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ABSTRACT

Instruction tuning of language models has demonstrated the ability to enhance model

generalization to unseen tasks via in-context learning using a few examples. However,

typical supervised learning still requires a plethora of training data for downstream

or “Held-in” tasks. Often in real-world situations, there is a scarcity of data available

for finetuning, falling somewhere between few shot inference and fully supervised

finetuning. In this work, I demonstrate the sample efficiency of instruction tuned

models over various tasks by estimating the minimal training data required by down-

stream or “Held-In” tasks to perform transfer learning and match the performance

of state-of-the-art (SOTA) supervised models. I conduct experiments on 119 tasks

from Super Natural Instructions (SuperNI) in both the single task learning / Expert

Modelling (STL) and multi task learning (MTL) settings. My findings reveal that,

in the STL setting, instruction tuned models equipped with 25% of the downstream

train data surpass the SOTA performance on the downstream tasks. In the MTL

setting, an instruction tuned model trained on only 6% of downstream training data

achieve SOTA, while using 100% of the training data results in a 3.69% points im-

provement (ROUGE-L 74.68) over the previous SOTA. I conduct an analysis on T5

vs Tk-Instruct by developing several baselines to demonstrate that instruction tun-

ing aids in increasing both sample efficiency and transfer learning. Additionally, I

observe a consistent ∼ 4% performance increase in both settings when pre-finetuning

is performed with instructions. Finally, I conduct a categorical study and find that

contrary to previous results, tasks in the question rewriting and title generation cat-

egories suffer from instruction tuning.
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Chapter 1

INTRODUCTION

Large language models (LLM) have achieved remarkable performances on several

benchmark evaluation suites such as SuperGLUE Wang et al. (2019), BIG-Bench

Hard (BBH) Suzgun et al. (2022), and HELM Liang et al. (2022). Research on

LLMs has explored their abilities to follow instructions Wei et al. (2021); Mishra

et al. (2022b); Wang et al. (2022c) and has developed specialized models for the same

(Flan, Instruct-GPT, Tk-Instruct, T0) Ouyang et al. (2022); Sanh et al. (2021).

1.1 Evolution of Instruction Tuning

Instruction tuning has emerged as a promising approach to enhance the capabil-

ities of large language models (LLMs). Unlike traditional fine-tuning methods that

rely on labeled input-output pairs, instruction tuning utilizes natural language in-

structions to guide LLMs towards desired behaviors Mishra et al. (2022b); Wei et al.

(2021); Sanh et al. (2021).

Currently, instruction tuning is defined as follows Zhang et al. (2023f): “Instruc-

tion tuning refers to the process of further training LLMs on a dataset consisting of

(PROMPT, RESPONSE) pairs in a supervised fashion, which bridges the gap between

the next-word prediction objective of LLMs and the users’ objective of having LLMs

adhere to human instructions.”

Instruction tuning has revolutionized LLM training, enabling them to tackle a

broader spectrum of tasks and generalizing more effectively to new situations Ye

et al. (2021); Khashabi et al. (2020). Early instruction tuning methods focused on

providing explicit instructions that closely resembled the desired outputs. Flan paper

1



Wei et al. (2021) used the following example for instruction tuning:

“Instruction: Here is a goal: Get a cool sleep on summer days. How would you

accomplish this goal?

Input: Keep stack of pillow cases in fridge or Keep stack of pillow cases in oven.

Output: keep stack of pillow cases in fridge”

Cross task generalization paper Mishra et al. (2022b) defined instruction as in-

struction to solve a specific task. To quote their work, “crowdsourcing instructions

often elaborate a variety of details about how a task should (and should not) be done”

An example is given below to describe their definition:

2



“Title: Writing questions that involve commonsense understanding of event dura-

tion.

Definition: In this task, we ask you to write a question that involves event duration,

based on a given sentence. Here, event duration is defined as the understanding

of how long events typically last. For example,“brushing teeth”, usually takes few

minutes.

Emphasis & Caution: The written questions are not required to have a single

correct answer.

Things to avoid: Don’t create questions which have explicit mentions of answers

in text. Instead, it has to be implied from what is given. In other words, we want

you to use ”instinct” or ”common sense”.

Positive Example

Input: Sentence: Jack played basketball after school, after which he was very tired.

Output: How long did Jack play basketball?

Reason: the question asks about the duration of an event; therefore it’s a temporal

event duration question.

Negative Example

Input: Sentence: He spent two hours on his homework.

Output: How long did he do his homework?

Reason: We DONOT want this question as the answer is directly mentioned in the

text.

Input: Sentence: It’s hail crackled across the comm, and Tara spun to retake her

seat at the helm.

Output: How long was the storm?”

To point out the differences between the two prompts, Flan paper had Input and

3



Options as the Prompt and Output as the response, while Cross-Task paper had Title,

Definition, Emphasis and Caution, Things to Avoid, Positive, negative examples with

explanations as the Prompt.

However, recent advances have introduced more sophisticated techniques that

leverage natural language instructions to convey task-specific k nowledge a nd con-

straints (Iyer et al., 2022; Muennighoff et al., 2022; Chung et al., 2 022). These meth-

ods, such as the use of prompts, examples, and constraints, have significantly broad-

ened the scope of instruction tuning, allowing LLMs to perform complex tasks that

require reasoning, planning, and common-sense knowledge. To give an example from

the SuperNI paper Wang et al. (2022c), Instruction tuning was changed as follows:

4



“Definition: Given an utterance and recent dialogue context containing past 3

utterances (wherever available), output Yes if the utterance contains the small-talk

strategy, otherwise output No. Small-talk is a cooperative negotiation strategy. It

is used for discussing topics apart from the negotiation, to build a rapport with the

opponent.

Positive Example

Input: Context: That’s fantastic, I’m glad we came to something we both agree with.

Utterance: Me too. I hope you have a wonderful camping trip.

Output: Yes

Explanation: The participant engages in small talk when wishing their opponent to

have a wonderful trip.

Negative Example

Input: Context: Sounds good, I need food the most, what is your most needed item?!

Utterance: My item is food too.

Output: Yes

Explanation: The utterance only takes the negotiation forward and there is no side

talk. Hence, the correct answer is No.

Input: Context: I am excited to spend time with everyone from camp! Utterance:

‘That’s awesome! I really love being out here with my son. Do you think you could

spare some food?’

Output: Yes”

We observe that prompts initially contained [Instruction, Input] or [Title, Defi-

nition, Emphasis and Caution, Things to Avoid, Positive, negative examples] as the

Prompts, SuperNI paper’s prompt evolved to much detailed prompt. SuperNI’s

prompt contained Definition, Positive example input, output and explanation, neg-

5



ative example input, output and explanation and then the evaluation instance. An-

other variant of Instruction tuning is Chain-of-thought finetuning Chung et al. (2022)

where Prompt is just the instruction but the response contained output label and ex-

planations. An example is given below to showcase this:

“ Instruction: Answer the following question by reasoning step-by-step.

Question: The cafeteria had 23 apples. If they used 20 for lunch and bought 6

more, how many apples do they have?

Explanation: The cafeteria had 23 apples originally. They used 20 to make lunch.

So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The

cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20

= 3. They bought 6 more apples, so they have

Output Label: 3 + 6 = 9”

For this work, we follow SuperNI’s pattern of instruction tuning. We give two

positive examples and remove explanations from examples. The reason for this is

that all the experiments are conducted on T5 based models which do not have enough

context length to fit it in the explanations. It was also observed in SuperNI paper

that Definitions and two postive examples give the best results for instruction tuning.

Table 1.1 summarizes the Instruction tuning approaches:

As instruction tuning continues to evolve, it is poised to play an increasingly

crucial role in the development of next-generation LLMs Wang et al. (2022b); Ye et al.

(2022). This approach enables LLMs to learn from natural language instructions,

offering them the capability to address a wider range of tasks, adapt to new situations,

generalize more effectively, and provide valuable feedback. In doing so, it brings us

closer to the realization of truly intelligent language models Bai et al. (2022a); Nakano

et al. (2021); Bai et al. (2022b). Instruction tuning on human feedback comes at the

6



Paper Prompt Response

Mishra et al. (2022b)

Title, Definition, Emphasis and Caution,

Things to Avoid

Positive examples and explanations

Negative examples and explanations

Input

Output Label

Wei et al. (2021) Input, Options Output Label

Wang et al. (2022c)

Definition

Positive examples and explanations

Negative examples and explanations

Input

Output Label

Chung et al. (2022) Instruction, Question Explaination, Output Label

Ours
Defintion, 2 Positive examples

Input
Output Label

Table 1.1: Table demonstrating evolution of Instruction tuning prompts and responses

expense of performance on a wide array of more traditional NLP tasks Ouyang et al.

(2022); Glaese et al. (2022).

1.2 Motivation

Recent studies in the instruction paradigm demonstrate the generalizability of

models that are instruction tuned on training tasks and evaluated using few shot

inference Wang et al. (2022c); Wei et al. (2021), as shown in the first row of Fig.

1.1. Despite this, SOTA performance is obtained by fully supervised finetuning on

all available downstream training data as shown in the 4th row of Fig. 1.1.

In real-world situations, there is usually a limited amount of data available for

finetuning, which is somewhere between few shot inference and fully supervised fine-

tuning. Given this context, we pose the question - if we use a small amount of the data

from these “Held-In” downstream tasks, how quickly could the model learn in the
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Figure 1.1: Showcasing the difference between the few shot inference, fully supervised

finetuning, and our proposed analysis. The first row represents conventional few shot

inference using Tk-Instruct which results in a score of 54.30. The fourth row indicates

supervised SOTA that uses 100% of downstream train data to finetune T5-3B to get

a SOTA score of 70.99. Our findings demonstrate the quick learning ability of

the instruction tuned model. Using only 6% of downstream train data, Tk-Instruct

achieved a score of 70.40. Surpassing SOTA by 2 points with 25% of downstream

train data, our results highlight the MTL setting.

instruction paradigm? To answer this, we evaluate the minimal downstream training

data required by instruction tuned models to perform transfer learning and match the

performance of supervised SOTA models. We experiment on unseen tasks of Super

Natural Instructions (SuperNI) Wang et al. (2022c), comprising of 119 tasks. We

experiment with single-task learning or Expert Model setting (STL), i.e. training 119

task-specific models, and multi-task learning (MTL), where a single model is trained

8



to solve all 119 tasks. We use Tk-Instruct 3B (T5-3B, instruction tuned on 757 tasks

of SuperNI) as the instruction tuned model Wang et al. (2022c) and use T5-3B Raffel

et al. (2020) as our non-instruction tuned model. We find that in the STL setting, we

achieve competitive results with just 5.91% of the training data (68.34 ROUGE-L)

and surpass the supervised SOTA score when using only 25.33% of the entire dataset

(71.71 ROUGE-L). In the MTL setting, when using 6% of the train split, we match

the SOTA performance (70.40 ROUGE-L), as shown in the 2nd row of Fig. 1. We

outperform SOTA by roughly 2% (73.14 ROUGE-L) when using 25% of the train split

(3rd row of Fig. 1.) and 3.69% when using 100% of the train split. To the best of our

knowledge, we are first to explore the space of sample efficiency in instruction tuned

large language models in both STL and MTL setups. Details about the experimental

setup are described in §4, and results are described in §5.

We analyze the impact of instructions by investigating sample efficiency across

diverse ranges, by developing multiple baselines to simulate low resource settings per-

taining to training data availability. Our findings highlight sample efficiency achieved

through instruction tuning, reaching up to 75%, even in limited training data.

We delve into the impact of instruction tuning as an initial pre-finetuning step.

We develop two baselines (for both STL and MTL setups) employing pre-finetuning

without instructions. These baselines undergo further finetuning on the downstream

training set. Our findings demonstrate an increase in the performance of Tk-Instruct

over the baselines by 3% and 5% in the STL and MTL setups, respectively. This

highlights the impact of instructions during pre-finetuning in terms of facilitating

transfer learning. We finally perform a category-wise analysis to investigate the im-

pact of instruction tuning on different task categories. Our findings reveal that tasks

falling under the textual entailment category demonstrate the most substantial im-

provements through instruction tuning. On the other hand, tasks related to question
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rewriting and title generation exhibit challenges and limitations when subjected to

instruction tuning.

Contribution:

1. We show that an instruction tuned model using just 6% of down-

stream train data matches the performance of a supervised SOTA

model: This work demonstrates that instruction tuning can enable language

models to quickly learn new tasks with very limited training data for held-in

tasks. Specifically, they show that the instruction tuned model Tk-Instruct

matches state-of-the-art performance on the SuperNI benchmark when trained

on just 6% of the available data per task.

2. We find that the instruction tuned models perform up to 3% bet-

ter than the SOTA when instruction tuned with 100% of the data:

When trained on the full SuperNI dataset, Tk-Instruct outperforms the previous

SOTA (a supervised finetuned T5-3B model) by 3.69% in terms of ROUGE-L

score. This highlights the effectiveness of instruction tuning for improving model

performance given sufficient data.

3. To investigate scenarios with significantly limited downstream train

data, we conduct a comprehensive analysis by constructing multiple

baselines: To simulate low-resource scenarios, we construct several baselines

using reduced amounts of downstream training data. For example, in the single-

task learning setting, they show Tk-Instruct surpasses the SOTA after being

trained on just 25% of the full dataset. These experiments demonstrate the

sample efficiency benefits of instruction tuning.

4. We show the impact of our method on various categories of tasks:
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This work analyzes the impact of instruction tuning across different task cate-

gories in SuperNI. They find certain tasks like textual entailment benefit greatly

from instruction tuning. However, some task types like question rewriting and

title generation perform worse with instruction tuning compared to standard

finetuning. This highlights the variability in effectiveness across tasks.

In summary, the key results are that instruction tuning enables efficient learning

from limited data, outperforms standard finetuning given sufficient data, demon-

strates sample efficiency vs baselines, and has variable impacts across different task

categories. The analysis provides insights into the strengths and limitations of instruction-

based learning.

1.3 Structure of Thesis

This work with explaining what is instruction tuning and its importance in down-

stream task especially with respect to sample efficiency. Chapter 2 offers an overview

of the state of research in this domain and its dominant paradigms. In chapter 3

describes single task learning, multi task learning and instruction tuned modelling.

Chapter 4 details the proposed methodology and describes the baselines that were

created to compare with the proposed approach. The chapter also highlights the

datasets and evaluation metrics that were used for our experiments. Chapter 5 dis-

cusses results of out experiments and comparison with different baselines. This chap-

ter also provides a comprehensive analysis of our method in different settings. The

final chapter summarizes key results and findings, while detailing existing limitations

and possible avenues of future research.
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Chapter 2

LITERATURE REVIEW

Multi-task learning using LLMs (Language Models) has consistently shown per-

formance benefits over task-specific learning Mishra et al. (2022b); Ye et al. (2021);

Lin et al. (2022); Chen et al. (2022); Yang et al. (2022a); Chen et al. (2021a); Zhang

and Chai (2021); Chung et al. (2022). Instruction-based learning has emerged as a

promising paradigm in LLMs Malkiel and Wolf (2021); Shao et al. (2021); Ouyang

et al. (2022); Kang et al. (2022); Liu et al. (2022); Schick and Schütze (2022); Menon

et al. (2022); Anderson (2022); Su et al. (2022a), with recent studies exploring vari-

ous aspects such as dialogue generation Gupta et al. (2022b), multimodality Xu et al.

(2022b), chain of thought Wei et al. (2022), distributed training Jang et al. (2023),

and federated learning Zhang et al. (2023b). Moreover, the effectiveness of Prompts

and Instructions Ma et al. (2023); Zheng et al. (2023) has been demonstrated in

low-resource settings Le Scao and Rush (2021), and different variants of prompting,

including Scratchpad Nye et al. (2021), Majority Voting, Reframing Mishra et al.

(2022a), Least-to-Most Prompting Zhou et al. (2022b), and Question Decomposition

Khot et al. (2020), have proven effective across various tasks. Instruction-based tech-

niques have also shown efficacy in different applications, such as NER Wang et al.

(2022a), program synthesis Kuznia et al. (2022), style transfer Reif et al. (2021), tab-

ular question answering Luo et al. (2022), relation extraction Chen et al. (2021b),

and biomedical applications Parmar et al. (2022). However, the majority of the ex-

isting works have primarily focused on zero/few-shot inference scenarios Ivison et al.

(2022a); Gu et al. (2022).

We do a thorough literature review of the recent instruction tuning papers and
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highlight the distinctions between them. We categorize the papers based on the

following categories and give a broad overview about them. We also distinguish them

from our work by highlighting the broad differences in the research problem those

papers are solving vs the issue tackled by us.

2.1 Initial formulation

The initial set of papers apart from the ones mentioned in §1.1 initially formulated

instruction tuning. Their evaluation was always on unseen or held-out tasks and

sample efficiency was not explored.

1. Finetuned Language Models Are Zero-shot Learners Wei et al. (2021):

The authors propose instruction tuning that involves fine-tuning LLMs on a

diverse set of natural language processing (NLP) tasks, which are expressed

through natural language instructions. The authors carried out instruction tun-

ing on a 137-billion-parameter pre-trained language model known as LaMDA-

PT. They fine-tuned LaMDA-PT on over 60 NLP tasks that were articulated

using natural language instruction templates. The resulting model FLAN, was

then evaluated on previously unseen task types to assess its zero-shot learn-

ing capabilities. FLAN improved the performance compared to its unmodified

counterpart and even outperformed the zero-shot capabilities of the more exten-

sive 175-billion-parameter GPT-3 model on 20 out of 25 evaluated tasks. These

findings suggest that instruction tuning is a simple yet highly effective approach

for enhancing the zero-shot task generalization of large language models. The

success of instruction tuning appears to depend on several factors, including the

number of fine-tuning datasets, the scale of the model, and the use of natural

language instructions. The combination of instructions and few-shot examples

can further boost FLAN’s performance.
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2. Multitask Prompted Training Enables Zero-shot Task Generalization

Sanh et al. (2021): The authors propose an approach to enhance the zero-

shot learning capabilities of large language models (LLMs) through explicit

multitask learning. The authors introduce a system that enables the conversion

of a wide range of natural language tasks into a human-readable prompted

format. This system is used to create a multitask mixture of natural language

processing (NLP) datasets encompassing various tasks. Subsequently, they fine-

tune a pre-trained encoder-decoder model on this diverse set of tasks. The

evaluation of their model, referred to as T0, includes a variety of zero-shot

generalization tasks, such as natural language inference, coreference resolution,

sentence completion, and word sense disambiguation. The T0 model surpasses

several other models in performance, even those models that are up to 16 times

larger. Furthermore, the T0 model is assessed on a subset of tasks from the

BIG-Bench benchmark and consistently outperforms other models, including

those up to six times its size.

3. ZeroPrompt: Scaling Prompt-Based Pretraining to 1,000 Tasks Im-

proves Zero-Shot Generalization Xu et al. (2022a): Scaling Prompt-

Based Pretraining to 1,000 Tasks Improves Zero-Shot Generalization” presents

an approach to enhance the zero-shot generalization capabilities of large lan-

guage models (LLMs). ZeroPrompt’s effectiveness is evaluated on a diverse set

of zero-shot generalization benchmarks and it consistently outperforms existing

state-of-the-art prompt-based pretraining methods across all these benchmarks.

4. OPT-IML: Scaling Language Model Instruction Meta Learning through

the Lens of Generalization Iyer et al. (2022): The paper tackles a signifi-

cant challenge LLMs must comprehend and act upon natural language instruc-
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tions to accomplish specific tasks. The authors introduce OPT-IML to enhance

LLMs’ generalization ability to tackle previously unseen tasks and domains.

The core concept involves optimizing the IML process, which encompasses fine-

tuning LLMs on a collection of tasks described via instructions. This opti-

mization involves considerations such as instruction-tuning decisions and model

size.

2.2 Enhancements

These papers are next generation of Instruction tuning refinements that explore in-

context learning enhancements, increased token length for language models, enabling

language models to follow complex instructions, instructions alignment, instruction

tuning for black box models etc. Again, these works do not explore sample efficiency

and evaluate the proposed approaches on held-out or unseen tasks.

1. In-Context Instruction LearningYe et al. (2023): LLMs are typically

trained on vast amounts of text data but often lack explicit guidance on how to

follow specific instructions accurately. To tackle this issue, authors introduce

”In-Context Instruction Learning” (ICIL). Fine-tuning, which is often resource-

intensive and time-consuming, has been a common practice to adapt LLMs to

specific tasks. ICIL presents an alternative that eliminates the need for fine-

tuning, making the process more efficient and cost-effective. ICIL uses a single

fixed prompt, which is employed for evaluating all tasks. This fixed prompt

is constructed as a concatenation of cross-task demonstrations. It serves to

provide the LLM with the necessary context and information to understand the

task and generate appropriate responses. The approach is designed to enhance

instruction-following capabilities and zero-shot task generalization performance.
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2. ChatPLUG: Open-Domain Generative Dialogue System with Internet-

Augmented Instruction Tuning for Digital Human Tian et al. (2023):

The paper introduces an open-domain generative dialogue system, ChatPLUG,

specifically designed for digital human applications. It presents an approach

called Internet-Augmented Instruction Tuning (IAT) that involves two key steps:

A diverse collection of dialogue tasks encompassing knowledge, personality,

multi-turn memory, empathy, and more is gathered. This ensures that Chat-

PLUG can excel in various aspects of digital human interactions. ChatPLUG

is then fine-tuned using the collected instruction data, which is guided by natu-

ral language instruction templates. External knowledge from internet searches

is integrated into the tuning process, addressing the challenge of knowledge

hallucinations.

3. LongForm: Optimizing Instruction Tuning for Long Text Genera-

tion with Corpus Extraction Köksal et al. (2023): The paper introduced

”LongForm,” which focuses on optimizing instruction tuning for long text gen-

eration by leveraging corpus extraction. This approach comprises two key steps:

Corpus Extraction and Instruction Tuning. In the Corpus Extraction phase, a

diverse set of human-written documents is meticulously selected from existing

corpora. These documents are then paired with augmented instructions gen-

erated by LLMs. This augmentation process allows LLMs to understand and

follow instructions more effectively. Following Corpus Extraction, the generated

corpus examples and task-specific examples are employed to fine-tune LLMs.

This fine-tuning process enhances LLMs’ capability to produce long, coherent

texts that align with the provided instructions, thus addressing the challenge of

generating consistent and high-quality long-form text. LongForm outperforms
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state-of-the-art methods on a range of long text generation tasks, including

story generation and text summarization.The LLMs fine-tuned with LongForm

are not only coherent and consistent with instructions but also of high quality.

4. WizardLM: Empowering Large Language Models to Follow Complex

Instructions Xu et al. (2023): The paper introduces WizardLM designed

to empower LLMs to follow complex instructions. This novel approach com-

prises two key steps: ”Instruction Evolution” and ”Instruction Fine-tuning.”

WizardLM leverages a process known as ”Evol-Instruct” to iteratively enhance

a set of initial instructions, gradually increasing their complexity and diversity.

This evolution process leverages the capabilities of an LLM to rewrite and aug-

ment instructions based on specific prompts. As a result, it generates a rich

and diverse dataset of complex instructions, providing the LLM with exposure

to a wide array of instruction types. Following the Instruction Evolution pro-

cess, the evolved instruction data is utilized to fine-tune an LLM, enhancing

its ability to follow complex instructions and adapt to varying conditions. This

fine-tuning procedure equips the LLM to learn and generalize effectively across

a broader spectrum of instruction types and task complexities. WizardLM em-

powers LLMs to understand and execute complex, multi-step instructions ef-

fectively through the use of evolved instruction data. Evol-Instruct successfully

generates complex and diverse instructions, significantly expanding the scope

of instruction data accessible for LLM training.

5. Generation-driven Contrastive Self-training for Zero-shot Text Clas-

sification with Instruction-tuned GPT Zhang et al. (2023e): Tradi-

tional text classification methods often rely on labeled data for each class, which

can be resource-intensive and time-consuming to obtain. To mitigate this limi-
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tation, the authors proposed a novel approach named GenCSTR (Generation-

driven Contrastive Self-training) that leverages advanced techniques and large

language models (LLMs) for zero-shot text classification. GenCSTR involves

two steps: Initially, a GPT-based LLM is fine-tuned using a dataset containing

text descriptions along with corresponding instructions. This fine-tuning pro-

cess equips the model with the ability to understand and classify text based on

provided instructions. Essentially, this phase serves as the foundation for the

model’s subsequent zero-shot classification capabilities. The instruction-tuned

LLM is tasked with generating pseudo-labels for unlabeled data by classifying

each text based on the given instructions. These pseudo-labels are subsequently

employed to further train and refine the model. By iteratively self-training and

utilizing generated labels, the model gradually becomes adept at classifying

new, previously unseen text. This process enhances the model’s zero-shot clas-

sification capabilities, as it becomes more adept at working with unannotated

data.

6. Improving Cross-Task Generalization with Step-by-Step Instructions:

Wu et al. (2023b) The paper introduces Cross-task generalization, the ability

of LLMs to apply their learned knowledge to tasks they were not specifically

trained for, is a critical challenge, and this research addresses it by introducing

a novel approach involving step-by-step instructions. The paper recognizes the

limitations of conventional LLM training, which predominantly involves expos-

ing models to a vast amount of unstructured text data. While this training

equips the models with a vast vocabulary and language understanding, it of-

ten falls short in enabling them to generalize effectively to new and diverse

tasks. The absence of explicit task-specific guidance hampers their ability to
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decompose and understand the underlying structure of tasks that require step-

by-step processes. To tackle this challenge, the authors propose the integration

of step-by-step instructions during LLM training. These instructions provide

a detailed breakdown of how to perform a task, offering specific procedures

and guidance. By introducing this form of supervision, LLMs can gain in-

sights into the structural composition of tasks, learning not just what to do but

also how to do it. The paper conducts a empirical evaluation of the approach

on multiple cross-task generalization benchmarks, including GLUE, FewGLUE,

and XTREME-ZSL. The results reveal that LLMs trained with step-by-step in-

structions outperform those trained without such instructions. This empirical

evidence underscores the effectiveness of this approach in improving cross-task

generalization.

7. Aligning Instruction Tasks Unlocks Large Language Models as Zero-

Shot Relation Extractors: Zhang et al. (2023d) The paper presents an

improvement in the field of relation extraction (RE) using large language models

(LLMs). Traditional LLM-based approaches for RE typically demand labeled

data for each relation type, which is often costly and labor-intensive to obtain.

The authors introduce the concept of instruction alignment, unlocking the po-

tential of LLMs as zero-shot relation extractors without requiring explicit rela-

tion annotations. Instruction alignment means aligning instruction descriptions

with corresponding relation labels. This alignment allows LLMs to establish a

connection between instructions and relations, enabling them to understand and

extract relations without the need for explicit relation annotations. The evalu-

ation of this approach on benchmark datasets, including TACRED, fewGLUE,

and XTREME-ZSL, demonstrates its effectiveness. LLMs trained with instruc-

19



tion alignment consistently outperform state-of-the-art methods, especially in

zero-shot relation extraction scenarios. Instruction alignment reduces the need

for extensive manual annotation of relation data, making LLMs more practical

for relation extraction tasks.

8. The CoT Collection: Improving Zero-shot and Few-shot Learning

of Language Models via Chain-of-Thought Fine-Tuning: Kim et al.

(2023) The paper addresses a critical challenge that LLMs inability to rea-

son step-by-step through unseen tasks. The authors propose Chain-of-Thought

(CoT) fine-tuning to enhance the zero-shot and few-shot learning capabilities

of LLMs. CoT fine-tuning involves training LLMs on a dataset of instructions

paired with CoT reasoning processes. Each instruction is accompanied by a

chain of thought, providing explicit steps and justifications on how to execute

the task. The authors also developed the CoT Collection, a comprehensive

dataset comprising instruction-response pairs and CoT reasoning processes for

a wide array of NLP tasks. The dataset is designed to augment the reasoning

abilities of LLMs in the context of zero-shot and few-shot learning. The paper

reports the positive impact of CoT fine-tuning on various benchmarks, includ-

ing GLUE, FewGLUE, and XTREME-ZSL. LLMs trained with CoT fine-tuning

consistently outperformed state-of-the-art methods on these benchmarks, show-

casing the efficacy of this approach in enhancing zero-shot and few-shot learning.

9. InstructZero: Efficient Instruction Optimization for Black-Box Large

Language Models: Chen et al. (2023b) The paper addresses the challenge

of optimizing instructions for large language models (LLMs) that are considered

black-box models, meaning their internal workings are not directly accessible

or modifiable. Optimizing LLMs’ performance for specific instruction-following
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tasks, especially when the internal mechanisms are not transparent, presents a

significant challenge.InstructZero is introduced as an approach to optimizing in-

structions for black-box LLMs. What sets InstructZero apart is its efficient use

of Bayesian optimization to search for optimal instructions for a given task, even

in situations where direct access to the LLM’s inner workings is not available.

InstructZero’s methodology involves an iterative process of generating candidate

instructions, evaluating their performance on the black-box LLM, and using the

feedback obtained to guide the search for better instructions. Notably, this eval-

uation of candidate instructions is performed using a proxy LLM, which is an

open-source LLM that can be accessed and modified directly. The authors con-

ducted evaluations of InstructZero across various instruction-following bench-

marks, including Dialogue, Information Retrieval, and Summarization. The

results demonstrated that InstructZero outperformed random search and other

baseline methods. This underscores the effectiveness of the Bayesian optimiza-

tion approach for instruction optimization, particularly in situations involving

black-box LLMs.

10. One Embedder, Any Task: Instruction-Finetuned Text Embeddings:

Su et al. (2022b) The paper introduces INSTRUCTOR, which is a single

embedder with capability to generate text embeddings customized for a diverse

range of downstream tasks and domains without necessitating additional train-

ing. The process through which INSTRUCTOR accomplishes this involves the

following key steps: Firstly, a wide array of tasks (in this instance, 330 di-

verse tasks) is annotated with instructions. These instructions offer guidance

on how the text should be embedded in the context of each task. For exam-

ple, an instruction might be: ”Represent the medical content of the following
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discharge documents.” Secondly, INSTRUCTOR is then trained on this mul-

titask mixture, incorporating the contrastive loss to ensure that the generated

text embeddings are highly informative and specifically relevant to the intended

task. This phase leverages the instructions provided for each task. Lastly, the

authors conduct a thorough evaluation of INSTRUCTOR’s performance across

a comprehensive set of 70 embedding evaluation tasks. Importantly, 66 of these

tasks are entirely unseen during the training phase. The evaluation spans tasks

related to classification, information retrieval, semantic textual similarity, text

generation, and more.

11. HINT: Hypernetwork Instruction Tuning for Efficient Zero-Shot Gen-

eralisation Ivison et al. (2022a): The paper introduces HINT, which lever-

ages the innovative concept of hypernetworks to enhance the adaptability of

LLMs to new tasks without the need for extensive retraining. HINT operates

by incorporating hypernetworks, which are lightweight neural networks designed

to generate parameters for other neural networks, into the LLM architecture.

These hypernetworks, as the name suggests, are instrumental in fine-tuning the

parameters of an LLM based on task-specific instructions.

12. The Flan Collection: Designing Data and Methods for Effective In-

struction Tuning: Longpre et al. (2023) The paper introduces flan col-

lection which is a comprehensive endeavor aimed at facilitating the develop-

ment and evaluation of instruction tuning methods. It comprises a large-scale

dataset and a suite of methods that hold the promise of making LLMs adept

at following instructions and executing tasks as precisely as specified. The

Flan Collection stands out as a rich and varied compendium of instruction-task

pairs, spanning a wide spectrum of NLP tasks. These tasks encompass a range
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of applications, including question answering, summarization, and translation.

Notably, the instructions are crafted with meticulous attention to detail, ensur-

ing they are clear, concise, and contextually informative. This level of precision

in instruction design provides LLMs with the requisite contextual understand-

ing for task execution. The impact of the Flan Collection becomes evident

when various instruction tuning methods are applied and evaluated, including

well-known techniques such as prompt-based learning, few-shot learning, and

zero-shot learning.

13. Exploring the Benefits of Training Expert Language Models over In-

struction Tuning:Jang et al. (2023) The paper delves into the compara-

tive effectiveness of two prevalent approaches in training large language models

(LLMs) for specific tasks. These approaches are ”multitask learning,” where a

single LLM is trained on a diverse set of tasks, and ”expert learning,” which

involves training separate LLMs, each specialized in a single task. The ra-

tionale behind this study is to determine which of these approaches is more

effective in terms of performance on unseen tasks, data efficiency, and gen-

eralization capability. Studies show that ”expert LLMs,” those trained on a

single task, consistently outperformed ”multitask LLMs” across various unseen

tasks. This observation highlights the benefits of task-specific expertise in the

context of LLMs. The expert LLMs demonstrated superior performance, es-

pecially in situations where specific nuances of individual tasks play a pivotal

role. The evaluation of these approaches was carried out on two benchmark

datasets, the Super-NaturalInstructions (SNLI) benchmark and the Unified-

SKG (USKG) benchmark. The results show that expert LLMs consistently

outperforming multitask LLMs. The achievement of higher accuracy in both
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benchmarks underscores the advantages of task-specific expertise.

2.3 Alignment

These research work focuses on alignment of language models via instruction tun-

ing. Alignment methods include instruction tuning with human provided examples

or going for reward free instruction relabeling. Their evaluation was always on unseen

or held-out tasks and sample efficiency was not explored.

1. Training Language Models to Follow Instructions with Human Feed-

back Ouyang et al. (2022): This research introduces a novel methodology

for training language models to follow instructions using human feedback. The

core approach involves fine-tuning a pre-trained language model with a dataset

of human-provided demonstrations of the desired behavior and further enhanc-

ing this fine-tuned model through reinforcement learning from human feedback.

The motivation for this work stems from the fact that LLMs often generate

outputs that may be untruthful, toxic, or not aligned with the user’s intent.

To address this issue, the authors leverage human feedback as a means of guid-

ing LLMs to produce more accurate, safe, and contextually relevant responses.

They create a dataset of human-written demonstrations that illustrate the de-

sired output behavior when given specific prompts. This dataset serves as the

foundation for training supervised learning baselines. To further refine the fine-

tuned models, a dataset of human-labeled comparisons is collected, allowing

the creation of a reward model that can predict which model output the human

labelers would prefer. This reinforcement learning component plays a crucial

role in improving model behavior, making it more aligned with human intent

and preferences. The authors evaluate their approach across a wide spectrum of

tasks and demonstrate that fine-tuning LLMs using human preferences signifi-
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cantly enhances model behavior and performance. Notably, their InstructGPT

model, fine-tuned with human feedback, outperforms 175B GPT-3 model in hu-

man evaluations, despite having significantly fewer parameters. This improve-

ment also extends to enhancing truthfulness and reducing the generation of toxic

outputs, while minimizing performance regressions on public NLP datasets.

2. The Wisdom of Hindsight Makes Language Models Better Instruction

Followers Zhang et al. (2023g): The paper titled attempts to make LLMs

effective instruction followers by introducing ”Hindsight Instruction Relabeling”

(HIR). HIR is a novel algorithmic approach designed to improve the alignment

between language models and instructions. Instead of relying on complex train-

ing pipelines for reward and value networks, HIR adopts a reward-free strategy.

It leverages the wisdom of hindsight by converting feedback into instructions.

This conversion allows the model to receive more direct and unambiguous guid-

ance about its performance. HIR operates in two distinct phases: an online

exploration phase and an offline training phase. These phases are alternated

until the model converges and aligns effectively with the instructions provided.

The paper demonstrates the effectiveness of HIR by extensively evaluating it

on 12 challenging BigBench reasoning tasks. The results indicate that HIR

outperforms baseline algorithms, making it a compelling choice for improving

instruction-following capabilities in language models.

2.4 Benchmarks

These set of papers propose various benchmarks to to highlight some of the draw-

backs in current instruction tuning approaches.

1. GPTScore: Evaluate as You Desire Fu et al. (2023): The paper addresses

the evaluation of text generation quality. Accurate evaluation metrics are crucial
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for assessing the capabilities of LLMs and ensuring their effectiveness in various

natural language processing (NLP) tasks. Traditional evaluation metrics often

rely on manually labeled datasets, which are labor-intensive and costly to create.

GPTScore distinguishes itself by utilizing the zero-shot learning capacities of

GPTs to evaluate generated texts based on natural language instructions. These

instructions can specify different aspects of the desired text, such as coherence,

relevance, and informativeness. GPTs, being adept at understanding natural

language, then generate a score for the text based on their interpretation of these

instructions. The authors conducted a comprehensive evaluation of GPTScore

on a diverse set of text generation tasks and datasets. These tasks encompassed

summarization, machine translation, dialogue response generation, and more.

GPTScore achieved higher correlations with human judgments of text quality,

underlining its reliability.

2. TABLET: Learning From Instructions For Tabular Data Slack and

Singh (2023): The paper addresses the problem to utilize instructions for tab-

ular data. The authors focus was to adapt LLMs to structured and organized

data in tabular format. TABLET stands for ”TABular Learning from Explicit

and Texual instruction,” and it comprises a benchmark of 20 diverse tabular

datasets, each annotated with instructions that exhibit variability in terms of

phrasing, granularity, and technicality. These instructions are designed to guide

LLMs on how to work with the data in the tables effectively. This benchmark

provides a standardized platform to evaluate LLMs’ ability to learn from in-

structions and perform tasks on tabular data. The researchers conducted com-

prehensive evaluations of several state-of-the-art LLMs, including Flan-T5-11b

and ChatGPT, using the TABLET benchmark. The key findings can be sum-
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marized as follows: LLMs can adapt to structured data with the appropriate

guidance. LLMs exhibit sensitivity to the phrasing and granularity of the pro-

vided instructions. The choice of words and level of detail in instructions can

impact the performance and response of LLMs. LLMs struggle with tasks that

require higher-order reasoning and inference in the context of tabular data.

3. Resources and Few-shot Learners for In-context Learning in Slavic

Languages Štefánik et al. (2023): The paper addresses the issue of lack

of benchmark for Slavic languages due to their rich morphology and complex

syntax. To tackle this challenge, benchmark development and the creation of

few-shot learners for Slavic languages. This benchmark comprises a dataset

with over 100,000 dialogue turns in Russian and Polish, each containing an

instruction and a corresponding response. Importantly, this dataset is enriched

with various linguistic annotations, such as part-of-speech tags, dependency

labels, and named entities. This makes it a valuable resource for developing,

testing, and evaluating in-context learning systems tailored to Slavic languages.

The research extends beyond benchmark creation to the development of few-

shot learners tailored to Slavic languages. These few-shot learners are designed

to effectively acquire knowledge from a limited number of examples, making

them particularly useful in scenarios where extensive training data is scarce.

The few-shot learners in this study are based on diverse architectural paradigms,

including recurrent neural networks, transformers, and memory networks. The

notable achievement is that these learners demonstrate high accuracy, even with

as few as 16 examples per instruction. This finding opens the door to efficient

learning in resource-constrained environments and expands the practical utility

of NLP systems in Slavic languages.
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4. Poisoning Language Models During Instruction Tuning Wan et al.

(2023): The paper shines a light on a vulnerability that these models face

poisoning attacks. Poisoning attacks entail the injection of malicious instruc-

tions or data into the training process of LLMs. These poisoned instructions

are strategically designed to manipulate the behavior of the model. The paper

demonstrates that adversaries can introduce poisoned examples into the train-

ing data of instruction-tuned LLMs, effectively enabling them to manipulate

model predictions when certain trigger phrases or conditions are met in the

input text. The research also indicates that larger models are more vulnerable,

and this has far-reaching implications considering the trend toward ever-larger

models in the field.The paper highlights the limitations of existing defenses,

such as data filtering or reducing model capacity. While these measures provide

some level of protection, they are not foolproof and come at the cost of reduced

test accuracy.

5. Panda LLM: Training Data and Evaluation for Open-Sourced Chi-

nese Instruction-Following Large Language Models Jiao et al. (2023):

The paper addresses the need for comprehensive and diverse training data for

Chinese LLMs and presents a robust evaluation framework. One of the issues

addressed by this research is the lack of diversity in existing Chinese LLM

datasets. Often, these datasets are constrained to narrow instruction types,

limiting the models’ ability to generalize and handle real-world, diverse instruc-

tion formats. Panda LLM serves as a solution to this problem by providing a

vast dataset with over 6 million instruction-response pairs. This dataset spans a

broad spectrum of domains and task types, including dialogue, information re-

trieval, and summarization. The diversity in the data not only enables models
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to better understand and follow instructions but also enhances their perfor-

mance across a range of real-world applications. The paper introduces a robust

evaluation framework that covers various aspects of instruction understanding

and response generation. Metrics include those for accuracy, fluency, coherence,

as well as specialized metrics for specific instruction types, such as dialogue en-

gagement and summarization quality.

6. STORYWARS: A Dataset and Instruction Tuning Baselines for Col-

laborative Story Understanding and Generation Du and Chilton (2023):

The paper addresses the challenges of collaborative storytelling. Collaborative

storytelling involves multiple authors collectively contributing to a narrative,

making it a complex task for NLP models that require an understanding of hu-

man collaboration, narrative structure, and creative expression. To tackle these

challenges, the authors introduce the STORYWARS dataset, which comprises

over 40,000 collaborative stories created by a diverse community of 9,400 authors

on an online platform. This dataset covers a wide range of genres and includes

rich information, such as annotations, ratings, and author profiles. The paper

designs 12 task types, split into 7 understanding tasks and 5 generation tasks.

These tasks range from identifying authors and genres to generating story con-

tinuations and assessing story quality. This comprehensive suite of tasks offers

a thorough evaluation platform for NLP models focusing on collaborative story-

telling. The paper introduces INSTRUCTSTORY, an instruction-tuned model

designed to excel in the context of collaborative story understanding and gen-

eration. Instruction tuning involves fine-tuning a pre-trained language model

with specific instructions that guide the model towards desired behaviors and

tasks. INSTRUCTSTORY is evaluated across three learning scenarios: fully-
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supervised, few-shot, and zero-shot. INSTRUCTSTORY outperforms baseline

models, demonstrating the potential of instruction tuning in this domain.

7. Dynosaur: A Dynamic Growth Paradigm for Instruction-Tuning Data

Curation Yin et al. (2023): The paper a pivotal challenge in the realm of

large language models (LLMs). While LLMs have showcased remarkable ca-

pabilities in a wide range of natural language processing (NLP) tasks, their

performance in instruction-following tasks is often hampered by the quality

and diversity of the training data. This limitation is primarily due to the dif-

ficulty and costs associated with collecting and curating large datasets. The

authors propose ”Dynosaur,” a novel dynamic growth paradigm for curating

instruction-tuning data. Dynosaur utilizes a multi-stage process that actively

refines and augments the training data for instruction-following tasks, leading to

continuous improvements in data quality and diversity over time. The Dynosaur

approach comprises three main stages: Firstly, initial Data Collection In this

phase, an initial dataset of instruction-response pairs is amassed from diverse

sources, including human-generated instructions, crowd-sourced annotations,

and pre-existing dialogue datasets. Secondly, active learning techniques are ap-

plied to select the most informative and challenging instruction-response pairs,

which are then subjected to human review and feedback. This iterative process

helps enhance the quality and diversity of the training data. Lastly, data aug-

mentation techniques are employed to generate new instruction-response pairs

based on the existing dataset. This step significantly expands the dataset’s size

and diversity. The updated dataset is regularly assessed to measure its impact

on the performance of LLMs in instruction-following tasks.

8. M3IT: A Large-Scale Dataset towards Multi-Modal Multilingual In-
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struction Tuning Li et al. (2023b): The paper addresses the challenges

associated with large language models (LLMs) concerning tasks that require

combining information from both textual and visual modalities. LLMs often

struggle with understanding and following instructions that involve both text

and visual elements. Additionally, many LLMs are predominantly trained on

monolingual data, limiting their capacity to handle instructions in multiple lan-

guages. The authors introduced the Multi-Modal Multilingual Instruction Tun-

ing (M3IT) dataset, a large-scale resource aimed at improving the performance

of LLMs in multi-modal and multilingual instruction-following tasks. M3IT is

a substantial collection of 2.4 million instances of instruction-response pairs,

encompassing 40 meticulously curated datasets. M3IT has instructions written

in 80 different languages, making it a multilingual resource. Furthermore, the

dataset spans a diverse range of task types, including image captioning, visual

question answering, and visual dialog. This diverse, multi-modal, and multi-

lingual nature sets it apart. M3IT was constructed through four key stages:

manual instruction writing, dataset pre-processing, quality checks, and dataset

translation. These steps culminated in a dataset that encompasses a rich variety

of tasks and languages.

2.5 PEFT methods

These set of papers explore parameter efficient instruction tuning methods and

use fewer layers for finetuning LLMs. These papers propose a change in model archi-

tecture for ensuring models with larger parameters can be finetuned with a fixed set

of compute. These methods are faster to run compared to fully supervised finetuning/

instruction tuning as fewer parameters are being updated. These works are targeting

efficiency but they do that in terms of model compute and not focus on instruction
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tuning. Our work focuses on sample efficiency of instruction tuned models. While

using our work also result in reduced compute, our methods does a full backward

pass at the model and use all the layers. PEFT and sample efficent instruction tuned

models can be used concurrently.

1. A Comparative Study between Full-Parameter and LoRA-based Fine-

Tuning on Chinese Instruction Data for Instruction Following Large

Language Model Sun et al. (2023): The paper did a comparative study

to investigate two different fine-tuning approaches: full-parameter fine-tuning

and LoRA-based fine-tuning. Their goal was to determine the most effec-

tive method for developing instruction-following LLMs for Chinese language.

The study involved comparison between full-parameter fine-tuning and LoRA-

based fine-tuning, leveraging a benchmark dataset that encompassed diverse

instruction-following tasks. The study’s findings show that LoRA outperformed

full-parameter fine-tuning on several metrics. It demonstrated enhanced accu-

racy in following instructions, increased task completion rates, and improved the

naturalness of responses. These improvements are attributed to LoRA’s unique

ability to efficiently capture and utilize specific information that is relevant to

instruction-following tasks.

2. LLaMA-Adapter V2: Parameter-Efficient Visual Instruction Model

Gao et al. (2023): Large language models (LLMs) have demonstrated signif-

icant capabilities in various NLP tasks, they often require extensive computa-

tional resources and large model sizes, which limit their applicability in resource-

constrained environments and real-time applications. LLaMA-Adapter V2 is a

parameter-efficient visual instruction model. This model is designed to enable

LLMs to follow visual and textual instructions effectively while maintaining a
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compact model size. LLaMA-Adapter V2 enhances parameter unlocking, al-

lowing more learnable parameters in the LLaMA base model. This distributed

learnability enables the model to better grasp and utilize instruction-following

guidance without solely relying on additional adapters.The model incorporates

an early fusion strategy, where visual tokens are introduced into the early lay-

ers of the LLM. This approach facilitates the seamless integration of visual

information and instruction comprehension, leading to improved performance.

LLaMA-Adapter V2 utilizes a joint training paradigm to optimize different

groups of learnable parameters, including the LLaMA base model, adapters,

and vision encoder. This balanced approach ensures efficient learning and

contributes to the model’s overall success. The authors conducted extensive

evaluations of LLaMA-Adapter V2 across various visual instruction following

benchmarks, including SNLI-VE, Flickr30k Entities, and VQA-X. The findings

of these evaluations demonstrate that LLaMA-Adapter V2 outperforms state-

of-the-art methods in these benchmarks while having a significantly smaller

parameter footprint.

2.6 Prompt Engineering

These set of papers explore different set of prompts that can be used while in-

struction tuning.

1. Prompt Consistency for Zero-Shot Task Generalization Zhou et al.

(2022a): The paper introduces a novel approach called Prompt Consistency,

highlighting to improve LLMs’ zero-shot capabilities. Prompt Consistency op-

erates on the principle of making LLMs’ predictions consistent across a diverse

set of prompts for a given task. This approach encourages LLMs to not just

respond effectively to individual prompts but to truly understand the underly-
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ing structure and intent of tasks, thereby promoting better generalization and

avoiding overfitting to specific prompts. The findings demonstrate that Prompt

Consistency outperforms other state-of-the-art methods that aim to improve

zero-shot performance, such as prompt-based learning and multi-task learn-

ing. The practical significance is noteworthy because it shows the potential to

significantly enhance the zero-shot generalization of LLMs, which has been a

challenge in the field. The method’s practicality extends to cases where only a

few labeled examples are available for a specific task.

2. Instruction Induction: From Few Examples to Natural Language Task

Descriptions Honovich et al. (2022b): The paper introduces a method that

prompts an LLM to generate natural language instructions based on input-

output examples provided. The key innovation here lies in the ability to derive

coherent and contextually relevant task descriptions from just a handful of ex-

amples. The authors conducted a rigorous evaluation of the method across a

spectrum of NLP tasks, including summarization, question answering, and code

generation. The findings demonstrate that Instruction Induction is not only ca-

pable of generating natural language instructions but that these instructions

are characterized by accuracy and informativeness.

3. reStructured Pre-training Yuan and Liu (2022): This paper shows that

reformating the training data into a more efficient and informative structure,

creates an enhanced learning environment for LLMs. By doing so, LLMs can

effectively learn from this structured data and subsequently exhibit superior

performance across a variety of NLP tasks.
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2.7 Synthetic Data Creation

These sets of papers used LLMs or instruction-tuned LMs to create synthetic

data samples for particular sets of tasks. Their evaluation was always on unseen or

held-out tasks and sample efficiency was not explored.

1. Instruction Tuning with GPT-4 Peng et al. (2023): The paper self-

supervised learning capabilities of GPT-4, to generate instruction-following data

that facilitates the fine-tuning of LLMs. The primary idea is: GPT-4 is em-

ployed to generate instruction-following data by providing it with examples of

task instructions and the desired outputs. GPT-4 learns from these examples to

generate new instructions for various tasks. The generated instruction-following

data is subsequently used to fine-tune an LLM. This fine-tuning process en-

hances the LLM’s ability to follow instructions and perform specific tasks, elim-

inating the need for extensive manual fine-tuning. The approach empowers

LLMs to better follow instructions, broadening their utility in tasks that re-

quire explicit and precise guidance, such as chatbots, customer service, and

task-oriented assistants. It streamlines the adaptation of LLMs to new tasks.

This leads to significant reductions in computational costs and time associated

with manual fine-tuning. The approach also makes LLMs more adaptable to

real-world scenarios where following instructions is essential. This expansion of

applicability supports a broader range of NLP tasks.

2. Controlled Text Generation with Natural Language Instructions Zhou

et al. (2023): LLMs using their ability to generate text that adheres to specific

constraints has remained a challenge. This issue arises from the fact that LLMs

are primarily trained on extensive unlabeled text data, which does not inher-

ently guide them on how to produce text that meets specific requirements. The
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authors present InstructCTG (Controlled Text Generation). The core premise

of InstructCTG is to employ natural language instructions to precisely spec-

ify the desired constraints for text generation. This methodology comprises

several steps: Initially, natural texts are annotated to indicate the linguistic

and extra-linguistic constraints they satisfy. This annotation process is accom-

plished through a combination of established natural language processing (NLP)

tools and simple heuristics. The annotated constraints are then transformed into

instructions using verbalization techniques. These instructions are subsequently

combined with the original natural language sentences to create a corpus that

forms the basis for weakly supervised training data. The pre-trained LLM is

fine-tuned on this augmented dataset, which now includes the original text and

their corresponding instructions. This fine-tuning process allows the LLM to un-

derstand how to generate text that complies with the specified constraints. The

authors assessed the performance of InstructCTG across several text generation

tasks, encompassing various constraint types, including style transfer, summa-

rization, and paraphrase generation. Their findings indicated that InstructCTG

surpassed the performance of state-of-the-art methods in these tasks, effectively

demonstrating its potential in controlled text generation.

3. Unnatural Instructions: Tuning Language Models with (Almost) No

Human Labor Honovich et al. (2022a): The paper introduces a vast

dataset of creative and diverse instructions that are generated with virtually no

human involvement. It involves prompting an LLM with three seed examples of

instructions and then eliciting a fourth instruction. This process is iteratively

repeated, resulting in a dataset of over 64,000 instruction-input-output triplets.

To further expand the dataset’s diversity and coverage, the LLM is prompted
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to rephrase each instruction, ultimately leading to a total of approximately

240,000 examples. Despite the presence of some inherent noise in the generated

instructions, the models trained on Unnatural Instructions exhibit performance

that rivals models trained on manually curated datasets. It surpasses the ef-

fectiveness of state-of-the-art models like T0++ and Tk-Instruct across various

benchmark tasks.

4. Self-Instruct: Aligning Language Model with Self-Generated Instruc-

tions Wang et al. (2022b): The paper titled ”Self-Instruct: Aligning Lan-

guage Model with Self-Generated Instructions” aims to align LLMs with in-

structions by leveraging the model’s own generation capabilities. Self-Instruct

operates through a series of three main steps: Firstly, the LLM is tasked with

generating instructions, input examples, and corresponding output examples for

various tasks. This step taps into the LLM’s inherent generative capacity. Sec-

ondly, the generated instructions, input examples, and output examples undergo

a filtration process. This step is designed to eliminate low-quality or redundant

data, ensuring that the dataset used for instruction tuning is of high quality.

Lastly, the filtered data is then employed for fine-tuning the original LLM. This

fine-tuning process is a critical step in enhancing the model’s ability to follow

instructions effectively. The findings revealed that Self-Instruct significantly

outperforms existing methods for instruction-following. This includes methods

like supervised instruction tuning, zero-shot learning, and prompt-based learn-

ing.

5. TarGEN: Targeted Data Generation with Large Language Models

Gupta et al. (2023b): TarGEN is a multi-step prompting strategy for gen-

erating high-quality synthetic datasets utilizing large language models (LLMs).
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It is seedless, meaning that it does not require specific task instances, which

broadens its applicability beyond task replication.TarGEN works as follows:

• Define the target dataset. This includes specifying the task, the desired

data distribution, and any constraints.

• Generate prompts. TarGEN uses a variety of techniques to generate prompts

that are likely to produce high-quality synthetic data, such as using tem-

plates, examples, and constraints.

• Generate data. TarGEN uses an LLM to generate synthetic data based on

the prompts.

• Filter and label the data. TarGEN filters the generated data to remove

low-quality instances and labels the remaining data.

• Self-correct the data. TarGEN uses a method called self-correction to

empower LLMs to rectify inaccurately labeled instances during dataset

creation, ensuring reliable labels.

TarGEN was evaluated on eight tasks from the SuperGLUE benchmark. Models

trained on datasets generated by TarGEN performed approximately 1-2% points

better than those trained on original datasets. When incorporating instruction

tuning, the performance increased to 1-3% points better on synthetic data than

on original data. TarGEN also has a number of advantages over other synthetic

data generation techniques:

• It is seedless, which means that it does not require specific task instances.

This makes it more broadly applicable than techniques that rely on task

replication.
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• It is able to generate high-quality synthetic data that is similar or better

than original datasets in terms of complexity, diversity, and bias.

• It is able to self-correct inaccurately labeled instances during dataset cre-

ation, ensuring reliable labels.

TarGEN is a promising new technique for synthetic data generation. It has

the potential to reduce the need for human-labeled data and to make machine

learning more accessible to a wider range of applications.

2.8 Unsupervised methods

These sets of papers aim to explore instruction tuning without labelled data sam-

ples. Their evaluation was always on unseen or held-out tasks and sample efficiency

was not explored.

1. Unsupervised Cross-Task Generalization via Retrieval Augmentation

Lin et al. (2022): The paper introduces a method called ReCross, which

is designed to enable unsupervised cross-task generalization in LLMs. Cross-

task generalization involves training LLMs to apply their learned knowledge to

new tasks, even when the new tasks are significantly different from the tasks

they were initially trained on. ReCross, the proposed methodology, leverages re-

trieval augmentation as a means to enhance the cross-task generalization ability

of LLMs. It achieves this by retrieving a small, pertinent subset of training ex-

amples from a large upstream dataset. These retrieved examples are then used

to augment the training data for a new task, allowing LLMs to learn and perform

the new task without the need for explicit supervision. The evaluations reveal

that ReCross consistently outperforms other unsupervised methods, including
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prompt-based learning and multi-task learning. The observed performance im-

provements are significant and indicate the potential of ReCross to enhance

the cross-task generalization capabilities of LLMs. The research demonstrates

that ReCross enables LLMs to perform new tasks without requiring any fine-

tuning. This is an advantage over supervised methods, which often necessitate

the manual creation of task-specific training data and fine-tuning procedures.

2. Learning Instructions with Unlabeled Data for Zero-Shot Cross-Task

Generalization Gu et al. (2022): The paper addresses a challenge in in-

struction learning: the need for extensive human-annotated data. UDIT stands

out as a powerful solution for zero-shot cross-task generalization, thanks to its

ability to learn instructions from unlabeled data. UDIT has the ability to work

with a small number of unlabeled examples. This allows LLMs to generalize

across tasks without human annotation. It can be used to train LLMs to per-

form new tasks that lack labeled data, such as generating code from natural

language instructions or medical diagnosis.

2.9 Sample Efficiency

These set of papers explore sample efficiency of instruction tuned models. While

they explore sample efficiency, we highlight the differences between these papers and

our work in detail.

1. Data-Efficient Finetuning Using Cross-Task Nearest Neighbors Ivison

et al. (2022b): The paper introduces a method that leverages the concept of

cross-task nearest neighbors to fine-tune LLMs for new tasks efficiently, requir-

ing minimal amounts of labeled data. DEFT’s premise involves identifying the

nearest neighbors of unlabeled, task-specific examples within a comprehensive
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pool of multitask data, augmented with prompts. These nearest neighbors, re-

ferred to as cross-task nearest neighbors, are then harnessed to fine-tune the

LLM. This process optimally utilizes the knowledge encapsulated in the multi-

task data to enhance task-specific performance.

2. Maybe Only 0.5% Data is Needed: A Preliminary Exploration of

Low Training Data Instruction Tuning Chen et al. (2023a): The paper

addresses the issue of massive amount of data needed for their training, a process

that can be both financially and temporally expensive. The authors propose

an innovative solution known as Low Training Data Instruction Tuning (LTD

Instruction Tuning). LTD Instruction Tuning is centered around fine-tuning

an LLM using a strategically chosen subset of the original training data. This

subset comprises instructions that are most pertinent to the task, reflecting a

move towards data efficiency. LLMs subjected to the LTD Instruction Tuning

approach consistently outperform their counterparts trained on the full dataset.

The improvements were observed even when deploying 0.5% of the original data.

2.9.1 Distinction from Sample efficiency approaches:

Ivison et al. (2022b) uses a small number of unlabeled target task examples and

the method retrieves the most similar labeled examples from a large pool of multitask

data. This retrieval is done using cross-task nearest neighbors, which finds examples

from the multitask data that are most similar to the unlabeled target task examples.

A detailed breakdown of the method is as follows: Extract embeddings from the

unlabeled target task examples. Index the embeddings from the multitask data. Find

the nearest neighbors in the multitask data for each unlabeled target task example.

Retrieve the corresponding labeled examples from the multitask data. Our approach

does not involves using test samples to extract relevant train samples. This is chosen
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to simulate a real world scenario where test samples are unavailable for access.

Chen et al. (2023a) employs a pruning method where firstly, each sentence is

encoded into a numerical representation and then cleaned up to make it easier to

analyze. Next, similar sentences are grouped together into clusters. Within each

cluster, the most representative sentences are identified. These core samples are then

used to improve the performance of large language models (LLMs). Finally, the per-

formance of the LLMs is tested to see how well they have been improved. Their

experimental settings are on single task learning/expert model training, a subset of

our experimental setup. The pruning method described is also computationally ex-

pensive. Our approach aims to randomly select training samples and then finetune

then of downstream train data/ held-in tasks. Since we are randomly selecting sam-

ples, the approach is easier to implement in a real world setting and generalizes to

multiple scenarios.

2.10 Distinction from PEFT

The Few-Shot Parameter-Efficient Fine-Tuning (PEFT) paper Liu et al. (2022)

also explores conditions for data efficiency (i.e., use of less with SOTA or better

results), thus validating our focus on data efficiency; but they do not explore instruc-

tion tuning, the focus of our work. In other words, while they suggest many other

methods that lead to data efficiency, we show that instruction tuning also leads to

data efficiency. Our decision to study instruction tuning is to have a fair compar-

ison with the SuperNI paper and the SOTA model in the associated leaderboard.

Parameter-efficient finetuning presents a more practical and beneficial alternative to

in-context learning (ICL). As stated in their work: 1. “While the benefits of PEFT

address some shortcomings of fine-tuning (when compared to ICL), there has been

relatively little focus on whether PEFT methods work well when very little labeled
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data is available.” 2. “Our goal is therefore to develop a recipe that allows a model

to attain high accuracy on new tasks with limited labeled examples while allowing

mixed-task batches during inference and incurring minimal computational and stor-

age costs.” Their experiments provide compelling evidence that PEFT outperforms

ICL significantly. We agree with this finding and propose to establish it as the new

standard way of doing instruction tuning, replacing the conventional method that

relies on ICL for unseen tasks. However, our analysis is distinct from their work and

strengthens their findings on the following grounds:

• Broader Dataset Categories: PEFT’s coverage focuses on 9 datasets across 4

categories. We conduct our experiments on 119 datasets across 12 categories

which show broad applicability of the findings.

• PEFT performs their experiments in multitask learning setup, while we explore

a more challenging low-resource setting where a single task is available and

supplemented with limited samples; Single task learning (STL) setting.

• We establish strong baselines in both STL and MTL setups, using which we

explore the effect of sample efficiency, pre fine-tuning with instructions and

comparison with supervised SOTA scores. This contrasts with PEFT, which

employs T0, few-shot ICL with T5, and ICL GPT-3 as baselines.

More importantly, the main goal of our work is to improve the popular instruction

tuning paradigm and standardize further instruction tuning on downstream tasks

instead of relying on ICL on unseen tasks. To the best of our knowledge, we are the

first to propose so.
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2.11 Novelty Aspect

To understand the novelty aspect of this work, let us revisit the importance of

”instructions” and “instruction tuning”. Instruction tuning is an exciting concept and

a novel addition to traditional supervised machine learning. In traditional supervised

machine learning, models learn from training data. No additional information is given

about what task they are learning. This is very different from when humans learn

a task. Humans are told what the task is about (given instructions) and then, in

many cases, given examples (training data) to learn. With the use of models that

are ”better” at understanding language, instruction tuning emphasizes that during

training in addition to the traditional input-output data in the training samples,

information about the task (in the form of instructions) should also be given.

The papers Flan Wei et al. (2021), Natural Instructions Mishra et al. (2022b), Su-

pernatural Instructions Wang et al. (2022c), ExT5Aribandi et al. (2022), and T0Sanh

et al. (2021), show some usefulness of instruction tuning. In particular, they show

that instruction tuned models are better at performing unseen tasks (but with in-

structions) in zero-shot setting.

We show a different usefulness of instruction tuning. We show that an instruction

tuned model when given a new task (with instructions) is able to learn (with similar or

better accuracy) with a smaller fine tuning dataset than a traditional model (without

instruction tuning) when given the same new task (without instructions). In case of

humans, this means that human can learn new tasks with less training examples if they

are given information about the task (in terms of instruction). This seems obvious

in the human setting, but has not been shown comprehensively in the ML/NLP

framework.

More formally, in the earlier works there is a model M instruction tuned on tasks
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T1, . . . Tn. This model M is evaluated with respect to unseen tasks T1’, . . . Tm’.

When the evaluation is done with respect to T1’, . . . Tm’ no fine tuning is done with

respect to the data items associated with T1’, . . . Tm’.

We make two novel claims in this paper:

• A model M instruction tuned on tasks T1, . . . Tn when given unseen tasks T1’,

. . . Tm’, can achieve SOTA (where models are trained with the full training set,

but do not use instructions) or even do better with respect to these tasks while

being fine tuned with only a fraction of the training data in T1’, . . . Tm’.

• We also show that the model M instruction tuned on tasks T1, . . . Tn when

given unseen tasks T1’, . . . Tm’ fine tuned with a very small fraction of the

training data in T1’, . . . Tm’, dramatically improves over the zero-shot (no-fine

tuning) setting.

Table 2.1 gives an overview of the novelty aspects of the work

Our experiments are meant to simulate a real-world setting where few shot in-

ference is not always necessary and there are some samples available for training.

While there have been several studies on sample efficiency in other domains like rein-

forcement learning Yang et al. (2022c); Guo et al. (2022); Zhang et al. (2021); Yarats

et al. (2019); Yang et al. (2022b); Lagani et al. (2021), to the best of our knowledge,

no other work has explored the sample efficiency of instruction tuned models in a

generalized fashion. We also provide detailed analysis and task-specific insights with

respect to various instruction tuning methods.
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Paper/ Family of papers

Explore

Sample

Efficiency

Evaluation on

Held-in tasks

Evaluation on

STL and MTL

Setting

Category

Wise

Analysis

Use

Pruning

Methods

Initial Formulation No No No No No

Enhancements on

Instruction Tuning
No No No No No

Alignment No No No No No

Benchmarks No No No No No

PEFT No No No No No

Prompt Engineering No No No No No

Synthetic Data Creation No No No No No

Ivison et al. (2022b) Yes No No No Yes

Chen et al. (2023a) Yes No No No Yes

Longpre et al. (2023) Yes Yes No No No

Our work (Gupta et al. (2023a)) Yes Yes Yes Yes No

Table 2.1: Table demonstrating differences of our work with existing works. Family

of papers refer to the categories that were used to demarcate a collection of similar

papers. While Longpre et al. (2023) (concurrent work) explores sample efficiency,

The experimental setup and the detailed insights are unique to our work.
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Chapter 3

PROPOSED METHODOLOGY

In this chapter we describe traditional instruction tuning by starting with tra-

ditional single task learning expert modelling followed by multi task learning and

finally explaining the proposed approach. We also describe different baselines used

for a comprehensive evaluation of our approach.

Terminology used throughout the chapter: For each given task t, we assume

that there are input and output instance pairs (X t, Y t). Each sample of the task is

described by its instruction inst.

3.1 Single Task Learning/ Expert modelling

Traditional supervised models learn a mapping function (fM) between input (x)

and output (y) by using a training set of input/output pairs, (x, y) ∈ (X t
train, Y

t
train),

for a given task t. The model is then evaluated on the test set for the same task,

(X t
test, X

t
test). In the STL setup, t models are trained for t tasks in an individual

fashion.

3.2 Multi Task Learning

In this setup, the training data for all tasks are combined together. The goal of

MTL models is to learn a mapping function (fM) between the input (x) and output

(y), such that fM(x) = y, where (x, y) ∈ (X t
train, Y

t
train) for all t tasks in a combined

way. This model is then evaluated on task-specific instances (x, y) ∈ (X t
test, Y

t
test). In

contrast to single-task models, a single model is used to solve various tasks in this

setup, which allows for generalization.
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Figure 3.1: Formulation of the proposed analysis. In the Single-task learning (STL)

setting, finst is instruction tuned individually on each downstream dataset. In the

Multi-task learning (MTL) setup, all downstream training tasks are combined to-

gether, and finst is instruction tuned on all of them. In both setups, the number of

input samples from the downstream train data is varied.

3.3 Instruction tuning

In this setup, the mapping function takes an instruction instt along with the input

sample to give output as y; fM(inst, x) = y. Instruction tuning can be achieved in

both Single-task and Multi-task setups.

Definition: The term ”Definition” pertains to the detailed explanation of the task

at hand along with specific instructions provided, enabling the model to successful

completion of the given task.

Examples:”Examples” refer to the input/output pairs associated with a particular

instance of the task. In line with the approach introduced in SuperNI, we incorporate

two examples within the instruction prompts.
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3.4 Proposed approach

We introduce two datasets for our task: xpre−finetune and xtrain. These datasets

are utilized as the pre-finetuning and downstream training datasets, respectively.

By pre-finetuning an LLM fM using instructions (inst, xpre−finetune), we get instruc-

tion tuned model finst. finst is now instruction tuned on the downstream train data

finst(inst, xtrain) = y. For each experiment, different number of downstream train

samples are used. The instruction prompts change according to each downstream

task. For STL setup, finst is individually instruction tuned on all tasks of the down-

stream train data; t models are finetuned for t tasks. Each experiment will consist

of t models instruction tuned with a different number of training samples (Column

1 of Fig. 3.1). For MTL setup, one dataset is prepared by combining all the tasks

of the downstream train dataset together. finst is instruction tuned on the combined

dataset. Similar to the last setting, the experiment will have a different number of

training samples to highlight sample efficiency.

3.5 Baselines

To show a detailed analysis of instruction tuned modelling, pre-finetuning and

cross-task generalization, we develop different baselines across both setups.

3.5.1 STL baselines

We develop three baselines to compare the proposed modelling paradigm com-

prehensively. For the first baseline, we pre-finetune the model fM using xpre−finetune

without instructions to get fM1. fM1 is now individually finetuned on all t tasks of

xtrain using 5.91% of downstream train data to get fSTL−baseline−1. For the second

baseline (fSTL−baseline−2), we individually finetune the fM model on all t tasks with
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25.33% of the downstream train set (1000 samples of each task) of xtrain. We develop

the third baseline (fSTL−baseline−3) by individually finetuning the model fM on t tasks

of xtrain and use 100% of the downstream training set. Third baseline serves as the su-

pervised SOTA. The rationale for all three baselines is two-fold: First, to compare the

baselines with the proposed model with fewer training samples. Second, the baseline

is also used to compare the instruction tuned model trained with the same number

of samples to observe the relative improvement in performance. Both advantages can

be explained through the following example: fSTL−baseline−1 can highlight the effect of

pre-finetuning, demonstrate sample efficiency and can be compared for performance

improvement when the same number of samples are used.

3.5.2 MTL baselines

We develop two baselines to compare with the proposed MTL instruction tuned

modelling paradigm. For the first baseline, we finetune fM on 25.33% of the down-

stream train set xtrain in MTL setup to get fMTL−baseline−1. For developing the second

baseline, we pre-finetune the model fM using xpre−finetune without instructions to get

fM1. fM1 model is finetuned in MTL setup on all t tasks using 5.91% of the down-

stream train data (200 samples of each task) of xtrain. The rationale for creating

two MTL baselines is similar to STL baselines; to show sample efficiency, highlight

performance improvement when using the same number of samples, and showcase the

effect of instructions in pre-finetuning.

3.5.3 Models and Evaluation Metrics

Models: We use Tk-Instruct 3B as the instruction tuned model. For STL setup

952 models (119x8) were trained and 9 models were trained for MTL setup resulting

in a total of 961 models for our analysis. All the models were trained on 6x Nvidia
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A100 40GB GPUs.

3.5.4 Choosing T5-3B as the model for experiments

The rationale behind this choice is to ensure fair comparison with the SuperNI

paper, especially the state-of-the-art (SOTA) model in its corresponding leaderboard

since we use the same experimental setup as SuperNI. The SuperNI paper established

a state-of-the-art (SOTA) performance benchmark using T5-3B (akin to MTL baseline

2 in our study). Consequently, our decision to opt for Tk-Instruct 3B was a natural

extension of their work, ensuring consistent and coherent comparisons. We would like

to highlight that our extensive analysis in this paper contains instruction tuning of 961

3B models (L196) involving a large investment of computational resources (note that

our benchmark SuperNI is a heavy dataset collection with 1600+ tasks containing

900 english tasks). Expanding our investigation to larger and different architecture

models remained beyond the scope of our computational resources. Furthermore,

our selection of a 3B model is supported by other instruction tuning papers such as

Longpre et al. (2023); Liu et al. (2022).

3.5.5 Models and Evaluation Metrics

Models: We use Tk-Instruct 3B as the instruction tuned model. For STL setup

952 models (119x8) were trained and 9 models were trained for MTL setup resulting

in a total of 961 models for our analysis. All the models were trained on 6x Nvidia

A100 40GB GPUs.

Evaluation metric: We consider all the tasks in the dataset as text generation

problems and use the ROUGE-L score Lin (2004) to evaluate the generated outputs.
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Chapter 4

DATASET

In this chapter we detail about the datasets used in the experiments.

We use seen tasks of SuperNI as the pre-finetuning set consisting of 757 tasks with

100 samples for each task. We used the unseen task set of SuperNI as the downstream

train data, consisting of 119 tasks that could be classified into 11 categories. Their

statistics are presented in Table 4.2. The Dataset is classified into 11 categories of NLP

tasks as shown in Table 4.1. For the sake of clarity, we have clubbed seven categories

with fewer tasks into the others category. Table 4.3 gives detailed statistics across each

category. Since not all the tasks have exactly the same number of samples, we choose

the maximum number available if the number of samples is below the threshold. We

use 191 samples when finetuning with 200, 1000, and the entire dataset.

4.1 Task Descriptions

4.1.1 Answerability Classification:

Answerability classification is a natural language processing (NLP) task that in-

volves determining whether a given text contains a question that can be answered.

This task can be useful in a variety of applications, such as chatbots or information

retrieval systems, where it is important to know whether a user’s input is a question

that can be answered by the system. To perform answerability classification, an NLP

model must first be trained on a dataset of texts labeled as either ”answerable” or

”unanswerable.” The model can then be used to classify new texts as either answer-

able or unanswerable based on their similarity to the texts in the training dataset.

The paragraph below gives an example of this category.
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Category Count Category Count

Textual Entailment 24 Word Analogy 8

Title Generation 18 Cause Effect Classification 7

Coreference Resolution 14 Dialogue Act Recognition 7

Answerability Classification 13 Keyword Tagging 5

Question Rewriting 11 Overlap Extraction 2

Data to Text 9 Grammar Error Correction 1

Table 4.1: Training sample statistics

Statistics

# Total Tasks 119

# Total instances in train set 374745

# Total instances in Test Set 11810

# Total instances in pre-finetuning set 75700

Avg len of Train data w instructions 364.97

Avg len of Train data w/o instructions 89.03

Table 4.2: Statistics of the SuperNI dataset. Train and Test set refers to Downstream

data.

“Definition: The answer will be ’yes’ if the provided sentence contains an ex-

plicit mention that answers the given question. Otherwise, the answer should be ’no’.

Instances where the answer is implied from the sentence using ””instinct”” or ””com-
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Answerability

Classification

Coreference

Resolution

Data

to Text

Question

Rewriting

Textual

Entailment

Title

Generation

Other

Categories

Grand Total

and percentage

# of tasks 13 14 9 11 24 18 30 119 (100%)

100 1300 1370 826 949 2376 1784 2994 11.5K (3.09%)

200 2600 2441 1626 1849 4457 3484 5708 22.1K (5.91%)

1000 11529 8831 8026 9049 19019 16514 21988 94.9K (25.33%)

All 43871 35560 36815 41391 78802 78357 59949 374.7K (100%)

Table 4.3: Category-wise statistics of the downstream train data used. We note that

since all the tasks have unequal samples, the total samples in each category will be

different than # of Tasks*Number of samples. Rows 100, 200, 1000, and all samples

represent the sum of the number of samples chosen during each experiment.

mon sense”” (as opposed to being written explicitly in the sentence) should be labeled

as ’no’.

Example 1 Input: Sentence: Jack played basketball for an hour after school, after

which he was very tired

Question: How long did Jack play basketball?

Output: Yes

Example 2 Input: Sentence: He was born in China, so he went to the Embassy at

1 pm to apply for a U.S. Visa.

Question: When did he go to Embassy?

Output: Yes Input Now complete the following example- Input: Sentence: The Vice

President’s guidance was we need to take them out. Question: Has he always wanted

to take them out? Output: No”

4.1.2 Coreference Resolution:

Coreference resolution is a natural language processing (NLP) task that involves

identifying and linking mentions of the same real-world entities in text. This task is
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important for understanding the meaning and context of text, as it allows a system

to determine that multiple mentions of a word or phrase in a document refer to the

same entity. For example, consider the following text: ”John went to the store to buy

some milk. He needed it for his cereal.” In this text, the pronouns ”he” and ”his”

refer to the same person, ”John.” A coreference resolution system would identify these

pronouns as referring to the same entity and link them to the proper noun ”John.”

The paragraph below gives an example of this category.

“Definition You need to answer a given question containing a blank (). Your

answer must be one of the two objects mentioned in the question, for example ””tro-

phy”” and ””suitcase””. Your answer must not contain a word that is not present in

the question. Please don’t use articles (e.g., the, a) before the answer.

Example 1: The trophy doesn’t fit into the brown suitcase because is too large.

Output: trophy

Example 2: Grace was happy to trade me her sweater for my jacket. She thinks

looks dowdy on her.

Output: sweater

Input Now complete the following example- Input: The goldfish were finally removed

from the bag and transferred into the tank, as the was a temporary home for them.

Output: bag”

4.1.3 Data-to-text:

Data-to-text generation is a natural language processing (NLP) task that involves

automatically generating human-readable text from structured data. This task can

be useful in a variety of applications, such as automated report generation or data

summarization, where it is important to present data in a clear and concise manner.

An example of data-to-text generation is generating a weather report from data about
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the current temperature, humidity, and forecast for a particular location. The data

might include the following: Temperature: 75 degrees Fahrenheit Humidity: 50%

Forecast: sunny A data-to-text generation system could use this data to generate the

following text: ”The current temperature is 75 degrees Fahrenheit and the humidity

is 50%. The forecast for today is sunny.” The paragraph below gives an example of

this category.

“Definition In this task, you are given concept set (with 3 to 5 concepts) that

contain mentions of names of people, places, activities, or things. These concept sets

reflect reasonable concept co-occurrences in everyday situations. All concepts given

as input are separated by #. Your job is to generate a sentence describing a day to

day scene using all concepts from a given concept set.

Example 1 Input: mountain#ski#skier

Output: Skier skis down the mountain

Example 2 Input: call#character#contain#wallpaper

Output: queen of wallpaper containing a portrait called film character.

Input Now complete the following example-

Input: lake#shore#walk

Output: Men walk along the shore of the lake”

4.1.4 Textual Entailment:

Textual entailment is a natural language processing task that involves determin-

ing the relationship between two text passages. Specifically, it involves determining

whether one passage, called the ”hypothesis,” can be inferred from the other pas-

sage, called the ”premise.” For example: Premise: ”The cat is sitting on the couch.”

Hypothesis: ”There is a cat on the couch.” In this case, the hypothesis can be in-

ferred from the premise, so the textual entailment relationship is ”entailment.” The
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paragraph below gives an example of this category.

“Definition Definition: In this task, you’re given two sentences. Indicate if the

first sentence clearly entails the second sentence (i.e., one can conclude the 2nd sen-

tence by reading the 1st one)Indicate your answer with ’1’ if the first sentence entails

the second sentence, otherwise answer with ’0’.

Example 1 Input: Sentence 1: No Weapons of Mass Destruction Found in Iraq Yet.

Sentence 2: Weapons of Mass Destruction Found in Iraq.

Output: 0

Example 2 Input: Sentence 1: A place of sorrow, after Pope John Paul II died, be-

came a place of celebration, as Roman Catholic faithful gathered in downtown Chicago

to mark the installation of new Pope Benedict XVI.

Sentence 2: Pope Benedict XVI is the new leader of the Roman Catholic Church.

Output: 1

Input Now complete the following example-

Input: Sentence 1: Since 1987, however, Brazil has taken steps to dramatically re-

duce the destruction, including stepped-up enforcement and the elimination of tax

incentives that led to large-scale land clearing. Sentence 2: In the early 1990s Brazil

began to take action to save the rainforest.

Output: 0”

4.1.5 Question Rewriting:

Question Rewriting is a natural language processing (NLP) task that involves

generating a new version of a given question that has the same meaning as the original,

but is phrased differently. For example, given the question ”What is the capital of

France?”, a question rewriting task might generate the following rephrased question:

”Where is the seat of government for France located?”. The paragraph below gives
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an example of this category.

“Definition Given a disfluent sentence, modify the sentence to it to its equivalent

fluent form, preserving the meaning of the sentence.

Example 1 Input: Who did the Han Chinese want to help the Khitan no I mean the

Mongols fight?

Output: Who did the Han Chinese want to help the Mongols fight?

Example 2 Input: What part did no I meant how many chapters have coordinating

lead authors?

Output: How many chapters have coordinating lead authors?

Input Now complete the following example-

Input: What year did a plague-ridden ship land in Norway?

Output: When did a plague-ridden ship land in Norway?”

4.1.6 Title Generation:

Title generation is a natural language processing (NLP) task that involves creat-

ing a title for a given text or topic. This task is often used in content creation and

marketing, where an eye-catching title is essential for attracting attention and engag-

ing readers. For example, a title generation task might involve creating a title for an

article about the benefits of meditation. Some possible titles might be ”5 Reasons

Why Meditation is the Key to a Stress-Free Life,” ”Discover the Surprising Benefits

of Meditation,” or ”Meditation: The Ultimate Tool for Relaxation and Mindfulness.”

The goal of the title generation task is to generate a title that accurately reflects the

content of the article and is compelling enough to encourage readers to click and read

more. The paragraph below gives an example of this category.

“Definition In this task, you’re given a paragraph from the research paper and

your task is to generate a suitable title for the research paper based on the given paper.
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Under 100 words is a good title length.

Example 1 Input: The severe acute respiratory syndrome (SARS) epidemic originat-

ing from China in 2002 was caused by a previously uncharacterized coronavirus that

could be identified by specific RT-PCR amplification. Efforts to control future SARS

outbreaks depend on the accurate and early identification of SARS-CoV infected pa-

tients. A real-time fluorogenic RT-PCR assay based on the 3-noncoding region (3

-NCR) of SARS-CoV genome was developed as a quantitative SARS diagnostic tool.

The ideal amplification efficiency of a sensitive SARS-CoV RT-PCR assay should

yield an E value (PCR product concentration increase per amplification cycle) equal

to 2.0. It was demonstrated that the 3 -NCR SARS-CoV based RT-PCR reactions

could be formulated to reach excellent E values of 1.81, or 91% amplification efficacy.

The SARS-CoV cDNA preparations derived from viral RNA extract and the cloned

recombinant plasmid both exhibit the identical amplification characteristics, i.e. am-

plification efficacy using the same PCR formulation developed in this study. The viral

genomic copy (or genomic equivalences, GE) per infectious unit (GE/pfu) of SARS-

CoV used in this study was also established to be approximate 1200-1600:1. The

assay’s detection sensitivity could reach 0.005 pfu or 6-8 GE per assay. It was pre-

liminarily demonstrated that the assay could efficiently detect SARS-CoV from clinical

specimens of SARS probable and suspected patients identified in Taiwan. The 3 -NCR

based SARS-CoV assay demonstrated 100% diagnostic specificity testing samples of

patients with acute respiratory disease from a non-SARS epidemic region.

Output: NHS Wales: Court action if trade deals affect service?

Example 2 Input: By Jon Welch and Paul MoseleyBBC News Details of health

problems, family bereavements and personal issues were sent by the University of East

Anglia (UEA) in Norwich to 298 students. Megan Baynes, 23, said she felt ””sick

and horrified”” when she realised her details had been shared. The UEA apologised
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””unreservedly”” and said an inquiry had begun. The email contained a spreadsheet

listing 172 names and details extenuating circumstances in which extensions and other

academic concessions were granted to 42 students. ’Felt sick’ It was sent to nearly

300 undergraduates, including Ms Baynes, a former editor of student newspaper Con-

crete. She is currently awaiting the results of her American Literature and Creative

Writing degree, and had been granted extensions for coursework because of an illness

suffered by a family member. ””I felt sick at seeing my personal situation written in

a spreadsheet, and then seemingly sent to everyone on my course,”” she said. ””My

situation was not the worst on there but there are some on there that are so personal.

There are people I know and I feel so awful for them and can’t imagine how they are

feeling.”” Theo Antoniou Phillips, UEA Students’ Union undergraduate education

officer, said: ””This is a shocking and utterly unacceptable data breach that should

never have happened.”” Jo Swo, the union’s welfare, community and diversity officer,

said: ””Given the university is supposed to be making mental health a priority, this

is a real slap in the face to students who have sought support.”” In a statement, a

UEA spokeswoman said: ””An email was mistakenly sent to 298 American Studies

undergraduates this morning containing details of 42 students with extenuating cir-

cumstances. ”” This clearly should not have happened and the university apologises

unreservedly. The university has launched an urgent enquiry and is contacting all af-

fected students to offer support. ””Anyone needing support should call 01603 592761.

The university is informing the ICO (Information Commissioner’s Office).”” The

ICO has been contacted for comment.

Output: University of East Anglia in students’ personal data breach

Input Now complete the following example-

Input: President Donald Trump said Mr Mnuchin had spent his career making money

in the private sector and would now work for the taxpayer. Mr Mnuchin pledged to cre-
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ate jobs and combat terrorist financing. Democrats had argued that Mr Mnuchin had

made a fortune foreclosing on families during the financial crisis. The top Democrat

on the House Financial Services Committee, Maxine Waters of California, called Mr

Mnuchin ””the foreclosure king””. His critics have also questioned whether he is too

close to the Wall Street banking community, which he will be responsible for regulat-

ing. Democrats also complained that Mr Mnuchin had failed to disclose nearly $100m

(£79m) in assets when he filed with the Senate Finance Committee. Mr Mnuchin

spent 17 years at Goldman Sachs before becoming a hedge fund manager. He later

founded a film production company that was behind such box office hits as the X-Men

franchise and American Sniper. Mr Trump said Mr Mnuchin would help make the US

a ””jobs magnet””. ””He’ll work 24 hours a day, I know him. He’ll work 28 hours a

day if they give him the extra four hours,”” he said. Another former Goldman exec-

utive, Gary Cohn, is the director of President Trump’s National Economic Council.

What do we know about the new treasury secretary’s policy plans? Mr Mnuchin hasn’t

announced a fully fledged plan, but his responses in media interviews and during the

Senate debate over his appointment make clear some of his priorities: There are still

many policy areas that have not been addressed, including how he will approach trad-

ing relations with China, Mexico and other partners.

Output: Trump says Mnuchin will fight for tax cuts and jobs”

4.1.7 Keyword Tagging:

Keyword tagging is the process of assigning specific keywords or labels to a piece

of text or document. This task is often used in natural language processing (NLP)

to help classify and organize large amounts of text data for various purposes, such

as search engines, topic modeling, and sentiment analysis. For example, consider a

news article about recent political events in the United States. Keyword tagging for
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this article might include labels such as ”politics,” ”US politics,” ”election,” ”gov-

ernment,” and ”political parties.” These tags can help identify the main themes and

topics discussed in the article, making it easier for users to search for and find similar

articles on the same topics.

4.1.8 Overlap Extraction:

Overlap extraction is a natural language processing (NLP) task that involves

extracting overlapping text or data from multiple sources. This can be useful for

a variety of purposes, such as identifying common themes in different documents,

comparing and contrast information, or finding duplicates in a dataset. For example,

consider a scenario where you have two news articles discussing the same topic. You

might use overlap extraction to identify the common themes or ideas discussed in

both articles, such as the main events, people involved, or key quotes. This could

help you understand the overall coverage of the topic and identify any discrepancies

or differences in the way it was presented by the two sources.

4.1.9 Word Analogy:

Word analogy is a natural language processing task that involves identifying re-

lationships between words based on their meanings and contexts. The goal is to find

a word that is similar to another word in a specific way, based on the relationship

between the two words. For example, if the task is to find a word that is similar to

”man” in the same way that ”woman” is similar to ”man,” the correct answer would

be ”wife.” The relationship between the words ”man” and ”wife” is that they are

both terms for a specific type of spouse, with ”man” being the term for a husband

and ”wife” being the term for a wife.
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4.1.10 Cause Effect Classification:

Cause-effect classification is a natural language processing (NLP) task that in-

volves determining the causal relationships between events or actions described in

text. This task can be useful in a variety of applications, such as information ex-

traction and text summarization, where it is important to understand the underlying

causes and effects of events described in text. Example: Consider the following two

sentences: ”The car wouldn’t start because the battery was dead.” ”The child was

crying because he fell and skinned his knee.” In the first sentence, the cause is ”the

battery was dead,” and the effect is ”the car wouldn’t start.” In the second sentence,

the cause is ”he fell and skinned his knee,” and the effect is ”the child was crying.”

4.1.11 Dialogue Act Recognition:

Dialogue act recognition is a natural language processing (NLP) task that involves

identifying the purpose or intention behind a speaker’s words in a conversation. This

task can be useful in a variety of applications, such as chatbots or virtual assistants,

where it is important to understand the intent behind a user’s input in order to

respond appropriately. An example of dialogue act recognition is identifying the

intent behind the following statement: ”Can you pass the salt?” The dialogue act in

this statement might be classified as a request, as the speaker is asking the listener

to perform an action.

4.1.12 Grammar Error Correction:

Grammar error correction is a natural language processing (NLP) task that in-

volves identifying and correcting grammatical errors in a given text. An example

of a sentence with a grammatical error that could be corrected as part of this task
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is: ”I went to the stores to buy some food and clothes.” This sentence contains the

grammatical error of using the wrong form of the word ”store.” The correct form

should be ”store,” which is singular, as in ”I went to the store to buy some food and

clothes.”

Dataset Split: Hundred samples per task have been used for testing, and ten

samples have been used for validation. These samples are not a part of the training

set, and we have ensured that there is no data leakage. Each task contains the same

number of samples for the test (100 samples) and validation set (10 samples).

4.1.13 Baselines

We use xpre−finetune and xtrain in both STL and MTL setups. For creating base-

lines, both datasets are not equipped with instructions; they contain just input and

output for conventional finetuning.

Single Task Learning Baselines

STL Baseline 1: A T5-3B model undergoes pre-finetuning using xpre−finetune, which

consists of 757 tasks from SuperNI. Subsequently, the model undergoes further fine-

tuning on 200 samples per task from the downstream train data of SuperNI (xtrain),

resulting in 119 models.

STL Baseline 2: Each task from the downstream train data (xtrain) is used to

finetune a T5-3B model (fM) with 1000 samples per task, resulting in 119 distinct

models.

STL Baseline 3 (Supervised SOTA): A T5-3B model (fM) is finetuned for

each task using all available samples from the downstream train data.
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Multi Task Learning Baselines

MTL Baseline 1: Similar to STL Baseline 1, we prefinetune a T5-3B xpre−finetune

for each task to get the model fM1. fM1 is now finetuned on 200 samples per task

from the downstream train data (xtrain) of SuperNI (in an MTL fashion).

MTL Baseline 2: T5-3B model is now finetuned on 1000 samples per task from

the downstream train data (xtrain) of SuperNI (in an MTL fashion).
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Chapter 5

RESULTS AND ANALYSIS

In this chapter, we describe single task and multi task baselines results followed

by results obtained using our approach. We also compare and and do a category wise

analysis of the same.

5.1 Results

The results are presented in two parts, STL and MTL results. Each section

contains overall results, Category wise results, and a comparison with the baselines

that were defined earlier.

5.1.1 Single Task Learning setup (STL)

Fig. 5.1 shows the rouge score of instruction tuned models when training with

different numbers of samples. We see that there is an overall increasing trend as the

number of samples increases. From the figure we observe that a max ROUGE-L score

of 72.04 is obtained when all samples are used. Figure 5.2 shows the category wise

results of the instruction tuned models. From the figure, we see that except for the

Answerability Classification category, all the categories have an increasing trend.

50% efficient w.r.t STL baseline 1: STL Baseline 1 is denoted by the red

point in Figure 5.1. The score with 100 samples is 65.93, and the score with baseline

1 is 64.29.

Competitive performance using 6% data: STL Baseline 2 is denoted by the

yellow point in Figure 5.1). The instruction tuned model uses roughly 23.33% of

training samples when trained on 6% data compared to STL baseline 2 which uses
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Answerability

Classification

Coreference

Resolution
Data to Text

Question

Rewriting

Textual

Entailment

Title

Generation

Other

Categories

STL Baseline 1 70.38 70.01 49.75 68.12 71.00 44.71 72.31

STL Baseline 2 78.77 68.61 50.89 71.00 77.78 46.78 75.62

STL Baseline 3 80.36 74.40 52.84 71.11 80.42 48.35 76.82

Table 5.1: STL category wise scores for all three baselines. We see that all the

baselines follow a linearly increasing trend as the number of samples increases with

baselines 1, 2, and 3 (200, 1000, and all samples used, respectively). However, little

improvement is observed in the Question rewriting category w.r.t baseline 2 and 3’s

ROUGE-L score (71.00 and 71.11, respectively). Another deviation from the standard

trend was observed in the Coreference Resolution category where STL baseline 1 had

a higher score as compared to STL baseline 2 (70.01 and 68.61 respectively).

25.33% data. The score with 200 samples/task is 68.34, while the score with baseline

2 is 68.91. In comparison with STL baseline 1 with the instruction tuned model (both

trained using the 6% data), an increase of ∼ 3% is observed.

Surpassing SOTA with 25% data: The instruction tuned model uses 25.33%

of the data compared to STL baseline 3 and gets a score of 71.71, compared to the

70.99 score of the baseline. Comparison with baseline 2 (both trained using 25.33%

of the data) yields an increment of 3%. When all samples are used, there is a further

increase of 1.04% (72.04 vs 70.99).

Category wise effect of instruction tuning: We observe that Answerability

Classification and Title Generation categories scores decrease from instruction tuning

as compared to baselines. The best scores from instruction tuning are 75.15 and 44.55

respectively which are significantly lower than the best baseline scores of 80.36 and

48.35. The categories that benefit from instruction tuning compared to the baselines

are Coreference Resolution (82.82 vs 74.40) and Data to Text (59.06 vs 52.84).
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Figure 5.1: Results in the STL setup. and 3, respectively. The horizontal dashed line

is marked on the graph to highlight the difference in train data required between the

proposed approach and baselines. x-axis is in logarithmic scale.

5.1.2 Multi task setup

Figure 5.3 shows the overall ROUGE-L score of instruction tuned models in the

MTL setup. A max ROUGE-L score of 74.68 is obtained when all samples are used,

surpassing the SOTA of 70.99. Figure 5.4 shows the category wise results of the

instruction tuned models and Table 5.2 showcases the baseline results.

50% efficient compared to MTL Baseline 1: MTL baseline 1 was trained on

roughly 6% of downstream train samples. The score with 3% downstream data sam-

ples is 66.78, while the score with baseline 1 is 65.63. If we compare the instruction

tuned model trained 6% of downstream train samples, there is an increase of roughly

5% points as it reaches a 70.40 rouge score.
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Figure 5.2: Histogram showing category wise results of the proposed approach in

STL setting. The x-axis shows avg number of training samples. the y-axis shows the

rouge-L scores. Most categories follow a conventional trend of performance increase

as the number of training samples increases. This trend has an exception in two

places. First: Answerability classification score drops when all samples are used after

1000 (75.15 to 74.38). Second: Coreference Resolution score drops when 200 samples

are used after 100 (75.74 to 74.25).

Answerability

Classification

Coreference

Resolution
Data to Text

Question

Rewriting

Textual

Entailment

Title

Generation

Other

Categories

MTL Baseline 1 75.35 75.87 55.85 75.64 65.95 62.19 45.20

MTL Baseline 2 76.89 81.93 54.73 79.80 67.89 67.18 42.19

Table 5.2: MTL baseline category-wise scores. All categories follow an increasing

trend as conventional thinking would suggest. The trend is however broken in the

Data to Text category and other categories.

Surpassing SOTA with 6% train data: MTL baseline two is denoted by the

yellow point in Figure 5.1, and was trained using 25% of downstream train samples.
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Figure 5.3: Proposed model overall results in MTL setup. The Red and Yellow dots

represent MTL Baselines 1 and 2, respectively. The score gap between the proposed

approach and the baseline widens as compared to the STL setup.

The instruction tuned model uses ∼ 76% fewer samples when trained on 6% of down-

stream train samples and gets a score of 70.40, while the score with baseline 2 is

68.10. The instruction tuned approach, trained on the same samples as baseline 2,

improves by roughly 5% (73.14 vs. 68.10). When all samples are used, a score of

74.68 is obtained, surpassing SOTA by 3%.

Category wise effect of instruction tuning: Contrasting results to STL set-

tings are observed as Question Rewriting and Title Generation categories experience

a significant drop (12% and 23% points respectively) as compared to the best base-

line scores. There is a significant improvement observed in the Textual Entailment

category as the best score improves to 84.16 from 67.89 as compared to the baseline

score.
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Figure 5.4: Histogram showing category wise results of the proposed approach in the

MTL setting. Similar to STL category wise scores, a linear trend is followed but has

two exceptions. First: Data to text score drops when all samples are used after 1000

(58.83 to 53.28). Second: Title Generation score drops when all samples are used

after 1000 (43.94 to 38.16)

5.2 Analysis

5.2.1 Category Wise Analysis

We analyze the performance across each category in both settings. In the STL

setting, we find that the tasks belonging to the coreference resolution and data to text

category have a high increase in ROUGE-L score with instruction tuning as compared

to baseline approaches (78.23 vs. 71.00 ROUGE-L in coreference resolution and 57.88

vs. 51.16 in Data to Text). Question rewriting performed nearly the same (70.51 vs.

70.07 ROUGE-L) while answerability classification and title generation’s score de-

creased w.r.t baseline (74.10 vs. 76.50 ROUGE-L in answerability classification and
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43.36 vs. 46.61 in title generation). In the MTL setup, similar findings are observed

but across different categories. We find that the tasks belonging to the textual en-

tailment category have the highest increase with instruction tuning compared to the

baseline (81.93 vs. 66.91 ROUGE-L). Answerability classification performed nearly

the same (75.97 vs. 76.11 ROUGE-L) while question rewriting and title generation’s

score decreased w.r.t baseline (67.38 vs. 77.71 ROUGE-L in question rewriting and

43.99 vs. 64.68 in title generation).

5.2.2 MTL consistently outperforming STL:

We have performed multiple experiments across instruction tuned modelling set-

tings while keeping the number of training samples the same across different settings.

Across each training setup, there is an increase of 1-2% ROUGE-L in MTL setup as

compared to STL. Through both settings and all the experiments, it was evident that

instruction tuned models perform better in the multi-task setup as compared to the

single-task setup.

5.2.3 Sample Efficiency:

Instruction tuned models showcase sample efficiency across both MTL and STL

setups. Using multiple baselines, sample efficiency of roughly 50, 75, and 80% are

achieved across different spaces in both STL and MTL setups. We also see that when

all samples are used in an instruction tuned setting, the overall performance beats

SOTA.

5.2.4 Effect of Instructions in pre-finetuning:

STL Baseline 1 and MTL Baseline 1 were pre-finetuned with 757 tasks of the

SupperNI dataset but without instructions. They were later finetuned on 119 tasks
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downstream train data using 6% in STL and MTL fashion. Instructions have a

significant effect in pretraining as the instruction tuned model outperformed these

baselines by 4 and 5%, respectively, when trained with the same number of samples.

5.2.5 Case Study on Negative results

In title generation tasks (e.g., Task 602, 1356, and 1540), extensive token lengths

(1192, 1256, and 781 tokens respectively) exceeding the model’s limit (512 tokens)

compromised performance (Task 602: 0.01 vs 0.38, Task 1356: 0.03 vs 0.33 and

Task 1540: 0.27 vs 0.40). Similarly, in Answerability Classification (Task 233), a

lengthy token length (648) adversely impacted its scores (0.63 vs 0.99). Additionally,

instruction bias in Task 242 hindered results (0.63 vs 0.99), but substituting a negative

example in the instruction prompt significantly improved performance (ROUGE-L

score with negative example: 1.00).

5.2.6 Differences of our work from Flan collection and ExT5

We would like to clarify the differences between the experimental settings proposed

by our work and those of the aforementioned works - especially where FlanLongpre

et al. (2023) collection and ExT5Aribandi et al. (2022) evaluate on unseen tasks.

We refer to the following extracts from Flan and ExT5 respectively. While the flan

collection has some similar experiments to ours with their held in tasks, we highlight

two important distinctions from their work:

• We conduct our experiments on 119 datasets across 12 categories which show

broad applicability of the findings as opposed to just 8 held in tasks.

• We establish multiple strong baselines in both STL and MTL setups, using

which we explore the effect of sample efficiency, pre fine-tuning with instructions
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and comparison with supervised SOTA scores. Flan used T5-XL-Lm as their

baseline.

• Our work simulates a low resource scenario where there are very few labeled

samples from unseen tasks available for fine tuning and we aim to extract max-

imum performance via those samples. We use the phrase “sample efficiency” to

refer to the efficient use of available samples.
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Chapter 6

CONCLUSION

6.1 Summary

In this study, we have taken a significant step forward in advancing the instruction

paradigm by incorporating a small portion of training data commonly available for

downstream tasks. By instruction tuning models on the small-scale training sets of

downstream tasks, we have observed notable performance benefits for the Tk-instruct

model on SuperNI. These findings suggest that instruction tuning can effectively assist

a model in quickly learning a task even with limited data.

6.2 Conclusion

The study clearly demonstrates that instruction tuned models like Tk-Instruct

can achieve very competitive performance on unseen downstream NLP tasks using

just a fraction of the typical training data. For example, in single task learning,

Tk-Instruct was able to match the performance of supervised SOTA models using

only 25% of the available downstream training data. When allowed to train on the

full dataset, it exceeded SOTA performance by over 1%. Similarly impressive results

were achieved in the multi-task learning setting. With just 6% of downstream data,

Tk-Instruct was able to match SOTA. When trained on the complete dataset, it ex-

ceeded SOTA by a sizable margin of 3.7%. The authors conducted a detailed analysis

of the sample efficiency advantages of instruction tuning compared to baselines with-

out it. Across various data amounts, the instruction tuned models were 50-80% more

efficient in terms of the training data needed to reach a given performance level. An

75



important finding was that pre-finetuning the models with instructions, before any

downstream training, significantly improved transfer learning performance. Models

pre-finetuned this way achieved 3-5% higher scores compared to those without in-

struction pre-finetuning. Additionally, the study found that multi-task learning con-

sistently outperformed single task learning by 1-2% when using comparable training

data amounts. This aligns with the expected benefits of multi-task learning. How-

ever, the advantages of instruction tuning were not consistent across all tasks. It

helped most significantly for textual entailment tasks but actually hurt performance

on question rewriting and title generation.

6.3 Future Work

The results obtained are specific to the T5-3B model and SuperNI dataset used.

Additional experiments should be conducted with larger models such as T5-11B and

more diverse datasets beyond SuperNI. This will provide a more robust evaluation

of the generalizability of the findings. The study explored performance for up to

100% of the available downstream training data. Further experiments could analyze

how performance continues to scale as even more data is added for training. While

SuperNI covers a wide range of tasks, evaluating on additional NLP task categories

can help strengthen the conclusions regarding sample efficiency. Further analysis

is needed to understand why certain tasks like question rewriting did not benefit

from instruction tuning. Mitigation techniques can then be developed to handle

such cases. Instruction tuning could be combined with other techniques like prompt-

based tuning and learning from demonstrations to study any synergistic effects. The

approach should be evaluated in low-resource scenarios like multilingual learning,

dialect adaptation, and domain-specific language tasks where sample efficiency is

critical. Methods to automate the discovery of optimal instructions for new unseen
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tasks can help unlock the full potential of instruction tuning. The sample efficiency of

instruction tuning should be compared head-to-head against other transfer learning

techniques on multiple tasks. Drawing connections with human learning can provide

insights into improvements in instruction tuning and related techniques for few-shot

learning.
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APPENDIX A

EXTENDED RELATED WORK
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LLMs and deep learning methods have been extensively applied across a myriad
of downstream tasks for a considerable duration Yin et al. (2018); Li et al. (2017);
Das (2015); Gupta et al. (2020, 2021b,c,a); Husain et al. (2019); Feng et al. (2020);
Vijayakumar et al. (2018); Arunkumar et al. (2023a). Recent studies have harnessed
natural language processing (NLP) methods and simple sampling techniques to yield
diverse downstream outcomes Xu et al. (2018); Alon et al. (2018); Allamanis et al.
(2017); Balog et al. (2016); Ogundokun et al. (2022); Kehinde et al. (2022); Gupta
et al. (2019). The investigation into the ability of existing LMs to comprehend instruc-
tions by Efrat and Levy (2020) has spurred subsequent research endeavors. Notably,
Hase and Bansal (2022), Ye and Ren (2021), and Zhong et al. (2021) have proposed
diverse methods to showcase that language models are adept at following instructions.
Weller et al. (2020) have devised a framework that concentrates on developing NLP
systems capable of solving novel tasks after reading their descriptions. PromptSource
and FLAN Wei et al. (2021); Sanh et al. (2021) were specifically designed to lever-
age instructions and accomplish zero-shot generalization on previously unseen tasks.
Additionally, Parmar et al. (2022) demonstrate the effectiveness of instructions in
multi-task settings, particularly within the biomedical domain. Mishra et al. (2022a)
delve into the impact of reframing task instructions on model responses, while Min
et al. (2022) introduce a framework to enhance understanding in the context of learn-
ing. Furthermore, Ouyang et al. (2022) propose the InstructGPT model, fine-tuned
with human feedback to follow instructions. Gupta et al. (2022a) present evidence
that augmenting knowledge with instructions aids LMs in better contextual under-
standing. Wang et al. (2022a) develop an instruction-based multi-task framework for
few-shot Named Entity Recognition (NER) tasks. Several approaches have emerged
to enhance model performance using instructions, including those proposed by Wu
et al. (2021); Liu et al. (2022); Luo et al. (2022); Kuznia et al. (2022); Patel et al.
(2022); Mishra and Nouri (2022); Puri et al. (2023); Gupta et al. (2021d); Anan-
theswaran et al. (2023); Scaria et al. (2023); Varshney et al. (2020)

Instruction Tuning Applications
1. InstructDial: Improving Zero and Few-shot Generalization in Dia-

logue through Instruction Tuning Gupta et al. (2022b): The paper
introduces InstructDial, which focuses on enhancing the zero and few-shot gen-
eralization capabilities of dialogue systems. InstructDial’s methodology revolves
around the fine-tuning of pre-trained dialogue models using a limited set of dia-
logue examples, augmented with natural language instructions. This approach
relies on instruction-based learning to improve the performance of dialogue sys-
tems, especially in scenarios where traditional supervised methods fall short.
The authors have demonstrated that InstructDial surpasses other existing zero
and few-shot generalization methods The method’s capacity to equip dialogue
systems to undertake entirely new tasks without the need for fine-tuning is a
substantial advantage over traditional supervised approaches. By achieving this
without requiring additional labeled data, InstructDial paves the way for dia-
logue systems that can adapt and excel in a broader spectrum of tasks, including
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those that are novel.

2. From Zero to Hero: Examining the Power of Symbolic Tasks in In-
struction Tuning Liu et al. (2023): The paper delves into an important
aspect of training large language models (LLMs) and evaluates the effectiveness
of specialized, expert LLMs compared to multitask LLMs. When it comes to
training LLMs for specific tasks, two primary approaches emerge: multitask
learning, where a single model is trained on a broad range of tasks, and expert
learning, where separate models are trained for each specific task. The stud-
ies show that expert LLMs consistently outperform multitask LLMs on unseen
tasks. This underlines the value of developing task-specific expertise within
models. The reduced data and training time requirements of expert LLMs are
particularly valuable in scenarios where resources are limited or where model
training needs to be expedited.

3. Unified Text Structuralization with Instruction-tuned Language Mod-
els Ni and Li (2023) The research paper addresses Text structuralization
which encompasses essential tasks like information extraction (IE) and struc-
ture formalization. The paper starts by acknowledging that existing approaches
to text structuralization often rely on manually annotated datasets and special-
ized techniques tailored to different IE sub-tasks. These methods can be less
efficient, lack generalizability, and require significant effort to adapt to various
domains and tasks. This approach uses instruction-tuned language models to
extract diverse structures from text. UTS-ILMs employ instructions that spec-
ify the desired IE task and structure type, which are added to the text before
it is processed by an LLM. The LLM, guided by these instructions, can then
effectively extract the relevant information and structures from the text.

The study evaluates UTS-ILMs using two LLM models, PaLM and OPT, across
a comprehensive dataset spanning various text domains and knowledge types.
The findings from this empirical investigation yield several key results:

• Unified Text Structuralization: UTS-ILMs present a unified approach to
text structuralization. By utilizing instruction-tuned language models,
these models enable LLMs to manage a variety of IE tasks and structure
types without the need for specialized and complex methods.

• Performance Superiority: UTS-ILMs outperform state-of-the-art methods
across different IE sub-tasks, including entity recognition, relation extrac-
tion, and event detection.

• Efficiency and Generalizability: UTS-ILMs offer increased efficiency and
generalizability. These models reduce the reliance on manually annotated
datasets, making them more scalable and adaptable to a variety of domains
and knowledge types. The instruction-tuning method allows for quick
generalization to new IE tasks and structure types without necessitating
extensive additional training or data.

4. InstructUIE: Multi-task Instruction Tuning for Unified Information
Extraction Wang et al. (2023) The paper presents InstructUIE, a framework
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for unified information extraction that leverages the self-supervised learning ca-
pabilities of large language models (LLMs). InstructUIE is designed to generate
instruction-following data for fine-tuning LLMs, thereby addressing the need for
specialized techniques and manual annotation. InstructUIE consists of two pri-
mary steps: In this phase, an LLM is employed to create instruction-following
data. This data generation involves providing the LLM with examples of IE
tasks and the desired output structures. The model then learns to generate new
instructions based on these examples.Following the generation of instruction-
following data, the model is fine-tuned using this information. The fine-tuning
process improves the model’s capacity to follow instructions and execute a range
of IE sub-tasks, including but not limited to entity recognition, relation extrac-
tion, and event detection. One of the significant implications is the reduction in
the dependence on manually annotated datasets and specialized techniques for
different IE sub-tasks. This enhances efficiency and scalability across diverse
domains and knowledge types.

5. AMRParsing with Instruction Fine-tuned Pre-trained Language Mod-
els Lee et al. (2023) The paper addresses the task of improving Abstract
Meaning Representation (AMR) parsing using pre-trained language models,
particularly focusing on the application of instruction fine-tuning. AMR pars-
ing involves the automatic generation of structured, graph-based representations
of sentences, capturing their semantic meaning in a consistent manner.The key
idea of this work is that Large language models (LLMs) can be significantly en-
hanced in their AMR parsing capabilities by leveraging instruction fine-tuning.
Instruction Tuning enables LLMs to learn how to follow instructions effectively
and perform specific tasks, in this case, AMR parsing. The authors employ
FLAN-T5, as the base for their experiments and fine-tune it on a dataset of
AMR parsing instructions. The study evaluates the performance of the instruc-
tion fine-tuned FLAN-T5 models across three key AMR parsing benchmarks:
AMR2.0, AMR3.0, and BioAMR. The study establishes that instruction tuning
can significantly enhance the performance of LLMs in the domain of AMR pars-
ing. This technique allows the models to better understand and execute instruc-
tions related to this complex task. The fine-tuned FLAN-T5 models, specifically
Flan-T5-Large and Flan-T5-XL, achieve new state-of-the-art results across all
three AMR parsing benchmarks, namely AMR2.0, AMR3.0, and BioAMR. This
highlights the potential of instruction fine-tuning to advance the field.

6. LaMini-LM: A Diverse Herd of Distilled Models from Large-Scale
Instructions Wu et al. (2023a)

LLMs have their sheer size and substantial computational demands have limited
their applicability, especially in resource-constrained environments and devices.
In response to this issue, the authors have introduced LaMini-LM, a collection
of small-sized and efficient language models.

LaMini-LM is distilled from ChatGPT. The methodology behind LaMini-LM
is comprised of two pivotal steps: In this phase, a substantial and diverse set
of dialogue tasks are gathered. These tasks encompass various facets of NLP,
including knowledge, personality, multi-turn memory, and empathy. The data
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for these dialogue tasks is sourced from existing datasets, alongside the genera-
tion of new instructions using ChatGPT. The collected instruction data serves
as the foundation for the training of a series of small-sized encoder-decoder and
decoder-only transformer models. The evaluation of LaMini-LM was carried
out using a variety of metrics, both automatic and human-centric, comparing
its performance against state-of-the-art Chinese dialogue systems. The results of
these evaluations indicate that LaMini-LM outperforms the baseline systems. It
exhibits a comparable performance to ChatGPT in open-domain dialogue tasks,
showcasing its prowess in text understanding and generation while upholding
its smaller model size.

7. LINGO: Visually Debiasing Natural Language Instructions to Sup-
port Task Diversity Arunkumar et al. (2023b)

LLMs can inherit biases present in the data they are trained on, potentially
limiting the diversity of tasks they can perform based on the instructions they
receive.

To address this challenge, the authors introduced LINGO, a visual analytics
interface designed to facilitate a task-driven workflow. LINGO serves three
primary functions:

LINGO allows users to visually identify potential biases in natural language
task instructions. This is achieved by presenting the task instructions in a
visual representation that makes it easier for users to spot linguistic features
that could introduce bias.

The tool allows users to alter or create task instructions that are less biased.
This feature enables the refinement of the language used in instructions to
ensure it is more neutral and unbiased.

LINGO supports real-time evaluation of pre-trained models’ performance on
debiased task instructions, ensuring that the modifications result in improved
model behavior.

In an evaluation involving novice and expert instruction creators and a dataset
comprising over 1,600 linguistic tasks across 55 different languages, LINGO
showcased its effectiveness. It encouraged the generation of more challenging
and unbiased tasks for pre-trained models, characterized by higher linguistic
diversity and lower instruction bias.

8. Text-to-Audio Generation using Instruction-Tuned LLM and Latent
Diffusion Model Ghosal et al. (2023)

The paper introduces TTA that involves the synthesis of realistic audio wave-
forms from textual descriptions, a task that requires balancing linguistic fidelity
and audio quality. Traditional approaches to TTA have often struggled to pro-
duce natural-sounding audio that accurately reflects the nuances of the input
text. To address these limitations, TTA authors introdced TANGO. This ap-
proach has two critical components: an instruction-tuned large language model
(LLM) and a latent diffusion model (LDM). The instruction-tuned LLM is de-
signed to capture the semantic meaning of the input text, leveraging its training
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on a large corpus of text and instructions. It generates an intermediate rep-
resentation of the desired audio, bridging the gap between text and audio.The
LDM, on the other hand, is trained on a large corpus of audio waveforms. It
specializes in generating realistic audio by transforming high-dimensional noise
into coherent sound. TANGO unifies these two models by feeding the inter-
mediate representation produced by the LLM into the LDM. This integration
guides the LDM in generating audio that is consistent with the input text.
The LDM gradually refines the audio quality by reducing noise and introducing
high-frequency details, resulting in more natural and accurate audio generation.

9. Towards Building the Federated GPT: Federated Instruction Tuning
Zhang et al. (2023b)

The paper revolves around the need for diverse and high-quality instruction
data to train LLMs effectively. Traditional centralized training methods often
require a centralized repository of such data, which can be problematic for
several reasons, including privacy concerns and the logistics of data collection.

The proposed solution, FedIT, leverages federated learning to train LLMs using
distributed instruction data. This approach is rooted in two key steps. The
first involves local instruction tuning, where each device independently refines
a copy of the LLM using its locally available instruction data. The second
step, model aggregation, merges the insights and knowledge acquired from each
device’s local instruction data. This collaborative learning approach ensures
that privacy is preserved since the underlying data is not shared. Furthermore,
it reduces the reliance on a central repository of data, making it a more scal-
able and versatile approach. To validate the effectiveness of FedIT, the authors
conducted evaluations on a range of instruction-following tasks, including dia-
logue, summarization, and question answering. The results of these evaluations
demonstrated that FedIT outperforms traditional centralized training methods.

10. COEDIT: Text Editing by Task-Specific Instruction Tuning Raheja
et al. (2023):

The paper introduces an approach to text editing using natural language pro-
cessing (NLP) models. Text editing is a fundamental step in the writing process,
and NLP models can play a crucial role in providing automated editing sugges-
tions to assist human writers. However, traditional NLP-based editing methods
often face challenges related to data requirements and generalization to different
editing instructions and styles.

To overcome these challenges, authors propose COEDIT, a text editing model
that leverages task-specific instruction tuning. This approach involves fine-
tuning a pre-trained language model on a diverse set of task-specific instructions
for text editing. These instructions guide the model towards specific editing
behaviors, such as simplifying a sentence or changing its style to be more neutral.

The authors evaluate COEDIT across various text editing benchmarks, includ-
ing CoLA, GLUE, and WMT datasets. Their findings are significant. First,
COEDIT achieves high performance in text editing with minimal labeled data,
which is a crucial efficiency improvement, reducing the need for extensive data
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annotation efforts. Second, it outperforms existing state-of-the-art editing mod-
els while being significantly smaller in size. Third, COEDIT exhibits strong
generalization capabilities, effectively handling editing instructions and styles it
has not seen during training.

11. Otter: A Multi-Modal Model with In-Context Instruction Tuning Li
et al. (2023a) The paper highlights the multimodal issues of LLMS that com-
bine both text and visual information. The authors propose a new multi-modal
model called ”Otter” that leverages in-context instruction tuning to enhance its
ability to follow instructions that span both text and visual domains.

Otter uses in-context instruction tuning, a technique that involves fine-tuning a
model on a dataset comprising instruction-response pairs that encompass both
text and visual information.

Otter builds upon OpenFlamingo, an open-sourced version of DeepMind’s Flamingo
model, specifically designed for multi-modal tasks. This foundation contributes
to Otter’s effectiveness in handling various instruction-following benchmarks.

The paper reports comprehensive evaluations of Otter’s performance on a range
of multi-modal instruction-following benchmarks, including VQA, GQA, and
Visual Dialog. Otter consistently outperformed state-of-the-art methods in
these benchmarks, affirming the effectiveness of in-context instruction tuning
for multi-modal instruction following.

12. Recommendation as Instruction Following: A Large Language Model
Empowered Recommendation Approach Zhang et al. (2023c) Tradi-
tional recommendation systems have long relied on techniques such as collabo-
rative filtering and content-based filtering to provide users with product, movie,
music, and content suggestions. However, these methods often struggle to cap-
ture the intricate nuances of user preferences and context. In response to these
limitations, authors consider recommendation as a task of instruction following
by LLMs.

The core idea of this approach is to convert user preferences and contextual
information into natural language instructions. These instructions are then
executed by an LLM to generate personalized recommendations. This paradigm
effectively bridges the communication gap between users and recommendation
algorithms.

The paper introduces a structured instruction format, encompassing user pref-
erences, intention, task form, and context. To facilitate the evaluation and
effectiveness of their approach, the authors designed 39 instruction templates,
leading to the generation of a substantial dataset of 252,000 user-personalized
instructions, covering a wide range of preferences and intentions.

To substantiate the superiority of their approach, the researchers instantiated
these instruction templates into well-established recommendation tasks and con-
ducted comprehensive experiments on real-world datasets. The results show
that their instruction-following approach consistently outperformed competi-
tive baselines, including the formidable GPT-3.5 model.
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13. LLM-Blender: Ensembling Large Language Models with Pairwise
Ranking and Generative Fusion Jiang et al. (2023)

The paper displays that LLMs display variations in performance across tasks
and examples. This inconsistency arises from the fact that different LLMs may
excel in specific areas while struggling in others.

LLM-Blender is designed to leverage the diverse strengths of multiple LLMs,
leading to a more consistent and superior overall performance.LLM-Blender
comprises two primary components: PairRanker employs pairwise ranking to
distinguish subtle differences between candidate outputs from multiple LLMs.
It uses a specialized pairwise comparison method that simultaneously encodes
the input text and a pair of candidate outputs, enabling the system to determine
the superior candidate. GenFuser is the generative fusion module. It combines
the top-ranked candidates from PairRanker’s pairwise comparisons into a fused
output. This approach capitalizes on the strengths of the highly ranked candi-
dates while mitigating their weaknesses, ultimately leading to improved output
quality. LLM-Blender addresses the problem of inconsistent LLM performance
by combining the strengths of multiple LLMs. This ensembling approach re-
sults in more reliable and superior output quality. By leveraging the diverse
capabilities of multiple LLMs, LLM-Blender can compensate for the individual
limitations of each model.

14. UnifiedSKG: Unifying andMulti-Tasking Structured Knowledge Ground-
ing with Text-to-Text Language Models Xie et al. (2022) The paper
presents a framework designed to revolutionize the field of structured knowl-
edge grounding (SKG). SKG tasks involve leveraging structured knowledge to
fulfill user requests, encompassing a wide range of applications such as semantic
parsing over databases and question answering over knowledge bases. The key
challenge addressed by this paper is the heterogeneity of inputs and outputs in
SKG tasks, which hinders systematic and compatible research in this domain.

UnifiedSKG introduces an approach to SKG by unifying 21 different SKG tasks
into a common text-to-text format. This unification facilitates systematic re-
search across SKG tasks. The essence of this framework is the transformation
of each SKG task into a text-to-text format, where a natural language query
or instruction serves as the input, and a structured knowledge representation
is the output. For instance, a question answering task can be represented as
follows: the input is ”What is the capital of France?” and the output is the
structured knowledge representation ”(country: France, capital: Paris).”

The UnifiedSKG framework leverages a dataset comprising text-to-text trans-
formations for all 21 SKG tasks. This dataset is constructed by automatically
mining existing SKG datasets and converting them into text-to-text transfor-
mations. Once the framework is trained, it is used for performing a wide variety
of SKG tasks without the need for fine-tuning. By providing a natural language
query or instruction, UnifiedSKG can generate the corresponding structured
knowledge representation.

Authors conducted a comprehensive evaluation of UnifiedSKG on various SKG
benchmarks. The results are remarkable, as UnifiedSKG outperforms state-
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of-the-art SKG models on the majority of these benchmarks. Moreover, the
framework’s ability to facilitate multi-task learning is highlighted, leading to
further improvements in performance across most tasks.

15. In-BoXBART: Get Instructions into Biomedical Multi-Task Learning
Parmar et al. (2022)

The paper is an application of instruction learning for NLP field. The research
introduces a novel and unified model for handling a multitude of biomedical
tasks, known as In-BoXBART. This approach is trained on a meta-dataset
encompassing 32 instruction-based tasks in the biomedical domain, spanning
various categories such as classification, question answering, and summarization.

The unification of these diverse tasks under a single model streamlines the
learning process and empowers In-BoXBART to perform an array of biomedical
NLP tasks more effectively and efficiently.

The authors validate the effectiveness of In-BoXBART through evaluations on
a spectrum of biomedical NLP benchmarks. In-BoXBART outperforms single-
task baseline models by an average margin of around 3%. Furthermore, it
exhibits improvements in few-shot learning settings, surpassing single-task base-
line models by an average margin of approximately 23%.

16. Zemi: Learning Zero-Shot Semi-Parametric Language Models from
Multiple Tasks Wang et al. (2022d)

The paper is designed to enhance the zero-shot performance of semi-parametric
language models.

The central concept behind Zemi is the amalgamation of parametric and non-
parametric components within a language model. Zemi augments the LLM’s
parametric core with a retrieval system that can efficiently extract relevant
documents from a vast unlabeled corpus. This integration allows Zemi to learn
from a dataset of text, significantly broader than what traditional parametric
models can handle.

17. Crosslingual Generalization through Multitask Finetuning Muennighoff
et al. (2023)

The paper introduces a method to enhance crosslingual generalization for large
language models (LLMs). This approach fine-tunes an LLM on a diverse set of
tasks across multiple languages, utilizing prompts to help the model understand
the relationships between these languages.

The significance of this work lies in its potential to achieve crosslingual general-
ization without compromising performance on monolingual tasks. Practical ap-
plications of MTF include training LLMs for translation tasks without the need
for parallel text data, enhancing LLM performance on multilingual tasks, such
as cross-lingual question answering, and making LLMs more user-friendly for
individuals who speak multiple languages. The experimental results highlighted
in the paper showcase the effectiveness of MTF, particularly when applied to
models like BLOOM and mT5. The ability to generalize from English tasks
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with English prompts to non-English languages solely present in the pretrain-
ing corpus demonstrates the method’s power. The research further explores
how finetuning on multilingual tasks with machine-translated prompts, aligned
with the language of the dataset, can enhance model performance.

18. Task-aware Retrieval with Instructions Asai et al. (2022)

The paper leverages human-written instructions to guide the search behavior
of LLMs, making them more adept at understanding user intent and retrieving
relevant documents. The authors conducted evaluation of TART, focusing on
two zero-shot retrieval benchmarks, BEIR and LOTTE. T They introduce of a
new evaluation setup known as X2 − Retrieval. Unlike traditional evaluation
setups, X2 −Retrieval reflects real-world scenarios where diverse domains and
tasks are mixed. In this more complex setting, TART continued to significantly
outperform competitive baselines, emphasizing its real-world applicability and
effectiveness in instruction-guided retrieval.

19. UnifiedABSA: A Unified ABSA Framework Based on Multi-task In-
struction Tuning Wang et al. (2022e)

Traditional ABSA methods often rely on separate models for different subtasks
within ABSA, such as aspect term extraction, sentiment classification, and opin-
ion target extraction. This fragmented approach necessitates substantial labeled
data for each subtask, making it time-consuming and resource-intensive. The
authors present a unified ABSA framework grounded in multi-task instruction
tuning. The core idea behind UnifiedABSA is to employ a single model capa-
ble of handling all ABSA tasks while harnessing multi-task learning to exploit
shared knowledge across tasks. They incorporate natural language instructions
to guide the learning process, making it adaptable to diverse ABSA tasks with-
out the need for extensive parameter updates.

Using this social media sentiment analysis becomes more effective, enabling the
understanding of public sentiment toward specific topics or brands. Moreover,
it can enhance customer service improvement by analyzing feedback to identify
areas for enhancement.

20. Improving Cross-task Generalization of Unified Table-to-text Models
with Compositional Task Configurations Chen et al. (2022)

LLMs are designed to handle an array of tasks that involve tables and text, such
as table summarization, question answering over tables, and table generation.
However, the challenge lies in enabling these models to effectively generalize
across this diverse set of tasks, ensuring their versatility and adaptability.

To tackle this challenge, the authors introduced ”compositional task configura-
tions.” These configurations consist of a set of prompts that are prepended to
the encoder of a unified table-to-text model. These prompts serve the crucial
role of explicitly specifying various task-related parameters, including the task
type, dataset name, input type, and output type. By providing the model with
clear and structured information about the specific task at hand, the composi-
tional task configurations aim to improve the model’s cross-task generalization.
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21. MultiInstruct: Improving Multi-Modal Zero-Shot Learning via In-
struction Tuning Xu et al. (2022b)

The paper introduces an approach that leverages instruction tuning to enhance
the performance of LLMs in multi-modal zero-shot learning tasks. MultiInstruct
provides explicit guidance to LLMs on how to effectively combine information
from different modalities, facilitating better task understanding and improved
performance. The research team evaluated MultiInstruct across various bench-
marks, such as VQA-X, GQA, and ImageCaption.

22. Exploring the Impact of Instruction Data Scaling on Large Language
Models: An Empirical Study on Real-World Use Cases Ji et al. (2023)

The research paper studies the relationship between the amount of instruction
data and LLM performance across a diverse set of real-world tasks.

The primary findings of this empirical study are:

• Data Quantity and Performance: The relationship between data quantity
and LLM performance. For open-ended generation tasks, the paper high-
lights that increasing the amount of instruction data leads to continuous
improvements in LLM performance.

• Structured Task Insights: In contrast, for structured tasks like mathe-
matical problem-solving and code generation, the paper notes a plateaued
performance. As more instruction data is added, the model’s performance
curve remains relatively flat. This suggests that for structured tasks, there
might be a ceiling of performance that LLMs can reach with a moderate
amount of instruction data.

• Specialized Training and Quality Data: The study emphasizes the impor-
tance of data selection and specialized training methods for hard tasks.
Instead of merely increasing data size, the focus should shift towards effec-
tively selecting high-quality training data. Additionally, the authors point
to the need for training methods that cater specifically to challenging tasks.

23. Towards Better Instruction Following Language Models for Chinese:
Investigating the Impact of Training Data and EvaluationJi et al.
(2023)

The paper studies the challenges faced by large language models (LLMs), par-
ticularly in following instructions effectively, with a specific focus on the Chinese
language.

The paper delves into the pivotal role that data quality and diversity play in the
performance of instruction following language models (IFLMs). It emphasizes
that using carefully curated and diverse training data significantly enhances the
ability of IFLMs to follow instructions and execute various tasks.

The study explores the hurdles related to domain adaptation and suggests
strategies to enhance adaptability. By incorporating domain-specific training
data and infusing domain knowledge into the IFLMs’ training process, the re-
searchers propose methods to improve performance in specific domains.
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24. Chinese Open Instruction Generalist: A Preliminary Release Zhang
et al. (2023a)

The paper presents development LLMs and instruction tuning capabilities for
Chinese, which come with their unique linguistic and cultural intricacies.

COIG does training on a massive dataset that pairs Chinese text with corre-
sponding instructions. This training process is fundamental in endowing COIG
with the ability to effectively comprehend instructions, access a wealth of knowl-
edge, and engage in reasoning and inference to fulfill the given task.

COIG has ability to understand the intent and context of instructions, granting
it the capability to generate contextually appropriate responses.

25. Adding Instructions during Pretraining: Effective Way of Controlling
Toxicity in Language Models Prabhumoye et al. (2023)

The research paper addresses a challenge faced by large language models (LLMs)
— their propensity to generate toxic content. To tackle this issue, the au-
thors introduced two novel pretraining data augmentation strategies, MEDA
and INST. These strategies involve adding instructions to pretraining samples,
providing guidance to the LLM regarding the toxicity of the content. Essen-
tially, the instructions indicate whether the text should be toxic or non-toxic.
Through these strategies, the LLM learns to associate toxic language with neg-
ative feedback and non-toxic language with positive feedback, thereby enabling
it to control and reduce the generation of toxic content.
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