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ABSTRACT  

   

There has been an explosion in the amount of data on the internet because of 

modern technology – especially image data – as a consequence of an exponential growth 

in the number of cameras existing in the world right now; from more extensive 

surveillance camera systems to billions of people walking around with smartphones in 

their pockets that come with built-in cameras. With this sudden increase in the 

accessibility of cameras, most of the data that is getting captured through these devices is 

ending up on the internet. Researchers soon took leverage of this data by creating large-

scale datasets. However, generating a dataset – let alone a large-scale one – requires a lot 

of man-hours. This work presents an algorithm that makes use of optical flow and feature 

matching, along with utilizing localization outputs from a Mask R-CNN, to generate 

large-scale vehicle datasets without much human supervision. Additionally, this work 

proposes a novel multi-view vehicle dataset (MVVdb) of 500 vehicles which is also 

generated using the aforementioned algorithm. 

There are various research problems in computer vision that can leverage a multi-

view dataset, e.g., 3D pose estimation, and 3D object detection. On the other hand, a 

multi-view vehicle dataset can be used for a 2D image to 3D shape prediction, generation 

of 3D vehicle models, and even a more robust vehicle make and model recognition. In 

this work, a ResNet is trained on the multi-view vehicle dataset to perform vehicle re-

identification, which is fundamentally similar to a vehicle make and recognition problem 

– also showcasing the usability of the MVVdb dataset. 
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DEDICATION  

   

Mom and dad, this for you. Thanks for trusting me and being patient with me. 
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CHAPTER 1 

INTRODUCTION AND MOTIVATION 

 

One summer in 1956, on the campus of Dartmouth College, an interdisciplinary 

seminar was being held where scientists and researchers put their heads together to 

conceptualize theories about intelligent machines with an ability to think. That was the 

birthplace of Artificial Intelligence (AI).  Artificial Intelligence started gaining 

momentum. Researchers from universities around the world were optimistic about this 

new emerging field and started advocating AI as a technology that could change the 

world. Researchers started getting a lot of funding for AI research as the field started 

flourishing. Research labs for AI started popping up all around the world. One of them 

was MIT AI Lab co-founded by Marvin Minsky in 1966. Minsky received a research 

grant to hire an undergraduate student, Gerald Sussman, to connect a camera to a 

computer and to make the computer interpret what it saw through the camera. Hence, 

Computer Vision essentially originated as a summer project. 

Researchers had high expectations and were overtly optimistic about AI. In 1970, 

Minsky told Life Magazine, “In from three to eight years we will have a machine with 

the general intelligence of an average human being” (Minsky, 1970, Life Magazine). He 

was convinced that within a generation, the general problem of Artificial Intelligence will 

be solved and that there will be almost no differences between the intellect of an 

intelligent machine and that of a human being (Minsky, 1967). But none of those dreams 

came to fruition. By the end of 1970, governments and corporations who were granting 

funds for AI research started losing faith in AI themselves. The results achieved by the 
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researchers fell short of their lofty ambitions, and soon the funding dried up. What 

followed next was known as the “AI Winter”. This era of AI frenzy failed to reach its 

immense and also unreasonable potential. 

However, during the same time, two neuroscientists conducted some experiments 

on visual cortical neurons and published a paper (Hubel & Wiesel, 1959) which later 

turned out to be one of the most influential papers in Computer Vision. They ran an 

experiment where they inserted electrodes into the visual cortex area of a cat’s brain and 

tried to study the activity of the neurons as they showed the cat shapes and objects 

through a projector. Accidentally, in the middle of a session of their experiment, as they 

were changing the slide of the projector, they noticed unusual neuron activity. The duo 

examined it and realized that the neuron fired when the cat noticed the line formed by the 

sharp edge of the glass slide move. The researchers inferred that visual processing starts 

with processing simpler structures like the outline of an object. That is the core principle 

behind Computer Vision, but that was not realized until 2012 when AlexNet (Krizhevsky 

et al., 2012) won the ImageNet (Deng et al., 2009) competition, ILSVRC. AlexNet was 

one of the most influential papers since the advent of convolutional neural networks 

(ConvNets) (LeCun et al., 1998) to have leveraged the potential of ConvNets as shown in 

figure 1.1. Since then, the error rates in image classification in the ImageNet challenge 

fell down to a few percent and all the winners since then have been convolutional neural 

networks. AlexNet opened the door to solve image classification problems that were not 

possible earlier. 

With evolving convolutional neural networks, came the necessity of vast amount 

of image data. Thanks to Moore’s Law, algorithms that were theories just a few years ago  
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Figure 1.1 

Architecture of AlexNet with 5 Convolutional Layers (Krizhevsky et al., 2012) 

 

 

now have practical applications because of faster computers. But, to realize the full 

potential of these models or algorithms, we need to train these models on the vast amount 

of data. Owing to the exponential growth in the number of images on the internet, 

researchers soon leveraged that by building large-scale datasets. In 2010 ImageNet (Deng 

et al., 2009) was released, which was the first of its kind large-scale image dataset. In the 

subsequent years, other researchers followed suit by generating other large-scale image 

datasets. 

To date, there has been no open-source, large-scale, multi-view vehicle datasets. 

Hence, in this thesis, we present a novel dataset of roadside images of vehicles captured 

from 5 different viewpoints (figure 1.2) as one of the main contributions of this work. 

Although this data is not large-scale because of the lack of resources, this work will also 

present an ingenious approach to autonomously curate such a dataset with a similar 

camera system. Building a dataset – let alone a large-scale one – requires a significant 

amount of man hours. We collected approximately 5 hours of videos from 5 different  
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Figure 1.2 

Dataset of Roadside Images of Vehicles from 5 Different Viewpoints 

 

 

viewpoints, from which an image dataset of vehicles across the 5 different viewpoints 

was curated using an automated algorithm that incorporated an ingenious but simple 

method of calculating optical flow vectors, tracking bounding boxes, and feature 

matching in a single viewpoint and multiple viewpoints across the frames. To generate 

bounding boxes and segmentation masks, a Mask R-CNN (He et al., 2017) was used. 

Finally, to put this dataset to work, we attempted to solve the vehicle tracking problem by 

building an image classifier to perform vehicle re-identification. 

In this work, we are solving the problem of re-identifying objects, vehicles 

specifically, across multiple viewpoints. With the recent inflation in cameras connected 

to computers or pocket computers i.e., smartphones, a new problem has emerged, which 

is re-identifying an object across multiple cameras or devices. Uses of cameras in security 

systems have been prevalent for a long time, and more recently are paired up with 

intelligent and sometimes autonomous systems; may it be for localizing an object in a 

scene or detecting the motion of an object. There has always been a need for tagging 
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objects across multiple viewpoints in security systems; for tracking vehicles across 

multiple cameras in a traffic monitoring system, or even humans in a smaller 

environment. Thus, we attempted to solve the problem of tracking vehicles across 

multiple viewpoints by approaching the problem through vehicle re-identification. Our 

plan was to collect a dataset of vehicles across multiple viewpoints and then to train a 

deep neural network to re-identify a vehicle. We trained a ResNet (He et al., 2016) to re-

identify a vehicle from the dataset it was trained on. For the train-test split, we randomly 

selected four viewpoints to train the model on and then the other viewpoint was used for 

evaluation or re-identification. 

 

Generating a Dataset 

 Vision data is one of the most widely used forms of data. Vision data is deep-

rooted in various industries; ranging from fashion to medical, e-commerce, and social 

media to name a few. Through the boom of social media, data in the form of images have 

exploded on the internet. With the immense access to image data throughout the internet, 

researchers and corporations quickly realized that they were sitting on a goldmine of data 

and how valuable this data is. Thus, with the growth of image data on the internet, started 

the rise of large-scale image datasets. 

 Although there are now multiple large-scale image datasets – some of the datasets 

as large as containing over 9 million images, such as ImageNet – there has been a lack of 

image datasets of vehicles captured from multiple viewpoints. That is one such research 

problem that this work strives to solve. This work is introducing a novel multi-view 

vehicle image dataset, called MVVdb. However, since this proposed dataset is not a 
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large-scale dataset because of a lack of resources, the subsequent chapters also outline an 

ingenious method of generating and curating such a dataset if used a similar camera 

system to the one used for this proposed dataset. 

 

Image Classification 

Image Classification, sometimes referred to as Image Recognition, is the process 

of analyzing the features of a raster image and then associating that image with a class or 

label. In general, there are two different types of classifications, namely (1) single-label 

classifications and (2) multi-label classifications. 

Single-label classifications are the most common type of classifications where an 

instance is associated with a single label. The purpose of a single-label classifier is to 

predict a single label or class for an instance. A single-label classification problem can be 

further categorized into (1) binary classification, where a classifier only classifies an 

instance between two classes, and (2) multi-class classification, where there are multiple 

classes in the dataset. Although multi-class classification and multi-label classification 

sound similar, however, they are not and are inherently different. Multi-class 

classification is, as stated earlier, a type of single-label classification where there are 

multiple classes but only one possible answer. The classes in a multi-class classification 

problem are mutually exclusive and hence, it uses a Softmax activation function (figure 

1.3). On the other hand, multi-label classification problems are non-mutually exclusive 

and use a Sigmoid activation function.  

The output of a single-label classifier is a vector of the same length as the number 

of labels of the dataset, each value of the vector denoting a raw output score regarding if 
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Figure 1.3 

Visual Representation of a Softmax Activation Function 

 

Note. A Softmax activation is only used as the final layer after the last fully connected 

layer to transform the similarity scores to probability scores. 

 

the instance belongs to that class. A single-label classifier utilizes a Softmax activation 

function which transforms the output values of the last fully connected layer to 

probabilities as shown in the formula in figure 1.4. Our work on vehicle re-identification 

is also a multi-class problem, each vehicle being a separate class. 

 

Research Value 

 There is a significant lack of vehicle image dataset from multi-view cameras. Lots 

of existing Computer Vision problems will heavily benefit from such a multi-view 

vehicle dataset e.g., image to 3D model generation, or 2D image to 3D shape prediction. 

The multi-view aspect of the dataset can also be disregarded and can be used for vehicle  
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Figure 1.4 

General Formula of a Softmax Function 

 

Note. z stands for the output while k is the number of classes. 

 

make and model recognition – if properly labelled. Creating a large-scale dataset requires 

significant manual input and a serious amount of man hours. This work proposes the 

utilization of simple techniques like optical overflow, feature tracking, and vehicle 

localization using bounding boxes to autonomously generate a large-scale dataset 

consisting of vehicle images captured from surveillance cameras. 

For years camera systems have been used for the purpose of security. The motor 

vehicle department has been using cameras for decades to keep the roads safe. Most city 

intersections across the US and random speed traps on the state or interstate highways use 

cameras to monitor them. They surveil vehicles on the road so that no infringement or 

violation of the law goes unpunished. They monitor actions like jumping red lights, 

overspeeding, and even hit-and-runs. Initially, all these systems were operated manually. 

However, as computers started becoming intelligent, the desire to automate tedious 

manual processes took over and a lot of these processes were automated. Nowadays, the 

traffic lights are automated, and the motor vehicle department has even adopted to use 

autonomous systems to recognize license plates of vehicles using cameras and generate 



  9 

tickets if any law is broken, like overspeeding, jumping red lights, or not stopping at the 

stop sign. Artificial Intelligence or Computer Vision has been so successful, that there is 

now a massive network of cameras sprawling across every metropolis. With such a 

massive network of camera systems, there is a new problem to track these vehicles across 

multiple devices or viewpoints. 

 

Contributions 

This work presents a series of significant contributions in the field of Computer 

Vision: 

Multi-view Dataset 

 One of the main contributions of this work is a novel dataset consisting of 

roadside images of vehicles captured from multiple viewpoints -- 5 different viewpoints 

to be exact -- from all around a vehicle, so that every bit of the body surface of a vehicle 

can be visualized. This is especially important if one wants to use the dataset to generate 

3D models of a vehicle along with reconstructing its texture. Other than that, it is also a 

robust dataset for research along the lines of 2D image to 3D shape prediction or even 

fine-grained vehicle make and model recognition. 

Guide to Curate a Structured Dataset from Similar Videos 

 Although a dataset is part of the contributions made by this work, we could not 

build a large-scale dataset because of the lack of resources. So, this thesis also outlines a 

guide on how to autonomously generate – even a large-scale dataset if needed – from 

recorded roadside videos with a similar camera system to the one used in this work. 
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Vehicle Re-identification 

 To display the functionality of our new novel dataset, we put the dataset to use to 

tackle the problem of Vehicle Re-identification through Image Retrieval. We showcase 

how this dataset stacks up when using an image classifier like ResNet to train itself and 

then perform image retrieval. This work essentially also addresses the fine-grained make 

and model recognition problem as vehicle re-identification is fundamentally fine-grained 

make and model recognition if the dataset is labelled. 

 

Structure of Thesis 

This work will first perform a background study and review some of the existing 

large-scale vehicle datasets. Next, we will review some of the past work on image 

retrieval systems or image re-identification systems. We will also do a related work study 

on make and model classification of vehicles because it is nothing but an image retrieval 

problem with the vehicle’s make and model labels on the dataset. Next, we will go over 

the notable state-of-the-art models in image classification as that is the route we chose to 

tackle the image re-identification problem. Furthermore, this thesis will cover the 

intuitive approach taken to curate a structured dataset from unedited roadside videos of 

vehicles. Following, there will be a detailed account of the classification task to achieve 

re-identification of the vehicles of the given dataset. Lastly, we will go over the results of 

our research and compare it with other comparable works. Finally, some concluding 

remarks and areas of future work will be detailed. 
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CHAPTER 2 

BACKGROUND AND RELATED WORK 

 

Having briefly covered the foundation for generating a dataset and image 

classification, in this section we will go through a background study of the past and the 

existing state-of-the-art large-scale image datasets and deep neural networks for image 

classification. Additionally, we will look at large-scale image datasets and image 

classifiers from the context of vehicle re-identification –i.e., vehicle or car datasets 

designed specifically for vehicle re-identification or fine-grained make and model 

classification, and neural network models catered towards the same respectively. 

 

Large-Scale Image Datasets 

 With an exponential growth in camera systems or devices with cameras in recent 

times, there has been an explosion in the number of images on the internet. The 

development of social media has further amplified that because of the number of images 

being uploaded to social media on a daily basis. On average, more than 300 million 

images are uploaded daily to the internet. Soon researchers and corporations recognized 

the significance of all this data and realized the gold mine of data they were sitting on. 

 In 2010, ImageNet (Deng et al., 2009), the first large-scale image dataset for 

object detection and recognition was released. The dataset was a one of its kind and the 

first of its kind as it contained more than 9 million annotated images with even hand-

annotated bounding boxes for some of the instances. Since then, the dataset has been 
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updated in 2014 and now comprises of more than 14 million images across over 20,000 

categories or classes. 

 Along with ImageNet came CIFAR-10 and CIFAR-100 datasets (Krizhevsky, 

2009) which are nothing but labelled subsets of the 80 million tiny images dataset 

(Torralba et al., 2008). Both CIFAR-10 and CIFAR-100 datasets contain 60,000 labelled 

images, the only difference being is that CIFAR-10 consists of 10 classes with 6000 

images per class and the CIFAR-100 dataset consists of 100 classes – only 600 images 

per class. Since the instances per class for the CIFAR-10 dataset is lesser than that of 

ImageNet, models trained on the CIFAR-10 dataset perform worse than that same model 

trained on the ImageNet dataset with a higher top-5 percentage error. Furthermore, the 

CIFAR-100 dataset performs even worse than the CIFAR-10 dataset as it has even lesser 

images per class. However, the classes for both CIFAR-10 and CIFAR-100 are mutually 

exclusive while ImageNet is not. CIFAR-10 and CIFAR-100 are also low-resolution, 

32x32, so allows a researcher to quickly train and test their models on this dataset. 

 Next came PASCAL VOC (Everingham et al., 2010) which provided an image 

dataset for object classification. The dataset is annotated with around 500,000 images 

across 20 object classes. Through KITTI Vision Benchmark Dataset (Geiger et al., 2013), 

we got a first of its kind large-scale video dataset captured from the point of view of a 

vehicle driving around a mid-size city. The dataset includes data from two high-

resolution color and grayscale video cameras. For accurate ground truth, the dataset also 

includes data from a laser scanner and a GPS localization system. 

 Microsoft Common Objects in Context (COCO) (Lin et al., 2014) is a large-scale 

dataset for object detection, segmentation, and even captioning. The dataset consists of 
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80 object categories and 91 stuff categories. In this dataset, stuff categories are defined as 

amorphous backgrounds e.g., grass, sky. The dataset includes over 1.5 million instances 

with superpixel segmentation, object or stuff labels, and captioning of the image with 

context. Since then, there have been plenty of large-scale datasets that have come out but 

for more targeted problems. In this work, the main subject of our problem statement are 

vehicles, so in the next section, we are going to take a look at car datasets. 

 

Car Datasets in Computer Vision 

 There was not any popular public large-scale solely dedicated for vehicles before 

the Car-197 (Krause et al., 2013) dataset came out. It consists of 197 classes with a total 

of 16,185 images. The classes are in the fine-grained level –i.e., make, model, and year. 

The images are collected from the internet using a web crawler, and then data 

deduplication methods were implemented to acquire a subset of distinct images. Finally, 

they used Amazon Mechanical Turk (AMT) to determine if the images belong to their 

respective classes. One disadvantage of such a dataset is that since all the images are 

obtained from the internet, there is a possibility that a model trained on it can be biased 

and may not work in a practical scenario. Practically, cameras are installed at high angles 

to monitor vehicles, an angle from where images are not usually found on the internet – 

most images on the internet are from the eye level. 

Since computer vision tasks regarding cars or vehicles were still highly neglected 

by the computer vision research community, the Comprehensive Cars (CompCars) 

dataset was released by the authors (Yang et al., 2015). The dataset includes both images 

from the internet and that of a surveillance nature. The internet images dataset consists of 
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163 car makes and 1,716 car models and the surveillance images dataset consists of 

50,000 images from the front view. All the images in the dataset do not present a full-

body picture, some of the images are just of car parts. However, if a full car is visible in 

an image, that image is annotated with a bounding box and orientation. The CompCars 

dataset is structured into a tree structure where the hierarchy consists of three layers –i.e., 

car make, car model, and year of manufacture. Apart from the images, each car model is 

also annotated with five attributes –i.e., maximum speed, displacement, number of doors, 

number of seats, and car type (twelve different kinds of car types are defined e.g., sedan, 

hatchback). Although the dataset including data for orientation of the vehicles was a 

novelty, however, the quantity distribution is not balanced across the viewpoints and the 

different car models. 

Another large-scale vehicle make and model dataset that we should talk about is 

the VMMRdb (Tafazzoli et al., 2017) dataset. The VMMRdb dataset is significantly 

larger than other car datasets. The dataset includes 9,170 classes consisting of 291,752 

images. The vehicles are annotated with their make and model along with their 

production year. Just like the Car-197 dataset, the authors used a web crawler to gather 

images and relevant information –i.e., the title and description to automatically annotate 

images -- from Craigslist and Amazon.  

Due to the lack of high-quality and large-scale vehicle re-identification datasets, 

the VehicleID dataset was released by the authors (Liu et al., 2016). Till now we saw 

datasets that served more towards the recognition of car attributes (e.g., make, model, and 

color). This paper presents a dataset that caters more toward vehicle re-identification. The 

authors used a surveillance camera system to collect the dataset. The data is collected 
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through a network of multiple real-world surveillance cameras during daytime amassing 

over 200,000 images of over 26,000 vehicles. Additionally, the authors manually 

annotated 90,196 images across 10,319 vehicles with their ground truth values i.e., their 

make and their model. 

There has been another large-scale dataset for vehicle re-identification that strives 

to push towards the research of challenging problems of vehicle re-identification. The 

dataset VERI-Wild (Lou et al., 2019) was released to address the problem of not having 

enough real-world scenarios in vehicle re-identification research. The dataset wanted to 

include high viewpoint variations like how surveillance cameras are installed in the real 

world, varying lighting conditions, and complex and changing backgrounds. To achieve 

their goal, the authors captured their data from a large surveillance camera network 

consisting of 174 cameras across a large urban district. The camera recorded data for 24 

hours a day -- to account for the diverse illuminating conditions – and did that for a 

month. That resulted in a vehicle image dataset consisting of over 400,000 images and 

over 40,000 vehicle IDs. The authors used a YOLO-V2 (Redmon et al., 2017) to detect 

and draw bounding boxes around a vehicle. The VERI-Wild dataset is the first of its kind 

dataset where the data is collected from unconstrained conditions –i.e., the wild, hence, 

the name of the dataset. 

 

Deep Neural Image Classifiers 

Before Convolutional Neural Networks (CNN), researchers used to connect each 

pixel of an image to a simple raw multi-layer perceptron. This method was highly 

inefficient as pixels are spatially correlated. Then CNNs were introduced when LeNet 
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(LeCun et al., 1998) came out. The idea of the paper was to architect an algorithm that 

can classify high-dimensional patterns – primarily for OCR and character recognition in 

documents -- and to do that we need to first extract relevant low-dimensional features. 

Hence, convolutional neural networks were born. The authors of LeNet feed an image to 

a network and perform convolutions given a specific filter. The output is then passed 

through an activation function, following which the output repeats the same process and 

goes through a sequence of convolution, activation, and pooling. At the end, we are only 

left with high-level relevant features which is then flattened and fed to two repeating fully 

connected layers. Thus, “the first CNN” was built. 

Although CNN was first designed in 1998 (LeCun et al., 1998), it was not fully 

utilized until AlexNet (Krizhevsky et al., 2012). AlexNet applied the same concept of 

LeNet of using successive convolutions to capture more and more subtle features. 

AlexNet adapted to use a ReLU activation function for better gradient propagation, 

whereas the original LeNet used a TanH activation function. The AlexNet paper also 

introduced data augmentation –i.e., randomly augmenting an input image like rotating, 

translating, or cropping – to build a more robust image classifier model. AlexNet was the 

state-of-the-art model when it came out, in 2012, with a 15.4% top-5 error on the 

ImageNet (Deng et al., 2009) competition. 

The next breakthrough in image classification came when the authors of VGGNet 

(Simonyan et al., 2014) came out pushing the depth of a network to 16-19 layers. During 

its time of inception, 16 or 19 layers were considered very deep. However, through 

VGGNet the authors inferred that increasing the depth of a network with smaller 

convolution filters performs significantly better and achieves a better hierarchical 
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representation of visual data. The network keeps it simple by using exclusively only 3x3 

convolution filters stacked on top on each other when needed (as shown in figure 2.1) 

which (1) promotes more non-linearity as three 3x3 convolution layer is better than a 

single 7x7 layer, (2) decreases the number of parameters, which is a good thing given the 

increase in the depth of the layers. However, the authors found it difficult to converge a 

very deep network and hence, VGGNet is painfully slow to train. 

Till now all the models that we saw, they all followed the same trend –i.e., to go 

deeper. But at some point, researchers had to realize than just going deeper is not the 

answer. Going deeper and deeper may not increase performance after a certain point and 

may start doing actually the opposite because of the vanishing gradient problem. If there 

are too many layers using a certain activation function, the gradient diminishes very fast, 

and the model stops learning effectively as shown in figure 2.2. To counter this problem 

researchers came out with the ResNet (He et al., 2016) where the authors introduced 

residual learning. Although ResNet is much deeper than VGGNet, ResNets are much 

easier to train. To this day, it is one of the best performing models on the ImageNet with 

a 3.57% error. 

 

Vehicle Re-identification or Fine-grained Image Classification 

The authors who came out with the CompCars (Yang et al., 2015) dataset perform 

both fine-grained image classification and vehicle re-identification in their work to 

exhibit the functionality of their dataset. The authors train a CNN model to compare the 

classification performance in specific viewpoints and all viewpoints. Experiments 

showed that the CNN model that learned from all the viewpoints performed better than 
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Figure 2.1 

Architecture of VGG as Shown in Very Deep Convolutional Networks for Large-Scale 

Image Recognition (Simonyan et al., 2014) 
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Figure 2.2 

Graph Showing the Vanishing Gradient Problem 

 

Note. The blue curve represents the Sigmoid function while the red dashed curve 

represents the derivative of the Sigmoid function. 

 

the ones trained on specific viewpoints. This exhibits that the CNN model was able to 

learn from the different viewpoints. For the vehicle re-identification task, the authors 

tweaked the classifier used for the fine-grained classification to behave like a feature 

extractor and then applied a Joint Bayesian (Chen et al., 2012) to train a model. The 

authors also adopted the CNN feature extractor, coupled it with a SVM, and then did a 

comparative study. 

The authors of the VMMRdb (Tafazzoli et al., 2017) dataset trained a CNN model 

to perform fine-grained make and model recognition and compared it with the same 

model trained on CompCars. The authors wanted to test the models with testing images 



  20 

front challenging sources to simulate real-world behavior. Although CompCars 

performed significantly better on its own testing dataset, however when tested on a 

surveillance image from the VMMRdb dataset, the performance fell drastically with an 

accuracy of 50.05%. On the contrary, the CNN trained on the VMMRdb performed 

slightly better when tested on a non-VMMRdb image with an accuracy of 52.85%. 

VehicleID (Liu et al., 2016) dataset was utilized to perform vehicle re-

identification by the authors and they trained a GoogleNet (Szegedy et al., 2015) on the 

Vehicle ID dataset along with the CompCars dataset to perform a comparative study. The 

GoogleNet trained on the VehicleID dataset performed around 3% better than the one 

performed on the CompCars dataset. On the other hand, the authors of VERI-Wild (Lou 

et al., 2019) dataset proposes a Feature Distance Adversarial Network (FDA-Net) to 

perform vehicle re-identification and performs better than GoogleNet trained on the same 

dataset with an accuracy of 70.84%. 
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CHAPTER 3 

MULTI-VIEW VEHICLE DATASET 

 

Having covered the contributions of previous vehicle datasets and the thought 

process and motivation behind their existence, we will discuss the Multi-View Vehicle 

Dataset (MVVdb) that we propose in this work. In our review of previous literature, we 

have seen that there are generally three types of vehicle datasets, (1) datasets where the 

vehicle images are collected from the internet, (2) datasets where vehicle images are 

taken from surveillance cameras or camera systems simulating a surveillance network, 

(3) a combination of both images from the internet and surveillance images. In this 

section, we will describe our system of generating a dataset from videos collected from 

multiple viewpoints. 

The main motivating factor behind the development of this system are: 

• to design a multi-view dataset for 3D Computer Vision problems 

• to design a dataset with surveillance type images of vehicles 

• to create a blueprint of a method to generate a large-scale dataset without 

significant manual input 

This chapter will detail the development and the path taken to design this system 

and the dataset. We will go through the core components of this system and explain the 

reason and motivation behind the decisions taken. Evaluation of this dataset and vehicle 

re-identification performed on this dataset will be left for the subsequent chapters. 
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General System Architecture 

One of the main contributions of this work is creating a novel dataset of roadside 

images of vehicles from multiple cameras, simulating a surveillance camera system by 

attaching the cameras on top of tall camera tripods. To capture a single instance of a 

vehicle from multiple angles, the cameras need to be synced together. Only two ways to 

sync video streams from multiple cameras are (1) to start the recording on all cameras 

together, and (2) somehow sync the video streams post-production using an audio or 

visual cue. Since we did not have the resources to use cameras that can be synced during 

the recording of the data, we went for the latter option to sync the video streams in post-

production. Next, we run a region-based convolutional neural network – we opt for Mask 

R-CNN (He et al., 2017) because of the need to generate segmentation masks -- on our 

dataset of videos to perform object localization and detection. Using the bounding boxes 

outputted by the Mask R-CNN, we track and validate if an instance of a vehicle is 

actually the same vehicle or not in two consecutive frames. Additionally, we track the 

motion of a vehicle across frames using optical flow vectors to validate the deduction 

made from the bounding boxes. Since our dataset is a multi-view dataset, we must not 

only track and validate that an instance of a vehicle is the same vehicle across multiple 

frames, but we have to also authenticate that an instance of a vehicle is seen from two 

different viewpoints are the same vehicle. To do that, we use both feature point matching 

and bounding box localization. If everything is validated, we save the images from 

multiple viewpoints to that particular instance in the dataset. Figure 3.1 provides a 

flowchart and a high-level overview of this whole process. 
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Figure 3.1 

Flowchart Generalizing the Dataset Generation Method 

 

 

Characteristics of the Videos 

 The dataset proposed by us in this work being a multi-view dataset, we record the 

videos for the dataset generation from 5 different cameras – 4 cameras on tall tripods at 

four corners and a single camera on a shorter tripod at the side to get a side profile of the 

vehicles – as shown in figure 3.2 (a). The cameras are used to record only one particular 

section of the road as shown in figure 3.2 (b). All cameras used to record the roadside 

videos are GoPros, all recording at 4k resolution. The four cameras in the corners are 

attached to tall tripods to replicate a surveillance camera network. The fifth camera on the 

side is placed on a shorter tripod at eye level because its purpose is to capture the side 

profile and register as many distinct features on the vehicle as possible. 

 The road we choose to record is a two-lane, one-direction road. The videos are all 

recorded in Arizona which is sunny and bright most of the year. If there is glare or  
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Figure 3.2 

Visual Representation of the Location of the 5 Cameras 

 
 

(a) (b) 

Note. In this figure, (a) shows a graphical representation of the position of the cameras 

with respect to the road, and (b) shows the exact location of the cameras on the world 

map calculated using Perspective-n-Point. 

 

reflection from the vehicles because of the sunshine, the cameras will miss out on 

important features that can be used by a model to distinguish between two car models.  

To prevent such a circumstance, we made the decision to record the videos early 

morning, when it is not too bright outside. We also chose a section of the road which has 

significant shade from the sun because of trees. However, choosing such a portion of the 

road resulted in a merging side road being in the direct field of view of our cameras as 

shown in figure 3.3. This is especially problematic, because if a vehicle merges from the 

side road to the main road, then it means that the vehicle is only visible from two of our 

cameras, and hence, we do not want that vehicle in our dataset. We take care of such a  
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Figure 3.3 

Viewpoints c0 and c3 Showing a Merging Side Road 

 

(a) 

 

(b) 

Note. Figure (a) showing the side road from the viewpoint c0, (b) showing the side road 

from c3.  
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scenario using an ingenious method and we will be discussing it in the following 

sections. 

After the videos are recorded, we take the data from each camera and put them in 

separate folders dedicated for separate viewpoints. We name the folders after the 

viewpoints, viz., c0, c1, c2, c3, c4, and c5. We will call this the viewpoint ID. We 

recorded around 6 hours of video from each camera and the videos are broken up into 63 

different videos of approximately 6 mins each by the GoPro. The videos are indexed – 

starting from 0 – and named with the viewpoint it was captured from, followed by an 

underscore and the index (e.g., a video indexed 6th from the viewpoint c1 is named c1_6). 

We will call this the video ID. An image taken from a video will be named after the 

viewpoint ID, video ID, and the frame number (frame ID) – all separate by underscores. 

That will be called the vehicle’s vehicle ID. The naming structure is shown in figure 3.4. 

 

Figure 3.4 

Showing the Naming Hierarchy of the Files 
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Since we could not use cameras which were self-synced, we use a visual cue to 

sync the video streams in post-production. We use a torch and flash its light so that it is 

visible from all cameras simultaneously. Then we write a program to run the separate 

videos frame by frame using OpenCV and note down the frame numbers on which the 

flashlight was turned on in each viewpoint. We consider the viewpoint c0 to be the 

reference viewpoint because if a vehicle is visible from viewpoint c0, then it is visible 

from all the other viewpoints. Using c0 as the reference, we write a program to calculate 

what the video ID and the frame ID is – of frame 0 of a given video in viewpoint ID c0 – 

in the other viewpoints. For example, frame ID 0 of video ID c0_5 is frame ID 7054 of 

video ID c1_1 in viewpoint c1, frame ID 4910 of video ID c2_0 in viewpoint c2, frame 

ID 6895 of video ID c3_3 in viewpoint c3, and frame ID 8760 of video ID c4_2 in 

viewpoint c4 (as shown in figure 3.5). 

 

Mask R-CNN and its Results 

 To perform object localization of the vehicles in the dataset of videos, we run a 

Mask R-CNN to predict the location of a detected object and segmentation results 

through bounding boxes and segmentation masks. The model also outputs class labels – 

based on the dataset the pre-trained Mask R-CNN was trained on – along with its 

confidence scores. We load the weight of a pre-trained Mask R-CNN trained on the MS-

COCO (Lin et al., 2014) dataset. MS-COCO has 81 classes where the class for cars is 3 

and the class for trucks is 8. Hence, if Mask R-CNN detects a car or a truck, it outputs 3 

or 8 respectively, its confidence score of that object belonging to that class, bounding box  
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Figure 3.5 

Figure Showing the Frame Correspondence List 
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for localizing the object, and segmentation mask. Before running Mask R-CNN, the 

resolution of the videos is brought down from 4k resolution to 1920x1080. This is 

because running Mask R-CNN on data with a 4k resolution will be too computationally 

expensive. All the outputs are saved in separate “.npy” files at the frame level, e.g., for 

frame 4562 of video 6 of viewpoint c0, there are separate “.npy” files are bounding boxes 

(c0_6_boxes_4562.npy), segmentation masks (c0_6_masks_4562.npy), class labels 

(c0_6_classes_4562.npy), and confidence scores (c0_6_scores_4562.npy). Saving the 

outputs in separate files was one of the mistakes that we did. Each video is around 6 mins 

long, has approximately 10,000 frames. If there are four outputs in separate files for each 

frame then that is 10,000 times 4, 40,000 files for one video. And we have 63 videos – 

that is a lot of files. The whole dataset of Mask R-CNN outputs amounted to around 500 

gigabytes. We used a 5 TB Western Digital Elements external hard disk to save all the 

data. With a read speed of only 100 MB/s, it created a bottleneck while accessing the data 

for generating the multi-view dataset. Along with that, the fragmentation of data caused 

because of over 1 million files made the data access painfully slow. 

 

Vehicle Tracking Across Multiple Frames 

 To generate the Multi-View Vehicle dataset, we need to group all the images of 

one instance of a vehicle and put them under a single record or folder. For that to be 

possible, we need to track the vehicle across frames and multiple viewpoints. In this 

section, we will only discuss our method to track a vehicle across frames from a single 

viewpoint. In the next section, we will discuss how to do the same across multiple 

viewpoints. 
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We implement an ingenious technique to validate if two detected vehicles in two 

consecutive frames belong to the same instance or not. We apply optical flow to track the 

motion of the vehicle and check bounding box overlapping to infer if vehicles across 

frames are the same vehicle or not. 

Optical Flow 

 If there are two images of an object, optical flow is the apparent motion of the 

object between the two images. Optical flow is represented using a 2D vector field where 

each vector is a displacement vector depicting the motion of a pixel or a feature between 

two images. As illustrated in figure 3.6, if there is a pixel in image H at (x, y) and the 

same pixel in image I is at (x+u, y+v), then the optical flow is (u, v). 

 For many years researchers have been trying to solve the equation for u and v and 

the Lucas-Kanade method is the most popular one. In this work we are using the Lucas-

Kanade method of optical flow. The Lucas-Kanade method assumes that the neighboring 

pixels around a feature point will have the same motion. If there is a feature point on an 

image, the Lucas-Kanade method takes a 3x3 grid around the feature point and assumes 

that the 9 points will have the same motion. 

 We use OpenCV’s calcOpticalFlowPyrLK() to calculate the optical flow of a 

couple of feature points of a vehicle. We use OpenCV’s goodFeaturesToTrack() – which 

finds the n strongest feature points in an image using the Shi-Tomasi corner point 

detector – to detect good features for tracking. Since most of the area of frame is  
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Figure 3.6 

Optical Flow of a Pixel Between Two Images 

 

 

mostly a constant background, we do not want to extract features in these areas to track 

for optical flow – we are only interested to track feature points on a vehicle. Hence, we us 

the bounding boxes around the vehicles predicted by the Mask R-CNN and use those 

bounding boxes as region of interest. For a given frame, we get the bounding box of that 

frame, add a padding around the box, and then use that area as our region of interest to 

extract feature points using the Shi-Tomasi corner point detector. We need to add 

padding around a bounding box because not all the predicted bounding boxes perfectly 

encapsulate the vehicles, some bounding boxes cut through the front part or the rear part 

of the vehicles. We use the region of interest to crop out the vehicle from the image, 

extract feature points using the Shi-Tomasi corner point detector and add the offset to the 

feature point coordinates to translate those points to the whole image (as shown in figure 

3.7). 

We get the first frame, detect feature points using the Shi-Tomasi corner detector, 

run a loop to get consecutive frames, detect their feature points, and calculate the optical 
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Figure 3.7 

Flowchart of Shi-Tomasi Corner Detector in ROI 

 

 

flow of the feature points between the two frames. We first attempt to calculate the 

optical flow by extracting features from the vehicle image, but the algorithm has a hard 

time to track the feature across frames (as shown in figure 3.8). Alternatively, we 

performed optical flow on the segmentation masks which were much easier to track 

across frames as shown in figure 3.9. Although the Shi-Tomasi corner detector only 

detects feature points from the edges of the segmentation masks, we do not need the 

feature points to be more extensive than that cause we are only using the features and the 

optical flow to validate that two vehicles on two consecutive frames are indeed the same 

vehicle. 

 We generate the segmentation mask binary images by first making the image a 

single channel image and assign the bit value 0 to black out the whole image. Then we 
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Figure 3.8 

Calculating Optical Flow using Feature Points from Vehicle Images 

 

 

access the npy file for the segmentation mask of that given frame and then traverse it to 

access the index of the pixel where to assign the bit value 1 to make it white. After 

traversing the whole npy while we are left with a binary image where the background is 

black and the vehicle segmentation is white. We use this binary image to detect the edges 

of the segmentation mask and track it across frames using Lucas-Kanade optical flow. If 

two consecutive images have notable optical flow and preserves significant features 

across two frames, then it is the same vehicle. Although we can validate it is the same 

vehicle, we cannot localize the vehicle using the feature points in a single frame. It is 

necessary to localize to make sure we do not include the vehicles from the side roads in 

our dataset. For that we will be using the bounding box.  
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Figure 3.9 

Calculating Optical Flow using Feature Points from Segmentation Masks 

 

 

Bounding Box Localization & Overlap for Frames 

 In this subsection we will first discuss how we are using bounding boxes to 

validate if a vehicle in two consecutive frames is the same vehicle or not. Later on, we 

will discuss how we validate across multiple viewpoints. 

 We use the bounding boxes generated by Mask R-CNN to check for bounding 

box overlap to infer if vehicles in consecutive frames are the same vehicle or not. As 

illustrated in figure 3.10, if a vehicle moves across multiple consecutive frames, then 

there will be significant bounding box overlap. We calculate the intersection over union 

(IoU) of two bounding boxes from two consecutive frames, and if the IoU is over 0.45, 

we consider it to be a significant overlap and classify them together. Intersection over 

union is calculated by first calculating the area of intersection of two boxes and then 

dividing the intersection with the calculated union of the boxes (as shown in figure 3.11). 

 There are other strategies to further enforce our dataset and make it robust. As 

you can see in figure 3.12, there are scenarios where the vehicle is entering or exiting the 

frame and partially out of frame, but the Mask R-CNN sometimes still localizes the 
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Figure 3.10 

Progression of a Vehicle and its Bounding Box Across Three Consecutive Frames 
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Figure 3.11 

Calculating Intersection Over Union 

 

  

vehicle and predicts a bounding box. We do not want these vehicle images in our 

MVVdb dataset because if someone intends to use our dataset for 3D object 

reconstruction from 2D the frame. We use the pixel coordinates of the bounding boxes to 

enforce that we do not consider the images where the vehicle is too close to the edges, 

e.g., for viewpoint c0, if the corners of the bounding boxes are not at least 30 pixels away 

from the edge of the frame, then we do not consider that vehicle image in our dataset. 

Additionally, we also use bounding box pixel coordinates to eliminate vehicle 

instances we do not want in our MVVdb dataset. As mentioned earlier, there is a side 

road in the field of view of some of our cameras. We do not want the vehicles parked on 

that road or driving down that road (figure 3.13 (a)) to be included in our dataset because 

then it will not be a multi-view dataset – since the vehicle will not be visible from all the 

cameras. We contemplated to programmatically blackout some pixel regions (as shown in 

figure 3.13 (b)), but then there is a chance that it will also blackout some of the bigger  
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Figure 3.12 

Mask R-CNN Localizing Vehicle Even When Vehicle is Partially Out of Frame 

  

(a) (b) 

Note. Figure (a) shows a Mask R-CNN localization for a vehicle partially out of frame 

when entering a frame, (b) same for a vehicle exiting a frame. 

 

vehicles travelling on our main road. Taking the viewpoint c0 as example, to tackle this 

problem we measured the x coordinate of the region where the side road is merging on to 

the main road and put a condition that if the lower right bounding box corner of any 

vehicle is above that x coordinate, we will not consider that vehicle in our dataset. 

 The final challenge is to tackle the problem of occlusion which is an easy fix. For 

a single frame, if there are two bounding boxes that overlap, then we ignore those two 

vehicles. Since the bounding boxes do not perfectly encapsulate a vehicle but extends out 

in most cases, we do not classify it to be occlusion for any IoU over 0.0, but only if it is 

over a very small value of 0.05.   



  38 

Figure 3.13 

Frames From Viewpoint c0 Showing the Side Road 

 

(a) 

 

(b) 

Note. In the above images, (a) shows a car driving down the side road, and (b) shows the 

side road blacked out. 

 

 



  39 

Vehicle Tracking Across Multiple Viewpoints 

 In the previous section we discussed how to track a vehicle across multiple 

consecutive frames to validate if that vehicle is indeed one single instance or not. 

Similarly, in this section we will discuss our method of validating the same but across 

multiple viewpoints. Validating such is important because, as shown in figure 3.14, if 

there are two vehicles in a single frame visible from multiple viewpoints, then our 

automated dataset generation system needs to differentiate between the two in order to 

build a multi-view dataset. In this section we will discuss how we achieve that. 

 

Feature Matching 

Feature matching is defined as extracting interesting features and descriptors from 

an image and establishing preliminary matches with features extracted from another or 

 

Figure 3.14 

Two Vehicles in a Single Frame From Viewpoint c2 
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multiple other images. Feature matching is used in many Computer Vision problems e.g., 

stereo calibration, object tracking. In this work, we will be using feature matching to 

extract relevant features of a vehicle from two different viewpoints and then try to match 

those features to validate if they are actually the same vehicle or not. 

To extract the feature points, we use the ORB (Oriented FAST and Rotated 

BRIEF) (Rublee et al., 2011). The ORB detector also generates binary string descriptors 

of these extracted features that can be used to differentiate one feature from another. 

ORB generates local descriptors which only gives a concise representation of the feature 

point’s local neighborhood. We use the ORB detector instead of SIFT and SURF because 

the latter two algorithms are patented. Also, ORB works as good as SIFT and better than 

SURF while being substantially faster than both of them. 

We detect the feature points and compute the descriptors using ORB. Our next 

step is to match the local descriptors of two images to see which feature points exists in 

both the images. We use the Brute-Force matcher to match the local descriptors which, as 

the name suggests, is a brute force method of matching descriptors. Hamming distance is 

used to match the descriptors as ORB generates binary string descriptors. We find the 

best matches and then sort the matches in an ascending order of distance. Finally, we 

check if the top k matches are below a certain threshold of distance; if they are, then are 

classified as the same vehicle. 

However, using feature matching does not always give us favorable results. If 

there are two vehicles in a frame of similar shape and color, Brute-Force matcher 

struggled to match the ORB feature points. To use as a support when ORB feature 
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matching is not producing favorable results, we use the position of the bounding box in a 

frame to determine if a vehicle in two separate viewpoints is the same vehicle or not.  

 

Bounding Box Localization for Multiple Viewpoints 

 In this subsection, we will discuss how we are using bounding boxes to validate if 

a vehicle seen from two different viewpoints is the same vehicle or not. To perform the 

validation, we have a simple solution. From viewpoint c2, we first get to see the vehicle 

before it is visible from any other viewpoint. Once it is visible from c2, it is inserted into 

a dynamic 2D data structure as shown in figure 3.15 – where a dynamic array contains 

another array (representing all the bounding boxes of a vehicle) of length 5, each index 

representing each viewpoint, where all the values are initialized with null. If there is only 

one vehicle visible from c2, when the same vehicle starts to get into the field of view of 

other cameras, then we simply add the bounding box of the vehicle to the already existing 

array representing the vehicle. But, if two cars are driving really close to each other, then 

there may be a possible scenario that two vehicles are visible from the viewpoint c2 

before they are visible from the other viewpoints. If that is the scenario, then when the 

first vehicle enters the field of view of another camera for the first time, there’s a 

dilemma of which array to add the bounding box to. To resolve this dilemma, we simply 

check which bounding box that is visible from c2 is ahead by comparing the coordinates 

of the bounding boxes. Whichever vehicle is ahead, we add the first instance seen from 

the other viewpoints to that array. For example, let us say we have two vehicles v1 and v2 

visible from viewpoint c2, and no vehicles are visible from any of the other viewpoints. 

As we progress in time, a vehicle will begin to appear in another viewpoint, let us say 
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that viewpoint is c1. So, the question arises if the vehicle visible from c1 is v1 or v2. We 

know that whichever vehicle is ahead in the corresponding frame in c2 will be the first 

vehicle that will be visible from another viewpoint, c1 in this example. Therefore, we 

compare the position of the bounding boxes in c2 to check which vehicle is ahead, and 

then we assign the vehicle visible from c1 to that instance. 

 

Figure 3.15 

Dynamic 2D Data Structure Representing Vehicle Instances 
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CHAPTER 4 

VEHICLE RE-IDENTIFICATION 

 

The main contribution of our work is the proposal of a novel multi-view vehicle 

dataset (MVVdb). In this chapter, to help showcase how our MVVdb dataset stacks up 

against real-world challenges, we attempt to solve the vision problem of vehicle re-

identification. In the following sections, we will first discuss what a re-identification 

problem is and its nuances. Followed by that, we will talk about our approach to tackling 

the problem by training a deep neural network. We will go through the details of the 

neural network and lastly, talk about our training strategy. 

 

Problem Summary 

 There has been an explosion in the amount of data on the internet because of 

modern technology – especially image data. There has been an exponential growth in the 

number of cameras out there in the world, from more widespread surveillance cameras to 

webcams on all our laptops – all of us even walk around with cameras in our pockets that 

come with our mobile phone. With this sudden increase in the accessibility of cameras, 

most of the data that is getting captured through these devices is ending up on the internet 

for a variety of reasons. One of the biggest reasons being social media. People nowadays 

are able to capture every moment of their lives through a camera and share it will 

millions of people owing to social media. Other than that, online shopping has emerged 

in modern times and is preferred more over brick-and-mortar stores. With the millions of 

items currently getting sold online, comes millions of more images getting uploaded to 
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the internet. As a researcher, the best part being all this data is publicly available and can 

be accessed by anyone. Additionally, the use of image data is also widespread in 

industries like banking and surveillance, as already mentioned. With this increasing 

amount of image data comes the problem of image search. For example, if someone sees 

a dress that they like and wants to buy the same or similar dress online, they will want to 

perform a search on the database of an online e-commerce website. Let us take another 

example – a bank teller receives a fraudulent check and wants to confirm if they have 

received any similar fraudulent checks in the past by performing an image retrieval of all 

the similar checks. So, this is what an image retrieval problem is. 

 Image retrieval, in its most barebones form, is the problem of finding similar 

images from a database of images if given a query image. The most traditional forms of 

image retrieval include finding similarity in metadata such as captioning or keywords and 

calculating a similarity measure between such. However, in that case it still 

fundamentally remains a Natural Language Processing (NLP) problem rather than a 

vision problem. If image retrieval really needs to be practical, then it needs to be solved 

as a vision problem because majority of the image data that exists today are not 

annotated. That is what we aim to solve in this work. Vehicle re-identification is 

essentially an image retrieval problem. It is nothing but searching for a specific vehicle 

from a database of vehicle images when given a query vehicle image, but this time by 

computing similarities between inherent visual cues instead of finding similarities in 

annotated metadata. 

 Similarly, vehicle re-identification can also be described in terms of a vehicle 

make and model recognition problem. In vehicle make and model recognition, we train a 
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model on a labelled (make and model) dataset. After training, given an image, the model 

should be able to classify the image with its correct make and model. Our vehicle re-

identification problem is essentially the same problem but without a dataset that has been 

labelled with the vehicle’s make and model. 

 

Approach towards Vehicle Re-Identification 

 Our approach towards solving the vehicle re-identification problem is by training 

a deep neural network. For this task, we chose to use a ResNet-50 especially because of 

its performance on the ImageNet dataset. We believe that the pre-trained weights of the 

ResNet trained using the ImageNet should correlate well with our multi-view vehicle 

dataset. Our vehicle re-identification is simulating the problem scenario in surveillance 

system to identify a vehicle given the vehicle has been seen before. Since it is re-

identification, in a practical setting, we should be re-identifying a vehicle seen through a 

camera that has been seen before through other cameras. So, for the training set and 

validation set split, we randomly select four viewpoints out of the five in our dataset for 

every individual vehicle instance and use it as our training set. Evidently, the last fifth 

viewpoint the model is not trained on is used as our validation set. We choose to fine-

tune the pre-trained model by unfreezing all the layers and retrain the whole model again, 

end to end, with a very low learning rate. 
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ResNet Architecture 

 Since AlexNet (Krizhevsky et al., 2012), there has been a trend of going deeper 

with the layers. The more layers an input goes through, a model can extract more 

complex features and enrich the level of the features (shown in figure 4.1). Previous 

ImageNet models that came before Resnet were between 16 to 30 layers which made 

them capable in extracting high level features. However, with a deeper network comes 

the problem of vanishing gradient. To update the weights of a model, we need to use 

 

Figure 4.1 

Illustration Showing How a Deep Network Extracts Features 
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backpropagation while using the chain rule of derivative calculus. The repeated 

multiplications because of the chain rule throughout the many layers of a deep neural 

network may minimize the gradient drastically. 

 ResNet brought forward a solution to the vanishing gradient problem by 

introducing Residual Blocks which uses skip connections (shown in figure 4.2). A 

residual block takes the input of a convolution block and bypasses it or skips the layers of 

the convolution block to the output of the block. Then it is known as a residual block. 

This is done because we do not want the gradient to minimize exponentially and 

potentially causing the problem of a vanishing gradient. To do such, we want to add we 

add the input x to the output of the convolutional block f(x), which is then we feed to the 

next layer as an input y. 

 

Figure 4.2 

Residual Block Architecture (He et al., 2016) 
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y = f(x) + x 

Now, our objective is to skip past the input and feed it as an input to our next convolution 

block. Hence, to do that we want the value of the loss function f(x) to be 0. 

f(x) = 0 

After all the convolutions, the output of the last layer is passed through a global average 

pooling layer which then feeds the output to a dense fully connected network. 

 In this work, we are using a ResNet-50 which is 50 layers deep. Although it is 

three times deeper than a VGG16 (Simonyan et al., 2014), ResNet still has lesser 

parameters, which means it is faster. The architecture of ResNet is shown in figure 4.3. 

 

Training Approaches 

 As mentioned previously, the ResNet model is initialized with pre-trained weight 

from its training on the ImageNet dataset. Instead of keeping the previous convolutional 

layers frozen, we fine-tune the model by unfreezing all the layers and training on our 

MVVdb dataset. Although we assume the ImageNet weights will transfer nicely to our 

dataset, we still opt to unfreeze the layers for fine-tuning to make the model adaptable to 

the high-level features of our dataset. Also, the surveillance type camera angle of our 

dataset is novel to the ImageNet as most vehicle images there are captured from eye 

level. We could not train the model on the whole MVVdb dataset generated due to 

hardware limitations. The dataset was stored on an external hard drive with a read speed 

much slower than what needed. Additionally, the million plus files containing the output 

of the Mask R-CNN caused data fragmentation and worsened the read speed drastically,   
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Figure 4.3 

All ResNet Architectures along with ResNet-50 (He et al., 2016) 

 

 

in the process increasing computing complexity. So, we trained our model on a subset of 

our dataset, comprising of 114 instances or classes. 

 Since vehicle images in our dataset are cropped depending on the bounding box, 

the input images to the model are variable-sized input. To tackle that problem, we 

thought about using a Spatial Pooling Layer (SPP) which suggests of using multiple 

pooling layers with different scales between the last convolution layer and the fully 

connected layer instead of just one traditional pooling layer. However, if we implemented 

that, we would not have been able to stack images in batches for batch training and utilize 

the GPU performance. So, instead we opted to pad the images and then to scale down the 

resolution to 224x224. 

 We trained over 100 epochs with 30 as batch size. We opted to use Stochastic 

Gradient Descent (SGD) as our optimizer. We set the learning rate low at 1e-5 with a  
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momentum of 0.9 (table 4.1). In the next chapter we will discuss the results that we 

achieved. 

 

Table 4.1 

Hyperparameters for ResNet-50 

Epoch Batch Size Optimizer Learning Rate Momentum 

100 30 SGD 1e-5 0.9 
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CHAPTER 5 

RESULTS 

 

In this chapter, we will explore the results we achieved when generating the 

MVVdb dataset and when performing vehicle re-identification. In the first section we 

will discuss how our system or algorithm for generating a multi-view dataset works and if 

we are getting favorable results or not. In the following section, we will go over the 

results of our vehicle re-identification and how well a ResNet-50 model performed in that 

task. 

 

MVVdb Results 

 We were able to generate approximately 500 instances for our MVVdb dataset 

from the recorded videos, but only till the 14th video in context of the reference viewpoint 

(c0). We could have generated plenty more instances from our multi-view roadside 

videos, but we could not due to a minor technical error. When the Mask R-CNN was run 

on our videos, for a vehicle within the frame of c0_19, the model predicted a bounding 

box but could not predict a segmentation mask for a specific frame. That resulted in an 

error in our dataset generation algorithm, as our algorithm searches for both the bounding 

box and the segmentation mask. We assume if the dataset is generated for all 62 videos, 

we will have a multi-view dataset of approximately 3000 vehicles. 

 Our algorithm for automatically generating a dataset performed really well most 

of the time. The purpose of this algorithm was to generate a multi-view dataset given a 

multi-view set of videos without any manual input. Although we did not achieve that 
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hundred percent of the time, it still performed as well as expected. However, all the 

hiccups our model faced was not because of the algorithm itself, but because of the 

bounding box localization output produced by the Mask R-CNN. 

For instances of sedans and hatchbacks, Mask R-CNN performed consistently and 

the best. As a result, the instance images of sedans and hatchbacks are also the best 

among the others (as shown in figure 5.1 and figure 5.2 respectively). One of the 

limitations for our MVVdb dataset are pickup trucks, vans, and trucks. The reason is 

mostly because of poor detection and localization by Mask R-CNN. Pickup trucks and 

trucks have unconventional vehicle shapes which are troublesome for the Mask R-CNN. 

As you can see in figure 5.3 that Mask R-CNN struggled to detect this pickup truck 

properly and localize it with its bounding box. However, we can see that Mask R-CNN 

performed well for the instance of a pickup truck in figure 5.4 because of its boxier shape 

due to the metal bars. For the case of trucks, they are too big and take up lot of area in the 

frame for the Mask R-CNN to properly localize it (shown in figure 5.5). However, if a 

truck is far away from the camera and only occupies a smaller area in a frame, Mask R-

CNN performs much better in localizing and predicting a bounding box (figure 5.6). 

Mask R-CNN also failed to properly detect and localize any other big vehicles (e.g., 

SUVs) especially if it is driving down the lane closer to the camera (figure 5.7). 

Poor detection and localization results by Mask R-CNN also effects in the 

fragmentation of the MVVdb dataset. Because of poor detection, when a pickup truck or 

a truck is driving down the section of the road there are a lot of frames in between where 

the Mask R-CNN fails to detect and localize the vehicle. For example, if a vehicle enters 

the frame in frame 0 and is detected by the Mask R-CNN but then fails to detect and 
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localize it again till it reaches frame 4, then our algorithm thinks that the vehicle already 

left the scene, and hence, creates a new instance with only image of the vehicle detected 

at frame 0 and then starts to create a new instance once it detects it again at frame 4.  To 

fix this issue, we eliminated all instances which did not have at least 4 images from all 

the viewpoints. 

 

Vehicle Re-identification Results 

In this work, we attempt to solve the problem of vehicle re-identification using a 

deep neural network with the help of our own created multi-view vehicle dataset, 

MVVdb. We fine-tune a pre-trained ResNet-50 model on our MVVdb dataset over 100 

epochs and a batch size of 30. We also train a ResNet-50 model from scratch on the 

MVVdb dataset and compare the results. 

The pre-trained ResNet converges well before 100 epochs. The pre-trained 

ResNet reaches an accuracy of 98.1% while the ResNet trained from scratch reaches 

78.7%. The pre-trained model achieves a mAP score of 0.942 while the model trained 

from scratch achieves a mAP score of 0.587. The comparative study between the two 

models is showed in figure 5.8. It also shows that the pre-trained ResNet-50 converges 

well before 100 epochs. So, we perform another comparative study, but this time over 30 

epochs, and throw a pre-trained VGG16 model into the mix. The comparative study 

between a pre-trained ResNet-50, a ResNet-50 trained from scratch, and a pre-trained 

VGG16 is shown in figure 5.9. The pre-trained ResNet achieves an accuracy of 95.9% 

with a mAP score of 0.882, while the VGG16 only reaches an accuracy of 29.8% with a 

mAP score of 0.256. On the defense of VGG16, the model has more weights to train than 
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the ResNet-50, so it takes longer to converge. But the results show that the ResNet-50 

was successful in re-identifying a vehicle when seeing from a different viewpoint. All 

comparative results of the accuracy and the mAP score between all the models are listed 

in the table 5.1. 

 

Table 5.1 

Comparative Study of the Accuracy and mAP Scores of the Models 

Epochs Metrics Pre-trained 

RestNet-50 

Scratch 

ResNet-50 

Pre-trained 

VGG16 

100 Epochs Accuracy 0.981 0.787 - 

mAp 0.943 0.587 - 

30 Epochs Accuracy 0.959 0.610 0.298 

mAp 0.882 0.309 0.256 
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CHAPTER 6 

CONCLUSION AND FUTURE DIRECTIONS 

 

In this chapter we will discuss the conclusion of our research and the future 

directions that can be explored. In the first section we will firstly discuss about our 

primary contribution in this work, the MVVdb dataset and our method of generating it 

independently without human intervention. Additionally, we will examine the 

performance of our vehicle re-identification performed with our MVVdb dataset. In the 

section after that, we will discuss the different avenues of research that we or other 

researchers can embark upon taking advantage of our dataset. We will discuss various 

ways we can improve our dataset and make it more robust. Finally, we will carefully look 

at the possible future use cases of our multi-view dataset other than vehicle re-

identification and how it may help to solve further research problems. 

 

Conclusions 

 In this work, we proposed a novel vehicle dataset with images captured from 

multiple viewpoints. Along with that, we also promised an autonomous dataset 

generation algorithm which, if given videos recorded from a camera system similar to the 

one showcased in our work, has the potential to automatically generate a large-scale 

multi-view dataset with minor tweaks to the algorithm as needed. Although we were 

successful in creating and delivering our dataset, we could not generate a dataset as big as 

we expected due to an unprecedented issue. Nonetheless, our work still showed promise 

and demonstrated potential in scaling to generate a large-scale dataset. Our algorithm is 
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reliant on the output and performance of Mask R-CNN or any other localization and 

segmentation model to a great extent. If we can get our hands on a more robust 

localization algorithm, the autonomous dataset generation algorithm will also improve 

consequently. We will discuss one such idea in the next section. 

 We also contributed, in this work, by attempting to solve the vehicle re-

identification problem with the help of a deep neural network. It also acted as a showcase 

of one of the different use cases of our MVVdb dataset. We selected to use a ResNet-50 

as our neural network to tackle this task because of its extraordinary performance on the 

ImageNet dataset. We fine-tuned the ResNet model pre-trained on the ImageNet dataset 

on our multi-view vehicle dataset. We trained the ResNet on only 114 instances or 

classes due to computing complexity. The ResNet performed really well at re-identifying 

vehicles with a top-1 validation accuracy of 98.1% and mean average precision of 0.943. 

 

Future Directions 

 In this section we will discuss different measures that we can take to further 

improve our work and future research directions that can be explored. As discussed in the 

previous section, our autonomous dataset generation algorithm can be vastly improved 

with the help of a better localization and segmentation algorithm. We propose to re-train 

the Mask R-CNN model for future development of this work. For the Mask R-CNN to 

perform better on the MVVdb dataset, it should be re-trained on the same. We can 

manually annotate a subset of our dataset by hand drawing bounding boxes along with 

segmentation masks, and then feed it to a Mask R-CNN to re-train it. The subset should 

be biased towards the kind of vehicles Mask R-CNN performs the worst on (e.g., pickup 
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trucks, vans, trucks). The neural network already performs significantly well on sedans 

and hatchbacks, so annotating and re-training on those will not improve the model by 

much. We should also focus on big vehicles or SUVs or images where the vehicle is 

considerably close to the camera filling up most of the frame. If trained on a subset of 

400 – 500 annotated images, we believe Mask R-CNN will produce substantially better 

output. 

 Other than vehicle re-identification, the MVVdb dataset can also be used for fine-

grained vehicle make and model recognition. Vehicle re-identification and vehicle make 

and model recognition are practically the same problem – the only difference being the 

vehicle re-identification does not need a labelled dataset, while fine-grained vehicle make 

and model does. One can also take our MVVdb dataset and label the instances for fine-

grained vehicle make and model recognition. In our dataset, from viewpoint c2 and c4, 

we can read the license plates of the vehicles. By going through the license plates and 

looking up the make and model of the vehicle registered to that license plate online, we 

can label our dataset. There is also future scope of research in implementing an 

Automated License Plate Reader (ALPR) system – like Ap et al., 2020 – on the MVVdb 

dataset. Other than that, our dataset is ideal for solving 3D vision problems. Our dataset 

can be utilized to generate 3D voxel models from multiple viewpoint images by carving a 

block of voxels. Then by doing a pixel to voxel mapping, we can essentially create a 3D 

model which can be viewed from novel viewpoints. With the help of this textured 3D 

reconstructed voxel models, we can practically synthesize a large-scale dataset from a 

small dataset, essentially solving the problem to data collection. 



  58 

 All in all, there are multiple scopes of improving the dataset proposed. There are 

also various research opportunities that can be explored with the help of our dataset. 
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APPENDIX A 

REFERENCED FIGURES 
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Figure 5.1 

Results for Sedans 
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Figure 5.2 

Results for Hatchbacks 
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Figure 5.3 

Poor Detection Result by Mask R-CNN 
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Figure 5.4 

Proper Detection by Mask R-CNN due to Boxy Silhouette 
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Figure 5.5 

Showing Poor Localization Results by Mask R-CNN for Trucks 
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Figure 5.6 

Localization Results by Mask R-CNN when Bigger Vehicles are Far Away 
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Figure 5.7 

Localization Results by Mask R-CNN for a Big SUV 

 

(a) 

 

(b) 

Note. In the above image (a) showing poor localization result by Mask R-CNN for a big 

SUV when closer to camera, and (b) showing better localization result when farther away 

from camera. 
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Figure 5.8 

Comparative Study Between a Pre-trained vs Scratch ResNet-50 Trained Over 100 

Epochs 
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Figure 5.9 

Comparative Study Between a Pre-trained vs Scratch ResNet-50 vs VGG16 Trained Over 

30 Epochs 
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Table 2.1 

Quantity Distribution of CompCars Dataset 

Viewpoint Number in total Number per model 

Front (F) 18431 10.9 

Rear (R) 13513 8.0 

Side (S) 23551 14.0 

Front-side (FS) 49301 29.2 

Rear-side (RS) 31150 18.5 

 

Note. Numbers of viewpoint images are not balanced among different car models because 

the images of some less popular car models are difficult to collect.
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APPENDIX B 

VEHICLE RE-IDENTIFICATION RESULTS 
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The following are the results the various models achieved when performing 

vehicle re-identification. 

 

Figure A.1 

Pre-trained ResNet-50 Error Over 100 Epochs 

 

 

Figure A.2 

Pre-trained ResNet-50 Loss Over 100 Epochs 

 

Figure A.3 
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Scratch ResNet-50 Error Over 100 Epochs 

 

 

Figure A.4 

Scratch ResNet-50 Loss Over 100 Epochs 
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Figure A.5 

Pre-trained ResNet-50 Error Over 30 Epochs 

 

 

Figure A.6 

Pre-trained ResNet-50 Loss Over 30 Epochs 
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Figure A.7 

Pre-trained VGG16 Error Over 30 Epochs 

 

 

Figure A.8 

Pre-trained VGG16 Loss Over 30 Epochs 
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Figure A.9 

Scratch ResNet-50 Error Over 30 Epochs 

 

 

Figure A.10 

Scratch ResNet-50 Loss Over 30 Epochs 
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APPENDIX C 

LINK TO MVVDB DATASET 
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The dataset for this work is available at 

https://www.dropbox.com/s/9hnq95y1db6kvyg/MVVdb.zip?dl=0  
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APPENDIX D 

LINK TO CODE REPOSITORY 
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The code for this work is available at https://github.com/JonGuha/vehicle-re-

identification 
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