsidy equal to 30% of their total investment costs.

Which subsidy is more cost-effective? In this paper, I investigate which subsidy type

minimizes the required public expenditures to meet a given investment target.

A primary distinction between both subsidy types consists in the fact that payments

under the PTC throughout that 10-year period are stochastic because production at

wind farms critically depends on uncertain weather conditions (e.g. local availability

and speed of wind). However, the one-time payment under the ITC is known with

absolute certainty by the time the developer decides to build the wind project. This

distinction is central from the point of view of economic behavior. There is important
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empirical evidence that agents exhibit prudent behavior (i.e. convex marginal utility

of consumption) when considering investment decisions42. Moreover, prudent wind

developers will save a larger share of their investment income with a PTC when the

expected present value of subsidy payments is equal to the one-time certain payment

they would receive under an alternative ITC. This is because prudent developers

accumulate wealth as a channel to self-insure against adverse income variations in the

future by saving to even out periods with low (or null) PTC payments. Consequently,

a part of these precautionary savings translates into larger investments than with an

alternative ITC.

I study this mechanism by developing a dynamic framework that models the

entrepreneur’s consumption and investment decisions in wind capacity and a risk-

free asset. The availability of a risk-free asset captures the fact that in practice

entrepreneurs face a variety of investment alternatives that compete with wind invest-

ments. I incorporate risk aversion and prudence as critical features of the entrepreneur’s

preferences over intertemporal consumption choices. Next, I estimate the structural

parameters of the model by using a SMM strategy that exploits variation in unit-level

production and capacity data from ERCOT wind facilities43. ERCOT constitutes the

U.S. power market with the largest stock of wind generation capacity. This makes

it an ideal empirical setup for studying the interaction of subsidy type with wind

investment outcomes. Last, I use this model to quantify the difference in investment

rates across subsidy types for a given expected present value of subsidy payments.

42See Carroll and Samwick (1998), Carroll and Samwick (1998), Carroll et al. (2003), and Hurst
et al. (2010).

43Electric Reliability Council of Texas (ERCOT) is the regional transmission organization that
supplies ∼90% of Texas electricity demand.
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The policy experiment delivers two key findings. First, I find that within a

reasonable range of subsidy payments, the PTC can increase average yearly investment

rates in wind capacity up to 2.5 percentage points over mean investment rates under

an alternative ITC. This is explained by precautionary savings from developers with

prudent behavior aiming to smooth out adverse shocks to investment income under

the PTC. Therefore, a portion of these precautionary savings is allocated to additional

wind investments. This implies that output subsidies are more cost-effective at

achieving a given investment target than alternative investment subsidies. Second, I

also find that average yearly investment rates in wind capacity significantly increase

due to: i) decreases in the risk-free rate of return, ii) increases in relative prudence (e.g.

due to higher relative risk aversion), and iii) increases in the variance of plant-level

productivity at wind facilities (which primarily depends on weather conditions).

This paper contributes to two different strands of economic literature. First, it

advances research efforts aiming to understand the relative welfare consequences of

subsidies to consumption and investment goods44. Second, it also contributes to

literature on prudent investment behavior and precautionary savings45. This paper

extends previous work by providing a theory and first estimates of how prudent

behavior matters for cost-effectiveness in the context of alternative subsidies (i.e. the

PTC and ITC) to the wind industry.

The rest of the paper is structured as follows. Section 3.2 lays down the analytical

model. Section 3.3 describes the policy experiment and estimation procedure. Section

44See Goolsbee (2004), House and Shapiro (2008), Groote and Verboven (2019), Schmalensee
(2012), and Johnston (2019).

45See Courbage and Rey (2019), Crainich et al. (2013), Dionne and Li (2011), Ebert and Wiesen
(2011), Eeckhoudt and Gollier (2011), Kimball (1990), and Mayrhofer (2017).
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3.4 reports the key quantitative findings. Section 3.5 discusses key connections of

results to literature and research agenda for future iterations. Last, Section 3.6

concludes.

3.2 Model

Consider an infinite horizon environment with discrete time and a set of identical

risk-averse entrepreneurs that maximize lifetime utility of consumption. Preferences

over intertemporal consumption are described by the additively separable utility

function,

+∞∑
t=0

βtu(ct) (3.1)

with discount factor β ∈ (0, 1) and instant utility given by a C3 function u : R+ → R

that satisfies u′ > 0 and u′′ < 0. Additionally, I assume u′′′ > 0 to account for prudent

behavior.

At each period t, the stand-in entrepreneur earns labor income for inelastically

supplying all of her time endowment in the labor market in exchange for a wage w. If

income is not consumed, she can save by investing a portion of her income on a wind

project or on an alternative one-period risk-free asset. Investing at+1 consumption

units on the asset at t pays Rat+1 units of consumption in period t+ 1 where R > 1.

Wind investments require that the entrepreneur chooses capacity levels mt+1 for

the wind farm which become available at the beginning of the subsequent period given

current capacity mt. There are two types of costs associated to investing in wind
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capacity. First, the entrepreneur faces a fixed cost F per unit of capacity added. This

represents the cost of acquiring machines and equipment necessary to increase installed

capacity. Second, there are installation costs G
(

mt+1

mt
− 1
)

that are strictly increasing

on the investment size relative to existing capacity. There is no depreciation.

Marginal costs at the wind farm are zero and production is exogenous as it depends

on availability and speed of wind. Namely, output is determined by an exogenous

capacity factor θt ∈ [0, 1] whose dynamics are dictated by the stochastic process

J(θt+1|θt) with state space Θ and constant mean. This capacity factor refers to the

proportion of a unit’s capacity that is used for production at a given period46. Each

unit produced at the wind farm is sold in a wholesale market at the price pt. The

entrepreneur behaves competitively in the wholesale market and the competitive

price pt evolves according to the stochastic process H(pt+1|pt) with state space P and

constant mean. Once built, a wind farm remains active forever – although capacity

units may be sold back in the market at the per unit installation cost F .

The environment structure implies that the entrepreneur faces the following

sequential budget constraint at each period t,

ct + F (mt+1 −mt)︸ ︷︷ ︸
Installation costs

+at+1 ≤ w + ptθtmt −G

(
mt+1

mt

− 1

)
︸ ︷︷ ︸

Wind farm profits

+Rat. (3.2)

Period by period consumption spending, installation costs, and asset acquisitions must

be covered with labor income, profits from selling wind electricity in the wholesale

46For instance, a 2MW capacity wind turbine running at a 50% capacity factor for a given hourly
period means that the turbine generated 1 MWh during that time frame. Therefore, θ indicates how
fully a unit’s capacity is used given weather conditions
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market, and proceeds from last period investments in the financial asset. Upon

observing prices wt, pt and the gross rate of return R, the entrepreneur chooses

consumption ct, wind capacity mt+1, and asset holdings at+1 to maximize the expected

discounted value of her lifetime utility flow, i.e.



max
{ct,mt+1,at+1}∞t=0

E0

+∞∑
t=0

βtu(ct)

s.t. ct + F (mt+1 −mt) + at+1 ≤

w + ptθtmt −G

(
mt+1

mt

− 1

)
+Rat, ∀t

ct,mt+1 ≥ 0, ∀t

m0, a0 — given.

(3.3)

3.2.1 Production Tax Credit vs. Investment Tax Credit

Production Tax Credit — The entrepreneur pays a lump-sum tax Tt and receives

an ad-quantum subsidy S > 0 per unit of electricity produced at the wind farm. This

sequence of tax payments is exogenously determined by the government and publicly

announced at period 0. Therefore, her new sequential budget constraint is given by,

ct + F (mt+1 −mt)︸ ︷︷ ︸
Installation costs

+at+1 ≤ w + (pt + S)θtmt −G

(
mt+1

mt

− 1

)
︸ ︷︷ ︸

Wind farm profits

+Rat − Tt. (3.4)

Revenues to the entrepreneur from the PTC are inherently stochastic. This is because

payments depend on the level of electricity output which in random – i.e. depends on

the realization of the period-specific capacity factor θt.
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Investment Tax Credit — The government issues to developers a one-time

payment at t = 0 that represents a fixed proportion s ∈ [0, 1] of the entrepreneur’s

installation costs. This means that her sequential budget constraint for t = 0 must

account for net installation costs as follows,

c0 + (1− s)F (m1 −m0)︸ ︷︷ ︸
Installation costs

+a1 ≤ w + p0θ0m0 −G

(
m1

m0

− 1

)
︸ ︷︷ ︸

Wind farm profits

+Ra0 − T0. (3.5)

In this case, the level of additional resources to the developer is certain. This is because

conditional on receiving the subsidy, such payment does not depend on any decision

beyond period 0 that could require observing the realization of θt. The sequential

budget constraint for periods after 0 preserves the same form as in (3.2).

3.2.2 Characterization of the Optimal Investment Rule

Production Tax Credit — Using (3.4) to solve the entrepreneur’s utility maxi-

mization problem (3.3) delivers the following Euler equations that jointly characterize

optimal dynamics of consumption, capacity investments, and asset holdings,

ct = w + (pt + S)θtmt −G

(
mt+1

mt

− 1

)
+Rat − Tt − F (mt+1 −mt)− at+1 (3.6)
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u′(ct)

[
G′
(
mt+1

mt

− 1

)
1

mt

+ F

]
=︸ ︷︷ ︸

Utility value of consumption forgone in t to increase capacity in 1 MW

β · Et

{
u′(ct+1)

[
θt+1(pt+1 + S) +G′

(
mt+2

mt+1

− 1

)
mt+2

m2
t+1

+ F

]}
︸ ︷︷ ︸

Expected utility value of extra consumption in t+ 1 due to marginal increase in capacity

(3.7)

u′(ct) = βR · Et{u′(ct+1)}. (3.8)

Investment Tax Credit — Analogously, one can solve the utility maximization

problem (3.3) while using budget constraint (3.5) for period t = 0 to jointly characterize

optimal dynamics of consumption, wind farm capacity investments, and asset holdings,

For period t = 0:

ct = w + ptθtmt −G

(
mt+1

mt

− 1

)
+Rat − Tt − (1− s)F (mt+1 −mt)− at+1 (3.9)

u′(ct)

[
G′
(
mt+1

mt

− 1

)
1

mt

+ (1− s)F

]
=︸ ︷︷ ︸

Utility value of consumption forgone in t to increase capacity in 1 MW

β · Et

{
u′(ct+1)

[
θt+1pt+1 +G′

(
mt+2

mt+1

− 1

)
mt+2

m2
t+1

+ F

]}
︸ ︷︷ ︸

Expected utility value of extra consumption in t+ 1 due to marginal increase in capacity

(3.10)

For periods t > 0:

ct = w + ptθtmt −G

(
mt+1

mt

− 1

)
+Rat − Tt − F (mt+1 −mt)− at+1 (3.11)
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u′(ct)

[
G′
(
mt+1

mt

− 1

)
1

mt

+ F

]
=

β · Et

{
u′(ct+1)

[
θt+1pt+1 +G′

(
mt+2

mt+1

− 1

)
mt+2

m2
t+1

+ F

]} (3.12)

For periods t ≥ 0:

u′(ct) = βR · Et{u′(ct+1)} (3.13)

Equations (3.7) and (3.10) formalize the key difference between subsidy types.

The PTC increases the return (in consumption units) of a marginal investment in

wind capacity while leaving its cost unchanged. This return is uncertain as it depends

on future realizations of the capacity factor (e.g. due to unknown future weather

conditions). Alternatively, the ITC is a direct reduction to contemporaneous marginal

investment costs (in consumption units) and it is always known by the entrepreneur at

the time capacity investment decisions take place. Therefore, when facing equivalent

subsidy types, i.e.

sF (m1 −m0)︸ ︷︷ ︸
Subsidy under ITC

= E0

+∞∑
t=0

βt(S · θtmt)︸ ︷︷ ︸
Expected subsidy under PTC

=
+∞∑
t=0

βtTt︸ ︷︷ ︸
Tax collections

, (3.14)

the risk averse entrepreneur will strictly prefer the ITC given that the payment under

PTC is a mean-preserving spread of the subsidy under ITC. However, prudent behavior

induced by u′′′ > 0 implies that investments in wind capacity are weakly larger with

the PTC. This is because the entrepreneur uses precautionary savings as a channel

to self-insure against possible low capacity factor realizations in the future. Since
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PTC payments are a mean-preserving spread of the ITC subsidy, they increase the

variance in consumption growth and incentivize the entrepreneur to further reduce

current consumption through precautionary investments either in more wind capacity

or acquisitions of the risk-free asset. From the point of view of policy that subsidizes

wind industry growth, this is important because it implies that the PTC delivers

(weakly) larger investments in capacity at the same expected cost relative to ITC.

To show that the entrepreneur uses precautionary savings to self-insure against

higher variance in consumption growth, consider the second-order Taylor approxima-

tion of u′ centered at ct and write (3.8) and (3.13) as follows,

u′(ct) ≈ βR · Et

[
u′(ct) + u′′(ct)(ct+1 − ct) +

1

2
u′′′(ct)(ct+1 − ct)

2

]

=⇒ 1 ≈ βR · Et

[
1 + ct

u′′(ct)

u′(ct)

(ct+1 − ct)

ct
+

1

2
· ct

u′′′(ct)

u′′(ct)
ct ·

u′′(ct)

u′(ct)
·
(
ct+1 − ct

ct

)2
]
.

Such second-order Taylor expansion of u′ at ct exists given that u′′′ > 0. Define

γt = −ct u
′′(ct)
u′(ct)

and ψt = −ct u
′′′(ct)
u′′(ct)

as the coefficients of relative risk aversion and

relative prudence, respectively. These time-dependant parameters are well-defined

because u′ > 0 and u′′ < 0. Using these definitions and rearranging terms in the

previous expression yields,

Et

[
ct+1 − ct

ct

]
≈ 1

γt

βR− 1

βR︸ ︷︷ ︸
Impatience vs. return to savings

+
1

2
ψtVt

[
ct+1 − ct

ct

]
︸ ︷︷ ︸

Precautionary savings motive

(3.15)
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where I have used the fact that Et [ct+1] ≈ ct in an open ball at ct where ct+1 ≈ ct.

Therefore, higher variance in consumption growth due to the PTC increases expected

consumption growth. This implies lower current consumption at t which is driven

by precautionary savings to smooth out possible low subsidy payments in the case

of adverse capacity factor realizations in the future. Since the entrepreneur saves

by allocating income to investments in wind capacity or the risk-free asset, higher

precautionary savings with the PTC translate into weakly larger capacity investments

relative to the ITC. The key policy implication is that cost-effective subsidization

would only provide the PTC because it incentivizes (weakly) larger wind investments

at the same fiscal cost relative to the ITC.

3.3 Policy Experiment

3.3.1 Experiment Design

The aim of the policy experiment is to understand how wind investments change

depending on the subsidy type (i.e. PTC and ITC). Conditional on a fixed level of

expected subsidy payments, this will allow to determine the quantitative relevance

of prudent behavior as a key driver of differences in policy effects from subsidizing

output or investment goods. Prudent behavior from developers matters for policy

design in the wind industry because subsidies to output are inherently stochastic but

payments to investment efforts are not.

The basic steps for implementing the policy experiment are as follows:
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1. Simulate 1,000 different histories for capacity factor realizations for a 10-year

period in monthly time blocks.

2. Define a set of values {sk}Kk=1 for the proportional subsidy under the ITC. At

each sk, solve the entrepreneur’s problem (i.e. problem (3.3) using budget

constraint (3.5)) for all histories of capacity factor realizations and compute

average investment rate.

3. For each sk, find the per unit subsidy S by solving the model under the PTC (i.e.

problem (3.3) using budget constraint (3.4)) for all histories such that subsidy

payments are equivalent on average across subsidy types. Compute the average

investment rate across histories.

4. For each level of expected subsidy payments, compare average investment rates

between PTC and ITC.

3.3.2 Data

ERCOT, which manages ∼ 90% of Texas electricity generation, is the U.S. power

market that has experienced the largest increase in wind power capacity. This makes

it an ideal empirical study case for this paper. I use three main data sources from

the universe of ERCOT firms in the quantitative analysis. First, I use the 2019

EIA-860 and EIA-923 surveys to collect plant-level data on technological attributes

from ERCOT wind firms. These are mandatory reports US power producers submit

on a monthly and annual basis to the Energy Information Administration (EIA). The

reports include data at the power plant level on unit identifier, electricity production,

fuel costs (per energy source), fuel consumption and stocks, regulation status, energy-

type emissions rates, and generation capacity limits, among other information. Second,
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I use ERCOT 2019 data on hourly load (in MWh) and balancing prices at the system

level. This dataset includes information about hourly prices and power consumption

at the aggregate and zonal level – i.e. North, North Central, South, South Central,

and West zones.

3.3.3 Identification and Estimation

I adopt the following parametrizations of key model primitives to estimate structural

parameters. First, I consider the following functional form of installation costs,

G

(
m′ −m

m

)
= α

(
m′ −m

m

)2

, m > 0. (3.16)

Additionally, I define the following AR(1) structure and i.i.d. process for the

stochastic processes of capacity factors and wholesale prices, respectively,

θ′ = ρ0 + ρ1θ + ε′, ε′ ∼ unif [−b, b] . (3.17)

p′ ∼ gamma[k, γ] (3.18)

Last, I adopt the following CRRA utility function to parametrize the entrepreneur’s

preferences over consumption streams,

u(ct) =
c1−σ
t − 1

1− σ
(3.19)
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I implement the estimation strategy in two steps. First, I discipline the discount

factor β, rate of return R, and wage w through direct calibration. Then, I use a

Simulated Method of Moments (SMM) approach to estimate the unit cost of capacity F ,

installation costs parameter α, autoregression intercept ρ0, autocorrelation parameter

ρ1, white noise parameter b, shape and scale parameters of the distribution of wholesale

prices (k, γ), and CRRA coefficient σ.

3.3.3.1 Step 1: Calibration

I report calibrated parameters in Table 8. I set the annual discount factor at β = .98.

Additionally, I consider a 3% yearly rate of return for the risk-free asset that is

consistent with recent trends in the annual yield of the U.S. 1 Year Treasury Bills.

Last, I consider a yearly wage income in line with the average annual net compensation

per worker during 2020 as reported by the Social Security Administration (SSA).

Table 8. Calibrated parameters

Parameter Definition Value Source

β Discount factor .98 Assumption
R Rate of return 1.03 U.S. 1 Year Treasury Bill
w Wage income 53,383.18 SSA (2020)

Note: This table reports values of externally calibrated parameters. The rate of return is consistent
with the mean annual return of the S&P 500 during the period 2012-2021. Wage income is in line
with average annual net compensation per worker during 2020.
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3.3.3.2 Step 2: Estimation

I report estimation results and goodness-of-fit in Table 9. I use a SMM strategy

to estimate the rest of structural parameters. To implement the SMM, I define a

set of key moments for estimating each parameter of interest and use a number of

moments equal to the number of parameters to be estimated. Then, I simulate the

exogenous variation within the model – i.e. the history of shocks to capacity factor

and electricity prices – to compute the simulated moments obtained from solving

the economic model. Subsequently, I find the parameters that allow matching each

of these model-dependent moments to those calculated from the data. I rely on a

SMM approach given that it is not possible to compute analytical solutions of the key

moments used to estimate cost and preference parameters (F, α, σ).

To estimate the entrepreneur’s preferences and technology parameters, I exploit

cross-sectional variation in installed capacity across wind power firms to identify unit

cost of capacity F . In addition, I use time variation in installed capacity within firms

to identify the installation cost parameter α and the CRRA coefficient σ. I do this

by jointly estimating (F, α, σ) to match: i) average installed capacity across firms, ii)

average within-firm investment rate in wind capacity, and iii) variance of within-firm

investment rate in wind capacity, respectively.
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Table 9. SMM estimation results

Parameter Definition Estimate Target Moment
Model Data

F Unit cost of 1.67 Avg. installed 200 200
capacity (.44) capacity (MW)

α Installation cost .51 Avg. investment 3.7 3.7
parameter (.08) rate (%)

ρ0 Autoregression .20 Avg. capacity 35 35
intercept (.01) factor (%)

ρ1 Autocorrelation .42 First-order .42 .42
parameter (.11) autocorrelation

b White noise .24 Variance capacity .03 .03
parameter (.07) factor

k Shape parameter 1.76 Avg. day-ahead 38 38
(.2) electricity price

γ Scale parameter 21.54 Std. dev. day-ahead 28.6 28.6
(3.4) electricity price

σ CRRA coefficient 1.4 Std. dev. investment 2.3 2.3
(.30) rate (%)

Note: This table reports SMM estimation results for structural parameters that were not calibrated
in Step 1. Empirical moments are calculated from installed capacity data from ERCOT wind power
producers in the EIA-860 and EIA-923 surveys. Values in parenthesis from column ’Estimate’
correspond to bootstrapped standard errors.

I estimate structural parameters of the stochastic processes for the capacity factor

and wholesale prices using the following procedure. First, I exploit cross-sectional

variation across wind power firms and time variation within firms in capacity factor

data to identify parameters of the Markov process (3.17). I do this by jointly estimating

(ρ0, ρ1, b) to match the following set of moments: i) average capacity factor across

wind power firms, average within-firm (first order) autocorrelation of capacity factor

realizations across firms, and iii) average variance of within-firm capacity factor

realizations across producers. Then, I exploit time variation in 2019 day-ahead

ERCOT electricity prices to identify parameters of the i.i.d. process (3.18) by jointly

estimating (k, γ) to match the mean and variance of hourly prices.
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3.4 Results

I present main results from the policy experiment in Figure 13. Panel (a) shows

expected investment rates in wind capacity as a function of the proportional subsidy

under the ITC. The investment rate function is concave due to the convexity of

installation costs. As the proportional subsidy increases, installation costs of increasing

wind capacity relative to initial capacity also increase. These two effects influence

the entrepreneur’s invesetment decisions in opposite directions. However, the net

quantitative effect is primarily driven by the rate at which installation costs increase

with larger levels of added capacity. Additionally, panel (a) shows that a decrease

in the rate of return of the risk-free asset increases the expected investment rate for

any given proportional subsidy under the ITC. This is because a lower rate of return

lowers the threshold at which additions in wind capacity become the most profitable

investment alternative.

In panel (b), I report expected investment rates as a function of the per unit

subsidy under the PTC. Similar to the case in panel (a), concavity is due to convexity

in installation costs. Moreover, results show that an increase in relative prudence –

consistent with a larger CRRA coefficient σ – increases the expected investment rate

for any given level of the per unit subsidy. This is because more prudent behavior

reinforces the precautionary savings channel that drives the entrepreneur to increase

savings through wind investments to self-insure against possible low capacity factor

realizations in the future.

Panel (c) shows investment rates as a function of the total expected present value

of subsidy payments for both alternative subsidy types. The key policy implication
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is that at any given level of expected subsidy payments, investment rates in wind

capacity are larger under the PTC. Over such range of feasible subsidy payments,

the PTC can increase average yearly investment rates in wind capacity up to 2.5

percentage points over mean investment rates under an alternative ITC.

As previously anticipated, this is a critical consequence of prudent behavior.

Subsidy transfers under the PTC are directly linked to period-by-period output

decisions that depend on (random) capacity factor realizations. Therefore, given that

payments under the PTC constitute a mean-preserving spread of the subsidy transfer

under the ITC in panel (c), this increases volatility in consumption growth under the

PTC. The precautionary savings channel implies that the entrepreneur saves more

to smooth out its expected consumption growth path. This leads to larger wind

investments in the PTC case at the same expected cost in terms of subsidy payments

to developers.

Last, in panel (d) I report expected investment rates under a PTC as the variance

of capacity factor realizations increases. Higher variance capacity factor dynamics

(i.e. because of largely volatile local weather and wind conditions) translates into

larger volatility in consumption growth. Consistently with previous results, because

of prudent behavior this incentivizes the entrepreneur to save more through wind

investments in order to even out the adverse effects on consumption growth from

plausible low capacity factor realizations.
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Figure 13. Relative performance of Production vs. Investment Tax Credit

Note: This figure compares how the expected investment rate in wind capacity responds to policy
across subsidy types. Panel (a) reports how investment rates responds as the percentage of
subsidized installation costs under the ITC increases. Panel (b) shows how investment rates adjust to
increasing per unit subsidies under the PTC. Panel (c) compares investment rates across alternative
subsidy types for a given present value of expected subsidy payments. Last, panel (d) reports the
effect on investment rates of higher variance in capacity factor realizations when receiving the PTC.
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3.5 Discussion

There is a strand of literature that has previously assessed the relative cost-effectiveness

of policies that subsidize output and investment goods. Aldy et al. (Forthcoming)

is another example of recent research efforts that have addressed this question in

the context of the wind power industry. This paper exploits data from a natural

experiment where wind developers where temporarily able to choose between: i)

claiming $23/MWh for the first 10 years of output under the PTC, or ii) an upfront

cash payment of 30% of total investment costs under the Section 1603 grant of the

American Recovery and Reinvestment Act of 2009. After accounting for selection into

subsidy types, their key findings suggest that developers who claim the investment

subsidy are significantly less productive and, therefore, the PTC would be more

cost-effective over a wide range of output targets.

A critical caveat that is acknowledged by Aldy et al. (Forthcoming) is the fact that

the extremely limited lifespan of the 1603 grant program (2009–2012) importantly

limits the scope for understanding how wind capacity would adjust in the long

run to more prevalent policy changes. The results presented in Section 3.4 fill this

gap in the literature by explicitly modeling the entrepreneur’s investment response

(at the extensive and intensive margin) to subsidies in way that is consistent with

utility-maximizing behavior. This innovation allows to gain better understanding

about capital accumulation dynamics in the long run where data availability could

be severely limited. In this sense, key findings both in this paper as well as in Aldy

et al. (Forthcoming) show that subsidizing output leads to more cost-effective policy

than subsidizing investment goods. However, while Aldy et al. (Forthcoming) focus

on understanding how plant-level technological features of wind farms matter for
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differences in cost-effectiveness across subsidy types, my findings contribute to current

literature by showing that prudent behavior of wind developers is a primary driver of

such differences in the long run.

There are two central innovations that will be incorporated in future iterations of

this paper. First, I will extend the model to an equilibrium framework of wholesale

power production that accounts for thermal and intermittent generation. This is

of critical relevance for understanding how wholesale prices change after the policy

intervention which then affects investment decisions in subsequent periods. Second, I

will account for heterogeneity in technological characteristics at the wind farm level.

This is important to allow for richer interactions between subsidy payments and

responses in system-level investment rates.

3.6 Concluding Remarks

The U.S. federal government has a history of heavily subsidizing the wind power

industry. Subsidies to output (PTC) and investment goods (ITC) have been critical

approaches to incentivize replacement of emissions-intensive technologies for low

emissions energy sources. In this paper, I have investigated which subsidy type

incentivizes wind investments at the least cost in terms of necessary public expenditures.

Results showed that over a reasonable range of total subsidy payments, the PTC

can increase average yearly investment rates in wind capacity up to 2.5 percentage

points over mean investment rates under an alternative ITC. This implies that output

subsidies are more cost-effective at achieving a given investment target than alternative

investment subsidies. This is primarily driven by precautionary savings from developers

with prudent behavior seeking to smooth out potential adverse shocks to investment
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income under the PTC (given that the one-time payment under the ITC is certain). A

proportion of such precautionary savings under the PTC is then allocated to additional

wind investments. This means that prudent behavior of wind developers is a primary

driver of differences in cost-effectiveness of in the long run between subsidies that

target consumption or investment goods.

109



REFERENCES

Abel, Andrew B., Avinash K. Dixit, Janice C. Eberly, and Robert S. Pindyck, “Options,
the Value of Capital and Investment,” The Quarterly Journal of Economics, 1996,
111 (3), 753–777.

Aldy, Joseph E. and Sarah C. Armitage, “The Welfare Implications of Carbon Price
Certainty,” Journal of the Association of Environmental and Resource Economists,
2022, 9 (5), 921–946.

, Todd D. Gerarden, and Richard L. Sweeney, “Investment versus Output Subsidies:
Implications of Alternative Incentives for Wind Energy,” NBER Working Paper No.
24378, 2018.

Aldy, Joseph, Todd Gerarden, and Richard Sweeney, “Investment Versus Output
Subsidies: Implications of Alternative Incentives for Wind Energy,” Journal of the
Association of Environmental and Resource Economics, Forthcoming.

Barrage, Lint, “Optimal Dynamic Carbon Taxes in a Climate-Economy Model with
Distortionary Fiscal Policy,” The Review of Economic Studies, 2020, 87 (1), 1–39.

Bartlett, Jay, “Reducing Risk in Merchant Wind and Solar Projects through Financial
Hedges,” Resources for the Future Working Paper 19-06, 2019.

Bird, Lori, Mark Bolinger, Troy Gagliano, Ryan Wiser, Matthew Brown, and Brian
Parsons, “Policies and Market Factors Driving Wind Power Development in the
United States,” Energy Policy, 2005, 33 (11), 1397–1407.

Boleslavsky, Raphael and David L. Kelly, “Dynamic Regulation Design Without
Payments: The Importance of Timing,” Journal of Public Economics, 2014, 120 (1),
169–180.

Borenstein, Severin, James Bushnell, and Frank Wolak, “Measuring Market Inefficien-
cies in California’s Restructured Wholesale Electricity Market,” American Economic
Review, 2002, 92 (5), 1376–1405.

, , , and Matthew Zaragoza-Watkins, “Expecting the Unexpected: Emissions
Uncertainty and Environmental Market Design,” American Economic Review, 2019,
109 (11), 3953–3977.

Burtraw, Dallas, Charles Holt, Karen Palmer, and William Shobe, “Price-Responsive
Allowance Supply in Emissions Markets,” Journal of the Association of Environ-
mental and Resource Economists, 2022, 9 (5), 851–884.

110



Bushnell, James and Kevin Novan, “Setting with the Sun: The Impacts of Renewable
Energy on Conventional Generation,” Journal of the Association of Environmental
and Resource Economists, 2021, 8 (4), 759–796.

, Erin Mansur, and Celeste Saravia, “Vertical Arrangements, Market Structure, and
Competition: An Analysis of Restructured U.S. Electricity Markets,” American
Economic Review, 2008, 98 (1), 237–266.

Cantillon, Estelle and Aurélie Slechten, “Information Aggregation in Emissions Markets
with Abatement,” Annals of Economics and Statistics, 2018, 132, 53–79.

Carlson, Curtis, Dallas Burtraw, Maureen Cropper, and Karen Palmer, “Sulfur Dioxide
Control by Electric Utilities: What are the Gains from Trade?,” Journal of Political
Economy, 2000, 108 (6), 1292–1326.

Carroll, Cristopher D. and Andrew A. Samwick, “How Important is Precautionary
Saving?,” The Review of Economics and Statistics, 1998, 80 (3), 410–419.

, Karen E. Dynan, and Spencer D. Krane, “Unemployment Risk and Precautionary
Wealth: Evidence from Households’ Balance Sheets,” The Review of Economics and
Statistics, 2003, 85 (3), 586–604.

Cicala, Steve, “When Does Regulation Distort Costs? Lessons from Fuel Procurement
in US Electricity Generation,” American Economic Review, 2015, 105 (1), 411–444.

, “Imperfect Markets versus Imperfect Regulation in US Electricity Generation,”
American Economic Review, 2022, 112 (2), 409–441.

Courbage, Cristophe and Béatrice Rey, “Prudence and Optimal Prevention for Health
Risks,” Health Economics, 2019, 15, 1323–1327.

Crainich, David, Louis Eeckhoudt, and Alain Trannoy, “Even (Mixed) Risk Lovers
Are Prudent,” American Economic Review, 2013, 103 (4), 1529–1535.

Cullen, Joseph and Erin Mansur, “Inferring Carbon Abatement Costs in Electricity
Markets: A Revealed Preference Approach Using the Shale Revolution,” American
Economic Journal: Economic Policy, 2017, 9 (3), 106–133.

Dardati, Evangelina, “Pollution Permit Systems And Firm Dynamics: How Does the
Allocation Scheme Matter?,” International Economic Review, 2016, 57 (1), 305–328.

Dionne, Georges and Jingyuan Li, “The impact of prudence on optimal prevention
revisited,” Economics Letters, 2011, 113 (2), 147–149.

Dixit, Avinash K., “Irreversible Investment under Uncertainty and Scale Economies,”
Journal of Economic Dynamics and Control, 1995, 19 (1), 327–350.

111



, Robert S. Pindyck, and Sigbjørn Sødal, “A Markup Interpretation of Optimal
Investment Rules,” The Economic Journal, 1999, 109 (455), 179–189.

Ebert, Sebastian and Daniel Wiesen, “Joint Measurement of Risk aversion, Prudence,
and Temperance,” Journal of Risk and Uncertainty, 2011, 48 (3), 231–252.

Eeckhoudt, Louis and Christian Gollier, “The Impact of Prudence on Optimal Preven-
tion,” Economic Theory, 2011, 26 (4), 989–994.

EIA, “Survey Form EIA-923,” 2017. https://www.eia.gov/electricity/data/eia923/.
Last accessed: 07-25-2022.

Ellerman, A. Denny and Barbara K. Buchner, “Over-Allocation or Abatement? A
Preliminary Analysis of the EU ETS Based on the 2005–06 Emissions Data,”
Environmental and Resource Economics, 2008, 41, 267–287.

ERCOT, “Hourly Load 2017,” 2017. https://www.ercot.com/gridinfo/load/load_hist.
Last accessed: 07-25-2022.

Fabra, Natalia and Mar Reguant, “Pass-Through of Emissions Costs in Electricity
Markets,” American Economic Review, 2014, 104 (9), 2872–2899.

Fell, Harrison, Ian A. MacKenzie, and William A. Pizer, “Prices versus Quantities
versus Bankable Quantities,” Resource and Energy Economics, 2012, 34 (4), 607–623.

Fell, Harrsion and Joshua Linn, “Renewable Electricity Policies, Heterogeneity, and
Cost Effectiveness,” Journal of Environmental Economics and Management, 2013,
66 (3), 688–707.

Fowlie, Meredith, “Emissions Trading, Electricity Restructing, and Investment in
Pollution Abatement,” American Economic Review, 2010, 100 (3), 837–869.

, Mar Reguant, and Stephen Ryan, “Market-based Emissions Regulation and Indus-
try Dynamics,” Journal of Political Economy, 2016, 124 (1), 249–302.

Fried, Stephie, “Climate Policy and Innovation: A Quantitative Macroeconomic
Analysis,” American Economic Journal: Macroeconomics, 2018, 10 (1), 90–118.

Golosov, Mikhail, John Hassler, Per Krusell, and Aleh Tsyvinski, “Optimal Taxes on
Fossil Fuel in General Equilibrium,” Econometrica, 2014, 82 (1), 41–88.

Goolsbee, Austan, “Taxes and the Quality of Capital,” Journal of Public Economics,
2004, 88 (3-4), 519–543.

Groote, Olivier De and Frank Verboven, “Subsidies and Time Discounting in New Tech-
nology Adoption: Evidence from Solar Photovoltaic Systems,” American Economic
Review, 2019, 109 (6), 2137–2172.

112

https://www.eia.gov/electricity/data/eia923/
https://www.ercot.com/gridinfo/load/load_hist


Hayashi, Fumio, “Tobin’s Marginal q and Average q: A Neoclassical Interpretation,”
Econometrica, 1982, 50 (1), 213–224.

, “Tobin’s Marginal q and Average q: A Neoclassical Interpretation,” Econometrica,
1982, 50 (1), 213–224.

He, Hua and Robert S. Pindyck, “Investments in Flexible Production Capacity,”
Journal of Economic Dynamics and Control, 1992, 16 (3), 575–599.

Heutel, Garth, “Bankability and Information in Pollution Policy,” Journal of the
Association of Environmental and Resource Economists, 2020, 7 (4), 779–799.

Hitaj, Claudia, “Wind Power Development in the United States,” Journal of Environ-
mental Economics and Management, 2013, 65 (3), 394–410.

Hoel, Michael and Larry Karp, “Taxes and Quotas for a Stock Pollutant with Multi-
plicative Uncertainty,” Journal of Public Economics, 2001, 82 (1), 91–114.

Holland, Stephen and Erin Mansur, “Is Real-Time Pricing Green? The Environmental
Impacts of Electricity Demand Variance,” The Review of Economics and Statistics,
2008, 90 (3), 550–561.

Hortaçsu, Ali and Steven L. Puller, “Understanding Strategic Bidding in Multi-unit
Auctions: a Case Study of the Texas Electricity Spot Market,” The RAND Journal
of Economics, 2008, 39 (1), 86–114.

Hotelling, Harold, “The Economics of Exhaustible Resources,” Journal of Political
Economy, 1931, 39 (2), 137–175.

House, Cristopher and Matthew Shapiro, “Temporary Investment Tax Incentives:
Theory with Evidence from Bonus Depreciation,” American Economic Review, 2008,
98 (3), 737–768.

Hurst, Erik, Annamaria Lusardi, Arthur Kennickell, and Francisco Torralba, “The
Importance of Business Owners in Assessing the Size of Precautionary Savings,”
The Review of Economics and Statistics, 2010, 92 (1), 61–69.

Ito, Koichiro, “Do Consumers Respond to Marginal or Average Price? Evidence from
Nonlinear Electricity Pricing,” American Economic Review, 2014, 104 (2), 537–563.

and Mar Reguant, “Sequential Markets, Market Power, and Arbitrage,” American
Economic Review, 2016, 106 (7), 1921–1957.

Jacoby, Henry D. and A. Denny Ellerman, “The Safety Valve and Climate Policy,”
Energy Policy, 2004, 32 (4), 481–491.

113



Johnston, Sarah, “Nonrefundable Tax Credits versus Grants: The Impact of Subsidy
Form on the Effectiveness of Subsidies for Renewable Energy,” Journal of the
Association of Environmental and Resource Economists, 2019, 6 (3), 433–460.

Joskow, Paul L., “Contract Duration and Relationship-Specific Investments: Empirical
Evidence from Coal Markets,” American Economic Review, 1987, 77 (1), 168–185.

Kaplow, Louis and Steven Shavell, “On the Superiority of Corrective Taxes to Quantity
Regulation,” American Law and Economics Review, 2002, 1 (1), 1–17.

Karp, Larry, “Welfare Ranking of Emissions Taxes, Cap and Trade, and Banking and
Borrowing,” Working Paper, 2019.

and Jiangfeng Zhang, “Regulation of Stock Externalities with Correlated Abatement
Costs,” Environmental and Resource Economics, 2005, 32, 273–300.

Kaslow, Thomas W. and Robert S. Pindyck, “Valuing Flexibility in Utility Planning,”
The Electricity Journal, 1994, 7 (2), 60–65.

Kelly, David L., “Price and Quantity Regulation in General Equilibrium,” Journal of
Economic Theory, 2005, 125 (1), 36–60.

Kimball, Miles, “Precautionary Saving in the Small and in the Large,” Econometrica,
1990, 58 (1), 53–73.

Kollenberg, Sascha and Luca Taschini, “Emissions Trading Systems with Cap Adjust-
ments,” Journal of Environmental Economics and Management, 2016, 80, 20–36.

Laffont, Jean J., “More on Prices vs. Quantities,” The Review of Economic Studies,
1977, 44 (1), 177–182.

Linn, Joshua and Kristen McCormack, “The Roles of Energy Markets and Envi-
ronmental Regulation in Reducing Coal-fired Plant Profits and Electricity Sector
Emissions,” The RAND Journal of Economics, 2019, 50 (4), 733–767.

Mansur, Erin, “Measuring Welfare in Restructured Electricity Markets,” The Review
of Economics and Statistics, 2008, 90 (2), 369–386.

Mayrhofer, Thomas, “Skewed Background Risks and Higher-order Risk Preferences:
Prudent Versus Temperate Behavior,” Applied Economics Letters, 2017, 24, 338–341.

Mideksa, Torben K. and Martin L. Weitzman, “Prices versus Quantities across Juris-
dictions,” Journal of the Association of Environmental and Resource Economists,
2019, 6 (5), 883–891.

114



Moledina, Amyaz, Jay S. Coggins, Stephen Polasky, and Christopher Costello, “Dy-
namic Environmental Policy with Strategic Firms: Prices versus Quantities,” Journal
of Environmental Economics and Management, 2003, 45 (2), 356–376.

Montero, Juan P., “Prices versus Quantities with Incomplete Enforcement,” Journal
of Public Economics, 2002, 85 (3), 435–454.

Montero, Juan Pablo, “A Simple Suction Mechanism for the Optimal Allocation of
the Commons,” American Economic Review, 2008, 98 (1), 496–518.

Murray, Brian C., Richard G. Newell, and William A. Pizer, “Balancing Cost and
Emissions Certainty: An Allowance Reserve for Cap-and-Trade,” Review of Envi-
ronmental Economics and Policy, 2009, 3 (1), 84–103.

Newell, Richard G. and William A. Pizer, “Regulating Stock Externalities under
Uncertainty,” Journal of Environmental Economics and Management, 2003, 45 (2),
416–432.

Newell, Richard, William Pizer, and Jiangfeng Zhan, “Managing Permit Markets to
Stabilize Prices,” Environmental and Resource Economics, 2005, 31 (2), 133–157.

Pindyck, Robert S., “Irreversibility, Uncertainty and Investment,” Journal of Economic
Literature, 1991, 29 (3), 1110–1148.

, “Investments of Uncertain Cost,” Journal of Financial Economics, 1993, 34 (1),
53–76.

Pizer, William A., “Combining Price and Quantity Controls to Mitigate Global Climate
Change,” Journal of Public Economics, 2002, 85 (3), 409–434.

and Brian C. Prest, “Prices versus Quantities with Policy Updating,” Journal of
the Association of Environmental and Resource Economists, 2020, 7 (3), 483–518.

Reguant, Mar, “Complementary Bidding Mechanisms and Startup Costs in Electricity
Markets,” The Review of Economic Studies, 2014, 81 (4), 1708–1742.

Requate, Till, Eva Camacho-Cuena, Ch’ng Kean Siang, and Israel Waichman, “Tell the
Truth or Not? The Montero Mechanism for Emissions Control at Work,” Journal
of Environmental Economics and Management, 2019, 95, 133–152.

Schaeffer, Roberto, Alexandre Salem Szklo, André Frossard Pereira de Lucena, Bruno
Soares, Cesar Moreira, Larissa Pinheiro Pupo Nogueira, Fernanda Pereira Fleming,
Alberto Troccoli, Mike Harrison, and Mohammed Sadeck Boulahya, “Energy Sector
Vulnerability to Climate Change: A Review,” Energy, 2012, 38, 1–12.

115



Schmalensee, Richard, “Evaluating Policies to Increase Electricity Generation from
Renewable Energy,” Review of Environmental Economics and Policy, 2012, 6 (1),
45–64.

, “The Performance of U.S. Wind and Solar Generators,” The Energy Journal, 2016,
37 (1).

Stranlund, John and Yakov Ben-Haim, “Price-based vs. Quantity-based Environ-
mental Regulation under Knightian Uncertainty: An Info-gap Robust Satisficing
Perspective,” Journal of Environmental Management, 2008, 87 (3), 443–449.

Tobin, James, “A General Equilibrium Approach to Monetary Theory,” Journal of
Money, Credit and Banking, 1969, 1 (1), 15–29.

Toyama, Yuta, “Dynamic Incentives and Permit Market Equilibrium in Cap-and-
Trade Regulation,” Working Paper, 2019. https://yutatoyama.github.io/files/Draft_
SO2trading_190415.pdf?dl=0.

Weitzman, Martin L., “Prices versus quantities,” The Review of Economic Studies,
1974, 41 (4), 477–491.

, “Voting on Prices vs. Voting on Quantities in a World Climate Assembly,” Research
in Economics, 2017, 71 (2), 199–211.

, “Prices or Quantities can Dominate Banking and Borrowing,” The Scandinavian
Journal of Economics, 2020, 122 (2), 437–463.

Williams, Roberton, “Prices vs. Quantities vs.Tradable Quantities,” NBER Working
Paper Series No. 9283, 2002, National Bureau of Economic Research, Cambridge,
MA.

Wood, Peter J. and Frank Jotzo, “Price Floors for Emissions Trading,” Energy Policy,
2011, 39 (3), 1746–1753.

Yates, Andrew, “Decentralization in Pollution Permit Markets,” Journal of Public
Economic Theory, 2002, 4 (4), 229–238.

Yates, Andrew J. and Mark B. Cronshaw, “Pollution Permit Markets with Intertem-
poral Trading and Asymmetric Information,” Journal of Environmental Economics
and Management, 2001, 42 (1), 104–118.

Yin, Haitao and Nicholas Powers, “Do State Renewable Portfolio Standards Promote
In-state Renewable Generation?,” Energy Policy, 2010, 38 (2), 1140–1149.

Yohe, Gary W., “Towards a General Comparison of Price Controls and Quantity
Controls under Uncertainty,” The Review of Economic Studies, 1978, 45 (2), 229–
238.

116

https://yutatoyama.github.io/files/Draft_SO2trading_190415.pdf?dl=0
https://yutatoyama.github.io/files/Draft_SO2trading_190415.pdf?dl=0


APPENDIX A

CHAPTER 1: CAP-AND-TRADE VS. CARBON TAXES: INDUSTRY DYNAMICS
AND THE ROLE OF DEMAND RISK
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A.1 Appendix

A.1.1 Derivation of competitive equilibrium characterization

Solving the firm’s problem (1.4) by setting up the associated Lagrangean and taking
FOCs is standard so I omit the procedure from this Appendix. Obtaining from here the
analogous characterization for the firm’s problem (1.2) under BAU is simply a matter
of setting τ = 0 in the FOC. Solving for the firm’s problem (1.6) under a permit system
is different because the additional allowance holdings decision and environmental
compliance constraint (1.5) undo a possible recursive formulation. Therefore, we first
need to define the corresponding Lagrangean as a summation over all possible histories
– given the existence of the time-aggregated constraint (1.5). Accordingly, let us define
the following notation (some of which has already been defined in the main body of
this paper):

• z: demand shock
• zt: realization of shock z at time t
• Z: (finite) state space for random variable z
• π(zt|zt−1): Markov process for demand shock
• zt: a history of shocks from period 1 to t
• Zt: set of all histories from period 1 to t
• zt|zj: a history of shocks from period 1 to t conditional on observing history zj

(t > j)
• Zt|zt′ : set of all histories from period 1 to t where zt′ is observed at t′
• Q(zt): probability of observing history zt

Making use of this additional notation, we can define the Lagrangian associ-
ated to problem (1.6) as follows (νits, λits, µts represent the corresponding Lagrange
multipliers),

L =
∑

zT∈ZT

Q(zT )
T∑
t=1

δt−1

{
ns∑
i=1

[
pt(z

t)yits(z
t)− cisyits(z

t)− αis(yits(z
t)−

}
{
yi,t−1,s(z

t−1))2 + νits(z
t)yits(z

t)− λits(z
t)(yits(z

t)− ymax
is )

]
−
}

{
xt(z

t)
(
mt+1,s(z

t)−mts(z
t−1)

)}
+
∑

zT∈ZT

Q(zT )µs(z
T )

(
−

T∑
t=1

ns∑
i=1

ψiyits(z
t)

)
(
+mTs(z

T−1)
)
.
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The FOC w.r.t. mt+1,s(z
t) for t = 1, ..., T − 2 yields,

−Q(zt)δt−1xt(z
t) +

∑
zt+1∈Zt+1|zt

Q(zt+1)δtxt+1(z
t+1) = 0

=⇒ xt(z
t) = δ

∑
zt+1∈Zt+1|zt

Q(zt+1)

Q(zt)
xt+1(z

t+1) = δ · E
[
xt+1(z

t+1)|zt
]
. (A.1)

Analogously, the FOC w.r.t. mT,s(z
T−1) delivers,

−Q(zT−1)δT−2xT−1(z
T−1)+

∑
zT∈ZT |zT−1

Q(zT )δT−1xT (z
T )+

∑
zT∈ZT |zT−1

Q(zT )µs(z
T ) = 0

=⇒ xT−1(z
T−1) = δ

∑
zT∈ZT |zT−1

Q(zT )

Q(zT−1)
xT (z

T ) +
∑

zT∈ZT |zT−1

Q(zT )

Q(zT−1)

µs(z
T )

δT−2

=⇒ xT−1(z
T−1) = δ · E[xT (zT )|zT−1] + E

[
µs(z

T )

δT−2
|zT−1

]
. (A.2)

The dynamics of allowance prices in equilibrium (i.e. the set of conditions in (1.9)) are
determined by equations (A.1) and (A.2) along with the condition xT (zT ) = µs(z

T ).

Additionally, observe that combining equations (A.1) and (A.2), we can express
allowance prices in t = 1, ..., T − 2 as functions of expectations of xT (zT ) and µs(z

T )
given the information available at period t,

xt(z
t) = δT−tE

[
xT (z

T )|zt
]
+ E

[
µs(z

T )

δT−t−1
|zt
]
, t = 1, ..., T − 2.

Using condition xT (z
T ) = µs(z

T ) in the equation for allowance prices xt(zt) and
rearranging terms allows us to express the expectation of xT (zT ) as a function of the
realized allowance price at t,
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E
[
xT (z

T )|zt
]
=

δT−t−1

δ2(T−t)−1 + 1
xt(z

t), ∀t = 1, ..., T − 2

which proves equation (1.12) from Section 1.3.7.

Moving forward to analyze the production decision at the intensive and extensive
margins, the FOC w.r.t. yits(zt) yields,

Q(zt)δt−1
{
pt(z

t)− cis − 2αis(yits(z
t)− yi,t−1,s(z

t−1)) + νits(z
t)− λits(z

t)
}

+
∑

zt+1∈Zt+1|zt
Q(zt+1)δt · 2αis(yi,t+1,s(z

t+1)− yits(z
t))−

∑
zT∈ZT |zt

Q(zT )µs(z
T )ψi = 0

=⇒ pt(z
t)− cis − 2αis(yits(z

t)− yi,t−1,s(z
t−1))+

2αisδ
∑

zt+1∈Zt+1|zt

Q(zt+1)

Q(zt)
(yi,t+1,s(z

t+1)− yits(z
t)) =

λits(z
t)− νits(z

t) +
ψi

δt−1

∑
zT∈ZT |zt

Q(zT )

Q(zt)
µs(z

T )

where νits(zt) and λits(zt) represent the Lagrange multipliers associated to the upper
and lower bounds for production at the unit level. Since Lagrange multipliers are
non-negative, we can write the previous FOC as follows to obtain equation (1.10),

pt(z
t)− cis − 2αis(yits(z

t)− yi,t−1,s(z
t−1))+

2αisδ · E
[
yi,t+1,s(z

t+1)− yits(z
t)|zt

]


> ψiE
[
µs(z

T )

δt−1
|zt
]
, iff yits = ymax

is

< ψiE
[
µs(z

T )

δt−1
|zt
]
, iff yits = 0

= ψiE
[
µs(z

T )

δt−1
|zt
]
, else.

These equations plus the equilibrium conditions from the competitive equilibrium
definition in Section 1.3 deliver the full characterization for the cap-and-trade case.
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A.1.2 Sensitivity analysis for moments used in SMM

Table 10 reports results of the sensitivity analysis measuring the change in model-
dependent moments as a consequence of a 1% increase in estimated parameters. Given
the number of structural parameters and for ease of exposition, I report results in
firm-level moments only for the case of NRG Texas Power. Similar qualitative results
are observed for other multi-unit firms.

Table 10. Sensitivity analysis for model-dependent moments

Avg. coal % natgas power Avg. cycling cost Avg. load S.D. load

c12 -.0026 .0971 1.6778 0 0
c22 .0005 -.2506 -6.9749 0 0
α22 .0005 .0788 .6234 0 0
ρ0 .0451 4.8295 -5.9642 10.7864 12.2089
ζ -.0005 -.0029 .6814 -.0672 1.3656

Note: This table reports the change in model-dependent moments (top row) as a consequence of a
1% increase in each of the parameters on the leftmost column. Column ‘Avg. coal’ reports changes
in the average hourly production at the coal-fired unit of NRG Texas Power. Column ‘% natgas
power’ corresponds to the share of natural gas power at NRG Texas Power. Column ‘Avg. cycling
cost’ reports the change in average cycling costs per MW at the natural gas unit of NRG Texas
Power. Columns ‘Avg. load’ and ‘S.D. load’ report changes in average and standard deviation of
hourly power consumption at the system level, respectively. Parameters c12, c22, α22, ρ0 and ζ
represent marginal costs at the coal and natural gas units (resp), cycling cost parameter at the
natural gas unit, demand intercept, and shock size, respectively. Numbers in the ‘% natgas power’
column are in percentage points; all others are in % changes.
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A.1.3 Sensitivity analysis for a 100% increase in natural gas prices
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Figure 14. Energy Shares under Different in Natural Gas Prices

Note. This figure compares coal and natural gas shares under unit-level marginal cost parameters cis
consistent with different natural gas prices. Subfigures in the left column are fossil fuel shares
consistent with baseline SMM cost parameters that were estimated in Section 1.4.3. Subfigures in
the right column are fossil fuel shares under a hypothetical 100% increase in natural gas prices which
would double estimated unit-level marginal cost parameters cis at all natural gas power plants.
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Figure 15. Welfare Effects under Different in Natural Gas Prices

Note. This figure compares total welfare effects under unit-level marginal cost parameters cis
consistent with different natural gas prices. Panel (a) shows welfare effects consistent with baseline
SMM cost parameters that were estimated in Section 1.4.3. Panel (b) shows welfare effects under a
hypothetical 100% increase in natural gas prices which would double estimated unit-level marginal
cost parameters at all natural gas power plants.

Results show that a 100% increase in average unit-level marginal costs at natural gas
power plants reverts the welfare ranking that is consistent with baseline cost parameter
estimates from Section 1.4.3. This implies that the welfare ranking between carbon
taxes and permit systems depends crucially on the joint distribution of unit-level
marginal cost parameters cis across fuel types and firms. Specifically, for sufficiently
high average marginal costs at natural gas units (for instance, because of increasing
natural gas prices), permit systems have higher welfare than emissions-equivalent
carbon taxes (and vice versa). This is because firms abate more emissions by switching
production from coal-fired units to natural gas plants (which use a less emissions-
intensive fossil fuel) in the case of a carbon tax (see discussion on differences in output
allocations in Section 1.3.5 and Figure 14). Therefore, an increase in average marginal
costs at natural gas units disproportionately affects the economy with price-based
regulation and reverts the welfare ranking that was consistent with baseline estimates.
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A.1.4 Distributions of key endogenous variables

A.1.4.1 Output

Figure 16. Probability Density Function of Total Generation

Note. This figure shows the probability density function of total generation under price-equivalent
control modes for different levels of average emissions prices ($/ton). Blue histograms are for output
with a carbon tax while orange histograms are for output with a permit system.
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A.1.4.2 Electricity Prices

Figure 17. Probability Density Function of Avg. Hourly Electricity Prices

Note. This figure shows the probability density function of average hourly electricity prices under
price-equivalent control modes for different levels of average emissions prices ($/ton). Each average
hourly electricity price corresponds to the mean value of output hourly prices under a specific draw
of the history of demand shocks. Blue histograms are for prices with a carbon tax while orange
histograms are for prices with a permit system.
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A.1.4.3 Emissions

Figure 18. Probability Density Function of Total Emissions

Note. This figure shows the probability density function of total compliance cycle emissions under
price-equivalent control modes for different levels of average emissions prices ($/ton). Blue
histograms are for emissions with a carbon tax while orange histograms are for emissions with a
permit system.
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A.1.4.4 Permit prices

Figure 19. Probability Density Function of Permit Prices

Note. This figure shows the probability density function of allowance prices in a compliance cycle
compared to different levels of a price-equivalent carbon tax ($/ton). A price-equivalent carbon tax
is a counterfactual emissions fee equal to the price of permits in expectation. Probability density
functions of permit prices associated to higher carbon taxes are consistent with lower emissions caps.
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APPENDIX B

CHAPTER 2: DO VERTICAL ARRANGEMENTS MATTER FOR
COST-EFFECTIVENESS OF OUTPUT SUBSIDIES?
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B.1 Appendix

B.1.1 Derivation of Euler conditions (2.5) and (2.6)

Proof. Take the FOC of (2.3) w.r.t. m′ to obtain,

−Fg −
1

m
G

′

g

(
m′ −m

m

)
+ βEθ

[
∂Vg(m

′, θ′)

∂m′

]
= 0

Moreover, applying the Envelope Theorem to (2.3) delivers,

∂Vg(m, θ)

∂m
= θp+ Fg +

m′

m2
G

′

g

(
m′ −m

m

)
Iterate this Envelope Condition one period ahead and substitute into the FOC to

obtain (2.6). An analogous procedure applied to (2.2) yields (2.5).

B.1.2 Decreasingness and continuity of Vf (0, ·)

Proof.

1. Decreasingness: Let T be the contraction operator defined by (2.2). By induction
on n.

• n = 0: Let V 0
f (0, ·) be a decreasing function and consider q1 < q2. Then,

T
[
V 0
f (0, q1)

]
= max

m′≥0

{
−Ffm

′ −Gf

(
m′ −m

m

)
+ βEq

[
V 0
f (m

′, q′)|q1
]}

≥ max
m′≥0

{
−Ffm

′ −Gf

(
m′ −m

m

)
+ βEq

[
V 0
f (m

′, q′)|q2
]}

= T
[
V 0
f (0, q2)

]
where in line three I used the assumption that V 0

f (m
′, q′) is decreasing in q.

• n → n + 1: Analogous to the n = 0 step after changing V 0
f (0, ·) for

T n
[
V 0
f (0, ·)

]
.
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This implies that T n
[
V 0
f (0, ·)

]
is decreasing for all n ∈ N. By the Contrac-

tion Mapping Theorem, it must be the case that Vf (0, ·) = lim
n→∞

T n
[
V 0
f (0, ·)

]
is decreasing.

2. Continuity: Vf (0, ·) is continuous as a direct consequence of Berge’s Theorem of
the Maximum since the instant return function in (2.2) is continuous in m and
q.

B.1.3 Existence of reservation price q∗(θ)

Proof. Let θ ∈ [0, 1].

• Case 1: Vf (0, 0) ≥ Vg(0, θ). We know that Vf (0, ·) is decreasing and continuous.
Moreover, it is also the case that lim

q→+∞
Vf(0, q) = 0. Since Vg(0, θ) ≥ 0, by the

Intermediate Value Theorem the set {q | Vf (0, q) = Vg(0, θ)} is non-empty. Since
this set is bounded below, such reservation price exists.

• Case 2: Vf(0, 0) < Vg(0, θ). The reservation price does not exist since the set
{q | Vf(0, q) = Vg(0, θ)} is empty. In this case, it is optimal to build the green
energy unit independently of q.
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