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ABSTRACT

Low frequency oscillations (LFOs) are recognized as one of the most challenging problems

in electric grids as they limit power transfer capability and can result in system instability.

In recent years, the deployment of phasor measurement units (PMUs) has increased the

accessibility to time-synchronized wide-area measurements, which has, in turn, enabled

the effective detection and control of the oscillatory modes of the power system. This

work assesses the stability improvements that can be achieved through the coordinated

wide-area control of power system stabilizers (PSSs), static VAr compensators (SVCs),

and supplementary damping controllers (SDCs) of high voltage DC (HVDC) lines, for

damping electromechanical oscillations in a modern power system.

The improved damping is achieved by designing different types of coordinated wide-

area damping controllers (CWADC) that employ partial state-feedback. The first design

methodology uses a linear matrix inequality (LMI)-based mixed H2/H∞ control that is

robust for multiple operating scenarios. To counteract the negative impact of communica-

tion failure or missing PMU measurements on the designed control, a scheme to identify

the alternate set of feedback signals is proposed. Additionally, the impact of delays on the

performance of the control design is investigated.

The second approach is motivated by the increasing popularity of artificial intelligence

(AI) in enhancing the performance of interconnected power systems. Two different wide-

area coordinated control schemes are developed using deep neural networks (DNNs) and

deep reinforcement learning (DRL), while accounting for the uncertainties present in the

power system. The DNN-CWADC learns to make control decisions using supervised learn-

ing; the training dataset consisting of polytopic controllers designed with the help of LMI-

based mixedH2/H∞ optimization. The DRL-CWADC learns to adapt to the system uncer-

tainties based on its continuous interaction with the power system environment by employ-

ing an advanced version of the state-of-the-art deep deterministic policy gradient (DDPG)
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algorithm referred to as bounded exploratory control-based DDPG (BEC-DDPG).

The studies performed on a 29 machine, 127 bus equivalent model of the Western Elec-

tricity Coordinating Council (WECC) system-embedded with different types of damping

controls have demonstrated the effectiveness and robustness of the proposed CWADCs.
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CHAPTER 1

INTRODUCTION

With the advent of deregulated energy markets, the requirements for energy exchanges have

increased resulting in higher loading of transmission systems. Furthermore, the increased

penetration of renewable energy sources (RES) and decommissioning of large thermal units

have led to increased power flows over long distances and lower inertia in the system [1],

[2]. These developments can create additional challenges in damping low frequency inter-

area oscillations [3], which are an inherent phenomena of the power system [4]. In [5],

it has been shown that these underlying oscillations often become poorly damped during

heavy power transfer between different areas connected by weak tie-lines, thus reducing

the security margins. As complex conditions evolve within power systems, these oscilla-

tions can grow in magnitude and become unstable, which can cause system breakup and

eventually lead to a large-scale blackout.

1.1 History of Past Events

One of the most prominent events which occurred as a consequence of unstable os-

cillations is the splitting of the Western Electricity Coordinating Council (WECC) in the

USA into four islanded regions on August 10, 1996, resulting in a loss of 30 GW of load

affecting 7.5 million customers [6]. The measurement of line power flow through one of
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the three AC lines in the California-Oregon AC Intertie (COI) indicated the presence of an

inter-area oscillatory mode as shown in Fig. 1.1, which became highly unstable and led to

the tripping of all the three lines that make up the COI [7]. At this point, system collapse

became unavoidable.

Figure 1.1. Power Flow Through One of the Three AC Lines in COI Leading to System
Breakup.

Some of the other noteworthy incidents related to the low frequency oscillations (LFOs)

include:

1. The integration of Turkish Grid into the European Network of Transmission System

Operators for Electricity (ENSTO-E) triggering inter-area oscillations in the range of

0.15 Hz [8].

2. On July 31st, 2008, within the Mexican Interconnected System, a combination of

system events involving operational changes and a weak transmission system caused

wide-spread inter-area oscillations [9].
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3. The interconnection between Columbia and Venezuela power systems through a sin-

gle 230 kV transmission line led to sustained power flow oscillation of 0.22 Hz [10].

4. Presence of multiple inter-area oscillation modes in WECC [11]:

• North-South Mode A(∼ 0.25 Hz) dominantly observable in the Alberta Canada

area of WECC

• North-South Mode B(∼ 0.4 Hz) with more widespread observability than North-

South Mode A

• Montana Mode (∼ 0.55 Hz)

• British Columbia Mode (∼ 0.62 Hz)

To securely transmit the larger amounts of power over long distances, the stabilization

of these electromechanical oscillation modes is extremely important. This has led to an

increased interest in control schemes that can increase the transmission capability for the

systems restricted by oscillatory instability of these modes.

1.2 Previous Research on Damping of Oscillations

Traditionally power system oscillation damping is provided by power system stabiliz-

ers (PSSs) installed at generator units [12], [13], [14], [15], [16]. However, PSSs have to

be carefully coordinated to damp both local plant modes and inter-area modes. This co-

ordinated tuning is often done using optimization approaches, with genetic algorithms and

particle swarm optimization, proving to be popular and effective [17], [18], [19]. Some of

the alternative approaches such as use of linear matrix inequalities (LMIs) [20], discrete

linear quadratic regulator (DLQR) [21], and linear parameter varying (LPV) systems [22],

[23] have also been explored. There has also been extensive research into the use of supple-
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mentary damping controllers (SDCs) installed either individually or in combination with

[24], [25], [26], [27]:

• series-connected flexible alternating current transmission system (FACTS) devices,

such as thyristor controlled series capacitors (TCSCs).

• shunt-connected FACTS device, such as static VAr compensators (SVCs).

Furthermore, in an attempt to improve the performance and robustness, the coordination

of SDC action of FACTS devices with that of existing PSSs, is demonstrated in [28], [29],

and [30].

In recent years, investigation of the impact of high voltage DC (HVDC) systems on

small-disturbance stability has gained considerable interest. Controlled modulation of the

active power flow through the line commutated converter (LCC) and voltage source con-

verter (VSC) based HVDC lines has been proposed to improve the capacity of AC trans-

mission lines [31], [32], [33]. However, the possibility of negative interactions of HVDC

controllers with the existing controls is usually ignored.

Following the development of phasor measurement units (PMUs), there have been per-

sistent efforts in the development of wide-area damping controllers which employ wide-

area signals for damping inter-area oscillation modes. The idea of using a global signal

to design a damping controller for PSSs was described in [34]. Later, a multi-agent based

supervisory level controller for PSSs using wide-area as well as local measurements was

proposed in [35]. The use of PSSs for damping inter-area oscillations based on remote

measurements has been explored in [36] and [37]. Similarly, the implementation of FACTS

devices using the feedback from remote measurements was investigated in [38] and [39].

An actual application of wide-area measurements to damp inter-area oscillations via mod-

ulation of active power in the Pacific DC Intertie (PDCI) in WECC was presented in [40].

In [41] and [42], synthesis of a polytopic controller having mixed feedback control
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was proposed using LMIs. A multi-polytope based adaptive control was implemented in

[43] and [44], where the selection of a suitable polytopic controller was made based on

the current operating point of the system. In [45], a systematic procedure for designing

a centralized wide-area control was detailed. In [46], [47], [48], [49], [50], wide-area

coordinated controls of energy storage devices (ESDs), DC lines, and FACTS devices were

developed to provide robust damping to the oscillatory modes. The capability of doubly-

fed induction generators (DFIGs) based wide-area controls in improving the damping of

inter-area modes was investigated in [51] and [52].

In recent years, the comprehensive analyses of delays in PMU signals and mitigation

techniques for wide-area measurement systems (WAMS) based damping controllers have

received increasing interest. The effects of time delay uncertainty on the closed-loop stabil-

ity of power systems incorporating an SVC and HVDC based supplementary control were

examined in [39] and [49]. The techniques proposed in [23], [40], [53], [54], [55], [56],

and [57] have focused on improving the robustness of controllers to control signal delays,

including both fixed [40], [53], [54] and time-varying delays [23], [53], [55], [56], [57]. In

[58], a method to calculate damping factor based delay margins, which constructs the cor-

relations between signal transmission delays and damping factors of inter-area oscillation

modes, was presented. The impact of the performance of wide-area signals, latency, and

data dropouts in PMU signals on the performance of DFIG-based controls was studied in

[59] and [60]. Motivated by the installation of distributed energy resources (DERs), ref-

erence [61] utilizes their active power modulation capability to damp the inter-area modes

and transient frequency swing. The method is shown to provide an advantage of exert-

ing lesser control effort. Another solution for reducing the number of control signals is

suggested in [62], where the online grouping of the coherent generators is considered for

identifying the most controllable machines in each group.
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1.3 Neural Networks

The recent breakthroughs in artificial intelligence (AI) provide promising approaches to

design advanced control schemes for enhancing power system stability. One such approach

is the artificial neural networks (ANNs), which can be thought of as non-linear approxima-

tors that provide excellent generalization across varying system parameters, superior noise

rejection, and faster execution of control actions (most of the computations occur during the

off-line training). In the past few years, significant progress has been made in using ANNs

to solve a broad range of computational problems both in dynamics and optimization. In

[63] and [64], authors have proposed a multi-layered perceptron capable of generalizing

previously unencounterd load levels and system topologies, and accurately estimate the

critical clearing time (CCT). In [65], ANN is used for predicting and mitigating transient

instabilities. A deep learning (DL) based feature extraction framework is proposed for

system security assessment in [66]. Reference [67] demonstrates the use of NNs for per-

forming contingency screening and dynamic security ranking. Studies were conducted on

two large scale systems of B.C. Hydro and Hydro Quebec. Researchers in [68] have used

real data from power systems in Singapore and Australia to perform short-term load and

wind power forecasting using NN-based prediction intervals. An overview of different NN

applications in power systems such as load forecasting, fault diagnosis, transient stability,

security assessment, and economic dispatch are listed in [69] and [70]. Application of NN

for non-linear control of DFIGs was demonstrated in [71].

Reference [72] described the use of ANN for optimizing the load-oriented control pa-

rameters of static synchronous compensators for damping LFOs. The NN-based model

predictive control (NN-MPC) and adaptive neuro-fuzzy inference system are developed for

designing and tuning the parameters of PSS in [73] and [74], respectively. The work in [75]

and [76] propose the adaptive NN decentralized controllers for damping the oscillations.
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An NN-approximated transient energy function (TEF)-based SDC for unified power flow

controllers (UPFCs) is designed in [77] for mitigating LFOs. In [78], deep neural network

(DNN) is leveraged to enhance the probabilistic small-signal stability.

1.4 Reinforcement Learning

Another AI-based approach that has been deemed promising to address various chal-

lenges in power systems is the reinforcement learning (RL) algorithm. Its applications

range from the design of a resistive braking controller for stability enhancement [79], [80]

to automatic generation control and economic dispatch problems [81], [82], and [83].

In [84] and [85], two different RL techniques, namely Q-learning and least worst ac-

tion Q-learning (LWA Q-learning), are utilized to design wide-area damping controllers

(WADCs). The design of two reduced-dimensional RL-based WADCs is examined in [86].

However, the performance of the RL methods is mainly dependent on the quality of the

handcrafted features [87].

Recently deep reinforcement learning (a combination of RL algorithm and DL tech-

nologies such as DNNs) has learned to play Atari games using screen pixels as inputs [87].

In 2017, AlphaGo, the Google Deep Mind’s DRL-based computer program defeated the

world champion at the game of Go in discrete action space [88]. DRL offers the follow-

ing advantages: a) extraction of high-dimensional features, b) development of different

scalable algorithms such as deep Q-network (DQN) [87] and proximal policy optimiza-

tion (PPO) [89], hence making them suitable for solving different problems for large-scale

power systems. Some of the examples of the application of DRL methods in power sys-

tem analysis include grid emergency controls, autonomous voltage control, composite load

modeling, and load frequency control [90], [91], [92] and [93]. A comprehensive review

of such applications is presented in [94] and [95].
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In [96], a DRL-based deep deterministic policy gradient (DDPG) algorithm is utilized

to design a wide-area damping controller. Recently, the use of DRL has also been explored

in [97] to address the issue of ultra low frequency oscillations (oscillations below 0.1 Hz)

in a hydro-dominant power system.

1.5 Research Motivation

Though considerable research has already been done in the field of damping electrome-

chanical oscillations in the power grid, there is scope for further improvement due to the

following reasons:

1. Most of the proposed approaches require changing the configurations of existing

controls.

2. In a large-scale interconnected power grid, there are multiple controllers that act

based on local measurements for mitigating a specific mode or multiple oscillation

modes. However, in the absence of proper coordination, they may act against each

other, and thereby, adversely affect the modes.

3. Implemented controller designs had higher-order complexity.

4. The comprehensive assessment of the robustness of different types of controllers

based on their detailed dynamic models requires more research. This is particu-

larly important to capture the unfavorable dynamic interactions between the various

damping controls and design a suitable mitigation strategy accordingly.

5. The developed wide-area control algorithms require knowledge of the physical dy-

namics to compute the optimal control signals, which may not always be possible

due to the complex nature of the systems and their rapidly changing operating states.

Additionally, these methods may not always be scalable to a large-scale system.

8



6. Despite the efforts made by several authors to develop AI-based stabilizing control

methods ([84], [85]), there has not been much attention devoted to the safe use of

DRL to improve the small-disturbance stability of the system. Also, many of the

existing methods are inhibited by the use of discrete action spaces and large number

of training episodes.

7. No studies concerning the use of DRL for the coordination of different types of damp-

ing controllers have been conducted.

1.6 Research Objectives and Aims

This research aims to undertake a thorough evaluation of the improvement of small-

signal stability of power systems by designing different coordinated wide-area damping

controls that can use multiple controls such as PSSs, FACTS devices, and HVDC lines.

The primary sub-tasks of this research are described as follows:

1. To develop the two-terminal and multi-terminal HVDC models in PSLF and DSA

tools for integration with AC network models [98], [99]. This is one of the prerequi-

sites for designing a SDC for performing small-signal and transient stability studies.

2. To develop a methodology for the selection of suitable stabilizing signals for the

coordinated controllers.

3. To design coordinated wide-area damping controllers (CWADCs) that can perform

reasonably for a wide range of operating points using:

• a model-based approach assuming that the dynamic system models are known

a priori.

• a model-free design that is more robust to modeling errors and can learn to
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perform effectively using the measured input-output signals of the controlled

system.

4. To coordinate individual controllers like HVDC-based SDCs, SVCs, and PSSs. This

task would incorporate detailed dynamic models of all the aforementioned controls

to determine the interactions between them and the network accurately.

5. To thoroughly investigate the robustness of the designed coordinated controllers within

meshed AC/DC power systems to varying signal transmission delay and signal loss.

1.7 Contributions of this work

This work aims to address some of the key issues identified in the current body of

literature. The main outcome of this research is the design of the control techniques to:

• improve the coordination between different types of damping controllers.

• enhance the damping of LFOs.

The designed methods combine the advantages of local signals with the additional degrees

of freedom provided by remote measurements to achieve the targeted damping of LFOs.

Additionally, since it is preferable that feedback signals are synthesized from a small set

of measurements, the proposed work exploits the dynamic characteristics of oscillatory

modes first to choose an optimal number of state feedback signals and then design different

types of optimally coordinated wide-area controllers for a range of scenarios using partial

state-feedback. The salient contributions of this thesis are summarized as follows:

1. Evaluation of the improvement in small-signal stability that HVDC-based SDC (DC-

SDC) can achieve.
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2. Use of detailed dynamic models of control devices such as PSSs and SVCs to accu-

rately determine the interactions between the controls and the network.

3. Development of a controller whose design is based on the physical dynamics of a

reduced-order polytopic system. The designed control, namely, CWADC, is com-

posed of gains determined by solving a convex optimization problem that minimizes

the weighted sum of the LMI-based H2/H∞ controls while satisfying the pole-

placement constraints.

4. Systematic study of the impact of communication delays on the proposed CWADC.

5. Identification of alternate feedback signals for CWADC to guarantee the system sta-

bility in case of a loss of wide-area signal due to failure in PMU or communication

channels.

6. Design of a DNN-CWADC that can generate suitable control actions for the di-

verse operating conditions (OCs) at a fraction of the time required by the modern

controls. The learning process involves using a polytopic dataset designed from

a reduced-order system using LMI-based mixed H2/H∞ optimization with partial

state-feedback and regional pole-placement constraints.

7. Development of a DRL-CWADC using a safe continuous control action search method

called the bounded exploratory control (BEC)-based DDPG (BEC-DDPG), that is ca-

pable of adapting itself to evolving operational uncertainties and unanticipated sce-

narios in real-time. The proposed method is also aimed to accelerate the training

time of the DRL-based control.

8. Design of a suitable method for selecting the most relevant type of the AI-based

CWADCs based on the current OC detected by real-time measurements.
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The remainder of the report is structured as follows:

• Chapter 2 gives a brief theory review of the mathematical concepts relevant to the

design of the proposed control methods. The first section provides the theoretical

background of the LMI-based H2/H∞ control, while the next two sections present

the overview of NN and RL.

• Chapter 3 describes the dynamic models of different controllers, such as PSS, SVC,

and DC-SDC. A method for reduction in system size and selection of suitable sta-

bilizing signals is also proposed. The selected wide-area signals are then used to

demonstrate the technique for designing a coordinated wide-area controller for a re-

duced order polytopic system. Finally, to ensure the reliability of feedback signals,

an alternative feedback selection scheme is proposed.

• Chapter 4 discusses the design and implementation of the two AI-based approaches

for creating CWADCs. The first two sections focus on utilizing DNN and DRL for

designing the coordinated wide-area controls. Following this, a technique to select a

suitable controller based on the current OC is presented.

• Chapter 5 evaluates the effectiveness of the control for two test systems. For the 16-

machine, 68 bus system, modal analysis was performed to ensure that the damping of

closed-loop eigenvalues is more than a pre-specified value. For the reduced WECC

model-a large test system incorporating multi-terminal and two-terminal HVDC lines

and wind generation, both eigenvalue analysis and non-linear time-domain simula-

tions are conducted to validate that the control is resilient to communication signal

delay and failure of PMUs. In conclusion, a brief discussion is presented based on

the findings of this work.

• Chapter 6 demonstrates the application of the two AI-based methods to the reduced-
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order model of the WECC. A brief discussion on the advantages of the methods and

their applicability is provided.

• Finally, the conclusions of this work are summarized in Chapter 7. Suggestions for

future work are also provided.
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CHAPTER 2

THEORETICAL BACKGROUND

2.1 Modern Controls

This section gives a brief overview of different concepts related to the LMI-based multi-

objective feedback control. The basics of LMI and three different design objectives used

to formulate the control problem, i.e., H2 control, H∞ control, and pole-placement, are

explained here.

2.1.1 Linear Matrix Inequality (LMI)

An LMI has the following form [100]:

F (x) := F0 +
m∑
i=1

xiFi > 0 (2.1)

where x ∈ Rm is an unknown vector of scalar optimization variables. Fi ∈ Rn×n

are the known system matrices. The inequality implies that F (x) is positive definite, i.e.,

zTF (x)z > 0 for all non-zero z ∈ Rn. The LMI defined in (2.1) is a convex constraint on

x. That is, if x and y be two vectors such that F (x) > 0 and F (y) > 0, then convexity

implies that F (x+y
2

) > 0.

Convexity has an important consequence, since, even though (2.1) has no general so-
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lution, it can still be solved numerically. Therefore, if a feasible solution exists, it can be

found, and it is guaranteed to be optimal.

Different Representations

a) An advantage of representing control problems with LMIs is that multiple control

requirements (expressed as individual LMI constraints) can be regarded as a single LMI

problem [101]:

F 1(x) > 0;F 2(x) > 0; ...F q(x) > 0; (2.2)

Thus an equivalent LMI can be expressed as:

F (x) = F0 +
m∑
i=1

xiFi = diagF 1(x), F 2(x), ..., F q(x) > 0 (2.3)

where Fi = diagF 1(x), F 2(x), ..., F q(x),∀i = 0, ...,m and diagX1, X2, ...Xq is a block

diagonal matrix with blocks X1, X2, ...Xq.

b) In some applications, LMIs may not arise in the canonical form (2.1), but rather in

the form [100], [102]:

L(X1, X2, ...Xn) < R(X1, X2, ...Xn) (2.4)

where L(.) and R(.) are affine functions of the structured variables X1, X2, ...Xn. An

example of using matrices as variables is the Lyapunov inequality:

AX +XA′ < 0 (2.5)

where A ∈ Rn×n is given and X = XT is the decision variable that can be expressed in

the form of LMI, (2.1), as follows: Let P1, P2, ...Pm be a basis for the symmetric n × n

matrices (m = n(n+ 1)/2), then set F0 = 0 and Fi = −ATPi − PiA.
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Types of LMI Problems

There are three generic problems related to the study of LMIs [100]:

• Feasibility problem: The test whether or not there exists a solution x for F (x) > 0 is

called a feasibility problem. If no solutions exist, the LMI is called infeasible.

• Optimization: Minimizing a convex objective function under LMI constraints is also

a convex problem. In particular, the linear objective minimization problem defined

by (2.6) plays an important role in the the LMI-based design. This problem is called

the eigenvalue problem.

Minimize cTx subject to F (x) > 0 (2.6)

• Generalized eigenvalue problem: Minimize a scalar, λ, subject to:

λB(x)− A(x) > 0, B(x) > 0, C(x) > 0 (2.7)

where A,B, and C are symmetric matrices that are affine functions of x.

The strength of LMIs is that the multiple design objectives like H∞ for the minimiza-

tion of uncertainties, H2 for control effort optimization, and pole-placement region can

be formulated as individual LMIs. All of these can be combined to form a single multi-

objective LMI control problem as explained in Section 3.2.1. The key to this problem lies

in evaluating a single Lyapunov matrix that can satisfy all three design criteria. More infor-

mation about LMIs including their advantages and limitations can be found in [100], [101],

[103].
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2.1.2 H2 control

H2 control is an expansion of the linear quadratic Gaussian (LQG) control problem. If

the LQG problem is evaluated in the frequency domain, it is referred to asH2 control [104].

For a stable linear time invariant (LTI) model of plant P :

ẋ = Ax+B1w +B2u

z2 = C2x+D22u

y = Cyx+Dy1w +Dy2u

(2.8)

where x is the state vector, u is the control input vector, w represents the disturbance input,

z2 represents the error output corresponding to H2 control to be kept small, and y is the

output vector. The standardH2 optimization problem is the problem of choosing a feedback

controller, K, such that it [105]:

• stabilizes the closed-loop system, and

• minimizes the H2 norm of the closed-loop system.

From (2.8), the closed-loop transfer function is formed as:

G(s) = Ccl2(sI − Acl)−1Bcl +Dcl2 (2.9)

where Acl = A + B2K, Bcl = B1, Ccl2 = C2 + D22K, and Dcl2 = D21 = 0. The H2

performance ||G||2 is defined as:

||G||22 =
1

2π
Trace

∫ ∞
−∞

GT (−jω)G(jω)dω (2.10)

The minimization of the H2 norm of the closed-loop system implies the minimization of

the sensitivity of the output noise z2 to the white noise input, w. The H2 norm measures
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the complete energy of the system associating the input disturbance to the output response.

It is important to note that one of the peculiar things about the H2 norm is that it can be

equal to infinity in a stabilized closed-loop system when the plant D21 matrix associated

with the input disturbances and output errors is non-zero. Therefore, based on the formulae

described in [106], [107] optimal H2 control implemented by LMI toolbox necessitates the

setting of D21 to zero. The H2 norm of the closed-loop transfer function, ||G||2, does not

exceed the specified maximum bound, ξ2, where ξ2 > 0 if and only if D21 = 0 and there

exists two symmetric matrices X2 and Q such that:

AclX2 +X2A
T
cl Bcl

BT
cl −I

 < 0 (2.11)

 Q Ccl2X2

X2C
T
cl2 X2

 > 0 (2.12)

with X2 = XT
2 > 0 and Trace(Q) < ξ2

2 .

2.1.3 H∞ control

For any system, the H∞ norm is the largest magnitude of transfer function in the worst

direction over the entire frequency range. Therefore, minimization of the H∞ norm is a

commonly used tool for not only checking the stability of the system, but also for designing

the feedback controller as it allows for loop-shaping and robustness when plant modeling
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errors are present. For a stable LTI model of plant P :

ẋ = Ax+B1w +B2u

z∞ = C1x+D11w +D12u

y = Cyx+Dy1w +Dy2u

(2.13)

where x is the state of system, u is the control, w is the disturbance, y is the output, and

output channel z∞ is associated with H∞ control performance. From (2.13), the closed-

loop transfer function is formed as:

T (s) = Ccl∞(sI − Acl)−1Bcl +Dcl∞ (2.14)

where Acl = A + B2K, Bcl = B1, Ccl∞ = C2 + D12K, and Dcl∞ = D11. The H∞ norm

of the closed-loop transfer function, T , ||T ||∞ is defined as:

||T (s)||∞ = sup
ω>0

σ̄(T (jω)) (2.15)

where σ̄(T (jω)) is the largest singular value of T . The LTI system given by 2.13 is asymp-

totically stable and H∞ norm does not exceed the specified maximum bound, ξ∞ > 0, if

and only if there exists a symmetric matrix, X∞, such that:


AclX∞ +X∞A

T
cl Bcl X∞C

T
cl∞

BT
cl −I DT

cl∞

Ccl∞X∞ Dcl∞ −ξ2I

 < 0 (2.16)

X∞ = XT
∞ > 0 (2.17)
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2.1.4 Pole-Placement Region

Neither of the two aforementioned controls, i.e., H2 and H∞ controls, allow the place-

ment of the closed-loop poles in a particular region. Since the location of the poles is

related to the transient behavior and time response of the closed-loop system, it is desirable

to ensure additional damping constraints. The closed-loop poles can be forced into some

sector of the stable left half-plane to obtain adequate system damping using the regional

pole-placement constraints. This will also ensure that the synthesized feedback gains are

kept at a reasonable value, which might otherwise lead to controller output saturation, and

poor performance to large disturbances [108].

The formulation of the closed-loop region constraints for the systems defined by (2.8)

and (2.13) can be expressed using LMIs, which can be solved to obtain the feedback gain

matrix, K, for placing the closed-loop poles in any desired LMI region. LMI regions are

convex subsets of the complex plane, and can be described by D = sεC : V +Ws+W T s̄ < 0,

where C refers to the complex plane, V = V T = {Eij}1≤i,j≤m and W = {Iij}1≤i,j≤m are

fixed real matrices, and s̄ is the complex conjugate of s. Different complex regions in the

complex planes that are symmetric with respect to the real axis, such as half plane, conic

sectors, circles, as well as their combinations, can be expressed as LMI regions. Lastly, the

closed-loop system will be D-stable, if and only if there exists a positive definite matrix,

Xpol, such that: [105]

[EijXpol + Iij(A+B2K)Xpol + IijXpol + IjiXpol(A+B2K)T ]1≤i,j≤m+ < 0 (2.18)

where Xpol > 0 .
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2.2 Deep Neural Networks

Deep neural networks (DNNs) are non-linear approximators, whose architectures can

vary greatly in structure depending on their applications. However, all of the networks have

the same basic components. This section will briefly describe those components.

A DNN learns the functional relationship, f : Rn → Rm between the n-dimensional

input and the m-dimensional output based on the training done using known input-output

datasets. The DNN used in this work has a feedforward structure. It is composed of an

input layer, P number of hidden layers, and an output layer. The number of neurons, n, in

the input layer is determined by the size of the input features, x ∈ Rn. The first component

of the neurons in each layer is a linear function that computes the weighted sum of the

output from the previous layer. An example of a 2-hidden layer architecture with 4 neurons

(input features, x1, x2, x3, and x4) each is shown in Fig. 2.1. The output of the first neuron

of hidden layer 1, z(1)
1 can be expressed as a linear function as [109]:

z
(1)
1 = x1θ1 + x2θ2 + x3θ3 + x4θ4 + b (2.19)

where {θ1, θ2, ...θ4} are the weights and b is the bias term. The second component, which

represents the final output of each neuron, incorporates an activation function, g, that is

tasked with applying a non-linear transformation between the neurons, i.e.,

h
(1)
1 = g(z

(1)
1 ) (2.20)

Different types of activation functions, also known as transfer functions are available.

Theses activation functions such as linear, sigmoid, and rectified linear unit (ReLU) [109],

[110] can be different within each layer. The important property of these functions is that

they are differentiable at every value. The most basic transfer function is the linear function,
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Figure 2.1. Example of a Fully-Connected DNN.

Figure 2.2. Linear Activation Function.

which returns the input value passed to it. The linear function given by (2.21) is shown in

Fig. 2.2 [110]. The output layer of the regression-based DNN usually uses this function on

its output layer.

g(z) = z (2.21)

A commonly used activation function for the feedforward DNNs that need to output only
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Figure 2.3. Sigmoid Activation Function.

positive values is the sigmoid function given by (2.22) and shown in Fig. 2.3 [110].

g(z) =
1

1 + e−z
(2.22)

In recent times, the most suitable choice for the activation function has been the ReLU

function as it is resilient against the vanishing gradient problem (refer Fig. 2.4 ) [109]. The

following equation shows the ReLU activation function:

g(z) = max(0, z) (2.23)

The loss function (cost function), J , is used to measure how well the DNN model fits

the training set. An example of J would be the mean squared error defined as:

J =
1

2m

m∑
i=1

(ŷ − y)2 (2.24)

where m is the total number of training samples, y is the actual output of a neuron in the
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Figure 2.4. ReLU Activation Function.

final layer, and ŷ is the predicted value of the target output computed using the forward

propagation process (the process of reaching the end of the network starting from the input

layer using the weights and activation functions). The training of the DNN is conducted

using the back-propagation algorithm, i.e., propagating the error signal backwards through

the network. Learning is accomplished by calculating the gradient of the loss function

with respect to the network weights using the chain rule. The weights are updated using a

learning rate, α, multiplied with the gradient error [109]:

θnew ← θold − α
∂J

∂θ
(2.25)

The stochastic gradient descent algorithm is one of the most popular training algorithms

which works by the selection of random batches of training data. An epoch is completed

after the complete training data is processed [110].

2.3 Reinforcement Learning

This section presents the theoretical background of reinforcement learning (RL) used

to design the wide-area damping control implemented in this report.
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RL is an algorithm that learns to make a sequence of decisions through trial and error.

The framework consists of an autonomous, self-learning system (referred to as an agent)

that learns an optimal or near-optimal control policy dynamically by interacting with its

environment in discrete time steps while satisfying a predefined goal. The agent must

explore different actions to find more information about the numerical states representing

the environment. It must also exploit the known information to eventually learn a behavior

that yields maximum positive rewards.

The mechanism of RL is different from other forms of machine learning, i.e., supervised

learning and unsupervised learning. The agent’s goal is not to learn from the labeled set

of the correct actions (as is done during supervised learning) or to find the general pattern

hidden in the unlabeled data (as is done during unsupervised learning). Therefore, RL is

considered as a separate category. However, it is to be noted that there are RL algorithms

that involve the use of supervised learning.

2.3.1 Markov Decision Process

Both RL and modern controls problems are closely related to each other, particularly

when describing system states and actions. Both forms of controls follow the Markov deci-

sion process (MDP), i.e., both controls take only the currents states as inputs and generate

actions while ignoring the history of states and actions. The formulation of RL as a finite

MDP,M, is a 5-tuple [111]:

M = (S,A,R,P, γ) (2.26)

where S is the state-space which can be continuous or discrete, A is the action space

which can be continuous or discrete, R is the distribution of rewards given a state-action

pair, P is the transition probability that maps a state-action pair at time t onto a distribution

of states at time, t+ 1, and γ ∈ [0, 1] is the discount factor.
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Fig. 2.5 shows the interaction between the agent and the environment for a generic

RL model. At each time step, t, the agent receives an observation, st ∈ S, from its envi-

ronment, takes an action, at ∈ A, and receives a scalar reward, rt ∈ R. The process is

repeated in episodes. The action-reward feedback loop continues until the training reaches

the end of one dynamic simulation (end of one episode).

The agent’s behavior is defined by the policy, π, that maps the state space to action

space, π : S → A. The policy can be either deterministic or stochastic. A deterministic

policy always selects the same action given the exact same state every time, and is given

by π(s) = a. This is usually the same approach, followed by the modern controls. On the

contrary, a stochastic policy maps the state to the probability distribution over the action

space, i.e., π(a) = P(a). This policy can be very useful when one of the PMU sensors is

not reliable or noisy.

The goal of the agent is to learn an optimal policy π∗ that maximizes the cumulative

discounted reward, Rt =
∑T

i=t γ
i−tri+1 [112]. The γ is a hyperparameter which deter-

mines the weight of the future rewards. If γ = 0, then agent considers only current reward,

while for a value of 1, priority is given to the future rewards.

A central tool in the search for the optimal policies is the evaluation of the state-value

Figure 2.5. Interaction Between RL Agent and Environment.
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function, V π, and action-value function, Qπ, also called the Q-function. The state-value

function determines the goodness of a state and is defined as the expected cumulative future

discounted reward in state s from following the policy, π.

V π(s) = Eπ[Rt | st = s] (2.27)

The Q-function quantifies the expected cumulative reward after taking the action, at, in

state, st, and then follows the policy, π [112]:

Qπ(st, at) = Eπ[Rt | st = s, at = a] (2.28)

The optimal Q-value is determined using the recursive relationship given by the Bell-

man optimality equation:

Q∗(st, at) = E{rt+1 + γmax
at+1

Q∗(st+1, at+1) | st = s, at = a} (2.29)

The Bellman equation is used to guide the estimates of Q-values close to their true values.

RL can be divided into two main categories: model-based and model-free approaches.

A model-based algorithm uses the model dynamics to estimate an optimal policy. For

example, a model predictive control based trajectory optimization can be used to direct the

policy learning and avoid local optima. This concept is similar to the Guided Policy Search

(GPS). Dynamic Programming is another model-based technique, which requires the use

of transition probabilities (probability distribution over next states and rewards), and hence

is primarily used for planning in a MDP [113], [114].

The second category is the model-free RL algorithm. It learns a policy without need-

ing to use the model or the information of the system dynamics. This model is useful in

situations when a transition function is not available to describe the dynamics of the en-
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vironment, but instead, experiences can be sampled. It can be further divided into two

subcategories: policy-based methods and value-based methods.

2.3.2 Value-Based Methods

The value-based RL methods approximate the Q-function, and use it to take an action.

One of the popular value-based algorithms is Q-learning, which finds the optimal value of

Q-function using [113]:

Q(st, at)← Q(st, at) + η[rt+1 + γmax
at+1

Q(st+1, at+1)−Q(st, at)] (2.30)

where η represents the learning rate. The problem with the Q-learning is that it is not

scalable, as it is not computationally feasible to compute Q(st, at) for every state-action

pair in a large state space. The solution is to use a function approximator, such as a DNN,

to approximate the Q-value; this algorithm is referred to as deep Q-learning (DQL). The

benefit of value-based methods is that they can learn off-policy, i.e., learning about policy

π (target policy) from experiences sampled from another policy, ν. Another example of

value-based method is state action reward state action (SARSA), which, however, learns

on-policy (learning about policy π from experiences sampled from the same policy, π). The

main disadvantage of these methods is that they are only suitable for discrete action space;

they may also have convergence issues.

2.3.3 Policy-Based Methods

Policy-based methods (also referred to as policy gradient) learn policy π directly with-

out using the Q-function to make the decisions. The REINFORCE and the trust region

policy optimization (TRPO) are some of the examples of policy-based methods. The ad-

vantage of these methods is that they are more effective in high-dimensional and continuous
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action spaces, but suffer from high variance. However, there are techniques to reduce the

variance, some of which are REINFORCE with baseline and actor-critic algorithms [111].

2.3.4 Actor-Critic: Deep Deterministic Policy Gradient

Both value-based and policy-based methods have their pros and cons. A natural idea

is to combine the benefits of both methods. This is called the actor-critic method. The

policy π can be thought of as an actor because it chooses the action while the action-value

function, Q, can be thought of as a critic because it evaluates the action selected by the

actor.

The Deep Deterministic Policy Gradient (DDPG) is also an actor-critic method devel-

oped for handling continuous actions space [112]. As the name suggests, it uses a de-

terministic approximation of the policy function instead of a stochastic function. It is an

off-policy method that concurrently learns a policy and a Q-function. It uses off-policy

data and Bellman equation to learn Q-function, and uses the Q-function to learn the pol-

icy. The DDPG agent uses four function approximators (DNNs) to estimate the policy and

value functions: actor (π), target-actor (πtarg), critic (µ), and target-critic (µtarg). The target

networks are time-delayed copies of their original networks that slowly track the learned

networks. Without the use of these target networks, learning can become unstable. The up-

date equations of the critic (Q) network are dependent on the target Q-values (refer 2.30),

which in turn depends on the same weight parameters used for training, θ. This may lead

to the divergence of the Q network. Therefore, copies of the critic µtarg and the actor πtarg

networks are creating for calculating the target values. The original µ and π networks are

updated after each parameter updates while the weights of both the target networks are up-

dated slowly (soft updates): θtarg ← ρθ + (1− ρ)θtarg with ρ. Here ρ is a hyperparameter,

referred to as polyak whose value lies between 0 and 1 (usually close to 1).

RL is a sequential process, hence the states and the actions explored by the agent during
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the learning would not be independently distributed. This can lead to inefficient learning.

To address this problem, DDPG uses a finite-sized cache, replay buffer, D, to sample the

experiences to update the DNN parameters. The agent’s experiences are stored as a tuple

(st, at, rt, st+1) into the replay buffer. During the update of the function approximators,

a mini-batch of B random samples is drawn from D. This ensures that the correlation

amongst the drawn samples is low and also provides better sampling efficiency.

There is a trade-off between exploration and exploitation in the RL algorithm. To obtain

higher rewards, if an agent always selects the action (exploit) it believes is the best (generate

the maximum reward), it will never be able to explore new actions. However, to discover

these actions, it must explore new and perhaps better actions. This is referred to as the

exploration-exploitation dilemma in RL. To improve the exploration capabilities of DDPG

policies, noise sampled from a pre-defined process is added to the actions. For example,

in [112], the Ornstein-Uhlenbeck (OU) process is used to generate temporally correlated

noise. The algorithm for DDPG is listed in Algorithm 1 [112].

Algorithm 1: Deep Deterministic Policy Gradient (DDPG)
1 Randomly initialize critic network Q(s, a | θ), actor network µ(s | θ) with weights θ and φ.
2 Set the target networks, Qtarg and µtarg with weights θtarg ← θ and φtarg ← φ.
3 Initialize the experience replay buffer, D.
4 for episode, e ≤M do
5 Observe initial state, s.
6 Initialize random noise, N .
7 for timestep, t ≤ T do
8 Select action, at = µ(st | θ +Nt).
9 Execute at and observe the reward, rt, and next state, st+1.

10 Store the transition {st, at, rt, st+1} in D.
11 Sample a random minibatch of B transitions {si, ai, ri, si+1} from D.
12 Compute the critic target yi(ri, si+1) = r(si, ai) + γQtarg(si+1, µ

targ(si+1) | θtarg).
13 Update the Q-function (critic) by one step of gradient descent using

L = 1
B

∑B
i=1(yi −Q(si, ai | θ))2.

14 Update actor policy by one step gradient by
∇φ ≈ 1

B

∑B
i=1∇aQ(s, a | θ) |s=si,a=µ(si)∇φµ(s | φ) |s=si .

15 Soft update the target networks as
θtarg ← ρθ + (1− ρ)θtarg

φtarg ← ρφ+ (1− ρ)φtarg

end
end
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2.4 Imitation Learning

An alternative to RL for learning sequential decision-making policies is imitation learn-

ing (IL). In IL, instead of learning from the reward function, the agent first observes the

actions of an expert (demonstrator) and then uses this set of expert’s demonstrations to

learn the optimal policy by following (imitating) the expert’s decisions. This approach

is successful in scenarios where a reward function is not available (e.g., teaching a self-

driving vehicle), or designing a reward function that can satisfy the desired behavior is

highly complicated. This method has also benefited from the recent progress in core learn-

ing techniques, increased availability, and fidelity of demonstration data [115]. The IL

algorithm is formulated using a MDP framework. However, unlike the RL algorithm, a set

of demonstration trajectories, which are sequences of states and actions, are also provided

to the environment [116]:

• State-space, S and action space, A.

• Transition model, P(st+1|st, at) that maps a state-action pair at time t onto a distri-

bution of states at time, t+ 1.

• Optionally, a reward function,R that the expert is trying to optimize is also available

in some problem settings [117].

• Set of one or more teacher demonstrations (s0, , a0, s1, a1, ...), where actions are

drawn from the expert’s (optimal) policy, π∗.

The detailed description of this technique can be found in [116], [117].
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CHAPTER 3

MODERN CONTROL IMPLEMENTATION

3.1 Controllers and their Interactions

3.1.1 Design of PSSs, SVC and DC-SDC

The aim of both PSSs and DC-SDC is to damp the modes of rotor oscillations by

inducing pure damping torques on shafts of generators. For the purpose of addition of

DC-SDC, HVDC systems are modeled as described in [98]. The PSS model shown in Fig.

3.1(a) uses shaft speed deviation as an input signal to add the stabilizing signal, V PSS
s , to

the exciter input and is of the form,

V PSS
s = KPSS(

sTw
1 + sTw

)(
1 + sT1PSS

1 + sT2PSS

)(
1 + sT3PSS

1 + sT4PSS

)∆ω (3.1)

The design of DC-SDC used in this work is similar to the conventional structure of a PSS

as shown in Fig. 3.1(b). The controller output, PDC
mod, given by (3.2), modulates the active

power reference setpoint through HVDC link based upon the local signal, i.e., the frequency

deviation of the AC bus to which DC converter is connected.

PDC
mod = KDC(

sTw
1 + sTw

)(
1 + sT1DC

1 + sT2DC

)(
1 + sT3DC

1 + sT4DC

)∆f (3.2)
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The first terms in (3.1) and (3.2) are used to washout the compensation effect after a

time lag, Tw, which ensures that steady state changes in the input do not modify the output

signal. T1PSS−T4PSS are lead time constants for PSS to compensate the phase lag between

the input and output signals at oscillation frequencies of interest and T1DC −T4DC is a lead

compensation pair for DC-SDC. KPSS represents the gain block for PSS while KDC is

the gain for DC-SDC. The third type of controller which is considered in this study is an

SVC model whose structure is shown in Fig. 3.1(c). Its primary objective is to provide

voltage support to the system, but is equipped with an additional capability to include its

own stabilizer model for damping LFOs.
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Figure 3.1. Different Types of Controllers.

3.1.2 Types of Control Interactions

To enhance the performance of large interconnected power systems, there has been a

considerable increase in the number and complexity of power system controllers. However,
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the inter-controller interactions may result in effects that are detrimental to the overall sys-

tem performance. As there can be many possible combinations and configurations of the

controls, the scope of this report is limited to the study of electromechanical interactions

between controllers. For the controllers considered in this thesis, these can be categorized

into:

a) Interactions between different PSSs,

b) Interactions between PSSs and SVCs,

c) Interactions between PSSs, SVCs, and DC-SDC.

These interactions can manifest themselves in many ways. For example, improvement

in the gain of DC-SDC can improve the damping of one mode, but degrade the damping of

other modes. Hence, there is a need to coordinate the tuning of these controls. An example

of negative interactions among different controls is provided in Table 5.5 of Section 5.2.1.

3.2 Proposed Wide-Area Damping Controller Structure

One approach to provide better observability of the inter-area modes as well as mini-

mize the potential for adverse interactions between the (multiple) existing controllers is by

using both local and wide-area signals simultaneously, resulting in a bi-level operational

scheme. The schematic of the CWADC design which does so is shown in Fig. 3.2. The

selected stabilizing signals are measured by geographically distributed PMUs and sent to

CWADC through dedicated communication links. The control signals are then sent to au-

tomatic voltage regulators (AVRs) of several selected local machines, SVCs, and SDCs

installed on DC lines as shown in Fig. 3.3. On receiving the respective control commands,

the local controllers act in unison to increase the damping of oscillation modes. This design

process does not require any modification of parameters of the existing controllers; instead,

it exerts additional stabilizing signals, ui, (where i = {1, 2..p} and p < total controllers) to
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enable them to overcome their tuning deficiencies. Furthermore, if remote signals are lost,

the bi-level design ensures that all the local controllers can autonomously work based on

the locally available information.

To restrict the output of CWADC within an acceptable range, limiters are also included.

Limiter action is mandatory for the system since the proposed controller can create un-

necessary violations in the AC and DC voltages in the network through the action of local

controllers. In this design process, all PSSs, DC-SDCs, and SVCs are modeled in the

open-loop state-space representation, on which design of CWADC is based.

Coordinated Wide-
Area Damping 

Controller 
(CWADC)

SVC

DC- SDC

𝑷𝑺𝑺𝟏

𝑷𝑺𝑺𝟐
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𝑷𝑺𝑺𝒏
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AC network

Interfacing 
Converters
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DC 
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CWADC Signals
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Figure 3.2. Schematic of CWADC.
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Figure 3.3. Input/Output Control Scheme for Bi-Level Design.

3.2.1 Multi-objective Controller Design

An ideal control design must satisfy a mix of performance and robustness objectives,

which can be difficult to realize using a single control criterion [105], [118]. Therefore, the

proposed controller is designed based on a multi-objective H2/H∞ synthesis technique,

that incorporates various criteria including control effort minimization, disturbance rejec-

tion, optimal control performance, and control robustness. TheH2 optimization gives more

control over the system’s transient behavior while minimizing control cost, while the H∞

control ensures robustness against dynamic uncertainties [119]. To ensure good transient

response of the closed-loop system, pole-placement constraints are added to the multi-

objective control problem. Such constraints are important as they keep gains at reasonable

values, which may otherwise lead to controller output saturation [43]. An LMI framework

is used to solve for state feedback with the combination of objectives described above. The
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state-space model of the studied system and its associated controls corresponding to an OC

posed with H2/H∞ formulation is described by:

ẋ = Ax+B1w +B2u

z∞ = C1x+D11w +D12u

z2 = C2x+D22u

y = Cyx+Dy1w +Dy2u

(3.3)

where x is the state of the system, u is the control, w is the disturbance, y is the output, A,

B1 , B2 , C1 , C2 , D11 , D12 , D22, Cy, Dy1, Dy2 are state-space matrices, and z2 and z∞

correspond to H2 and H∞ controls, respectively. Note that D21 is set to zero for computing

the optimal H2 control, as it will otherwise make the H2 norm infinite. The three sets of

design objectives, i.e., H2, H∞ optimizations, and pole-placement constraints as defined in

Sections 2.1.2-2.1.4 can be combined together, if a single Lyapunov matrix can be found

such that:

X = X2 = X∞ = Xpol > 0 (3.4)

where X2, X∞, and Xpol are the Lyapunov matrices satisfying the H2, H∞, and pole-

placement constraints, respectively (refer Sections 2.1.2-2.1.4). However, the three sets

of conditions leads to a non-convex optimization problem. Therefore, with the change of

variable Y = KX , the suboptimal LMI problem corresponding to multi-objective state-

feedback synthesis for the OC defined by 3.3 can be formulated as:

min
Y,X,Q,ξ2

(a||T ||2∞ + b||G||22) (3.5)
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satisfying:


AX +XAT +B2Y + Y TBT

2 B1 XCT
1 + Y TDT

12

BT
1 −I DT

11

C1X +D12Y D11 −ξ2I

 < 0 (3.6)

 Q C2X +D22Y

XCT
2 + Y TDT

2 X

 > 0 (3.7)

(V ⊗X) + (W ⊗ (AX +B2Y )) +WT ⊗ (AX +B2Y )T < 0 (3.8)

where X is the Lyapunov matrix, Q is positive-definite matrix, ⊗ is a Kronecker product,

ξ2 < ξ2
∞ and Trace(Q) < ξ2

2 . ξ2 and ξ∞ are the respective maximum bounds for closed-

loop transfer functions of system for H2 and H∞ controls.

The optimal state feedback matrix can be obtained as K = Y (X)−1. The function

msfsyn in LMI toolbox can be used for this purpose. However, for calculating the opti-

mal value of the Lyapunov matrix, X , mincx function is used in LMI which implements

Nesterov and Nemirovski’s Projective Method as described in [105], [120].

3.2.2 Extension to Multiple Operating Conditions: Polytope

Formation

Power system OCs vary with system configuration and load level in a complex manner.

As the system’s operating point changes, the characteristics of electromechanical modes

also vary. Although a controller may be designed for the nominal operating point of a

network, real OCs are defined by various factors, including load variations, availability of

renewable generation, tie-line outages, and energy market fluctuations. It, therefore, makes

more sense to combine different operating points together when designing a single damping
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controller that is effective over the whole range. To successfully develop such a control,

this report delves into the idea of creating an LMI-based polytopic control design, in which

the uncertainty of the system is considered in the design itself. For the implementation

of such a model, the system is linearized at a number of typical operating points, that are

decided by the scheduling variables measurable in real-time such as load levels, and tie-line

flows. The OCs with converged power flows constitute the vertices of the polytope. For a

given OC, the vertex, v, of the polytope, Γ, can be expressed as:

Γt =



Av Bv1 Bv2

Cv1 Dv11 Dv12

Cv2 0 Dv22

Cvy Dvy1 Dvy2


(3.9)

The convex combination of different vertices representing different system matrices is

given by:

Γ{Γ1,Γ2, ..Γv} = {
v∑
i=1

ϕiΓi :
∑
i=1

ϕi = 1, ϕi ≥ 0} (3.10)

Here, ϕi denotes the polytopic coordinate of Γ. The convexity property of the polytope

ensures that once the quadratic stability is established for the vertices, the same control

extends for the complete polytopic region.

3.2.3 System Reduction

With detailed synchronous machine and control models such as those of exciters, PSSs,

and governors, the size of Av and Γv as defined in (3.9) can become large even for a mod-

erately sized system. It is often desirable to obtain a lower order plant model to ensure that

it is not too complex for practical implementation. In this work, selective modal analysis

(SMA) [121] is used for simplifying the complicated LTI models of the dynamic system,
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as it provides the advantage of retaining the physical attributes of the state variables that

are strongly linked to the LFOs. Furthermore, as the identity of the state variables is known

a priori, SMA can be used to exploit the state clustering and coherency techniques [122],

[123]. A rigorous comparison of the modal analysis of the full and reduced order systems

ensures that only those system states that have little effect on the input-output behavior of

the system are discarded. The closed-loop reduced order system can be approximated by:

ẋ1 = (A1 +M +NKLMI−poly)x1 (3.11)

where A1 represents the portion of the matrix Av consisting of important system states,

M and N are the fixed matrices denoting the non-significant dynamics of the system, and

KLMI−poly is the gain matrix obtained using LMI control.

3.2.4 Selection of Control and Stabilizing Signals

Measurements that can retain the good observability of the oscillatory modes of in-

terest (inter-area modes) are good candidates for selection of the input stabilizing signals.

The control of the inter-area modes can be effectively provided through generators whose

states actively participate in these modes. For indicating the relative contribution of a state

variable, xp, in the ith mode, the most accepted solution is the speed (angle) participation

factor, pf i. It is given by the combination of both Li and Ri, where Li and Ri are the left

and right eigenvectors, respectively, of mode i [13]. Mathematically, pf i is defined as,

pf i =



pf 1i

pf 2i

...

pfmi


=



R1iLi1

R2iLi2
...

RmiLim


(3.12)
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High values of speed (angle) participation factors (PFs) of generators present in dif-

ferent areas for the same mode indicate the presence of an inter-area mode of oscillation.

3.2.4.1 Limitation of Using PFs Directly

The idea here is to control those generator states which are influencing more number of

modes by having higher participation in them. However, the underlying relationship be-

tween ensuring stability and minimizing control effort cannot be discovered from PFs di-

rectly. This is realized from the PFs of the no-contingency case of the 16 machine, 68-bus

system New England-New York Interconnected Power System [4], which are shown in Fig.

3.4. From Fig. 3.4 one can realize that by observing the PFs directly, it is very difficult

to draw any definite conclusions regarding the minimum number of states that must be

controlled for improving the system’s stability. Consequently, a methodology is proposed

here that uses PFs as a starting point for control effort minimization.

Figure 3.4. Using PF Directly.
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3.2.4.2 Methodology for Minimizing Control Effort

In this section, a clustering approach is proposed for allocating minimal control for ro-

bust damping of LFOs. Here, clustering implies grouping different generators according to

their PFs. Once the clusters are formed, the next step is to identify the set of non-critical

generators, S, which can be dropped from the control group responsible for damping the

oscillations. That is, the size of A1 matrix obtained from SMA is reduced further (hence-

forth referred to as enhanced SMA) and LMI control is applied using the δ and ω of the

remaining generators. To ensure quality, a preprocessing step is included before the data is

fed to the clustering logic. The schematic of the proposed scheme is shown in Fig. 3.5.

Gen1 Gen2 Geni Genq
. . .

Participation Factor (PF) Analysis

𝛅1(𝛚1) 𝛅2(𝛚2) 𝛅i(𝛚i) 𝛅q(𝛚q)

Pre-processing
a) Calculate average participation of each state, 𝑝𝑖𝑎𝑣𝑔

𝛿 across all modes

b) Scale individual PF of each state in different modes with respect to 𝑝𝑖𝑎𝑣𝑔
𝛿

Clustering
a)  k-means clustering

b) Silhouette index for defining exact number of clusters

Clusters of 𝑃𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑
𝛿

Selection of set of non-critical generators, S

𝑝𝑖1
𝛿 , 𝑝𝑖2

𝛿 , …𝑝𝑖𝑛
𝛿

𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, 2 … 𝑞

𝑃𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑
𝛿

Figure 3.5. Proposed Methodology for Generator Selection.

1)Pre-processing Step

This step ensures that an appropriate association is made between the critical modes

and the states associated with them.

a) First, the average participation of each state across all the modes (including critical
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as well as non-critical) is calculated. If there are a total of q generators in a system with

n LFOs, of which Θ are critical modes, and participation of each generator state, i (for

instance, speed), in any mode, j, is pδij , then

pδiavg =
pδi1 + · · ·+ pδij + · · ·+ pδin

n
, i = 1 · · · q (3.13)

where q = n + 1; the relationship between q and n (given by q = n + 1) stems from the

fact that there is one reference machine in the system.

b) Scaling of the PFs for each state is now done with respect to its calculated average

PF as shown below:

pδimodified = (
pδi1, p

δ
i2, · · · pδin
pδiavg

), i = 1 · · · q (3.14)

The motivation of using pδimodified is to obtain the PFs with respect to the generator’s

average contribution in all the modes.

2)Clustering Technique

After the implementation of the data transformation step, the modified PFs correspond-

ing to different generators are clustered using k−means, which classifies them into κ user-

defined groups, {Λ1,Λ2, ...Λκ}. The clustering is done by minimizing the sum of squares of

distances (SSE) between the data points, P δ
modified = {pδ1modified, pδ2modified, ...pδqmodified}

and the centroids of corresponding clusters, {c1, c2, ...cκ}, as shown in (3.15),

SSE =
κ∑
ε=1

∑
P δmodified⊂Λκ

(cε − P δ
modified)

2 (3.15)

where cε = 1
tε

∑
P δmodified⊂Λκ

P δ
modified, and tε is the number of datapoints contained in

cluster Λκ.

43



The datapoints are then assigned to the clusters with the nearest centroid, after which

the centers are recomputed. The process is repeated until the assigned centroids do not

change [124]. The output of k −means is influenced by κ and the choice of initial cluster

centers. To ensure quality of partition, silhouette index is employed [125]. The silhouette

ranges from -1 to 1, where a high value guarantees a well-defined clustering result. The

idea is to run k − means clustering on dataset for a varying range of values of κ and

then for each of its values, calculate SSE. It is then plotted against κ, with the location of

the knee point on the curve indicating the optimal number of clusters formed. The set of

non-critical generators, S, are now selected based on the following logic:

a) Highest priority is given to the generator influencing minimum number of system

modes.

b) The next priority is given to a generator with higher |pδimodified|, which denotes that

contribution of a generator in few modes may be high, but its average contribution in other

modes is low.

c) Care is taken to ensure that none of the generators having high value of pδikmodified

in multiple critical modes, λcrit are eliminated from the control where k = 1, 2, ...Θ.

The clustering technique is applied to the same system, whose PFs are shown in Fig.

3.4. The validation of the number of clusters has been done by plotting the Silhouette

index against the number of clusters, as shown in Fig. 3.6. For this system, q = 16,

n = 15, Θ = 4, and P δ
modified is clustered into κ = 5 groups (see Fig. 3.7). Sets of first

three generators for each critical mode selected on the basis of decreasing order of pδiΘ are:

Ψ1 = {g67, g66, g68}, Ψ2 = {g65, g61, g58}, Ψ3 = {g68, g66, g67}, and Ψ4 = {g65, g67, g66}.

Elements of critical generator set, Ψcrit, are defined by Ψa ∩ Ψb where a, b ∈ 1, ..Θ. On

doing this, the top three machines in Ψcrit come out to be g65, g66, and g67. Combining

this knowledge with the modified PFs shown in Fig. 3.7, it is clear that g63, g62, and g60

have high values of pδimodified, but low participation in λcrit. Hence, for the base-case of
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the 68-bus system, these are the first three machines that can be dropped from the control

feedback.
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Figure 3.6. Validation of Number of Formed Clusters.

Figure 3.7. Using Modified PF.
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3.2.4.3 Proposed Minimal Control Algorithm

The proposed algorithm for minimizing the control effort using the enhanced SMA (a

combination of SMA, modified PFs, and k − means clustering technique) is shown in

Algorithm 2. It is described as follows:

1. Perform the SMA to reduce the size of the system to relevant system states, i.e.,

speeds and angles of the machines present in the system.

2. Next, identify the critical modes, λcrit, and the generators having maximum partici-

pation in these modes using the PFs.

3. Identify the initial set of non-critical generators, Ψinit
non−crit, with the help of modified

PFs and k −means clustering algorithm as explained in Section 3.2.4.2.

4. Drop a single non-critical machine belonging to Ψinit
non−crit, and check for the follow-

ing conditions:

• Perform SMA for the reduced-order system (obtained after dropping the ma-

chine) and check for its convergence.

• If SMA converges, apply a rudimentary linear quadratic regulator (LQR) (which

is a special case of H2 control) to find if the closed-loop system is stable.

5. If the application of the LQR control results in a stable system, repeat step 4) itera-

tively for all the machines in Ψinit
non−crit.

6. If SMA fails to converge or the application of LQR destabilizes the system after

dropping a machine, the preferred size of the reduced-order system, A1 would be the

stable and converged system obtained in the previous iteration.
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7. Repeat the steps 1)-6) for the system operating at different conditions. It is to be

noted that with the use of enhanced SMA, the obtained size of the A1 matrix varies

with different OCs. However, as the focus is to design a singleKLMI−poly for a range

of operating points, similar generator states were retained for each of the vertices

(OCs) of the polytope, as a result of which no further reduction in the dimension of

A1 matrix could be achieved. Hence, the system is reduced to minimum state-space

representation, which makes it fully controllable and observable.

8. Check if the application of the proposed KLMI−poly results in minimum damping,

ζmin, for the closed-loop polytopic system.

Algorithm 2: Minimum (Primary) Control Set Selection
1 Perform the SMA to reduce the size of the system to speeds and angles of all the machines.
2 First, identify λcrit and set of generators,Ψcrit, responsible for them.
3 Segregate the generators into multiple clusters using k −means clustering in conjunction with the
silhouette index.

4 Define the sequence of generators, Ψinit
non−crit consisting of p elements as

{gennon−crit1, gennon−crit2, ...gennon−critp}.
5 for d ≤ p do
6 Drop Gennon−critd and check for following conditions:

a) Find if SMA converges, i.e. λA1+M ≈ λA where λA and λA1+M are eigenvalues of
original and reduced system, respectively. If yes, goto step b) else goto step c).

b) Find K by applying a rudimentary LQR control to A1 +M
and check if ζA−B∗K ≥ ζmin.

c) Set d = d+ 1.
end
The final set of non-critical generators selected for dropping would be Ψfinal

non−crit composed of g
elements. The preferred size of A1 would be the stable and converged system obtained in the
previous iteration.

7 Set Γpolytope = {Γ1,Γ2, ...Γt}, where t = operating condition, and design LMI gain, KLMI−poly,
for it.

8 Check if {ζΓcl1
, ..ζΓclb

...ζΓclt
} ≥ ζmin where ζΓclb

is damping of closed-loop system, Λb.

3.2.5 Flexibility of Feedback Selection

In this report, flexibility is defined as taking PMU measurements from alternate loca-

tions in case the primary locations encounter a problem. The selection of the alternate

feedback control signals is performed using Algorithm 3, which is briefly summarized

below. To select an alternate set of control signals, a set Φ = Ψinit
non−crit\Ψ

final
non−crit is defined,
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where Ψinit
non−crit denotes the initial set of non-critical generators identified using k−means

clustering and modified PFs, while Ψfinal
non−crit signifies the primary set of non-critical ma-

chines that are dropped from the control group using enhanced SMA (refer to Algorithm

2). With the help of an iterative process, a single generator in the list of non-critical gen-

erators, Ψfinal
non−crit is replaced with a generator belonging to Φ to obtain a new sequence,

Ψn
final. The system obtained after dropping the generators belonging to Ψn

final, is tested

for two conditions, namely, convergence of SMA and a stable closed-loop system after the

application of LQR control. If the system satisfies these two conditions, then the retained

group of machines that result in a stable and converged system form the alternate control

set of critical generators, Ψalt
crit. On comparing the primary set of critical generators, Ψprim

crit ,

with Ψalt
crit, it is observed that the two sets have identical elements except one. The new

element in Ψalt
crit serves as an alternate location for taking the feedback in case the PMU

at the corresponding generator in Ψprim
crit encounters a problem. Applying this process it-

eratively, multiple sets of alternate feedback signals can be generated. Based on output of

Algorithm 3, the coordinated controller can switch between the primary and alternate

control sets in case the data quality of the primary set deteriorates (for instance, due to

failure of a PMU) [126].

Algorithm 3: Alternate Control Set Selection
1 Define a set, Φ, consisting of h elements as Ψinit

non−crit \ Ψfinal
non−crit. Here h = p− g, where p and g

specify the number of elements in Ψinit
non−crit and Ψfinal

non−crit, respectively. Set n = 1.
2 for f ≤ h do
3 for c ≤ g do
4 Replace the cth element of Ψfinal

non−crit with f th element of Φ to obtain new sequence
Ψn
final.

5 Repeat Steps 6.a)-6.c) mentioned in Algorithm 2.
6 Set n = n+ 1.

end
end

An example of this switching is shown in Fig. 3.8 for a system with more than 3

generators. Let two solution sets of non-critical generators obtained as the outputs of
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Algorithm 2 (primary set) and Algorithm 3 (alternate set) be given by Ψprim
non−crit =

{gen1, gen2, genk} and Ψalt
non−crit = {gen1, gen2, genj}, respectively. Now, if the PMU

at genj is down, then the coordinated controller will use Ψalt
non−crit instead of Ψprim

non−crit for

the selection of feedback signals, as genj belongs to Ψalt
non−crit and hence, can be dropped

from control. Similarly, if the PMU at genk is down, the coordinated controller will use

Ψprim
non−crit, as feedback signal from PMU at genk is not required for control purpose. There-

fore, from a control perspective, backup observability of genj can be provided by PMU

at genk, and vice-versa. It must be noted here that for the given example, if PMUs at bus

k and j fail simultaneously, then the proposed CWADC may not be able to provide the

requisite damping. Similarly, it may not be possible to find alternates for all non-critical

generators. The wide-area input stabilizing signals used in the design of CWADC are the
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Figure 3.8. CWADC with Flexible Feedback.

angles and speeds of critical generators obtained after performing an enhanced SMA, since

they provide a reasonably good approximation to the frequencies of swing modes. For the

highest controllability of these modes, CWADC sends the control signals to the SVCs, DC-
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SDCs, and exciters of the generators belonging to the critical set, which together constitute

the second control level in the bi-level closed-loop control system. The PSSs belonging to

the non-critical set of generators remain fully decentralized.

The control law for the LMI polytopic controller with gain matrix, KLMI−poly, is given

by:

u = KLMI−polyx
l (3.16)

where

KLMI−poly =



K11 K12 K13 .. K1l

K21 K22 K23 .. K2l

.. .. .. .. ..

Ki1 Ki2 Ki3 .. Kil


(3.17)

where xl denotes the reduced number of states obtained using the enhanced version of

SMA, while i signifies the number of controls present in the system.
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CHAPTER 4

AI-BASED IMPLEMENTATION

Fig. 4.1 shows the bi-level design framework for DNN-CWADC as well as DRL-CWADC,

which enables the local controls to act based on both local as well as wide-area signals.

Both the AI-based control agents are trained offline using the selected stabilizing signals

measured by geographically distributed PMUs. Depending upon the current OC, the ap-

propriate controller is put into online operation mode, which then sends the control signals

to AVRs of selected machines, SDCs installed on DC lines, and SVCs as shown in Fig.

4.1. On receiving the respective control commands, the controllers act in a coordinated

fashion to increase the damping of the oscillatory modes. Limiter action is modeled for

every local control (refer Fig. 4.1) to avoid unexpected violations in the system’s response

in real-time. In addition, H2/H∞ optimization constraints and constrained action search

method are enforced for the two control schemes (as explained in Sections 4.1 and 4.2.3)

to facilitate the inherent safety in the design processes.

4.1 Deep Neural Network (DNN) Implementation

In order to implement a polytopic controller, it is essential to have a mathematical

model of the system. However, the model may become unreliable over time, especially due

to increased uncertainties in system parameters/operation. Furthermore, for an OC lying

outside the designed polytope, the polytopic controller does not guarantee satisfactory per-
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Figure 4.1. DNN-CWADC and DRL-CWADC Based Controls.

formance [127]. A data-driven DNN-CWADC can overcome these issues by handling the

changes in the scheduled OCs through a combination of multiple polytopic controllers in

an adaptive fashion. The non-linear approximation capabilities of its multi-layer architec-

ture also render it highly effective in the control of dynamic systems without directly using

their actual state-space models.

The DNN-CWADC can be seen as a supervised mapping operation from oscillation

modes corresponding to the different OCs to the desired coordinated control actions, where

the DNN is chosen to realize such a mapping. The resulting controller will provide the

desired damping ratio at a much faster rate in comparison to the traditional H2/H∞ LMI

control [42], since most of the computations occur during the initial offline training. The

methodology used to design the proposed DNN-CWADC is as follows:

a) Stage I-Dataset Creation for DNN-CWADC: An important aspect of this work that

sets it apart from previous AI-based control efforts is the creation of a dataset using multiple

polytopes [76], [77]. A multi-polytopic control ensures the stability of the entire region
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encompassed by the OCs associated with the polytopes using a limited number of controller

gains [44]. Here, stability implies that the critical LFO modes have the requisite minimum

damping, ζmin.

The methodology for assessment of oscillatory stability of a transfer path or an area is

undertaken with a set of appropriately prepared power flow cases by following these steps:

1. Develop a set of power flow cases for the selected path: The first step is to select a

suitable base case. Different cases are then developed by modifying the generation

and load patterns of the base case such that additional power transfers are created

in the interface. The procedure is stopped when the steady state limit of the system

is violated. The steady state limit is defined as the maximum amount of power that

can be transferred between two or more areas in a power system within the stability

margins. The following must be considered when developing these cases:

• The output of the swing machine accounts for the losses in the system. It should

not be allowed to exceed its active and reactive power capability, and instead,

other generators should be re-dispatched to pick up the additional load resulting

in the increased power flow in the interface.

• The generation supply should come from the generators (can be synchronous or

inverter-based generation) that place the highest stress on the path of interest.

Some of the additional cases can be created by changing the network topology taking

one or more components out of service, i.e., creating N − 1 and N − 2 contingencies

at a time.

2. Perform post-disturbance eigenvalue analysis: For each of the above operating cases,

solve a post-transient power flow and perform eigenvalue analysis. Record the bound-

ary points found for which violations in the steady state limit of the system occurs,

53



i.e., if any of the resulting eigenvalues for the analyzed case has negative damping.

3. Obtain the reduced-order system for the above cases using the enhanced SMA (refer

to Section 3.2.4.3).

4. Create multiple combinations of three-dimensional polytopes for the reduced-order

system obtained in the previous step using H2/H∞ optimization and pole-placement

constraints (refer to Section 3.2.2). Each polytope consists of three system matrices

corresponding to three different OCs, reduced to the speeds, ω, and angles, δ, of

the critical generators, CG, using enhanced SMA [128]. For the better acquisition

of modal information of the critical oscillation modes, these attributes are further

augmented by the active power flows on critical transmission paths. The gains of the

designed polytopic controllers, KLMI−poly (refer (3.17)), are the outputs of the DNN.

Note that it is possible to create higher-dimensional polytopes (i.e., more than three

vertices/OCs). However, doing so would bring additional challenges related to dealing

with substantial feature sets, more sophisticated architecture of DNNs, and higher compu-

tational costs.The overall dataset is divided into three subgroups: training dataset for model

building, validation dataset to measure the overfitting of the model, and testing dataset to

evaluate the performance of the model for inputs external to those for which it was trained

(extrapolation).

b) Stage II-Training of DNN: Training of the DNN is performed using the normalized

input dataset consisting of δ and ω of CG, and power flows on important tie-lines. This

offers two main advantages: (a) DNNs can be applied to different systems with different

ranges of input features, and (b) the back-propagation algorithm used in the DNN can be

made to converge faster. Another important consideration for the successful performance

of the DNN is an appropriate choice of the different hyperparameters, such as the number of

hidden layers and neuron counts, activation function, regularization, batch normalization,
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and training parameters. In this work, ReLU is chosen as an activation function because

it is resilient against the vanishing gradient problem [129]. During training, the mean-

absolute error loss function is minimized using the adaptive moment estimation (ADAM)

optimizer. To optimize the number of hidden layers and neurons, and learning rate for the

ADAM optimizer, Bayesian optimization is used [130]. Bayesian optimization attempts to

find an optimal combination of parameters in a minimum number of steps, and is partic-

ularly suited for high cost functions. It works by constructing a posterior distribution of

functions (Gaussian processes) that best describe the objective function to be optimized.

The optimization algorithm balances exploration and exploitation to direct the sampling to

the regions in parameter space where an improvement over the current best observation is

likely. The problem of data overfitting is circumvented by employing L2 regularization. It

works by adding a weight penalty to the objective function using another hyperparameter,

χ, that has a value between 0 (no penalty) and 1 (full penalty). If the penalty is high, the

model will underestimate the weights and underfit the learning problem. If the penalty is

too low, the model will overfit the training data.

4.2 Deep Reinforcement Learning (DRL)

Implementation

4.2.1 Proposed Algorithm

The performance of the DNN-CWADC depends on the generation of large training

datasets, which albeit done offline, might still be computationally cumbersome to create

for high-dimensional dynamic systems. Additionally, the generated training patterns may

not always sufficiently capture the non-linear behavior of the power systems operating

under highly stressed conditions. One approach to design a real-time wide-area closed-
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loop control for systems with unknown dynamics is by using DRL.

The damping of LFOs involves a continuous action space, which cannot be imple-

mented using techniques based on discrete action space such as DQL, since:

• for a large set of actions, computation of Q-value for every action that yields the

maximum reward would require optimization at every time step.

• with an increase in the number of controllers, the discretization of a bigger action

space will lead to an exponential increase in the number of actions.

To circumvent these issues, in this work, a modified version of DDPG [112] is devel-

oped (explained in Section 4.2.3) that can learn policies in a continuous action space.

A DDPG-based CWADC aims to provide continuous control actions so that all critical

modes have damping greater than ζmin. The selection of the observation state-space, S, is

done using the same logic as presented in Section 4.1, i.e., S = {∆ωi|i = 1, ..., CG,∆δi|i =

1, ..., CG − 1}. Note that angles are computed with respect to the reference machine, and

therefore, the vector for the angle states does not include the reference machine.

In this work, LFO damping is achieved through modification of the control set-points

of the local damping controls on receiving the supplementary stabilizing signals from the

designed CWADC. Thus, the action space, A, is expressed as: A = {aj|j = 1, ..., C},

where C corresponds to the number of local controls coordinated using the DRL agent.

The proposed architecture of the DNNs used inside the DRL module is as follows: each

DNN uses an input layer, two hidden layers, and an output layer. The inputs and outputs to

the actor networks are the observation states, sit ∈ S and i = 1, ..., 2CG− 1 and controller

actions, ajt , ∀a ∈ A and j = 1, ..., C at each time step. For the critic networks, the input

layers include the observation states and the action values computed using actor networks,

while their output layers output the fitted Q-values.

To improve the exploration capabilities of DDPG policies, noise is added to each action
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during the training period. The authors of the original DDPG paper [112] recommended

using OU noise (a Markov process), but this procedure led to the saturation of the actions

close to their boundary. Hence, independent mean-zero Gaussian noise, N (0, σ2) is used

to overcome this challenge [131]. The decay rate for the sigma, σd, is used to balance the

exploration and exploitation of actions.

4.2.2 Reward Design

The reward function is aimed at maximizing the damping ratio, while penalizing the

agent proportionally for violating the stability margins. The reward, rt, at each time step, t,

is defined as the linear combination over the deviations in speeds and angles of the critical

generators being controlled and the cost of applying additional damping action to local

control j:

rt =


Huge Penalty if power flow diverges, else

−
∑CG

i=1 d1∆ωi −
∑CG−1

i=1 d2∆δi − Cj
t

(4.1)

where

Cj
t =


d3 if Tcr < t ≤ Tcr + tα

d3 ∗ 2 if Tcr + tα < t ≤ Tcr + tβ

d3 ∗ 3 if Tcr + tβ < t

(4.2)

where Tcr is the time instant of removal of the contingency. The choice of time instants, tα,

tβ , and weight factors, d1, d2, and d3 is made based on the expert knowledge of the system

as well as trial-and-error selection [90]. Note that the reward function is set to incorporate

a huge penalty if any divergence issues related to the power flows are encountered.
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4.2.3 Safety Guarantee for DRL Exploration

To ensure the safe control of the power system, it is necessary to constrain the observed

states. This is especially important when examining the DRL-based control schemes, which

predominantly use exploration for determining improved actions. Without prior knowledge

of its environment, the actions of the DRL agent can lead to unnecessary system violations.

This is also true even when rewards are carefully designed to penalize unexpected system

behavior. This is because in order for the DRL agent to learn to avoid learning an undesir-

able behavior, it will have to violate the system constraints a few times. Therefore, in this

work, a safety mechanism is proposed for constraining the action of the DRL agent to a

confined region during the learning process, while circumventing the problem of controller

output saturation. The safety mechanism consists of selecting KLMI−poly (refer (3.17)),

generated using H2/H∞ optimization and pole-placement constraints, as an initial control

input for the DRL-CWADC. Thus, the control action of each of the local controls, aj ∈ A,

is bounded in the exploration phase using (3.16) as: aj ∈ [−uj, uj] and j = 1, ..., C. This

method guides the exploratory actions of DRL-CWADC in the direction of feasible and

safe operating zones. Consequently, the size of the action space is reduced, thus leading

to faster convergence of the DDPG algorithm. The proposed algorithm is referred to as

bounded exploratory control-based DDPG (BEC-DDPG).

4.2.4 Bounded Exploratory Control-based DDPG (BEC-DDPG)

The overall implementation of the DRL-CWADC is shown in Algorithm 4. The se-

lection of the input stabilizing signals is performed using the enhanced SMA explained in

Algorithm 2, while the setpoints of different local controllers are selected as the out-

puts. At the beginning of the DRL training process, four DNNs, i.e., actor (π), target-actor

(πtarg), critic (µ), and target-critic (µtarg) with different set of random weights and the

58



replay buffer, D, are initialized (refer Section 2.3.4). The purpose of establishing D is to

break the temporal pattern between the training data and increase the robustness of training.

For the M episodes, the DDPG agent follows the process listed below.

1. At the start of the episode, a power flow is solved to obtain the initial states (∆ωi

and ∆δi) of CG. Also, the exploration noise from a Gaussian distribution, N , is

randomly initialized with zero mean and σ as the standard deviation.

2. Next, a loop for a defined number of steps per episode begins starting with the ac-

tion predicted by the π network (though the initial outputs of the networks are nearly

zero due to the manner in which the weights are initialized [112]) combined with the

exploration noise. This, however, implies that the random exploration noise over-

powers the output actions at the beginning of the training period. Thus, the limiter

action is applied to bound the control action within a safe region using the constrained

KLMI−poly generated using H2/H∞ optimization and pole-placement constraints.

This process is repeated for each of the local controls that are to be coordinated

with the help of the DDPG agent.

3. At each timestep, each of the supplementary control actions, ajt ∈ A is executed on

the environment, returning the next generator states, sit ∈ S , and the reward. This

transition is stored in D. The DDPG agent will update the weights of the critic (Q)

network followed by those of the actor π network, onceD has a mini-batch size of B

(refer Algorithm 1) or else the agent will continue to interact with the environment.

4. The weights of the target networks, µtarg, and the actor, πtarg, networks are updated

slowly using ρ parameter. The next step is to update the σ using the σd (which

dictates how fast the exploration noise decays) to balance between the exploration

and the exploitation.
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The above process is repeated until the training converges according to a convergence cri-

teria discussed in Section 6.2.

Algorithm 4: BEC-DDPG based DRL-CWADC
Input: First, identify the input generator states using enhanced SMA,

S = {∆ωi|i = 1, ..., CG,∆δi|i = 1, ..., CG− 1}.
Output: Select the outputs as the supplementary stabilizing signals of the different controllers,

A = {aj |j = 1, ..., C}.
1 Initialize the parameters for the BEC-DDPG agent: actor,

target-actor, critic, target-critic networks with random weights.
2 Initialize the experience replay buffer, D.
3 for episode, e ≤M do
4 Initialize the power system environment and obtain initial state

observations, si0 ∈ S.
5 Initialize a random Gaussian noise, N (0, σ2).
6 Select a suitable KLMI−poly controller based on the

domain-knowledge of the system.
7 for timestep, t ≤ T do
8 for controls, j ≤ C do
9 Calculate control action, ajt ,∀a ∈ A using DDPG.

10 Apply limiter action to ajt , where ajt ∈ [−ujt , u
j
t ]

and ut = KLMI−poly[s1
t , s

2
t ...s

2CG−1
t ]T .

end
11 Execute the set of actions and observe the reward, rt, and

next state, st+1, for each of the CG.
12 Store the transition {st, at, rt, st+1} in D for each of the

controls and CG.
13 Sample a random minibatch of B transitions from D.
14 Update the network parameters.
15 Update σ as σ = σd ∗ σ.

end
end

4.3 Adaptive Control Design

Fig. 4.2 gives a detailed procedure for selecting the suitable CWADC. Once the a

priori design of the DNN-CWADC and DRL-CWADC is completed using the methodology

described in Sections 4.1 and 4.2, respectively, one of the two controllers can be put into

service by following these steps:

Step a) Examine the angles of relevant generator buses from the PMU measurements

to check if the current OC represents a small perturbation or a severe transient disturbance

[37]; the latter implying inability to perform linearized system analysis. If the current OC
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does represent a severe transient disturbance, go to step d), else go to step b).

Step b) If the current OC resembles a small perturbation, and belongs to the database

of the trained/test polytopic cases, then put the respective DNN-CWADC (either trained

or extrapolated) into service. The criteria for choosing a suitable polytopic domain are

described in [43] and [44]. For an OC that is not part of any of the polytopes created during

Stage I (Section 4.1), the representative DNN-CWADC corresponds to the polytope whose

distance from the current OC is smallest.
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DNN based polytopic 

controller
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Y
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Figure 4.2. Selection of the Desired Controller.

Step c) Check if ζcrit ≥ ζmin after the application of the selected DNN-CWADC. If yes,

then validate it using time-domain simulations.

Step d) If the system is operating under a larger contingency or the performance of

the DNN-CWADC is not found to be satisfactory (i.e., ζcrit < ζmin), the trained DRL-

CWADC is selected to provide the optimal control actions for keeping the system stable.

The resulting impact of the control actions is verified by performing Prony analysis [132].

Step e) Based on the results obtained in step d), the DRL-CWADC may have to adapt to
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the unknown system changes occurring in its environment to increase its operating range.

To activate the flexible decision-making process for DRL control, its training parameters,

i.e., the weights of the four actor-critic networks can be readjusted (fine-tuned on-the-fly)

to keep pace with the changing observations in real-time. The readjustment is done through

the continuous interaction between the power system environment and the DRL module.

These interactions will continue until the desired damping response is obtained. If the

designed DRL control is unable to provide the requisite control action, reformulation of the

DRL problem is required. It is to be noted that the two controls will not act simultaneously.
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CHAPTER 5

RESULTS FOR A SINGLE POLYTOPIC CONTROL

The technique proposed for the design of a single polytopic controller is illustrated using

two test systems: a (smaller) 16-machine, 68 bus system [4], and a (larger) reduced-order

model of the WECC system [133]. Numerical experiments on these two test systems were

performed using a 64-bit operating system with Intel (R) Core (TM) i7-4510U CPU, 2.6

GHz processing speed and 8 GB RAM. The modeling, power flow, linearization based

eigenvalue analysis, and controls were accomplished by writing several routines in MAT-

LAB’s Power System Toolbox (PST), DSA Tools, and PSLF software [98], [99], [134].

The scope of application of the proposed method was limited to performing modal anal-

ysis for the smaller system, however, for the larger system, both eigenvalue analysis and

time-domain simulations were conducted.

5.1 Small-size power system-16 machine, 68 bus system

The 16 machine, 68 bus system represents the reduced-order equivalent model of five

separate areas of the New England-New York Interconnected Power System. The genera-

tors were represented by their sub-transient reactance models and equipped with manually

tuned fast DC Type 1 exciters. The parametric details for the different models used in the

cases can be found in [134]. Two types of actuators, namely, DC lines and SVCs were
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employed for implementing the control [41]. Three HVDC lines are connected in parallel

with the tie-lines between buses 1 and 27, 41 and 42, and 8 and 9. Three SVCs are installed

at buses 27, 46, and 51. To test the application of the proposed method, the DC lines are

modeled as active power and reactive power injections, while SVC is modeled as a reactive

power injection.

5.1.1 Application of the Proposed Control Scheme

For investigating the effect of the proposed control scheme, seven contingency cases

listed in Table I were created.

Table 5.1. Test Cases for 16 Machine, 68 Bus System
S.No. Case Name

1 Base Case
2 Outage in tie-line 1-2
3 Flow in tie-line 50-52 increased from 700 to 900 MW
4 Flow in tie-line 50-52 decreased from 700 to 455 MW
5 10% increase in inertia of machine at Bus 66
6 10% decrease in inertia of machine at Bus 66
7 All loads in the system increased to 103%
8 All loads in the system decreased to 90%

Figs. 5.1-5.2 show the reduction in the size of A1 matrix obtained after the application

of enhanced SMA for two of the operating points, where A1 refers to the portion of A

matrix composed of angles and speeds of machines. The black dots indicate the original

eigenvalues of the system while red circles represent the eigenvalues of the reduced-order

system obtained after performing 100 iterations of SMA (denoted by M100). It can be

seen that eigenvalues of both the reduced-order and full-order system overlap each other.

This implies that the reduced-order system is able to mimic the dynamic responses of the

full-order system. Similar results were obtained for the other six cases as well.
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Figure 5.1. SMA Convergence for Case 1.
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Figure 5.2. SMA Convergence for Case 2.
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As detailed in Section 3.2.4.3, the criteria for reducing the number of critical generators

(that form the control group) to a certain limit is decided by checking the convergence of

SMA as well as the damping of closed-loop eigenvalues obtained after application of LQR

control to the reduced system. Fig. 5.3 shows the SMA convergence for Case 1 on dropping

the ninth machine from the system. It is evident that one of the eigenvalues of the reduced-

order system does not match well with that of the original system. Similarly, the application

of LQR control (refer Fig. 5.4), resulted in the movement of one of the eigenvalues to the

right. Hence, only eight machines were selected to be dropped from control for the base

case (namely, Case 1).
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Figure 5.3. SMA on Dropping Ninth Machine for Case 1.
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Figure 5.4. Control Check after Dropping Ninth Machine for Case 1.

Table 5.2 provides the sequence in which machines are to be dropped for the eight

cases using the methodology described in Section 3.2.4.3. It can be realized that the num-

ber of machines which can be dropped varies with the test cases. Since implementing

a single polytopic control with different system sizes is not possible, therefore the six

(minimum) identical machines were chosen to be dropped from the control group, i.e.

(g53, g55, g57, g62, g63, g64). This has resulted in the reduction of feedback signals by 37.5%.

In Fig. 5.5, LMI control is designed for a single polytopic system comprising of 18 re-

tained states for each of the eight cases. The overall problem is described by a 29 × 31

LTI system which resulted in a 29 × 257 polytopic system and a 29 × 209 closed-loop

system. All the critical eigenvalues shown in black oval, have attained ζmin of more than

15%, whereas all the local modes have damping of at least 7.5%.
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Table 5.2. Results for 16 Machine, 68 Bus System

Case Sequence for Reduction in
No. dropping generators control signals(%)
1 63, 62, 60, 61, 64, 53, 55, 57 50
2 63, 62, 64, 53, 55, 57 37.5
3 63, 62, 60, 64, 53, 55, 57 43.75
4 63, 62, 64, 53, 60, 55, 57 43.75
5 63, 62, 64, 53, 55, 60, 57 43.75
6 63, 62, 64, 53, 55, 57 37.5
7 63, 62, 64, 53, 55, 57 37.5
8 63, 62, 64, 53, 55, 57 37.5

7.5% damping

15% damping

Figure 5.5. LMI Control for 16 Machine, 68 Bus System.

5.2 Large Test System-Reduced-order Model of WECC

A reduced-order model of WECC that includes the modeling features and complexities

of the actual system is used to demonstrate the performance of the CWADC; i.e., the re-

duced model retains the overall inter-area modal properties of the full WECC system. The

test system originally introduced in [133] is modified to include the HVDC lines and the
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wind farms as shown in Fig. 5.6. This system has 33 synchronous generators, 140 buses,

and 2 wind farms. All synchronous machines are represented in detail using a two-axis

model, type ST1 excitation control, and general-purpose turbine-governor models. They

also have conventional, local PSSs as shown in Fig. 3.2. All loads are assumed to be

constant impedance loads. The two wind farms are installed at bus #9991 and bus #8881,

and represented using Type 3 wind turbine generator (WTG) generator and electric control

modules. The system has three HVDC lines, two of which represent the multi-terminal

HVDC lines, namely, the Pacific DC Intertie (PDCI) between Celilo and Sylmar substa-

tions transmitting 2, 300 MW from the Northwest to the Southwest; the third one is the

Intermountain Power Project (IPP), which transmits 1, 750 MW from the Mid-east to the

Southwest. The PDCI and IPP were modeled as simple positive and negative loads in Sec-

tion 5.1, but they are modeled using detailed dynamic models in this study. SDC is added

to one of the two multi-terminal DC lines, whose model along with that of SVC are shown

in Fig. 3.2. The rating of the SVC is 100 MVAr. Based on [40], the modulation limit for

DC-SDC is set to ±125 MW. All the existing generator excitation controls along with DC-

SDC and SVC in the system are assumed to contain a communication module to accept the

control signals from the CWADC.

5.2.1 Setting up of Polytopic Region

The proposed controller is intended to not only prevent negative interaction between

different controllers, but also enhance the damping of multiple oscillation modes which

may appear in a wide range of OCs.
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In this study, seven different OCs with converged power flow solutions are analyzed, as

shown in Table 5.3, and then combined in a single polytope. To represent these operating

points, power generation and load demands are varied at the selected generator and load

buses that resulted in a change in power transfers in and around WECC Intertie Path #26.

Vertex v1 represents the base case. Vertices v2 and v3 are created by changing the generation

of generator #91 and load at bus #71. Vertices v4 and v5 are created by changing the

generation of a wind farm located at bus #8881 and load at bus #69. Generations of both

generator #91 as well as generator #8881 are varied along with the load at bus #78 to

create v6 and v7. To ascertain if the designed polytopic controller can damp the unstable

oscillation modes, one of the vertices chosen (namely, vertex v6) has a converged power

flow solution, but an unstable open-loop mode.

Table 5.3. Test Cases
Case/ Parameter Variation

Vertex No. Generation Load
v1 No Change No Change
v2 #91-Increase by 250 MW #71-Increase by 250 MW
v3 #91-Decrease by 500 MW #71-Decrease by 500 MW
v4 #8881-Increase by 250 MW #69-Increase by 250 MW
v5 #8881-Decrease by 500 MW #69-Decrease by 500 MW

v6

#91-Increase by 200 MW
#8881-Increase by 200 MW #78-Increase by 400 MW

v7

#91-Decrease by 250 MW
#8881-Decrease by 250 MW #78-Decrease by 500 MW

Small-signal stability analysis of the full system at each of the seven vertices reveals

multiple electromechanical modes with low frequency and poor damping ratios (< 5%).

Table 5.4 shows three of the least damped modes obtained for the studied system. The

system eigenvalues, damping ratios, and participation factors at each of these OCs are

computed using the SSAT software [99].

The impact of negative interactions among different controls on the damping of one of

the critical modes of the system is shown in Table 5.5. It can be seen that PSS and SVC

which together add at least 3.46% damping to Mode1 for OCs v2 and v6, have interacted

negatively with the DC-SDC, reducing its damping to less than 1%. In particular, Mode1
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Table 5.4. Damping of Selected Modes
Case Damping of critical modes(%)
No. Mode 1 Mode 2 Mode 3
v1 3.71% @1.737Hz 4.03% @0.934Hz 4.14% @1.115Hz
v2 0.27% @0.397Hz 2.46% @0.768Hz 2.98% @0.923Hz
v3 3.74% @1.736Hz 4.05% @0.939Hz 4.07% @1.117Hz
v4 3.63% @1.742Hz 4.04% @0.926Hz 4.08% @1.114Hz
v5 3.71% @1.737Hz 4.03% @0.934Hz 4.14% @1.115Hz
v6 −0.36% @0.399Hz 2.39% @0.766Hz 2.97% @1.743Hz
v7 3.23% @0.430Hz 3.36% @0.787Hz 3.47% @1.206Hz

has become unstable for operating point v6 due to the inter-controller interactions. On

further investigation, it was found that the gain of the PSS for machine at bus #5, (which

has maximum participation in Mode1) was high, and interacted unfavorably with the gain

of DC-SDC, resulting in system instability. Therefore, this control interaction highlights

the importance of coordinating multiple controllers present in the system.

Table 5.5. Controller Interactions
Case Critical Mode Damping(%)
No. from Table I PSS + SVC DC-SDC + PSS + SVC
v1 Mode1 3.51 3.71
v2 Mode1 3.47 0.27
v3 Mode1 3.54 3.74
v4 Mode1 3.42 3.63
v5 Mode1 3.51 3.71
v6 Mode1 3.46 −0.36
v7 Mode1 3.49 3.23

5.2.2 System Reduction

The size of the A and B matrices for each vertex is 656 × 656 and 656 × 35, respec-

tively. Here, 35 refers to the total number of damping controllers present in the system, i.e.

33 PSSs installed at all synchronous machines, 1 DC-SDC, and 1 SVC. Each controller is

tuned to provide minimum damping of 3% at the base OC. With the help of the enhanced

SMA [128], the size of the A matrix for each of the seven operating points is reduced to 43

× 43 comprising of speeds of the 22 machines (including reference machine) and relative

angles of 21 machines computed with respect to reference machine. The performance of

the enhanced SMA used for obtaining the reduced A matrices for three operating points
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is shown in Figs. 5.7-5.9. The black dots represent the eigenvalues of the complete sys-

tem, while green circles represent the eigenvalues of the reduced-order system. The size of

the B matrix is reduced to 43 × 24, where 24 signifies the number of controllers that are

part of CWADC. The remaining 11 controllers belong to a set of non-critical generators as

explained in Section 3.2.4, hence they remain completely decentralized. Each LMI prob-

lem with 43 retained states is described by a 66 × 92 LTI system. The collection of seven

vertices results in a 69 × 652 polytopic system.
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Figure 5.7. SMA Convergence for Case 1.
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Figure 5.8. SMA Convergence for Case 2.
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Figure 5.9. SMA Convergence for Case 3.
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5.2.3 Synthesis of CWADC

To develop the LMI-based mixedH2/H∞ control for the polytopic system with regional

pole-placement constraints, the msfsyn function available in the LMI control toolbox of

MATLAB was used to design the CWADC. The size of the designed controller gain matrix,

KLMI−poly is 24 × 43, hence CWADC is a 43-input, 24-output system. To guarantee the

system’s performance over a wide range of operating points, the proposed CWADC gathers

system-wide measurements from geographically diverse locations in WECC. This ensures

the availability of more system dynamic information contained in remote stabilizing sig-

nals. It is to be noted that though CWADC controller is designed for the reduced-order

system, its performance is tested using the full-order system. The goal of the CWADC is

to provide a minimum damping, ζmin of 5%.

5.3 Application of the Proposed Control Scheme

5.3.1 Performance of the Controller

Table 5.6 shows the application of the LMI control design for the polytopic system. All

the critical eigenvalues including those listed in Table 5.4, have attained minimum damping

of 5.5%. It was also observed that at higher load conditions, with the CWADC included,

the power flow in and around the WECC Intertie Path #26 could be increased. Specifically,

the system’s stability limit was extended from 3, 398 MW to 3, 598 MW (increase in load

at bus #71 from 300 MW to 500 MW), 1, 830 MW to 1, 930 MW (increase in load at bus

#69 from 600 MW to 700 MW), and 1, 616 MW to 1, 741 MW (increase in load at bus #78

from 550 MW to 675 MW), respectively, for vertices v2, v4, and v6 specified in Table 5.3.

It should be noted that for vertices v2 and v4, the limit is imposed by the power flow not

converging beyond these values.
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Table 5.6. Results of Modal Analysis
Case Damping of critical modes(%)
No. Mode 1 Mode 2 Mode 3
v1 9.19% @1.71Hz 5.51% @0.964Hz 5.70% @1.14Hz
v2 12.54% @0.427Hz 12.5% @0.75Hz 5.68% @0.96Hz
v3 10.6% @1.71Hz 5.59% @0.96Hz 5.91% @1.15Hz
v4 13.69% @1.71Hz 5.64% @0.95Hz 6.04% @1.15Hz
v5 9.23% @1.71Hz 5.57% @0.96Hz 5.96% @1.15Hz
v6 12.85% @0.41Hz 9.54% @0.76Hz 9.38% @1.707Hz
v7 11.92% @0.45Hz 11.51% @0.76Hz 9.48% @1.24Hz

To evaluate the performance of the CWADC, results obtained using modal analysis are

validated by conducting time-domain simulations in PSLF software. A small disturbance

is created by selecting two of the operating points that lie within the designed polytope, i.e.

simultaneous increase of load at bus #78 by 200 MW and a decrease in load at bus #71

by 400 MW at time, t = 0.5sec. The active power responses of three different generators

having higher participation in the inter-area modes (shown in Table 5.4), i.e. generators at

buses #5, #76, and #91 are shown in Figs. 5.10-5.12, with CWADC and without CWADC,

i.e. in the presence of local controllers (PSSs, DC-SDC, and SVC) only. It can be seen

that CWADC designed using a reduced-order system is able to improve the damping of the

inter-area modes present in the full-order system. Figs. 5.13-5.14 show the control efforts

extended by the DC-SDC and SVC, both of which are within their predefined limits.
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Figure 5.10. Active Power of Generator at Bus#5.
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Figure 5.11. Active Power of Generator at Bus#76.
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Figure 5.12. Active Power of Generator at Bus#91.
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Figure 5.13. DC Power of One of the Converters of PDCI.

78



0 5 10 15 20 25 30 35

time[sec]

-80

-70

-60

-50

-40

-30

-20

-10

0

10

S
V

C
 O

ut
pu

t [
M

V
A

r]
local controls
with CWADC

Figure 5.14. Reactive Power Injected by SVC.

5.3.2 Flexibility of Selecting Control Signals

By assessing the performance of the CWADC, it can be realized that the use of wide-

area signals has a greater impact on improving the system’s stability. However, the pro-

posed controller has a known weakness: its functioning may deteriorate when the quality

of PMU data is bad (for instance, due to PMU failure). To ensure reliable access to PMU

signals, an alternate feedback selection scheme is integrated into the proposed control de-

sign.

The selection of alternate feedback control signals is performed based on Algorithm

3 of Section 3.2.5. On applying this algorithm to the system under investigation, it is found

that the generator present at bus #113 is a reliable alternative to the generator at bus #67. It

is to be noted that the generator present at bus #113 is based in Southern California while

the generator at bus #67 is located in Nevada (refer Fig. 5.6).

79



Using this alternate set of feedback signals, the polytopic-CWADC was designed once

again for the full range of defined OCs. The size of the controller gain matrix,KLMI−poly, is

23× 41, which is reduced in comparison to that obtained using the primary set of feedback

signals. This is because there are two generator units installed at bus #67, both of which

are now dropped from the control set.

Fig. 5.15 provides the result for the LMI control obtained using the alternate feedback

signals. It can be realized that all the critical eigenvalues shown in black oval including the

ones that are given in Table 5.4, have attained ζmin of 5.5%.
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Figure 5.15. LMI Control Using Alternate Signals.

The active power variations for the three generators shown in Section 5.3.1 are shown in

Figs. 5.16-5.18. From the plots, it is confirmed that the use of the alternate feedback signals

has the same impact on the system’s damping as the signals from the primary set. The

outputs of the DC line and the SVC, modulated as a result of the supplementary stabilizing

signals from the CWADC are shown in Figs. 5.19-5.20.
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Figure 5.16. Active Power of Generator at Bus#5.

0 5 10 15 20 25 30 35

time[sec]

2750

2800

2850

2900

2950

A
ct

iv
e 

P
ow

er
 o

f g
en

 a
t b

us
 #

 7
6 

[M
W

]

local Controls
with CWADC-alternate feedback signal

14 16 18 20 22 24
2880

2885

2890

Figure 5.17. Active Power of Generator at Bus#76.
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Figure 5.18. Active Power of Generator at Bus#91.
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Figure 5.19. DC Output with Alternate Signals.
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Figure 5.20. Reactive Power Output of SVC with Alternate Signals.

This simulation shows that if the PMU at bus #67 is out of service, the proposed con-

troller can then obtain a feedback signal from the PMU at bus #113 to generate an equiva-

lent feedback control. That is, backup observability of generator at bus #67 (a generating

unit in Nevada) is ensured by the PMU at bus #113 (generating station in Southern Cali-

fornia), and vice-versa. However, it must again be pointed out that it may not be possible

to find a suitable replacement for every critical generator in the primary set. Therefore, if

PMUs at multiple locations fail simultaneously, the designed controller may not be able to

provide the requisite damping for the complete range of OCs.

5.3.3 Incorporation of Delays

The implementation of the CWADC requires data to be transmitted from the selected

PMU locations to the coordinated controller. As detailed in [40], [23], it is possible that

the data traveling through different communication channels reach the same destination
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at different times. This is because every channel may have a different latency associated

with it due to varying network configurations and congestion. Test results obtained in

[40] for a real-time damping control designed for the WECC indicate that the total delay,

that includes the switching delay of about 11ms, is on average 82 ms with a maximum

value recorded at 113 ms. Hence, in this research, non-linear simulations are performed

by adding an implicit random delay, that lies between 25-100ms, to the wide-area signals.

The gains obtained using the primary set of feedback signals are used for the simulations.

It can be observed from Figs. 5.21-5.22, that when the CWADC suffers a communication

delay, the performance of the controller degrades slightly, but it still performs better than

the local controllers. However, if the delays are too large, it is acceptable to revert to the

local controllers. This would remain the case until the latency in the wide-area signals is

small enough to ensure a positive effect on the oscillation damping.
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Figure 5.21. Active Power of Generator at #5 with Delay of 0.1s.
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Figure 5.22. Active Power of Generator at #91 with Delay of 0.08s.

5.3.4 Large Disturbance Analysis

By subjecting the test system to large disturbances, the actual non-linear behavior of the

system can be observed, and the performance of the CWADC assessed accordingly. For the

large disturbance simulated here, the network is subjected to a 100ms three-phase fault at

bus #105 at t = 0.5sec. The improved performance realized by employing CWADC is

evident in the results of the transient simulation shown in Figs. 5.23-5.25, which depict the

active powers of four generators present at bus #5 (a generating unit in Canada), bus #26

(a generating station in Montana), bus #76 (a generating station in Southern California),

and bus #91 (a generating unit in Northern California); see Fig. 5.6 for the bus locations.

It is clear from Figs. 5.23-5.25 that in the presence of CWADC, the system experiences

significantly smaller swings.
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Figure 5.23. Active Power of Generator at Bus#5.
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Figure 5.24. Active Power of Generator at Bus#76.
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Figure 5.25. Active Power of Generator at Bus#91.

5.3.5 Robustness Comparison

To demonstrate the benefits associated with the proposed method, a comparison is made

with another control scheme for a specific operating point that lies inside the designed

polytope but is not one of its vertices. The load at bus #69 is increased by 100 MW at

t = 0.5sec. The analysis is performed by designing two additional non-polytopic controls

using LQR: a) the first non-polytopic control corresponds to a controller that is designed

for vertex v1, i.e. base OC, b) the second non-polytopic control corresponds to a controller

that is designed for the simulated disturbance, i.e., increase in load at #69 by 100 MW, by

treating it as a known operating point.

The active powers of two generators, i.e., gen at bus #5 and bus #91 which have max-

imum participation in the least damped modes for this operating point are shown in Figs.

5.26-5.27. From the two plots, it can be seen that the first non-polytopic controller performs
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poorly as it is designed for the base OC. The performance of the second non-polytopic con-

troller is comparable to that of the CWADC; however, designing that controller requires

prior knowledge of the OC, which is not likely to happen in reality. Thus, this comparison

illustrates the benefit of using a polytopic control, as a single controller can guarantee the

desired damping effect for all the OCs lying inside the polytope.
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Figure 5.26. Comparative Analysis-Active Power of Generator #5.
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Figure 5.27. Comparative Analysis-Active Power of Generator #91.

5.4 Discussions

The success of the single polytopic controller design for a wide range of OCs depends

on two factors: a) diversity of the OCs, and b) number of OCs considered. If the OCs

are very diverse, or the number of OCs that are intended to be combined into a single

polytope are too many, the controller gain matrix generated after solving the LMI-based

control problem can have potentially large magnitudes of gains. Similarly, trying to move

the closed-loop poles to the left by a significant margin or an incongruous selection of

the weights for H2 and H∞ controls during the creation of the polytope can also lead to

excessively large controller gains. These scenarios should be avoided as they can lead to

controller output saturation.

The proposed approach offers an advantage over adaptive control design schemes as no

processing time is required for control selection and actuation depending on the system’s
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OC. Since all the controller parameters are obtained using off-line case studies and can be

stored for online operations, there will be no delay in accessing the controller data. Further-

more, the synthesized control is composed of gains only, as compared to other higher-order

controllers that have large numbers of control parameters (such as [22] and [39]). Hence,

the designed control is more appropriate for real-time applications, as it is computationally

tractable and does not require knowledge of various control parameters.
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CHAPTER 6

RESULTS FOR AI-BASED CONTROLS

The performances of the DNN-CWADC and DRL-CWADC are demonstrated using the

reduced-order model of the WECC, as shown in Fig. 5.6 of Chapter 5. For this study. ζmin

is selected as 5%.

6.1 Results for DNN-CWADC

6.1.1 Training Data Generation

For this study, a diverse set of OCs was generated by creating topological changes

(both N − 1 and N − 2 contingencies), and changes in the generation and loads of certain

generators and load buses, resulting in variations in the power transfers in and around the

WECC Intertie Path #26 [135]. A total of 45 different OCs with converged power flow

solutions are combined to create 230 polytopes using the LMI-based H2/H∞ optimization

and pole-placement constraints. Before the synthesis of a polytope, the size of the state

matrix and the input matrix corresponding to each OC was reduced to 43 × 43 (22 speeds

of critical machines and 21 relative angles of critical machines calculated with respect to

the reference machine) and 43 × 24 using enhanced SMA [128], respectively, where 24

signifies the total number of local controls that are part of the polytopic control. The size
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of every designed controller gain matrix, KLMI−poly, is 24× 43. The polytopic data, when

combined with the heavy transfer flows in the tie-lines connecting the WECC Intertie Path

#26 to its neighboring regions, and the three DC lines result in a total of 5, 619 input

features and 1, 032 outputs used for training the DNN. A total of 2, 600 simulated samples

were created, in which 1% Gaussian noise was added to the input measurements to make

them resemble actual data obtained from the field.

The architecture of the DNN used for training is detailed in Table 6.1, which also shows

its training progress evaluated using the metric, mean absolute error (MAE). The validation

MAE indicates how well the learned model generalizes, while the testing MAE specifies

how well the trained model performs for unseen data.

Table 6.1. DNN Architecture and Its Performance

DNN Architecture
# of neurons in Input Layer 5, 619
# of neurons in first Hidden Layer 2, 500
# of neurons in second Hidden Layer 1, 861
# of neurons in output Layer 1, 032
Loss Function Mean Absolute Error (MAE)
Learning rate for ADAM optimizer 10−3

Batch Size 32
L2 Regularization On (χ =10−5)

Errors
Validation MAE 0.012
Testing MAE 0.017

To illustrate the requirement of the "deep" neural networks, i.e., at least two hidden

layers [136], for the design of CWADC, an additional model with a single hidden layer

with 2, 500 neurons (while keeping everything else the same) was trained using the same

training data. The validation and testing MAE obtained for this model, referred to as NN-

CWADC, are 0.215 and 0.14, respectively, which are much higher than those reported in

Table 6.1. This clearly demonstrates that a single hidden layer is not sufficient for the

neural network to learn the proper mapping between inputs and outputs. The validation of

the performance of this model is performed in the next Section.
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6.1.2 Performance Evaluation

The impact of the DNN-CWADC is assessed through eigenvalue analysis and non-

linear time-domain simulations. The performance is evaluated in three different settings:

a) Scenario 1a-Validation of DNN-CWADC using modal analysis: To demonstrate the

benefits of using a polytope-based DNN wide-area control, an OC that lies inside one of

the polytopes forming the training dataset, but is not one of the vertices, is selected. This

OC corresponds to an increase in the generation of the wind farm connected to bus #8881

and load at bus #78 by 690 MW. For comparison, two additional control schemes are also

designed: 1) a polytopic control designed using the classical LMI approach [42] with the

OC being one of its vertices (Dedicated H2/H∞ polytopic CWADC), and 2) the single

polytopic control designed in Chapter 5 (Single Polytopic Controller). From Fig. 6.1, it is

realized that all the LFOs (marked by ’o’) attained ζmin of 5% using DNN-CWADC. The

proposed control also enlarged the stability domain of the system-under-study, since it was

stated in Section 5.3.1 that the maximum load that can be increased at bus #78 without

causing instability was 675 MW (evident from Fig. 6.1 as the closed-loop poles denoted by

’∗’ moved to the RHS of s-plane), while the proposed DNN-CWADC was able to provide

requisite damping even when the loading increased to 690 MW.

b) Scenario 1b-Validation of DNN-CWADC using time-domain simulations: The re-

sults obtained using modal analysis are validated by conducting non-linear time-domain

simulations in PSLF [98] for an increase in load at bus #78 by 200 MW with and without

the proposed DNN-CWADC (in the case without DNN-CWADC, the control is provided

by local controllers which are uncoordinated). The active power responses and rotor angle

deviations of two generators (generators at bus #5 and bus #26) having higher participation

in the critical LFO modes is shown in Figs. 6.2-6.5. It can be observed that the designed

control effectively damps out the oscillations. Additionally, the inclusion of 1% noise in
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Figure 6.1. Validation of DNN-CWADC: Modal Analysis.

the input measurements does not affect the performance of the learned control.
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Figure 6.2. Validation of DNN-CWADC: Active Power of Generator #5.
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Figure 6.3. Validation of DNN-CWADC: Rotor Angle of Generator #5.
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Figure 6.4. Validation of DNN-CWADC: Active Power of Generator #26.
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Figure 6.5. Validation of DNN-CWADC: Rotor Angle of Generator #26.

c) Scenario 2-Testing of DNN-CWADC for N-1 contingency: To test the generalization

and extrapolation capability of the trained model for DNN-based coordinated control, a

test OC is selected that lies outside the training dataset. For this test, the DNN is asked to

predict the polytopic controller gains for an outage case (N-1 contingency), i.e., outage of

a line connecting bus #68 and bus #77. Fig. 6.6 displays the results for the modal anal-

ysis, while Figs. 6.7-6.10 show the time-domain responses of the system performed after

applying the extrapolated DNN-CWADC to the system operating at this OC. A compara-

tive analysis is performed by applying the actual polytopic control (designed specifically

with this OC being one of its vertices, i.e., the Dedicated H2/H∞ Polytopic CWADC) and

the predicted gains of DNN-CWADC. The results indicate that the proposed DNN-based

control is capable of damping the cases that lie outside those for which it was trained.
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Figure 6.6. Testing of DNN-CWADC for N-1 Contingency: Modal Analysis.
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Figure 6.7. Testing of DNN-CWADC for N-1 Contingency: Active Power of Generator #5.
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Figure 6.8. Testing of DNN-CWADC for N-1 Contingency: Rotor Angle of Generator #5.
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Figure 6.9. Testing of DNN-CWADC for N-1 Contingency: Active Power of Generator
#26.

98



0 10 20 30 40 50

time[sec]

71

72

73

74

75

76

77

R
ot

or
 a

ng
le

 o
f g

en
 a

t b
us

# 
26

 [d
eg

re
e]

Local Controls
Dedicated H2-Hinf Polytopic CWADC
Proposed DNN-CWADC

Figure 6.10. Testing of DNN-CWADC for N-1 Contingency: Rotor Angle of Generator
#26.

Performance Evaluation for a NN-CWADC with a single hidden layer: The need

for a DNN is further confirmed by an additional check conducted for Scenario 2. The modal

analysis is performed by applying the gain obtained after training the NN with a single

hidden layer having a testing MAE of 0.14 (see last paragraph of Section 6.1). The result

shown in Fig. 6.11 establishes the relationship between the choice of the proper architecture

of NN and the performance of the trained model. In the absence of two hidden layers,

the extrapolated NN-CWADC cannot meet the predefined objective of having minimum

damping of 5% for all the eigenvalues of the studied OC.

d) Scenario 3-Testing of DNN-CWADC for N-2 contingencies: This section investi-

gates the stability assessment of the system under a N-2 contingency condition. The out-

ages of two lines connecting bus #68 and bus #77 and bus #68 and bus #71 are selected

as the test OC for evaluating the performance of the trained DNN-CWADC. Fig. 6.12
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Figure 6.11. Validation of NN-CWADC: Modal Analysis.

shows the results of the eigenvalue analysis. It can be seen that all the modes are at least

5% damped. However, on conducting the time-domain simulations for the studied OC,

the system exhibits sustained oscillations of smaller magnitude even in the presence of the

designed DNN-based control (as evident from the active powers and branch flows of the

most impacted generators and tie-lines shown by Fig. 6.13- Fig. 6.16). For such cases,

where the application of the designed DNN-CWADC leads to unsatisfactory performance,

DRL-based control can be put into service as mentioned in Section 4.2.
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Figure 6.12. Testing of DNN-CWADC for N-2 Contingencies: Modal Analysis.
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Figure 6.13. Testing of DNN-CWADC for N-2 Contingencies: Active Power of Generator
#5.
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Figure 6.14. Testing of DNN-CWADC for N-2 Contingencies: Active Power of Generator
#60.
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Figure 6.16. Testing of DNN-CWADC for N-2 Contingencies: Power Flow of Line #68-
#77

6.2 Results for DRL-CWADC

An interface was created in-house to integrate the PSLF environment [98] with the

DRL module. Python libraries were used to implement the BEC-DDPG algorithm for the

DRL agent. The control law used by the DRL-CWADC in real-time was initially learned

in an offline setting using time-domain simulations. The learning scenarios included short-

circuit faults applied to the list of selected buses that connect the high-voltage lines and

critical interfaces within and around the WECC Intertie Path #26. The scenario list can

also be extended to accommodate some of the other limiting contingencies such as outages

of critical transmission lines and generators.

The observation states used as the inputs for DRL-CWADC are the speed and relative

rotor angles of 22 and 21 critical generators, respectively, of the reduced-order system iden-
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tified using enhanced SMA [128]. Thus, the number of neurons in each of the input layers

for the actor and the critic networks forming the DRL agent is 43. The number of nodes in

the output layers is 24 (representing the 24 local damping controls that are coordinated us-

ing DRL-CWADC). Each of the two hidden layers that are part of the actor-critic networks

is composed of 300 neurons. Other important hyperparameters are as follows: learning

rate, η = 0.0001; noise parameters, σ = 0.02, and, σd = 0.995. The coefficients of the

reward function defined by (4.1) and (4.2) are: tα = 5 sec, tβ = 8 sec, d1 = 10, d2 = 10,

and d3 = 1. Additionally, to avoid the divergence of the power flows, the penalty factor is

set to −5, 000.

The training period of the DRL-CWADC is divided into different episodes. Each

episode begins with a flat-start, with a three-phase short-circuit fault applied to the selected

buses at time t = 0.5 sec, having a clearing time of 4 cycles. Every episode is simulated

for 25 sec. During training, the DRL agent interacts with the PSLF simulation environ-

ment every 1 sec. The time step for the dynamic simulations in PSLF is set to one-quarter

of a cycle. The trained model converges to a satisfactory solution for all the scenarios in

350-400 episodes. The performance of the DRL agent is shown in Fig. 6.17, which depicts

the cumulative reward as a function of the number of episodes for one of the trained cases.

The performance of the BEC-DDPG agent deteriorates post-episode 250; this can happen

due to poor exploration by the agent [90]. However, with an increase in the number of

episodes, the training becomes stable, and the BEC-DDPG converges to a reasonable value

of the cumulative reward. Finally, it is noted that the proposed method is able to safeguard

the system against any violations during the training, as evident from the magnitude of the

cumulative reward (penalty factor is set to −5000 if safety constraint is violated)

To illustrate the robustness and adaptability of the learned DRL agent, four different

cases are considered:

a) Case I: The system is subjected to a 100 ms three-phase fault at bus #68 at t = 0.5
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Figure 6.17. Cumulative Reward as a Function of Episodes.

sec. The active power responses of the two generators having higher participation in the

critical LFO modes, namely, generators at bus #5 and bus #91 are shown in Fig. 6.18 and

Fig. 6.19. It can be seen that the proposed DRL-CWADC is able to provide the requisite

damping of at least 5% to the LFOs; for example, oscillation frequencies of 0.57 Hz, 0.7 Hz,

and 1.3 Hz identified through Prony analysis show respective damping of 4.69%, 5.63%,

and 3.46% in the presence of local controls, while they have damping of 20.09%, 5.23%,

and 5.41%, respectively, using the designed DRL-CWADC. To illustrate the impact of the

obtained results, rotor angle deviations of one of the generators is also shown in Fig. 6.20.
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Figure 6.18. Case I: DRL-CWADC-Active Power of Generator #5.
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Figure 6.19. Case I: DRL-CWADC-Active Power of Generator #91.
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Figure 6.20. Case I: DRL-CWADC-Rotor Angle of Generator #5.

b) Case II: A 100 ms three-phase fault is applied at bus #66 at t = 0.5 sec. Compared to

Case I, the DRL agent required readjustment of its DNNs’ parameters to adapt to this new

OC. Figs. 6.21-6.22 show the active power responses of the two generators and rotor angle

deviations of one of the generators (similar to Case I). The modal properties of the three

dominant modes indicated that ζmin attained by the system in the presence of local controls

and DRL-CWADC are 2.81% and 9.82%, respectively. It can be seen that there is an

improvement in the system’s response after applying the adaptive control action generated

in three episodes.
c) Case III: To check the robustness of the trained DRL-CWADC to different types

of system uncertainties, the learned control is tested for a scenario that is very different

from the fault scenarios used in the learning process, namely, loss of generation. The

net generation of the generator at bus #60 is reduced by 325 MW at t = 0.5 sec. For a

better demonstration of the results, the length of the episode is set to 50 sec. The system

becomes unstable owing to the depression of the voltage at one of the converter buses form-
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Figure 6.21. Case II: DRL-CWADC-Active Power of Generator #5.

ing the IPP, leading to system-wide low voltages for a longer time period and ultimately

network divergence. The improved performance realized by employing two different DRL-

CWADCs is evident in the results of the transient simulations shown in Figs. 6.24-6.26,

which denote the active power responses of three different generators present at bus #60,

bus #62 (a neighboring generating station), and bus #5 (a generating unit in Canada), re-

spectively. It is observed from the figures that when the DRL-CWADC is allowed to adjust

its weights (DRL-CWADC-2), then its performance is (a) slightly better than when it is

not allowed to adapt (DRL-CWADC-1), and (b) much better than when only the local con-

trollers are present (Local Controls). However, the level of improvement, which depends

on the nature and the location of the applied contingency, is less satisfactory than Cases I

and II as one of the modes has a damping ratio of only 3.73% with DRL-CWADC-2 and

1.03% with DRL-CWADC-1. To realize a better damping action, the DRL agent may re-

quire reformulation of the DRL problem as mentioned in Section 4.2 of Chapter 4, which

will be investigated in the future.
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Figure 6.22. Case II: DRL-CWADC-Active Power of Generator #91.
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Figure 6.23. Case II: DRL-CWADC-Rotor Angle of Generator #5.
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Figure 6.24. Case III: DRL-CWADC-Active Power of Generator #5.
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Figure 6.25. Case III: DRL-CWADC-Active Power of Generator #60.

110



0 10 20 30 40 50

time[sec]

1350

1450

1550

1650

A
ct

iv
e 

P
ow

er
 o

f g
en

 a
t b

us
# 

62
 [M

W
]

Local Controls
DRL-CWADC-1
DRL-CWADC-2

Figure 6.26. Case III: DRL-CWADC-Active Power of Generator #62.

d) Case IV: The effect of reward on improving the learning process for the DRL-

CWADC is analyzed in this case. The reward function introduced in Section 4.2.2 is modi-

fied to include the gradients of all the branch flows of the system. The analysis is performed

for Case I and Case III with two reward functions, i.e., with (DRL-CWADC-Reward2) and

without (DRL-CWADC-Reward1) the use of gradients of power flows in 4.1. As shown in

Figs. 6.27-6.28, the responses of the system for two different OCs (cases) using a different

reward function is comparable to that obtained in Figs. 6.18 and 6.25. However, no further

improvement in the results was observed.
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Figure 6.27. Case IV: Different Rewards for DRL-CWADC-Active Power of Generator #5
(Case I).
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#60 (Case III).
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6.3 Considerations for Real-Time Implementation
The successful application of the two damping control schemes in real-time relies on

many practical considerations:

a) Inconsistencies in PMU data: In practice, PMU data may be subjected to data incon-

sistencies such as measurement noises, loss of communication channel, and delays:

• Measurement noises: The control design of both methods inherently considers the

noise/disturbance attenuation using H∞ control. Furthermore, the robustness of the

DNN-CWADC to presence of noise in input measurements has already been demon-

strated in Section 6.1.2, while it has already been shown in [90] that the decision-

making capability of DRLs is minimally impacted by noisy measurements.

• Failure of a communication channel and delays in wide-area signals: To tackle the

problem of missing PMU data, an alternate signal selection scheme is proposed in

Algorithm 3 of Section 3.2.5. This can also be utilized for the proposed control

schemes in case of data dropout or failure of a communication channel. Moreover,

the proposed bi-level control design ensures that, in case of problems with the wide-

area signals, the local controls can work autonomously using the locally available

information. Lastly, in the implementation of the DRL-based control, the DRL agent

does not require the back-to-back samples of the states (interaction between the DRL

agent and power system environment happens every 1 sec.). As such, it can essen-

tially handle the delay and data dropouts in PMU signals for at least 1 sec.

b) Guarantee for safe control: In this paper, bounded exploratory constraints based on

H2/H∞ control are considered for developing a safe policy for DRL-based control. Sim-

ilarly, for DNN-based control, a careful selection of weights for H∞ and H2 controls is

made to ensure that the synthesized feedback gains are kept at reasonable values. There-
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fore, the learned DNN and DRL-based controls are expected to not create any violations in

the system. As an additional measure, limiters are included for the individual controls to

provide both stable as well as secure operation in real-time.

c) Parameter selection for DRL-CWADC: The usefulness of the DRL-based damping

control is critically dependent on the MDP problem formulation, including the choice of

the appropriate reward functions. One way to resolve this issue is to use imitation learning

(refer to Section 2.4) for mapping the operating states of the grid to the effective actions

based on the demonstration data (historical operational data in power systems) provided by

the system operators and engineers [137]. Another solution is to use inverse RL to infer a

better reward function from the same data [117].
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

This research work deals with a thorough assessment of the improvement in small-

signal stability of the power grid using wide-area signals. Two different approaches are de-

veloped to design the damping controllers that are robust to variable OCs. Both approaches

share two similarities a) the same wide-area measurements derived from the enhanced SMA

and partial state-feedback are utilized to design the controls, b) the parameters of the ex-

isting local controls are not modified, i.e., the improvement in performance was due to the

wide-area signals alone.

In the first approach, a wide-area damping controller is developed for mitigating inter-

area oscillations using an enhanced SMA and LMI-based polytope. The method facilitates

the coordination of existing controls in the system, thereby enabling them to overcome their

inability to act based on local measurements to damp the oscillation modes. Additionally,

to ensure robustness, the coordinated controller is designed to switch between the primary

and alternate sets of feedback signals in case of failure of a communication device or a

measurement channel. This resulting controller is a single gain matrix capable of enhancing

the damping of all the OCs lying inside the polytope. Modal analysis and time-domain

simulations are performed on a 16-machine 68 bus system and the 29 machine, 127 bus
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equivalent model of the WECC system (embedded with three HVDC lines) to test the

viability of the proposed control. The practical issue of delay in the control signals is

analyzed by adding variable latency to different control signals. Simulation results suggest

that the use of this scheme can be advantageous for providing additional damping to the

critical oscillatory modes despite the presence of reasonable delays.

Unlike the first approach, the second method improves the damping of low frequency

oscillations by developing two different AI-based wide-area controllers. The agent ad-

ministered DNN and DRL control frameworks can identify and track the dynamics of the

system and automatically take control actions to increase system damping. Based on the

concept of a bi-level control scheme, the robust controllers can also coordinate with the

local damping controllers for a wide range of OCs. A selection technique is proposed to

apply the appropriate wide-area control based on the nature of the system disturbance.

The developed AI-based techniques are applied to the equivalent model of the WECC

system. Test results obtained after performing modal analysis and non-linear time-domain

simulations demonstrate the effectiveness of both designs for various OCs, ranging from

lowly-stressed to highly stressed network conditions. As the functioning of the proposed

controls can be limited by the a priori system analysis, it is also shown that the designed

DRL-CWADC can adapt to the time-varying real-time system conditions by exercising a

safe DRL policy and provide improved performance. Therefore, the proposed techniques

can be viewed as powerful tools for assisting grid operators in ensuring the safe operation

of the system under practical OCs.

7.2 Suggested Future Work

To further develop the ideas and methods which have been established in this work,

some of the potential research areas that were identified are as follows:
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1. Due to delays present in the wide-area signals, communication latency may affect

the performance of the proposed AI-based CWADCs. Other issues related to data

quality, such as missing synchrophasor measurements and bad data, can also nega-

tively influence controller actions. Further study on this topic is therefore necessary

and important.

2. The DRL-based control has been developed for providing the requisite control ac-

tions for the fault-based scenarios. However, this method is currently unable to

account for different types of transient contingencies. This should be investigated

to widen the applicability of the DRL-CWADC for mitigating additional instability

issues arising due to poorly damped oscillations.

3. As a part of this work, centralized control schemes are designed which require re-

mote feedback signals over long distances. However, the major drawback of this type

of architecture is the inherent delay associated with the wide-area signals. An alter-

native approach would be to use a decentralized framework for damping controllers.

In recent years, multi-agent RL (MARL) system has attracted a lot of attention. It is a

network of autonomous interacting entities sharing a common environment to solve

problems by sensing the environment and acting based on their perceptions [138].

This system offers great potential for designing decentralized damping controllers.

The control structures can also take advantage of the wide-area signals to quickly

damp out the oscillations after a severe disturbance.

4. The operation of power grids usually has several objectives, such as maximization of

stability, security, and/or resiliency. For a DRL-based problem, it can be challenging

to balance the various operational objectives in the reward function. This problem

can be overcome by imitation learning (IL), where the agent tries to learn the optimal

control policy based on the set of demonstration trajectories (historical data in power
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systems) provided by the system experts [117, 137]. An alternative strategy is to use

inverse RL to model a better reward function from the same data [117].

5. For the implementation of the DRL-based CWADC, an in-house interface was cre-

ated. However, it is essential to design a more robust interface for the development

and benchmarking of DRL algorithms for grid control.
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APPENDIX B

MATLAB CODE FOR CWADC
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This code is used to create an interface between the SSAT and the LMI toolbox used in
MATLAB. The code reads the system matrix corresponding to an OC (a.sma file) generated
by SSAT tool after solving the powerflow, extract the states corresponding to different
system components including the three controls (PSSs, DC-SDC and SVC), and then form
A and B matrices with the help of rearranged states.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Program Name : I n t e r f a c e C r e a t i o n : DSA Tool s t o MATLAB
3 % D e s c r i p t i o n : Run t h i s f i l e t o form A and B m a t r i c e s f o r
4 %p e r f o r m i n g t h e SMA
5 % Author : Poo ja Gupta %
6 % Arizona S t a t e U n i v e r s i t y %
7 % L a s t Modi f i ed : 1 0 / 0 4 / 2 0 1 9 %
8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9 c l c ; c l e a r a l l ;

10 %% Record t h e i n f o r m a t i o n o f a l l t h e machines from PSLF i n
t h e f o l l o w i n g o r d e r : machine number , id , t o t a l s t a t e s o f
t h e machine , t o t a l s t a t e s o f t h e sys tem e x c l u i n g PSS
s t a t e s , mva r a t i n g and i n e r t i a

11 nInfoLMIN = [1 4 14 11 15 .25 2 . 9 5 ;
12 1 3 14 11 15 .25 2 . 9 5 ;
13 1 2 14 11 15 .25 2 . 9 5 ;
14 1 1 14 11 15 .25 2 . 9 5 ;
15 5 1 14 11 90 .04 4 . 3 4 ;
16 8 1 14 11 130 .0 3 . 4 6 ;
17 13 1 21 18 54 .21 3 . 6 7 ;
18 19 1 20 17 11 .99 3 . 0 ;
19 26 1 14 11 30 .85 3 . 3 8 ;
20 28 1 21 18 17 .70 2 . 3 2 ;
21 33 1 21 18 8 . 3 2 3 . 0 1 ;
22 38 1 21 18 22 .29 2 . 8 2 ;
23 44 1 21 18 19 .82 2 . 8 8 ;
24 46 1 21 18 14 .88 2 . 6 1 ;
25 47 1 14 11 3 0 . 0 2 . 4 5 ;
26 49 1 20 17 20 .54 2 . 6 3 ;
27 53 1 20 17 24 .58 3 . 4 2 ;
28 5699 1 20 17 9 . 1 4 2 . 6 4 ;
29 60 1 20 17 31 .17 3 . 8 3 ;
30 62 1 20 17 3 5 . 4 3 . 5 9 ;
31 65 1 20 17 21 .04 6 . 0 7 ;
32 67 2 20 17 9 . 0 9 3 . 4 9 ;
33 67 1 20 17 9 . 0 9 3 . 4 9 ;
34 72 1 14 9 30 2 . 7 5 ;
35 76 1 20 17 90 2 . 8 2 ;
36 81 2 20 17 12 .50 3 . 0 3 ;
37 81 1 20 17 12 .50 3 . 0 3 ;
38 91 1 20 17 68 .40 3 . 8 2 ;
39 96 1 20 17 1 0 . 6 4 . 3 9 ;
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40 102 1 20 17 8 . 9 5 4 . 1 6 ;
41 113 1 12 9 2 . 7 0 4 . 1 3 ;
42 119 1 20 17 1 . 1 3 3 . 8 ;
43 126 1 20 17 2 . 5 6 . 4 1 ; ] ;
44 nInfoLMIN ( 1 , 8 ) = nInfoLMIN ( 1 , 3 ) ;
45 nInfoLMIN ( 1 , 7 ) = 1 ;
46 f o r i =2 : l e n g t h ( nInfoLMIN )
47 nInfoLMIN ( i , 8 ) = nInfoLMIN ( i , 3 ) + nInfoLMIN ( i −1 ,8 ) ; %%

8 t h column g i v e s t h e t o t a l number o f s t a t e s t i l l
t h a t g e n e r a t o r

48 nInfoLMIN ( i , 7 ) = nInfoLMIN ( i −1 ,3 ) + nInfoLMIN ( i −1 ,7 ) ; %%
7 t h column g i v e s t h e s t a r t i n g i n d e x of each

g e n e r a t o r
49 end
50 %% s p e c i f y number o f machines and number o f modes
51 nModeN = 656 ; nUnitN = l e n g t h ( nInfoLMIN ) ; nSVC = 1 ;

nWindUnit = 2 ; nSDC = 1 ; v a r = 0 ;
52 %% r e a d t h e . sma f i l e g e n e r a t e d u s i n g SSAT a f t e r s o l v i n g t h e

power f low
53 fName = s t r c a t ( ’C : \ p s t v 3 \ G r i d d i n g P o i n t s \ T r a i n i n g D a t a \

Case7VincDec \300 _dec_656_9_17 . sma ’ ) ;
54 f ID = fopen ( fName , ’ r ’ ) ;
55 % s k i p f i r s t 21 l i n e s
56 f o r n =1:21
57 s t rTemp = f g e t s ( f ID ) ;
58 end
59 % r e a d Asys from f i l e
60 f o r n =1:nModeN
61 f o r m=1:nModeN
62 fTemp1= f s c a n f ( fID , ’%g ’ , 1 ) ;
63 A1 (m, n ) =fTemp1 ;
64 end
65 end
66 f c l o s e ( fID ) ;
67 %% End of Read d a t a from f i l e s
68 %% For r e a r r a n g e m e n t o f A and B m a t r i c e s
69 nn = s i z e ( A1 ) *[1 0 ] ’ ; % nn = S i z e o f System
70 f o r n = 1 : nUnitN %4
71 nS ta t eN = nInfoLMIN ( n , 3 ) ;
72 n S t a t e E n d = nInfoLMIN ( n , 8 ) ;
73 n S t a t e S t a r t = nInfoLMIN ( n , 7 ) ;
74 % c o r r e s p o n d s t o d e l t a s o f machines
75 r2 ( n , 1 ) = n S t a t e S t a r t +1 ;
76 r2_Ref ( n , 1 ) = n S t a t e S t a r t +1 ;
77 end
78 nInfoLMIN ( 5 , 1 1 ) = 1 ; nInfoLMIN ( 5 , 1 2 ) = 1 4 ;
79 va r1 = nInfoLMIN ( 5 , 1 1 ) ; va r2 = nInfoLMIN ( 5 , 1 2 ) ;
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80 %% E x c l u d i n g t h e machines t h a t a r e n o t p a r t o f SMA
81 f o r n = 6 : nUnitN
82 i f ( nInfoLMIN ( n , 1 ) ~=1) & ( nInfoLMIN ( n , 1 ) ~=19) & (

nInfoLMIN ( n , 1 ) ~=33) & ( nInfoLMIN ( n , 1 ) ~=96) & (
nInfoLMIN ( n , 1 ) ~=102) & ( nInfoLMIN ( n , 1 ) ~=113) & (
nInfoLMIN ( n , 1 ) ~=119) & ( nInfoLMIN ( n , 1 ) ~=126)

83 nInfoLMIN ( n , 1 1 ) = va r2 + 1 ;
84 nInfoLMIN ( n , 1 2 ) = va r2 + nInfoLMIN ( n , 3 ) ;
85 va r1 = nInfoLMIN ( n , 1 1 ) ;
86 va r2 = nInfoLMIN ( n , 1 2 ) ;
87 end
88 end
89 %% t r a n s f o r m a t i o n o f A m a t r i x by removing d e l o f r e f e r e n c e

machine
90 A t r a n s = A1 ;
91 f o r i =1 : l e n g t h ( r2 )
92 % i f r e f e r e n c e mc i s i n c l u d e d f i r s t , a l l machines a f t e r

r e f w i l l n o t have two non − z e r o e n t r i e s f o r t h e i r d e l
93 i f r2 ( i ) ~= 86
94 % row m o d i f i c a t i o n 7 t h machine i s t h e r e f e r n c e

machine
95 A t r a n s ( r2 ( i ) , : ) = A t r a n s ( r2 ( 7 ) , : ) − A t r a n s ( r2 ( i ) , : ) ;
96 % column m o d i f i c a t i o n
97 A t r a n s ( : , r 2 ( i ) ) = A t r a n s ( : , r 2 ( 7 ) ) − A t r a n s ( : , r 2 ( i ) ) ;
98 end
99 end

100 % row m o d i f i c a t i o n 3 rd machine i s t h e r e f e r n c e machine
101 A t r a n s ( r2 ( 7 ) , : ) = A t r a n s ( r2 ( 7 ) , : ) − A t r a n s ( r2 ( 7 ) , : ) ;
102 % column m o d i f i c a t i o n
103 A t r a n s ( : , r 2 ( 7 ) ) = A t r a n s ( : , r 2 ( 7 ) ) − A t r a n s ( : , r 2 ( 7 ) ) ;
104 %3 rd machine i s t h e r e f e r n c e machine
105 A t r a n s ( r2 ( 7 ) , : ) = [ ] ;
106 A t r a n s ( : , r 2 ( 7 ) ) = [ ] ;
107 r2 = [ ] ; r3 = [ ] ; r4 = [ ] ; r5 = [ ] ; r_ l ink2_1311_1313_comp = [ ] ;

rOmeg = [ ] ; rDe l = [ ] ; c1 =1; r _ s t o r P S S _ i n d _ r P S S = [ ] ;
r _ s t o r P S S _ i n d _ r P S S _ n z = [ ] ;

108 f o r n = 1 : nUnitN
109 nS ta t eN = nInfoLMIN ( n , 3 ) ;
110 n S t a t e E n d = nInfoLMIN ( n , 8 ) ;
111 n S t a t e S t a r t = nInfoLMIN ( n , 7 ) ;
112 n S t a t e S t a r t _ 1 = nInfoLMIN ( n , 1 1 ) ;
113 nS ta t eEnd_1 = nInfoLMIN ( n , 1 2 ) ;
114 i f nInfoLMIN ( n , 1 ) ~=13 & v a r == 0
115 % c o r r e s p o n d s t o omegas o f machines
116 r1 = n S t a t e S t a r t ;
117 % c o r r e s p o n d s t o d e l t a s o f machines
118 r2 = n S t a t e S t a r t +1 ;
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119 % c o r r e s p o n d s t o r e m a i n i n g s t a t e s o f g e n e r a t o r s and
e x c i t e r s

120 r = n S t a t e S t a r t +2 : n S t a t e S t a r t +8 ;
121

122 i f nInfoLMIN ( n , 1 ) ~=72
123 % c o r r e s p o n d s t o PSS s t a t e s
124 r_PSS = n S t a t e S t a r t +9 ;
125 r_PSS_nz = n S t a t e S t a r t +10: n S t a t e S t a r t +11;
126 i f ( nInfoLMIN ( n , 1 ) ==1) | | ( nInfoLMIN ( n , 1 ) ==19) | |

( nInfoLMIN ( n , 1 ) ==33) | | ( nInfoLMIN ( n , 1 ) ==96)
| | ( nInfoLMIN ( n , 1 ) ==102) | | ( nInfoLMIN ( n , 1 )
==113) | | ( nInfoLMIN ( n , 1 ) ==119) | | ( nInfoLMIN ( n
, 1 ) ==126)

127

128 r _ s t o r P S S _ i n d _ r P S S = [ r _ s t o r P S S _ i n d _ r P S S ; r_PSS
’ ] ;

129 r _ s t o r P S S _ i n d _ r P S S _ n z = [ r _ s t o r P S S _ i n d _ r P S S _ n z
; r_PSS_nz ’ ] ;

130 r _ s t o r _ D e l =[ r _ s t o r _ D e l ; r2 ’ ] ;
131 r_s tor_Omg =[ r_s tor_Omg ; r1 ’ ] ;
132 end
133 % c o r r e s p o n d s t o g o v e r n o r s t a t e s
134 r_gov = n S t a t e S t a r t +12: n S t a t e E n d ;
135 e l s e
136 % c o r r e s p o n d s t o PSS s t a t e s o f Miraloma ( 7 2 ) which

has 5 PSS s t a t e s and no g o v e r n o r
137 r_PSS = n S t a t e S t a r t +9 −1: n S t a t e S t a r t +11 −1;
138 % 113 a l s o has no governor , b u t n o t i n c l u d e d

s p e c i a l l y s i n c e i t has 3 PSS s t a t e s l i k e o t h e r s
, which i s c o v e r e d i n l o g i c i t s e l f

139 r_PSS_nz = n S t a t e S t a r t +12 −1: n S t a t e S t a r t +13 −1;
140 % c o r r e s p o n d s t o PSS s t a t e s o f Miraloma ( 7 2 ) which

has 5 PSS s t a t e s and no g o v e r n o r
141 i f ( nInfoLMIN ( n , 1 ) ==1) | | ( nInfoLMIN ( n , 1 ) ==19)

| | ( nInfoLMIN ( n , 1 ) ==33) | | ( nInfoLMIN ( n , 1 )
==96) | | ( nInfoLMIN ( n , 1 ) ==102) | | ( nInfoLMIN (
n , 1 ) ==113) | | ( nInfoLMIN ( n , 1 ) ==119) | | (
nInfoLMIN ( n , 1 ) ==126)

142 r _ s t o r P S S _ i n d _ r P S S = [ r _ s t o r P S S _ i n d _ r P S S ;
r_PSS ’ ] ;

143 r _ s t o r P S S _ i n d _ r P S S _ n z = [ r _ s t o r P S S _ i n d _ r P S S _ n z
; r_PSS_nz ’ ] ;

144 r _ s t o r _ D e l =[ r _ s t o r _ D e l ; r2 ’ ] ;
145 r_s tor_Omg =[ r_s tor_Omg ; r1 ’ ] ;
146 end
147 r_gov = [ ] ;
148 end
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149 rOmeg = [ rOmeg ; r1 ’ ] ;
150 rDe l = [ rDe l ; r2 ’ ] ;
151 % c o r r e s p o n d s t o rem s t a t e s o f g e n e r a t o r s , e x c i t e r s

and g o v e r n o r s
152 r3 = [ r3 ; r ’ ; r_gov ’ ] ;
153 % c o r r e s p o n d s t o nz s t a t e s o f PSS
154 r4 = [ r4 ; r_PSS_nz ’ ] ;
155 % c o r r e s p o n d s t o z e r o s t a t e s o f PSS
156 r5 = [ r5 ; r_PSS ’ ] ;
157 e l s e
158 v a r = 1 ;
159 i f nInfoLMIN ( n , 1 ) ~=13
160 % c o r r e s p o n d s t o omegas o f machines
161 r1 = n S t a t e S t a r t − 1 ;
162 r2 = n S t a t e S t a r t +1 −1;
163 e l s e
164 % c o r r e s p o n d s t o omegas o f machines
165 r1 = n S t a t e S t a r t ;
166 end
167 % c o r r e s p o n d s t o r e m a i n i n g s t a t e s o f g e n e r a t o r s and

e x c i t e r s
168 r = n S t a t e S t a r t +2 −1: n S t a t e S t a r t +8 −1;
169 i f nInfoLMIN ( n , 1 ) ~=72
170 % c o r r e s p o n d s t o PSS s t a t e s
171 r_PSS = n S t a t e S t a r t +9 −1;
172 r_PSS_nz = n S t a t e S t a r t +10 −1: n S t a t e S t a r t +11 −1;
173 i f ( nInfoLMIN ( n , 1 ) ==1) | | ( nInfoLMIN ( n , 1 ) ==19) | |

( nInfoLMIN ( n , 1 ) ==33) | | ( nInfoLMIN ( n , 1 ) ==96)
| | ( nInfoLMIN ( n , 1 ) ==102) | | ( nInfoLMIN ( n , 1 )
==113) | | ( nInfoLMIN ( n , 1 ) ==119) | | ( nInfoLMIN ( n
, 1 ) ==126)

174 r _ s t o r P S S _ i n d _ r P S S = [ r _ s t o r P S S _ i n d _ r P S S ; r_PSS
’ ] ;

175 r _ s t o r P S S _ i n d _ r P S S _ n z = [ r _ s t o r P S S _ i n d _ r P S S _ n z
; r_PSS_nz ’ ] ;

176 r _ s t o r _ D e l =[ r _ s t o r _ D e l ; r2 ’ ] ;
177 r_s tor_Omg =[ r_s tor_Omg ; r1 ’ ] ;
178 end
179 % c o r r e s p o n d s t o g o v e r n o r s t a t e s
180 r_gov = n S t a t e S t a r t +12 −1: nS ta teEnd −1;
181 e l s e
182 % c o r r e s p o n d s t o PSS s t a t e s o f Miraloma ( 7 2 ) which

has 5 PSS s t a t e s and no g o v e r n o r
183 r_PSS = n S t a t e S t a r t +10 −1: n S t a t e S t a r t +12 −1;
184 % 113 a l s o has no governor , b u t n o t i n c l u d e d

s p e c i a l l y s i n c e i t has 3 PSS s t a t e s l i k e o t h e r s
, which i s c o v e r e d i n l o g i c i t s e l f
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185 r_PSS_nz = n S t a t e S t a r t +13 −1: n S t a t e S t a r t +14 −1;
186 i f ( nInfoLMIN ( n , 1 ) ==1) | | ( nInfoLMIN ( n , 1 ) ==19) | |

( nInfoLMIN ( n , 1 ) ==33) | | ( nInfoLMIN ( n , 1 ) ==96)
| | ( nInfoLMIN ( n , 1 ) ==102) | | ( nInfoLMIN ( n , 1 )
==113) | | ( nInfoLMIN ( n , 1 ) ==119) | | ( nInfoLMIN ( n
, 1 ) ==126)

187 r _ s t o r P S S _ i n d _ r P S S = [ r _ s t o r P S S _ i n d _ r P S S ; r_PSS
’ ] ;

188 r _ s t o r P S S _ i n d _ r P S S _ n z = [
r _ s t o r P S S _ i n d _ r P S S _ n z ; r_PSS_nz ’ ] ;

189 r _ s t o r _ D e l =[ r _ s t o r _ D e l ; r2 ’ ] ;
190 r_s tor_Omg =[ r_s tor_Omg ; r1 ’ ] ;
191 end
192 r_gov = [ ] ;
193 end
194 rOmeg = [ rOmeg ; r1 ’ ] ;
195 % c o r r e s p o n d s t o rem s t a t e s o f g e n e r a t o r s , e x c i t e r s

and g o v e r n o r s
196 r3 = [ r3 ; r ’ ; r_gov ’ ] ;
197 % c o r r e s p o n d s t o nz s t a t e s o f PSS
198 r4 = [ r4 ; r_PSS_nz ’ ] ;
199 % c o r r e s p o n d s t o z e r o s t a t e s o f PSS
200 r5 = [ r5 ; r_PSS ’ ] ;
201 end
202 % a d d i t i o n o f number o f g o v e r n o r s t a t e s t o i n f o r m a t i o n

m a t r i x o f g e n e r a t o r s
203 nInfoLMIN ( n , 9 ) = l e n g t h ( [ r_PSS ’ ; r_PSS_nz ’ ] ) ;
204 % a d d i t i o n o f number o f g o v e r n o r s t a t e s t o i n f o r m a t i o n

m a t r i x o f g e n e r a t o r s
205 nInfoLMIN ( n , 1 0 ) = l e n g t h ( r_gov ) ;
206 end
207 %nModeN ; % c o r r e s p o n d s t o SVCs s t a t e s
208 r_SVC = ( nInfoLMIN ( nUnitN , 8 ) ) +1 −1:( nInfoLMIN ( nUnitN , 8 ) )

−1+(3*nSVC) ;
209 %c o r r e s p o n d s t o wind t u r b i n e s s t a t e s
210 r_wind = r_SVC ( 1 , end ) +1: r_SVC ( 1 , end ) +(9* nWindUnit ) ;
211 %% DC l i n k 1 ( PDCI− l i n k 1 )
212 % wi th 9 s t a t e s f o r DC l i n k 1 − wi th 656 s t a t e s
213 r _ l i n k 1 _ 1 3 1 2 _ 1 3 1 4 = r_wind ( 1 , end ) +1: r_wind ( 1 , end ) +9;
214 %% DC Link 2 wi th SDC i n s t a l l e d on i t − has more s t a t e s t h a n

DC l i n k 1 ( PDCI− l i n k 2 )
215 % e x t r a c t t h e s t a t e s a p a r t from t h e manin c o n t r o l l e r −SDC

s t a t e s
216 r_l ink2_1311_1313_nonSDC = [ r _ l i n k 1 _ 1 3 1 2 _ 1 3 1 4 ( 1 , end ) +1:

r _ l i n k 1 _ 1 3 1 2 _ 1 3 1 4 ( 1 , end ) +4 r _ l i n k 1 _ 1 3 1 2 _ 1 3 1 4 ( 1 , end ) +6:
r _ l i n k 1 _ 1 3 1 2 _ 1 3 1 4 ( 1 , end ) +8 r _ l i n k 1 _ 1 3 1 2 _ 1 3 1 4 ( 1 , end ) + 1 0 ] ;

217 r_l ink2_1311_1313_nonSDC_rem = [ r _ l i n k 1 _ 1 3 1 2 _ 1 3 1 4 ( 1 , end )
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+12: r _ l i n k 1 _ 1 3 1 2 _ 1 3 1 4 ( 1 , end ) +15 r _ l i n k 1 _ 1 3 1 2 _ 1 3 1 4 ( 1 , end )
+ 1 7 ] ;

218 % SDC s t a t e s i n DC l i n k a p p e a r s a t p o s i t i o n s 13 , 14 and 15
i n A mat r ix , b u t t h e i r im pa c t on r e c t i f i e r s ( p o s i t i o n 5
and 16) , m a s t e r c o n t r o l ( p o s i t i o n 11) and i n v e r t e r s (
p o s i t i o n 11) a p p e a r s a t d i f f e r e n t p o s i t i o n s

219 r_l ink2_1311_1313_SDC = [ r _ l i n k 1 _ 1 3 1 2 _ 1 3 1 4 ( 1 , end ) +5
r _ l i n k 1 _ 1 3 1 2 _ 1 3 1 4 ( 1 , end ) +9 r _ l i n k 1 _ 1 3 1 2 _ 1 3 1 4 ( 1 , end ) +11
r _ l i n k 1 _ 1 3 1 2 _ 1 3 1 4 ( 1 , end ) + 1 6 ] ;

220 r_ l ink2_1311_1313_comp = [ r_l ink2_1311_1313_nonSDC ’ ;
r_l ink2_1311_1313_nonSDC_rem ’ ; r_l ink2_1311_1313_SDC ’ ]

221 %% DC l i n k 3 ( I n t e r m o u n t a i n − A d e l a n t o )
222 r_link3_INT_ADL = r_l ink2_1311_1313_nonSDC_rem ( 1 , end ) +1:

r_l ink2_1311_1313_nonSDC_rem ( 1 , end ) +5;
223 %% R e a r r a n g i n g t h e i n d i c e s
224 % Arrangement done such t h a t a l l o t h e r s t a t e s a p a r t f o r main

c o n t r o l s come f i r s t f o l l o w e d by wind and DC l i n k s , t h e n
non − z e r o s t a t e s o f PSS and SVC, f i n a l l y a l l c o n t r o l l e r s

225 [ Lia , Locb ] = ismember ( r _ s t o r P S S _ i n d _ r P S S , r5 ) ;
226 [ Lia1 , Locb1 ] = ismember ( r_ s to rPSS_ ind_ rPSS _nz , r4 ) ;
227 r5 ( Locb , : ) = [ ] ;
228 r4 ( Locb1 , : ) = [ ] ;
229 [ Lia2 , Locb2 ] = ismember ( r _ s t o r _ D e l , rDe l ) ;
230 [ Lia3 , Locb3 ] = ismember ( r_stor_Omg , rOmeg ) ;
231 rDe l ( Locb2 , : ) = [ ] ;
232 rOmeg ( Locb3 , : ) = [ ] ;
233 r = [ rDel ’ rOmeg ’ r_SVC ( 1 , 2 ) : r_SVC ( 1 , 3 ) r5 ’ r3 ’ r_wind

r _ l i n k 1 _ 1 3 1 2 _ 1 3 1 4 r_link3_INT_ADL
r_l ink2_1311_1313_nonSDC r_l ink2_1311_1313_nonSDC_rem r4
’ r_SVC ( 1 , 1 ) r_l ink2_1311_1313_SDC ] ;

234 %% R e a r r a n g i n g A m a t r i x
235 A = z e r o s ( l e n g t h ( r ) , l e n g t h ( r ) ) ;
236 nn = s i z e (A) *[1 0 ] ’ ; % nn = S i z e o f System
237 A( 1 : nn , 1 : nn ) = A t r a n s ( r , r ) ;
238 %% s p e c i f y number o f c o n t r o l s
239 SDCs ta t e s = l e n g t h ( r_l ink2_1311_1313_SDC ) ;
240 % Number o f s t a t e s p e r C o n t r o l ; h e r e 2 , SDCsta tes , and 1

c o r r e s p o n d s t o non − z e r o s t a t e s p e r PSS ( t o t a l 22) , SDC
and SVC r e s p e c t i v e l y

241 n S t a t e s C o n t r o l = 1*nSVC + SDCs ta t e s + ( 2 2 * 2 ) ;
242 noOfCon t ro l = nSVC + nSDC + 2 2 ;
243 n4 = nn − n S t a t e s C o n t r o l ;
244 %%%% Begin t o s e t B , C , D m a t r i x
245 %% B m a t r i x formed on ly u s i n g non − z e r o s t a t e s o f a l l

c o n t r o l s
246 % number o f non − z e r o s t a t e s a s s o c i a t e d wi th each SVC i s 2

f o r svswsc PSLF model and SDC i s 4
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247 B_PSS_SVC_SDC = z e r o s ( s i z e ( At rans , 1 ) , ( nSVC*1) +(nSDC*4) +
( 2 * 2 2 ) ) ;

248 d = 1 ; q =1;
249 % PSS s t a t e s f o r B
250 f o r n = 1 :22
251 % e x t r a c t e d from SSAT
252 B_PSS_SVC_SDC ( r4 ( q ) , d ) = 0 . 1 ;
253 B_PSS_SVC_SDC ( r4 ( q +1) , d +1) = 1 / 0 . 2 ;
254 d = d + 2 ;
255 q = q + 2 ;
256 end
257 % ad d i ng svc s t a t e s a p a r t from g e n e r a t o r s − a dd i ng a t a l l non −

z e r o p o s i t i o n s
258 % Here assumed t h a t a l l SVCs a r e p l a c e d one a f t e r o t h e r
259 r_PSSrem = [ r _ s t o r P S S _ i n d _ r P S S ; r _ s t o r P S S _ i n d _ r P S S _ n z ] ;
260 s t a r t I n d S V C =nInfoLMIN ( end , 8 ) − l e n g t h ( r_PSSrem ) ;
261 f o r n = 1 : nSVC
262 % e x t r a c t e d from SSAT− svc s t a t e s i n B
263 B_PSS_SVC_SDC ( r_SVC ( 1 , 1 ) , d ) =16 .6666679 ;
264 d = d + 1 ;
265 end
266 % ad d i ng sdc s t a t e s a p a r t from g e n e r a t o r s − a dd i ng a t a l l non −

z e r o p o s i t i o n s
267 % Here assumed t h a t a l l SDCs a r e p l a c e d one a f t e r o t h e r
268 f o r n = 1 : nSDC
269 i f l e n g t h ( r_l ink2_1311_1313_SDC ) == 4
270 %e x t r a c t e d from SSAT− sdc s t a t e s i n B
271 B_PSS_SVC_SDC ( r_l ink2_1311_1313_SDC ( 1 , 1 ) , d ) =

−0 .0487427;
272 B_PSS_SVC_SDC ( r_l ink2_1311_1313_SDC ( 1 , 2 ) , d +1) =

0 . 0 4 8 7 4 2 7 ;
273 B_PSS_SVC_SDC ( r_l ink2_1311_1313_SDC ( 1 , 3 ) , d +2) =

−0 .1799416;
274 B_PSS_SVC_SDC ( r_l ink2_1311_1313_SDC ( 1 , 4 ) , d +3) =

0 . 0 4 8 7 4 2 7 ;
275 d = d + 1 ;
276 end
277 %% R e a r r a n g e d B c o n t r o l s
278 f o r i =1 : l e n g t h ( r )
279 BB( i , 1 : n S t a t e s C o n t r o l ) = B_PSS_SVC_SDC ( r ( i ) , 1 :

n S t a t e s C o n t r o l ) ;
280 end
281 %% T r a n s f o r m a t i o n m a t r i x t o r e d u c e t h e number o f c o n t r o l s
282 % % each row c o r r e s p o n d s t o a s i n g l e c o n t r o l ;
283 % % each column r e f e r s t o number o f non − z e r o s t a t e s i n a

c o n t r o l
284 gamma_RHS = z e r o s ( 1 , n S t a t e s C o n t r o l ) ;
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285 %% PSS s t a t e s
286 s =1;
287 gamma_pss = z e r o s ( 1 , l e n g t h ( gamma_RHS ) ) ;
288 f o r i =1:22
289 gamma_pss ( i , s ) = 1 ;
290 gamma_pss ( i , s +1) = 1 ;
291 s = s + 2 ;
292 end
293 %% SVC s t a t e s
294 gamma_svc = z e r o s ( 1 , l e n g t h ( gamma_RHS ) ) ;
295 gamma_svc ( 1 , end ) = 1 ;
296 %% SDC s t a t e s
297 gamma_sdc = z e r o s ( 1 , l e n g t h ( gamma_RHS ) ) ;
298 gamma_sdc ( 1 , 4 5 : 4 5 + l e n g t h ( r_l ink2_1311_1313_SDC ) −1) = 1 ;
299 % d e f i n e s t h e e x a c t number o f rows i n gamma
300 gamma = v e r t c a t ( gamma_pss , gamma_sdc , gamma_svc ) ;
301 % Number o f r e d u c e d c o n t r o l s
302 nnc = s i z e ( gamma ) *[1 0 ] ’ ;
303 % % T r a n s f o r m i n g t h e A− m a t r i x
304 An ( 1 : n4 , 1 : n4 ) = A( 1 : n4 , 1 : n4 ) ;
305 An ( n4 +1: n4+nnc , n4 +1: n4+nnc ) = gamma*A( n4 +1: n4+ n S t a t e s C o n t r o l

, n4 +1: n4+ n S t a t e s C o n t r o l ) *gamma ’ ;
306 AA = An ;
307 Bnn = gamma*BB( n4 +1: nn , 1 : n S t a t e s C o n t r o l ) *gamma ’ ;
308 Bn = [ 0* ones ( nnc , n4 ) Bnn ] ’ ;
309 BB = [ Bn Bn ] ;
310 % a f t e r remova l o f d e l t a
311 nModeN =nModeN −1;
312 s ave A_C7_300_2 AA
313 s ave B_C7_300_2 BB
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PYTHON CODE FOR DNN-CWADC
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This code is used for building and training the deep neural network using the input
polytopic data generated in LMI toolbox.

1 # ######################################################
2 # Program Name : T r a i n i n g o f DNN−CWADC
3 # D e s c r i p t i o n : Run t h i s f i l e t o t r a i n deep n e u r a l ne twork
4 # Author : Poo ja Gupta %
5 # Ar i zona S t a t e U n i v e r s i t y %
6 # L a s t Modi f i ed : 0 3 / 0 4 / 2 0 2 1 %
7 # ######################################################
8 # I mp or t o f Python p a c k a g e s
9 from t e n s o r f l o w . k e r a s . models i m p o r t S e q u e n t i a l

10 from t e n s o r f l o w . k e r a s . l a y e r s i m p o r t Dense , A c t i v a t i o n ,
B a t c h N o r m a l i z a t i o n , Dropout

11 from t e n s o r f l o w . k e r a s . c a l l b a c k s i m p o r t E a r l y S t o p p i n g ,
ReduceLROnPlateau

12 i m p o r t pandas as pd
13 i m p o r t numpy as np
14 i m p o r t s c i p y . i o as s i o
15 from s k l e a r n i m p o r t m e t r i c s
16 from m a t p l o t l i b i m p o r t p y p l o t
17 from s k l e a r n . m e t r i c s i m p o r t m e a n _ a b s o l u t e _ e r r o r
18 from t e n s o r f l o w . k e r a s i m p o r t r e g u l a r i z e r s
19 from t e n s o r f l o w . k e r a s . o p t i m i z e r s i m p o r t Adam
20 from t e n s o r f l o w . k e r a s i m p o r t l a y e r s
21 from numpy . random i m p o r t s eed
22 from numpy . random i m p o r t s h u f f l e
23 # Length o f t r a i n i n g n e u r a l ne twork
24 num_epochs = 50
25 # Reading t h e i n p u t and t h e o u t p u t t r a i n i n g d a t a g e n e r a t e d

a f t e r fo rming t h e p o l y t o p e s i n LMI t o o l b o x
26 d f x _ t r a i n = pd . r e a d _ c s v ( ’C : \ p s t v 3 \ T r a i n i n g D a t a \ T r a i n i n g D a t a \

I n p u t X _ t r a i n A n g f l o w o u t . c sv ’ , h e a d e r = None )
27 d f y _ t r a i n = pd . r e a d _ c s v ( ’C : \ p s t v 3 \ T r a i n i n g D a t a \ T r a i n i n g D a t a \

O u t p u t Y _ t r a i n A n g f l o w o u t . c sv ’ , h e a d e r = None )
28 # c o n v e r t t h e r e a d d a t a t o numpy
29 x _ t r a i n = d f x _ t r a i n . to_numpy ( )
30 y _ t r a i n = d f y _ t r a i n . to_numpy ( )
31 # Reading t h e i n p u t and o u t p u t t e s t d a t a g e n e r a t e d a f t e r

fo rming t h e p o l y t o p e s i n LMI t o o l b o x
32 d f x _ t e s t = pd . r e a d _ c s v ( ’C : \ p s t v 3 \ T r a i n i n g D a t a \ T r a i n i n g D a t a \

I n p u t X _ t e s t A n g F l o w o u t . csv ’ , h e a d e r = None )
33 d f y _ t e s t = pd . r e a d _ c s v ( ’C : \ p s t v 3 \ T r a i n i n g D a t a \ T r a i n i n g D a t a \

Ou tpu tY_tes tAngFlowou t . c sv ’ , h e a d e r = None )
34 # c o n v e r t t h e r e a d d a t a t o numpy
35 x _ t e s t = d f x _ t e s t . to_numpy ( )
36 y _ t e s t = d f y _ t e s t . to_numpy ( )
37 ## A d d i t i o n o f G a u s s i a n e r r o r t o t h e t r a i n i n g d a t a
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38 x _ t r a i n 3 = np . c o n c a t e n a t e ( [ x _ t r a i n , n np . random . normal (
x _ t r a i n , 0 . 0 0 0 2 ) , np . random . normal ( x _ t r a i n , 0 . 0 0 0 3 ) , np .
random . normal ( x _ t r a i n , 0 . 0 0 0 4 ) , np . random . normal ( x _ t r a i n ,
0 . 0 0 0 5 ) , np . random . normal ( x _ t r a i n , 0 . 0 0 0 9 ) , np . random .
normal ( x _ t r a i n , 0 . 0 1 ) ] )

39 y _ t r a i n 3 = np . c o n c a t e n a t e ( [ y _ t r a i n , y _ t r a i n , y _ t r a i n , y _ t r a i n ,
y _ t r a i n , y _ t r a i n , y _ t r a i n ] )

40 i n p u t _ d i m = x _ t r a i n . shape [ 1 ]
41 # B u i l d t h e n e u r a l ne twork
42 model = S e q u e n t i a l ( )
43 # Neurons i n i n p u t l a y e r 5169
44 model . add ( Dense ( 5 1 6 9 , i n p u t _ d i m = x _ t r a i n . shape [ 1 ] , a c t i v a t i o n

= ’ r e l u ’ ) )
45 # model . add ( Dropout ( 0 . 0 7 ) )
46 B a t c h N o r m a l i z a t i o n ( a x i s = −1 , momentum = 0 . 9 9 , e p s i l o n = 0 . 0 0 1 ,

c e n t e r =True , s c a l e =True , b e t a _ i n i t i a l i z e r = ’ z e r o s ’ ,
g a m m a _ i n i t i a l i z e r = ’ ones ’ , m o v i n g _ m e a n _ i n i t i a l i z e r = ’ z e r o s ’
, m o v i n g _ v a r i a n c e _ i n i t i a l i z e r = ’ ones ’ , b e t a _ r e g u l a r i z e r =
None , g a m m a _ r e g u l a r i z e r =None , b e t a _ c o n s t r a i n t =None ,
g a m m a _ c o n s t r a i n t =None )

47 # Hidden 1 l a y e r
48 model . add ( Dense ( 2 5 0 0 , a c t i v a t i o n = ’ r e l u ’ ,

a c t i v i t y _ r e g u l a r i z e r = r e g u l a r i z e r s . l 2 (1 e −5) ) )
49 B a t c h N o r m a l i z a t i o n ( a x i s = −1 , momentum = 0 . 9 9 , e p s i l o n = 0 . 0 0 1 ,

c e n t e r =True , s c a l e =True , b e t a _ i n i t i a l i z e r = ’ z e r o s ’ ,
g a m m a _ i n i t i a l i z e r = ’ ones ’ , m o v i n g _ m e a n _ i n i t i a l i z e r = ’ z e r o s ’
, m o v i n g _ v a r i a n c e _ i n i t i a l i z e r = ’ ones ’ , b e t a _ r e g u l a r i z e r =
None , g a m m a _ r e g u l a r i z e r =None , b e t a _ c o n s t r a i n t =None ,
g a m m a _ c o n s t r a i n t =None )

50 # Hidden 2 l a y e r
51 model . add ( Dense ( 1 8 6 1 , a c t i v a t i o n = ’ r e l u ’ ,

a c t i v i t y _ r e g u l a r i z e r = r e g u l a r i z e r s . l 2 (1 e −5) ) ) # Hidden 3
52 B a t c h N o r m a l i z a t i o n ( a x i s = −1 , momentum = 0 . 9 9 , e p s i l o n = 0 . 0 0 1 ,

c e n t e r =True , s c a l e =True , b e t a _ i n i t i a l i z e r = ’ z e r o s ’ ,
g a m m a _ i n i t i a l i z e r = ’ ones ’ , m o v i n g _ m e a n _ i n i t i a l i z e r = ’ z e r o s ’
, m o v i n g _ v a r i a n c e _ i n i t i a l i z e r = ’ ones ’ , b e t a _ r e g u l a r i z e r =
None , g a m m a _ r e g u l a r i z e r =None , b e t a _ c o n s t r a i n t =None ,
g a m m a _ c o n s t r a i n t =None )

53 # Outpu t
54 model . add ( Dense ( 1 0 3 2 , a c t i v a t i o n = ’ l i n e a r ’ ) )
55 model . compi l e ( l o s s = ’ m e a n _ a b s o l u t e _ e r r o r ’ , o p t i m i z e r =Adam( l r

=1e −3) , m e t r i c s =[ ’mae ’ ] )
56 # m o n i t o r = E a r l y S t o p p i n g ( m o n i t o r = ’ v a l _ l o s s ’ , m i n _ d e l t a =1e

−3 , p a t i e n c e =5 , v e r b o s e =1 , mode= ’ a u t o ’ ,
r e s t o r e _ b e s t _ w e i g h t s =True )

57 # c k p o i n t e r = ModelCheckpoin t ( f i l e p a t h = ’ mode l_zero7 . { epoch
: 0 2 d}−{ v a l _ l o s s : . 6 f } . hdf5 ’ , v e r b o s e =1 , s a v e _ b e s t _ o n l y =True ,
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s a v e _ w e i g h t s _ o n l y = True )
58 # Reduce l e a r n i n g r a t e i f MAE doesn ’ t d e c r e a s e
59 r e d u c e _ l r = ReduceLROnPlateau ( m o n i t o r = ’

v a l _ m e a n _ a b s o l u t e _ e r r o r ’ , f a c t o r = 0 . 1 , p a t i e n c e =2 , m i n _ l r
=0 .000001 , v e r b o s e =1)

60 # Model f i t t i n g
61 h i s t o r y = model . f i t ( x _ t r a i n 3 , y _ t r a i n 3 , v e r b o s e =1 , epochs =

num_epochs , v a l i d a t i o n _ s p l i t = 0 . 2 , b a t c h _ s i z e =16 ,
c a l l b a c k s =[ r e d u c e _ l r ] )

62 xc = r a n g e ( 1 , num_epochs )
63 l o s s _ t r a i n = h i s t o r y . h i s t o r y [ ’ l o s s ’ ]
64 l _ t = np . a r r a y ( l o s s _ t r a i n [ 1 : num_epochs ] )
65 l o s s _ v a l = h i s t o r y . h i s t o r y [ ’ v a l _ l o s s ’ ]
66 v _ t = np . a r r a y ( l o s s _ v a l [ 1 : num_epochs ] )
67 # P l o t t i n g model l o s s
68 p y p l o t . f i g u r e ( )
69 p y p l o t . p l o t ( xc , l _ t , l a b e l = ’ t r a i n ’ )
70 p y p l o t . p l o t ( xc , v_t , l a b e l = ’ v a l i d a t i o n ’ )
71 p y p l o t . t i t l e ( ’ Model l o s s ’ )
72 p y p l o t . y l a b e l ( ’ Loss ’ )
73 p y p l o t . x l a b e l ( ’ Epoch ’ )
74 p y p l o t . l e g e n d ( [ ’ T r a i n ’ , ’ V a l i d a t i o n ’ ] , l o c = ’ uppe r l e f t ’ )
75 # P l o t t i n g v a l i d a t i o n e r r o r
76 p y p l o t . f i g u r e ( )
77 m a e _ t r a i n = h i s t o r y . h i s t o r y [ ’ m e a n _ a b s o l u t e _ e r r o r ’ ]
78 m_t= np . a r r a y ( m a e _ t r a i n [ 1 : num_epochs ] )
79 mae_val = h i s t o r y . h i s t o r y [ ’ v a l _ m e a n _ a b s o l u t e _ e r r o r ’ ]
80 m_v= np . a r r a y ( mae_val [ 1 : num_epochs ] )
81 p y p l o t . p l o t ( xc , m_t )
82 p y p l o t . p l o t ( xc , m_v )
83 p y p l o t . t i t l e ( ’ Model MAE’ )
84 p y p l o t . y l a b e l ( ’MAE’ )
85 p y p l o t . x l a b e l ( ’ Epoch ’ )
86 p y p l o t . l e g e n d ( [ ’ T r a i n ’ , ’ T e s t ’ ] , l o c = ’ uppe r l e f t ’ )
87 p y p l o t . show ( )
88 # T e s t i n g o f t h e t r a i n e d d a t a
89 x _ t e s t 1 = np . z e r o s ( x _ t e s t . shape )
90 y _ t e s t 1 = np . z e r o s ( y _ t e s t . shape )
91 s eed ( 1 )
92 # p r e p a r e a s e q u e n c e
93 s e q u e n c e = [ i f o r i i n r a n g e ( 1 5 ) ]
94 s h u f f l e ( s e q u e n c e )
95 j = 0
96 w h i l e j < l e n ( s e q u e n c e ) :
97 x _ t e s t 1 [ j , : ] = x _ t e s t [ s e q u e n c e [ j ] , : ]
98 y _ t e s t 1 [ j , : ] = y _ t e s t [ s e q u e n c e [ j ] , : ]
99 j += 1
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100 # p r e d i c t t h e g a i n ( o u t p u t o f t h e t h e t r a i n e d model ) f o r t h e
t e s t i n g i n p u t

101 pred1 = model . p r e d i c t ( x _ t e s t 1 )
102 s c o r e 1 = ( m e t r i c s . m e a n _ a b s o l u t e _ e r r o r ( pred1 , y _ t e s t 1 ) )
103 p r i n t ( f " Fold s c o r e (MAE) : { s c o r e 1 } " )
104 # a r r a n g e m e n t o f t h e p r e d i c t e d d a t a as a c c e p t e d by t h e

p o l y t o p i c i n p u t − S e c t i o n 6 . 1 . 1
105 K1 =np . z e r o s ( [ 2 4 , 4 3 ] )
106 k=0
107 f o r j i n r a n g e ( 4 3 ) :
108 f o r i i n r a n g e ( 2 4 ) :
109 K1 [ i , j ] = pred1 [ 1 4 , k ]
110 k += 1
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This code is used for creating the power system environment for training DRL-CWADC.

1 # ######################################################
2 # Program Name : Power sys tem e n v i r o n m e n t f o r DRL−CWADC
3 # D e s c r i p t i o n : Run t h i s f i l e t o c r e a t e e n v i r o n m e n t f o r
4 # t r a i n i n g DRL−CWADC
5 # Author : Poo ja Gupta %
6 # Ar i zona S t a t e U n i v e r s i t y %
7 # L a s t Modi f i ed : 0 3 / 0 4 / 2 0 2 1 %
8 # ######################################################
9 i m p o r t l o g g i n g , t ime

10 i m p o r t math
11 i m p o r t gym
12 from gym i m p o r t s p a c e s
13 from gym . u t i l s i m p o r t s e e d i n g
14 i m p o r t numpy as np
15 i m p o r t pandas as pd
16 from m a t p l o t l i b i m p o r t p y p l o t a s p l t
17 from s u b p r o c e s s i m p o r t c a l l , Popen , PIPE
18 i m p o r t math as math
19 i m p o r t csv
20 i m p o r t random
21 i m p o r t os
22 i m p o r t s h u t i l
23 from p a t h l i b i m p o r t Pa th
24 i m p o r t pandas as pd
25 # c l a s s Act iveEnv ( gym . Env ) :
26 c l a s s Act iveEnv ( ) :
27 d e f _ _ i n i t _ _ ( s e l f , s eed =None ) :
28 s e l f . np_random = None
29 s e l f . s eed = s e l f . s eed ( seed )
30 s e l f . _ c u r r e n t _ s t e p = 0
31 s e l f . g e n _ d a t a = s e l f . l o a d _ g e n _ d a t a ( )
32 # i n i t i l a i z a t i o n o f o b s e r v a t i o n s p a c e
33 s e l f . o b s e r v a t i o n _ s p a c e = s p a c e s . Box ( low=obs [ : , 0 ] ,

h igh =obs [ : , 1 ] , d t y p e =np . f l o a t 3 2 )
34 # i n i t i a l i z a t i o n o f a c t i o n space − h e r e on ly 4 a c t i o n s

added due t o s p a c e c o n s t r a i n t s
35 s e l f . a c t i o n _ h i g h = np . a r r a y ( [ 3 * np . abs ( s e l f .

g e t _ a c t i o n ( ) [ 0 ] ) , 1 . 0 * np . abs ( s e l f . g e t _ a c t i o n ( )
[ 1 ] ) , 1 . 0 * np . abs ( s e l f . g e t _ a c t i o n ( ) [ 2 ] ) , 1 . 0 * np .
abs ( s e l f . g e t _ a c t i o n ( ) [ 3 ] ) ] )

36 s e l f . a c t i o n _ l o w = np . a r r a y ( − s e l f . a c t i o n _ h i g h )
37 s e l f . a c t i o n _ s p a c e = s p a c e s . Box ( low = s e l f .

a c t i o n _ l o w , h igh = s e l f . a c t i o n _ h i g h , d t y p e =np .
f l o a t 3 2 )

38 s e l f . _done = F a l s e
39 s e l f . r eward = 0
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40 s e l f . l o g _ t e r m i n a l R e a c h e d ( s e l f . _done )
41 d e f seed ( s e l f , s eed =None ) :
42 s e l f . np_random , seed = s e e d i n g . np_random ( seed )
43 r e t u r n [ seed ]
44 # f u n c t i o n f o r l o a d i n g t h e g e n e r a t o r d a t a − s p e e d s and

a n g l e s o f t h e g e n e r a t o r s i d e n t i f i e d u s i n g SMA
45 d e f l o a d _ g e n _ d a t a ( s e l f ) :
46 i f os . p a t h . e x i s t s ( ’ / u p s l f 2 1 / MyPSLF / RL_PSLF / AS1 . csv ’

) :
47 t r y :
48 ang = pd . r e a d _ c s v ( ’ / u p s l f 2 1 / MyPSLF / RL_PSLF /

AS1 . csv ’ , d e l i m i t e r = r " \ s+" )
49 e x c e p t pd . e r r o r s . EmptyDataEr ro r :
50 p r i n t ( ’ Note : AS1 . csv was empty . Reading AS2

. csv . ’ )
51 ang = pd . r e a d _ c s v ( ’ / u p s l f 2 1 / MyPSLF / RL_PSLF /

AS2 . csv ’ , d e l i m i t e r = r " \ s+" )
52 e l s e :
53 ang = pd . r e a d _ c s v ( ’ / u p s l f 2 1 / MyPSLF / RL_PSLF / AS2 .

csv ’ , d e l i m i t e r = r " \ s+" )
54 r e t u r n ang . to_numpy ( )
55 # f u n c t i o n f o r l o a d i n g t h e p o l y t o p i c g a i n s − used as an

i n i t i a l i n p u t
56 d e f l o a d _ G a i n s _ d a t a ( s e l f ) :
57 # Gains = pd . r e a d _ c s v ( ’ Gain_Gens1 . csv ’ , h e a d e r =

None )
58 Gains = pd . r e a d _ c s v ( ’ Gain_Gens2 . csv ’ , h e a d e r = None

)
59

60 r e t u r n Gains . to_numpy ( )
61 # f u n c t i o n f o r c a l c u l a t i n g t h e change i n s p e e d s and

a n g l e s o f g e n e r a t o r s
62 d e f _ g e t _ o b s ( s e l f ) :
63 s t a t e = [ ]
64 s e l f . ang_speed = s e l f . l o a d _ g e n _ d a t a ( )
65 j = 0
66 w h i l e j < ( l e n ( s e l f . ang_speed ) ) :
67 dang = s e l f . ang_speed [ j , 3 ] / 1 8 0 * math . p i − s e l f .

ang_speed [ j , 2 ] / 1 8 0 * math . p i
68 dspd = s e l f . ang_speed [ j , 5 ] − s e l f . ang_speed [ j , 4 ]
69 ang_spd1 . append ( dang )
70 ang_spd1 . append ( dspd )
71 j += 1
72 s t a t e = ( ang_spd1 )
73 r e t u r n np . a r r a y ( s t a t e )
74 # f u n c t i o n t o f i n d t h e change i n maximum a n g l e and speed

f o r f i n d i n g t h e maximum bound
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75 d e f load_maxChange_gen_data ( s e l f ) :
76 max_angspd = pd . r e a d _ c s v ( ’C : / RLGC− m a s t e r /RLGC− m a s t e r

/ Fau l t_max_de lChange . csv ’ , d e l i m i t e r = r " \ s+" )
77 r e t u r n max_angspd . to_numpy ( )
78 # f u n c t i o n t o l o a d t h e power f lows of l i n e s
79 d e f load_RegPower_da ta ( s e l f ) :
80 i f os . p a t h . e x i s t s ( ’C : / u p s l f 2 1 / MyPSLF / RL_PSLF /

RegPowFlowsPSLF . csv ’ ) :
81 t r y :
82 RegPower = pd . r e a d _ c s v ( ’C : / u p s l f 2 1 / MyPSLF /

RL_PSLF / RegPowFlowsPSLF . csv ’ , d e l i m i t e r = r
" \ s+" , h e a d e r = None )

83 e x c e p t pd . e r r o r s . EmptyDataEr ro r :
84 p r i n t ( ’ Note : Reg . csv was empty . Reading Reg3

. csv . ’ )
85 RegPower = pd . r e a d _ c s v ( ’C : / u p s l f 2 1 / MyPSLF /

RL_PSLF / RegPowFlowsPSLF3 . csv ’ , d e l i m i t e r =
r " \ s+" , h e a d e r = None )

86 e l s e :
87 RegPower = pd . r e a d _ c s v ( ’C : / u p s l f 2 1 / MyPSLF /

RL_PSLF / RegPowFlowsPSLF3 . csv ’ , d e l i m i t e r = r " \ s
+" , h e a d e r = None )

88 r e t u r n ( RegPower [ 0 ] . to_numpy ( ) −RegPower [ 1 ] . to_numpy
( ) )

89 # r e s e t f u n c t i o n f o r s p e e d s and a n g l e s a t e v e r y t i m e s t e p
90 d e f r e s e t ( s e l f ) :
91 aSpd = [ ]
92 j = 0
93 dang = 0 . 0 5
94 dspd = 0 .025
95 w h i l e j < 22 :
96 aSpd . append ( dang )
97 aSpd . append ( dspd )
98 j += 1
99 h igh = np . a r r a y ( aSpd )

100 s t a t e = s e l f . np_random . un i fo rm ( low=−high , h igh = h igh )
101 r e t u r n s t a t e
102 # f u n c t i o n t o g e n e r a t e t h e c o n t r o l l e r a c t i o n s based on

d i f f e r e n t PSLF t i m e s t e p s
103 d e f g e t _ a c t i o n ( s e l f ) :
104 ang = [ ]
105 spd = [ ]
106 Gang = [ ]
107 Gspd = [ ]
108 r e s u l t _ a n g = 0
109 r e s u l t _ s p d = 0
110 r e s u l t = 0
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111 GangSVC = [ ]
112 GspdSVC = [ ]
113 r e su l t_angSVC = 0
114 r e su l t _ spdSVC = 0
115 r e su l tSVC = 0
116 GangPSS5 = [ ]
117 GspdPSS5 = [ ]
118 r e s u l t _ a n g P S S 5 = 0
119 r e s u l t _ s p d P S S 5 = 0
120 r e s u l t P S S 5 = 0
121 GangPSS8 = [ ]
122 GspdPSS8 = [ ]
123 r e s u l t _ a n g P S S 8 = 0
124 r e s u l t _ s p d P S S 8 = 0
125 r e s u l t P S S 8 = 0
126 Gain_Cont = s e l f . l o a d _ G a i n s _ d a t a ( )
127 max_ang_spd = s e l f . load_maxChange_gen_data ( )
128 # e x t r a c t t h e s p e e d s and a n g l e s o f g e n e r a t o r s
129 j = 0
130 w h i l e j < ( l e n ( max_ang_spd ) ) :
131 i f j != 2 :
132 dang = max_ang_spd [ j , 3 ] / 1 8 0 * math . p i −

max_ang_spd [ j , 2 ] / 1 8 0 * math . p i
133 ang . append ( dang )
134 j += 1
135 j = 0
136 w h i l e j < ( l e n ( max_ang_spd ) ) :
137 dspd = max_ang_spd [ j , 5 ] − max_ang_spd [ j , 4 ]
138 spd . append ( dspd )
139 j += 1
140 # Load Gains Data
141 # f o r DC−SDC
142 j = 2
143 w h i l e j < 2 3 :
144 g a i n D e l = Gain_Cont [ 2 2 , j ]
145 Gang . append ( g a i n D e l )
146 j += 1
147 j = 23
148 w h i l e j < Gain_Cont . shape [ 1 ] :
149 ga inSpd = Gain_Cont [ 2 2 , j ]
150 Gspd . append ( ga inSpd )
151 j += 1
152 # f o r SVC
153 j = 2
154 w h i l e j < 2 3 :
155 gainDelSVC = Gain_Cont [ 2 3 , j ]
156 GangSVC . append ( gainDelSVC )
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157 j += 1
158 j = 23
159 w h i l e j < Gain_Cont . shape [ 1 ] :
160 gainSpdSVC = Gain_Cont [ 2 3 , j ]
161 GspdSVC . append ( gainSpdSVC )
162 j += 1
163 # f o r PSSs −shown h e r e f o r on ly 2 PSSs
164 j = 2
165 w h i l e j < 2 3 :
166 gainDelPSS5 = Gain_Cont [ 0 , j ]
167 GangPSS5 . append ( gainDelPSS5 )
168 gainDelPSS8 = Gain_Cont [ 1 , j ]
169 GangPSS8 . append ( gainDelPSS8 )
170 j += 1
171 j = 23
172 w h i l e j < Gain_Cont . shape [ 1 ] :
173 gainSpdPSS5 = Gain_Cont [ 0 , j ]
174 GspdPSS5 . append ( gainSpdPSS5 )
175 gainSpdPSS8 = Gain_Cont [ 1 , j ]
176 GspdPSS8 . append ( gainSpdPSS8 )
177 j += 1
178 a n g l e = np . a r r a y ( ang )
179 speed = np . a r r a y ( spd )
180 Gangle = np . a r r a y ( Gang )
181 Gspeed = np . a r r a y ( Gspd )
182 GangleSVC = np . a r r a y ( GangSVC )
183 GspeedSVC = np . a r r a y ( GspdSVC )
184 GanglePSS5 = np . a r r a y ( GangPSS5 )
185 GspeedPSS5 = np . a r r a y ( GspdPSS5 )
186 GanglePSS8 = np . a r r a y ( GangPSS8 )
187 GspeedPSS8 = np . a r r a y ( GspdPSS8 )
188 f o r i i n r a n g e ( l e n ( a n g l e ) ) :
189 r e s u l t _ a n g += a n g l e [ i ] * Gangle [ i ]
190 r e su l t_angSVC += a n g l e [ i ] * GangleSVC [ i ]
191 r e s u l t _ a n g P S S 5 += a n g l e [ i ] * GanglePSS5 [ i ]
192 r e s u l t _ a n g P S S 8 += a n g l e [ i ] * GanglePSS8 [ i ]
193 f o r i i n r a n g e ( l e n ( speed ) ) :
194 r e s u l t _ s p d += speed [ i ] * Gspeed [ i ]
195 r e su l t _ spdSVC += speed [ i ] * GspeedSVC [ i ]
196 r e s u l t _ s p d P S S 5 += speed [ i ] * GspeedPSS5 [ i ]
197 r e s u l t _ s p d P S S 8 += speed [ i ] * GspeedPSS8 [ i ]
198 r e s u l t = r e s u l t _ a n g + r e s u l t _ s p d
199 r e su l tSVC = resu l t_angSVC + resu l t _ spdSVC
200 r e s u l t P S S 5 = r e s u l t _ a n g P S S 5 + r e s u l t _ s p d P S S 5
201 r e s u l t P S S 8 = r e s u l t _ a n g P S S 8 + r e s u l t _ s p d P S S 8
202 r e t u r n ( r e s u l t , resu l tSVC , r e s u l t P S S 5 , r e s u l t P S S 8 )
203 # l o g s a c t i o n s f o r PSLF
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204 d e f l o g _ a c t i o n ( s e l f , a c t i o n ) :
205 a c t i o n _ p s l f = a c t i o n
206 myFi le = open ( ’ / u p s l f 2 1 / MyPSLF / RL_PSLF / Ang_Python .

csv ’ , ’w’ , n e w l i n e = ’ ’ )
207 wi th myFi le :
208 w r i t e r = csv . w r i t e r ( myFi le )
209 w r i t e r . w r i t e r o w s ( np . t r a n s p o s e ( a c t i o n _ p s l f ) )
210 # w r i t e s t h e i n f o r m a t i o n f o r PSLF i f t h e e p i s o d e i s

t e r m i n a t e d
211 d e f l o g _ t e r m i n a l R e a c h e d ( s e l f , done ) :
212 i f ( done == True ) :
213 t d o n e = 1
214 e l s e :
215 t d o n e = 0
216 t d on e1 = [ [ t d o n e ] , [ t d o n e ] , [ t d o n e ] , [ t d o n e ] ]
217 myFi le = open ( ’ / u p s l f 2 1 / MyPSLF / RL_PSLF / w a i t i n f o . csv .

csv ’ , ’w’ , n e w l i n e = ’ ’ )
218 wi th myFi le :
219 w r i t e r = csv . w r i t e r ( myFi le )
220 w r i t e r . w r i t e r o w s ( t do ne 1 )
221 # f u n c t i o n t o c a l c u l a t e t h e reward
222 d e f c a l c _ r e w a r d ( s e l f , a c t i o n , o b t s t a t e ) :
223 # s t a t e _ l o s s = 0
224 # a s s i g n e d _ r e w a r d = 0
225 a n g _ c o s t s = 0
226 s p d _ c o s t s = 0
227 cont_PSS = 0
228 c o n t _ p e n =np . z e r o s ( 2 2 )
229 s e l f . angSum = 0
230 a c t i o n _ s t a t e _ n u m = o b t s t a t e
231 f o r i i n r a n g e ( l e n ( s e l f . ang_speed ) ) :
232 s e l f . angSum += np . abs ( s e l f . ang_speed [ i , 3 ] / 1 8 0 *

math . p i − s e l f . ang_speed [ i , 2 ] / 1 8 0 * math . p i )
233 a n g _ c o s t s += 10 * np . abs ( s e l f . ang_speed [ i , 3 ] / 1 8 0

* math . p i − s e l f . ang_speed [ i , 2 ] / 1 8 0 * math .
p i )

234 s p d _ c o s t s += 10 * np . abs ( s e l f . ang_speed [ i , 5 ] −
s e l f . ang_speed [ i , 4 ] )

235

236 i f ( s e l f . p s l f T i m e <= 5) :
237 i f ( ( np . abs ( a c t i o n [ 0 , 0 ] ) ) > 2* np . abs ( s e l f .

g e t _ a c t i o n ( ) [ 0 ] ) ) and ( ( np . abs ( a c t i o n [ 0 , 0 ] ) )
<= 3* np . abs ( s e l f . g e t _ a c t i o n ( ) [ 0 ] ) ) :

238 con t1_pen = 3 * np . abs ( a c t i o n [ 0 , 0 ] )
239 e l i f ( ( np . abs ( a c t i o n [ 0 , 0 ] ) ) > 1* np . abs ( s e l f .

g e t _ a c t i o n ( ) [ 0 ] ) ) and ( ( np . abs ( a c t i o n [ 0 , 0 ] ) )
<= 2* np . abs ( s e l f . g e t _ a c t i o n ( ) [ 0 ] ) ) :
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240 con t1_pen = 2 * np . abs ( a c t i o n [ 0 , 0 ] )
241 e l s e :
242 con t1_pen = 1 * np . abs ( a c t i o n [ 0 , 0 ] )
243

244 i f ( ( np . abs ( a c t i o n [ 0 , 1 ] ) ) > ( 0 . 9 5 ) *np . abs ( s e l f .
g e t _ a c t i o n ( ) [ 1 ] ) ) and ( ( np . abs ( a c t i o n [ 0 , 1 ] ) )
<= 1 . 0 * np . abs ( s e l f . g e t _ a c t i o n ( ) [ 1 ] ) ) :

245 con t2_pen = 1 * np . abs ( a c t i o n [ 0 , 1 ] )
246

247 e l i f ( ( np . abs ( a c t i o n [ 0 , 1 ] ) ) > ( 0 . 7 5 ) *np . abs ( s e l f
. g e t _ a c t i o n ( ) [ 1 ] ) ) and ( ( np . abs ( a c t i o n [ 0 , 1 ] ) )
<= ( 0 . 9 5 ) *np . abs ( s e l f . g e t _ a c t i o n ( ) [ 1 ] ) ) :

248 con t2_pen = 2 * np . abs ( a c t i o n [ 0 , 1 ] )
249

250 e l s e :
251 con t2_pen = 3 * np . abs ( a c t i o n [ 0 , 1 ] )
252

253 i = 0
254 f o r i i n r a n g e ( 2 0 ) :
255 i f ( ( np . abs ( a c t i o n [ 0 , i + 2 ] ) ) > ( 0 . 9 5 ) *np . abs (

s e l f . g e t _ a c t i o n ( ) [ i + 2 ] ) ) and ( ( np . abs (
a c t i o n [ 0 , i + 2 ] ) ) <= 1 . 0 * np . abs ( s e l f .
g e t _ a c t i o n ( ) [ i + 2 ] ) ) :

256 c o n t _ p e n [ i ] = 4* np . abs ( a c t i o n [ 0 , i + 2 ] )
257 e l i f ( ( np . abs ( a c t i o n [ 0 , i + 2 ] ) ) > ( 0 . 7 5 ) *np .

abs ( s e l f . g e t _ a c t i o n ( ) [ i + 2 ] ) ) and ( ( np . abs
( a c t i o n [ 0 , i + 2 ] ) ) <= ( 0 . 9 5 ) *np . abs ( s e l f .
g e t _ a c t i o n ( ) [ i + 2 ] ) ) :

258 c o n t _ p e n [ i ] = 3* np . abs ( a c t i o n [ 0 , i + 2 ] )
259 e l i f ( ( np . abs ( a c t i o n [ 0 , i + 2 ] ) ) > ( 0 . 5 ) *np . abs

( s e l f . g e t _ a c t i o n ( ) [ i + 2 ] ) ) and ( ( np . abs (
a c t i o n [ 0 , i + 2 ] ) ) <= ( 0 . 7 5 ) *np . abs ( s e l f .
g e t _ a c t i o n ( ) [ i + 2 ] ) ) :

260 c o n t _ p e n [ i ] = 2* np . abs ( a c t i o n [ 0 , i + 2 ] )
261 e l s e :
262 c o n t _ p e n [ i ] = 1* np . abs ( a c t i o n [ 0 , i + 2 ] )
263

264 i f ( s e l f . p s l f T i m e > 5) and ( s e l f . p s l f T i m e <= 8) :
265 i f ( ( np . abs ( a c t i o n [ 0 , 0 ] ) ) > 2* np . abs ( s e l f .

g e t _ a c t i o n ( ) [ 0 ] ) ) and ( ( np . abs ( a c t i o n [ 0 , 0 ] ) )
<= 3* np . abs ( s e l f . g e t _ a c t i o n ( ) [ 0 ] ) ) :

266 con t1_pen = 4 * np . abs ( a c t i o n [ 0 , 0 ] )
267 e l i f ( ( np . abs ( a c t i o n [ 0 , 0 ] ) ) > 1* np . abs ( s e l f .

g e t _ a c t i o n ( ) [ 0 ] ) ) and ( ( np . abs ( a c t i o n [ 0 , 0 ] ) )
<= 2* np . abs ( s e l f . g e t _ a c t i o n ( ) [ 0 ] ) ) :

268 con t1_pen = 3 * np . abs ( a c t i o n [ 0 , 0 ] )
269 e l i f ( ( np . abs ( a c t i o n [ 0 , 0 ] ) ) > 0 .75* np . abs ( s e l f .
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g e t _ a c t i o n ( ) [ 0 ] ) ) and ( ( np . abs ( a c t i o n [ 0 , 0 ] ) )
<= 1* np . abs ( s e l f . g e t _ a c t i o n ( ) [ 0 ] ) ) :

270 con t1_pen = 2 * np . abs ( a c t i o n [ 0 , 0 ] )
271 e l s e :
272 con t1_pen = 1 * np . abs ( a c t i o n [ 0 , 0 ] )
273

274 i f ( ( np . abs ( a c t i o n [ 0 , 1 ] ) ) > ( 0 . 9 5 ) *np . abs ( s e l f .
g e t _ a c t i o n ( ) [ 1 ] ) ) and ( ( np . abs ( a c t i o n [ 0 , 1 ] ) )
<= 1 . 0 * np . abs ( s e l f . g e t _ a c t i o n ( ) [ 1 ] ) ) :

275 con t2_pen = 4 * np . abs ( a c t i o n [ 0 , 1 ] )
276 e l i f ( ( np . abs ( a c t i o n [ 0 , 1 ] ) ) > ( 0 . 7 5 ) *np . abs ( s e l f

. g e t _ a c t i o n ( ) [ 1 ] ) ) and ( ( np . abs ( a c t i o n [ 0 , 1 ] ) )
<= ( 0 . 9 5 ) *np . abs ( s e l f . g e t _ a c t i o n ( ) [ 1 ] ) ) :

277 con t2_pen = 3 * np . abs ( a c t i o n [ 0 , 1 ] )
278 e l i f ( ( np . abs ( a c t i o n [ 0 , 1 ] ) ) > ( 0 . 5 ) *np . abs ( s e l f .

g e t _ a c t i o n ( ) [ 1 ] ) ) and ( ( np . abs ( a c t i o n [ 0 , 1 ] ) )
<= ( 0 . 7 5 ) *np . abs ( s e l f . g e t _ a c t i o n ( ) [ 1 ] ) ) :

279 con t2_pen = 2 * np . abs ( a c t i o n [ 0 , 1 ] )
280 e l s e :
281 con t2_pen = 1 * np . abs ( a c t i o n [ 0 , 1 ] )
282

283 i = 0
284 f o r i i n r a n g e ( 2 0 ) :
285 i f ( ( np . abs ( a c t i o n [ 0 , i + 2 ] ) ) > ( 0 . 9 5 ) *np . abs (

s e l f . g e t _ a c t i o n ( ) [ i + 2 ] ) ) and ( ( np . abs (
a c t i o n [ 0 , i + 2 ] ) ) <= 1 . 0 * np . abs ( s e l f .
g e t _ a c t i o n ( ) [ i + 2 ] ) ) :

286 c o n t _ p e n [ i ] = 4* np . abs ( a c t i o n [ 0 , i + 2 ] )
287 e l i f ( ( np . abs ( a c t i o n [ 0 , i + 2 ] ) ) > ( 0 . 7 5 ) *np .

abs ( s e l f . g e t _ a c t i o n ( ) [ i + 2 ] ) ) and ( ( np . abs
( a c t i o n [ 0 , i + 2 ] ) ) <= ( 0 . 9 5 ) *np . abs ( s e l f .
g e t _ a c t i o n ( ) [ i + 2 ] ) ) :

288 c o n t _ p e n [ i ] = 3* np . abs ( a c t i o n [ 0 , i + 2 ] )
289 e l i f ( ( np . abs ( a c t i o n [ 0 , i + 2 ] ) ) > ( 0 . 5 ) *np . abs

( s e l f . g e t _ a c t i o n ( ) [ i + 2 ] ) ) and ( ( np . abs (
a c t i o n [ 0 , i + 2 ] ) ) <= ( 0 . 7 5 ) *np . abs ( s e l f .
g e t _ a c t i o n ( ) [ i + 2 ] ) ) :

290 c o n t _ p e n [ i ] = 2* np . abs ( a c t i o n [ 0 , i + 2 ] )
291 e l s e :
292 c o n t _ p e n [ i ] = 1* np . abs ( a c t i o n [ 0 , i + 2 ] )
293

294 i f ( s e l f . p s l f T i m e > 8) :
295 i f ( ( np . abs ( a c t i o n [ 0 , 0 ] ) ) > 2* np . abs ( s e l f .

g e t _ a c t i o n ( ) [ 0 ] ) ) and ( ( np . abs ( a c t i o n [ 0 , 0 ] ) )
<= 3* np . abs ( s e l f . g e t _ a c t i o n ( ) [ 0 ] ) ) :

296 con t1_pen = 4 * np . abs ( a c t i o n [ 0 , 0 ] )
297 e l i f ( ( np . abs ( a c t i o n [ 0 , 0 ] ) ) > 1* np . abs ( s e l f .
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g e t _ a c t i o n ( ) [ 0 ] ) ) and ( ( np . abs ( a c t i o n [ 0 , 0 ] ) )
<= 2* np . abs ( s e l f . g e t _ a c t i o n ( ) [ 0 ] ) ) :

298 con t1_pen = 3 * np . abs ( a c t i o n [ 0 , 0 ] )
299 e l i f ( ( np . abs ( a c t i o n [ 0 , 0 ] ) ) > 0 .75* np . abs ( s e l f .

g e t _ a c t i o n ( ) [ 0 ] ) ) and ( ( np . abs ( a c t i o n [ 0 , 0 ] ) )
<= 1* np . abs ( s e l f . g e t _ a c t i o n ( ) [ 0 ] ) ) :

300 con t1_pen = 2 * np . abs ( a c t i o n [ 0 , 0 ] )
301 e l s e :
302 con t1_pen = 1 * np . abs ( a c t i o n [ 0 , 0 ] )
303

304 i f ( ( np . abs ( a c t i o n [ 0 , 1 ] ) ) > ( 0 . 9 5 ) *np . abs ( s e l f .
g e t _ a c t i o n ( ) [ 1 ] ) ) and ( ( np . abs ( a c t i o n [ 0 , 1 ] ) )
<= 1 . 0 * np . abs ( s e l f . g e t _ a c t i o n ( ) [ 1 ] ) ) :

305 con t2_pen = 4 * np . abs ( a c t i o n [ 0 , 1 ] )
306 e l i f ( np . abs ( a c t i o n [ 0 , 1 ] ) ) > ( 0 . 7 5 ) *np . abs ( s e l f .

g e t _ a c t i o n ( ) [ 1 ] ) and ( ( np . abs ( a c t i o n [ 0 , 1 ] ) )
<= ( 0 . 9 5 ) *np . abs ( s e l f . g e t _ a c t i o n ( ) [ 1 ] ) ) :

307 con t2_pen = 3 * np . abs ( a c t i o n [ 0 , 1 ] )
308 e l i f ( ( np . abs ( a c t i o n [ 0 , 1 ] ) ) > ( 0 . 5 ) *np . abs ( s e l f .

g e t _ a c t i o n ( ) [ 1 ] ) ) and ( ( np . abs ( a c t i o n [ 0 , 1 ] ) )
<= ( 0 . 7 5 ) *np . abs ( s e l f . g e t _ a c t i o n ( ) [ 1 ] ) ) :

309 con t2_pen = 2 * np . abs ( a c t i o n [ 0 , 1 ] )
310 e l s e :
311 con t2_pen = 1 * np . abs ( a c t i o n [ 0 , 1 ] )
312

313 i = 0
314 f o r i i n r a n g e ( 2 0 ) :
315 i f ( ( np . abs ( a c t i o n [ 0 , i + 2 ] ) ) > ( 0 . 9 5 ) *np . abs (

s e l f . g e t _ a c t i o n ( ) [ i + 2 ] ) ) and ( ( np . abs (
a c t i o n [ 0 , i + 2 ] ) ) <= 1 . 0 * np . abs ( s e l f .
g e t _ a c t i o n ( ) [ i + 2 ] ) ) :

316 c o n t _ p e n [ i ] = 4* np . abs ( a c t i o n [ 0 , i + 2 ] )
317 e l i f ( ( np . abs ( a c t i o n [ 0 , i + 2 ] ) ) > ( 0 . 7 5 ) *np .

abs ( s e l f . g e t _ a c t i o n ( ) [ i + 2 ] ) ) and ( ( np . abs
( a c t i o n [ 0 , i + 2 ] ) ) <= ( 0 . 9 5 ) *np . abs ( s e l f .
g e t _ a c t i o n ( ) [ i + 2 ] ) ) :

318 c o n t _ p e n [ i ] = 3* np . abs ( a c t i o n [ 0 , i + 2 ] )
319 e l i f ( ( np . abs ( a c t i o n [ 0 , i + 2 ] ) ) > ( 0 . 5 ) *np . abs

( s e l f . g e t _ a c t i o n ( ) [ i + 2 ] ) ) and ( ( np . abs (
a c t i o n [ 0 , i + 2 ] ) ) <= ( 0 . 7 5 ) *np . abs ( s e l f .
g e t _ a c t i o n ( ) [ i + 2 ] ) ) :

320 c o n t _ p e n [ i ] = 2* np . abs ( a c t i o n [ 0 , i + 2 ] )
321 e l s e :
322 c o n t _ p e n [ i ] = 1* np . abs ( a c t i o n [ 0 , i + 2 ] )
323

324 f o r i i n r a n g e ( 2 2 ) :
325 cont_PSS += c o n t _ p e n [ i ]
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326 c o s t s _ t o t = a n g _ c o s t s + s p d _ c o s t s + con t1_pen +
con t2_pen + cont_PSS

327 p r i n t ( " angC , spdC , actC0 , ac tC0 " , a n g _ c o s t s ,
s p d _ c o s t s , cont1_pen , con t2_pen )

328 r e t u r n − c o s t s _ t o t
329 # main s t e p f u n c t i o n f o r t h e DRL a l g o r i t h m
330 d e f s t e p ( s e l f , a c t i o n , t i m e _ c o u n t ) :
331 l o g _ a c t i o n = s e l f . l o g _ a c t i o n ( a c t i o n )
332 n s t a t e = s e l f . _ g e t _ o b s ( )
333 # c a l c u l a t i o n o f t h e r e w a r d s c o r r e s p o n d i n g t o t h e

g e n e r a t e d a c t i o n s
334 r eward = s e l f . c a l c _ r e w a r d ( a c t i o n , n s t a t e )
335 p r i n t ( " angSum " , s e l f . angSum )
336 # t e r m i n a t e t h e e p i s o d e when PSLF t i m e s t e p r e a c h e s

35 s e c
337 i f ( s e l f . p s l f T i m e > 35) :
338 s e l f . _done = True
339 s e l f . l o g _ t e r m i n a l R e a c h e d ( s e l f . _done )
340 r e t u r n n s t a t e , reward , s e l f . _done , {}
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This is the main code used to train DRL-CWADC.

1 # ######################################################
2 # Program Name : T r a i n i n g f o r DRL−CWADC
3 # D e s c r i p t i o n : Run t h i s f i l e t o t r a i n DRL−CWADC
4 # Author : Poo ja Gupta %
5 # Ar i zona S t a t e U n i v e r s i t y %
6 # L a s t Modi f i ed : 0 3 / 0 4 / 2 0 2 1 %
7 # ######################################################
8 from d d p g _ t f _ o r i g i m p o r t Agent
9 i m p o r t gym

10 i m p o r t l o g g i n g , t ime
11 i m p o r t numpy as np
12 # from u t i l s i m p o r t p l o t L e a r n i n g
13 from m a t p l o t l i b i m p o r t p y p l o t
14 from A c t i v e E n v _ o r i g i m p o r t Act iveEnv
15 env = Act iveEnv ( )
16 # P a r a m e t e r s t o b u i l d deep n e u r a l n e t w o r k s f o r DRL
17 a g e n t = Agent ( a l p h a =0 .0001 , b e t a = 0 . 0 0 1 , i n p u t _ d i m s = [ 4 4 ] ,

t a u = 0 . 0 0 1 , env=env ,
18 b a t c h _ s i z e =32 , l a y e r 1 _ s i z e =400 ,

l a y e r 2 _ s i z e =400 , n _ a c t i o n s =24 , v a r =
0 . 2 5 )

19 s c o r e _ h i s t o r y = [ ]
20 e p _ r e w a r d s = [ ]
21 ep_avg rewards = [ ]
22 ep_minrewards = [ ]
23 ep_maxrewards = [ ]
24 AGGREGATE_STATS_EVERY = 5 # e p i s o d e s
25 c o u n t e r = 0
26 np . random . seed ( 0 )
27 f o r i i n r a n g e ( 5 0 0 ) :
28 t ime . s l e e p ( 3 6 )
29 i f i <= 2 :
30 a g e n t . l oad_mode l s ( )
31 done = F a l s e
32 s c o r e = 0
33 obs = env . r e s e t ( )
34 # s t e p _ c o u n t r e p r e s e n t s t i m e _ s t e p o f PSLF
35 f o r s t e p _ c o u n t i n r a n g e ( 3 0 0 ) :
36 # a g e n t c h o o s e s a c t i o n based on ddpg a l g o r i t h m
37 a c t = a g e n t . c h o o s e _ a c t i o n ( obs , s t e p _ c o u n t , env )
38 # a g e n t t a k e s an a c t i o n which i n t u r n r e t u r n s new

s t t a e s and r e w a r d s
39 n e w _ s t a t e , reward , done , i n f o = env . s t e p ( a c t ,

s t e p _ c o u n t )
40 p r i n t ( " a c t , r eward " , a c t , r eward )
41 # s t o r e t r a n s i t i o n s t a t e s i n r e p l a y b u f f e r
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42 a g e n t . remember ( obs , a c t , reward , n e w _ s t a t e , i n t ( done
) )

43 i f i > 2 :
44 a g e n t . l e a r n ( )
45 s c o r e += reward
46 obs = n e w _ s t a t e
47 p r i n t ( ’ e p i s o d e ’ , i , ’ s c o r e %.2 f ’ % s c o r e ,
48 ’ 100 game a v e r a g e %.2 f ’ % np . mean (

s c o r e _ h i s t o r y [ − 1 0 0 : ] ) )
49 i f i > 1 :
50 i f i %10 == 0 :
51 a g e n t . save_mode l s ( )
52 p r i n t ( " p s l f T i m e " , env . p s l f T i m e )
53 # t e r m i n a t e t h e e p i s o d e when PSLF t i m e s t e p r e a c h e s

35 s e c
54 i f ( env . p s l f T i m e > 35) :
55 i += 1
56 p r i n t ( " i " , i )
57 b r e a k
58 e p _ r e w a r d s . append ( s c o r e )
59 p r i n t ( " s c o r e " , s c o r e )
60 i f n o t i % AGGREGATE_STATS_EVERY:
61 a v e r a g e _ r e w a r d = sum ( e p _ r e w a r d s [ −

AGGREGATE_STATS_EVERY : ] ) / l e n ( e p _ r e w a r d s [ −
AGGREGATE_STATS_EVERY : ] )

62 min_reward = min ( e p _ r e w a r d s [ −AGGREGATE_STATS_EVERY
: ] )

63 max_reward = max ( e p _ r e w a r d s [ −AGGREGATE_STATS_EVERY
: ] )

64

65 ep_avg rewards . append ( a v e r a g e _ r e w a r d )
66 ep_minrewards . append ( min_reward )
67 ep_maxrewards . append ( max_reward )
68 x = [ i +1 f o r i i n r a n g e ( 5 0 0 ) ]
69 p y p l o t . p l o t ( x , e p _ r e w a r d s )
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