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ABSTRACT

This dissertation considers the question of how convenient access to copious networked

observational data impacts our ability to learn causal knowledge. It investigates in

what ways learning causality from such data is different from – or the same as –

the traditional causal inference which often deals with small scale i.i.d. data collected

from randomized controlled trials? For example, how can we exploit network informa-

tion for a series of tasks in the area of learning causality? To answer this question, the

dissertation is written toward developing a suite of novel causal learning algorithms

that offer actionable insights for a series of causal inference tasks with networked ob-

servational data. The work aims to benefit real-world decision-making across a variety

of highly influential applications. In the first part of this dissertation, it investigates

the task of inferring individual-level causal effects from networked observational data.

First, it presents a representation balancing-based framework for handling the influ-

ence of hidden confounders to achieve accurate estimates of causal effects. Second, it

extends the framework with an adversarial learning approach to properly combine two

types of existing heuristics: representation balancing and treatment prediction. The

second part of the dissertation describes a framework for counterfactual evaluation of

treatment assignment policies with networked observational data. A novel framework

that captures patterns of hidden confounders is developed to provide more informative

input for downstream counterfactual evaluation methods. The third part presents a

framework for debiasing two-dimensional grid-based e-commerce search with obser-

vational search log data where there is an implicit network connecting neighboring

products in a search result page. A novel inverse propensity scoring framework that

models user behavior patterns for two-dimensional display in e-commerce websites

is developed, which aims to optimize online performance of ranking algorithms with

offline log data.
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Chapter 1

INTRODUCTION

Causality is a universal relationship between a certain cause and its corresponding

effects. As human beings, we often can learn the existence of a causal relationship

between two events either from existing knowledge or by interacting with the envi-

ronment. For example, we know an ice cream shop is popular because of its delicious

ice creams and good service. When we aim to use machine learning algorithms to

capture causality from data, the difference between causality and statistical associa-

tions becomes a major challenge. This is because machine learning models that are

unaware of causality can end up with capturing spurious correlation. For example,

in summer, the ice cream shop owner can find that sales and electric bills are high

at the same time. However, the correlation between these two quantities, electric bill

and sales, is spurious because consuming more electricity is not likely to be helpful

in terms of increasing the sales. To avoid spurious correlations, we are motivated

to include learning causality as a fundamental component of developing human-level

AI (Peters et al., 2017; Marcus and Davis, 2019) or system 2 (Schölkopf et al., 2021).

In traditional causal analysis, data are often limited in terms of both the scale and

the number of measurable features (covariates). Therefore, strong prior causal knowl-

edge is required to reach causal conclusions (Cartwright et al., 1994). In many cases,

data have to be collected through carefully designed experiments where prior causal

knowledge can be guaranteed. For example, randomized controlled trials (RCTs) are

often referred to as the golden standard of causal inference (Cook et al., 2002; Pearl,

2009; Rubin, 2005). RCTs are widely used to identify and estimate the average causal

effects on the population level. Specifically, in data collected from RCTs, the group

1



receiving treatments and the group under control are thought to be equivalent on

average expect the treatment assignments, which naturally excludes the effects of all

other factors. However, experiments like RCTs which can be rather expensive, time

consuming, and even unethical in some cases (Kallus and Zhou, 2018).

The era of big data has been granting us the convenient access to massive observa-

tional data in a myriad of highly influential areas including but not limited to social

networks (Zafarani et al., 2014; Shakarian et al., 2015b), online advertising (Bot-

tou et al., 2013), recommender systems (Schnabel et al., 2016), economics (LaLonde,

1986; Dehejia and Wahba, 1999) and healthcare (Hill, 2011). Compared to the data

collected through carefully designed experiments, an observational dataset is often

effortless to obtain and comes with a large number of instances and an affluent set

features. Meanwhile, we can also find useful side information in such data. For

example, there exists an inherent network structures that connect individuals when

an observational dataset is collected from a social network service or an e-commerce

website.

1.1 Challenges of Learning Causality with Observational Data

However, learning causality from observational data poses the challenge of various

types of bias including confounding bias and selection bias.

The existence of confounding bias is confirmed when the causal effect of the treat-

ment on the outcome is confounded by confounders, the variables causally influence

both the treatment and the outcome (Pearl, 2009). For example, when we study the

causal effect of an expensive medicine on the health outcomes of individuals, the poor

socioeconomic status of an individual can limit her access to the expensive medicine

and have negative impact on her health condition at the same time. Thus, failure

in controlling the influence of the socioeconomic status may result in overestimated

2
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Figure 1.1: The causal graph explains the definition of a confounder: a variable that

has simultaneous causal influence on both treatment and outcome.

treatment effect of the expensive medicine. Adjustment for the confounding bias is

often recognized as the main challenge in various causal inference tasks with observa-

tional data such as causal effect estimation, counterfactual evaluation and optimiza-

tion (Pearl, 2009; Rubin, 2005). To deal with confounding bias, in the literature, a

series of work (Makar et al., 2019; Wager and Athey, 2018; Schwab et al., 2018; Hill,

2011; Johansson et al., 2016; Shalit et al., 2017; Yao et al., 2018; Dud́ık et al., 2011;

Athey and Wager, 2017; Qian and Murphy, 2011; Kallus, 2018; Zou et al., 2019) takes

advantage of the strong ignoralbility (a.k.a. unconfoundedness) assumption (Rubin,

1978). This assumption can be interpreted as: all the confounders are measurable

and have already been included in the set of observed features. As such, these meth-

ods overwhelmingly rely on the observed features to mitigate confounding bias. In

the aforementioned example, most of existing efforts try to eliminate the influence

of socioeconomic status on the chance to take the medicine and the health condition

through controlling the impact of the related proxy variables such as annual income,

age, and education. However, with massive observational data, it becomes extremely

difficult to collect the causal relationships among variables as prior causal knowledge.

As a result, the strong ignoralbility assumption can become untenable and is likely

to be unrealistic due to the existence of hidden confounders (Pearl, 2009; Guo et al.,

2020a). Recently, a series of theoretical and empirical methods have been proposed to

3



s

x y

Figure 1.2: An example causal graph shows the selection bias in reporting annual

income. s is a binary variable representing whether an individual reports her/his

income.

leverage the advanced machine learning techniques to relax the assumption. However,

they still need the assumption that, from observational data, it is possible to learn a

set of latent variables to represent the confounders (Louizos et al., 2017; Wang and

Blei, 2018; Bennett and Kallus, 2019).

Selection bias also widely exists in real-world datasets (Bareinboim et al., 2014;

Bareinboim and Tian, 2015). Selection bias exists when only a biased subset of the

population is observed in a dataset due to preferential selection. For example, in

a study of the causal effect of job training on individuals’ annual income, we may

observe that people with higher income are more likely to report their outcomes than

those earn less. A causal graph describes such selection bias is shown in Fig. 1.2.

Bareinboim and Tian (2015) theoretically derive a set of conditions for recovering

certain probabilistic quantities and causal effects from data under selection bias, given

data generated according to a certain set of causal graphs. In the application of search

ranking, there is a series of work on unbiased learning to rank which aims to recover

the label distribution given biased search log data (Joachims et al., 2017; Hu et al.,

2019; Ai et al., 2018).

1.2 Role of Network Information in Causal Machine Learning Problems

In the existing efforts in causal identification and estimation, the importance of

side information (e.g., network structures) that comes along with observational data

4



has been underestimated in the tasks of learning causality. When we confront the

situations where some confounders are not feasible to measure, we can attempt in

an alternative way to recognize their patterns and adjust for their influence by in-

corporating side information. For example, as measuring the socioeconomic status

of an individual can be difficult, an alternative solution is to capture it by the indi-

vidual’s social network structural patterns such as centralities and community affili-

ation (Shakarian et al., 2015b; Zafarani et al., 2014). Recently, Veitch et al. (2019)

use node embeddings learned from network information to compensate for hidden

confounders. However, their method cannot properly utilize the observed features.

We also attempt to utilize network information for mitigating selection bias. To the

best of my knowledge, this has not been discussed in the literature.

In addition to using network information to compensate for unobserved con-

founders, there exists a series of work on network interference (a.k.a spillover effect).

We say there exists interference iff an individual’s treatment can causally influence its

neighbors’ outcomes. In fact, interference raises a big challenge for causal inference in

terms of identification of causal effects. In a bipartite experiment setting where there

are two types of nodes – items and buyers, Doudchenko et al. (2020) show that the

causal identification of average treatment effect of different exposure levels can hold

when (1) the weight of each edge is a known constant and (2) the treatment assign-

ment is independent of potential outcomes given the edge weights. This implies that,

in bipartite experiments, even with the ability to assign treatments (e.g., random-

ized experiment), the identification of average treatment effect is not trivial. This is

because interference violates the stable unit treatment value assumption (SUTVA)

which often used along with the Potential Outcome Framework (Rubin, 2005; Pearl

and Mackenzie, 2018). For identifying the causal effect of ads block allocation on

clicks under interference among ads, Nabi et al. (2020) use an assumption called
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conditional network ignorability, which means potential outcomes are independent of

treatment assignment given observed features. In market experiments, tech compa-

nies often rely on methods that redefine units such that interference can be ignored.

For example, social network companies such as LinkedIn can use a community or a

network cluster as a unit and do randomization over such units (Saint-Jacques et al.,

2019). This is based on the reasonable assumption that there is little interference

between two redefined units. Note that in this dissertation we only assume that the

causal influence conveyed by network is only relevant to the confounders or the the

true propensity model.

In short, utilizing the rich side information (e.g., network information) that nat-

urally exists in observational data to mitigate bias for downstream causal machine

learning tasks still remains under-explored.

1.3 Thesis Statement and Research Questions

To bridge the gap, this dissertation focuses on the development of algorithms

that leverage a type of universally existing side information – network structures to

mitigate confounding bias and selection bias for highly-influential causal inference

and machine learning tasks.

Thesis Statement. Network structures that embed causal dependencies among

instances in observational data can be leveraged to mitigate confounding bias and

selection bias in causal machine learning problems.

This dissertation provides evidence to support the thesis statement through in-

vestigating the two types of research questions below:

• Through investigations to answer the two following fundamental research ques-

tions, we show the general importance of network information in causal machine

learning problems:
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– In causal effect estimation, does leveraging network structures improve

causal inference algorithms in terms of mitigating confounding bias?

– In counterfactual evaluation of novel treatment assignment functions, does

properly utilizing the information embedded in the networks lead to better

adjustment for confounding bias?

In the application of debiasing e-commerce search, we showcase the power of

network driven causal machine learning by answering the following research

question:

• In e-commerce product search, does incorporating the network information of

the two-dimensional display of products in search result pages help mitigate

selection bias?

Toward answering these research questions, I present a summary of the main con-

tributions of the dissertation as follows. I characterize the task of learning causality

with observational data that distance it from traditional machine learning and classic

causal analysis problems. Then, I propose novel frameworks for learning causality

from observational data that can exploit network structures for mitigating confound-

ing and selection bias. The rest of the dissertation is organized as follows. In Chapter

2, I present a comprehensive literature review of the related work. In Chapter 3, I

describe two proposed frameworks that are capable of utilizing network information

for deconfounding causal effects with networked observational data. In Chapter 4,

I discuss a framework for counterfactual evaluation and optimization of novel treat-

ment assignment functions in networked observational data. In Chapter 5, I present

a framework for debiasing learning to rank algorithms in two-dimensional grid-based

display for e-commerce product search.

7



Chapter 2

LITERATURE REVIEW

In this chapter, a comprehensive literature review of the related work is presented

from the five following perspectives: (1) causal inference with network data; (2)

causal inference with proxy variables; (3) learning individual treatment effects from

i.i.d. data; (4) counterfactual evaluation and optimization of treatment assignment

functions; (5) graph neural networks; (6) unbiased learning to rank; (7) grid-based

search; (8) e-commerce search.

2.1 Causal Inference with Network Data

Researchers aim to utilize networks to approximate hidden confounders using ob-

servational studies. Shalizi et al. (Shalizi and McFowland III, 2016) propose a two-

stage approach to estimate causal effects in networks based on predefined generative

models. To avoid misspecified generative models, Veitch et al. (Veitch et al., 2019)

propose causal network embedding (CNE) which learns node embeddings from pure

network data to represent confounders. However, CNE suffers from the following

limitations: It relies on treatment prediction alone to handle confounding bias. CNE

requires observable edge weights. It only infers ATE and cannot properly utilize the

observed features. However, none of the existing methods can satisfy the two desider-

ata of handling confounding bias together. Networks can propagate the treatment

received by an instance to interfere the outcomes or treatments of its neighbors. This

phenomena can be referred to as contagion (Shalizi and Thomas, 2011), treatment

entanglement (Toulis et al., 2018), or spillover effect (Arbour et al., 2016; Rakesh

et al., 2018). Different from them, we follow previous work (Veitch et al., 2019) to
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assume that conditioning on latent confounders decouples each individual’s treatment

and outcome from those of others.

2.2 Causal Inference with Proxy Variables

When hidden confounders exist, observed proxy variables can be utilized to ap-

proximate them. (Pearl, 2012; Kuroki and Pearl, 2014; Miao et al., 2018; Louizos

et al., 2017; Veitch et al., 2019). Most of the existing work assumes that the ob-

served data is i.i.d. and generated by latent confounders. Theoretically, in (Pearl,

2012; Kuroki and Pearl, 2014), authors showed that causal effects can be identified

by proxy variables. Miao et al. (Miao et al., 2018) showed that it is feasible to restore

the causal effects without knowing anything but the size of the latent confounders z.

Louizos et al. (Louizos et al., 2017) showed that ITE (CATE) can be identified given

the joint distribution P (x, t, y, z) and proposed a deep latent-varibale model to esti-

mate ITEs. Recently, results in (Veitch et al., 2019) show that network information,

as proxy variables, can also help mitigate confounding bias.

2.3 Learning Individual Treatment Effects from i.i.d. Data

Learning ITEs from i.i.d. observational data has attracted great attention. Causal

Forest (CF) (Wager and Athey, 2018) is a method that recursively partitions the orig-

inal feature space through treatment prediction. Its hypothesis is that within each

subspace, the instances are very similar in terms of their estimated propensity score.

Therefore, we can think the treatment assignment in each subspace is random and

the instances in the same subspace share the same ITE. So, CF infers ITEs via ap-

plying the naive estimator in each subspace. CFR (Johansson et al., 2016; Shalit

et al., 2017) is a pioneer method for learning ITEs by representation learning. Both

theoretical analysis and empirical results indicate that balancing the distributions of
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the treated and controlled instances in the representation space can improve the per-

formance in learning ITE. However, the methods mentioned above rely on the strong

ignorability assumption, which is often untenbale in observational data. Louizos et

al. (Louizos et al., 2017) proposed to consider observed features as proxy variables of

hidden confounders and use a deep latent-variable model to learn representation of

confounders via variational inference. However, this line of work does not consider to

utilize network information for learning causal effects.

2.4 Counterfactual Evaluation of Treatment Assignment Functions

Counterfactual evaluation methods with i.i.d. data can be classified into three ma-

jor categories: direct methods (Qian and Murphy, 2011), weighted estimators (Kallus,

2018; Bennett and Kallus, 2019; Swaminathan and Joachims, 2015a,b), and doubly

robust estimators (Dud́ık et al., 2011; Athey and Wager, 2017). Directed methods

achieve counterfactual evaluation by inferring counterfactual outcomes. However, ex-

isting direct methods are known to suffer from biased estimates (Beygelzimer et al.,

2008). This is mainly because that they rely on the strong ignorability assump-

tion. Moreover, the supervision of the observed treatments remains to be utilized.

Weighted estimators avoid the problem of inferring counterfactual outcomes. Instead,

they estimate the utility of treatment assignment functions through a weighted aver-

age of observed outcomes. In particular, a sample weight is learned for each instance.

The goal is to let the reweighted factual outcomes approximate their counterparts

that would have been observed if the treatments had been assigned by the func-

tion to be evaluated. Inverse propensity scoring (IPS) (Kitagawa and Tetenov, 2018;

Hirano et al., 2003) is the most widely adopted strategy for reweighting. IPS es-

timators can suffer from the issue of high variance when the estimated propensity

scores take extreme values. Therefore, a series of clipping and normalization based
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methods (Bottou et al., 2013; Swaminathan and Joachims, 2015a,b) have been pro-

posed to mitigate this issue. However, IPS estimators’ performance is still limited by

the accuracy of estimated propensity scores. To combine the advantages of the two

types of methods, doubly robust estimators are proposed (Chernozhukov et al., 2018;

Bang and Robins, 2005). Each doubly robust estimator consists of a direct method

and a weighted estimator. Previous work (Dud́ık et al., 2011; Chernozhukov et al.,

2018) has shown doubly robust estimators can maintain good performance even if ei-

ther its direct method or its IPS estimator suffers from large bias. Different from the

aforementioned work, this work investigates the effectiveness of incorporating network

information in counterfactual evaluation.

2.5 Graph Neural Networks

Previous work on Graph Convolutional Networks (GCN) mainly focused on the

development of spatially localized 1 and computationally efficient convolutional fil-

ters for various types of network data including citation networks and social networks.

Bruna et al. (Bruna et al., 2013) proposed to use the first-order graph Laplacian ma-

trix as the basic of filters in the spectrum domain. However, this filter has a large

number of trainable parameters and its the spatial locality is not guaranteed. In (Def-

ferrard et al., 2016), Defferrard et al. proposed a more efficient and properly localized

filter for the graph convolution operator. This filter is parameterized as l-th order

polynomials of the graph Laplacian matrix to ensure the locality, where l is a positive

integer and is often greater than 1. Then the polynomials are approximated by their

Chebyshev expansion to reduce the computational cost. Then, Kipf and Welling (Kipf

and Welling, 2016) proposed the renormalization trick to further improve the com-

1Here, spatial locality refers to the constraint that information of a node only propagates to its
neighbors in a certain number of hops.

11



putational efficiency of GCN. Recently, variants of GCN has also been proposed to

a myriad of applications using network data such as recommendation (Wang et al.,

2019), content recommendation in social networks (Ying et al., 2018), anomaly detec-

tion in attributed networks (Ding et al., 2019), entity classification and link prediction

in knowledge graphs (Schlichtkrull et al., 2018) and link sign prediction in signed net-

works (Derr et al., 2018). Different from the existing work, work presented in this

dissertation prospectus is the first work exploiting graph neural networks for learning

causal with observational data.

2.6 Unbiased Learning to Rank

Unbiased Learning to Rank is an area where causal inference (Guo et al., 2020a)

helps learning to rank. Given the same attractiveness (relevance), the probability of

products (documents) being clicked may change significantly with many factors in

SERPs of product (web) search. Position is one of the most significant factor. It has

been studied in list-wise web search (Wang et al., 2016; Joachims et al., 2017; Wang

et al., 2018; Ai et al., 2018; Hu et al., 2019). As the literature of unbiased learning

to focuses on solving the problem of position bias in traditional information retrieval

systems, here, we use the terms, document and relevance, instead of product and

attractiveness. Joachims et al. (Joachims et al., 2017) analyzed the inherent position

bias in search log data with implicit feedback and proposed the Propensity SVM-

Rank (Joachims, 2002) algorithm which applies inverse propensity scoring to each

clicked document to mitigate the position bias. In particular, the propensity scores of

each position is estimated through an randomized experiment which randomly picks

and swaps items at the i-th and j-th positions (Joachims et al., 2017). In (Agarwal

et al., 2018), the authors extended the Propensity SVM-Rank model to directly op-

timize additive information retrieval metrics such as DCG and proposed to replace
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the SVM-Rank model with neural networks. However, such randomized experiments

may degrade users’ experience and would likely be time and labor consuming. Ai et

al. (Ai et al., 2018) treated estimating propensity scores as a dual problem of unbi-

ased learning to rank (Joachims et al., 2017). As the propensity scores can only be

used to reweigh documents with clicks in their model and only relevant documents

are clicked, so they reweigh each document with its probability to be relevant. Both

the propensity model and the ranker are parameterized by neural networks. Then,

listwise objectives (Cao et al., 2007; Xia et al., 2008) are employed to train the two

models alternatively. In (Hu et al., 2019), an unbiased learning to rank algorithm is

proposed based on the pairwise ranking algorithm LambdaMART (Wu et al., 2010).

Similar to (Ai et al., 2018), in unbiased LambdaMART, the propensity score model

is learned along with the ranker by an alternating optimization algorithm. However,

none of the existing unbiased learning to rank algorithms takes the unique context of

e-commerce into consideration. Different from them, the work presented in this dis-

sertation, the proposed framework is developed to handle multiple types of implicit

feedback and incorporate the unique user behavior patterns in grid-based product

search into inverse propensity scoring. In particular, compared to unbiased Lamb-

daMART which also utilizes a pairwise debiasing strategy and adopts LambdaMART,

the proposed framework incorporates prior knowledge of users’ behavior patterns to

guide the learning process of propensity score models.

2.7 Grid-based Search

Nowadays, various types of websites including e-commerce, video and music stream-

ing services show SERPs in a grids. Recently, in eye-tracking experiments, Xie et al.

(2019) observed three unique properties of users’ behaviors in grid-based image search:

middle bias, slower decay and row skipping. Based on the observations, for the sake of
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developing better evaluation metrics for grid-based search, they propose three novel

click models to quantify how users’ attention decays in such scenarios. We did not

adopt these new evaluation metrics because without eye-tracking experiments we can-

not obtain ground truth for the parameters of these evaluation metrics which quantify

the decay of attention. Different from their focus, we propose to incorporate the row

skipping and slower decay click models for propensity score modeling toward unbiased

learning to rank. At the same time, grid-based search is still an open question for

many other research problems like grid-based sponsored search.

2.8 E-commerce Search

Compared to traditional information retrieval, e-commerce search is confronted

with some unique challenges such as its multi-objective nature and the need to ex-

plore new items for fairness among sellers as well as long-term user engagement (Wu

et al., 2018; Goswami et al., 2018). E-commerce search logs come with multiple

types of implicit feedback (e.g., purchase and click). The target of e-commerce search

is to maximize purchases or revenue of the website, however, due to the fact that

purchases are much less frequently observed than other types of feedback such as

clicks, it has been proposed to combine different types of feedback in the training

objective (Karmaker Santu et al., 2017; Wu et al., 2018; Sorokina and Cantu-Paz,

2016). In (Sorokina and Cantu-Paz, 2016), authors found such hybrid objectives

help improve the search performance of fashion products on Amazon. In (Wu et al.,

2018), a two-stage algorithm is proposed to integrate clicks and purchases through

two separate machine learning models. In e-commerce search, we aim to help buy-

ers explore unseen items, in (Goswami et al., 2018), authors proposed a multi-armed

bandit (MAB) method which allows exploration of items that are shown less than

a certain times in a time interval. In terms of feature engineering, besides manu-
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ally engineered features, recently, representation learning has been incorporated in

e-commerce search (Van Gysel et al., 2016; Ai et al., 2017). Regarding other aspects,

Goswami et al. (2019) also found that e-commerce search log data helps quantify the

gap between customer demands and supplies. Different from them, our work is the

first to develop a framework for unbiased learning to rank for e-commerce search.
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Chapter 3

LEARNING INDIVIDUAL CAUSAL EFFECTS WITH NETWORKED

OBSERVATIONAL DATA

Estimating the causal effect of a treatment on an outcome is one of the most

fundamental tasks in learning causality. Studying this problem helps us derive ac-

tionable patterns from networked observational data for rational decision making in

a wide range of applications. Given the fact that the underlying network structures

can be useful in capturing patterns of hidden confounders, a vast majority of existing

methods have not been developed in a proper way to utilize such information. In

this chapter, we show that when hidden confounders are correlated with network pat-

terns, the ability to exploit network information becomes of vital importance toward

unbiased causal effect estimation.

3.1 Problem Statement

This section starts with introducing the notations and preliminaries. Then, the

problem statement is formally presented.

Notations. First, we describe the notations used in this work. We denote a scalar, a

vector, and a matrix with a lowercase letter (e.g., t), a boldface lowercase letter (e.g.,

x), and a boldface uppercase letter (e.g., A), respectively. Subscripts signify element

indexes (e.g., xi and Ai,j). Superscripts of the a potential outcome variable denotes

its corresponding treatment (e.g., yti).

Networked Observational Data. Then we introduce networked observational

data. In this work, we aim to learn individual treatment effects from networked

observational data. Such data can be represented as ({xi, ti, yi}ni=1,A) where xi,
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ti and yi denote the features, the observed treatment, and the observed (factual)

outcome of the i-th instance, respectively. The symbol A signifies the adjacency

matrix of the auxiliary network information among different data instances. Here,

we assume that the network is undirected and all the edges share the same weight 1 .

Therefore, with the adjacency matrixA ∈ {0, 1}n×n,Ai,j = Aj,i = 1 (Ai,j = Aj,i = 0)

denotes that there is an (no) edge between the i-th instance and the j-th instance.

We focus on the cases where the treatment variable takes binary values t ∈ {0, 1}.

Without loss of generality, ti = 1 (ti = 0) means that the i-th instance is under

treatment (control). We also let the outcome variable be a scalar and take values on

real numbers as y ∈ R.

Preliminaries. Then we introduce the background knowledge of learning individual

causal effects. To define individual treatment effect (ITE), we start with the definition

of potential outcomes, which is widely adopted in the causal inference literature (Ru-

bin, 1978) 2 :

Definition 1. Potential Outcomes. Given an instance i and the treatment t, the

potential outcome of i under treatment t, denoted by yti , is defined as the value of y

would have taken if the treatment of instance i had been set to t.

Then we are able to provide the formal definition of ITE for the i-th instance in

the setting of networked observational data as:

τi = τ(xi,A) = E[y1
i |xi,A]− E[y0

i |xi,A] (3.1)

Intuitively, ITE is defined as the expected potential outcome of an instance under

treatment subtracted by that under control, which reflects how much improvement in

1This work can be directly applied to weighted undirected networks. It can also be extended
to directed networks using the Graph Convolutional Neural Networks for directed networks (Monti
et al., 2018).

2Note that we only use the concept of potential outcomes, but do not rely on the strong ignora-
bility assumption that is often adopted along with this concept.
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the outcome would be caused by the treatment. Note that with the network informa-

tion, we are able to go beyond the limited information provided by the features and

distinguish two instances with the similar features but different network patterns in

the task of learning individual treatment effects. With ITE defined, we can formulate

the average treatment effect (ATE) by taking the average of ITE over the instances

as: ATE = 1
n

∑n
i=1 τi. Finally, we formally present the definition of the problem of

learning individual treatment effects from networked observational data as follows:

Definition 2. Learning Individual Treatment Effects from Networked Ob-

servational Data. Given the networked observational data ({xi, ti, yi}ni=1,A), we

aim to develop a causal inference framework which estimates the ITE of each indi-

vidual such that a predefined error metric on the ITEs is minimized.

3.2 Proposed Framework I – Network Deconfounder

In this section, we discuss the proposed framework, the network deconfounder. We

start with an introduction of the background about the strong ignorability assumption

and confounding bias. Then the proposed framework is described.

3.2.1 Background

It is not difficult to find that, in networked observational data, as only one of the

two potential outcomes can be observed, the main challenge of learning individual

treatment effects is the inference of counterfactual outcomes yCFi = y1−ti
i . In previ-

ous work (Hill, 2011; Wager and Athey, 2018; Johansson et al., 2016; Shalit et al.,

2017), with the strong ignorability assumption, controlling observed features is often

considered to be enough to eliminate confounding bias. Formally, strong ignorability

can be defined as:
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Definition 3. Strong Ignorability. With strong ignorability, it is assumed that:

(1) the potential outcomes of an instance are independent of whether it receives treat-

ment or control given its features. (2) In addition, for each instance the probability

to get treated is larger than 0 and less than 1. Formally, given the feature space X ,

the strong ignorability assumption can be presented as:

y1, y0 ⊥⊥ t|x and 1 > Pr(t = 1|x) > 0,∀x ∈ X , t ∈ {0, 1}. (3.2)

It implies that E[yt|x] = E[y|x, t]. This is due to the conditional independence

between the treatment and the potential outcomes, where y denotes the outcome re-

sulting from the features x and the treatment t. Intuitively, strong ignorability means

we can observe every single feature that describes the difference between the treat-

ment and the control group. With the strong ignorability assumption, many existing

methods (Johansson et al., 2016; Shalit et al., 2017; Hill, 2011; Wager and Athey,

2018) boil down the task to learning a machine learning model that approximates the

function f : X ×{0, 1} → R that estimates the expected potential outcomes E[y|x, t]

given features and the treatment.

However, in this work, we consider a more realistic setting where we allow the

existence of hidden confounders. As a result, inferring counterfactual outcomes based

on the features and the treatment alone would result in a biased estimator. This

can be written as E[y|x, t] 6= E[yt|x]. This is because the dependencies between

the treatment variable and the two potential outcomes are introduced by the hidden

confounders.
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Figure 3.1: The causal diagram representing the assumptions of the proposed frame-

work – network deconfounder

Figure 3.2: The work flow of the proposed framework network deconfounder

3.2.2 Network Deconfounder

In this subsection, we propose the network deconfounder, a novel framework that

addresses the challenges of learning individual treatment effects from networked obser-

vational data. Fig. 3.2 illustrates the workflow of the proposed network deconfounder

framework. Given the adjacency matrix A, features x, the treatment t, and the out-

come y, Fig. 3.1 shows the causal diagram which represents the assumption used in

the network deconfounder. Specifically, the network structure represented by adja-

cency matrix A along with the observed features x are proxy variables of the hidden

confounders h, which can be utilized to learn representations of hidden confounders.
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The directed (bidirected) edges signify causal relations (correlations), solid circles

represent observed variables, and the dashed circle stands for hidden confounders.

Instead of relying on the strong ignorability assumption, the network deconfounder

is based on a weaker assumption that the features and the network structure are two

sets of proxy variables of the hidden confounders. This is a more practical assump-

tion than the strong ignorability assumption in the sense that we do not require the

observed features to capture all the information that describes the difference between

the treated instances and the controlled ones. For example, although we cannot di-

rectly measure the socioeconomic status of an individual, we can collect features such

as age, job type, zip code, and the social network to approximate her socioeconomic

status. Based on this assumption, the proposed network deconfounder attempts to

learn representations that approximate hidden confounders and estimate ITE from

networked observational data simultaneously.

Unlike eliminating confounding bias based on the observed features alone, lever-

aging the underlying network structure for controlling confounding bias raises special

challenges: (1) instances are inherently interconnected with each other through the

network structure and hence their features are not independent identically distributed

(i.i.d.) samples from a certain feature distribution, (2) the adjacency matrix of a net-

work is often high-dimensional and can be very sparse (A ∈ {0, 1}n×n).

To tackle these special challenges of controlling confounding bias when network

structure information exists, we propose the network deconfounder framework. The

task can be divided into two steps. First, we aim to learn representations of hidden

confounders by mapping the features and the network structure simultaneously into

a shared representation space of confounders. Then an output function is learned to

infer a potential outcome of an instance based on the treatment and the representation

of hidden confounders. Then we present how the two tasks are accomplished by the
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network deconfounder.

Learning Representation of Confounders. In previous work (Johansson et al.,

2016; Shalit et al., 2017; Louizos et al., 2017), representation learning techniques have

been leveraged for estimating individual level causal effects. Different from them,

the network deconfounder is the first one that is able to utilize auxiliary network

information to improve the representation learned toward ITE estimation. The first

component of the network deconfounder is a representation learning function g. The

function g maps the features and the underlying network into the d-dimensional

shared latent space of confounders, which can be formulated as g : X ×A → Rd. We

parameterize the g function using Graph Convolutional Networks (GCN) (Defferrard

et al., 2016; Kipf and Welling, 2016), whose effectiveness have been verified in various

machine learning tasks across different types of networked data (Ding et al., 2019).

To the best of our knowledge, this is the first work introducing GCN to the task

of learning causal effects. In particular, the representation of confounders of the i-

th instance is learned through GCN layers. Here, for the simplicity of notation, we

describe the function g with a single GCN layer. The representation learning function

g is parameterized as:

hi = g(xi,A) = σ((ÂX)iU), (3.3)

where Â denotes the normalized adjacency matrix, (ÂX)i signifies the i-th row of

the matrix product ÂX, U ∈ Rm×d represents the weight matrix to be learned, and

σ stands for the ReLU activation function (Glorot et al., 2011). Specifically, with

the following notations, Ã = A + In and D̃j,j =
∑

j Ãj,j, the normalized adjacency

matrix Â can be calculated using the renormalization trick (Kipf and Welling, 2016):

Â = D̃−
1
2 ÃD̃−

1
2 (3.4)

We can compute Â in a pre-processing step to avoid repeating the computation. Then
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the weight matrix U ∈ Rm×d along with the ReLU activation function maps the input

signal into the low-dimensional representation space. Note that more than one GCN

layers can be stacked to catch the non-linear relations between hidden confounders

and the input data.

Inferring Potential Outcomes. Then we introduce the second component of net-

work deconfounder, namely the output function f : Rd × {0, 1} → R. The function

f maps the representation of hidden confounders as well as a treatment to the cor-

responding potential outcome. With hi ∈ Rd denoting the representation of the

confounders of the i-th instance and t ∈ {0, 1} signifying the treatment, to infer the

corresponding potential outcome, the output function f is defined as:

f(hi, t) =


f1(hi) if t = 1

f0(hi) if t = 0

, (3.5)

where f1 and f0 are the output functions for treatment t = 1 and t = 0. Specifically,

we parameterize the output functions f1 and f0 using L fully connected layers followed

by a regression layer as:

f1 = w1σ(W 1
L...σ(W 1

1 hi)),

f0 = w0σ(W 0
L...σ(W 0

1 hi)),

(3.6)

where hi is the representation of the i-th instance’s confounders (output of the g

function), {W t
l }, l = 1, ..., L denote the weight matrices of the fully connected layers,

and wt is the weight for the regression layers. The bias terms of the fully connected

layers and the output regression layer are dropped for simplicity of notation. We can

either set t = ti to infer the observed factual outcome yCFi or t = 1 − ti to estimate

the counterfactual outcome.

With the two components of the network deconfounder formulated, given the

features of the i-th instance xi, the treatment t, and the adjacency matrix A, we can
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infer the potential outcome as:

ŷti = f(g(xi,A), t), (3.7)

where ŷti denotes the inferred potential outcome of instance i corresponding to treat-

ment t by the network deconfounder framework.

Objective Function. Then, we introduce the three essential components of the loss

function for the proposed network confounder.

Factual Outcome Inference. First, we aim to minimize the error in the inferred

factual outcomes. This leads to the first component of the loss function, the mean

squared error in the inferred factual outcomes:

min
1

n

N∑
i=1

(ŷtii − yi)2. (3.8)

Representation Balancing. Minimizing the error in the factual outcomes (yi) does

not necessarily mean that the error in the counterfactual outcomes (yCFi ) is also min-

imized. In other words, in the problem of learning ITE from networked observational

data, we essentially confront the challenge of distribution shift (Johansson et al., 2016;

Shalit et al., 2017). In particular, the network deconfounder would be trained on the

conditional distribution of factual outcomes Pr(yi|xi,A, ti) but the task is to infer the

conditional distribution of counterfactual outcomes Pr(yCFi |xi,A, 1− ti). In (Shalit

et al., 2017, Lemma 1.), the authors have shown that the error in the inferred counter-

factual outcomes is upperbounded by a weighted sum of (1) the error in the inferred

factual outcomes; and (2) an integral probability metric (IPM) measuring the dif-

ference between the distributions the treated instances and the controlled instances

in terms of their confounder representations. Therefore, besides the error in inferred

factual outcomes, we also aim to minimize the IPM measuring the how different

the treatment group and the control group are regarding their distributions of con-

founders’ representations. With P (h) = Pr(h|ti = 1) and Q(h) = Pr(h|ti = 0) being
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the empirical distributions of representation of hidden confounders, we let ρZ(P,Q)

denote the IPM defined in the functional space Z which measures the divergence be-

tween the two distributions of confounders’ representations. Assuming that Z denotes

the functional space of 1-Lipschitz functions, the IPM reduces to the Wasserstein-1

distance which is defined as:

min ρZ(P,Q) = inf
k∈K

∫
h∈{hi}i:ti=1

||k(h)− h||P (h)dh (3.9)

where K = {k|k : Rd → Rd s.t. Q(k(h)) = P (h)} denotes the set of push-forward

functions that can transform the representation distribution of the treated (P (h))

to that of the controlled (Q(h)). By minimizing αρZ(P,Q), we approximately mini-

mize the divergence between the distributions of confounders’ representations, where

α ≥ 0 signifies the hyperparameter controlling the trade-off between penalizing the

imbalance of confounders’ representations and the other penalty terms in the loss

function of the network deconfounder. We adopt the efficient approximation algo-

rithm proposed by (Cuturi and Doucet, 2014) to compute the Wasserstein-1 distance

in Eq. (3.9) and its gradients against the model parameters for training the network

deconfounder.

`2 Regularization. Third, we let θ signify the vector of the model parameters of

the network deconfounder. Then a squared `2 norm regularization term on the model

parameters - λ||θ||22, is added to mitigate the overfitting problem, where λ ≥ 0 denotes

the hyperparamter controlling the trade-off between the `2 regularization term and

the other two terms.

Formally, we present the objective function of the network deconfounder as:

L({xi, ti, yi}ni=1,A) =
1

n

n∑
i=1

(ŷtii − yi)2 + αρZ(P,Q) + λ||θ||22, (3.10)
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3.3 Experimental Evaluation I

In this section, experiments are described. They are performed to investigate the

effectiveness of the proposed framework in the task of learning ITEs with networked

observational data. It starts with dataset description. Then experimental settings

and results are presented.

3.3.1 Dataset Description

It is notoriously hard to obtain ground truth of ITEs because in most if not all

cases, we can only observe one of the potential outcomes. For example, a patient

can only choose to take the medicine or not to take it, but not both. So we can only

observe the outcome resulting from her choice. However, we need benchmark datasets

that provide ground truth of ITEs such that we can compare different methods that

estimate ITEs with networked observational data. To resolve this problem, we follow

the existing literature (Johansson et al., 2016; Shalit et al., 2017; Louizos et al., 2017;

Schwab et al., 2019) to create semi-synthetic datasets. In particular, we introduce

two benchmark datasets for the task of learning ITEs from networked observational.

These datasets are semi-synthetic in the sense that they are based on features and

network structures collected from real-world sources. Then we synthesize treatments,

and outcomes for the task of learning ITEs from networked observational data in the

presence of hidden confounders.

BlogCatalog. BlogCatalog 3 is an online community where users post blogs. In

the dataset, each instance is a blogger. Each edge signifies the social relationship

(friendship) between two bloggers. The features are bag-of-words representations of

keywords in bloggers’ descriptions. We extend the BlogCatalog dataset used in (Li

3https://www.blogcatalog.com/
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et al., 2015, 2019a) by synthesizing (a) the outcomes – the opinions of readers on

each blogger; and (b) the treatments – whether contents created by a blogger receive

more views on mobile devices or desktops. Similar to the News dataset used in

the previous work (Johansson et al., 2016; Schwab et al., 2018, 2019), we make the

following assumptions: (1) Readers either read on mobile devices or desktops. We

say a blogger get treated (controlled) if her blogs are read more on mobile devices

(desktops). (2) Readers prefer to read some topics from mobile devices, others from

desktops. (3) A blogger and her neighbors’ topics causally influence her treatment

assignment. (4) A blogger and her neighbors’ topics also causally affect readers’

opinions on them. Here, we aim to study the individual treatment effect of receiving

more views on mobile devices (than desktops) on readers’ opinions. To synthesize

treatments and outcomes in accordance to the assumptions mentioned above, we first

train a LDA topic model (Blei et al., 2003) on a large set of documents. Then,

two centroids in the topic space are defined as follows: (i) we randomly sample a

blogger and let the topic distribution of her description be the centroid of the treated

instances, denoted by rc1. (ii) The centroid of the controlled, rc0, is set to be the mean

of the topic distributions of all the bloggers’ descriptions. Then we introduce how the

treatments and outcomes are synthesized based on the similarity between the topic

distribution of a blogger’s description and the two centroids. With r(xi) denoting the

topic distribution of the i-th blogger’s description, we model the device preference of
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the readers of the i-th blogger’s content as:

Pr(t = 1|xi,A) =
exp(pi1)

exp(pi1) + exp(pi0)
;

pi1 = κ1r(xi)
T rc1 + κ2

∑
j∈N (i)

r(xj)
T rc1

= κ1r(xi)
T rc1 + κ2(Ar(xj))

T rc1;

pi0 = κ1r(xi)
T rc0 + κ2

∑
j∈N (i)

r(xj)
T rc0

= κ1r(xi)
T rc0 + κ2(Ar(xj))

T rc0,

(3.11)

where κ1, κ2 ≥ 0 signifies the magnitude of the confounding bias resulting from a

blogger’s topics and her neighbors’ topics, respectively. When κ1 = 0, κ2 = 0 the

treatment assignment is random and the greater the values κ1 and κ2 are, the more

significant the influence of a blogger’s topics and her neighbors’ topics on the device

preference is. Then the factual outcome and the counterfactual outcome of the i-th

blogger are simulated as:

yF (xi) = yi = C(pi0 + tip
i
1) + ε; (3.12)

yCF (xi) = C[pi0 + (1− ti)pi1] + ε, (3.13)

where C is a scaling factor and the noise is sampled as ε ∼ N (0, 1). In this work,

we set C = 5, κ1 = 10, κ2 ∈ {0.5, 1, 2}. Note that the outcomes of an individual are

not influenced by the treatment assignment or outcomes of their neighbors, therefore,

there is no interference or spillover effect in this scenario.

In the experiments, 50 LDA topics are learned from the training corpus. Then

we reduce the vocabulary by taking the union of the most frequent 100 words from

each topic. By doing this, we end up with 2,173 bag-of-words features. We perform

the aforementioned simulation 10 times for each setting of κ2. Figure 3.3 shows the

distribution of topics in one of the simulations, which is projected to two-dimensional
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Figure 3.3: Distribution of the treated (red) and control (blue) instances in the LDA

topic space.

space through the visualization technique TSNE (van der Maaten and Hinton, 2008).

The green and yellow diamonds signify the two centroids rc1 and rc0 for the two treat-

ment groups. We observe that there are more treated instances (red dots) near the

centroid rc1 (green diamond) and more control instances (blue dots) close to the cen-

troid rc0 (yellow diamond). In addition, a significant shift from the centroids can be

perceived which shows the impact of the network structure.

Flickr. Flickr 4 is an online social network where users share images and videos. In

this dataset, each instance is a user and each edge represents the social relationship

(friendship) between two users. The features of each user represent a list of tags of

interest. We adopt the same settings and assumptions as we do for the BlogCatalog

dataset. Thus, we also study the individual-level causal effects of being viewed on

mobile devices on readers’ opinions on the user. In particular, we also learn 50 topics

from the training corpus using LDA and concatenate the top 25 words of each topic.

Thus, we reduce the data dimension to 1,210. We maintain the same settings of

parameters as the BlogCatalog dataset (C = 5, κ1 = 10 and κ2 ∈ {0.5, 1, 2}).

In Table 4.1, we present a summary of the statistics of the semi-synthetic datasets

4https://www.flickr.com
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Table 3.1: Dataset Description (BC stands for BlogCatalog)

Instances Edges Features κ2 ATE Mean STD

BC 5,196 173,468 2,173/8,189

0.5 4.366 0.553

1 7.446 0.759

2 13.534 2.309

Flickr 7,575 239,738 1,210/12,047

0.5 6.672 3.068

1 8.487 3.372

2 20.546 5.718

described in this subsection. The average and standard deviation of the ATEs are

calculated over the 10 runs under each setting of parameters.

3.3.2 Experimental Settings

Following the original implementation of GCN (Kipf and Welling, 2016) 5 , we

train the model with all the training instances along with the complete adjacency

matrix of the auxiliary network information. ADAM (Kingma and Ba, 2014) is the

optimizer we use to minimize the objective function of the network deconfounder

(Eq. (3.20)). We randomly sample 60% and 20% of the instances as the training set

and validation set and let the remaining be the test set. We perform 10 times of ran-

dom sampling for each simulation of the datasets and report the average results. Grid

search is applied to find the optimal combination of hyperparameters for the network

deconfounder. In particular, we search learning rate in {10−1, 10−2, 10−3, 10−4}, the

number of output layers in {1, 2, 3}, dimensionality of the outputs of the GCN layers

and the number of hidden units of the fully connected layers in {50, 100, 200}, α and

λ in {10−3, 10−4, 10−5, 10−6}. For the baselines, we adopt their default settings of

5https://github.com/tkipf/gcn
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hyperparameters.

Note that, in this work, we consider the scenarios where each individual’s poten-

tial outcomes are not influenced by the observed treatments or outcomes of others

in the network, i.e., there is no interference or spillover effect. At the same time,

the auxiliary network is utilized as a source of information to help us learn better

representations of confounders. Also note that the proposed network deconfounder

framework is the first framework which incorporates auxiliary network information

to learn better representations for controlling confounding bias and estimating indi-

vidual treatment effects. Therefore, there does not exist baseline methods that can

naturally incorporate the auxiliary network information. But we can concatenate the

corresponding row of adjacency matrix to the original features to enable the baselines

to utilize the network information. However, due to the issues of high dimensionality

and sparsity, we find such an approach cannot improve baselines’ performance. Then

we describe the baseline methods which represent the state-of-the-art methods for

the task of learning ITEs from observational data.

Counterfactual Regression (CFR). CFR (Shalit et al., 2017) is based on the

strong ignorability assumption. It learns representations of confounders by mapping

the original features into a latent space. CFR is trained by minimizing the error

in inferred factual outcomes and tries to minimize the imbalance of confounders’

representations between the treated and the controlled. Following (Shalit et al., 2017),

two types of representation balancing penalties are considered: the Wasserstein-1

distance (CFR-Wass) and the maximum mean discrepancy (CFR-MMD).

Treatment-agnostic Representation Networks (TARNet). TARnet (Shalit

et al., 2017)is a variant of CFR. It does not have the representation balancing term.

Causal Effect Variational Autoencoder (CEVAE). CEVAE (Louizos et al.,

2017) is a deep latent-variable model which estimates ITEs via modeling the joint
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distribution P (x, t, y,h). It learns representations of confounders as Gaussian distri-

butions. Then through variational inference, it is trained by maximizing the varia-

tional lower bound of the graphical model representing the causal relations between

the four variables: the features, the treatment, the outcome and the confounders.

Causal Forest. Causal Forest (Wager and Athey, 2018) is an extension of Breiman’s

random forest (Breiman, 2001) for estimating heterogenous treatment effects in sub-

groups. Here, we treat the heterogenous treatment effect estimated by causal forest

of a subgroup as the ITE of each instance in the subgroup. It works with the strong

ignorability assumption.

Bayesian Additive Regression Trees (BART). BART (Hill, 2011) is a Bayesian

regression tree based ensemble model which is widely adopted in the literature of

causal inference. It is also based on the strong ignorability assumption.

Two widely used evaluation metrics, the Rooted Precision in Estimation of Het-

erogeneous Effect (
√
εPEHE) and Mean Absolute Error on ATE (εATE), are adopted

by this work. Formally, they are defined as:

√
εPEHE =

√
1

n

∑
i=1

(τ̂i − τi)2,

εATE = | 1
n

∑
i=1

(τ̂i)−
1

n

∑
i=1

(τi)|,
(3.14)

where τ̂i = ŷ1
i − ŷ0

i and τi = y1
i − y0

i denote the inferred ITE and the ground truth

ITE for the i-th instance.

3.3.3 Results

Effectiveness. First, we compare the effectiveness of the proposed framework,

the network deconfounder, with the aforementioned state-of-the-art methods. Ta-

ble 3.2 summarizes the empirical results on the BlogCatalog and Flickr datasets with

C = 5, κ1 = 10 and κ2 ∈ {0.5, 1, 2}. We summarize the observations from these
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experimental results as follows:

• The proposed network deconfounder framework consistently outperforms the

state-of-the-art baseline methods on the semi-synthetic datasets with treat-

ments and outcomes generated under various settings. We also perform one-

tailed T-test to verify the statistical significance. The results indicate that the

network deconfounder achieves significantly better estimations on individual

treatment effects with a significant level of 0.05.

• With the capability to recognize the patterns of hidden confounders from the

network structure, the network deconfounder suffers the least when the influence

of hidden confounders grows (from κ2 = 0.5 to κ2 = 2) in terms of the increase

in the errors
√
εPEHE and εATE.

3.4 Proposed Framework II – IGNITE

This section presents the two desiderata of handling confounding bias and the

description of the proposed framework.

3.4.1 Two Desiderata of Handling Confounding Bias

Hidden confounders pose the main challenge of learning ITEs from networked ob-

servational data. To handle confounding bias, existing methods present two desider-

ata.

First, on the group level, it is desirable to balance the distributions of confounders

(or their representations) between the treated and the controlled. A variety of rep-

resentation balancing methods for learning ITEs from observational data have been

developed based on this principle Shalit et al. (2017); Yao et al. (2018). Let ĥi denote

the approximated latent confounders’ representation of instance i, the representation
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balancing methods that follow the first desideratum minimize a divergence metric

(e.g., Wasserstein distance) between P (ĥi|xi, ti = 1) and P (ĥi|xi, ti = 0). The sec-

ond desideratum, on the individual level, aims to capture the patterns of hidden

confounders that are useful in predicting treatments. Following this idea, methods

proposed in Louizos et al. (2017); Veitch et al. (2019) learn a function that predicts

the observed treatment of each individual based on the confounders’ representations.

Intuitively, this treatment prediction function mimics the treatment assignment mech-

anism that generates the data. Therefore, through learning the treatment prediction

function, we can capture the information of hidden confounders that explains how the

observed treatments are assigned. However, none of the existing methods can satisfy

the two desiderata together because they seem to contradict each other. Intuitively,

when the divergence between P (ĥi|xi, ti = 1) and P (ĥi|xi, ti = 0) becomes smaller, it

becomes more difficult to distinguish between a treated instance and a controlled one

by their confounders’ representations. We introduce how to resolve this issue with a

minimax game in the next section.

3.4.2 The Proposed Framework: IGNITE

We observe that confounders’ representations and treatment predictions are often

computed by two separate modules. This implies we can develop a minimax game

where they are iteratively optimized toward satisfying the two desiderata. We propose

IGNITE to learn ITEs from networked observational data. Here, we first introduce

the components of IGNITE, then we formulate its loss function including the minimax

game for handling confounding bias.

Components of IGNITE. IGNITE has three components: the confounder rep-

resentation function, the treatment group’s critic function, and the outcome inference

function.
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Confounder Representation Function. Here, we define the confounder representa-

tion function g : X × A → Rd. This function maps the features and the adjacency

matrix of the network structure into a d-dimensional representation space to approxi-

mate the confounders. To quantify the importance of each edge in its influence on the

confounders, we extend the Graph Attention Network layers (GAT) Veličković et al.

(2018). The i-th instance’s confounder representation is a function of its features

and network structure. For the simplicity of notation, we formulate the confounder

representation function g with a single GAT layer:

ĥi = g(xi,A) =‖Kk=1 δ(
∑
j∈Ni

αkijW
kxj) (3.15)

where ‖ denotes concatenation. Ni is the set of neighbors of the i-th instance in

the network A. K is the number of attention heads. Each head of the attention

mechanism is a weighted aggregation of information from the neighbors. Wk ∈ Rd×m

is the weight matrix of the k-th attention head. δ is the ELU unit. We compute the

normalized attention coefficients αkij as:

αkij =
exp(δ′(aT [Wkxi ‖Wkxj]))∑
l∈Ni

exp(δ′(aT [Wkxi ‖Wkxl]))
, (3.16)

where δ′ denotes the LeakyReLU unit and a ∈ R2d denotes a weight vector. Stacking

multiple GAT layers can help us capture Multi-hop relations.

Treatment Group Critic Function. The critic function D : Rd → R maps the

confounders’ representation of an instance to a real value. Larger value of D(ĥi)

indicates that instance i is more likely to receive treatment. Following Gulrajani

et al. (2017), we parameterize it with a neural network that consists of fully connected

layers and LeakyReLU units.

Outcome Inference Function. We infer outcomes of an instance based on its con-

founders’ representation. We define the output function f : Rd × {0, 1} → R. We
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parameterize the output function of each treatment with fully connected layers with

ELU units (except the last layer). We can set t = ti or 1− ti to let the corresponding

layers infer the factual or counterfactual outcome.

With these three components, given the features of the i-th instance xi, the treat-

ment t, and the adjacency matrix A, outcomes are inferred as ŷti = f(g(xi,A), t),

where ŷti is the inferred outcome of instance i under treatment t. After training, it

can infer the ITE of instance i as τ̂i = ŷ1
i − ŷ0

i and estimate the ATE as 1
n

∑
i τ̂i.

A Minimax Game for Handling Confounding Bias. Note that function

g is used to compute confounders’ representations ĥi. Here, we formulate the two

desiderata of handling confounding bias as a minimax game:

min
g

max
D
LCB =

1

n1

∑
i:ti=1

D(ĥi)−
1

n0

∑
i:ti=0

D(ĥi), (3.17)

where n1 and n0 are the number of instances under treatment and control. In the

maximization stage, the critic function D is trained to maximize the difference be-

tween the value it assigns for the treated instances and those for the controlled ones.

In the minimization stage, the confounder representation function g is used to fool

the treatment group critic D. This step balances the distributions of confounders’

representations because it makes it more difficult to distinguish the confounders’ rep-

resentation of a treated instance from that of a controlled one. To avoid difficulty

in training (e.g., vanishing gradients), we follow Gulrajani et al. (2017) to limit the

functional space of the treatment group critic D to a subset of 1-Lipschitz functions.

To achieve this, we add a gradient penalty term to the maximization stage. It is

computed on n′ randomly sampled pairs of treated and controlled instances:

LGP = − 1

n′

n′∑
i=1

λ(|| 5h̃i
D(h̃i)||2 − 1)2, (3.18)

where h̃i = εĥj + (1 − ε)ĥk, (j, k) is one of the n′ randomly sampled pairs. Each

pair contains a treated instance and a controlled one. || · ||2 denotes L2 norm and

36



ε ∼ U [0, 1]. We set the parameter λ = 10 as in Gulrajani et al. (2017). In addition,

we aim to achieve accurate inference of factual outcomes. We minimize the mean

squared error on the inferred factual outcomes:

LFO =
1

n

∑
i

(ŷtii − yi)2, (3.19)

Finally, we present the objective functions of the proposed minimax game in two

stages:

max
D
LD = β(LCB + LGP ),

min
g
Lg = LFO + β(LCB),

(3.20)

where β ≥ 0 is a hyperparameters controlling the trade-off between the objectives.

IGNITE is trained with backpropagation by iteratively optimizing LD and Lg.

3.5 Experimental Evaluation II

In this section, we investigate the two following research questions: RQ1. In

learning ITEs from networked observational data, is the proposed minimax game

more effective in handling confounding bias than representation balancing, treatment

prediction or a combination of them? RQ2. How does the hyperparameter β affect

the performance of the proposed framework, IGNITE?

3.5.1 Dataset Description

The dataset is generated in a similar way as in (Guo et al., 2020c). To mimic

real-world situations, we consider unobserved edge weights.

BlogCatalog (BC) is a social network with blog service. Each instance is a blog-

ger. Each edge signifies the friendship between two bloggers. The features are the

keywords of each blogger’s articles. We extend the BlogCatalog dataset (Li et al.,
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2019b) by synthesizing (a) the outcomes – the number of readers who adopt fin-

tech products after reading each blogger’s work; and (b) the treatment assignments –

whether work of a blogger is browsed more on desktops or on mobile devices. The fol-

lowing assumptions are made: (1) Readers either read on mobile devices or desktops.

A blogger is treated (controlled) if her blogs are more popular on mobile devices

(desktops). (2) A blogger’s articles are either more popular on mobile devices or

desktops. (3) A blogger’s treatment and outcomes can be influenced by her topics

and her neighbors’ topics. To synthesize treatments and outcomes, we train an LDA

topic model on a large corpus. Then the centroids of the two treatment groups are

defined as: (i) the topic distribution of a randomly selected blogger is the centroid

of the treatment group, denoted by r̄1; (ii) the centroid of the controlled, r̄0, is the

average topic distribution of all the bloggers. Then the treatments and outcomes are

generated based on the similarity between the topic distributions of bloggers and the

two centroids. Let r(xi) denote the topic distribution of the i-th blogger, we model

the readers’ preference of browsing devices on the blogger’s content:

Pr(t = 1|xi, Ã) =
exp(p1

i )

exp(p1
i ) + exp(p0

i )
, (3.21)

where pti is calculated as:

pti = κ1r(xi)
T r̄t + κ2(Ãr(xj))

T r̄t, (3.22)

where t ∈ {0, 1}. κ1 ≥ 0 (κ2 ≥ 0) signifies the strength of the confounding bias

resulting from a blogger’s (her neighbors’) topics. When κ1 = κ2 = 0 the treatment

assignment is random and the greater the value κ1 and κ2 are, the more significant

the bias of device preference is. Ã denotes the weighted adjacency matrix, where

each entry Ãij denotes the importance of an edge with related to the influence on

confounding bias. To emphasize the fact that in many real-world networks the edge
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weights are unknown, we only let the unweighted adjacency matrix A be observed

in the data. However, the unobserved weighted adjacency matrix Ã is the one that

influences the values of treatments and outcomes. Thus, an ideal causal inference

approach needs to catch the weights of each edge. If Aij = 1, we sample Ãij = Ãji ∼

U(0.8, 1.2); otherwise, we set Ãij = Ãji = 0. Outcomes of a blogger are simulated

as:

yt(xi) = C(p0
i + tp1

i ) + ε, (3.23)

where C is a scaling factor and ε ∼ N (0, 1). We set C = 5, κ1 = 10, κ2 ∈ {0.5, 1, 2}.

50 LDA topics are learned from the training corpus. Then we reduce the vocabulary

by taking the union of the most probable 100 words from each topic, which results in

2,173 bag-of-word features.

Flickr is an image and video sharing service. Each instance refers to a user and

each edge represents the social relationship between two users. The features of each

user represent a list of tags of interest. We adopt the same settings and assumptions

as we do for the BC datasets. Thus, we study the ITE of being viewed on mobile

devices on the number of readers’ adoptions of fintech products recommended by the

user’s images and videos. We learn 50 topics from the training corpus using LDA and

concatenate the top 25 words of each topic which reduces the feature dimension to

1,210. We set the parameters the same as the BC datasets.

In Table 4.1, we present the statistics of the semi-synthetic datasets. The average

and standard deviation of ATE are calculated over the 10 runs under each setting of

parameters. The ATE varies because the true edge weights are randomly sampled

from the uniform distribution U(0.8, 1.2).
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3.5.2 Experimental Settings

We randomly split the data into training (60%), validation (20%), and test sets

(20%), which is repeated ten times for each simulated dataset. We train IGNITE

with Adam (Kingma and Ba, 2014) optimizer with weight decay set to 10−4. We

iteratively optimize the two objectives in Eq. (3.20). Grid search finds the optimal set

of hyperparameters for IGNITE and the baselines. For IGNITE, we search learning

rate in {5×10−3, 10−3, 5×10−4, 10−4}, the number of GAT layers and fully connected

layers of the functions g, D and f in {1, 2, 3}, the number of hidden units of the GAT

layers and the fully connected layers in {16, 32, 64, 128}, the number of attention

heads in {2, 4, 8}, β in {10−4, 10−3, 10−2, 10−1}. Then, we list the baselines:

• Network Deconfounder (ND) (Guo et al., 2020c) learns confounders’ rep-

resentations using GCN layer(s) (Kipf and Welling, 2016). It minimizes the

Wasserstein distance between the two confounder representation distributions.

• GATD is a variant of ND with GAT layer(s) (Veličković et al., 2018) for fair

comparison.

• GATD+ and GATDT. To show the advantage of the proposed minimax game

over a simple combination of representation balancing and treatment prediction,

we further create two variants of GATD. GATD+ balances confounder repre-

sentations and predicts treatments based on these representations. GATDT

predicts treatments to handle confounding bias.

• CNE (Veitch et al., 2019) learns confounders’ representations by predicting

observed outcomes, treatments and edges. It does not utilize observed features.

CNE uses AIPW (Robins et al., 1994), therefore, only infers ATE.
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• CNE-. We create a variant of CNE w/o AIPW, which can infer both ATE and

ITEs.

• Counterfactual Regression (CFR) (Shalit et al., 2017) is a ITEs estima-

tor for i.i.d. data. It minimizes errors on inferred factual outcomes and balances

representation distributions. We report the optimal results of the three CFR

models: representation balancing with Wasserstein distance, that with Maxi-

mum Mean Discrepancy and no representation balancing.

• CEVAE (Louizos et al., 2017) is a deep latent-variable model for learning

ITEs. It learns the joint distribution of features, latent confounders, treatments,

and outcomes to infer ITEs.

• Causal Forest (Wager and Athey, 2018) is an ensemble model trained by

predicting observed treatments.

For the evaluation metrics, the Rooted Precision in Estimation of Heterogeneous

Effect (
√
εPEHE) and Mean Absolute Error on ATE (εATE), are used. They are

defined as:

√
εPEHE =

√
1

n

∑
i=1

(τ̂i − τi)2, εATE = | 1
n

∑
i=1

(τ̂i)−
1

n

∑
i=1

(τi)|, (3.24)

where τ̂i and τi = y1
i − y0

i denote the inferred ITE and the ground truth ITE for the

i-th instance.

3.5.3 Experimental Results

Effectiveness. Here, we compare the effectiveness of IGNITE with the baselines

in the task of learning ITEs from networked observational data. Table 4.2 shows

the results evaluated on the BC and Flickr datasets with C = 1, κ1 = 10 and κ2 ∈
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{0.5, 1, 2}. We summarize the observations made from these experimental results as

follows:

• IGNITE outperforms the baselines consistently in almost all cases. One-tailed

T-tests show that the boldfaced results are significantly better than others with

a significant level of 0.05.

• IGNITE shows consistent superior performance than GATD+. This verifies that

the proposed minimax game does a better job in satisfying the two desiderata

than a simple combination of representation balancing and treatment prediction.

• The fact that IGNITE outperforms GATD and GATDT implies that the pro-

posed minimax game handles confounding bias better than doing representation

balancing or treatment prediction alone.

• We observe that GATD+ fails to outperform GATD and GATDT in a majority

of cases. This implies that a näıve combination of representation balancing and

treatment prediction may not achieve the two desiderata together. Instead, it

may perform worse than representation balancing or treatment prediction alone.

• GATD outperforms ND under various settings. This is because GAT layers

can capture the unobserved edge importance. Note that the unobserved edge

importance plays may have a significant influence on the values of treatments

and outcomes.

• The improvement of IGNITE over CNE and CNE- results from two aspects.

First, the proposed minimax game shows better efficacy in dealing with con-

founding bias than treatment prediction alone. Second, the GAT layer(s) cap-

ture unobserved edge weights and incorporate observed features.
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• Compared to the methods for i.i.d. data – CFR, CEVAE, and CF, IGNITE

achieves better performance because it is trained by the proposed minimax

game for handling confounding bias and it utilizes the network information to

recognize patterns of latent confounders.

Parameter Study. Then we investigate how the variation in values of the impor-

tant hyperparameter β affects the performance of IGNITE. β controls the trade-off

between more accurate outcome inference and better confounding bias handling. We

set β to {10−4, 10−3, 10−2, 10−1}. The following settings are applied: learning rate is

5×10−3, the number of epochs is 300, the number of GAT layer is 2 and the numbers

of fully connected layers for D and f are 2 and 1, the number of attention head is

8, the number of hidden units of each attention head and each fully connected layer

of D and f are 128, 64 and 32. We show the results of this parameter study on the

BC datasets in Table 3.5. We observe that IGNITE maintains reasonably consistent

performance in terms of both evaluation metrics when β ∈ [10−4, 10−1]. In addition,

IGNITE often achieves the optimal performance when β ∈ [10−3, 10−2].

3.6 Summary

New challenges are presented by the prevalence of networked observational data for

learning individual treatment effects. In this chapter, we formulate a novel problem,

learning individual treatment effects from networked observational data. As the un-

derlying network structure could capture useful information of hidden confounders,

we propose two novel frameworks, which leverage the network structural patterns

along with original features for learning better representations of confounders. Em-

pirically, we perform extensive experiments across multiple real-world datasets. Em-

pirical results verify that the proposed minimax game training paradigm learns better

representation of confounders than the state-of-the-art methods.
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Here, we also introduce two most interesting directions of future work. First, we

are interested in leveraging other types of structure between instances for learning

ITEs from observational data. For example, temporal dependencies can also be uti-

lized to capture patterns of hidden confounders. Second, real-world networks can

evolve over time (Marin et al., 2017; Sarkar et al., 2019; Shakarian et al., 2015a).

Hence, investigating how to exploit dynamics in evolving networks for learning ITEs

creates new opportunities and poses new challenges.
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Table 3.2: Experimental Results comparing effectiveness of the proposed network

deconfounder with the baseline methods.

BlogCatalog

κ2 0.5 1 2

√
εPEHE εATE

√
εPEHE εATE

√
εPEHE εATE

NetDeconf (ours) 4.532 0.979 4.597 0.984 9.532 2.130

CFR-Wass 10.904 4.257 11.644 5.107 34.848 13.053

CFR-MMD 11.536 4.127 12.332 5.345 34.654 13.785

TARNet 11.570 4.228 13.561 8.170 34.420 13.122

CEVAE 7.481 1.279 10.387 1.998 24.215 5.566

Causal Forest 7.456 1.261 7.805 1.763 19.271 4.050

BART 4.808 2.680 5.770 2.278 11.608 6.418

Flickr

√
εPEHE εATE

√
εPEHE εATE

√
εPEHE εATE

NetDeconf (ours) 4.286 0.805 5.789 1.359 9.817 2.700

CFR-Wass 13.846 3.507 27.514 5.192 53.454 13.269

CFR-MMD 13.539 3.350 27.679 5.416 53.863 12.115

TARNet 14.329 3.389 28.466 5.978 55.066 13.105

CEVAE 12.099 1.732 22.496 4.415 42.985 5.393

Causal Forest 8.104 1.359 14.636 3.545 26.702 4.324

BART 4.907 2.323 9.517 6.548 13.155 9.643
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Dataset Instances Edges Features κ2 Average ATE ± STD

BC 5,196 173,468 8,189

0.5 6.079 ± 2.962

1 9.012 ± 3.602

2 20.003 ± 8.132

Flickr 7,575 239,738 12,047

0.5 5.130 ± 0.892

1 7.576 ± 0.715

2 13.445 ± 2.093

Table 3.3: Statistics of the Datasets
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BC

κ2 = 0.5 κ2 = 1 κ2 = 2

√
εPEHE εATE

√
εPEHE εATE

√
εPEHE εATE

IGNITE 4.415 0.506 6.163 0.971 10.998 2.514

GATD+ 5.132 0.666 8.442 2.159 17.167 10.74

GATD 5.170 1.070 7.989 1.779 16.574 5.942

GATDT 5.165 1.055 8.017 1.863 16.578 5.940

ND 5.386 2.070 10.403 4.811 20.286 10.350

CNE – 7.314 – 13.212 – 24.298

CNE- 10.323 8.194 18.839 14.991 33.607 26.531

CFR 10.073 5.000 15.229 9.631 36.680 16.481

CEVAE 6.812 3.129 12.055 2.700 24.128 14.576

CF 5.941 3.349 10.413 3.336 19.145 16.812

Flickr

κ2 = 0.5 κ2 = 1 κ2 = 2

√
εPEHE εATE

√
εPEHE εATE

√
εPEHE εATE

IGNITE 6.938 1.242 10.725 2.006 18.864 2.643

GATD+ 7.731 1.394 13.201 2.903 27.105 7.088

GATD 7.605 1.688 13.092 2.436 26.846 7.196

GATDT 7.602 1.681 13.075 2.452 26.781 7.099

ND 7.337 2.000 14.006 3.046 28.379 5.817

CNE – 8.103 – 16.058 – 33.94

CNE- 14.109 9.001 26.536 17.275 54.906 35.262

CFR 9.826 3.619 16.859 7.240 45.150 12.787

CEVAE 11.836 2.678 22.171 3.493 48.840 7.360

CF 8.406 1.938 14.485 1.821 31.111 6.520

Table 3.4: Results on the two datasets with κ2 ∈ {0, 1, 2} measured by the two

evaluation metrics
√
εPEHE and εATE, the smaller the better.
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β 10−4 10−3 10−2 10−1

BC

κ2 = 0.5

√
εPEHE 4.422 4.439 4.415 4.566

εATE 0.526 0.56 0.506 0.642

κ2 = 1

√
εPEHE 6.196 6.163 6.166 6.177

εATE 1.139 0.971 0.993 1.124

κ2 = 2

√
εPEHE 11.934 10.998 12.046 12.385

εATE 2.183 2.514 2.675 3.134

Table 3.5: Parameter study results on the BC datasets with κ2 ∈ {0.5, 1, 2} in terms

of
√
εPEHE and εATE, the smaller the better.
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Chapter 4

COUNTERFACTUAL EVALUATION OF TREATMENT ASSIGNMENT

FUNCTIONS WITH NETWORKED OBSERVATIONAL DATA

With massive population, it is a trend to deploy personalized treatment assign-

ment using data-driven models. Examples that have been adopted in real-world

applications include recommendation systems (Schnabel et al., 2016), search ranking

systems (Wu et al., 2018; Joachims et al., 2017) and computational advertising (Bot-

tou et al., 2013). Evaluating a novel treatment assignment function with observational

data is a desirable application of learning causality. With observational data that can

be collected effortlessly (e.g., log data from a recommendation system), counterfactual

evaluation allows us to form a basic understanding of how a treatment assignment

strategy performs without performing online randomized controlled trials. Although

there exists a series of work on counterfactual evaluation (a.k.a offline policy eval-

uation) (Swaminathan and Joachims, 2015a; Zou et al., 2019; Bennett and Kallus,

2019), the importance of auxiliary information that may contain patterns of hidden

confounders has not been realized. In this section, we investigate the problem of how

to effectively exploit network structure information for mitigating confounding bias

in counterfactual evaluation.

4.1 Problem Statement

In this section, we present technical preliminaries and the problem statement.

First, we start with the notations. Lower alphabets (e.g., yi) denote scalars,

uppercase alphabets (e.g., N) signify constants, lower and upper boldface alphabets

(e.g., x and A) denote vectors and matrices.
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In networked observational data, each instance i comes with a feature vector

xi ∈ RM , an observed treatment ti ∈ {0, 1} and an observed (factual) outcome yi ∈ R.

Besides, we observe a network connecting the instances, represented by its adjacency

matrix A ∈ {0, 1}N×N . To define the utility of a treatment function, we assume

that there exists a potential outcome corresponding to each treatment-instance pair

(t, i), i.e., yi(1) and yi(0) (Rubin, 2005). For each instance i, the observed outcome yi

(short for yi(ti)) takes the value on one of the potential outcomes, depending on the

observed treatment (ti). Formally, this can be written as yi(ti) = tiyi(1)+(1−ti)yi(0).

Following the literature (Pearl, 2009), we call the unobserved outcomes yi(t), t 6= ti

the counterfactual outcomes.

As in almost all the cases, it is not possible to test whether the set of observed

features contain all the confounders. Therefore, we adopt a realistic setting where

hidden confounders exist. Thus, the strong ignorability assumption does not hold

given observed features:

yi(1), yi(0) 6⊥⊥ ti|xi. (4.1)

Instead, we only assume that there exist latent confounders z which satisfy

yi(1), yi(0) ⊥⊥ ti|zi. (4.2)

Note that the latent confounders are not observable in the data. But we can approx-

imate them from the observed features and the network information.

Similar to its counterpart for i.i.d. data (Bennett and Kallus, 2019; Athey and

Wager, 2017), in networked observational data, a treatment assignment function π :

RM × A → (0, 1) maps an instance’s feature vector to its probability to receive the

treatment, where A is the set of possible adjacency matrices. Then πt(x) denotes

the probability that treatment t assigned to an instance with features x by π. In

accordance with (Kallus, 2018; Bennett and Kallus, 2019; Zou et al., 2019), we define
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the true utility of a treatment assignment function π as:

τ(π) =
1

N

N∑
i=1

∑
t∈{0,1}

πt(xi,A)yi(t). (4.3)

From this definition, we make the observation: when t 6= ti, yi(t) is a counterfac-

tual outcome which is not available in observational data. Therefore, counterfactual

evaluation is a challenging problem.

Here, we present the problem statement. Based on the aforementioned notations

and definitions, a formal statement of the problem is given as follows:

Problem 1. Counterfactual Evaluation of the Treatment Assignment Functions with

Networked Observational Data.

Given: networked observational data ({(xi, ti, yi)}Ni=1 ,A) and a novel treatment as-

signment function π.

Estimate: its true utility τ(π) on the given data.

4.2 Background

Here, we review three types of long-established approaches for counterfactual eval-

uation with independent and identically distributed (i.i.d.) observational data: direct

methods (Beygelzimer et al., 2008), weighted estimators (Bottou et al., 2013; Swami-

nathan and Joachims, 2015a), and doubly robust estimators (Dud́ık et al., 2011). In

this section, the symbol π denotes a treatment assignment function for i.i.d. observa-

tional data as π : RM → R. Given i.i.d. observational data {xi, ti, yi}Ni=1 and policy

π, the directed method (Qian and Murphy, 2011) estimates the policy value as:

τ̂(π) =
1

N

N∑
i=1

∑
t

πt(xi)ŷi(t), (4.4)
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where ŷi(t) is the estimated outcome of instance i under treatment t. However,

relying on the strong ignorability assumption makes direct methods suffer from the

bias caused by hidden confounders (Beygelzimer et al., 2008).

Alternatively, the weighted estimators (Bottou et al., 2013; Swaminathan and

Joachims, 2015a) are proposed to achieve counterfactual evaluation:

τ̂(π) =
1

N

N∑
i=1

ŵ(xi, ti)yi, (4.5)

where ŵ(xi, ti) maps the observed features and treatment of an instance to its weight.

In weighted estimators, the utility of a treatment assignment function is estimated

by a weighted average of factual outcomes. As a result, weighted estimators do not

need to bother with counterfactual outcomes. Weighted estimators often adopt the

inverse propensity scoring (IPS) weights (Kitagawa and Tetenov, 2018):

ŵIPS(xi, ti) =
πti(xi)

P (t = ti|x)
, (4.6)

where P (t = ti|xi) denotes the true probability of instance i to receive treatment ti in

the observational data. However, we often have to estimate P (t = ti|xi) as how the

treatments are assigned in the observational data is unknown. To avoid the extreme

values of estimated P (t = ti|xi), techniques including normalization and clipping

have been introduced (Bottou et al., 2013; Swaminathan and Joachims, 2015a,b).

The doubly robust estimator (Dud́ık et al., 2011) estimates utility of treatment

assignment functions based on estimated counterfactual outcomes and IPS weights:

τ̂(π) =
1

N

N∑
i=1

[
∑
t

πt(xi)ŷi(t) + ŵIPS(xi, ti)(yi − ŷi(ti))]. (4.7)

We can see the three types of counterfactual evaluation methods cannot utilize the

network information. The success of using network information to handle hidden

confounders has been demonstrated in other tasks of causal inference (Veitch et al.,
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Figure 4.1: An overview of learning partial representations of latent confounders in

the proposed framework CONE.

2019; Guo et al., 2020c) (e.g., causal effect estimation). Motivated by the success, we

investigate incorporating network information in counterfactual evaluation.

4.3 Proposed Framework – Counterfactual Network Evaluator (CONE)

In this section, we present the proposed framework to tackle the counterfactual

evaluation problem with networked observational data. shows an overview of the

proposed framework’s training phase. As shown in Fig. 4.1, the goal of the training

phase is to learn two partial representations of latent confounders with the supervision

of the factual outcome and the observed treatment, respectively. Then in the inference

phase, the learned partial representations would be utilized to infer the utility of

a treatment assignment function. Then we cover the detailed description of the

proposed framework in the rest of this section.

4.3.1 Learning Partial Repretations of Latent Confounders.

To leverage the network information in the procedure of learning latent con-

founders’ partial representations, for each partial representation, a representation
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learning function g : RM ×A → RD maps the observed features along with the net-

work information to the D-dimensional space of partial latent confounders. We let gt

and gy denote the partial representation learning functions supervised by the observed

treatment and the factual outcome, respectively. In this work, we approximate the

functions, gt and gy, with Graph Attentional (GAT) layers (Veličković et al., 2018)

to capture the unknown edge weights in the real-world networked observational data.

Intuitively, each GAT layer maps a feature vector and the network information to a

partial representation vector. In this work, each GAT layer employs multi-head graph

attention. To compute a partial representation vector of instance i, it concatenates

the multiple heads’ outputs. Each head outputs a weighted aggregation of infor-

mation from the neighbors of instance i in the network A (Veličković et al., 2018).

An arbitrary number of GAT layers can be stacked to approximate the functions gy

and gt. Here, for notation simplicity, each partial representation learning function is

formulated by a single GAT layer as:

ẑti = gt(xi,A) =‖Kk=1 δ(
∑
j∈Ni

αkijW
kxj)

ẑyi = gy(xi,A) =‖Kk=1 δ(
∑
j∈Ni

βkijU
kxj),

(4.8)

where ‖ denotes concatenation. Ni signifies the set of neighbors of the i-th instance

in the network A. K is the number of attention heads. W k,U k are the weight

matrices of the k-th attention head. δ is the ELU activation unit. αkij and βkij are the

normalized attention coefficients which represent the importance of the edge between

instance i and j in the inference of the observed treatment and outcome, respectively.

We compute them as:

αkij =
exp(δ′(aT [W kxi ‖W kxj]))∑
l∈Ni

exp(δ′(aT [W kxi ‖W kxl]))
,

βkij =
exp(δ′(bT [U kxi ‖ U kxj]))∑
l∈Ni

exp(δ′(bT [U kxi ‖ U kxl]))
,

(4.9)
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where δ′ denotes the LeakyReLU unit (Xu et al., 2015) and a, b ∈ R2M denotes the

weight vectors. One can interpret δ′(aT [W kxi ‖ W kxj]) and δ′(bT [U kxi ‖ U kxj])

as the unnormalized attention coefficients of the edge between the instances i and j.

Then these coefficients are normalized by applying the softmax function.

Factual Outcome Inference Loss. First, the supervision of factual outcomes is

leveraged to learn the partial representation of latent confounders corresponding to

the factual outcome, i.e., ẑy. This partial representation contains information that is

useful in the inference of factual outcomes. Specifically, we aim to learn a function

f y : RD → R that maps the partial representation to the factual outcome. We

implement the function f y with a neural network with fully connected layers and

ELU activation units (except the last layer). Therefore, we introduce a penalty term

which minimizes the mean squared error on the inferred factual outcomes as:

Ly =
1

N

N∑
i=1

(f y(ẑyi )− yi)2. (4.10)

Observed Treatment Prediction Loss. Then, we utilize the observed treatment

as the label to supervise the learning process of the latent confounders’ treatment

partial representation, i.e., ẑt. Here, an observed treatment prediction function f t :

RD → (0, 1) that maps the partial representation to the estimated propensity score

P̂ (t = 1|ẑti) is parameterized by a fully connected layer with a sigmoid activation as

P̂ (t = 1|ẑt) = f t(ẑt) = σ(vT ẑti + c), (4.11)

where σ is the sigmoid function, v and c are the weight vector and the bias. Then we

train the partial representation ẑt by minimizing the cross-entropy loss on predicting

the observed treatment:

Lt = − 1

N

∑
i

ti log(P̂ (t = 1|ẑt)) + (1− ti) log(P̂ (t = 0|ẑt)). (4.12)
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Maximizing the Mutual Information between Partial Representations. In-

tuitively, both partial representations are learned to approximate part of the informa-

tion contained in the latent confounders. Therefore, we propose to let the two partial

representations agree with each other by maximizing the mutual information between

the distributions of the two partial representations of latent confounders, i.e., P (ẑt)

and P (ẑy). Mutual information is a measure of dependence between two random

variables which gauges how much the uncertainty in one variable can be reduced by

knowing the value of the other one. We know that mutual information is equivalent to

the Kullback-Leibler (KL) divergence between the joint distribution and the product

of the marginals (Belghazi et al., 2018). It is often quite difficult to compute mutual

information with multi-dimensional continuous random variables. Here, the Donsker-

Varadhan representation of KL divergence (Donsker and Varadhan, 1983) is adopted

to compute a tight lower bound of the mutual information between the distribution

of the treatment partial latent confounders P (ẑt) and that of the the outcome partial

latent confounders P (ẑy) as:

MI(ẑt, ẑy) = DKL(P (ẑt, ẑy)||P (ẑy)⊗ P (ẑy)) =

sup
h∈H

EP (ẑt,ẑy)[h(ẑt, ẑy)]− log(EP (ẑy)⊗P (ẑy)[e
h(ẑt,ẑy)]),

(4.13)

where h : RD × RD → R is a function that maps the two partial representations

to a real number and H denotes the space of such functions. We can confirm that

given the function h, the lower bound of the mutual information can be efficiently

computed by sampling (ẑt, ẑy) from the empirical joint distribution P (ẑt, ẑy) and

sampling ẑt and ẑy separately from the empirical marginals P (ẑt) and P (ẑy). Here,

we parameterize the function h with a neural network with fully connected layers

and ELU activation (except the last layer). Then we can formulate the penalty term

that maximizes the lower bound of the mutual information between the two partial
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representations as:

LMI = −EP (ẑt,ẑy)[h(ẑt, ẑy)] + log(EP (ẑy)⊗P (ẑy)[exph(ẑt,ẑy)]). (4.14)

Finally, we can formulate the training objective as

arg min
θ−h,θh

L = Ly + γLt + ζLMI , (4.15)

where θ−h denotes the parameters of those components implementing the functions

gt, gy, f t and f y; while θh signifies the parameters of the component implementing

the function h. The hyperparameters γ and ζ are non-negative scalars that control

the trade-off between the three penalty terms.

4.3.2 Optimization

Here, we describe the optimization algorithm with which the proposed framework

learns the partial representations. Algorithm 1 exhibits an overview of this optimiza-

tion algorithm. In each epoch, the framework first computes the loss function L (Step

2-6 in Algorithm 1) in the feed-forward direction. Then, in Step 7 and 8 of Algo-

rithm 1, the two sets of parameters θ−h and θh are updated by applying one step of

gradient descent where the gradients are computed by the Adam optimizer (Kingma

and Ba, 2014).

4.3.3 Counterfactual Evaluation

With the functions trained, we can compute the partial representations of any

instance in the networked observational data. However, the counterfactual outcomes

and the propensity scores inferred by the functions f y and f t can be suboptimal

because each of them only uses one of the partial representations. To overcome this

issue, we propose to combine the partial representations to estimate the utility of
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Algorithm 1 Learning the partial representations of latent confounders

Input: learning rate η; hyperparameters γ and ζ; number of iterations E; the func-

tions gt, gy, f t, f y and h; networked observational data
{

(xi, ti, yi)
N
i=1,A

}
;.

Output: Partial representations: ẑti and ẑyi .

Init : Let iteration counter e = 0; Initialize model parameters θ−h and θh with

Xavier initialization.

1: while e ≤ E do

2: compute the partial representations ẑti and ẑyi with Eq. (4.8).

3: compute Ly and Lt with Eq. (4.10) and Eq. (4.11).

4: use (ẑti , ẑ
y
i )Ni=1 as samples of the joint distribution P (ẑt, ẑy);

5: use (ẑti)
N
i=1, (ẑ

y
j(i))

N
i=1 as the samples from the two marginals P (ẑt) and P (ẑy),

where j(i) is the i-th element of the permuted index vector permute([1, ..., N ]).

6: compute LMI and L with Eq. (4.14) and (4.15).

7: update θ−h ← Adam(L,θ−h).

8: update θh ← Adam(L,θh).

9: end while

a treatment assignment function. In particular, we take the concatenation of them

to form the representation of latent confounders as ẑi = concat([ẑyi , ẑ
t
i ]). Then the

representation of latent confounders is used to train a doubly robust estimator. First,

to infer counterfactual outcomes, we follow the direct naive method in (Bennett and

Kallus, 2019). In particular, for each treatment group, we simply train a neural

network with fully connected layers and ELU activation (expect the last layer) with

(ẑi)
N
i=1 as the input and the factual outcomes (yi)

N
i=1 as the label. Second, to estimate

the propensity scores, a logistic regression model is trained with (ẑi)
N
i=1 as input

and the observed treatments (ti)
N
i=1 as the label. Then with the two trained models
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and the latent confounder representations ẑi, we adapt the original doubly robust

estimator (Eq. (4.7)) to infer the utility of a treatment assignment function π with

networked observational data as:

τ̂(π) =
1

N

N∑
i=1

[
∑
t

πt(xi,A)ŷi(ẑi, t)

+ ŵSNIPS(ẑi, ti)(yi − ŷi(ẑi, ti))],

(4.16)

where ŷi(ẑi, ti) is the outcome inferred by the simple direct method. In terms of the

sample weights, we adopt the self-normalized inverse propensity scoring (ŵSNIPS) to

avoid the extreme values and reduce variance (Swaminathan and Joachims, 2015b).

The self-normalized inverse propensity scoring weights are computed as:

ŵSNIPS(ẑi, ti) =
ŵIPS(ẑi, ti)∑N
i=1 ŵIPS(ẑi, ti)

, (4.17)

where ŵIPS(ẑi, ti) = πti (xi,A)

P̂ (t=ti|ẑi)
. The probability for instance i to receive the treatment

ti, P̂ (t = ti|ẑi), is inferred by the logistic regression model.

4.4 Experimental Evaluation

In this section, we investigate whether network information among observational

data can help improve counterfactual evaluation through extensive experiments.

4.4.1 Dataset Description

In real-world situations, only the factual outcome of each instance is observable.

For example, we can observe the potential outcome y1
i of the i-th instance iff ti = 1. As

a result, it is extremely challenging to collect data with ground truth of counterfactual

outcomes. Therefore, we follow (Veitch et al., 2019; Guo et al., 2020c) to synthesize

the treatments and outcomes based on the observed features and network information

which are extracted from two real-world datasets. Specifically, we introduce two
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networked observational datasets for evaluating the utility of treatment assignment

functions. Based on the observed features and the network structures, we introduce

the data generating process which synthesizes treatments and outcomes. To reflect

real-world situations, we consider hidden confounders and unknown edge weights.

We fully cover the steps to reproduce the semi-synthetic datasets from the publicly

available datasets, BlogCatalog and Flickr.

BlogCatalog (BC) is a social media website where users post blogs. Each instance

is a blogger. Each edge presents the friendship between two bloggers. The features

are the bag-of-words representation of the a blogger’s keywords. Here, the task is

to learn a treatment assignment function which determines to promote a blogger’s

article more on mobile devices or desktops such that users’ opinion is optimized. We

extend the original BC dataset (Li et al., 2019b) by synthesizing (a) the outcomes

– readers’ opinions on bloggers; and (b) the treatments – readers’ device preference.

Similar to the News dataset (Johansson et al., 2016; Schwab et al., 2018) that are

widely used in causal inference literature, the following assumptions are made: (1)

Readers either read on mobile devices or desktops. We say a blogger get treated

(controlled) if her blogs are more popular on mobile devices (desktops). (2) Readers

prefer to read certain topics from mobile devices, others from desktops. (3) The

latent confounders of a blogger are determined by her and her neighbors’ topics.

(4) The latent confounders of a blogger influence both readers’ preference of devices

(treatment) and readers’ opinion (outcome). Based on these assumptions, we train a

topic model on a large set of documents to synthesize treatments and outcomes. Then

we define the centroid of each treatment group with topics: (i) we randomly sample

a blogger and let her topic distribution be the centroid of the treated, denoted by r̄1;

(ii) we let the centroid of the controlled, r̄0, be the average topic distribution of all

bloggers. Then the treatments and outcomes are synthesized based on the similarity
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between the topic distributions of bloggers and the two centroids. Let r(xi) be the

topic distribution of the i-th blogger’s description, we model the readers’ preference

of browsing devices on the blogger’s content:

P (t = 1|xi, Ã) =
exp(p1

i )

exp(p1
i ) + exp(p0

i )
, (4.18)

where pit = κ1r(xi)
T r̄t + κ2(Ãr(xj))

T r̄t.

where t ∈ {0, 1}. For blogger i, the first term on RHS represents the confounding

bias caused by the topics of herself. The second term on RHS signifies that caused

by the topics of her neighbors. κ1 ≥ 0 and κ2 ≥ 0 control the strength of these

two terms. When κ1 = κ2 = 0 the treatment assignment is random and the greater

the value κ1 and κ2 are, the less the treatment assignment is, and therefore, the

more significant the confounding bias is. We let Ã denote the normalized weighted

adjacency matrix, where each entry Ãij denotes the importance of an edge with

related to the influence on confounding bias. In social networks, the edge weights

are unknown, so only the unweighted adjacency matrix A is observable in the data.

However, the unobserved weighted adjacency matrix Ã is the one that influences the

treatments and outcomes. Thus, an ideal causal inference approach needs to catch

the weights of each edge. If Aij = 1, then we sample Ãij = Ãji ∼ Uniform(0.1, 1);

otherwise, we set Ãij = Ãji = 0. Then the raw outcomes of the i-th blogger are

simulated as:

yrawi (t) = (1− t)pi0 + tpi1 + ε. (4.19)

The noise ε is sampled from a zero-mean Gaussian distribution with standard devia-

tion 0.01. Then we normalize the raw outcomes yi(t) with:

yi(t) =
yrawi (t)− µ(yraw)

σ′(yraw)
, (4.20)

where µ(yraw) and σ′(yraw) signify the mean and standard deviation of all raw out-

comes. In this work, we set κ1 = 1 and vary κ2 ∈ {1, 2}. Meanwhile, 50 LDA topics
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Table 4.1: Statistics of the datasets

Dataset Instances Edges Features κ2 Treated Instances Instances with y1i > y0i

BC 5,196 173,468 8,189
1 2579.5 ± 29.891 1030.1 ± 331.31

2 2448.6 ± 539.687 2031.1 ± 1149.696

Flickr 7,575 239,738 12,047
1 3700.8 ± 156.873 2708.3 ± 745.03

2 3859.4 ± 218.072 3182.1 ± 588.958

are learned from the training corpus. Then we reduce the vocabulary by taking union

of the most probable 100 words from each topic, which results in 2,173 bag-of-word

features.

Flickr is an online community where users share images and videos. Each instance

is a user and each edge is the friendship between two users. The features of each

user are the tags of interest. We adopt the same settings and assumptions as we do

for the BC datasets. Thus, we aim to evaluate treatment assignment functions that

determine which device is more proper to promote a user’s images. We learn 50 topics

from the training corpus using LDA and concatenate the top 25 words of each topic

which reduces the feature dimension to 1,210. We set the parameters the same as the

BC dataset.

Table 4.1 presents the statistics of the two semi-synthetic datasets under various

settings. The average and standard deviation of the number of treated instances and

the number of instances that satisfy y1
i > y0

i are calculated over the 10 simulations

under each setting of parameters. They vary because the true edge weights are

randomly sampled from the uniform distribution Uniform(0.1, 1).

4.4.2 Experimental Settings

We randomly split each dataset into training (60%), validation (20%) and test

sets (20%) and report the results of the test sets for 10 runs on each simulation. Grid
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search is applied to find optimal hyperparameters. The detailed setup of parameter

study is as follows: learning rate is 10−3, the number of epochs is 100, the number of

GAT layer is 1 and the numbers of fully connected layers of function f y and f t are

1, the number of attention head is 2, the number of hidden units of each attention

head and each fully connected layer are 128 and 16. For evaluation, we adapt those

in (Bennett and Kallus, 2019; Zou et al., 2019) to a class of the treatment assignment

functions which take both observed features and network information as input. The

treatment assignment functions with random weights are considered:

πtrw(xi,A) =
exp(ψtTxi + 1

|N (i)|
∑

j∈N (i) δ
tTxj)∑

t exp(ψtTxi + 1
|N (i)|

∑
j∈N (i) δ

tTxj)
, (4.21)

where N (i) is the set of neighbors of instance i in the network A. The random

weights are obtained as ψ1, δ1 ∼ 2Bern(0.5) − 1 and ψ0 = −ψ1, δ0 = −δ1. For

these treatment assignment functions, the ground truth utilities are obtained with

Eq. (4.3).

To corroborate the effectiveness of CONE, it is evaluated against the state-of-the-

art kernel based methods, neural network based methods, and classic methods:

Optimal Kernel Balancing (OKB) (Bennett and Kallus, 2019) is the state-of-the-

art kernel based weighted estimator which minimizes an adversarial balance objective.

Inverse Propensity Scoring (IPS-X) (Bottou et al., 2013) is a weighted estimator

which fits a propensity scoring model using observed features. Specifically, a logistic

regression model is trained with supervision of the observed treatments.

Self-normalized Inverse Propensity Scoring (SNIPS-X) (Swaminathan and

Joachims, 2015b) is a variant of the weighted estimator IPS-X where self-normalized

weights are employed.

The Direct Method (Qian and Murphy, 2011) estimates the utility of a treatment

assignment function through the inference of counterfactual outcomes (Eq (4.4)). We
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consider three models that can infer counterfactual outcomes: OLS1, OLS2 (Louizos

et al., 2017), and the simple direct method using a neural network model (DM-

X) (Bennett and Kallus, 2019).

Doubly Robust Estimators (Dud́ık et al., 2011) combine direct methods and the

inverse propensity scoring (Eq. (4.7)). Here, we consider the combination of each

aforementioned direct method (OLS1, OLS2 or DM-X) and the IPS-X method. We

call them DR-OLS1, DR-OLS2, and DR-DM-X.

To the best of our knowledge, this is the first work utilizing network information

for counterfactual evaluation. So, there is no baseline that naturally incorporates

network information. We also tried to concatenate the adjacency matrix to the orig-

inal features to allow baselines utilize the network information for a fair comparison.

However, such an approach cannot improve the performance of baselines due to the

high dimensionality and sparsity of the network information.

Then, we formally present the two evaluation metrics, root mean squared error

(RMSE) and mean absolute error (MAE) as

RMSE =

√√√√ 1

K

K∑
k=1

(τ̂k(π)− τk(π))2

MAE =
1

K

K∑
k=1

|τ̂k(π)− τk(π)|,

(4.22)

where K is the number of simulations.

4.4.3 Results

Effectiveness. Experimental results corroborate the effectiveness of the proposed

framework. Table 4.2 shows the empirical results evaluated on the BC and Flickr

datasets with κ1 = 1 and κ2 ∈ {1, 2}. The following observations are made from

these experimental results: (1) The proposed framework CONE results in better per-
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Table 4.2: Experimental results corroborating the effectiveness of CONE

BlogCatalog Flickr

κ2 = 1 κ2 = 2 κ2 = 1 κ2 = 2

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

CONE (ours) 0.034 0.026 0.037 0.027 0.014 0.011 0.014 0.012

OKB 0.141 0.135 0.150 0.143 0.073 0.063 0.093 0.083

IPS-X 0.042 0.039 0.089 0.074 0.018 0.016 0.030 0.027

SNIPS-X 0.042 0.038 0.089 0.074 0.018 0.017 0.029 0.027

DM-X 0.229 0.229 0.241 0.239 0.099 0.097 0.117 0.114

OLS1 0.302 0.301 0.347 0.346 0.144 0.143 0.168 0.167

OLS2 0.275 0.274 0.308 0.304 0.139 0.139 0.162 0.161

DR-DM-X 0.041 0.034 0.071 0.060 0.019 0.018 0.028 0.026

DR-OLS1 0.042 0.039 0.089 0.074 0.018 0.016 0.030 0.027

DR-OLS2 0.047 0.041 0.090 0.078 0.019 0.017 0.031 0.028

formance than the state-of-the-art baseline methods consistently on both datasets

under various settings. One-tailed T-tests show that the results of CONE are signifi-

cantly better with a significance level of 0.05. (2) Measured by the increase in both

error metrics, the performance of CONE worsens less than other methods when the

hidden confounding effect grows (from κ2 = 1 to κ2 = 2). This verifies that capturing

the patterns of hidden confounders from network structures with the combined partial

representations helps counterfactual evaluation of treatment assignment functions.

Parameter Study. Here, we investigate the influence of the hyperparameters γ

and ζ on the performance of CONE. Note that γ controls the penalty on the pre-

dictions of observed treatments based on the related partial representation. And

ζ determines to what extent the two partial representations agree with each other.
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The detailed setup of the parameter is as follows. We search the learning rate in

{10−1, 10−2, 10−3, 10−4}, the number of fully connected layers of f y, f t and h in

{1, 2, 3}, the number of hidden units in the GAT layers in {8, 16, 32}, the number

of attention heads in {2, 4, 8}, γ and ζ in {10−6, 10−4, 10−2, 1, 100}. We set γ and

ζ in the range of {10−6, 10−4, 10−2, 1, 100}. Fig. 4.2 presents the experimental re-

sults on the BC and Flickr datasets with κ1 = 1 and κ2 = 2. We can observe that

when γ ∈ [1, 100] and ζ ∈ [0.01, 1], CONE achieves the best performance on the BC

dataset (κ2 = 2). For the Flickr dataset (κ2 = 2), CONE consistently performs well

when γ ∈ [10−6, 1] and ζ ∈ [10−6, 100]. Similar results can be obtained with other

settings. We can conclude that CONE maintains stable performance by varying the

hyperparameters in a wide range, which is often desired in real-world applications.

4.5 Summary

In this chapter, we study the problem of counterfactual evaluation in networked

observational data. In particular, we investigate the hypothesis that utilizing net-

work information will help handle hidden confounders in counterfactual evaluation.

We propose a novel framework, CONE, which leverages the network information along

with the observed features to mitigate hidden confounding effects for counterfactual

evaluation. Empirical results from extensive experiments show the effectiveness of

CONE and verify that incorporating network information indeed helps us control

hidden confounders in the task of counterfactual evaluation. Related future work in-

cludes counterfactual evaluation and optimization of treatment assignment functions

in various types of network data (e.g., dynamic networks (Sarkar et al., 2019; Marin

et al., 2017; Shakarian et al., 2015a)).
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Figure 4.2: Parameter study results
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Chapter 5

DEBIASING GRID-BASED SEARCH IN E-COMMERCE

Figure 5.1: Causal diagram describing the data generating process of search log data

in e-commerce.

The widespread usage of e-commerce websites in daily life and the resulting wealth

of implicit feedback data form the foundation for systems that train and test e-

commerce search ranking algorithms. While convenient to collect, implicit feedback

data inherently suffers from various types of bias since user feedback is limited to

products they are exposed to by existing search ranking algorithms and impacted

by how the products are displayed. Fig. 5.1 shows the causal diagram of the data

generating process of search log data for e-commerce. We can observe that there is a

path through which the selection bias generated by the existing ranker is propagated

to the observed labels. This is not desired as it makes the observed labels result from

both the selection bias and the attractiveness of the item to the user, but our goal is

to model attractiveness (user preference).

In the literature, a vast majority of existing methods have been proposed towards

unbiased learning to rank for list-based web search scenarios. However, such methods

cannot be directly adopted by e-commerce websites mainly for two reasons. First,
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in e-commerce websites, search engine results pages (SERPs) are displayed in 2-

dimensional grids. We can consider such grids as a network, where each position

is a node and its first-hop neighbors are the four positions surrounding it. The

existing methods have not considered the difference in user behavior (probability to

examine a certain position) between list-based web search and grid-based product

search. Second, there can be multiple types of labels (e.g., clicks and purchases) on e-

commerce websites. We aim to utilize all types of implicit feedback as the supervision

signals.

In this chapter, we extend the methodology of unbiased learning to rank to the

problem of e-commerce search. In particular, we consider a grid-based product search

scenario where a SERP is considered as a grid, a special type of network, and each

position is considered as a node in the network. We propose a novel framework which

(1) forms the theoretical foundations to allow multiple types of implicit feedback in

unbiased learning to rank and (2) incorporates the row skipping and slower decay

click models to capture unique user behavior patterns in grid-based search for in-

verse propensity scoring. Through extensive experiments on real-world e-commerce

search log datasets across browsing devices and product taxonomies, we show that

the proposed framework outperforms the state of the art unbiased learning to rank al-

gorithms. These results also reveal important insights on how user behavior patterns

vary in e-commerce SERPs across browsing devices and product taxonomies.

5.1 Problem Statement

In this section, we introduce the technical preliminaries and present the problem

statement. We start with an introduction of the technical preliminaries. Then we

introduce the settings of unbiased learning to rank in grid-based product search.

69



5.1.1 Technical Preliminaries

Generally, boldface uppercase letters (e.g., X), boldface lowercase letters (e.g., x)

and normal lowercase (e.g., x) letters denote matrices, vectors and scalars, respec-

tively. Let xiq denote the feature vector of the query-product pair in the i-th position

and Xq signify the feature matrix of all query-product pairs in the SERP of the query

q. ȳq signify the vector of product indexes in the search session corresponding to the

query q in the observed search log data. oq denotes the binary vector corresponding

to whether a product in q is examined. For example, oiq = 1 (0) means the product

ranked in the i-th position has been examined (not examined). cq and pq are the vec-

tors of clicks and purchases of the products ȳq in the SERP of the query q. ciq = 0, 1

means the i-th product is not clicked and clicked. piq = 0, 1 means the product is not

purchased and purchased, respectively. Then the training set containing n queries

and their search result sessions can be denoted by {Xq, ȳq, cq,pq}nq=1. We define a

ranker as a function f : X → R mapping the features of a query-product pair to a

real number standing for its ranking score.

5.1.2 Problem Statement

In this work, we focus on the offline setting where randomized experiments are

not available. In contrast to (Wang et al., 2016; Joachims et al., 2017) where ran-

domized experiments are performed, we can neither obtain user feedback to SERPs

with randomized ranking nor ground truth of propensity scores. This requires us to

estimate propensity scores along with train the ranker as in (Ai et al., 2018; Hu et al.,

2019).

Definition 4. Unbiased Learning to Rank for Grid-based Product Search.

Given search log data {Xq, ȳq, cq,pq}nq=1 and the number of columns and rows of
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Challenge Treatment space Treatment policy Use of network information

This work Selection bias Large Ranker Propensity model

CONE Confounding bias Small Node classifier Latent confounders

Table 5.1: Comparison between unbiased learning to rank for grid-based product

search and counterfactual evaluation in network data.

e-commerce SERPs, we aim to learn the propensity score model(s) which would be

used to reweigh products for unbiased estimate of rankers’ loss and train unbiased

rankers with inverse propensity scoring to maximize e-commerce search metrics (e.g.,

purchase NDCG@K) on held-out test data.

Table 5.1 illustrates the connections and differences between the problem of un-

biased learning to rank and that of counterfactual evaluation with networked obser-

vational data. Note that the use of network information in this work is simplified. In

particular, we considering the position, i.e., the row and column index, of a certain

item determines its probability of examination by users.

5.2 Inverse Propensity Scoring for Grid-based Product Search

In this section, we start with a brief introduction of background knowledge. Then

we provide descriptions of the proposed framework including the loss function and

the propensity score models. In particular, we propose propensity models based on

data analysis results. A propensity model infers the probability to examine a certain

item in the SERP based on the position of it, which reflects user behavior patterns

in grid-based displayed SERPs.

5.2.1 Background

Cascade Click Models. Click models have been used to connect user behavior pat-

terns (e.g., click rate) to the evaluation metrics of learning to rank algorithms (Moffat
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and Zobel, 2008). The cascade model (Craswell et al., 2008) is one of the most widely

adopted click models which can quantify the probabilities of multiple types of users’

behaviors (e.g., click, stop and examination) in list-based web search SERPs. In

particular, let α describes the how likely users continue to browse the next product,

then the probability that users stop and leave the search results page at position i

can be formulated as β(i) = (1 − α)
∏i−1

j=0 α. In a series of randomized controlled

trial (Craswell et al., 2008), the cascade click model has been shown to outperform

others in click prediction tasks.

Propensity Score Estimation from Observational Data. Generally, unbiased

estimation of propensity scores requires randomized experiments (Joachims et al.,

2017; Wang et al., 2018). However, randomized experiments can be expensive, time

consuming and can hurt users’ experience. In (Wang et al., 2018; Ai et al., 2018;

Hu et al., 2019), Expectation Maximization (EM) style optimization algorithms have

been proposed to learn propensity models without randomized experiments. These

methods are based on the intuition that the joint optimum of the ranker and the

propensity model leads to unbiased estimates of propensity scores. But these al-

gorithms can be trapped in local joint optimum. Based on the same intuition, in

our proposed framework, we aim to find the joint optimum of the two models by

minimizing the loss function through grid search on hyperparameters.

5.2.2 Pairwise Unbiased Learning to Rank for Multiple Types of Feedback

Joint Examination Hypothesis

The examination hypothesis is a widely adopted assumption in the literature of un-

biased learning to rank (Joachims et al., 2017; Ai et al., 2018; Hu et al., 2019), which

postulates that a user clicks a document iff the document is examined and relevant.
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Only considering click and the attractiveness of products (similar to relevance of doc-

uments), we can rewrite the straightforward counterpart of the original examination

hypothesis in the context of e-commerce as:

P (ciq = 1|xiq) = P (oiq = 1|xiq)P (aiq = 1|xiq), (5.1)

where aiq is the binary variable representing attractiveness of the product at position

i of the search results page of query q. We define attractiveness of a product as how

attractive it appears in SERPs.

However, in the context of e-commerce search, we need to adapt this hypothesis

such that we can take multiple types of user feedback into consideration. For sim-

plicity, in this work, we only consider two types of feedback: clicks and purchases.

Nevertheless, the proposed hypothesis as well as the other components of the pro-

posed framework can be extended to account for more types of feedback (e.g., favorite

and add-to-cart). To consider both clicks and purchases, we propose the joint exam-

ination hypothesis, a novel extension of the examination hypothesis, which is defined

as:

Joint Examination Hypothesis. No matter if a user eventually does purchase

or not purchase a product, she clicks a product iff the product is examined and

attractive. The joint examination hypothesis can be formulated as:

P (piq, c
i
q = 1|xiq) = P (oiq = 1|xiq)P (piq, a

i
q = 1|xiq) (5.2)

In short, the joint examination hypothesis extends the examination hypothesis to

the context of e-commerce where multiple types of feedback exist. We are aware of

that the joint examination hypothesis is a stronger assumption than the original exam-

ination hypothesis as we can recover the original examination hypothesis (Eq. (5.1))

by marginalizing the joint examination hypothesis (Eq. (5.2)) over P (piq). Note that
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this assumption can be relaxed when noisy clicks are taken into consideration, which

is similar to that in (Joachims et al., 2017). We do not model purchase as a function

of attractiveness because we define attractiveness of a product as how attractive it

appears in SERPs for a user to start engaging (i.e, click). It is natural to consider

users’ shopping journey as a two-stage process illustrated in (Wu et al., 2018), where

at first users search for a query and decide to click on a product displayed by SERPs

when found it attractive. Then, the user makes purchase decision after examining

the detail catalog on the product landing page.

Less Clicks for Less Attractive Products. We add a mild assumption

P (aiq = 0|xiq) = ζP (ciq = 0|xiq), (5.3)

where we let ζ ∈ (0, 1] such that the assumption is coherent with Eq. (5.1). Intuitively,

this means a less attractive product would receive less clicks.

The Loss Function

Let Iq, I ′q and I ′′q denote three types of pairs: (click, no feedback), (purchase, no

feedback) and (purchase, click), respectively. Then, the loss function of mis-ranking

(as well as the gradients) can be reduced to an aggregation of losses defined over

these three types of pairs. Note that the main task of e-commerce search engines is

to maximize purchase or revenue of the website. But users would unlikely be able to

make purchase decisions based on product images (and limited information) displayed

on SERPs, instead, the product images shown on SERPs need to first attract them to

click on products first, which then lead them to the product landing pages and help

them to inform purchase decision after examining the product details. Therefore, in

SERPs, we also aim to maximize the attractiveness of products shown in top positions

such that purchase decisions can be triggered later after clicking. Based on this

74



intuition, we first formulate the loss function based on purchases and attractiveness

by adopting the fashion of pairwise ranking algorithms and then propose an unbiased

estimate of it using implicit feedback data as:

L =

∫
1(piq = 0) L dP (xi, a

i
q = 1,xj, a

j
q = 0)

+ A

∫
1(piq = 1) L dP (xi, a

i
q = 1,xj, a

j
q = 0)

+B

∫
L′ dP (xi, p

i
q = 1, aiq = 1,xj, p

j
q = 0, ajq = 1),

(5.4)

where the function L = L(xi, a
i
q,xj, a

j
q) denotes the pairwise loss penalizing mis-

ranking of (click, no feedback) or (purchase, no feedback) pairs. Similarly, the function

L′ = L′(xi, a
i
q, p

i
q,xj, a

j
q, p

j
q) signifies the penalty for mis-ranking on (purchase, click)

pairs. Note that the parameterization of the functions L and L′ can be flexible.

The details of how the loss functions L and L′ are defined and optimized can be

found in Section 5.3. Note that under Assumption Eq. (5.2), both click and purchase

imply attractiveness. 1(·) is the indicator function. The hyperparameters A,B ≥

0 control the trade-off of penalizing the mis-ranking (purchase, no feedback) and

(purchase, click) with respect to the pairs on (click, no feedback). Therefore, the loss

of (purchase, no feedback) and (purchase, click) pairs are multiplied with A and B,

respectively.

Unbiased Estimate of the Loss Function

However, we are not capable to evaluate this loss function (Eq. (5.4)) with implicit

feedback data because the ground truth of attractiveness cannot be observed. Al-

ternatively, we aim to infer the attractiveness through the observed user feedback

including clicks and purchases. This can be done by replacing the loss functions and

probabilities relevant to attractiveness with the counterparts of user feedback with
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the following assumptions:

L(xiq, a
i
q,x

j
q, a

j
q) = L(xiq, c

i
q,x

j
q, c

j
q) (5.5)

L′(xiq, a
i
q, p

i
q,x

j
q, a

j
q, p

i
q) = L′(xiq, c

i
q, p

i
q,x

j
q, c

j
q, p

j
q) (5.6)

L(xiq, c
i
q,x

j
q, c

j
q) 6= 0 iff ci

q 6= cj
q. (5.7)

L′(xiq, c
i
q, p

i
q,x

j
q, c

j
q, p

j
q) 6= 0 iff (ciq = cjq = 1) ∩ (piq 6= pjq). (5.8)

We propose a loss function Limp that can be evaluated on implicit feedback data.

The subscript imp means implicit feedback. With inverse propensity scoring, we show

below in Theorem 1 that the new loss function Limp is an unbiased estimate of the

original loss. In particular, the proposed loss can be formulated as:

Limp =

∫
1(piq = 0) L

dP (xiq, c
i
q = 1,xjq, c

j
q = 0)

P (oiq = 1|xiq)

+ A′
∫
1(piq = 1) L

dP (xiq, c
i
q = 1,xjq, c

j
q = 0)

P (oiq = 1|xiq)

+B′
∫
L′
dP (xiq, c

i
q = 1,xjq, c

j
q = 1)

P (oiq = 1|xiq)P (ojq = 1|xjq)
,

(5.9)

where A′ = ζA and B′ = B.

Theorem 1. With the assumptions in Eq. (5.2) and Eq. (5.5)-(5.8), Limp is an un-

biased estimate of the original loss function L.

Then, we present the proof for Theorem 1 based on the assumptions made earlier

in this Section including Eq. (5.2), Eq. (5.3) and Eq. (5.5)-(5.8). Note that although

it is a proof, but it directly guides the design of the loss function of the proposed

framework. Therefore, we believe it is closely related to the reproducibility of this

work. Here, we present the proof for Theorem 3.1 based on the assumptions made

earlier including Eq. (5.2) and Eq. (5.5)-(5.8).

Proof. First, we show the first (second) term of Limp is equivalent to the first (second)

term of L. Essentially, the goal is to replace the infeasible variables, aiq and ajq, in the
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original loss (Eq. (5.4) with the feasible implicit feedback.∫
L(aiq, a

j
q)dP (xi, a

i
q = 1,xj, a

j
q = 0)

=

∫
L(aiq, a

j
q)dP (aiq = 1|xi)dP (ajq = 0|xj)P (xiq,x

j
q)dx

i
qdx

j
q

= ζ

∫
L(ciq, c

j
q)
dP (ciq = 1|xiq)
P (oiq = 1|xiq)

dP (cjq = 0|xjq)P (xiq,x
j
q)dx

i
qdx

j
q

(5.10)

The second equality comes from the assumption of Less Clicks for Less Attractive

Products.

We then show that the last term on the RHS of Eq. (5.4) is equivalent to the last

term in RHS of Eq. (5.9).∫
L′
dP (xiq, p

i
q = 1, ciq = 1,xjq, p

j
q = 0, cjq = 1)

P (oiq = 1|xiq)P (ojq = 1|xjq)

=

∫
L′P (piq = 1|xiq, ciq = 1)

P (ciq = 1|xiq)
P (oiq = 1|xiq)

× P (pjq = 0|xjq, cjq = 1)
P (cjq = 1|xjq)
P (ojq = 1|xjq)

P (xiq,x
j
q)dx

i
qdx

j
q.

(5.11)

This only requires us to show P (piq|xiq, ciq = 1) = P (piq|xiq, aiq = 1), which can be

proved as follows for both piq = 0 and piq = 1:

P (piq|xiq, ciq = 1) =
P (piq, c

i
q = 1|xiq)

P (ciq = 1|xiq)
=

P (piq, c
i
q = 1|xiq)

P (aiq = 1|xiq)P (oiq = 1|xiq)

=
P (piq, a

i
q = 1|xiq)P (oiq = 1|xiq)

P (aiq = 1|xiq)P (oiq = 1|xiq)
= P (piq|xiq, aiq = 1)

(5.12)

where the second equality is from the original examination hypothesis (Eq. (5.1))

which can be recovered from the joint examination hypothesis (Eq. (5.2)). The third

equality is directly from the joint examination hypothesis (Eq. (5.2)).

With what mentioned above, we let A′ = ζA, B′ = B and the proof is complete.

With Theorem 1, we now know that the proposed loss function (Eq. (5.9)) pro-

vides unbiased estimate of the original loss function (Eq. (5.4)) given biased implicit

77



0 1

0
1

2
3

4
5

6
7

1.00 0.87
0.70 0.68
0.62 0.58
0.47 0.49
0.47 0.43
0.42 0.38
0.32 0.35
0.29 0.33 0.30

0.45

0.60

0.75

0.90

(a) NCTR on mobile devices
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(b) NCTR on desktops

Figure 5.2: Normalized click through rate (NCTR) in the top 16 positions of the H&L

dataset.

feedback data. Following existing work (Joachims et al., 2017; Wang et al., 2018), we

simplify the problem with the following assumption: The probability of examination

only depends on the position, which can be formulated as P (oiq = 1|xiq) = P (oi). As

the focus of this work is to handle multiple types of user feedback and incorporate

the unique user behavior patterns in grid-based product search for unbiased learning

to rank, we leave modeling position bias with richer information (e.g., query-product

features) as future work.

5.2.3 Propensity Score Models for Grid-based Product Search

We Here, we motivate to use two click models as propensity models by data

analysis results which verify that they can capture unique user behavior patterns in

grid-based product search. Then descriptions of the two propensity models are given

below.

In the literature (Xie et al., 2019), variants of the cascade click model (Craswell

et al., 2008) have been proposed to capture the unique patterns of users’ behaviors
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Figure 5.3: Normalized purchase rate (NPR) in the top 16 positions of the H&L

dataset.

in grid-based search. These models can provide consistent probabilities of users’

behaviors (e.g., examination, continuing to browse the next product and skipping a

row) in such context. In eye tracking experiments of (Xie et al., 2019), three unique

phenomena have been observed in grid-based search with images: row skipping, slower

decay and middle bias. In this work, we propose to utilize the click models capturing

the row skipping and slower decay phenomena as propensity score models for unbiased

learning to rank. We also provide reasons why middle bias is not considered in this

work through data analysis below. To motivate the usage of the two propensity

models, we show a series of data analysis results on real-world e-commerce search log

data here while the detail description of data and experiment are further explained

in Section 5.4. Limited by space, we only show the results on the Home and Living

datasets, similar observations are also made on the Paper and Party Supplies datasets

(see Section 5.4.1 for dataset description). In Fig. 5.2-5.3, we show the normalized

click through rate (NCTR) and purchase rate (NPR) of the top 16 positions for data

collected from both mobile devices and desktops. These NCTR and NPR are the click
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through rate and purchase rate of each position divided by those of the first position.

Different from the previous work (Xie et al., 2019) which focused on the development

of novel evaluation metric for learning to rank, our target is to capture users’ behavior

patterns in grid-based product search for more accurate and interpretable propensity

score modeling.

The middle bias model (Xie et al., 2019) is not considered in this work for two

reasons: (1). The number of columns in the SERPs of our data is small. Specifically,

the SERPs show products in 2 columns for mobile devices and 4 columns for desktops.

(2). Further evident in our empirical analysis (Fig. 5.2-5.3), we also do not observe

the middle bias phenomenon. In particular, the NCTR and NPR of products in the

middle for desktops (4-column display) are not significantly higher than those of the

other products.

Row Skipping. In our datasets, similar to (Xie et al., 2019), we observe the row

skipping phenomena where users can skip some rows before they click, purchase or

leave SERPs. As shown in Fig. 5.2-5.3, we can see that the click through rate and

purchase rate are not monotonically decreasing from top to the bottom. For example,

the last position of Fig. 5.2(a) has higher NCTR than the forth last position. Based

on this observation, let r(i) be the row number of the i-th product. We use the row

skipping cascade model as a propensity score model to quantify P (oi):

P (oi = 1) =

r(i)−1∏
k=0

{
(1− γ)

S(k)+N(k)−1∏
j=S(k)

α + γ
} i−1∏
j=S(r(i))

α

γ models the trend to skip a row. S(k) and N(k) are the number of items before

and in the k-th row. Intuitively, in the row skipping cascade model, if a user reached

position i, she must have gone through the k-th row before the row of position i

(k < r(i)). There are two possible situations: she either skipped the k-th row with

the row skipping probability γ or decided to continue browsing on every single position
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on that row with probability
∏S(k)+N(k)−1

j=S(k) α.

Slower Decay. Similar to what has been discovered by previous study (Xie et al.,

2019), in grid-based product search, the decay of users’ attention from top to bottom

in each SERP is slower than that in list-based web search. In Fig. 5.2(a) and 5.2(b),

we can observe that the NCTRs on mobile devices and desktop take 10 positions to

drop to 43% and 46% of the NCTR of the first positions, which is much slower than

the drop of attention in list-based web search shown in Fig. 3 of (Xie et al., 2019).

We can specify the probability of examination at position i as:

P (oi = 1) =
i−1∏
j=0

min(βrow(j)α, 1.0), (5.13)

where β ≥ 1 models the increased patience of users in grid-based product search

compared to that in the original cascade model. When β = 1.0, P (oi = 1) of the

slower decay model is the same as that in the cascade model.

Besides the these models, we encourage practitioners to design models of P (oi)

based on a combination of domain knowledge and propensity scores estimated from

online experiments.

5.3 Optimization

Without randomized experiments, we aim to achieve a joint optimum of both the

propensity score models and the ranker with the implicit feedback data. Due to the

simplicity of the propensity models, we consider parameters of the propensity models

(α, γ, and β) as hyperparameters and adopt grid search along with minimizing the

loss function Limp to reach the joint optimum. Different from the existing ones (Hu

et al., 2019; Joachims et al., 2017; Ai et al., 2018; Wang et al., 2018), the proposed

propensity model leverages the user behavior patterns in grid-based product search.

Given propensity scores (P (oi)) computed from either the row skipping or the
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slower decay model based on hyperparameters α, γ and β, we aim to learn a ranker f

based on the unbiased loss function Limp. In particular, we adopt LambdaMART (Wu

et al., 2010) where the ranker is the gradient boosting trees (GBDT) or MART (Fried-

man, 2001). In LambdaMART, instead of using a explicit loss function, we directly

define the gradients of an implicit loss function, which are known as lambda gradi-

ents (Burges, 2010). Toward unbiased learning to rank, similar to (Hu et al., 2019),

we directly apply inverse propensity scoring to the lambda gradients. In addition,

in e-commerce search, we need to consider multiple types of user feedback. We also

assign different weights, A′ and B′, to the gradient components corresponding to

trade-off in mis-ranking loss among three types of pairs. Therefore, we propose an

extension of the original lambda gradient (Burges, 2010). In particular, the lambda

gradient of the k-th product (λk) can be written as:

∂Limp
∂f(xk)

= λk =
∑
q

 ∑
yiq=k∩(i,j)∈Iq

λij
P (oi)

−
∑

yiq=k∩(j,i)∈Iq

λij
P (oj)


+A′

∑
q

 ∑
yiq=k∩(i,j)∈I′q

λij
P (oi)

−
∑

yiq=k∩(j,i)∈I′q

λij
P (oj)


+B′

∑
q

 ∑
yiq=k∩(i,j)∈I′′q

λij
P (oi)P (oj)

−
∑

yiq=k∩(j,i)∈I′′q

λij
P (oi)P (oj)

 ,

where yiq = k means product k is at the i-th position in the SERP of query q. In

addition, λij is defined as:

λij =
−2

1 + exp(2(f(xiq)− f(xjq)))
|∆ij|, (5.14)

where |∆ij| denotes the absolute value of difference in a predefined metric (e.g.,

NDCG@K) if the ranking of item i and j are swapped. Note that product price

is not directly involved in the lambda gradient to prevent bias towards expensive

products.
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5.4 Experiment

In this section, we start with data description followed by experimental settings.

Then, through extensive experimental results, we aim to answer the following key

research questions: (1). How effective is the proposed framework compared to the

baselines in the task of reranking products in grid-based search? (2). How does

user behavior patterns in grid-based product search vary across browsing devices and

product taxonomies?

5.4.1 Dataset Description

Here, we provide a brief description of the product search log data used in ex-

perimental studies of this work. In addition to an introduction and a summary of

statistics of the dataset, we also include details of the feature engineering procedure.

Datasets are collected from the e-commerce website at Etsy, which is an international

online marketplace for small businesses selling vintages, hand-crafted products and

supplies. In particular, we pick two of the most popular product taxonomies: Paper

and Party Supplies (PPS) and Home and Living (H&L). For understanding the dif-

ference in users’ behaviors when they are browsing the search sessions via different

devices, search logs from both desktop and mobile devices are collected. Therefore,

we obtain 4 datasets: Desktop PPS, Mobile PPS, Desktop H&L and Mobile H&L. For

each dataset, we only include the search result sessions with at least a click of those

queries which triggered at least a click or a purchase. The statistics for these four

datasets are then shown in Table 5.2. The number of features per dataset may vary

because we remove the columns with incomplete values due to missing information

in the data. For example, some of new sellers may not be familiar with the platform

and therefore might forget to provide tags for some products.
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Table 5.2: Data Statistics

Dataset Sessions Products Clicks Purchases Features

Desktop PPS 15,360 734,289 19,241 1,913 213

Mobile PPS 12,777 611,304 14,861 1,446 215

Desktop H&L 24,905 1,184,454 29,446 2,436 195

Mobile H&L 24,208 1,148,804 26,851 2,287 195

Feature Engineering. The search log datasets are preprocessed to fit the format of

(Xq,yq, cq,pq) using the feature engineering tool Buzzsaw (Stanton et al., 2018). We

summarize the features into the following four categories based on which subject they

are related to: product, shop, query and interaction. In terms of how the features

are computed, similar to (Haldar et al., 2019), we consider features including raw

features (e.g., content similarity matching between query and product, product or

shop attributes such as price, title, materials, shipping time), ratio statistics (e.g.,

domestic sales ratio, the ratio of a product’s contribution to a shop’s sale), mean

values over time windows (e.g., average CTR, purchase rate of the product or shop in

search results in last x days) and composition features (e.g., the difference between

product price and average clicked price for the query). Further descriptions of example

features can be found in Table 5.3. Note that, in this work, price is one of the features

in the product category. Given the fact the price of a product can change (e.g.,

discount), in each SERP, we use the exact price of the product at the time when the

query is performed. Price can also influence the probability to examine a product,

we leave the investigation on this direction to future work.
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Table 5.3: Feature Description

Feature Category Examples

Product
Average historical rates of the product in last x days

Price of the product

Average processing and shipping time after purchases

Shop
Average rating of the products from the shop

Decile of the shop’s sale

Top categories sold in the shop

Query
Average price of clicked products from the query

Logarithm of purchase count from the query over x days

Top buyer taxonomy purchased for the query

Interaction
BM25 of product’s listing title and tags with query

Ratio of a product’s contribution to a shop’s sale

Difference in query average purchase price and product price

5.4.2 Experimental Settings

Here, we report the experimental settings. For unbiased learning to rank algo-

rithms, in the offline settings, the most commonly adopted way of evaluation is via

the task of reranking the products in SERPs of a hold-out test set (Ai et al., 2018;

Hu et al., 2019). We randomly split the search sessions of each dataset into training

(70%), validation (10%) and test sets (20%). We set A = B = 50 in accordance to the

approximated ratio between clicks and purchases in our data after a global smoothing.

We perform grid search to find optimal hyperparameter settings for the propensity

score models. We search α in {0.8, 0.825, ..., 0.975}, β in {1.05, 1.1, 1.15, 1.2} and γ

in {0.8, 0.825, ..., 0.975} to keep P (oi = 1) in a reasonable range. Algorithms that

can achieve a global optimal w.r.t. parameters of both the ranker and the propensity

model can also be used to obtain values of α, β and γ. For the LambdaMART ranker
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of the proposed framework, we search the number of leaves in {31, 127, 511} for each

tree and the number of trees in {100, 200, ..., 1, 000}. Other parameters are adopted

from the default setting of unbiased LambdaMART, while similar settings are also

used for the baselines.

Baselines. We consider 6 baseline methods, including four classic learning to rank

algorithms and two state-of-the-art unbiased learning to rank algorithms that can

work without propensity scores estimated by randomized experiments. Because the

implementation of Regression EM (Wang et al., 2018) is not available and empirical

results in (Hu et al., 2019) also show that Unbiased LambdaMART outperform Re-

gression EM, it is valid to skip Regression EM as a baseline in this work. Similar to

the proposed model, we also enable every single baseline to handle multiple types of

user feedback, by aggregating the loss function across different types with importance

weights, i.e., 50:1 ratio between purchases and clicks. By doing so when compare per-

formance, we can eliminate the influence of utilizing multiple types of feedback and

safely claim the differences are caused by (1) the proposed propensity score estimation

models and (2) the underlying learning to rank models. The baselines are:

MART (M) (Wu et al., 2010) is a gradient boosting algorithm leveraging multiple

additive regression trees as weak learners. It minimizes pairwise loss functions (e.g.,

cross entropy loss).

RankBoost (RB) (Freund et al., 2003) is a pairwise algorithm based on AdaBoost,

which minimizes cross entropy loss.

LambdaMART (LM) (Wu et al., 2010) is an extension of MART which reweights

each pair to optimize listwise ranking measures (e.g., NDCG@K).

Random Forests (RF) (Breiman, 2001) is a variant of the classic machine learning

algorithm which minimizes cross entropy loss.

Unbiased LambdaMART (ULM) (Hu et al., 2019) is a variant of LambdaMART
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where each pair is reweighted by the product of their inverse propensity scores. Two

propensity scores are estimated for each position along with the ranker: one for

products that are clicked and purchased, and the other one for products with no

feedback.

Dual Learning (DL) (Ai et al., 2018) performs joint optimization of two models. The

first model is a neural network trained to maximize a listwise ranking measure. The

second model is a neural network learned to optimize the likelihood of examinations

on clicked products.

Evaluation Metrics. We then describe the evaluation metrics. In this work, we

perform experiments in the offline setting. In particular, we evaluate the proposed

framework and the baselines on the organic search logs obtained from the e-commerce

website on Etsy. In organic search (non-sponsored search), the target is to maximize

purchase and revenue of e-commerce websites, therefore, we adopt the three widely

used metrics purchase NDCG@K, revenue NDCG@K and purchase mean average

precision (MAP) (Wu et al., 2018):

NDCGpur@K =
1

IDCGpur@K

K∑
i=1

2p
i
q − 1

log2(i+ 1)

NDCGrev@K =
1

IDCGrev@K

K∑
i=1

(
2p

i
q − 1

log2(i+ 1)
priceiq

)
,

MAPpur@K =
1

K

K∑
i=1

|{j|pjq = 1, j = 1, ..., i}|/i,

where IDCGpur@K and IDCGrev@K are the normalizers. Revenue NDCG@K is a

variant of purchase NDCG@K by weighting the gain of each product with price. To

consider slow decay of user attention, we set K = 1, 2, 5, 10, 20 for the NDCGs and

K = 20 for MAP.

In the offline setting, we are not able to perform randomized experiments to

obtain ground truth of propensity scores. Therefore, unlike the previous work relying
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on simulated propensity scores and relevance labels (Ai et al., 2018; Hu et al., 2019),

we could not obtain the attractiveness of products that received no feedback. To the

best of our ability, we apply these evaluation metrics on hold-out test sets of search

logs. This may not be the theoretically optimal strategy and we understand that

there can exist attractive products which comes without user feedback. However,

because of the unavailability of ground truth of attractiveness of products, we leave

handling the attractive products without user feedback as a future work.

5.4.3 Experimental Results

Effectiveness. Here, we report the experimental results to show (1) how effective

the proposed framework is in terms of improving e-commerce search results and (2)

how users behavior patterns vary across different browsing devices and taxonomies.

We show the results in Table 5.4 and make the following observations:

• At least one of the two proposed methods outperforms the baselines in almost

all of the cases. This demonstrates the effectiveness of our proposed unbiased

ranker, which is able to capture unique user behavior patterns in grid-based

product search with these two simple propensity models.

• The proposed framework shows superior performance to unbiased LambdaMART.

This corroborates the efficacy of the proposed propensity score models. This is

because unbiased LambdaMART relies on a different pairwise inverse propen-

sity scoring strategy but shares the same underlying ranker (LambdaMART).

This observation can be attributed to incorporating prior knowledge of users’

behavior patterns to guide the learning process of propensity score models.

• Row skipping performs better in the H&L datasets, this can be caused by

the fact that users have more specific intent when they browse SERPs in this
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Table 5.4: Results on the four datasets. Best results are highlighted in boldface.

NDCGpur NDCGrev MAPpur

@1 @2 @5 @10 @20 @1 @2 @5 @10 @20 @20

Desktop PPS (Paper and Party Supplies)

M 0.082 0.121 0.181 0.232 0.291 0.078 0.126 0.184 0.234 0.289 0.079

RB 0.087 0.117 0.184 0.243 0.303 0.087 0.110 0.182 0.241 0.303 0.084

LM 0.101 0.128 0.194 0.249 0.305 0.100 0.130 0.194 0.248 0.308 0.097

RF 0.096 0.128 0.192 0.239 0.295 0.088 0.117 0.185 0.233 0.287 0.096

ULM 0.109 0.142 0.201 0.251 0.308 0.109 0.142 0.201 0.250 0.307 0.106

DL 0.098 0.136 0.211 0.277 0.327 0.098 0.136 0.211 0.277 0.327 0.094

RS 0.111 0.141 0.196 0.256 0.312 0.110 0.141 0.196 0.256 0.312 0.106

SD 0.144 0.173 0.232 0.281 0.340 0.143 0.173 0.232 0.281 0.339 0.139

Mobile PPS (Paper and Party Supplies)

M 0.154 0.197 0.236 0.294 0.347 0.148 0.184 0.227 0.289 0.343 0.154

RB 0.067 0.116 0.181 0.232 0.286 0.085 0.135 0.201 0.252 0.300 0.067

LM 0.111 0.148 0.216 0.262 0.322 0.119 0.159 0.225 0.272 0.335 0.111

RF 0.138 0.177 0.232 0.286 0.339 0.131 0.176 0.244 0.298 0.343 0.136

ULM 0.151 0.192 0.254 0.293 0.345 0.150 0.192 0.253 0.292 0.344 0.149

DL 0.102 0.144 0.235 0.291 0.340 0.100 0.143 0.235 0.290 0.339 0.101

RS 0.148 0.182 0.243 0.298 0.351 0.164 0.203 0.265 0.318 0.370 0.155

Slower Decay 0.166 0.208 0.281 0.321 0.371 0.176 0.223 0.293 0.332 0.383 0.165

Desktop H&L (Home and Living)

M 0.114 0.152 0.212 0.265 0.318 0.119 0.151 0.215 0.265 0.319 0.116

RB 0.085 0.127 0.193 0.240 0.297 0.096 0.131 0.194 0.239 0.297 0.070

LM 0.107 0.135 0.210 0.266 0.323 0.109 0.138 0.213 0.263 0.321 0.101

RF 0.109 0.164 0.228 0.275 0.325 0.102 0.145 0.212 0.260 0.307 0.112

ULM 0.148 0.184 0.243 0.284 0.340 0.148 0.185 0.243 0.284 0.340 0.145

DL 0.097 0.138 0.211 0.266 0.322 0.097 0.138 0.211 0.266 0.322 0.096

RS 0.165 0.199 0.252 0.300 0.354 0.165 0.200 0.252 0.301 0.354 0.163

SD 0.141 0.182 0.242 0.290 0.347 0.139 0.182 0.242 0.290 0.346 0.135

Mobile H&L (Home and Living)

M 0.147 0.200 0.261 0.306 0.350 0.159 0.216 0.274 0.322 0.369 0.147

RB 0.084 0.117 0.169 0.227 0.291 0.094 0.131 0.181 0.234 0.295 0.083

LM 0.119 0.155 0.23 0.281 0.322 0.124 0.161 0.239 0.29 0.33 0.117

RF 0.125 0.187 0.250 0.296 0.341 0.137 0.194 0.263 0.307 0.354 0.123

ULM 0.181 0.237 0.285 0.322 0.367 0.181 0.237 0.285 0.322 0.367 0.180

DL 0.116 0.154 0.221 0.288 0.331 0.116 0.154 0.221 0.288 0.331 0.114

RS 0.172 0.222 0.287 0.324 0.372 0.172 0.222 0.287 0.324 0.371 0.173

SD 0.181 0.233 0.282 0.329 0.377 0.181 0.233 0.282 0.329 0.377 0.180

taxonomy, which means they would more likely to skip rows of products that

do not look attractive. In addition, the price of products in this taxonomy has

larger variance, users may skip those rows showing expensive products.

• On the mobile datasets, the performance of the best baseline, i.e. unbiased

LambdaMART, is closer to the proposed framework than that on desktop
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datasets. This is because list-based web search is a better proxy for mobile

devices with products displayed in 2 columns as comparing to those on desk-

tops (4 columns).

We train separate models for different taxonomies to show that modeling different

user behavior patterns across product taxonomies can be beneficial. In practical

deployments, a single ranker is often trained and tested across all taxonomies. The

model with highest purchases or revenue across taxonomies in randomized online

experiments may be preferred in such a case.

Propensities. Next, we report the values of propensity scores and the hyperpa-

rameters α, β and γ that achieve the optimal performance for the proposed frame-

work. For Desktop and Mobile PPS, the slower decay models with α = 0.95, β = 1.1

and α = 0.925, β = 1.15 outperform others. For Desktop and Mobile H&L, the

row skipping model with α = 0.95, γ = 0.975 and the slower decay model with

α = 0.925, β = 1.1. We show propensity scores estimated for the H&L datasets

in Fig. 5.4 to draw connection with the earlier empirical results (Fig. 5.2-5.3). Al-

though we cannot perfectly reconstruct the non-monotonically decreasing patterns in

Fig. 5.2-5.3, in Fig. 5.4(a), we can observe that positions at the left bottom can have

higher estimated P (oi) than some positions. We can regard these propensity scores

as upper bounds of the NCTR values observed in Fig. 5.2. This is because the NCTR

values result from a combination of position bias (propensity scores) and effectiveness

of the ranking algorithm(s) that generated the search logs. It can also be observed

that users are more patient when they browse with desktops.

5.5 Summary

In this chapter, we study the novel problem unbiased learning to rank algorithms

in grid-based product search for e-commerce. It is the first step toward handling the
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Figure 5.4: Propensity scores obtained through grid search that achieve the optimal

performance.

special challenges in this problem. In particular, the proposed framework utilizes mul-

tiple types of feedback and leverages users’ behavior patterns in grid-based product

search for propensity score modeling. We prove that the proposed loss function eval-

uated on implicit feedback data provides unbiased estimate of the ideal loss. We then

motivate the usage of the row skipping and slower decay models for inverse propensity

scoring justified through empirical evidence from data analysis. Finally, extensive ex-
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perimental results show the effectiveness of the proposed framework across browsing

devices and product taxonomies in datasets collected from a real-world e-commerce

website.
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Chapter 6

CONCLUSION AND FUTURE WORK

This chapter summaries the key contributions of this dissertation prospectus and

present a brief discussion on promising future research directions.

6.1 Conclusion

Side information such as network structures that showing relationships among

instances naturally appear in many types of observational data. Such data not only

create new chances and but also pose new challenges for learning causality with

observational data. This dissertation is dedicated to the development of principled

frameworks that explore novel applications of such topological information toward a

solution to mitigating confounding and selection bias in both causal inference and

machine learning tasks. The main thrusts of the presented work are summarized as

follows:

• Learning Individual-level Causal Effects with Networked Observa-

tional Data. The first part of the dissertation prospectus focuses on developing

a novel framework for estimating individual-level causal effects with networked

observational data. The research efforts mainly explore how to effectively uti-

lize network information to compensate for the unobserved confounders toward

unbiased treatment effect estimation. The proposed framework – network de-

confounder (Chapter 3) learns representations of hidden confounders from a

combination of observed features and network information through graph con-

volutional layers. The representations are trained to infer observed outcomes

in order to achieve accurate inference in the space of treatment effects. At
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the same time, these representations are balanced between the treatment group

and the control group using a Wasserstein-1 distance based penalty term for

mitigating confounding bias.

• Counterfactual Evaluation of Novel Treatment Assignment Functions

with Networked Observational Data. The second part of this dissertation

prospectus develops a novel framework for evaluating novel treatment assign-

ment functions with networked observational data. The main focus of this

research is to answer the question: How do we learn good representation of

latent confounders to accurately evaluate treatment assignment functions with

networked observational data? In the proposed framework, CONE (Chapter 4),

the partial representations of latent confounders are learned by predicting the

observed outcomes and treatments separately. A neural mutual information

estimator (Belghazi et al., 2018) is applied in the training process to ensure the

two partial representations agree with each other. This design is based on the

definition of confounders (Pearl, 2009) – the variables causally influence both

treatment assignments and observed outcomes. Then the latent confounder

representations can be used in a series of counterfactual evaluation tools such

as the IPS estimator (Kitagawa and Tetenov, 2018) and the doubly robust es-

timators (Dud́ık et al., 2011) to accomplish the task.

• Debiasing Grid-based Search in E-commerce. The third part of the dis-

sertation formulates and investigates a novel problem of unbiased learning to

rank algorithms in the context of grid-based product search for e-commerce.

In this problem, we consider the display of items in a 2-dimensional SERP.

In particular, a SERP can be considered as a network connecting neighboring

items. In the proposed methodology, we simplify this network information to

94



only consider the position of each item – the row and column index of an item

in SERPs. In addition, the proposed framework is developed in a way such that

it can utilize multiple types of feedback and leverage prior knowledge of spe-

cial users’ behavior patterns in grid-based product search for propensity score

modeling. We propose an unbiased estimator of the true loss function with

two types of implicit feedback. We then perform data analysis of NCTR and

NPR to justify the usage of the row skipping and slower decay models as the

propensity models. Finally, extensive experiments are performed. Their results

supports our claim of the effectiveness of the proposed framework across two

browsing devices and two product taxonomies in real-world datasets collected

from the e-commerce website Etsy.

6.2 Future Work

Causal Inference under Interference. A series of existing methods for causal

inference with networked observational data are based on the assumption that there

does not exist interference (Guo et al., 2020c,b; Veitch et al., 2019). However, in

real-world applications, one’s decision may influence others’ outcomes. For exam-

ple, in the context of e-commerce, service providers such as Etsy and Amazon and

sellers can only perform interventions (e.g., displaying ads and discount) on items.

However, the interesting outcomes are buyers’ decisions (Doudchenko et al., 2020),

which are causally influenced by interventions on the items. In such situations, the

fundamental assumption used to identify causal effects, i.e., the Stable Unit Treat-

ment Value Assumption (SUTVA), does not hold. This results in new challenges of

causal identification. Current solutions of interference can be categorized into two

classes: (1) redefining units (Holtz et al., 2020) and (2) generalized propensity score

(GPS) (Doudchenko et al., 2020). Redefining units relies on the assumption that
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we can find units (subpopulations) where there is little interference among different

redefined units. This approach often overwhelmingly relies on heuristics to find units

satisfying this assumptions. GPS methods rely on the unconfoundedness assump-

tion conditioning on propensity scores, which may not lead to robust estimates when

propensity score models are misspecified.

Therefore, one future research direction of great potential is to relax the assump-

tions needed to the problem of interference with the help of machine learning models.

Alternatively, one can work on the improvement of traditional methods with advanced

machine learning models. For example, one can use graph neural networks to learn

representations of nodes, and then redefine units as clusters in the representation

space to work around the challenge of interference (Holtz et al., 2020). In many real-

world cases, the outcomes vary with time (Cheng et al., 2021; Ma et al., 2021). To

handle these temporal variations, one can extend quasi-experiments such as Differ-

ence in Difference and Synthetic Control to the situation of interference for causal

identification. Such ideas can also be extended to resolve causal inference problems

in various downstream applications such as understanding user intent in fake news

spreading (Cheng et al., 2020) and cyberbullying (Cheng et al., 2019).

Fairness of Treatment Assignment Functions. Due to the nature of observa-

tional data, we only have the access to one of the potential outcomes. Various existing

work (Bennett and Kallus, 2019; Guo et al., 2020b; Zou et al., 2019) has been done

toward solving the challenge in evaluating the utility of novel treatment assignment

functions. In fact, this special characteristic of observational data also leads to an

interesting open problems relevant to treatment assignment functions. One of them is

how to assess the fairness of a novel treatment assignment function with observational

data. This problem is of vital importance to study when we rely on data-driven ap-

proaches to make high-stakes decisions that can impact individuals’ critical outcomes
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such as health status and school/job admissions. Due to the lack of counterfactual

outcomes, some fairness metrics designed for regular machine learning models such

as Equalized Odds (Zafar et al., 2017) may not be directly identifiable from observa-

tional data. It remains an open problem to connect existing counterfactual evaluation

and optimization methods to measuring fairness of novel treatment assignment func-

tions with observational data. One research direction is to perform a comprehensive

study of the identifiability of fairness notions. First, we can consider group-level no-

tions such as Demographic Parity, Equality of Opportunity and Predictive Quality

Parity (Du et al., 2020). Furthermore, one can also study the identification and es-

timation problem of individual-level notions such as individual fairness (Mukherjee

et al., 2020) and counterfactual fairness (Kusner et al., 2017). A recent work for out-

of-domain generalization, i.e., Invariant Risk Minimization (IRM) (Arjovsky et al.,

2019; Guo et al., 2021), has been shown to be effective in optimizing a series of group-

level fairness metrics (Adragna et al., 2020). IRM essentially imposes the conditional

independence between prediction and sensitive groups given learned representations.

Based on this observation, another potential research direction is to learn fair features

to mitigate unfairness in observational data and treatment assignment policies.

Debiasing Interactive Machine Learning. Besides unbiased learning to rank in

e-commerce, there are many interactive machine learning problems where labels are

generated by interactions between users and an existing machine learing algorithm.

For example, recommendation systems (Chen et al., 2020) and interactive NLP sys-

tems (Sokolov et al., 2016).

We can extend the idea of unbiased learning to rank in e-commerce to more

realistic scenarios. Given other information shown in the SERPs, what causally influ-

ences users’ examination behaviors would also include meta information from SERPs

including prices, product photos, and product ratings etc. Therefore, the first di-
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rection is to explore propensity models with meta information. It is also possible to

consider personalized propensity models where user attributes are taken as input of

the propensity model. Second, for optimizing long-term marketplace-level objective

metrics such as the number of active users, it is important to ensure the fairness

and diversity among sellers. For example, novel inductive bias such as Determinan-

tal Point Process based regularization or exploration algorithms such as UCB and

Thompson sampling can be developed to stimulate rankers to explore novel products

that have never been shown at top of the SERPs. Development of other methods to

consider products with low or no feedback in evaluation metrics are also a potential

research direction.
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