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ABSTRACT

This thesis addresses the problem of approximating analytic functions over general

and compact multidimensional domains. Although the methods we explore can be

used in complex domains, most of the tests are performed on the interval [−1, 1] and

the square [−1, 1]×[−1, 1]. Using Fourier and polynomial frame approximations on an

extended domain, well-conditioned methods can be formulated. In particular, these

methods provide exponential decay of the error down to a finite but user-controlled

tolerance ϵ > 0. Additionally, this thesis explores two implementations of the frame

approximation: a singular value decomposition (SVD)-regularized least-squares fit as

described by Adcock and Shadrin in 2021, and a column and row selection method

that leverages QR factorizations to reduce the data needed in the approximation.

Moreover, strategies to reduce the complexity of the approximation problem by ex-

ploiting randomized linear algebra in low-rank algorithms are also explored, including

the AZ algorithm described by Coppe and Huybrechs in 2020.
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Chapter 1

INTRODUCTION

1.1 Motivation

Function approximation is one of the main pillars of computational mathematics.

It is the foundation for developing Partial Differential Equation (PDE) solvers, opti-

mization solvers, and data fitting techniques, to name a few. Polynomial and Fourier

bases are commonly used in one-dimension and rectangular domains due to their fast

convergence and robustness.

In the case of periodic functions, Fourier bases are advantageous because of their

periodicity and efficiency. In this case, expansion coefficients can be computed in

logarithmic time using Fast Fourier Transform algorithms (FFTs) that rely on equally

spaced data points.

Polynomials are less restrictive and can be used without periodicity assumptions

with similar convergence rates and fast algorithms but require non-uniform approxi-

mation points. In rectangular domains, the choices of points that allow stable approx-

imations are well-known (e.g., tensor-product of 1-D Chebyshev points)[12]. However,

polynomials fail spectacularly when the data is equispaced or randomly sampled [10].

Moreover, in the case of complex geometries, optimal nodes are not known analyti-

cally and are computationally expensive to estimate.

Traditionally, Fourier and polynomial approximations are computed by interpo-

lating the data or, more generally, via discrete least squares. However, interpolation

is very sensitive to data placement, as illustrated by the Runge phenomenon in 1-D

when equispaced nodes are used (described in Chapter 2). Least squares approxi-
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mation, on the other hand, is less restrictive on point placements but will require a

large number of points (relative to the approximation degree) to compensate for a

poor choice of sampling locations. In one-dimension, stable computation of a polyno-

mial approximation requires O(d2) equispaced samples, where d is the approximation

degree.

Frame approximation has been proposed as an alternative to these traditional

techniques in recent years. For instance, Fourier frames have been studied in [8], and

more recently, polynomial frames have been proposed in [1]. In particular, Fourier

extensions have been extensively used to solve PDEs[4, 9].

1.2 Organization and Main Contributions

This thesis combines ideas presented in three articles: [3], [5], and [11]. The first

establishes the theory of convergence for polynomial frames. The second proposes

a fast and randomized algorithm for solving least squares approximations of rank-

deficient matrices. The third introduces pivoted QR factorizations for estimating

good sampling points for interpolation.

In Chapter 2, we review the theory presented in [3] and replicate several numer-

ical experiments demonstrating the approximating properties of polynomial frames.

In Chapter 3, the node selection algorithm from [11] is extended to frames, where

we propose a column and row selection method that leverages QR factorizations to

reduce the data needed in the approximation while maintaining the decay rate and

conditioning established by Adcock and Shadrin [2].

Chapter 4 reviews the AZ algorithm proposed in [5]. That article focused on

Fourier frames. In Chapter 5 we implement and test the algorithm for polynomial

frames and demonstrate its computational efficiency with several numerical experi-

ments. In particular, we propose a method for AZ implementation on polynomial

2



Figure 1.1: Examples of basis and frame regions generated with γ = 1.4.

frames, in which a set of composite nodes are used to ensure the method is well-

conditioned.

For completeness, we include computations for Fourier frame approximations in

Chapter 6. Final remarks and future work are presented in Chapter 7.

1.3 Introduction to Frames

As described by Adcock and Huybrechs[1], frames are a generalization of bases

that allow for redundancy amongst the generating elements. They are usually used

in the context of modern signal and image processing. However, the use of frames

in function approximation is more uncommon. Thus, this paper aims to consider

frames in this context. Specifically, we will examine truncated frames used in the

approximation of functions on the interval [−1, 1] and the square [−1, 1]×[−1, 1] using

orthogonal bases on an expanded domain based on a fixed γ > 1, which determines

the scaling between the basis region and the frame region, as shown in Figure 1.1.

Note that when restricted to the smaller domain, the set of orthogonal basis might

become ill-conditioned or even linearly dependent.
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The approximation is then computed by solving a regularized least-squares prob-

lem, with user-controlled regularization parameter (tolerance) ϵ > 0. Even though the

frame functions will be ill-conditioned and not orthogonal on our domains of interest,

in terms of motivation, we will demonstrate that there are several feasible methods

from which approximations can be computed with desirable properties.

1.4 General Properties of Frames

Let Φ = {ϕn}n∈N be an orthonormal basis element of a Hilbert space H. It then

follows that Φ has two key properties. First, the direct representation of any f ∈ H

in the basis using the inner product on H is given by:

f =
∑
n∈N

⟨f, ϕn⟩ϕn, ∀f ∈ H,

where the infinite sum converges in H. Also, Φ gives rise to Parseval’s identity, which

indicates that the Hilbert space norm of f is the L2-norm of its coefficients:

||f ||2 =
∑
n∈N

|⟨f, ϕn⟩|2, ∀f ∈ H.

If the coefficients {⟨f, ϕn⟩}n∈N are known or have been computed, we can approximate

f with a finite expansion:

f ≈
N∑

n=1

⟨f, ϕn⟩ϕn.

On the other hand, Φ = {ϕn}n∈N is called a frame for H if it satisfies the frame

condition

A||f ||2 ≤
∑
n∈N

|⟨f, ϕn⟩|2 ≤ B||f ||2, ∀f ∈ H

for constants A,B > 0. The optimal A and B. i.e. the largest possible A and smallest

possible B, are referred to as frame bounds.

Comparing frames and orthonormal bases, there are some key differences. The frame

elements ϕn are not orthogonal in general. Furthermore, while the frame condition

4



implies span(Φ) is dense in H, Φ is not necessarily a basis. Essentially, a frame is

typically redundant.

With this in mind, we will first start with the 1D formulation. Let ϕi(x) be an

orthonormal basis on [−1, 1]. We then define the frame approximation on [−γ, γ] as

{ψi}∞i=0, where the ith such function is given by

ψi(x) =ϕi(x/γ)/
√
γ, x ∈ [−γ, γ].

Let m,n ≥ 0 and consider a function f ∈ C([−1, 1]). Our aim is to compute a frame

approximation to f of the form

f ≈ f̂ =
n∑

i=0

ĉiψi ∈ Pn,

for suitable coefficients ĉi, where Pn denotes the space of all polynomials with degree

n or less. In order to do this, we perform a least-square fit, such that

ĉ = (ĉi)
n
i=0 ∈ argmin

c∈Cn+1

∥Ac− b∥2,

where

A = α(m)(ψj(xi))
m,n
i,j=0 ∈ Cm×n,

b = α(m)(f(xi))
m
i=0 ∈ Cm,

and α(m) is a normalization factor that is included for convenience. Notice that in

the frame case, A might be rank deficient, which will result in multiple solutions.

As for the 2D formulation, since we are working within the square [−1, 1]×[−1, 1], it is

sufficient to formulate the 1D version of the A matrix first, then apply the Kronecker

product to A with itself to obtain the 2D A matrix.

1.5 SVD-Regularized Frame

In frame approximation, the least-squares problem described in Section 1.2 is

often ill-conditioned for large n, even when m >> n. However, there are a number
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of ways to regularize the problem, such as the ϵ-truncated SVD and column-pivoted

QR decomposition. To start with the ϵ-truncated SVD decomposition, suppose that

A = UΣV ∗, where Σ = diag(σ0, . . . , σn) ∈ Rm×n is the diagonal matrix of singular

values. Then ĉ is given by

ĉ = V Σ†U∗b,

where † denotes pseudoinverse. Given ϵ > 0, we define Σϵ as

Σϵ =


σi σi > ϵ

0 otherwise

,

and similarly, we define Σϵ,† as

Σϵ,† =


1/σi σi > ϵ

0 otherwise

.

We can then define the ϵ−regularized approximation of ĉ as ĉϵ = V Σϵ,†U∗b and the

corresponding approximation of f as

f̂ ϵ =
n∑

i=0

ĉϵiψi.

Thus, the overall approximation procedure can be defined as the mapping

Pϵ,γ
m,n : C([−1, 1]) −→ C([−1, 1]), f −→ f̂ ϵ =

n∑
i=0

ĉϵiψi,

where

ĉ = (ĉi)
n
i=0 = V Σϵ,†U∗b, b = α(m)(f(xi))

m
i=0.

6



Chapter 2

POLYNOMIAL FRAMES

In this chapter, we review the main result presented in [3] and replicate many of

its numerical results.

2.1 Introduction to Polynomial Frames

To begin, one of the main problems with the choice of equispaced points with

polynomial interpolants can be demonstrated through Runge’s function, which is

defined as f(x) = 1/(1 + 25x2).

Figure 2.1: Plots of f = 1/(1 + 25x2) constructed with n equispaced nodes.

As the number of equispaced nodes increases, the interpolant becomes more accu-

rate throughout most of the interval; however, the oscillations near the endpoints of

the interval become more extreme, making the interpolant unstable. This means that

even with a higher degree interpolant, the error is not necessarily small throughout the

interval if the interpolation nodes are not properly clustered. This behavior is known

7



as Runge’s phenomenon. This is an illustration of a more general problem in func-

tion approximation in equally spaced points that was pointed out in [10]. The main

result in that article states that under certain assumptions geometric convergence is

unstable when equispaced nodes are used.

To further explore this problem, we consider families of mappings

Rm : C([−1, 1]) −→ C([−1, 1]),

where for each m ≥ 1 and f ∈ C([−1, 1]),Rm(f) depends only on the values

{f(xi)}mi=0 of f on the equispaced grid {xi}mi=0. Then, the absolute condition number

of Rm can be defined as

κ(Rm) =
sup

f∈C([−1,1])
lim

δ−→0+

sup
h∈C([−1,1])
0<∥h∥m,∞≤δ

∥Rm(f + h)−Rm(f)∥[−1,1],∞

∥h∥m,∞
,

which is essentially the change in the mapping as a result of small perturbations in

the data.

Now we can state the impossibility theorem from [10], which generalizes Runge’s

phenomenon:

Theorem 2.1.1 (The impossibility theorem) Let E ⊂ C be a compact set con-

taining [−1, 1] in its interior and {Rm}∞m=1 be an approximation procedure based on

equispaced grids of m + 1 points such that, for some C, ρ > 1 and 1/2 < τ ≤ 1, we

have

∥f −Rm(f)∥m,∞ ≤ Cρ−mτ∥f∥E,∞, ∀m ∈ N, f ∈ B(E).

Then the condition number κ(Rm) satisfies

κ(Rm) ≥ σm2τ−1

,

for some σ > 1 and all sufficiently large m.

8



As shown in the impossibility theorem, the approximation problem is intrinsically

difficult since any method that offers exponential rates of convergence in m for all

such functions in a fixed, but arbitrary region of the complex plane must necessarily

be exponentially ill-conditioned. Furthermore, the best rate of convergence achievable

by a stable method is necessarily subgeometric(τ = 1/2).

Many methods have been proposed to overcome Runge’s phenomenon by sta-

bly and accurately approximating analytic functions from equispaced nodes, but full

mathematical explanations have been lacking. Thus, we seek to fully explore the

impossibility theorem using polynomial frame approximation. [1]

In particular, the polynomial frame will approximate a function f on [−1, 1]

and [−1, 1] × [−1, 1] using orthogonal polynomials on an expanded domain based

on some fixed γ > 1. The approximation is then computed by solving a regularized

least-squares problem, with user-controlled regularization parameter(tolerance) ϵ > 0.

Note that the polynomials will be ill-conditioned and not orthogonal on the domains

of interest, but they will circumvent the assumptions of the impossibility theorem.

We will use orthonormal Legendre polynomials here, although other orthogonal poly-

nomials such as Chebyshev polynomials will suffice as well.

2.2 Numerical Results

Applying the regularization methods described in Sections 1.3 and 1.4, we can

estimate the maximal behavior of the polynomial frame bounded at equispaced nodes.

Let’s first define the quantity

C(m,n, γ, ϵ) =sup{∥p∥[−1,1],∞ : p ∈ Pn, ∥p∥m,∞ ≤ 1, ∥p∥[−γ,γ],∞ ≤ 1/ϵ},

9



which provides an upper bound for the κ(Pϵ,γ
m,n) and is bounded with linear oversam-

pling between m and n[3]. With this, we will state our main result without proof:

Main result: Let ϵ > 0, γ ≥ 1, c > 1, and m ≥ n ≥ 1 be such that

C(m,n, γ, ϵ) ≤ c,

then the polynomial frame approximation Pϵ′,γ
m,n with ϵ′ = ϵ(n+ 1)/

√
γ satisfies

κ(Pϵ′,γ
m,n) ≤ c

√
m+ 1,

and for any f ∈ C([−1, 1]),

∥f − Pϵ′,γ
m,n(f)∥[−1,1],∞ ≤ 2c

√
m+ 1 inf

p∈Pn
{∥f − p∥[−1,1],∞ + (n+ 1)ϵ∥p∥[−γ,γ],∞}.

We can see that the error between the function f and its frame is bounded by the

greatest lower bound of the ϵ- regularized infinity norm functional and m. To how

the polynomial frame behaves, we will run three different experiments.

In the first experiment, we will see how the approximation error decays with we are

approximating an analytic function, which in this case is f(x) = 1/(1 + x2).

We can see in Figure 2.2 that the approximation error decreases exponentially

until a certain level (a fractional power of ϵ), at which it settles down and oscillates.

Additionally, with a smaller ϵ, greater oversampling is needed to meet the tolerance.

To further investigate this decay, we will try to approximate functions that are not

sufficiently analytic.

In Figure 2.3, we see that the approximation error for the functions that are not

sufficiently analytic decreases exponentially until a certain breakpoint (determined

by the poles of the functions and γ), at which it decays at a superalgebraic rate.

For the last experiment in this section, we will try to approximate the oscillatory

10



Figure 2.2: SVD-regularized frame approximation error versus n for approximating
the function f(x) = 1/(1+x2) via Pϵ,γ

m,n, wherem/n = η, using various different values
of η, γ and ϵ(Blue: η = 1, orange: η = 1.25, yellow: η = 1.5, purple: η = 2, green:
η = 4). The dashed line shows the quantity θ−n, where θ =

√
2 + 1.

function f(x) = eiωπx for various different values of ω. This function can be tough to

approximate with equispaced nodes, due to its extreme growth on the imaginary axis

for large ω.

As we see in Figure 2.4, the approximation error is order one until a minimum

value of πγω (the resolution power) is met. After this point, the function begins to

be resolved and the error decreases rapidly according to ϵ.
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Figure 2.3: SVD-regularized frame approximation errors versus n for approximating
the functions f1(x) = 1/(1 + 4x2) (top-row), f2(x) = 1/(10 − 9x)(middle-row) and

f3(x) = 25
√

(9x2 − 10)(bottom-row) via Pϵ,γ
m,n, where m/n =4, using different values

of γ and ϵ ( green: ϵ = 10−6, yellow ϵ = 10−10, blue ϵ = 10−14) . The dot-dashed lines
show the breakpoints in each case and dashed line shows the quantity θ−n.

Additionally, for 2D approximation, we have Figure 2.5. Compared to the first

experiment, We can see that while the convergence is still geometric for the 2D

approximations up to the user-selected tolerance ϵ, the convergence rate is generally

much slower due to the added dimension and the computation time is much longer

as a result.

Overall, we see that the SVD-regularized polynomial frame is very robust in terms

of function approximation, although this formulation is prone to overfitting, which

we will try to mitigate with the QR-Regularized Polynomial Frame.
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Figure 2.4: SVD-regularized frame approximation errors versus n for approximating
the functions f(x) = exp(iωπx) via Pϵ,γ

m,n, where m/n = 4, using various different

values of γ and ϵ.(Blue: ϵ = 10−14, orange: ϵ = 10−10, yellow: ϵ = 10−6)
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Figure 2.5: 2D SVD-regularized frame approximation error using SVD versus n
for approximating the function f(x, y) = 1/(1 + x2 + y2) via Pϵ,γ

m,n, where m/n = 2,

γ = 1.4 using various different values of ϵ(Blue: ϵ = 10−14, orange: ϵ = 10−10, yellow:
ϵ = 10−6).
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Chapter 3

QR-REGULARIZED FRAME

Here we address one of the main contributions of this thesis. For the original

least-squares problem described in Section 1.2, another way to circumvent the ill-

conditioning of A is to perform column-pivoted QR decomposition on A such that

AP = QR,

where P is the permutation matrix, Q is orthogonal and R is an upper-triangular

square matrix. Then, based on the user-selected tolerance ϵ, R can be truncated via its

diagonal entries, and Q can also be truncated accordingly. This helps us select certain

frame polynomials while keeping the resulting submatrix well-conditioned. Defining

the truncated matrices as Q1 and R1, we can simplify the least-squares problem

even further by performing column-pivoted QR on QT
1 , resulting in the permuted

matrix Q̃1. We can then truncate Q̃1’s rows. Similarly to the first truncation, this is

equivalent to picking certain points in the equispaced grid, but keeping the resulting

submatrix well-conditioned. One example of these points is shown in Figure 3.1:

The least-squares problem is now reduced to

d̂ =
(
d̂i

)p

i=0
∈ argmin

d∈Cp+1∥Q̃1d− b̂∥2, p < n,

where b̂ is obtained by permuting and truncating b similarly to Q1. Note that Q̃1 is

no longer orthogonal due to the truncations.

We point out that the idea of using pivoted QR factorizations for node selection

in polynomial approximations was introduced in [11] and further developed in [7].

Additionally, the points selected are akin to Fekete points, since the pivoting results
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Figure 3.1: Nodes selected using pivoted QR truncated algorithm on the square
[−1, 1]× [−1, 1].

in points that will maximize the determinant of the corresponding Vandermonde

matrix. To extend these ideas to frames, an initial QR factorization is needed to

remove the rank deficiency.

Similarly to the SVD-regularized frame, the overall approximation procedure can

be defined as the mapping

Pϵ,γ
m,n : C([−1, 1]) −→ C([−1, 1]), f −→ f̂ ϵ =

p∑
i=0

d̂ϵiψ̃i,

Where ψ̃i is modified from ψi according to the QR decompositions of A.

Running the same three experiments as before for the QR-regularized polyno-

mial frame, we see that the QR-regularized polynomial frame performs similarly to

its SVD counterpart in terms of error decay. Additionally, due to the truncations,
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Figure 3.2: QR-regularized frame approximation error versus n for approximating
the function f(x) = 1/(1+x2) via Pϵ,γ

m,n, wherem/n = η, using various different values
of η, γ and ϵ(Blue: η = 1, orange: η = 1.25, yellow: η = 1.5, purple: η = 2, green:
η = 4). The dashed line shows the quantity θ−n, where θ =

√
2 + 1.

the QR-regularized polynomial frame uses much less data than the SVD-regularized

polynomial frame to reach the same accuracy, as shown in Figure 3.6.
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Figure 3.3: QR-regularized frame approximation errors versus n for approximating
the functions f1(x) = 1/(1 + 4x2) (top-row), f2(x) = 1/(10 − 9x)(middle-row) and

f3(x) = 25
√

(9x2 − 10)(bottom-row) via Pϵ,γ
m,n, where m/n =4, using different values

of γ and ϵ ( green: ϵ = 10−14, yellow ϵ = 10−10, blue ϵ = 10−6) . The dot-dashed lines
show the breakpoints in each case and the dashed line shows the quantity θ−n.

3.1 Frames vs Standard Interpolation

In this section, we will make a comparison between the two frames and stan-

dard interpolation on equispaced nodes. In this comparison, the data is based on

f = 1/(1 + 25x2) + 0.5 sin(6x), which is then perturbed by noise, which is randomly

generated from the interval [−0.05, 0.05].
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Figure 3.4: QR-regularized frame approximation errors versus n for approximating
the functions f(x) = exp(iωπx) via Pϵ,γ

m,n, where m/n = 4, using various different

values of γ and ϵ.(Blue: ϵ = 10−14, orange: ϵ = 10−10, yellow: ϵ = 10−6)

As we can see in Figure 3.7, standard interpolation runs into Runge’s phenomenon

near the endpoints of the interval while the two polynomial frames circumvented the

phenomenon due to their construction. We also see that the two frames are relatively

close, even though the QR-regularized frame only used a portion of the data.
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Figure 3.5: 2D QR-regularized frame approximation error using SVD versus n for
approximating the function f(x, y) = 1/(1 + x2 + y2) via Pϵ,γ

m,n, where m/n = 2,

γ = 1.4 using various different values of ϵ(Blue: ϵ = 10−14, orange: ϵ = 10−10, yellow:
ϵ = 10−6).

Figure 3.6: Number of points used by SVD vs QR in experiment 1(left) and exper-
iment 2(right).
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Figure 3.7: Approximation of f = 1/(1+ 25x2) + 0.5 sin(6x) using SVD-regularized
frame, QR-regularized frame, and standard interpolation.
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Chapter 4

AZ ALGORITHM

In this chapter, we review the main ideas presented in [5], including the general

structure and the default solvers of the AZ algorithm.

4.1 General Overview

In the previous chapters, we opted for an approach that reduces the complexity of

the problem through node selection. In contrast, the AZ algorithm aims to reduce the

complexity by exploiting the structure of certain least squares problems. Specifically,

this algorithm reduces the rank of the system, at which point a variety of solvers can

be used, such as randomized QR and SVD.

To introduce the AZ algorithm, suppose that there exists a linear system Ax = b,

A ∈ Cm×n, and that Z is another matrix such that Z ∈ Cm×n. Then, the algorithm

is as follows:

1. Solve (I − AZ∗)Ax1 = (I − AZ∗)b.

2. Compute x2 = Z∗(b− Ax1).

3. Compute x = x1 + x2.

The main benefit of this algorithm is that for a properly chosen Z, step 1 becomes a

low-rank problem, which is much more manageable than the original problem.

From the structure of the algorithm, we can make several statements regarding its

accuracy, as follows:
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Lemma 4.1.1 (AZ Lemma) Let x̂ = x̂1 + x̂2 be output from the AZ algorithm.

Then the final residual is equal to the residual of step 1.

Proof Looking at the final residual, we have

b− Ax̂ = b− Ax̂1 − Ax̂2

= b− Ax̂1 − AZ∗(b− Ax̂1)

= (I − AZ∗)(b− Ax̂1)

Which is the residual from step 1.

An immediate consequence of this lemma is that step 1 of the AZ algorithm

determines the overall accuracy of the algorithm when it’s based on the residual.

Consequently, this lemma allows us to state that the AZ algorithm can find a stable

least-squares fit for the approximation.

Lemma 4.1.2 (Stable Least Squares Fit) Let A ∈ Cm×n, b ∈ Cm, and suppose

there exists x̃ ∈ Cn such that

||b− Ax̃||2 ≤ τ, ||x̃||2 ≤ C

for τ, C > 0. Then there exists a solution x̂1 to step 1 of the AZ algorithm such that

the residual of the computed vector x̂ = x̂1 + x̂2 satisfies,

||b− Ax̃||2 ≤ ||I − AZ∗||τ, ||x̃||2 ≤ C + ||Z∗||2τ
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Proof Looking at the final residual, we have

b− Ax̂ = b− Ax̂1 − Ax̂2

= b− Ax̂1 − AZ∗(b− Ax̂1)

= (I − AZ∗)(b− Ax̂1)

||b− Ax̂||2 ≤ ||I − AZ∗||2τ

x̂ = x̃+ Z∗(b− Ax̃)

||x̂||2 ≤ C + ||Z∗||2τ

4.2 Choosing the Z Matrix

Overall, in the AZ algorithm, Z can be chosen randomly. However, to maximize

efficiency and accuracy, we have to be careful. In the context of Lemma 4.1.2, we

see that Z∗ needs to have a small norm for there to be a stable least squares fit.

Additionally, if A − AZ∗A is not low rank, step 1 of the AZ algorithm might be

expensive.

We can look at two extreme and general cases of Z, which are Z = 0 and Z =

(A†)∗. For Z = 0, solving step 1 of the AZ algorithm is the same as solving the

original system, and step 2 simply returns 0, which doesn’t give us any efficiency over

solving the original system. On the other hand, if Z = (A†)∗, then step 1 of the AZ

algorithm returns x1 = 0 and step 2 provides the solution to the original system in

terms of A†. While the solution might be efficient, computing A† is not trivial and

often not computationally feasible for large A.

For other choices of Z, part of the solution is found in step 1, and part of it is found

in step 2. To find a matrix Z that will result in A − AZ∗A being low rank, and Z∗

having an efficient matrix-vector multiplication, we can choose Z based on some a

priori information regarding the original system. The following lemma gives a general
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relationship between A and Z which would guarantee A − AZ∗A to be numerically

low rank.

Lemma 4.2.1 Suppose that A,Z ∈ Cm×n satisfy

A = W + L1 + E1, Z∗ = W † + L2 + E2

where rank(L1),rank(L2) ≤ R, and ||E1||F , ||E2||F ≤ ϵ. Here W † is the Moore-

Penrose pseudoinverse. Then

A− AZ∗A = L+ E

where rank(L) ≤ 3R and

||E1||F ≤ ϵ(1 + ||I − AZ∗||2 + ||A||22) + ϵ2||A||2

This result also holds if the norms on E, E1, and E2 are changed to ||.||2.

Practically, we will not explicitly computeW , L1, and L2 matrices, since it is sufficient

for them to exist to guarantee the effectiveness of the algorithm.

4.3 Solvers for Numerically Low-Rank Systems

For step 1 of the AZ algorithm, suppose we found a Z such that A−AZ∗A is low

rank, then we can use a variety of solvers to find the solution. In this thesis, we will

use randomized methods, in particular, truncated SVD and QR.

For a general system Ax = b, A ∈ Cm×n with m ≥ n, we can define the epsilon rank

of A as rankϵ(A). For rankϵ(A) = r, it means that there exists L, E ∈ Cm×n such

that

A = L+ E, where rank(L) = r and ||E||F ≤ ϵ

The Frobenius norm is used here to ensure that
∑

k>r σ
2
k ≤ ϵ2, where σr+1, ..., σN are

the smallest N − r singular values of A. This will help us define the error bounds for
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the solvers later.

First, in both randomized truncated solvers, we will make use of Gaussian random

matrices Ω ∼ N (0, 1;Rn×k), which are n × k matrices consisting of independent

random variables with mean 0 and variance 1. Then, we will define k = r+ p, where

r is the epsilon rank of A and p ≥ 2. Thus, the overall randomized truncated SVD

solver can be described in algorithm 4.3.1:

Algorithm 4.3.1 Randomized truncated SVD solver

Input: A ∈ Cm×n, b ∈ Cm, k ∈ {1, ..., n}, ϵ > 0

Output: x ∈ Cn such that Ax ≈ b

1: Generate Ω ∼ N (0, 1;Rn×k)

2: Ã←− AΩ ∈ Cm×k

3: Compute the SVD, Ã = ŨΣ̃Ṽ ∗ where

ŨΣ̃Ṽ ∗ =

(
Ũ1 Ũ2

)Σ̃1

Σ̃2

(
Ṽ1 Ṽ2

)∗

,

with 0 ≤ Σ̃2 < ϵI ≤ Σ̃1. Here Ũ ∈ Cm×k, Σ̃ ∈ Ck×k, Ṽ ∈ Ck×k, where the dimension

of the blocks will be determined by the singular values.

4: y ←− Ṽ1Σ̃
−1
1 Ũ∗

1 b

5: x←− Ωy

As for the error bounds, we have the following theorem:

Theorem 4.3.2 (Residual bounds for randomized truncated SVD solver[1])

Assume that A satisfies rankϵ(A) = r, and let x ∈ Cn be the solution from algorithm
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4.1 with k = r + k for k ≥ 2. Then

||b− Ax||2 ≤ inf
v∈Cn

{
||b− Av||2 + ϵ(1 + κ)||v||2

}
,

where κ is a non-negative random variable satisfying

E{κ} ≤ 2

√
r

p− 1
, P

{
κ > (2 + u)s

√
3r

p− 1

}
≤ s−p + e−

u2

2 ,

for any s ≥ 1, u ≥ 0.

Looking at theorem 4.3.2, we can see that κ = O(
√
r) with a high probability that

improves as p increases. While we can let p to grow linearly with respect to r to make

E{κ} O(1) instead of O(
√
r), but this is usually not necessary, and a fixed p value is

sufficient.

For randomized truncated QR, the algorithm is very similar to its SVD counterpart,

except that the decomposition is based on pivoted QR, as shown in algorithm 4.3.3.

Algorithm 4.3.3 Randomized truncated pivoted QR solver

Input: A ∈ Cm×n, b ∈ Cm, k ∈ {1, ..., n}, ϵ > 0

Output: x ∈ Cn such that Ax ≈ b

1: Generate Ω ∼ N (0, 1;Rn×k)

2: Ã←− AΩ ∈ Cm×k

3: Compute a column pivoted QR decomposition, ÃΠ̃ = Q̃R̃ where

Π̃ =

(
Π̃1 Π̃2

)
, Q̃ =

(
Q̃1 Q̃2

)
, R̃ =

R̃11 R̃12

0 R̃22

 ,

with 0 ≤ diag(R̃22) < ϵI ≤ diag(R̃11). Here Π̃ ∈ Cm×k, Q̃ ∈ Cm×k, R̃ ∈ Ck×k, where

the dimension of the blocks will be determined by the diagonal entries of R̃.
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4: y ←− Π̃1R̃
−11
1 Q̃∗

1b

5: x←− Ωy

The error bounds for algorithm 4.3.3 is shown in theorem 4.3.4:

Theorem 4.3.4 (Residual bounds for randomized truncated pivoted QR solver[1])

Assume that A satisfies rankϵ(A) = r, and let x ∈ Cn be the solution from algorithm

4.2 with k = r + k for k ≥ 2. Then

||b− Ax||2 ≤ inf
v∈Cn

{
||b− Av||2 + ϵ(1 + κ)||v||2

}
,

where κ is a non-negative random variable satisfying

E{κ} ≤ (1 +
√
r + p)

√
r

p− 1
, P

{
κ > (1 +

√
r + p+ u)s

√
3r

p− 1

}
≤ s−p + e−

u2

2 ,

for any s ≥ 1, u ≥ 0.

We can see that compared to theorem 4.3.4, κ = O(r). This could be attributed to

the possibility that the diagonal values of R̃22 are not directly related to the numerical

rank of Ã. Nonetheless, based on the discussions by Golub and Van Loan, in practice,

we would still expect κ = O(
√
r) similar to algorithm 4.3.1[6].

Overall, describing the computational cost for algorithms 4.3.1 and 4.3.3 step-by-step,

we have:

1. Generate n · k Gaussian random numbers: O(n · k)

2. Apply the matrix A to k vectors: O(k ·m · n)

3. Compute the SVD or pivoted QR factorization of an m× k matrix: O(m · k2)

4. Apply a sequence of matrices with one dimension smaller than k and the other

smaller than m: O(r ·m)
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5. Apply a matrix of size n × k to a vector: O(r · n) Thus, the total computational

cost of each algorithm is

O(kmn+ r2m)

which is better than the non-randomized counterparts that require O(mn2) flops,

especially when k = o(n). Additionally, algorithms 4.3.1 and 4.3.3 will also be more

efficient if A supports fast matrix-vector multiplication.
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Chapter 5

IMPLEMENTATION OF THE AZ ALGORITHM FOR POLYNOMIAL FRAMES

The algorithm presented in [5] mainly addressed Fourier frames, in this thesis we

extend those results to polynomial frames.

For polynomial frames, provided that we can satisfy a discrete orthogonality con-

dition, we can effectively apply the AZ algorithm. To ensure the stability of the

solution, we will oversample the nodes such that the number of these nodes is greater

than the number of basis functions by a factor of at least 2.

As for the discrete orthogonality condition, for Legendre polynomials on a full grid

of L, we have
L∑
l=1

wlPi(xl)Pj(xl) = h2i δi−j, 1 ≤ i, j ≤ L− 1.

Where wl are the weights associated with the roots of Pi and hi = ||Pi||[−1,1] is the

norm of Pi. Similar to the Fourier case, there is a large L× L matrix F with entries

Fi,j = Pi−1(xj−1). It follows that F−1 = DF ∗W , where W and D are diagonal

matrices with entries wi and h−2
i respectively. Meanwhile, A is a submatrix of F ,

with columns corresponding to the basis functions and rows corresponding to the

points in the domain of interest. It follows that Z is the corresponding subblock of

(F−1)∗ = WFD.

Examining the structure of the Z matrix, the first concern that arises is the choice of

nodes. While equispaced nodes are easy to generate, it would mean that we will

have to work with Newton-Cotes formulation for the weights wl, which becomes

highly unstable for large degrees due to Runge’s phenomenon. To circumvent this,

we propose a composite node formulation.

30



In this composite node formulation, we begin by generating Chebyshev nodes on the

entire domain. Then, determine a subdomain such that it includes the region of

interest (usually a square or rectangle), and swap the Chebyshev nodes within the

subdomain with equispaced nodes. The choice of starting with Chebyshev nodes is

due to their clustering near the boundary and their similarity with equispaced nodes

near the center of the domain.

Orthogonalizing the polynomial basis based on the composite nodes, we can eliminate

the need to form a separate weight matrix. Furthermore, with normalization, we can

also eliminate the need for a separate norm matrix. These two simplifications mean

that Z can simply be A, since (F−1)∗ = F . In other words, A and Z can now be

simultaneously computed.

5.1 Effectiveness of the AZ algorithm

To demonstrate the efficiency of the AZ algorithm, we can make a comparison be-

tween the conventional frame algorithms with the AZ-augmented frame algorithms.

In this comparison, the data is based on the function f(x, y) = 1/(1 + 25(x2 + y2)),

which is a challenging function for approximation in the context of polynomial approx-

imation. Specifically, we will use the randomized SVD and pivoted QR algorithms,

as well as their AZ-augmented counterparts.

In Figure 5.1, we see that for the original matrix A, the singular values cluster around

O(1) and around machine epsilon, while for the matrix A − AA∗A, we see that the

singular values now only cluster around the machine epsilon.
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Figure 5.1: Singular values of A(left) and singular values of A− AA∗A(right).

This demonstrates the role of I −AA∗, in that it maps the cluster of singular values

at O(1) to the region close to machine epsilon, allowing for significant rank reduction

during the AZ algorithm. Thus, as we can see in Figure 5.2, the AZ-augmented

Figure 5.2: Running time in seconds versus the maximum degree of the frame
extension for calculating f(x, y) = 1/(1 + 25(x2 + y2)) using randomized truncated
SVD and randomized truncated pivoted QR with and without the AZ algorithm,

algorithms are consistently faster than the non-AZ counterparts, mostly due to the

rank reduction caused by the Z matrix.
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Chapter 6

FOURIER FRAMES

6.1 Frame Approximation

To formulate a d-dimensional Fourier frame, we first consider the d-dimensional

Fourier basis on the box [−1, 1]d,

Φ = {ϕn}n∈Zd , with ϕn(x) = 2−d/2eiπnx, x ∈ [−1, 1]d.

Restricting this basis to a small domain Ω ⊂ [−1, 1]d will yield a Fourier extension

frame for L2(Ω). Consequently, any sufficiently smooth function f can be well ap-

proximated using this frame, regardless of whether it’s periodic or not. Additionally,

unlike polynomial frames, Fourier extensions don’t suffer from the same problems

on equispaced nodes. While standard Fourier approximation seems to be sufficient,

there are still benefits to using the Fourier frame approximation, in that the frame

functions do not need to be fully orthogonal, which offers more freedom during formu-

lation. Even though the redundancy present in the resulting linear system will lead to

ill-conditioning, similar to its polynomial counterpart, stable and efficient algorithms

are possible, especially for A matrices that possess a plunge region[8].

Applying the truncated QR-regularization, we perform the same experiments with

Fourier frames as in Chapters 2 and 3.

We see in Figure 6.1 that aside from some differences due to rounding errors and

nonperiodicity of the function, the Fourier frame approximation behaves similarly to

its polynomial counterpart, where the convergence is mostly stable and is approx-

imately subgeometric until the breakpoint specified by ϵ. The increase in overall
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Figure 6.1: Fourier frame approximation error versus n for approximating the func-
tion f(x) = 1/(1 + x2) via F ϵ,γ

m,n, where m/n = η, using various different values of η,

γ and ϵ. The values of ϵ used are ϵ = 10−14(top), ϵ = 10−10 (middle) and ϵ = 10−6

(bottom). The values of γ used are γ = 1.2(left), γ = 1.4 (middle) and γ = 1.8
(right). The dashed line shows the quantity θ−n, where θ =

√
2 + 1.

approximation error can be explained by the non-periodicity of f(x) = 1/(1 + x2).

In Figure 6.2, we can see that for the Fourier frame approximation, the function

resolves much sooner than in the polynomial counterpart, due to the periodicity of

f(x) = exp(iωπx). Additionally, the spikes in the plot can be explained by the

truncation of certain frame functions during the approximation.
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Figure 6.2: Fourier approximation errors versus n for approximating the functions
f(x) = exp(iωπx) via Pϵ,γ

m,n, where m/n = 4, using various different values of γ and

ϵ.(Blue: ϵ = 10−14, orange: ϵ = 10−10, yellow: ϵ = 10−6)

6.2 AZ Implementation

To apply the AZ algorithm on Fourier frames, let’s first reexamine the linear

system Ax = B with

Aj,k = ϕk(xj), Bj = f(xj), j = 1, ..., n, k = 1, ...,m.

Where ϕk(xj) is as defined in Chapter 3. In fact, consider a set of L Fourier basis

functions on a periodic equispaced grid xl
L
l=1, we have

L∑
l=1

ϕi(xl)ϕ̄i(xl) = Lδi−j, 1 ≤ i, j ≤ L.

Thus, we can see that the full DFT matrix F of size L × L with entries ϕi(xl) has

inverse 1
L
F ∗. The discrete approximation problem follows by choosing a subset of
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M < L points that belong to a subdomain Ω and a subset of N < M basis functions.

It follows that A is a submatrix of F similar to the polynomial counterpart, and based

on the orthogonality condition, we can choose[5]

Z =
1

L
A

We can then interpret this formulation as follows: multiplying with A is an extension

from N to L Fourier coefficients, followed by the DFT of length L, and followed by

the restriction to M points in Ω. On the other hand, multiplying with Z∗ is equiva-

lent to extension by zero-padding in the time domain, followed by the inverse DFT,

and restriction in the frequency domain. Consequently, the singular values of matrix

A−AZ∗A have a large cluster near machine epsilon, similar to the polynomial coun-

terpart. This results in a smooth and periodic function, for which the discrete inverse

Fourier transform gives an accurate approximation. Compared to the polynomial

frames, although it will be superior in approximating periodic functions, it will be

inferior in terms of approximating non-periodic functions, as shown in Section 6.1.
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Chapter 7

FINAL REMARKS

Overall, we used ϵ-truncated SVD and column-pivoted QR decomposition to com-

pute feasible approximations of the polynomial frame, which asserts stability and

exponential convergence down to a finite, but user-controlled limiting accuracy. This

approximation holds for analytic functions in a sufficiently large region, and for insuf-

ficient analytic functions, we have shown exponential decay down to some fractional

power of ϵ, and superalgebraic decay beyond that point. Additionally, we also for-

mulated a node-selection method by leveraging the properties of truncated QR, while

maintaining the original accuracy of the frame.

On the other hand, we used the AZ algorithm to improve the speed of the frame

formulation by using a composite set of nodes and corresponding orthogonalization

of the polynomial basis in conjunction with randomized truncated SVD and QR de-

composition, allowing us to circumvent Runge’s phenomenon and efficiently tackle

functions of interest in the context of polynomial approximation.

In terms of possible improvements, for the AZ algorithm, a faster rank-revealing al-

gorithm will be very beneficial in terms of determining the optimal dimensions of the

Gaussian matrices for the randomized solvers. On the other hand, using iterative

solvers such as LSQR and LSMR for step 1 of the AZ algorithm might also be more

efficient, making it a viable route for investigation as well.

In the future, we are interested in reconciling the two approaches to polynomial frame

approximation, which are the QR-regularized node selection and the AZ algorithm.

Ideally, we would want to incorporate the main advantages of each
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approach while avoiding as many downsides as possible, such that we can apply this

combination efficiently to a variety of complicated approximation problems on more

unusual multidimensional domains.
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