
Human-Aware AI Methods for Active Teaming

by

Sachin Grover

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved July 2022 by the
Graduate Supervisory Committee:

Subbarao Kambhampati, Chair
David Smith

Sidhharth Srivastava
Kurt VanLehn

ARIZONA STATE UNIVERSITY

December 2022

ABSTRACT

The future will be replete with Artificial Intelligence (AI) based agents closely col-

laborating with humans. Although it is challenging to construct such systems for

real-world conditions, the Intelligent Tutoring System (ITS) community has proposed

several techniques to work closely with students. However, there is a need to extend

these systems outside the controlled environment of the classroom. More recently,

Human-Aware Planning (HAP) community has developed generalized AI techniques

for collaborating with humans and providing personalized support or guidance to the

collaborators. In this thesis, the take learning from the ITS community is extend

to construct such human-aware systems for real-world domains and evaluate them

with real stakeholders. First, the applicability of HAP to ITS is demonstrated, by

modeling the behavior in a classroom and a state-of-the-art tutoring system called

Dragoon. Then these techniques are extended to provide decision support to a human

teammate and evaluate the effectiveness of the framework through ablation studies

to support students in constructing their plan of study (iPOS). The results show that

these techniques are helpful and can support users in their tasks. In the third section

of the thesis, an ITS scenario of asking questions (or problems) in active environ-

ments is modeled by constructing questions to elicit a human teammate’s model of

understanding. The framework is evaluated through a user study, where the results

show that the queries can be used for eliciting the human teammate’s mental model.

i

In memory of the strongest person I knew my Grand-mother

ii

ACKNOWLEDGEMENTS

A friend once told me, that no human is on an island. One’s achievement is an out-

come of one’s hardwork and unconditional love and support from many people. In

that regard I feel lucky to be raised by a loving family, and have had many friends

who have supported me directly or indirectly during my degree. During my graduate

studies I believe I have learned the most important lessons of managing work life

balance, handle tough situations when results are not positive, stay motivated and

navigate mental fitness for working daily and not just in small bursts. Most impor-

tantly I have learnt about things that make me happy. Before I thank people I would

like to give special thanks to my place in the corner at Yochan lab. It was my hideout

from the world and problems, where I felt safe and stayed motivated throughout my

graduate years.

Professor (only because he doesn’t like us to call that) Subbarao Kambhampati,

my advisor has had the biggest impact on my degree. His honest and direct feedback

has helped me improve my understanding of the subject and life in general. Over the

years I have closely observed him to understand how one critically analyzes a problem

from different perspectives, and how the idea of Science is to argue why something will

not work, instead of why something will work. As pessimistic it sounds it’s important

to understand this as I believe one grows only when they can analyze a solution to

understand it’s limitations.

I came from India, to learn, without a clear idea of what I wanted to learn. Over

the years, I worked closely with all my committee members. Dr. Kurt VanLehn

supported me in my early years and was my advisor during my Masters degree.The

only thing I knew was writing e-commerce websites wasn’t what I wanted to keep

doing. He had an impact on my understanding of research, what it can lead to and

what does it mean to pursue research for a long time. Dr. Siddharth Srivastava

iii

and Dr. David Smith supported me in broadening my perspective in the area of task

planning. Dr. Srivastava helped me developed an understanding of various techniques

through multi-agent planning problems (which I am still supposed to publish), and

Dr. Smith guided me in modeling complex problems and I continue to use these

learnings in my recent projects.

Discussions are central part of any Ph.D. degree, and one’s labmates play an

important role to create an understanding of research problems. When I joined I

was able to work closely with Tathagata, Sailik and Sarath. The projects done with

them formed some of the initial work that I presented in my thesis. Working with

them and several discussions with them and other senior student Anagha shaped

my understanding of research in general as well human-aware AI specific problems.

They helped me understand the literature better and that helped me manage different

research problems. Zahra, Alberto and Sriram joined the lab an year or two after me,

and with them I learned to grow as a researcher. They have been my lunch partner

for last four years, where we would wait for each other to join us so that we can

eat together and catch up on the day’s events. Our discussions would usually start

with the ”how is it going?” and from there it could take any turn under the sun.

Post covid times there have been numerous parties which would be deeply missed.

From Yantian, I learned the art of being disciplined and stay motivated for your

work. I wish Utkarsh, Lin, Karthik and Sidhhant luck for their research, and want to

thank them as our lab lunches became all the more interesting because of the happy

environment that has persisted in the lab.

Throughout my Ph.D. I have had immense support of my friends and family

during those times. Their presence (and in some cases followed by their absence)

has played an important role in my life and shape the person I am today. Arun has

been a friend who has been around from Day 1 of my Masters degree and his support

iv

has been a constant. Pulkit, Arun, Vignesh and Bahar were not directly involved in

any of the projects for my thesis, but I was able to collaborate with them and do

some interesting projects. Most of them didn’t convert to a publication, however,

some of these projects helped broaden my understanding and I learnt to be a better

teammate. I went through a tough time during my Ph.D. due to some personal

life events, but I was always able to depend on Sailik, Anurag, Rohan, Anagha,

Mansooreh, Jayanth, Harshini, Edi, Pulkit, Zahra, Sriram, Anuj, Shrinvas, Kushal,

Khimya, Shruti, Prateek, to lend an ear and support me to cope with whatever I was

going through. I have been lucky to have them around, as they usually would come

by and check up regularly whether I was alright and on many days there support kept

me trying harder to be a better person. I want to thank my roommates Abinash,

Prashant, Shatadal, Anurag, Aniket, Tushar, Harshini, Jayanth, Aman and Hitesh

over the years for putting up with my mood swings and hot-headedness.

Some of my friends are from my childhood, school or even undergraduate days,

and they have also played an important role as they motivate me daily to be the best

version of myself and strive to do more every moment of my life. I have known Anuj

and Kushal from my high-school when we prepared for competitive exams in India.

They are still around and I can always dependent on them to hear honest feedback

and even a scolding if I need/deserve one. Balli, Vinay, Anupam, Ganesh, Shrinivas,

Karan, Vaibhav, Jagdeep, Smriti, Abinash, Shatadal, Ravi, Prashant are some of my

friends from my undergraduate college, with whom I have lived in a hostel, studied

and had innumerable fun nights. Prashant, Ravi, Abinash, Shatadal and Shrinivas

were also around during my ASU days and with them I could continue to closely

mingle and having them around gave me a very strong support system for every

situation.

v

I would also like to thank my mother, and my late father, who taught me to be

empathetic person and have a never say die attitude. My elder brothers Naveen and

Kapil from whom I learned the art of critical analysis and having arguments. My late

grand-mother was the beacon of strength, whose love and care nurtured me to be a

good person. I consider myself lucky to have Sahiba as my wife, who constantly argues

that she doesn’t understand my work but yet hasn’t made an effort to understand it.

As a last effort I have written my ideas in a thesis, let’s see if she reads it this time

around. I would also like to thank my father and mother in law, who in so little time

have shown me so much love and care, that they put me at ease about facing the

future as one family. I also would like to thank my cousins Renu, Sushma, Poonam,

Sonia, Monika, Nisha, Sunny, Kaittkee for their impact on my life. I want to wish

luck to the next generation of the family Pavit, Manas, Advika, Jay, Krisha, Tushar,

Kanav, Saksham, Shagun, Anurag.

Finally I would like to thank Kobe Bryant. I grew up watching him play Bas-

ketball, and all the stories about his work ethic. I have tried to emulate that single

minded work-ethic and pushing the boundaries of what I know and understand. This

thesis is only the first step to the future where I plan to grow and keep working hard

everyday and dwell into the unknown world of Science and Research.

vi

TABLE OF CONTENTS

Page

LIST OF TABLES . xi

LIST OF FIGURES . xii

CHAPTER

1 INTRODUCTION . 1

1.1 Human-Aware Planning . 4

1.2 Intelligent Tutoring System . 7

1.3 HAAI and ITS for the Future – Contributions . 9

2 AI TECHNIQUES FOR ITS – A LITERATURE SURVEY 11

2.1 Fundamental Theory . 11

2.2 ITS – Construction and Types . 16

2.2.1 Modules of an ITS . 16

2.2.2 Knowledge Representation . 17

2.2.3 Behavior of an ITS . 18

2.2.4 Examples of ITS . 22

2.3 Student Modelling . 25

2.3.1 Item Response Theory . 25

2.3.2 Bayesian Knowledge Tracing . 26

2.3.3 Deep Knowledge Tracing . 28

2.4 Use of AI Techniques in ITS . 29

2.4.1 Task Level Adaptivity . 29

2.4.2 Step Level Adaptivity . 32

2.5 Recent Developments . 34

3 WHAT CAN AUTOMATED PLANNING AND HAAI DO FOR ITS?. . . 36

3.1 Introduction . 36

vii

CHAPTER Page

3.1.1 Learning 2.0 . 37

3.1.2 A Brief History of ITS and AI . 38

3.1.3 What can Planning Bring to the Table? 40

3.2 Background . 42

3.3 ITS as Planning . 45

3.3.1 Class Configuration . 46

3.3.2 Tips and Hints . 47

3.3.3 On-demand Curriculum Generation . 49

3.3.4 The Jigsaw Problem . 51

3.4 Introducing Dragoon . 53

3.4.1 The Isle Royale Workbook . 54

3.5 ITS as Planning in Action . 56

3.5.1 Tips and Hints (c.f. Section 3.3.2) . 58

3.5.2 On-demand Curriculum Generation (c.f. Section 3.3.3) 59

3.5.3 Jigsaw Problem (c.f. Section 3.3.4) . 63

3.5.4 Conclusion . 63

4 IPASS – ACTIVE DECISION SUPPORT FOR STUDENTS 64

4.1 Introduction . 64

4.2 Design Principles . 69

4.2.1 The iPOS Domain and Interface . 72

4.2.2 iPass– Decision Support Components . 74

4.3 Aim of the Study . 77

4.4 Experimental Results . 79

4.4.1 Hypothesis H1 . 81

viii

CHAPTER Page

4.4.2 Hypothesis H2 . 83

4.4.3 Hypothesis H3 . 84

4.4.4 Qualitative Results . 86

4.5 Discussion and Future Work . 89

4.6 Conclusion . 91

5 MODEL ELICITATION THROUGH DIRECT QUESTIONING 93

5.1 Background . 98

5.2 Problem Formulation . 101

5.3 Distinguishing Query . 105

5.3.1 Properties . 107

5.3.2 Proposition Isolation Principle (PIP) . 110

5.4 Decreasing Questions . 114

5.5 Different Types of Queries . 116

5.6 Proposed Solution . 119

5.7 Empirical Evaluation. 122

5.8 Related Work . 125

5.9 Conclusion and Future Work . 128

6 MAY I ASK A QUESTION – USER STUDY . 129

6.1 Warehouse Domain – Squeaky & Sam Team-up 132

6.2 Query Generation Process – Review . 134

6.3 May I Ask a Question – User Interface . 137

6.4 User Study – Sam Comes to Help . 139

6.4.1 Conditions . 140

6.4.2 Aim of the Study . 141

ix

CHAPTER Page

6.4.3 Procedure . 143

6.5 Experimental Results . 148

6.6 Discussion . 153

6.7 Conclusion . 156

7 CONCLUSION . 158

7.1 Future Work . 159

REFERENCES . 161

APPENDIX

A IPASS USER STUDY DOCUMENTS . 179

B MAY I ASK A QUESTION USER STUDY DOCUMENTS 187

C GLOSSARY OF TERMS . 194

D IRB INFORMATION FOR USER STUDIES . 196

x

LIST OF TABLES

Table Page

4.1 Different Decision Support Components Present in iPass System where

Green Tick Mark Means that the Support Component is Part of the

System and Red Cross Mark Means that the Support Component is

Not Part of the Current Version of the System. 76

4.2 Summary of Results . 87

5.1 Comparison of Different Types of Queries. 123

5.2 Effect of Ie on the Queries for Rover Domain. 124

6.1 Summary about Different Types of Queries. Validation and Planning

Query Provide Information About One Rule, Even Though the User

Needs to Solve the Problem. Template Query is Useful to Derive In-

formation About More than One Rule. No. of Rules are the Rules for

Which the Query is Generated by the Robot. 136

6.2 T-test Value Matrix for Each Query Comparison. The α Value 0.05,

and With Bonferroni Correction it is 0.05/3 = 0.0167. 151

6.3 Summary of Results for the May I Ask a Question User Study. 154

A.1 List of Courses That were Available for the Students. Students Could

Take all the Courses Except Special Courses such as CSE 591 and CSE

598 Courses for Their Masters Degree. 185

A.2 List of Professors and Their Specialization. The Specialization Should

Match the Specialization a Student is Working Towards in Their Thesis.186

D.1 IRB Details for the User Studies . 198

xi

LIST OF FIGURES

Figure Page

1.1 Depicts the Human-Aware AI Setting. MH is the Human’s Model,

MR Represents the Robot’s (or Planner, Software Agent’s) Model and

MR
h Represent Human’s Understanding of the Robot’s Model MR.

Human-Aware AI Proposes that Automated Agent should Use MR
h

While Collaborating With the Human. This Framework can be Ex-

tended to Include Robot’s Understanding of the Human’s Model MR
h

for Collaborating With an Active Human-Teammate. 4

1.2 In ITS Setting, Same Human Works with Different Tutoring Systems,

Where None of them Tend to Incorporate the Student’s Understanding

of the System. Instead, They Ensure the Learning and Understanding

of the Specific Topic through Interaction. 6

3.1 Illustration of the Different Stages of a “Plan” Being Executed by a

Student in Dragoon – (1) The Empty Interface at the Start of the

Problem (Initial State); (2) The First Node Being Completed; (2) The

Second Node being Created; and Finally (3) The Problem Being Com-

pleted with the Feedback on the Graph. 53

3.2 Response of PVM to the Correct and Incorrect or Incomplete Attempts

in the Isle-3 Problem. 57

3.3 The Output of the PRM in the Isle-3 Problem Which can be Solved

in Two Separate Ways. Here the Student Seemed to have Decided to

Work on the exponential decay Schema. 59

3.4 The 35 State Landmarks Generated by the LGM for the Isle-3 Problem. 60

3.5 On-demand Curriculum Generated by the PEM. This is the Smallest

Change to the Student Model Required to Solve the Isle-4 Problem. . . . 60

xii

Figure Page

3.6 Different Plans and Associated Model Updates Generated by the PEM(α)

Based on the α-Hyperparameter. For a High Value of α the Curricu-

lum is of Size 3 After Which the Problem can be Solved in 17 Steps.

With a Lower Value of α, the Problem can be Solved With a Longer

20 Step Plan. 61

3.7 Group Versus Individual Curriculum Lengths with Increasing Class Size. 62

3.8 Group Versus Individual Curriculum Lengths in Different Class Con-

figurations. 62

4.1 Planning for Decision Support Must Consider Difference in Models

Between the Planner and the Human. 66

4.2 Degrees of Automation of the Various Stages of Decision Support, and

the Role of iPass In It. 67

4.3 Illustration of the iPass Interface. 72

4.4 Illustration of Plan Validation, Where a Student Adds a Course and

Checks Whether the Course can be Taken at the Beginning in the First

Semester. VAL Provides Feedback to the User, Whether Taking the

Action in a Particular is Possible or Not. 74

4.5 Illustration of Plan Suggestion and Explanation. Actions in Green have

been Added by the Planner and Actions in Black were Added by the

User. It Follows from Validation Scenario Where the User First Added

the “Artificial Intelligence” Course and Then Asks for Suggestion of a

Complete Plan With It. Explanation is Shown Using the Box. 75

xiii

Figure Page

4.6 Average Time Taken (Along with the Standard Deviation) by a Par-

ticipant to Complete the Two Parts of the Study for Each Condition

C1
i and C2

i . 79

4.7 Average Number of Times Participants Added, Deleted, Rearranged

Courses or Clicked ‘Check’ While Making an iPOS for All the Condi-

tions C1
i . 80

4.8 Average Number of Times ‘Validate’ was Clicked in Condition C1
1 and

C1
3 . 81

4.9 Average Number of Times ‘Suggest’ was Clicked in Conditions C1
2 and

C1
3 . 81

4.10 Time Difference ∆T (Ci) Between Two Tasks C1
i and C2

i of iPOS Plan-

ning for Every Condition Ci. 83

4.11 Time Taken by Experienced (in Yellow) and Non-Experienced (in Blue)

Users to Make the First iPOS (C1
i). 84

4.12 Feedback of Non-Experienced Users About the Statement ‘Q1: The

Planning Task was Pretty Simple for Me’ For Each Condition C1
i 85

4.13 Time Difference for Subjective ‘Q3: I Am Happy With the Final iPOS’

For Conditions C1
i . 85

4.14 User Agreement Metrics for the Statement ‘Q2: The Feedback From

the Interface Helped the iPOS Making Process’ for Each Condition C1
i . 86

xiv

Figure Page

4.15 Average Word Count for Every Feedback Question, with Error Bars

Showing ±1 Standard Deviation for the Word Count. “Liked” is 5

Things you Liked About your iPOS, “Didn’t Like” is 5 Things you

Didn’t Like About your iPOS and “What More” is What Other Fea-

tures of the Interface you would Like to Have. 87

5.1 A Human Teammate is Working on One of the Robots and has an

UnderstandingMH of Robot’s Model (M). When the Company Buys

a New Robot (Model M′) but the Human Teammate’s Model MH

Does not Change and can Cause Damage to the Robot or Effect the

Collaboration as a Team. 95

6.1 Simplified Warehouse Domain for Explaining Various Capabilities of

the Robot Squeaky. 133

6.2 Illustration of the May I Ask a Question Interface for Constructing

the Plan, Used for Planning and Template Queries. 137

6.3 Illustration of May I Ask a Question Interface for Validation Query. . 138

6.4 Video Showing the Pick Up Capability of the Robot. We Use a Combi-

nation of Text and Video to Create a Mental Picture for the Student,

i.e. to Make Them an Expert for Handling Squeaky Robot Around the

Warehouse. 143

6.5 Describes the Warehouse Domain to the Student Followed by the Cho-

sen Security Rules. 144

6.6 Shows the Pre-Test Presented to the Students. It Consists of Four

Correct and Four Distractor Rules. The Correct Rules are Rephrased

From the Original Rules Shown to the Students. 145

xv

Figure Page

6.7 Shows the Feedback Presented to the Students While Taking the Pre-

Test. Green Color Represents Correctly Chosen Rule and Red Color

Represents the Incorrect Rule. With Every Incorrect Selection Feed-

back With the Correct Rule is Presented. 146

6.8 Every Student Takes 3 Iterations of Pre-Test, Until They Select All

Four Correct Rules. After Every Iteration The Set of Correct Rules

Originally Shown to the Student are Presented For Them to Read.

Figure Shows the Set of Correct Rules Shown to Them. 146

6.9 Bar Graph Showing the Average Likert Score For the Question – The

Questions Above were Difficult to Understand. There was No

Statistically Significant Difference For Any of the Conditions. 150

6.10 Two Graphs Showing the Time Taken to Solve a Query Posed by

Squeaky in All Three Conditions. The Total Time for the User Study

is Statistically Significant for T (Cv) < T (Cp) and T (Cv) < T (Ct),

However per Query Time is Statistically Significant for All Three Con-

ditions. Average Per Query Time is Calculated as Total Time / Num-

ber of Queries. Validation and Planning Query Had Six Queries and

Template Query has Four Queries. 151

6.11 Bar Graph Showing the Average Likert Score For the Question –

Intent of Asking the Questions is Not Clear for the Planner..

There was No Statistically Significant Difference for Any of the Con-

ditions. 152

xvi

Figure Page

6.12 Bar Graph Showing the Average Likert Score For the Question – The

Questions Above were Pretty Easy to Solve. There was No Sta-

tistically Significant Difference for Any of the Conditions. 153

A.1 Initial Image of the Instruction Manual Describing the Three Panel

Structure. Every Condition had Different Image for the Interface, and

Description of Behavior. 186

B.1 Image of the Robot Fetch Used to Introduce Squeaky to the Student. . . 190

xvii

Chapter 1

INTRODUCTION

Artificial Intelligence (AI) is being applied to many of our day-to-day activities

such as driving to various places (through automated cars like Waymo), providing

personalized assistance (through interactive voice assistants like Alexa or Google

Now), and much more Many of these systems have been integrated in industries like

manufacturing (automated production lines), finance (checking anomalies in trans-

actions), healthcare (machine learning based diagnosis), education (helping students

learn through feedback), and so on. AI techniques have made this possible, as they

can learn complex patterns from data for intelligent short-term decision making. For

example, a smart car learning to react after detecting other cars based on it’s sensory

inputs. However, these systems are neither human-aware as they do not account for

human biases or preferences in their decision making process, nor, they are part of

active teams as they are not working with active humans or supporting or guiding

them in their complex activties. These properties can be particularly helpful in com-

plex working environments such as hospitals, or a classroom, where a robot can be

an active teammate with the nurse or a teacher and support them in patient care or

guiding students to solve their problems (like a personalized teacher). Through this

thesis, we understand the current state of such systems that were designed to work

in the active environments especially with students and use them as motivation for

designing generalized human-aware AI based systems to work with several different

experts in a domain-independent fashion.

Intelligent Tutoring System (Anderson et al., 1985) were the original automat-

ed/intelligent systems, earlier called Computer Assisted Instruction (Steinberg, 1991).

1

They have over fifty-year long history of research and development to design some of

the first intelligent systems to closely work with humans. The research community has

explored to provide support to students and bring in expert tutors wherever necessary,

thus reducing the burden on the instructor as well as improving student’s learning

experience. There are many existing tutoring systems to teach various subjects, such

as, physics (Schulze et al., 2000), dynamic systems based on first-order differential

equations (VanLehn et al., 2017), SQL (Mitrovic, 2003), etc. There have been some

subject independent tutoring systems that are modeled towards a specific method

of teaching, such as Q&A interaction-based system (Graesser et al., 2005). These

systems have been successful at tracking a students learning (Corbett and Anderson,

1993; Piech et al., 2015), ask them questions (Barla et al., 2010; Zhang and VanLehn,

2016) to improve interaction with humans. These methods have continuously evolved

over the years to domain specific tutoring cases. ITS framework has also been able

to support more recent development in web-based teaching through MOOCs, where

students learn at their own pace. Although these systems have been at the forefront

of technology and have been thoroughly tested through human-studies, there is a

need for a domain independent framework that can drive different kinds of student

oriented learning experience. Moreover, there is also a need to extend the learning

from ITS to other domains, while constructing human-aware intelligent systems for

other domains.

More recently, Human-Aware Planning (HAP) or Human-in-the-loop Planning

(HILP) or Human-Aware AI (HAAI) techniques (Kambhampati and Talamadupula,

2015) have shown promise, as they reason about the model of the human using auto-

mated planning techniques. Automated Planning techniques are domain independent

techniques that has developed generalized methods to inference using a structured

model (Ghallab et al., 2004). Human-aware AI techniques have extended these tech-

2

niques to incoroporate human’s mental model for reasoning about automated system’s

decisions (Kambhampati and Talamadupula, 2015), synthesize behavior explicable to

the human-in-the-loop (Kulkarni et al., 2016), and explain their decision using the

human’s understanding of the task (Chakraborti et al., 2019b), etc. These techniques

have also been applied to many domains, such as urban search and rescue (Tala-

madupula et al., 2010a), decision support settings (Vadlamudi et al., 2016), or even

in commercial settings of warehouses (Liang et al., 2015), restaurants (Berezina et al.,

2019). They can also assume many roles, such as the role of a personalized assistant

to a human supervisor (Grochow, 2020) or as a teacher managing the dialogue be-

tween student and the tutoring system (Rahati and Kabanza, 2010). Although these

systems can be applied to diverse settings, evaluating them with human stakeholders

has become a central challenge.

To summarize, where HAP techniques can be generalized they have been tested

on very few real-world scenarios. Moreover, the learning from tutoring systems also

needs to be generalized to other complex domains for working with active human-

teammates. Thus, to motivate our work, we look at ways to bring learning from ITS

to HAAI and use it for active teaming scenarios where robot can provide support or

actively learn the teammate’s model for seamless collaboration. In this work, first we

present a survey of how tutoring systems have been developed to work with students.

Then we discuss how the generalized human-aware planning framework can be used

to develop the theoretical background to support students and teachers working with

an ITS in a domain-independent fashion by modeling state-of-the-art tutoring system,

such as Dragoon (VanLehn et al., 2016). We also show how personalized behavior

can be developed to support more recent technologies. For the second part of our

work, we model an important scenario of asking questions for tutoring system to an

active teaming scenarios, i.e. to ask questions for human-robot teaming. Before we

3

Figure 1.1: Depicts the human-aware AI setting. MH is the human’s model, MR

represents the robot’s (or planner, software agent’s) model andMR
h represent human’s

understanding of the robot’s modelMR. Human-Aware AI proposes that automated
agent should use MR

h while collaborating with the human. This framework can be
extended to include robot’s understanding of the human’s modelMR

h for collaborating
with an active human-teammate.

get into the details of our work, we will describe the specific aspects of Human-Aware

Planning techniques and research in Intelligent Tutoring System community that will

be useful to understand our work.

1.1 Human-Aware Planning

Human-Aware Planning (HAP) framework proposes improved collaboration be-

tween human and robot by using human’s mental model in robotic agent’s decision

making process (Kambhampati and Talamadupula, 2015). If we assumeMR andMH

are the AI agent’s and human’s model respectively; then agent’s (henceforth agent

used for an AI agent only) understanding of the human’s model MH can be repre-

sented as MH
r . It is assumed to be a close approximation of the teammate’s (hence-

forth teammate is always the human member of the team) modelMH . Human-aware

planning proposes that robot should use MR
h instead of it’s own model to act in the

environment with humans (Kambhampati and Talamadupula, 2015). For example,

4

if we apply the framework to a robot providing explanations, then the agent should

use MR
h instead of MR to provide explanations (Chakraborti et al., 2017b). This

framework has been applied to showcase different kind of behaviors with humans,

such as being explicable (Kulkarni et al., 2016), predictable (Dragan et al., 2013),

and also provide explanations for it’s decisions (Chakraborti et al., 2019b). Expli-

cability means the robot performs actions that match human’s understanding of the

robot, i.e. ideally it uses MR
h instead of MR. Obviously, MR

h is the human’s model,

hence robot can only approximate the model, however, ideally we assume the robot’s

approximation is equivalent to MR
h . A robot’s plan is predictable when the robot is

explicable and executes easiest to predict sub-plan (Chakraborti et al., 2019a).

With active teammates, a new modelMH
r gets added to this tale of three models

(Chakraborti et al., 2018b). The agent needs to considerMH
r with it’s own modelMR

in it’s decision making process. Extending the original framework to incorporateMH
r

can be useful to support, teach and collaborate with human-teammates. For example,

if we apply this extended framework to ITS, then MR represents the model of the

tutoring system, i.e. all the actions a tutoring system can perform, such as presenting

a problem to the student, guiding them through the problem solving process, provide

feedback, etc. MH is the model of the student, i.e. all the actions it can perform

on the interface of the ITS, and the concepts they have learned. MH
r represents

the system’s understanding of the human, such as the concepts they have learned or

practiced and the problems they can solve and their model for interacting with the

interface. Generally, MH
r is an approximation and is learned from the behavior of

the human and we assume the approximation is close to the original mental model.

We also assume that the approximated modelMH
r is granular enough to be useful for

planning in the environment. In this work, we are looking at collaboration between

the human and automated agents. Thus, the planning task for the agent is based on

5

Figure 1.2: In ITS setting, same human works with different tutoring systems, where
none of them tend to incorporate the student’s understanding of the system. Instead,
they ensure the learning and understanding of the specific topic through interaction.

the teammate’s current requirements. For example, for a tutoring system, goal is to

support the student solve the problem presented on the interface and to help them

complete their practice material.

The updated generalized framework for human-aware AI with active human-

teammates, can be applied to many different human-robot settings. However, due

to lack of stakeholders and also due to domain specific challenges, evaluating them

through user studies can be challenging. We believe Intelligent Tutoring System can

be used to evaluate these techniques and these techniques can provide personaliza-

tion techniques for the supporting students in classroom scenario as well as the more

recent systems for independent learning through MOOCs. Before we present the de-

tails for how these techniques can be used for ITS in future sections, we will discuss

a review of the theory from the tutoring system community.

6

1.2 Intelligent Tutoring System

A system that presents a problem to a student, provides feedback to them and ask

the instructor for intervention at the relevant moment is called an Intelligent Tutoring

System (Anderson et al., 1985). The feedback provided while solving a problem,

is an essential part of a tutoring system and it separates ITS from computer-aided

instruction. Infact, it has been shown that if the system can provide the right feedback

at the right moment, then it can be as effective (if not more) as a personal human

tutor (VanLehn, 2011). Ideally, the system needs to understand the student’s response

and provide feedback to them. However, this process is simplified by comparing the

student’s response against an ideal response for the action they perform. For example,

Dragoon tutoring system provides feedback of correct/incorrect after comparing every

response to the correct solution for the problem (VanLehn et al., 2017), on the other

hand Autotutor parses the natural language based response provided by the student

and looks for the keywords that are partly missing from the response to provide

feedback for those important keywords (Graesser et al., 2005).

The construction of an ITS can be divided into four modules – user interface,

knowledge base, student model and pedagogical module (Dede, 1986). The user

interface helps the student to interact with the system. Knowledge base includes the

material for teaching and questions for helping the student practice the knowledge

concepts. Student model holds the current model of the concepts that the student has

already learned. Pedagogical module encapsulates the strategy for providing feedback

or questions based on the student model. This structure has become a template for

constructing different tutoring systems. A normal construction cycle for tutoring

system involves understanding the student model to design the pedagogical strategy

and finally develop the interface. In case if the pedagogical strategy is general enough,

7

then knowledge base can be developed for different topics (domains), thus showcasing

some degree of domain independence. For example, Autotutor (Graesser et al., 2005)

was designed as dialogue based tutoring system and it has been used for teaching

electronics, computers, physics etc. Similarly, Dragoon (VanLehn et al., 2016) which

teaches first order differential equations, has been used for teaching dynamic systems,

electronics, etc. Although these systems have been able to achieve some degree of

domain independence, it still needs to go a long way for the tutoring system to change

the pedagogical strategy based on the student’s responses. For example, changing

from dialogue based pedagogy to simple correct/incorrect pedagogy for students who

are expert in the material.

The behavior of an intelligent tutoring system can be divided into outer loop

and inner loop (Vanlehn, 2006). Outer loop is responsible for choosing the relevant

practice problem, ideally based on the concept student has learnt. Several strategies

have been evaluated for asking different sequence of questions such as multi-armed

bandits to maximize concepts learnt by the student (Clement et al., 2013). Inner

loop represents step-by-step evaluation of the student’s work and providing feedback

to support student while solving the problem. A lot of different techniques have been

used to provide feedback to students such as correct/incorrect or provide hints to

elicit the correct answer (Chi et al., 2008). Decisions for both the outer and the inner

loop of the behavior are internally decided by the pedagogical module of the tutoring

system.

Construction of an ITS describes different places HAAI techniques can be applied

to support both outer and inner loop decisions in predictable and explicable manner.

These techniques depend on the model of the interface and the concepts that the

student has to learn, which can be described by the tutor (Grover et al., 2018a) or

they can be learned through data of the behavior in the environment (Tian et al.,

8

2016). The model can be dynamically updated and based on goal-directed learning,

specific strategies to improve student’s learning can be applied.

1.3 HAAI and ITS for the Future – Contributions

As we head into the future, where we would want several robots and automated

agents to support us in our daily activities and work with us like teammates by

helping us in the activities which can be require complex decision making, thus,

showcasing the need to create human-aware system to enter our world. They should

incorporate our understanding in their decision making process. This thesis lays

the foundation for human-aware framework for active teaming, where it connects

the intelligent systems (i.e. the ITS) to this framework, and also describes how they

should be extended to trickier scenarios in other domains. We overcome the challenges

of “inmates running the asylum” (Miller, 2017), and evaluate the framework proposed

through user studies. The outline of the thesis is –

Chapter 2 presents a literature survey of Intelligent Tutoring System and AI tech-

niques that have been applied for teaching the students.

Chapter 3 discusses application of state-of-the-art human-aware planning tech-

niques to tutoring scenarios such as providing feedback to students and support more

recent phenomenon of online learning through dynamic curriculum.

Chapter 4 discuses the first user study to evaluate the framework described in

chapter 3. The results show that HAAI techniques are effective in providing support

to the human decision makers such as students while working on a sequential decision

making problem.

9

Chapter 5 discusses a novel method to refineMH
r , by asking directed question(s).

This problem is at the intersection of both human-aware AI and ITS, as asking

questions for learning student’s current model and support learning is part of the

outer-loop and for HAAI it can support collaboration in human-robot teams.

Chapter 6 discusses the user study and results for evaluating the framework pre-

sented in the previous chapter.

Chapter 7 presents the concluding thoughts for how these communities can work

together to create automated systems for collaboration and support the humans in

their tasks.

10

Chapter 2

AI TECHNIQUES FOR ITS – A LITERATURE SURVEY

To understand the application of AI techniques, we review some of the fifty year

literature of Intelligent Tutoring System. First we understand some of the basic

theories that helped develop various methodologies for teaching. We also discuss some

of the basic cognition models that have been applied to understand different aspects

of learning. Then we present how state of the art ITS are being constructed and

present some recent examples that have been used in several classrooms, followed by

several student modeling techniques, used to model the learning of the student while

interacting with a tutoring system. Then we summarize some of the AI techniques

that have been used to provide feedback to students, or present questions to them.

Finally we present discuss the challenges faced and some AI techniques developed to

support recent techniques such as massive open online courses (MOOCs) and recent

ideas like classroom orchestration.

2.1 Fundamental Theory

In this section we discuss some of seminal works that have shaped the current

state of ITS. It includes one of the earliest classification for evaluating effectiveness

of instruction, followed by more recent cognition model to better understand the

connection between cognition and knowledge which was later generalized to the idea

of knowledge concepts across different subjects. Finally, we present a model that has

been used to understand the effectiveness of different modes of teaching.

11

Bloom’s Taxonomy

– Bloom et al. (1956) proposed the first classification of educational objectives to

define the expectations from students and help measure the result of instruction.

The taxonomy divided the learning process into six major categories – Knowledge,

Comprehension, Application, Analysis, Synthesis and Evaluation. Knowledge in a

specific field provided to students was divided into three categories, i.e., the specifics,

how to deal with the specifics, and different principles and theories in the field. Each

category was further sub-divided to broadly explain the different types of knowledge

that belonged to each category. The other five categories were related to various

students’ steps for acquisition of knowledge where comprehension to synthesis are

considered the most important educational goals. From the student’s perspective,

the first step is comprehending the knowledge through translation, interpretation, and

extrapolation. Then they apply the knowledge followed by the analysis of different

elements, relationships, and organization principles. Synthesis represents producing

or deriving new relations and operations. Finally, the evaluation process included

both internal evaluation through evidence and evaluating through external criteria

(Krathwohl, 2002).

Revised Bloom’s Taxonomy

– If one looks closely at Bloom’s taxonomy Bloom et al. (1956), one can realize it

consists of two different dimensions – knowledge to be acquired by the student and the

cognitive process for obtaining it. Thus, the original Bloom’s taxonomy was revised

to create these two dimensions (Anderson and Krathwohl, 2001). The knowledge

dimension consists of four different kinds of knowledge that a student needs – factual,

conceptual, procedural, and meta-cognitive. The cognitive process dimension was

12

divided into six categories (based on the five dimensions of original taxonomy) –

remember, understand, apply, analyze, evaluate and create. Comprehension from the

original taxonomy was divided into remember and understand, and the rest of the

steps were similar in definition to the original taxonomy. More interestingly, these two

dimensions could be arranged on a table with different topics should be placed. For

example, a simple history lesson would be factual knowledge/remember, and solving

a math problem could be placed in procedural knowledge/analyze (Krathwohl, 2002).

As discussed, Bloom’s taxonomy (both original and revised) describes different

knowledge and cognitive processes that a student should learn. However, there is a

need to understand various activities in a classroom. Thus, we look at relatively new

theories that go further to define both knowledge and cognitive process that student

partakes in a classroom.

ACT and ACT-R

– Applied Cognition Theory (ACT) Anderson (1983) and ACT-Revised Anderson

(1993, 1996) was designed to describe the connection between knowledge and cogni-

tion. The procedural knowledge consists of production rules; defined using declarative

knowledge. The smallest unit of declarative knowledge was called chunks. Complex

cognition is constructed using different production rules together. Authors divide the

process of complex cognition in knowledge acquisition (acquiring the relevant chunks

of knowledge) and using the knowledge-based on memory (Anderson, 1996). ACT-R

theory of complex cognition was based on earlier views such as Human Associative

Memory (HAM) (Anderson and Bower, 1973), to model several memory-based behav-

iors through experiments or the theory about the human method of problem-solving

(Newell et al., 1972). The authors directly applied these theories for teaching LISP

(Anderson et al., 1995). Recently, the schema structures based division of declarative

13

knowledge has been widely used in teaching algebra (VanLehn et al., 2020), as well

as constructing complex population dynamic models using tutoring systems such as

Dragoon (VanLehn, 2013; Grover et al., 2018b).

However, these theories have been able to describe only one way to represent

knowledge, i.e., through template-like structures applied to topics such as LISP or

algebra, where the combination of these rules forms complex applications. On the

other hand, there have been theories that can be applied to other topics or even other

activities in a classroom such as, hierarchical division of knowledge to constant and

variable concepts and the kind of activity that supports learning in the classroom.

We will now discuss these frameworks.

KLI Framework

– Knowledge Learning and Instruction (KLI) framework (Koedinger et al., 2010) tries

to generalize earlier theories across science, math, and language learning domains.

They structured it around defining taxonomies across three essential parts of the

classroom KLI by first defining different kinds of events that occur for a student –

learning event, instructional event, and assessment events that occur while a student

works on a topic. They distinguish between these events as observable (instructional

and assessment) and unobservable (learning events). They explain that instructional

events cause learning events and the knowledge components affect the assessment

events.

The knowledge is divided into the smallest acquired unit called knowledge compo-

nents (KCs). Koedinger et al. (2010) further divides the KCs into two different types

– constant and variable. If the KC is a fact, such as the area of a circle is π ∗ r2,

it is a constant KC, and variable KC would be asking a student to find the area of

a circle with radius 5cms. In this framework, they take student interaction into the

14

picture, i.e., recognizing the kind of KC and the response from the student. Thus,

we get three different kinds of interaction – constant-constant, variable-constant, and

variable-variable. Constant-constant KC would be in the case – what is the accelera-

tion due to gravity (where students’ response would be 9.8m/sec2). Variable-constant

would be – what is the unit of volume. Variable-variable is to apply a hypothesis for

different quantities. Constant-variable is not possible from a student interaction.

However, I believe a tutor uses this kind of interaction to create a general under-

standing using examples.

Taxonomy for learning events is also divided into three types – memory and

fluency-building, induction and refinement, and understanding and sense-making. As

the name suggests, memory and fluency building is the first process where a student

compiles the knowledge non-verbally. Induction and refinement is also a non-verbal

learning process where students find connections between different knowledge com-

ponents and refine these bigger structures. Understanding and sense-making is a

verbal process where they apply KCs and understand their rationale. They further

use these two taxonomies to define different instructional principles for every learning

process. This framework connects theoretical ideas to real-world classroom teaching

and provides taxonomies that can help improve the learning process.

ICAP Framework

– There are four different modes of engagement – Interactive, Constructive, Active,

and Passive (ICAP). The framework evaluates these modes for their effect on learning

in a classroom. Chi and Wylie (2014) describe these four modes of engagements to

show theoretically and empirically that Passive < Active < Constructive < Interactive

is the order of impact on learning. It only looked at evaluating a different mode of

15

engagements and assumed underlying knowledge and cognitive processes were similar

to earlier frameworks Chi and Wylie (2014).

These frameworks divide the tutoring process into two critical dimensions (from

Bloom’s taxonomy), knowledge and cognitive task. These two dimensions have been

separated into various categories, sometimes based on a domain-dependent or domain-

independent fashion. This research dates back to the 1950s, whereas the automated

tutoring system were developed for the first time in the 1970s. These theories form

the baseline to many modern tutoring systems that will be discussed in the next

section.

2.2 ITS – Construction and Types

Since the advent of computer systems, many computer-based tutoring systems

have been constructed to provide individual tutors to students, such as computer-

aided instructions, computer-based training, or web-based homework. Scholar is

sometimes referred as the first tutoring system which provided CAI based on the

task material provided by the tutor called frames (Carbonell, 1970). Vanlehn (2006),

mentions these systems do not follow any pedagogical techniques to provide intelli-

gent feedback to the students. On the other hand, Intelligent Tutoring System (ITS)

(Anderson et al., 1985) has a separate pedagogical module for providing feedback to

students. It can be classified based on many different paradigms. I will present some

of these classifications and then present some example ITS.

2.2.1 Modules of an ITS

An ITS can be divided into four modules – user interface, knowledge base, student

model, and pedagogical module, based on its construction (Dede, 1986). The user

interface helps the student to interact with the system. The knowledge base includes

16

the material for teaching and questions for helping the student practice the knowledge

concepts. The student model holds the current model of the concepts that the student

has already learned. The pedagogical module encapsulates the strategy for providing

feedback or questions based on the student model. This structure has become a tem-

plate for constructing different tutoring systems. A typical construction cycle for the

tutoring system involves understanding the student model to design the pedagogical

strategy and develop the interface. If the pedagogical strategy is general enough, then

the knowledge base can be developed for different topics (domains), thus showcasing

some degree of domain independence. For example, Autotutor (Graesser et al., 2005)

was designed as a dialogue-based tutoring system, and it has been used for teaching

electronics, computers, physics, etc. Similarly, dragoon (VanLehn et al., 2016) which

teaches first-order differential equations, has been used for teaching dynamic systems,

electronics, etc.

2.2.2 Knowledge Representation

As discussed, ITS provide intelligent feedback to students, and the tasks represent

the internal knowledge of the system. ITS has been divided into two broad categories

– model tracing and constraint-based tutoring systems, based on how the student can

work with the interface. Model tracing compares the students’ solution of the assign-

ment to the correct solution provided by the tutor. For example, Dragoon (VanLehn

et al., 2016) and TopoMath (VanLehn et al., 2020) are model tracing tutoring sys-

tems, and the student’s responses are compared to the correct model of the task.

Constraint based systems evaluate the student response to ensure every constraint

is correctly satisfied in the response. For example, SQL tutor (Mitrovic, 2003) is a

constraint-based system, where every response from the student is evaluated to test

if the student’s response satisfies the constraints for specific queries.

17

2.2.3 Behavior of an ITS

The behavior of a tutoring system represents its reasoning capability and the

way a student can interact with it. Various decisions taken by a tutoring system

can be divided into two stages – outer loop and inner loop (Vanlehn, 2006). The

outer loop involves deciding the sequence of tasks that a student performs. Several

strategies have been evaluated for asking a different sequence of questions, such as

multi-armed bandits to maximize concepts learned by the student (Clement et al.,

2013). Inner loop represents the step-by-step evaluation of the student’s work and

providing feedback to support the student while solving the problem. Now I will

discuss some of the critical decisions taken in each loop individually –

Outer Loop

As described earlier, the outer loop is responsible for providing practice problems to

students.

Task Selection Usually, the task sequence is manually defined by the teacher.

Recently, many different strategies have been tried to present problems to students.

For example, providing them a list of problems to complete (in no specific order)

and letting them choose the next problem, or, ensure mastery of the concept for

students called mastery learning and then go to problems for next concept (Bloom,

1984), or maintain a detailed model of KCs mastered by the student to and choose

the task based on the intersection of the mastered concepts and the concepts that the

student is supposed to practice (macroadaption) (Anderson et al., 1995; Shute, 1993).

Macroadaption has been applied in many different ways, which we will be discussing

in some detail in the later section. However, various factors has to be kept in mind

during task selection (Emre, 2020) –

18

• Zone of Proximal Development – the student is neither bored nor struggling in

solving the new problem, i.e., they can progress while solving the problem (Lee,

2005).

• Spacing and Sequencing effect – space between two similar tasks (with similar

kind of concept application) is relatively far apart.

• Relational graph of concepts – the relative dependency between concepts is

maintained.

Here we have highlighted the critical factors for automatic task selection. The

exact techniques are discussed after discussing the student model.

Inner Loop

As the name suggests it runs on every step that a student performs, where the stu-

dent’s step is assessed and feedback or hints are provided to the student.

Feedback is provided at every step while solving a problem. Two different kinds

of feedback can be provided – (1) minimal feedback and (2) error-specific feedback.

Minimal feedback refers to providing binary or simple feedback whether the step

or the problem has been solved correctly. For example, Dragoon (Wetzel et al.,

2017) provides green/red (correct/incorrect) feedback on each step. Error-specific

feedback usually points to the exact step or part of the response that is incorrect.

For example, Andes (Gertner and VanLehn, 2000) suggests checking the specific part

of the response (such as trigonometric equation) to the student. A central challenge

for the tutoring system is to find when to provide feedback to the student. Based on

when the feedback is provided, ITSs can be divided into three major categories –

19

• Immediate feedback – The feedback is provided as soon as the student completes

a step of the problem.

• Delayed feedback – Usually, it refers to providing the feedback at the end of the

problem. For example, in Sherlock (Katz et al., 1998) student is provided the

feedback in review mode after they have completed the problem and submitted

their attempt.

• Demand feedback – The feedback is provided when the student explicitly asks

for it.

There can be many complex strategies to provide feedback, such as delaying the

feedback for a student when it is nearing mastery of a concept, whereas someone who is

practicing a new concept is provided feedback immediately. In many instances, these

feedback strategies are modeled based on the tutor’s behavior (Collins et al., 1988).

On the other hand, error-specific feedback is presented in many natural language-

based tutoring systems.

Hints are provided when the student has provided a wrong answer to the step, or

they are stuck at what step to execute. The central challenge to provide hints to

students is when the system should provide a hint, what step it should provide a hint

on and how it should provide hint (Vanlehn, 2006). Some of the factors for when to

hint depends on whether the student is stuck with the step. It is suggested that the

hint should be provided for the next step that the student is trying to complete.

There has been much work to define various strategies for how to provide hints

to students. Generally, the idea is to provide a general hint and then move to more

specific hints, with the final hint providing the student’s answer. The final hint

is many times called the bottom-out hint. It ensures that the student continues

20

progressing through the problems. In other cases, different strategies are applied

based on the student’s response to the problem. For example, in AutoTutor (Graesser

et al., 2005) the system provides a hint when the student provides an incomplete

answer to the problem in the form of asking questions from them. There has been

some work to find an optimal strategy for tutoring action or the kind of hint that

should be provided to the student (elicit/tell) (Murray et al., 2004; Chi et al., 2010).

Knowledge Assessment is useful to the instructor, student, and the tutoring

system. The instructors or a tutoring system can use the assessment to define the

next task or as a heuristic to improve students’ learning in some capacity, whereas

a student can use it for self-evaluation. However, the fundamental challenge for

assessment is its grain size. For example, a final grade at the end of the semester

does not provide enough information about the student’s topics, and a fine-grained

assessment of every step being reported might not help the teacher a lot either. Thus,

a general strategy for assessment is to count the learning events for the concepts or

even count the failures (Vanlehn, 2006). More involved methods are part of student

modeling, which will be discussed in the next section.

Gaming the System refers to shallow techniques that a student may choose to

solve the problem and finish the unit. Such techniques involve help abuse, where a

student might choose to provide some incorrect very quickly to reach the bottom-

out hint and use that to progress in the problem. This kind of student behavior

is studied in the literature (Muldner et al., 2010), and many strategies are applied

for understanding the causes of it (Baker et al., 2009). Baker et al. (2009) found

that unhelpful hints and un-intuitive software features led to students gaming the

system. Muldner et al. (2010) analyzed the log data for Andes tutoring system while

21

teaching physics found that up to 22.5% tutor-student turn pairs were gamed out of

18.4% actions were gaming of hints. They further evaluated that the time spent on

high-level hints was 9.2 seconds vs. 5.7 seconds for the students gaming the system.

Similarly, students with a higher tendency for gaming the system spent less time on

the bottom out hint (10.9 seconds vs. 7.5 seconds).

2.2.4 Examples of ITS

In this section, I will look at some of the examples of Intelligent Tutoring Systems.

Algebra Cognitive Tutor is one of the most widely used tutoring systems used

to teach algebra (Anderson et al., 1995). The inner loop consists of a student solving

a problem using multiple representational tools, such as an equation solver. The

outer loop follows the complex strategy based on the student model, and exercises

are selected to ensure enough practice for each KC. The tutor analysis each step of

the student by comparing it to anticipated steps using a rule-based problem solver.

Hints are provided when a student asks for it, and the tutor chooses what step to

hint at.

AutoTutor is a natural language dialogue-based tutor where a human head talks

to a student like a teacher. The tutor presents a task (a single question) to the

student, and they respond with an essay-like answer to the question Graesser et al.

(2005, 2012). At every step for the inner loop, the student types the answer or asks

a question (which usually means that the student is asking for help. Step analysis

happens by matching the student’s response to its list of possible correct-incorrect

responses. The tutor also has a set of knowledge components that have to be correctly

22

applied for task completion. Once a student’s answer applies all of them, the task is

completed, and the next task is chosen from a list of tasks.

SQL tutoring system teaches writing a query for relational databases (Mitrovic,

2003). It is a constraint-based tutoring system, where a constraint consists of a

relevance condition and satisfaction condition. The tutor ensures for all true relevance

conditions corresponding satisfaction condition is also true in the student’s response,

else the constraint is violated. The student usually has to submit the query and

ask for feedback from the tutor. If multiple constraints are violated, then the tutor

chooses the important constraint to provide the hint.

Dragoon is a model-tracing tutoring system is used to teach dynamic model con-

struction (based on first-order differential equation) (Wetzel et al., 2017; VanLehn

et al., 2017). Each task consists of constructing a dynamic model where the step

requires defining different quantities and relationships (interaction) between them.

The simplest interaction between basic quantities is called schemas, and they com-

bine to solve the problem. The system provides immediate feedback with three levels

of hint, where the third hint adds the correct value in the interface. The outer-loop

consists of a pre-defined sequence of models that constructs real-world scenarios such

as modeling the rabbit and wolf population, with the relationship between quantities

become more complex with every problem.

Andes is a physics tutoring system, where a student solves a physics problem using

tools provided in the system and enters the final answer while showing all the steps to

solve the problem (VanLehn et al., 2005). In the outer-loop, the student selects the

problem, and the inner-loop consists of the student performing various kinds of steps

such as entering the equation or defining a vector, etc. The tutor provides minimal

23

immediate feedback (red/green incorrect/correct). Students can initiate two different

kinds of help – ask for a hint for the next step or ask for step analysis (the system

will provide error-specific feedback if the step is incorrect). Step evaluation compares

the student response to valid responses in the tutor’s model.

Several tutoring systems do not tend to follow these kinds of structures. Game

based tutoring systems are based gamine environment where a student plays a char-

acter in the form of a game (sometimes as a student himself that can be with or

without other students) tries to solve the game and earn rewards (Jackson and Mc-

Namara, 2013, 2011). It helps develop skills that require long-term interaction. The

student gets hints from the environment it has to use while solving problems, earns

rewards/trophies, unlocks new features, etc., to keep them motivated. Physical robots

have also been used to keep younger students involved, and there has been some re-

search on their effectiveness in tutoring (Walker and Burleson, 2012). More recently,

virtual reality-based interfaces have been used to support students in a classroom

(https://www.prismsvr.com/, start-up Brett is working with, they have launched

courses for teaching Maths this Fall for schools in New York). There are some open-

ended tutoring systems as well in which the students learn through experimenta-

tion, and there are multiple ways to complete the same problem, such as virtuallabs

(Scheckler, 2003).

Vanlehn (2006) suggests that the student should be given feedback or hint based

on the student’s approach. Although most of these tutoring systems have a single

solution to a problem, however, there are a few that provide freedom to students

to solve the problem in a free approach, such as, Andes (Gertner et al., 1998; Van-

Lehn et al., 2010) or Virtuallabs (Scheckler, 2003). There has been some work in

detecting what the student is trying to do in lab based open systems, where the au-

thors used plan libraries to find the plan and the goal that the student is trying to

24

https://www.prismsvr.com/

achieve (Mirsky et al., 2017). Our work (Grover et al., 2018a) on integrating human-

aware planning techniques with Dragoon, make use more recent out-of-the box plan

recognition methods (Ramı́rez and Geffner, 2010) for the same purpose.

2.3 Student Modelling

The inner loop of an ITS involves assessing the student’s knowledge. These sys-

tems tend to model and maintain the current state of the student’s knowledge, which

can be further used for assessment and pedagogical strategies. The models are con-

structed using the student’s activity and responses. Pavlik Jr et al. (2013) divide

these models into – programmed models, overlay models, knowledge space models,

dialogue student models, state and trait identification models. Most of these mod-

els are for different types of assessment and do not model the student’s skill. For

example, programmed models were constructed to create a sequence of tasks for the

student to practice (Pavlik Jr et al., 2013). Similarly, dialogue student models were

tutoring systems based on natural language dialogue with students, such as, Why-

Atlas (VanLehn et al., 2002) or AutoTutor (Graesser et al., 2012, 2005). On the other

hand, overlay models model the student’s understanding of the KC using some Q-

matrix, which maps the problem to KC required to solve the problem. It divides the

dependency structure of the domain and learns the parameterized model through the

model fitting. We will be talking about some of these techniques that model students

skill –

2.3.1 Item Response Theory

IRT is one of the oldest models which falls under the traditional psychometry

methods for latent variable testing (Harvey and Hammer, 1999; Lord, 1952). IRT

is computationally expensive compared to Classical Testing Theory methods (CTT).

25

However, it incorporates many extra features compared to old CTT methods. The

chance of correctly answering the problem is calculated using learned parameters.

It assumes that the student’s response to a question depends on their ability and

difficulty of the question. Since it is used for testing, when no feedback is given to

the student, IRT is assumed to be a static model and does not model the change in

the student’s knowledge. The probability that a student would respond to a query

is calculated as logistic regression with parameters for student ability and the item

difficulty (Wilson et al., 2008; Rasch, 1993). Performance Factor Analysis (PFA)

(Pavlik Jr et al., 2009) uses extra learnable parameters to incorporate the number

of times student has practiced a KC. PFA has shown comparable results to BKT

(Pavlik Jr et al., 2009).

2.3.2 Bayesian Knowledge Tracing

On the other hand, the learning community assumes that student knowledge for

a specific knowledge concept exists in two states – mastered (1) or not-mastered (0).

A posterior probability is calculated when a student solves a problem involving the

KC, using the prior probability of mastered and the correct and incorrect response.

If the student keeps practicing, the student can transition from one state to another

with transition probability and guess the answer or make a mistake based on emission

probabilities. If we assume these transition and emission probabilities stay constant

over time, then the knowledge tracing method can be represented using a hidden

Markov model (Corbett and Anderson, 1994). BKT also assumes that the application

of every KC is independent, and the transition and emission probabilities vary due

to different KCs.

An important point to note is that IRT and BKT are based on orthogonal as-

sumptions. However, they model the chance of students solving the problem cor-

26

rectly. Thus, there have been many attempts to merge these two models with some

success (Khajah et al., 2014a; González-Brenes et al., 2014; Xu and Mostow, 2012).

González-Brenes et al. (2014), discusses extending to more general features such as

sub-skills, and uses the values as logistical regression to represent emission probabil-

ities or transition probabilities. It found that emission probabilities were assumed

to be constant. These models face two major challenges, learn the parameter val-

ues and different parameters of the models giving rise to the same predictions about

student performance (called identifiability) (Beck and Chang, 2007; van De Sande,

2013). There have been many Expectation-Maximization (EM) based approaches

to learning the parameter values, such as Feature-Aware Student Tracing (FAST)

(González-Brenes et al., 2014) and Latent Factor Knowledge Tracing (LFKT) (Kha-

jah et al., 2014a). There is a toolkit to learn the model parameters for vanilla, HMM

using Bayesian Network toolkit (Chang et al., 2006; Xu and Mostow, 2011). There

are other monte Carlo approaches with different sampling methods as well (Khajah

et al., 2014b). Khajah et al. (2014b), found that the combined networks had statisti-

cally significant improvement for Area Under the Curve (AUC) values for combined

models in 3 out of 4 datasets.

Identifiability problem in BKT is a well-known problem and refers to the scenario

that multiple BKT parameters can have similar predictions about student perfor-

mance (Beck and Chang, 2007; van De Sande, 2013). Doroudi and Brunskill (2017),

discusses that the problem of identifiability is conflated and misunderstood for BKT.

They suggest that BKT models are identifiable under the condition P (G) 6= 1−P (S)

(Doroudi and Brunskill, 2017) and P (G) + P (S) < 1 van De Sande (2013). Fur-

ther, Doroudi and Brunskill (2017), discuss that the more important problem is lack

of semantically degenerate values learnt by the model. If you notice the condition

27

P (G) + P (S) < 1 is a stricter condition than P (G) 6= 1 − P (S), and I believe that

the methods should learn semantically viable solutions.

2.3.3 Deep Knowledge Tracing

Deep knowledge tracing (Piech et al., 2015) refers to modeling time-series data

(student’s responses) using Long-Short Term Memory (LSTMs) (Hochreiter and Schmid-

huber, 1997) a variant of Recurrent Neural Network (RNN) (Williams and Zipser,

1989). Encoding the input for the neural network-based method is the central chal-

lenge. Piech et al. (2015) uses one-hot encoding to set up the input from the student,

which includes the question answered by the student and whether the response was

correct or incorrect. The output represents whether a particular student answered the

problem correctly at a given time. Surprisingly, the Deep learning method performs

well for the given data and shows higher AUC values as compared to both BKT and

PFA (Piech et al., 2015). I believe some of the biggest challenges for deep learning

methods are in comparison to BKT, where hidden states represent whether a student

has mastered the KC or not. However, hidden states in LSTMs are encoded in a

special encoding space and have no physical meaning. Thus, they lack degeneracy

claims for students, and we are dependent on the output alone.

Another critical point to note is that Piech et al. (2015) have also used large

datasets for 47,000 students working with khan academy. This kind of data is not

available for learning parameters in many cases. I believe the third challenge that

they face is, the input is the one-hot encoding of individual activity and not a skill or

a KC. Thus there system is not extendable to specific skills and combinations of the

skills. Xiong et al. (2016), have tried to reproduce the previous results with smaller

datasets, however even they have not extended the ideas to skills.

28

2.4 Use of AI Techniques in ITS

AI is used to create Adaptive Learning Technology (ALT) (Aleven et al., 2016).

ALT represents the techniques for modifying the interface in some form based on the

previous data from the students. These techniques support three different levels of

adaptivity – (1) design level adaptivity, (2) task level adaptivity, and (3) step level

adaptivity. I will be presenting the use of AI technology on two levels, i.e., task level

and step level adaptivity. The student model is helpful for all these steps, and the AI

techniques used for student modeling have been discussed in the previous section.

2.4.1 Task Level Adaptivity

A tutoring system has to assign the task to students. Ideally, the system should

ensure the task chosen is in the zone of proximal development, maximizes learning,

is personalized based on the student’s current model, etc. In many cases, these tasks

are decided by the tutor to fit an average student, and these tasks are not well suited

for the least and most skilled students (Lee and Brunskill, 2012). Mousavinasab

et al. (2021) discusses 53 different studies that use several intelligent techniques, out

of which only 1 has task level adaptivity, which is also a misnomer for interactive

activity, which can be chosen based on the topic and not suggested by the tutoring

system. However, there is some work in automated task selection based on Multi-Arm

Bandit techniques (MAB) (Bubeck and Cesa-Bianchi, 2012).

Clement et al. (2014) discusses two different methods for dynamically selecting

the practice problems. The authors define a set of parameters for each problem and

an R-table representing the level of knowledge required to solve the problem (value

between (0, 1)). They use this value to update the student’s capability based on their

response (correct or incorrect solution). Then they use the student model values to

29

dynamically find the next problem based on the utility of change. This algorithm was

called RiARiT (Right Activity at the Right Time). Evaluating RiARiT for a class

showed promising results, as it either led to modeling the problem KCs for students

or the students (with a higher level of understanding) progressed faster through each

unit faster (Clement et al., 2013). They also developed where they did not update

the student model and directly calculated utility without using the student model

based on the zone of proximal development and empirical estimation, called ZPDES

(Zone of Proximal Development) (Clement et al., 2014). Evaluation using simulated

students showed statistically significant results compared to pre-defined order. Since

ZPDES did not use the student model, it performs worse in comparison to RiARiT

(Clement et al., 2014). Mu et al. (2017) improved the ZPDES algorithm to use

the student model (in a similar manner as RiARiT) and analyzed it with simulated

students. They found that the method performed better than the expert-defined

problem definition for simulated students.

There has been some work to create a deep learning-based task selector (Emre,

2020). An LSTM (improved RNN) was used to find the next question for the students.

It was tested using an online course for organic chemistry, with 3000 problems. The

mapping of KCs and the problem was provided by tutors (or subject matter experts).

The baseline for the evaluation was the questions selected by the students, and their

comparison showed that the LSTM based question suggestions were more accurate in

predicting the next helpful question and whether the student would be able to answer

the question correctly.

There have also been some POMDP based approaches to decide the activity or

task for the student (Rafferty et al., 2011, 2016). They model the student as a

partially observable state, and the tutoring system is the acting agent. In some

cases, the policy is calculated using decision-theoretic methods for the single-step

30

look ahead method. They create three different kinds of policies memoryless where

there is no idea about the student model, and thus there is a fixed policy here which

is just based on the utility (which could mean that it maximizes the number of topics

learned in each step), with memory but discrete model, and with memory with the

continuous model. The control is random policy. The evaluation shows continuous

model performs a little better than the discrete model, and every model beats the

random model. However, I cannot entirely agree with the random policy, as I believe

the control should be the static teacher’s policy. Then it would give a comparison

of whether the task level optimization affects learning for students who need more

support. However, this evaluation was performed by Mu et al. (2017) which did not

include the teaching material. They were able to show that the personalized practice

tasks for students performed better for simulated students as compared to the expert

policy.

There has been some work for automated question generation and automated an-

swering. These research topics fall under natural language processing to generate

questions from paragraphs (Zhang, 2015) or improve responses using data such as

Winograd challenge (Levesque et al., 2012). On the other hand, question generation

has had some research in ITS literature to generate questions that can push students

to have a more profound thought process. Such questions are generated by using a

semantic network to represent the relationship between the concepts. Zhang and Van-

Lehn (2016), evaluates such questions for fluency, relevance, ambiguity, pedagogy, and

knowledge depth. Their evaluation shows that students have found these questions

to be similar to the textbook. However, tutors found that these questions lacked

topic depth compared to expert-generated questions. Zhang and VanLehn (2017)

evaluated question generation and presenting them based on the student model, and

it showed that adaptive question selection for automated generated questions shown

31

higher learning gains. More recently, Pan et al. (2020) has tried to tackle the problem

of generating deeper (neural network-based) questions that require higher analytical

skills from students. They use attention-based neural networks to generate questions

and evaluate them for fluency, relevance, and complexity to show improved results

compared to baseline.

2.4.2 Step Level Adaptivity

A student’s step is the single-step interaction between the student and the interface

to solve the problem. Step level adaptivity means the changes that the tutoring

system makes based on the different student responses. A tutoring system can take

many steps after every response, such as, provide feedback or hints for the next step.

Mousavinasab et al. (2021) presents 53 different studies for tutoring systems, out of

which around 50% had some degree of step level capabilities to provide intelligent

feedback or hints. The tutoring system ensures that a student does not get stuck

with the problem and understands the KC, and retains it to apply in the future.

Step level adaptivity involves two stages – (1) understanding the student input and

(2) deciding the tutoring system’s response. AI techniques have been used in both the

stages, such as AutoTutor uses NLP techniques to understand the student response

(Graesser et al., 2012), and decision-theoretic approaches to decide the response of

the tutoring system (Murray et al., 2004). I will only discuss the AI techniques

for decision-making employed to calculate the tutoring system’s policy. Generally,

there is a static policy to provide feedback and hints to students, such as, provide

correct/incorrect feedback and, if incorrect provide incrementally abstract to more

pointed hints, where the final hint provides the answer to the student (called bottom-

out hint) (VanLehn et al., 2016, 2010).

32

Murray et al. (2004) uses decision-theoretic (DT) methods to choose the tutoring

system’s action from – prompt, hint, teach, or do nothing using positive feedback,

negative feedback or do (explain how to do the step). The authors created a detailed

student network, which provided the concepts that the student had practiced and

tracked the state of the problem (by tracking the possible actions of the student).

They calculated the utility of each action by single-step lookahead. The transition

parameters were set using expert knowledge, and the highest utility action was exe-

cuted. They applied the approach to teaching calculus and reading using two different

interfaces. They evaluated the system to understand the behavior and found it ra-

tional and sensitive to the internal weight changes. They were also able to verify

that the system can emulate the behaviors of the tutor. Other systems used decision-

theoretic approaches, such as the first version of Andes (physics tutoring system) used

DT approaches to decide the next step for the students. However, their evaluation

in comparison to tutors did not match their predictions for various reasons (Gertner

et al., 1998). iTutor tutoring system for teaching Newtonian mechanics also used

dynamic bayesian networks deciding the problems to present (Pek and Poh, 2004).

Chi et al. (2008) used reinforcement learning techniques to choose the type of

feedback (elicit or tell) to provide students or execute a self-explanation step (ask

the student to justify the step) while working on a natural language-based physics

tutoring system. They used model-based approaches to learn the transition func-

tion by executing random actions with students (data was collected from students

directly). The state was defined based on 6 (ternary) features, and there were two

actions in each state – Elicit/Tell or Justify/Skip-Justify. They tried two different

kinds of reward functions (normalized gain – normalized change of post-test to pre-

test), dichotomized gain (+100, -100), exploratory (random). They were able to show

that out of the policies evaluated for each reward function; normalized gain had the

33

highest learning gains. There have been many other RL-based approaches in which

the data was collected using simulated students, and their application to real students

showed favorable results (Beck et al., 2000; Iglesias et al., 2009).

2.5 Recent Developments

MOOCs and social learning – A growing population has brought two most sig-

nificant challenges to the fore, providing individual attention to students and improv-

ing absorbing or retention of knowledge. Massive Open Online Courses (MOOC)

(Pappano, 2012) were constructed to provide personalized attention in mind where

students can learn through social interaction across a variety of platforms and par-

ticipate in the learning process as a community. This is the Learning 2.0 paradigm

Seely Brown and Adler (2008), and requires a rethink of the affordances McLoughlin

and Lee (2007) expected from current learning tools. One of the many advantages of

social or online platforms for learning is peer feedback and community participation

– i.e., social learning (Burke, 2011). This involves two critical aspects – knowledge

advancement as a community (Scardamalia and Bereiter, 2006) and information pro-

cessing (Webb, 2013) on the part of the individual student as a member of that

community.

MOOCs face many challenges in retention. Online courses that were started had

a course completion rate of 10% (Hone and El Said, 2016). There has been some

research to understand the factors affecting the low completion rate. Hone and El Said

(2016) tested different hypothesis for content and interaction among 379 students.

They found that the course content can explain 79% of the variance in retention and

its perceived effectiveness and the interaction with the instructor. Moreover, they

found no significant difference in the completion rate based on gender, level of study,

or the MOOC platform.

34

Classroom Orchestration – ITS has always been imagined to accompany the

classroom setting. A tutor explains knowledge concepts for the unit and uses a

tutoring system for the practice material. The process of holding such classroom

activities with or without the help of technology is called classroom orchestration

(Dillenbourg and Jermann, 2010). The tutoring system supports the teachers by

learning fine-grained student models. However, another way to support them is to

provide a real-time update for the class progress in the classroom, or call the tutor

in case a student is stuck (preferably intelligently) (VanLehn et al., 2019).

Jigsaw classroom – The idea of dividing students into smaller groups to work to-

gether on tasks is called a jigsaw classroom (Aronson, 2002). Based on increasing the

randomness among groups and suggested ten steps to creating better groups (https:

//www.jigsaw.org/#steps). It has been shown that constructing such groups can

help to build compassion among students and improve academic results (Perkins and

Tagler, 2011). Even we have tried to construct groups of students with different levels

of understanding for the concepts that can support students teaching each other. We

show empirically that such groups can help in faster progress among students Grover

et al. (2018a).

In this chapter we have discussed how several techniques applied to model the

student’s learning and change in their model of understanding. Automated task

planning has a similar definition of the model, where it attributes to the change

in current state learning only through the actions a student would perform on the

interface. It can track different techniques that a student can apply while solving a

problem. We further explore this idea in the next chapter of the thesis.

35

https://www.jigsaw.org/#steps
https://www.jigsaw.org/#steps

Chapter 3

WHAT CAN AUTOMATED PLANNING AND HAAI DO FOR ITS?

In the earlier chapters we introduced automated task planning, and human-aware

AI framework. In this chapter we present this formal approach applied to ITS. This

chapter is divided into four sections. First, we introduce different aspects of computer

based learning where automated planning can be useful, then we look at these tech-

niques formally to explain what these techniques are and what are the assumptions.

Then we describe application of these techniques to model the behavior of a tutoring

system called Dragoon, and also model a classroom to provide support to the teacher.

Finally, we showcase specific examples of these techniques from Dragoon, and other

parts of the classroom.

3.1 Introduction

While the last decade has seen massive advances in technologies aimed at creation

and dissemination of knowledge across a variety of platforms, concerns remain as to

how effectively this knowledge is absorbed at the user (student) end. This is especially

true for both massive open online courses (MOOCs) and also for (rapidly growing sizes

of) physical classrooms where targeted attention towards individual students is often

hard to provide. The state-of-the-art in student and instructor support technology has

traditionally struggled to catch up with the demands of the rapidly evolving landscape

of education in the 21st century. In this paper, we address this by proposing a

framework for the design of generic course-independent student and instructor support

capabilities using techniques in the field of human-aware planning, and demonstrate

those features in Dragoon, a celebrated intelligent tutoring system.

36

3.1.1 Learning 2.0

The world of learning is indeed changing fast - information can now be provided

across a variety of platforms to large groups of people who can access on demand

knowledge and participate in the learning process as a community. This is the Learn-

ing 2.0 paradigm (Seely Brown and Adler, 2008), and requires a rethink of the affor-

dances (McLoughlin and Lee, 2007) expected from current learning tools.

Learning on Demand

Learning on demand refers to the increasing popularity of individual student-centric

and topic-driven learning achieved on the web – i.e. students pick a particular topic

they want to learn about and actively consume content just based on that, instead

of participating in an entire class or following through an entire curriculum. For

example, consider that you want to learn about regression – you could log on to

Coursera, complete the relevant tutorials and assignments on regression, and leave

the course. This requires a rethink of traditional curriculum generation and course

recommendation approaches that would traditionally compute end to end curricula

for an entire class. It follows that such new approaches must be able to leverage

detailed student models to provide effective support.

Social Learning

One of the many advantages of social platforms for learning is peer feedback and com-

munity participation – i.e. social learning (Burke, 2011). This involves two critical

aspects – knowledge advancement as a community (Scardamalia and Bereiter, 2006)

and information processing (Webb, 2013) on the part of the individual student as a

member of that community. In a sense, this can even be seen as a proxy towards pro-

37

viding individual classroom attention from the instructor. However, forming study

partners remains an arduous task, especially in large classrooms such as in online

learning communities where students usually do not know most of their classmates

(or their skill sets). It is also fraught with the usual pitfalls associated with group

work including individual students hogging all the group activity or slackers not con-

tributing to the group activity at all (Mesch, 1991). Without principled drivers for

building in-class communities that can promote learning, effective collaborations are

hard to achieve. As such, forming useful teams for collaborative study can become

a problem by itself rather than a facilitator for learning to the extent that students

can end up spending too much effort in forming and maintaining teams or just prefer

to study by themselves, thus leaving the potential benefits of a social learning envi-

ronment largely untapped. Recent work has shown that peer recommendations can

have positive impact (Labarthe et al., 2016) on student engagement but has remained

ambiguous (Bouchet et al., 2017) as to the best way to go about it.

3.1.2 A Brief History of ITS and AI

ITSs are aimed to provide personalized support to students and bring in expert

(human) tutors in the loop wherever necessary, thus reducing the burden on the

instructor as well as improving the learning experience of the student. In fact, it

has been shown that when designed correctly, an ITS can be as effective as a human

teacher (VanLehn, 2011). A thorough description of the different components of ITSs

can be found in (Vanlehn, 2006). Existing applications of such systems range from

solving numerical problems like Andes (Gertner and VanLehn, 2000) which can help

in teaching basic laws of physics (Schulze et al., 2000), Dragoon (VanLehn et al.,

2017), Q&A type problems as in Autotutor (Graesser et al., 2005) or for an SQL

tutor (Mitrovic, 2003). ITSs, of course, go beyond individual information processing

38

stage and find uses in knowledge building as a community (Magnisalis et al., 2011)

as well, thereby embracing the principles of the Learning 2.0 paradigm.

Student Assessment Models

One of the most important capabilities an ITS needs to have is to be able to estimate

the (mental) model or capabilities of the student. This has been explored in the

context of the (1) item response theory (IRT) (Hambleton et al., 1991) which treats

learning and testing as separate processes and the (2) Bayesian knowledge tracing

(BKT) theory (Corbett and Anderson, 1994) which considers a more dynamic model

of the student state. The latter becomes more relevant in the context of ITSs that

can provide more dynamic feedback and hints as discussed next. Indeed this is an

issue where AI techniques have been deployed before for dynamic modeling of the

evolution of the student model in terms of knowledge components, concentration /

focus levels, etc. (Murray et al., 2004). This includes different techniques such as

decision theoretic approaches (i.e. Markov Decision Processes or MDPs) (Murray

et al., 2004; Murray and VanLehn, 2006), and reinforcement learning (Chi et al.,

2010; Mandel et al., 2014; Mandel, 2017). This paper assumes for the most part 1

that these techniques are available and builds on top of that assumption, i.e. being

able to estimate the student model is necessary for ITS techniques and we want to

demonstrate, from the perspective of automated planning how this can be exploited

to provide a better learning experience to a student.

1In fact, the “model reconciliation” technique discussed later can handle uncertain models (Sreed-
haran et al., 2018) and can even be modified to function as an estimator for the student model but
this is outside the scope of the paper.

39

Feedbacks and Hints

Once the ITS has estimated a model of the student, it can provide targeted feedback

to improve the learning process. Existing work in this area (Barnes and Stamper,

2010; Stamper et al., 2013; Rivers and Koedinger, 2013, 2017) has largely focused on

ITSs operating as recommender systems. This paper is largely situated in this space

but aimed at providing much more sophisticated feedback in both the inner and outer

loops (Vanlehn, 2006) of an ITS which requires longer-term sequential reasoning.

3.1.3 What can Planning Bring to the Table?

Automated planning, as a field, has been around ever since the inception of AI,

and is considered a necessary ability of any autonomous system – the ability to reason

about and decide on a course of action (CoA) or plan given the current state of the

world. Many of the challenges faced in the design of an ITS bears parallels to the

planning agenda – making a curriculum, solving a given problem, or in general dealing

with the combinatorics of orchestrating a class can be potentially seen through the

lens of planning, i.e. computing a sequence of steps given a set of constraints. This

was the starting point of our investigation in this direction.

However, when operating with humans in the loop, traditional planning techniques

are not sufficient (Kambhampati and Talamadupula, 2015). A “human-aware” plan-

ner must be able to take into account the (mental) model (Chakraborti et al., 2017a)

of the user. Recent work (Sengupta et al., 2017) has looked at how planning tech-

niques can evolve in the context of decision support to guide the planning process of a

human decision-maker. This includes support for plan validation, critiquing, recom-

mendation, explanations, and so on. Much of the discussion here derives inspiration

from recent advances in the planning community along these directions.

40

Contributions

Thus, to answer the question what automated planning can do for the ITS scene, we

build on the following two features of planning techniques –

• Domain independence – Planning techniques have been particularly geared

towards domain-independent solutions – i.e. algorithms that can work across

a variety of domains provided in higher-level specification. This is especially

useful in the contexts of ITSs which have traditionally been restricted to class

or course specific solutions that do not generalize; and

• Model-based reasoning – Personalized support for students require higher level

and sequential reasoning about the course and student models, planning tech-

niques remain ideally suited for this.

In this paper, we expound on the above two themes to –

- Provide targeted feedback when students are stuck on problems by leveraging

the student model; (Section 3.3.2)

- Compute on demand curriculum based on class materials requested by the stu-

dent; (Section 3.3.3)

- We will show how this technique can be used to teach concepts to a student

to attain different levels of expertise as desired by the student; and

- We will show how student models may be composed to form joint plans of

study.

- Generate class curriculum in the spirit of social learning by including fellow

classmates in a student’s curriculum while also guaranteeing desired properties

41

of the curriculum – e.g. that students not only learn but also apply all the

concepts at least once. (Section 3.3.4)

We do not, of course, set out to model the full scope of challenges 2 in building

and end-to-end ITS. However, we recognize that much of the existing work on de-

ploying ITS systems, if not in conceptualizing them, has focused on specific learning

platforms or courses without any coherent approach or general principles of design

and implementation of the roles usually attributed to ITSs. The aim of this paper is

thus to introduce techniques from the planning community that can formalize some

of these concepts and provide a generalized framework for building such systems from

the ground up. This has useful implications for both the planning as well as the edu-

cational technologies communities – i.e. the former can provide solutions to existing

problems in ITSs (as we demonstrate in this paper) while feedback form the learning

community can provide useful feedback towards the refinement of said techniques,

including defining new areas of research of mutual interest. The biggest advantage of

such an approach, as mentioned above, is that the techniques are domain-independent,

i.e. they are defined at the procedural level and can be grounded with the description

of a particular course as specified by the instructor. Of course, the problem of knowl-

edge representation is (for a specific course and assignments in it) remain a challenge,

but the ITS features themselves generalize given the proposed planning framework.

3.2 Background

In the following, we will introduce concepts from the planning literature that will

be used in the rest of the paper.

2For example, the current discussion only focuses on the learning and interaction phase and does
not include post-hoc reflection / evaluations as explored in (Katz et al., 2000, 2003; Connelly and
Katz, 2009)

42

A Classical Planning Problem (CPP)

(Russell and Norvig, 2003) is the tuple M = 〈D, I,G〉 with domain D = 〈F,A〉 -

where F is a set of fluents that define a state s ⊆ F , and A is a set of actions - and

initial and goal states I,G ⊆ F . Action a ∈ A is a tuple 〈ca, pre(a), eff±(a)〉 where ca

is the cost, and pre(a), eff±(a) ⊆ F are the preconditions and add/delete effects, i.e.

δM(s, a) |= ⊥ if s 6|= pre(a); else δM(s, a) |= s ∪ eff+(a) \ eff−(a) where δM(·) is the

transition function. The cumulative transition function is δM(s, 〈a1, a2, . . . , an〉) =

δM(δM(s, a1), 〈a2, . . . , an〉).

A CPP is represented using the Planning Domain Definition Language or PDDL

(McDermott et al., 1998).

A Plan Generator Module (PGM)

(Helmert, 2006) computes a solution to a CPP M as sequence of actions or a (satis-

ficing) plan π = 〈a1, a2, . . . , an〉 such that δM(I, π) |= G. The cost of π is C(π,M) =∑
a∈π ca if δM(I, π) |= G; ∞ otherwise. The cheapest plan π∗ = arg minπ C(π,M) is

the optimal plan with cost C∗M.

A Plan Validation Module (PVM)

(Howey et al., 2004) outputs, given plan π and planning problemM, True iff δM(I, π) |=

G; False otherwise.

A Plan Recognition Module (PRM)

(Ramı́rez and Geffner, 2010) outputs, given a partial plan π̂ and a planning problem

M, a plan π that maximizes the probability that π̂ is a sub-plan of π –

π ← arg minπ P([π̂]
k≤|π|
k=0)

43

Note that the above approach does not directly compute this. Instead, we use the

compilation approach from (Ramı́rez and Geffner, 2009) to compute the optimal plan

that satisfies a set of observations given a goal as the output of the PRM.

A Landmark Generation Module (LGM)

(Hoffmann et al., 2004) outputs, given a planning problem M, a set of state (or

action) landmarks L containing states (or actions) that must be passed through (or

executed) in any satisficing solution of M. Thus –

- An action landmark a ∈ A requires that a ∈ π

∀π : δM(I, π) |= G.

- A state landmark s ⊆ F is such that ∀π : δM(I, π) |= G, ∃[π̂]
k≤|π|
k=0 : δM(I, π̂) |=

s. (Zhu and Givan, 2003)

A Human-Aware Planning Problem (HAP)

is given by the tuple Ψ = 〈M,MH〉 where MH = 〈DH , IH ,GH〉 is the human’s

understanding of the planning problem M (Chakraborti et al., 2017a, 2019b).

An Explicable Planning Module (EPM)

computes a plan π such that it is a satisficing solution toM and is as close as possible

to the expected plan in the human’s model (Zhang et al., 2017; Kulkarni et al., 2016)

–

C(π,M) ≈ C∗MH

44

A Plan Explanation Module (PEM)

outputs, given a HAP Ψ = 〈M,MH〉 and the optimal solution π∗ toM, the shortest

explanation (Chakraborti et al., 2017b) in the form of a model update to the human

mental modelMH so that the same plan is now also optimal in the human’s updated

mental model M̂H of the problem –

C(π∗,M̂H) = C∗
M̂H

The PEM can, in fact, trade off (Chakraborti et al., 2018a) the relative cost of ex-

plicability (i.e. deviation from optimality in the planner’s model) to the cost (i.e.

length) of explanations during the plan generation process itself by computing a plan

π and an explanation or model update E such that π is a solution to M and is the

optimal solution to M̂ modulated by a hyperparameter α –

π ← arg minπ |E| + α× | C(π,M)− C∗M |

With higher α, PEM computes plans that require more explanation, while with lower

α, it generates more explicable plans. We refer to this variant as PEM(α).

Internally, PEM performs what is referred to as a model space search to come up with

these explanations. This is done using unit edit functions λ that progressively try out

one or more updates to the model MH from the set of possible updates in M∆MH

until the optimality conditions as described above are satisfied. This is known as the

process of model reconciliation (Chakraborti et al., 2017b, 2018a).

3.3 ITS as Planning

We will now cast the design of a generic ITS in terms of the planning modules

discussed in the previous section.

45

3.3.1 Class Configuration

A class configuration is defined as the tuple –

C = 〈{KCi}, {Ti}, {Ai}, {Si}〉

- Knowledge Components or Concepts: {KC} is a set of knowledge components

or concepts KCi. In ITS literature, the process of knowledge acquisition by

a student has been decomposed into smaller components referred to as KCs

(Koedinger et al., 2010). KCs can be anything from a production rule (Mayer,

1981), to a facet, misconception, fact or even a skill (Bloom et al., 1964). The

aim of the social learning process is to make a student acquire different KCs

based on their and their classmates already existing ones.

- Tutorial: The class also constitutes of a set {Ti} of tutorials Ti ⊆ {KCi} that

consist of a set of KCs on which they provide information on. These directly

modify the student’s knowledge state by providing information on specific topics

or on how certain problems or (parts of) assignments may be solved. These form

an integral part of a curriculum for the class.

- Activities / Assignments: The class also has a set {Ai} of activities or assign-

ments Ai = 〈M, κ〉 where M is the model of the assignment and κ ⊆ {KCi}

consists of a set of KCs that are required to solve it. These engage the stu-

dent in actions that derive from knowledge introduced in the class (learning by

doing). These form the core content of the class. Technically, these can also

be used as sensing actions for the ITS in determining the knowledge state of

the student. Thus, an assignment may be used both as a way of estimating the

student model as well as a technique for imparting knowledge to the student.

46

- Finally, the class has a set {Si} of students Si. The student knowledge state or

model is defined as Si = 〈{ASi }, κ1, κ2〉 where ASi is the student’s understanding

(similar to the definition of a HAP) of the assignment model Ai and κ1, κ2 ⊆

{KCi} consists of a set of KCs that they have learned and applied respectively.

Given a class configuration C, curriculum is given by a sequence c(C) = 〈c1, c2, . . . , cn〉

where ci ∈ {Ti} ∪ {Ai} ∪ {Si} of tutorials, assignments and partnerships with other

students.

3.3.2 Tips and Hints

A solution to an assignment in a general sense can be seen as a sequence of steps,

a.k.a. a plan. Thus, we posit that a large variety of assignments can in fact be

modeled in terms of the planning problem. The model Ai(M) of an assignment Ai

(as mentioned before) is thus the model of a planning problem CPP. As explored in

(Sengupta et al., 2017) in the context of decision support using automated planners,

this opens up the slew of planning techniques (described in Section 3.2) that can

be readily adopted to provide targeted (problem specific but domain independent)

feedback to the students.

Solution Validation

For a partial attempt (represented as a partial plan π̂) on an assignment Ai, the

Plan Validation Module (PVM) indicates conditions that were unsatisfied, which

can be used to provide targeted feedback. For example, the PVM can be used by

the instructor to auto-grade solutions proposed by a student, since this is a domain

independent way of checking if the plan is a valid solution of the given assignment

(represented as a CPP Ai(M)). This is also useful for the student as well who

can receive immediate feedback on whether they are successful (and why, if not)

47

without having to wait for the instructor. This is one of the features that most ITSs

already possess. However, they are usually system level implementations that do not

generalize across assignments.

Solution Completion

For a partial attempt (represented as a partial plan π̂) on an assignment Ai, the

Plan Recognition Module (PRM) produces a completion that can be sampled from to

provide hints that guide the student towards the full solution. The PRM thus allows

the ITS to anticipate what actions the student needs to take given what they have

already done in order to achieve their goal. Notice that the partial plan is generated

by the student (from the model ASi) even though the completion is done using Ai.

This can thus help the student in cases of cognitive overload, but not if they lack the

knowledge to solve the problem, i.e. ASi 6= Ai. We will discuss ways to deal with the

latter case in Sections 3.3.3.

The PRM module can be also used to provide proactive support by recognizing that

the students is going astray and providing pop-ups to guide them towards the right

solution. Proactive support and has been shown (Zhang et al., 2015b; Sengupta et al.,

2017; Chakraborti et al., 2017c) to be desirable of an artificial agent in collaborative

settings. Interestingly, one could also imagine using the PRM to detect gaming of the

tutoring system (Muldner et al., 2010) by defining it as a possible goal that a student

might be trying to achieve, and based on the observations identify whether a student

is working diligently or trying to game the system.

Problem Summarization

Finally, the Landmark Generation Module (LGM) takes in the Classical Planning

Problem (CPP) representation Ai(M) for a specific assignment Ai and produces a

48

set of steps (action landmarks) or situations (state landmarks) that the student must

go through in order to solve the assignment. This can be very useful in providing a

concise summary of “TODOs” required of the student to arrive at the solution, or by

considering the domain variables that the student has already set to true, measure

the progress of a student and thereby help the instructor in classroom orchestration

(Dillenbourg et al., 2011).

We shall illustrate each of these use cases in Section 3.5.1.

3.3.3 On-demand Curriculum Generation

A typical feature of online learning, as we discussed in Section 3.1, is that students

increasingly select a subset of class materials to follow and leave once they are done

(e.g. MOOCs are known to have notoriously low completion rates (Amy Ahearn,

2017)). As a result, students end up following individual and different curricula

asynchronously. From the students’ perspective an obvious problem with this is that

they might not have the required knowledge to complete the materials they want. In

the following, we thus address the problem of on-demand curriculum generation. In

this paradigm, the student selects a particular assignment Ai to complete and the ITS

performs argumentation with the assignment model Ai(M) and the students model

of the assignment ASi (M) to identify deficiencies in the student model that need to

be addressed using relevant tutorials.

In order to achieve this, the ITS spawns an instance of the Plan Explanation

Module (PEM) with the HAP Ψ = 〈Ai(M), ASi (M)〉 – here the instructor model is the

ground truth and the student model needs to be reconciled. The model edit functions

λ are the tutorials in the class. The output of the PEM is thus the optimal set of

tutorials (this forms the recommended curriculum) that guarantees that the same

solution (plan) is optimal in both the student model as well as the instructor model

49

(even though they are not equal). This is especially useful since the instructor model

is going to contain information pertaining to the entire class, while the student does

not need to know all these details in order to solve a specific assignment. The PEM is

thus able to leverage the student and instructor models of an assignment to provide

the exact set of tutorials that the student requires. We will provide illustrations of

this process in Section 3.5.2. Notice that, the ITS can either use its estimate of ASi or

engage in active information gathering by asking the student questions to determine

parts of the student model it is uncertain about (Sreedharan et al., 2018), in order to

meet the specific needs of the student.

Teaching as an α trade-off

Notice that the formulation of the assignments as planning problems allow us to

spawn CCPs with the student models (indicating how the student can solve the

problem) or the instructor model (indicating how the instructor will solve the same

problem) or anywhere in between (as computed by PEM(α)). The student solution

(equivalent to an explicable plan) is likely to be suboptimal, or in most cases, not

feasible in the ground truth or instructor model. An instantiation of PEM(α) with

the HAP Ψ = 〈Ai(M), ASi (M)〉 thus allows us to modulate the level of expertise

with which a student wants to solve an assignment. For low values of α, the ITS will

recommend the smallest possible curriculum that will just enable the student to solve

the assignment (albeit suboptimally) while for progressively higher values of α it will

start recommending more and more advanced curriculum to the point it matches the

output of PEM, i.e. the optimal complete curriculum. From the perspective of the

instructor as well, the α hyperparameter can be gradually increase from a low value

to generate study materials for individual students as the course progresses. Thus

the teaching process itself can be viewed through the lens of the model reconciliation

50

process as one of modulation of the value of α in the PEM(α). We shall demonstrate

this in Section 3.5.2.

Remark

To the best of our knowledge, algorithms for the on-demand curriculum generation

process driven by a specific class activity, and the argumentation process over the

curriculum with the desired expertise level of student, have not been explored before

in the ITS literature. This technique can be useful from the perspective of both the

instructor and the student – e.g. the former can stagger the course content to meet

the student’s expertise level, while the latter can chose to learn at different levels of

expertise (thus possibly reducing the high dropout rates that plague the on-demand

learning communities).

Composition of Student Models

Finally, we note that we can extend the model edit functions in the PEM from just

the tutorials in the class to the other student models as well. Thus the model updates

during the model reconciliation process can be affected by either the KCs provided

by tutorial or a composition of one or more student models. The output of PEM will

now provide an optimal recommendation of tutorials and potential study partners

based on the skill sets (i.e. models) of the individual students.

3.3.4 The Jigsaw Problem

The Jigsaw Problem is the process of creating smaller groups in a class for co-

operative learning (Aronson, 1997). It has shown to have positive effect on students

learning the course material together, and then engaging in discussions. This leads

to a more active and deeper learning in class (Aronson, 2011). Aronson, points out

51

ten fixed steps to achieve this where the groups are created based on the ethnicity,

race, gender and ability. However, it is intractable for a teacher to reason about all

the student models and create study groups. Casting the class-level curriculum gen-

eration problem as a planning problem allows us to generate curricula for the entire

class while enabling the instructor to specify desired properties of the curricula that

needs to be maintained. These properties may be –

- Maximum size of study groups;

- Specific assignments of students;

- No repetition (or conversely, continuation) of study partners; and so on . . .

- In this paper, we specifically focus on the following property – every student

not only learns but applies all concepts in the class at least once. This is espe-

cially important in the social learning paradigm, to ensure that students have

mastered all concepts and not depended on other students to finish a shared

curriculum.

In order to achieve this, we define a planning problem with the start state compiled

from the class configuration C and a goal state that model a class configuration where

∀Si : Si(κ2) = {KCi} – i.e. every student has applied all the concepts in class.

The operators are generated from the set of tutorials and assignments – the tutorial

operator has its associated KCs as effects of being learned; while assignment operators

has KCs as preconditions (that need to be learned) and effects (of those KCs having

been applied).

52

This formulation 3 thus not only ensures that all the students have mastered

all the concepts in the class materials but also that the length of the curriculum is

reduced (from |{Si}| times the length of the curriculum for individual students) due

to the collaborations across students who can bring in complementary skill sets and

transfer knowledge. We provide an illustration of this in Section 3.5.3.

Figure 3.1: Illustration of the different stages of a “plan” being executed by a student
in Dragoon – (1) the empty interface at the start of the problem (initial state); (2)
the first node being completed; (2) the second node being created; and finally (3) the
problem being completed with the feedback on the graph.

3.4 Introducing Dragoon

We will illustrate the above capabilities in Dragoon an ITS developed at Arizona

State University to teach dynamic system modeling (VanLehn, 2013) in the physical

classroom setting – over the course of almost half a decade of deployment, the system

3Note that this problem may be solved by horizon-limited planning, which is known to be NP-
complete, the horizon being equal to |{Si}| times the length of the curriculum for individual students,
which is the worst case curriculum length when no groups could be found. Thus, the jigsaw problem
does not need the full expressiveness of CPP which is known to be PSPACE-complete.

53

has served 13 courses with approximate class sizes of 30, with more than a 1000

sessions per class. It is an ideal testbed for studying the nuances of tutoring systems

currently deployed in classes in the space of mathematics, algebra and any other

generic step-based tutoring systems. Figure 3.1 provides a snapshot of the interface.

In dynamic system modeling, a system is a part of the environment and dynamic

system is the part of the environment that changes with time. Usually, first (or

higher) order differential equations (differentiated with respect to time) represent

dynamic systems mathematically. For simplicity of solving differential equations,

time is discretized to calculate the values of different quantities. A Model refers to a

representation of the system in a formal language.

Dragoon’s formal language is based on Stella’s stock and flow network (Doerr,

1996). It consists of three different types of quantities – (1) accumulator (quantity

that changes); (2) function (quantity that may or may not change); and (3) param-

eter (quantity that remains constant). These quantities are called nodes. To create a

node a student needs to define its properties – i.e. description, type, value, units and

equation. They are connected to each other by equations called relations. Students

are taught template structure for interaction between nodes, which show particular

rate of change in values called schemas – e.g. linear schema represents linear change

in values while exponential schemas represent exponential changes. Students practice

on Dragoon through tutorial and assignment workbooks. A detailed description of

Dragoon is available at (Wetzel et al., 2017; VanLehn et al., 2016, 2017).

3.4.1 The Isle Royale Workbook

We use the Isle Royale Workbook (https://goo.gl/ECrNnt) to illustrate the

proposed techniques. It teaches students population dynamics of moose and wolf

54

https://goo.gl/ECrNnt

population and learn interactions in a predator prey environment. There are six

problems in the workbook (time step is a year) –

• Isle-1 – Linear growth model of moose population, that is constant growth of

two moose.

• Isle-2 – Exponential growth model of moose population. The problem defines

a constant growth rate which is multiplied by the population in the previous

time-step to calculate the net growth.

• Isle-3 – Exponential growth and death model of moose population. This prob-

lem adds the a constant death rate and the change in moose population is

defined as the difference number of moose born and died.

• Isle-4 – Exponential growth and death model of moose population with a fixed

carrying capacity of the environment which effects the moose death rate.

• Isle-5 – Exponential growth and death model of Wolf Population. This model

is similar to Isle 3 problem.

• Isle-6 – Exponential growth and death model of moose and wolf population with

constant effect of wolf (predator) population on death rate of moose (prey) and

constant effect of moose population on birth rate of wolf.

Epidemic schema is sometimes confused with exponential schema. Thus, we use

one extra problem modeling flu epidemic in college which spreads through meetings

between students. The number of students in the meeting and the chance that a

student is affected is assumed to be constant.

55

The Zener Diode Problem

Most problems in Dragoon are solved with a single or unique set of steps. The only

thing that changes is the sequence in which nodes are created. However, there are

a few problems which can be solved in multiple ways, where a student can change

the equations in the nodes to solve the problem in lesser number of nodes. One such

problem is to model a Zener diode using Dragoon – if a student has a more advanced

understanding of circuit theory, then they can easily solve the problem in fewer steps

(i.e. using fewer nodes). We will thus use this problem to demonstrate the usefulness

of PEM(α).

3.5 ITS as Planning in Action

We will now illustrate how the techniques introduced in Section 3.3 manifests

themselves on Dragoon. The first step is to construct the instructor model MI –

examples can be accessed at – https://goo.gl/cyVthK.

We used nested object types to represent different objects in Dragoon, i.e. node,

schema (KCs) and properties. Accumulator, parameter and function were of type

node. Linear, exponential, extended exponential, carrying capacity and epidemic

were types of schema. Description, value, type, equation and units are type of prop-

erties. These object types were used to define the state variables which characterize

the properties that were part of a node, nodes that were part of schema, and schemas

that were part of the problem. The operators in the domain represent the actions

that are available student in the Dragoon environment. For example, a student fills

each property to complete a node and it can be done in a fixed order. So the operator

definitions were also related to initializing a node, filling every property of the node,

completing a node and completing a schema. Students need an understanding of the

56

https://goo.gl/cyVthK

Figure 3.2: Response of PVM to the correct and incorrect or incomplete attempts
in the Isle-3 problem.

57

schema to fill the type and equation of the node. Thus actions for those steps have

a precondition of has schema to create the node. Finally, the initial state consists of

all the nodes and schemas that are part of the assignment as well as the knowledge

state of the student, that is whether they understand the schemas required to solve

the problem. The goal state required that the student complete all the schemas that

are present in a given problem.

3.5.1 Tips and Hints (c.f. Section 3.3.2)

Plan Validation

Figure 3.2, shows the 20-step solution for Isle-2, and Figure 3.1 shows some of these

actions in the Dragoon environment. Figure 3.2 presents the incomplete attempt of

the student being flagged as unsuccessful by the PVM, and shows the error generated

after executing the incomplete plan in the Dragoon interface.

Plan Recognition

Figure 3.3 shows the correct identification by the PRM among two possible solu-

tions of the Isle-3 assignment using the “exponential growth” schema or the “ex-

ponential decay” schema from partial observations of the actions of the student in

Dragoon.

Landmarks

Figure 3.4 shows the 35 state landmarks produced by the LGM for the Isle-3 assign-

ment.

58

Figure 3.3: The output of the PRM in the Isle-3 problem which can be solved
in two separate ways. Here the student seemed to have decided to work on the
exponential decay schema.

3.5.2 On-demand Curriculum Generation (c.f. Section 3.3.3)

We use the same domain that we used in tips and hints. We are testing the case

where a student wants to solve the Isle-4 problem. Figure 3.5 shows the output

of PEM when a student expresses a desire to complete the Isle-4 assignment and

requests a curriculum for it. The explanation presents the model differences in the

59

Figure 3.4: The 35 state landmarks generated by the LGM for the Isle-3 problem.

Figure 3.5: On-demand curriculum generated by the PEM. This is the smallest
change to the student model required to solve the Isle-4 problem.

60

Figure 3.6: Different plans and associated model updates generated by the PEM(α)
based on the α-hyperparameter. For a high value of α the curriculum is of size 3 after
which the problem can be solved in 17 steps. With a lower value of α, the problem
can be solved with a longer 20 step plan.

initial state that prevents the student from completing the assignment at this time

and suggests tutorials to introduce these concepts. The explanation is of size 3, and

references the missing knowledge concepts that are needed for solving the problem in

the 40 steps.

Figure 3.6 shows how PEM(α) can be used to modulate the expertise levels of the rec-

ommended curriculum. The complete curriculum is of size 3 after which the problem

can be solved in 17 steps. But, with lower value of α, the problem can be solved with

a longer 20 step plan. As explained earlier, even though the student needs two knowl-

edge concepts to solve the problem (zener voltage regulator and kvl schema), but to

solve the optimal plan a student needs to be an expert and improve the equations in

one of the nodes and create a better model for Zener Diode problem.

61

Figure 3.7: Group versus individual curriculum lengths with increasing class size.

Figure 3.8: Group versus individual curriculum lengths in different class configura-
tions.

62

3.5.3 Jigsaw Problem (c.f. Section 3.3.4)

Here, we took an instance of a Dragoon class with 7 concepts and 9 assignments.

A single student curriculum comes out as 12 steps long, with 7 tutorials and 5 as-

signments. However, with the introduction of groups of two students, this reduces to

a combined curriculum of 23 steps where every student applies every concept at least

once. For every new student, plan size increases by 11 steps, showing that one of the

assignment can be done in the group. This is shown in Figure 3.7, which plots the

curriculum length with increasing class sizes. In this particular class configuration,

only one of the assignments could be done in a group.

Now we study the effect of varying class configurations by the making assignments

that randomly teach up to 4 concepts. The number of concepts were fixed to 10 and

there were 20 assignments that would teach these concepts. Figure 3.8 shows the cur-

riculum length for 50 different randomly generated four student class configurations.

We observe a decrease of 3 to 7 steps in every class.

3.5.4 Conclusion

In this chapter, we demonstrated how an ITS framework can be built using the

state-of-the-art in human-aware planning techniques for the design of course indepen-

dent support features. The last section illustrated these properties in a real tutoring

system Dragoon. We used Dragoonãs has been used in several classes at ASU (in Sus-

tainability department) to teach students modeling dynamic systems as represented

by the Isle Royale Workbook. Dragoonh̃as been shown to be effective for teaching

students, thus, in the next chapter we describe our efforts towards evaluating the

effectiveness of automated planning and HAAI techniques.

63

Chapter 4

IPASS – ACTIVE DECISION SUPPORT FOR STUDENTS

In the previous chapter we discussed how planning and HAAI techniques can be

user in a classroom. but to be certain about the usefulness we need to perform a

user study. The dragoon system has already been tested with several user studies

(VanLehn et al., 2016, 2017; Grover, 2015; Grover et al., 2018a) and many courses at

ASU. However, it is essential to directly evaluate the effectiveness of these techniques,

thus we created another system called iPass to help university students make their

plan of study (iPOS), as their are plenty of domain experts in the university. We

begin with a brief description of the challenges faced while applying these techniques

to provide support to exprets, followed by describing the domain for iPOS and the

iPass interface and its decision support components.

4.1 Introduction

Human-in-the-loop planning (HILP) (Kambhampati and Talamadupula, 2015) is a

requirement in many present-day complex decision making and planning environ-

ments. In this paper, we consider a case of HILP where the human responsible for

making the decisions in a complex scenario is supported by an automated planning

system. High-level information fusion that characterizes complex long-term situa-

tions and supports the planning of effective responses is considered the greatest need

in crisis-response situations (Laskey et al., 2016). Indeed, automated planning based

proactive support was preferred by humans involved in teaming with robots (Zhang

et al., 2015a) where the cognitive load of the involved subjects involved was observed

to have been reduced (Narayanan et al., 2015).

64

Traditional planning techniques have focused on end-to-end plan generation rather

than proactive support. Although there has been some work recently to make these

techniques human-aware that try to account for human activities and intents while

constructing the plans (Zhang et al., 2017), such as generating explicable (Zhang

et al., 2017) or legible plans (Dragan et al., 2013), these works still focus on complete

plan generation. Thus, none of these techniques can be directly adapted to providing

decision support. In this work, we investigate the extent to which an automated

planner can support the human’s decision-making process, despite not having access

to the complete domain and preference models, while the humans remain in charge

of the process. This is appropriate in many cases, where the human-in-the-loop is

ultimately held responsible for the plan execution and it’s results. This is in contrast

to earlier work on systems such as TRAINS (Allen, 1994), MAPGEN (Ai-Chang et al.,

2004) and (Kim et al., 2017) where the planner is in the drivers seat, with the humans

“advising” the planner. Thus, our work is distinct from them on mixed-initiative

planning where humans enter the land of automated planners, manipulating their

internal search process – here, the planners enter the land of humans.

An important complication arises because the planner and the human can have

different (even complementary) models of the same domain or knowledge of the prob-

lem at hand (as shown in Figure 4.1). In particular, humans might have additional

knowledge about the domain or the plan preferences that the automated planner is

not privy to. This means that plan suggestions made by the automated planner may

not always make sense to the human in the loop, i.e. appear as sub-optimal in their

model. This is an ideal opportunity for the system to provide model updates as

explanations (Chakraborti et al., 2017b) and reconcile the models through iterative

feedback from the human during the plan generation phase.

65

Figure 4.1: Planning for decision support must consider difference in models between
the planner and the human.

The extent to which a planner can be used for decision support is largely dependent

on the nature of the model that is available. For example, if we have an incomplete

model that often occurs in many mixed-initiative settings (Smith, 2012), then an

automated support component can use the incomplete model to complete or critique

existing plans (Manikonda et al., 2017). Keeping this in mind, in the current paper we

focus on scenarios which come with more well-defined protocols or domain models, and

illustrate how off-the-shelf planning techniques may be leveraged to provide various

degrees of decision support (as opposed to complete automation). We believe such

technologies will be helpful in naturalistic decision making scenarios such as disaster

response where the cognitive overload of the human can negatively affect the quality

of decision making.

Human-Computer Interaction (HCI) is thought to have developed as a sub-field

in three different areas – management information systems, computer science, and

human factors (Grudin, 2011). While human factors have evolved to understand the

66

Figure 4.2: Degrees of automation of the various stages of decision support, and the
role of iPass in it.

behavioral effects of agents on different interfaces, management information systems,

and computer science worked on various ways of designing these interactions. In the

past, two of the most common methods of interactions were – direct manipulation and

interface agents (Shneiderman and Maes, 1997). While direct manipulation occurs

when the interface changes only based on the user’s instructions, interface agents

are assumed to possess more intelligence and adapt by themselves, behaving like

a collaborator (Maes et al., 1997) (perceived as intelligent software agents). For

example, software for classifying news or email as relevant or not, in the context of

a specific user, can be thought of as an intelligent software agent. In this paper, we

look at a specific intelligent software agent that provides decision support to a user

and reduces their cognitive and information overload for sequential decision-making

tasks.

Earlier works have applied the principles of Human-Human Interaction (HHI) for

designing a collaborative disclosure interface (Lesh, 2004) rather than motivating the

design of decision support software with principles in Human-Computer Interaction

(HCI) directly. This work, to our knowledge, is the first to propose proactive decision

support (PDS) system iPass following some of the design principles laid out in the

literature in the (HCI) community. Proactive decision support can be described as the

67

act of providing decision support to the user without waiting for an explicit request

and proactively checking for decision failures due to various reasons like resource

management. We demonstrate possible roles that existing automated planning tech-

nologies can play in the deliberative process of the human decision-maker in terms of

the degree of automation of the planning process.

In the past, there have been parallels drawn between the work in HCI and AI where

they were described as two fields divided by a common focus (Grudin, 2009). Since

the idea of intelligent software agents (Maes, 1995), the HCI community has used AI

techniques for many applications, where adaptive interfaces connects directly to the

notion of adaptive agents in the automated planning community. Furthermore, we

believe that the notions of predictability of an adaptive interface (Gajos et al., 2008)

and explanations in the context of complex strategies for such interfaces (Rader et al.,

2018) have connections to the identifiability and predictability of plans (Chakraborti

et al., 2019a) and explanations in automated planning literature (Chakraborti et al.,

2017b). Although works on the HCI side have shown how such interfaces affect user’s

behavior (Langley, 1999), their mental workload (Hancock and Chignell, 1988) or

user satisfaction (Rader et al., 2018), works in automated planning, in the context of

decision support, lack similar human studies. In this work, we seek to address this

concern.

Contributions

The purpose of this paper is to showcase how the various planning technologies can

be used to support human decision-makers. Thus, in this work, we –

• Show that state-of-the-art planning techniques can be adapted to design a

Proactive Decision Support system, iPass.

68

• Describe how the design decisions for iPass are driven by the literature in the

HCI community.

• Present user studies using iPass, a decision support system (similar to iPass)

designed for university students, to show the effectiveness of automated planning

techniques for decision support.

Every domain comes with its nuances and thus, needs a personalized design for the

decision support system to better support the use-cases desired by domain experts.

iPass showcases how a Fire Marshal may need decision support to handle emergencies

in time-critical real-world scenarios. Similarly, iPass is used by graduate students

to create their plan of study. Thus, we designed and implemented two different

systems– one to show the applicability of human aware automated planning in real-

world decision-making scenarios and the other to highlight the effectiveness of such

systems with users. Note that beyond the two domains highlighted in this paper,

our methods for decision support can be leveraged, with minor changes to interfaces,

across various domains.

4.2 Design Principles

Before explaining how one can use planning technologies for decision support, we

highlight the important features of the deliberative process that we have to ensure

for seamless interaction with the planner.

Naturalistic Decision Making

The proposed proactive decision support system supports naturalistic decision mak-

ing (NDM), which is a model that aims at formulating how humans make decisions

in complex time-critical scenarios (Klein, 2008). It is acknowledged as a necessary

69

element in PDS systems (Morrison et al., 2013). Systems which do not support NDM

have been found to have detrimental impact on work flow causing frustration to de-

cision makers (Feigh et al., 2007). At the heart of this concept lies, as we discussed

before, the requirement of letting the human to be in control. This motivates us to

build a proactive decision support system, which focuses on aiding and alerting the

human in the loop with his/her decisions rather than generate a static plan that may

not work in the dynamic worlds that the plan has to execute in. In cases when the

human wants the planner to generate complete plans, they still have the authority to

ask iPass to explain its plan when it finds it to be inexplicable (Chakraborti et al.,

2017b). We postulate that such a system must be augmentable, context sensitive,

controllable and adaptive to the human’s decisions. Various elements of human-

automation interaction such as adaptive nature and context sensitivity are necessary

for the ease of usability (Sheridan and Parasuraman, 2005). It has been shown, that

vigilance requires hard mental work and is stressful via converging evidence from

behavioral, neural and subjective measures (Warm et al., 2008). Our system may

be considered as a part of such vigilance support thereby reducing the stress for the

human.

Degrees of Automation

One of the seminal works by Sheridan and Verplank builds a model that enumer-

ates ten levels of automation in software systems depending on the autonomy of

the automated component (Sheridan and Verplank, 1978). Later, in the study of

mental workload and situational awareness of humans performing alongside automa-

tion software, Parasuraman separates the requirement for automation into four stages

(Parasuraman, 2000)– Information Acquisition, Information Analysis, Decision Selec-

tion and Action Implementation (see Figure 4.2). We use this system as an objective

70

basis for deciding which functions for our system should be automated and to what

extent so as to reduce human’s mental overload while supporting Naturalistic Deci-

sion making. Parasuraman and Manzey show that human use of automation may

result in automation bias leading to omission and commission errors (Parasuraman

and Manzey, 2010), which underlines the importance of reliability on the automation

(Parasuraman and Riley, 1997). Indeed, it is well known that climbing the automation

ladder (shown in Fig. 4.2) might well improve operative performance but drastically

reduce response quality when failures occur (Wickens et al., 2010). Hence, to meet

the requirement of naturalistic decision making, we observe a downward trend in

automation levels (in Figure 4.2) as we progress from data acquisition and analysis

(which machines are traditionally better at) to decision making and execution.

Interpretation & Steering

For the system to collaborate with the commanders effectively, in the context of a

mixed-initiative setting, where the planner helps the human, it must have two broad

capabilities - Interpretation and Steering (Manikonda et al., 2017). Interpretation

means understanding the actions done by the commanders (eg. sub-goal extraction,

plan and goal recognition), while Steering involves helping the commanders to do their

actions (eg. action suggestion, plan critiques). The current system mainly addresses

the decision making aspect, which requires the ability to both interpret as well as

steer effectively, even as it situates itself in the level of automation it can provide in

the context of naturalistic decision making.

Human-AI interaction

Recent work by Amershi et al. suggested guidelines based on traditional user-interface

design techniques to support designers while creating AI agents (or software) (Amershi

71

Figure 4.3: Illustration of the iPass interface.

et al., 2019) that can be mapped to earlier work on principles of mixed-initiative

user-interfaces (Horvitz, 1999). The former work elicitates 18 guidelines under four

categories based on the different phases of interaction– (1) initially, (2) during the

interaction, (3) when wrong, and (4) over time. We highlight, how these guidelines

were are already considered in our interface design.

4.2.1 The iPOS Domain and Interface

One of the major difficulties of designing user studies in the decision support

paradigm is access to domain experts who can verify the real usefulness of the decision

support for sequential decision making. Thus, earlier works that propose software to

help the human in their decision making process (Sengupta et al., 2017, 2018) are

unable to provide any evidence as to how effective they are in practice. Keeping

this in mind, we situate our study in a domain for constructing an “interactive Plan

of Study” (iPOS) at Arizona State University. This has two implications. On one

hand, this task is known to be challenging for any student as per (1) evidence in

existing literature (Khan et al., 2012), and (2) its use in the International Planning

Competition (Ferland and Sanner, 2018) as a benchmark domain. On the other hand,

72

this is a domain that graduate students, who are easily accessible in the academic

setting for large-scale user studies, are already familiar with because they have to build

and maintain an iPOS for themselves as per university requirements. Note that, in

iPass , we showcase the techniques that can be leveraged for decision support in

real-world settings and evaluate the effectiveness of these techniques through iPass.

This should give the reader an idea that beyond cosmetic changes needed for the user-

interface, the decision support methods can be used out-of-the-box for other domains.

Important rules that a student needs to remember while constructing an iPOS are:

� Complete 30 credits and where every course is 3 credits

� There are three deficiency courses (these courses are to be taken that are pre-

requisites from under graduate classes and a student who has not taken them)

that are to be finished before any normal course and they do not count towards

30 credits.

� Define area of specialization.

� Complete 3 specialization courses.

� Chose a chair and two other committee members.

� Chair should be from same area of specialization.

� Complete 2 research courses – CSE599A & 599B.

� Defense is to be scheduled in the last semester.

The interface (shown in Figure 4.3) has three panels – (1) The panel on the left

shows the relevant information of the student (e.g. what deficiency courses they have,

whether they are an international student, if they are research or teaching assistants,

73

Figure 4.4: Illustration of Plan validation, where a student adds a course and checks
whether the course can be taken at the beginning of the first semester. VAL provides
feedback to the user, whether taking the action in a particular is possible or not.

etc.); (2) The central panel provides the student with options to build the iPOS

for the given student information. Actions in this panel can include adding course,

specialization, committee members, etc.; (3) The panel on the right provides an

interactive interface to work on the plan (such as rearranging or deletion of action)

along with relevant information about the plan (e.g. difficulty or average number

of courses a semester, total cost of tuition for the current plan, etc.). This panel

also houses the decision support components that, if available, lets the user ask for

validation of the current plan or suggestions to complete it. The technical details

for iPass were presented in the previous section, and now we will discuss specific

modules that are provided to students for user study.

4.2.2 iPass– Decision Support Components

Although the technical details for all the decision support components have been

provided in the previous sections (for iPass), there exists certain differences that we

describe in this section. In iPass, we consider πe = πh because the human-in-the-

loop is, at the start of the study, given a randomly allocated initial state and asked to

make an iPOS from scratch. We note that due to constraints on the response time,

74

Figure 4.5: Illustration of Plan Suggestion and Explanation. Actions in green have
been added by the planner and actions in black were added by the user. It follows
from Validation scenario where the user first added the Artificial Intelligence course
and then asks for suggestion of a complete plan with it. Explanation is shown using
the box.

the decision support components of iPass differ from iPass, in some cases, to make

them more scalable. Moreover, due to the availability of additional resources such as

the user’s manual, providing landmarks on the interface becomes redundant.

Plan Checking is shown as the check button in figure 4.3. Given a plan of study

πh generated by the student, it checks whether δ(I, πh) |= > i.e., the student has a

valid iPOSthat fulfils all the requirements necessary for graduation. The feedback

generated is binary indicating whether the submitted iPOS is valid or not.

Plan Validation as mentioned before, is used to validate the student’s plan πh.

For this purpose, we use VAL (Fox et al., 2005), which validates whether all actions

∈ πh can be executed (i.e. all pre-conditions are satisfied). When an action cannot

not be executed, a message is provided to the student explaining the why the iPOSis

invalid. For example, figure 4.4 shows that a student, upon validation, is informed

that they need to complete the course on Computer Organization (a deficiency) before

enrolling in the course on Artificial Intelligence (which is a graduate-level course).

75

Stage Support Component iPass

Information Acquisition Data Decision Loop 3

Plan Summarization 7

Information Analysis Model Updates 3

Plan Validation 3

Decision Selection

Plan Correction 3

Action Suggestions 3

Optimal Plan Suggestions 7

Monitoring Plan Generation 7

Action Implementation 7

Table 4.1: Different decision support components present in iPass system where
3 means that the support component is part of the system and 7 means that the
support component is not part of the current version of the system.

Action Suggestion The goal of action suggestion is to generate πs given a

partially constructed plan πh by the student. In order to achieve this, we use the

pr2plan compilation (Ramı́rez and Geffner, 2010) described above. In order to help

the user distinguish between the suggested actions ∈ πs and the existing actions ∈ πh,

we highlight them on the interface. In the scenario shown in Figure 4.5, a student

chooses their specialization (on Artificial Intelligence shown in black) and asks for

suggestions that completes the iPOS. In this case, iPassadds the required amount

of courses constrained based on the specialization, selects a graduate committee, and

ensures that a dissertation is done. These may exist scenarios where the input partial

plan πh cannot be completed in any way to come up with a valid iPOS. In such cases,

the used is notified that the added actions cannot lead to a valid iPOS. Note that

76

there might exist various suggestions for πs. Some of them might be preferred by a

particular student than others. Although we do not consider this setting, a explicable

(Kulkarni et al., 2016) plan completion algorithm might be useful.

Plan Explanations In order to provide meaningful explanations based on model

reconciliation, we expect to have an idea of the student’s understanding of an iPOS.

Given that the graduate study domain made by us is significantly different from the

university rules, we assumed an empty model of the student (i.e. they are not fa-

miliar with any of the constraints while constructing the iPOS). We then provide

Plan Patch Explanations (PPE) that can explain the suggested plan. For example,

as shown in Figure 4.5, the need for completing a particular course (Artificial Intel-

ligence) is deemed to be necessary for specialization in the selected topic (AI). Note

that while explanations provide details of the domain that support a plan, validation

points out constraints that invalidate a plan. Thus, these functionalities are com-

plimentary in the context of a sequential decision support system. As stated at the

start of the section, due to the lesser complexity of the iPOS design task in compar-

ison to the fire scenario and the need for quick response time, some of the decision

support aspects were modified. We highlight the difference in the decision support

components present in iPass and iPass in table 4.1.

4.3 Aim of the Study

In this section, we present the user study using iPass to evaluate the effectiveness

of the decision support components present in the system. To determine the individual

as well as the cumulative impact of the decision support components, we evaluated

our interface in four conditions –

77

Ccontrol Both validation and suggestion capabilities are absent. The users do have to

pass correctness before they can submit.

C1 Only validation capability is enabled.

C2 Only suggestion capability is enabled.

C3 Both validation and suggestion options are available.

Furthermore, each participant is assigned to one of the study conditions Ci per-

formed the iPOS planning task twice (with different, randomly generated initial

states, i.e. student portfolio). We thus, have two sub-conditions (denoted using

the super-script) C1
i and C2

i for each study condition. Given these four conditions,

we hypothesize that–

H1. Planning performance P will be in increasing order of –

P (Ccontrol) < P (C1), P (C2) < P (C3)

Note that we do not expect validation or suggestion by themselves to be more

useful than the other. “Performance” here can manifest itself in different forms

–

H1a. The time to completion T (Ci), i = {Control, 1, 2, 3} will follow the same

order, e.g. T (Ccontrol) > T (C1), T (C2) > T (C3).

H1b. The satisfaction with the final plan of study constructed will follow the

same order.

H1c. The satisfaction with the feedback from the interface will follow the same

order.

78

Figure 4.6: Average time taken (along with the standard deviation) by a participant
to complete the two parts of the study for each condition C1

i and C2
i .

H2. The time to completion will reduce in all four conditions, however the reduction

∆T (Ci) = T (C1
i)− T (C2

i) will also follow the same order, i.e. –

∆T (Ccontrol) < ∆T (C1) < ∆T (C2) < ∆T (C3)

We expect this to happen because, in the later conditions, users are provided

relevant details of the domain as they construct a plan, and are thus expected

to become more familiar with the domain. We expect this effect to be more

pronounced in C2 and C3 which provides explanations specifically for purposes

of model reconciliation.

H3. The effects of support components on performance will be more pronounced for

subjects with less expertise, e.g. students who had not previously completed

their own iPOS.

4.4 Experimental Results

The study was conducted on the university premises. Each subject was given

$15 for an hour of study where they used the iPass software to make two iPOSs.

At the start of the study, participants were informed that they would be asked to

explain each iPOS with the hope that it will help them be more invested in the

task (Mercier and Sperber, 2011). Then they were given a document explaining the

79

Figure 4.7: Average number of times participants added, deleted, rearranged courses
or clicked ‘check’ while making an iPOS for all the conditions C1

i .

planning domain and another document explaining the functionality of the elements

in the interface. Lastly, they were given 20 minutes to make each iPOS in order to

simulate the time-critical nature of the environment. At the end, they were presented

with a feedback form.

After performing pilot studies with two participants, we sent out a department-

wide advertisement asking interested participants to apply for an hour’s slot. Specif-

ically, they were asked to fill a form and choose multiple time slots indicating their

availability. We did not have any specific criteria to choose the participants for the

study, beyond the notion of first-come-first-serve. The study was conducted over a

period of five days in each hour, we had four students be present at the lab to take

part in the study. For each participant, the specific system condition was allocated in

a round-robin fashion based on their arrival time (i.e. first participant got C1, second

got C2 etc.). We obtained data from 59 participants, of whom three were faced with

a run-time error. Thus, we ended up with data from 56 participants (13-15 in each

condition) of which six were undergraduates and others were graduate students. Out

of the 56 participants, a total of 18 students had submitted an iPOS before.

Now we will present, the detailed results from the study. A part of these results

were presented in the earlier version (Grover et al., 2019).

80

Figure 4.8: Average number of times ‘validate’ was clicked in condition C1
1 and C1

3 .

Figure 4.9: Average number of times ‘suggest’ was clicked in conditions C1
2 and C1

3 .

4.4.1 Hypothesis H1

H1a. We show the average time a participant took to complete the first and the

second iPOS and submit their feedback 1 in Figure 4.6. The data shows a significant

improvement in performance with regards to time as one goes from Ccontrol to C3

(p < 0.05 for the first and p < 0.01 for the second iPOS) showing that the auto-

mated planning technologies in conjunction helped in improving the efficiency of the

decision making process. Unfortunately, there was no significant improvement seen

in performance from (1) Ccontrol to C1 or C2 and (2) C1 or C2 to C3. Thus, hypothesis

H1a was found to be partially true, thereby showing that all the planning technologies

and not a subset of them were necessary to improve the planning performance for the

expert in the loop.

In order to analyze the behavior of the subjects in the different study conditions,

we now look at the frequency with which they used different functionalities on the

interface – i.e. number of times they checked their solution for submission, and

number of times they rearranged, added or deleted actions in the plan, as shown in

Figure 4.7. As expected, the average number of checks called in the case Ccontrol,

1Since feedback was part of all the conditions, this is indicative of, even though not the actual,
planning time.

81

which has no plan validation or suggestion support, is the highest, while this value

is significantly less for the cases C3 and C1 which had validate. Considering that the

number of times a user validated their plan in conditions C1 and C3 (shown in Fig.

4.8), the use of check did not significantly have an impact on the time taken by the

user to finish the iPOS. Also, the average number of times users rearranged actions

is almost similar for all the conditions. Interestingly, the average number of times a

user clicked delete in the conditions C2 and C3, indicates that although they clicked

suggest approx. four times in these two conditions (shown in Fig. 4.9), they were

not pleased with the plan returned by the automated planning system and landed up

deleting (and adding) a lot of actions. This behavior is indicative that the planner

failed to capture unspecified user preferences and we believe that the work on building

explicable plans (Zhang et al., 2017) will help improve the performance further for

the cases C2 and C3.

H1b. In Figure 4.13, we show the answers of the users to the subjective statement

Q3: I am happy with the final Plan of Study on the Likert Scale for all the four

conditions. In Ccontrol, we noticed that the least number of users agreed (either

agreed or strongly agreed) with the statement across all the four conditions. This is

not surprising because many users were not even able to come up with a valid plan

of study without any planning support in Ccontrol. For C1, six participants said they

were in unison with the statement Q3 and For C2 and C3, half of the participants

were happier (i.e. either agreed or strongly agreed) with their plan of study, which

is the highest across all the four conditions. But, in C2 there was one participant

who strongly disagreed with the statement, which for C3 there were none. Thus, the

hypothesis H1b holds.

Note that we mentioned earlier that the users deleted and added more actions for

the conditions C2 and C3 that can provide action suggestions. In the light of answers

82

Figure 4.10: Time difference ∆T (Ci) between two tasks C1
i and C2

i of iPOS planning
for every condition Ci.

to the statement Q3, we find it interesting that although the users had to edit the

suggested plan, having a plan available to them to bootstrap on for editing not only

made them more efficient, but also increased their satisfaction.

H1c. In Figure 4.14, we show the number of users who agreed with the ratings

on the Likert Scale for the statement Q2: The feedback from the interface helped the

iPOS making process. If we let nCi
denote the number of participants who either agree

or strongly agree with the statement, then the following relation holds, nCcontrol
<

nC1 , nC2 ≤ nC3 . Although the equality holds nC1 and nC3 , the number of people who

strongly agreed to the statement was, by far, the highest for C3. Thus, we infer that

the hypothesis H1c holds.

4.4.2 Hypothesis H2

Time to complete the plan will reduce in the second attempt – We plot

the average decrease in time in completing the second iPOS after doing the first iPOS

with iPass for all the four study conditions in Figure 4.10. The lowest reduction in

time for Ccontrol shows that feedback given to the user by the decision support system

helps them learn more about the domain model, thereby improving their performance

in making the second iPOS. We also saw that the highest reduction in time occurred

for the conditions C1 (p < 0.1) and C3 (p < 0.01). We feel that the presence of plan

83

Figure 4.11: Time taken by experienced (in yellow) and non-experienced (in blue)
users to make the first iPOS (C1

i).

validation in both these conditions informed the users about the reason behind each

error they made while constructing the first iPOS that was effective in teaching the

users about the actual domain. Due to a similar reason, we had also hypothesized

that the presence of plan explanations in C2 and C3 will reduce the time significantly

because these explanations will teach the user about the domain, thus reconciling

the models. Unfortunately, this functionality was used very rarely (0.14 and 0.91

average number of times for C2 and C3) and thus, improvement in performance was

not observed. Hence, H2 was only found to be partially true, supporting the cause

that use of automated planning C3 for decision support improved the efficiency of the

human thereby reduced the time for making the second iPOS.

4.4.3 Hypothesis H3

Less expert users benefit more from decision support components – We

noticed that the performance (time) was not significantly better for participants who

had filled an iPOS before when compared to participants with no experience (Figure

4.11). Although the experienced participants did perform slightly better in Ccontrol, C1

and C3, to our surprise, we noticed that for C2, the users who had no prior experience

performed better. This might be because the latter group had prior conceptions about

the rules of making an iPOS and thus, spent time making plans that appeared valid

84

Figure 4.12: Feedback of non-experienced users about the statement ‘Q1: The
planning task was pretty simple for me’ for each condition C1

i .

Figure 4.13: Time difference for subjective ‘Q3: I am happy with the final iPOS’
for conditions C1

i .

85

Figure 4.14: User agreement metrics for the statement ‘Q2: The feedback from the
interface helped the iPOS making process’ for each condition C1

i .

in their model, but were invalid in the iPass domain. With the presence of ‘validate’

in C1, they might have ended up having to correct their partial plans multiple times,

resulting in a longer time and worse performance.

We plot the response of non-experienced users to the subjective question Q1:

The planning task was pretty simple for me in Figure 4.12. Interestingly, the non-

experienced users seemed to agree (or strongly agree) more with the statement in C3

compared to Ccontrol, indicating that support features have contributed to decrease

in perceived difficulty of the task.

4.4.4 Qualitative Results

We asked three qualitative questions to the users –

Q1. Describe in detail atleast 5 things you liked about the Plan of Study you came

up with.

86

Measure Expected Outcome

H1a. Time taken T (Ccontrol) > T (C1) >

T (C2) > T (C3)

T (Ccontrol) > T (C1) ≈

T (C2) > T (C3)

H1b. Satisfaction

iPOS

nCcontrol
< nC1 < nC2 < nC3 nCcontrol

< nC1 < nC2 < nC3

H1c. Satisfaction

interface

nCcontrol
< nC1 < nC2 < nC3 nCcontrol

< nC1 < nC2 < nC3

H2. Time difference ∆T (Ccontrol) < ∆T (C1) <

∆T (C2) < ∆T (C3)

∆T (Ccontrol) < ∆T (C1) ≈

∆T (C2) ≈ ∆T (C3)

H3. Time taken less

experienced

T (Ccontrol) > T (C1) >

T (C2) > T (C3)

T (Ccontrol) ≈ T (C1) ≈

T (C3) ≈ T (C2)

Table 4.2: Summary of Results

Figure 4.15: Average word count for every feedback question, with error bars show-
ing ±1 standard deviation for the word count. “Liked” is 5 things you liked about
your iPOS, “Didn’t Like” is 5 things you didn’t like about your iPOS and “What
more” is what other features of the interface you would like to have.

87

Q2. Describe in detail atleast 5 things you did NOT like about the Plan of Study

you came up with.

Q3. Describe in detail what other features of the interface you would like to have.

Figure 4.15 shows the average word count for the questions with error bar is ±1

standard deviation. There were three cases where the word count difference was

statistically significantly (< 0.05). First, for Q3, the word count was lower for C3

compared to Ccontrol. This implied that users in Ccontrol requested for many features

while, provided with the added functionalities of validate and suggest, their enumer-

ation of what more came down significantly. Second, we had a similar conclusion

in the case of C1 and Ccontrol. This result raises an interesting question– if we were

able to significantly reduce the users demand for more features with only the validate

functionality in C1, what added purpose did the suggest and explain functionality in

C3 serve? Third, lower number of participants liked the system (Q1) compared to

the ones who disliked it (Q2) for the condition Ccontrol.

Having read multiple feedback, we found that participants preferred the “Vali-

date” functionality more compared to the “Suggest” functionality because it pointed

out specific errors when they were stuck (although this was not statistically signifi-

cant). For Q3 in Ccontrol, participants said that they wanted specific errors that would

show why a submitted iPOS check fails; in other words, the felt that plan validation

functionality would have been helpful. In condition C3, feedback for Q3 was more

in regards to personal preferences, showcasing that users started caring about plan

quality when, due to decision support functionalities, coming up with valid iPOS was

no longer a challenging task. We further highlight some of the interesting feedback

as a part of the future research directions.

88

4.5 Discussion and Future Work

As mentioned above, the decision support described in this work uses a set of

domain-independent techniques in automated planning that provide the back-end

functionalities of plan validation, summarization, suggestion, explanation, etc. While

these can be used as a plug-and-play, there exists some aspects of the decision support

system that needs to be catered to the specific domain for it to be effective. For

example, landmarks which provide relevant information to keep a commander aware

of their goal in iPass ceases to be important for iPass where subjects have access

to an iPOS handbook. Furthermore, it also helps us to identify some shortcomings

of current planning technologies necessary to make the decision support effective in

real-time. Before ending the section, we briefly talk about the suggestions provided

in the subjective user feedback, highlighting directions for possible future research.

We finish the section by highlighting the connections between HCI and AI.

Domain Specific Designs There are various components of the decision sup-

port system that need careful attention when it is used in the context of a specific

domain. The foremost among this is the user-interface. For example, while a re-

source panel was useful in the context of a fire-fighting scenario (in iPass), it was

replaced by a panel that showcases the student information for the iPassdomain. In

domains that are close to scheduling problems, it is often necessary to revamp the

entire user-interface design (Mishra et al., 2019). The use of domain-independent

technology in the back-end ensures that beyond cosmetic changes to the front-end,

all functionalities can be provided with little effort.

Scalability of Back-end Technologies Many of the back-end technologies

suffer from scalability issues. When domains become complex, finding optimal plans

89

within a reasonable amount of time becomes difficult. This leads to longer wait times

when the plan or the action suggestion modules are called.

A scalability vs. verbosity trade-off exists in the case of generating explanations

based on model reconciliations. While minimally complete explanations help the hu-

man understand the validity (and optimality) of the suggested plan, time taken to

compute makes them unusable in the context of real-world settings like iPass. Fur-

thermore, explanations that can be computed faster (for eg. plan patch explanations),

are often verbose, adding to the existing cognitive overload of the human-in-the-loop.

Furthermore, explanations provided should ideally be the start to conversation that

helps users elicit either their preferences or (expert) knowledge about the domain.

Thus, research that facilitate the two way communication between the decision sup-

port and the human-in-the-loop, thereby learning from one another, could be an

interesting future work.

User Feedback Depending on the condition assigned to a particular user, their

feedback varied considerably. While users in Ccontrol asked for features like validation,

users in C3 expected the system provide suggestions that are more personalized for

them. Given that different subjects, with different student information assigned to

them, can belong in a spectrum of preferences, solutions that generate explicable

plans (Kulkarni et al., 2016) cannot be simply used out-of-the-box. The reason being

that they assume all human models come from the same distribution.

HCI and AI

Maes discussed her vision of intelligent software agents that would know the user’s

interest and act autonomously on their behalf. She divided the task of creating such

agents into – (1) knowledge gathering or learning models from the data, and (2) then

90

utilizing them to support the users (Maes et al., 1997; Maes, 1995). In this paper,

we presented an end-to-end software agent which assumes knowledge about user’s

capabilities and collaborates with them by providing support for sequential decision

making. We used ideas from both HCI and AI community to make this software,

such as, ‘design principles’ for the interface (Parasuraman et al., 2000; Amershi et al.,

2019), ideas from ‘automation’ to understand the modules to be automated and the

degree of automation (Parasuraman et al., 2000; Sheridan and Verplank, 1978) and

‘automated planning techniques’ to implement the system (Chakraborti et al., 2019b;

Sheridan and Verplank, 1978; Ramı́rez and Geffner, 2009).

In the past, there have been suggestions that HCI and AI are two different com-

munities with the common focus (Grudin, 2011). The earlier work was related to

integrating smaller components to the system, such as integrating email classifier to

the email management software (Horvitz, 1999). Combining these components to

the software had difficulties in their own right, for example, to ensure that the user

may not miss an important e-mail. Through iPass we have not just designed an

intelligent component for a system, but rather created an intelligent software agent

bringing these fields together.

4.6 Conclusion

In this article, we presented a decision support system that uses automated plan-

ning techniques to support sequential planning problems for a human-in-the-loop.

We first introduced iPassand described how different planning technologies such as

validation, plan recognition, landmarks, model-reconciliation based explanations can

be used to aid a human commander in a time-critical domain. We then situate the

various capabilities of iPasson the automation hierarchy, carefully describing the de-

sign choices we deliberately make. Unfortunately, testing the effectiveness of such

91

systems became challenging given the lack of experts. To address this challenge,

we designed a test-bed system, iPass that enables support for a domain in which

university students (our subjects for the study) are already experts.

The effectiveness of the system was measured by creating different study groups

using different sub-set of capabilities of the system vs. a control group. The evalua-

tion was based on their (1) time taken to complete the planning task, (2) time taken

to perform similar tasks across multiple trials and (3) the effect of their expertise

level. In summary, we found that two key decision support components – validation

and suggestion – for human-in-the-loop planning tasks were useful in improving the

performance and/or satisfaction of the decision-maker. From subjective feedback, we

found that 11 students asked for more feedback from the interface in Ccontrol (3 of

whom mentioned feedback that can suggest new courses and 5 mentioned validation

kind of feedback) thus, highlighting the role of the support components for the nor-

mative expectations of the user. We also believed that providing explanations to the

users will have a positive impact on decision support but after the study, we real-

ized that we need to learn accurate human models to provide personalized decision

support and explanations.

92

Chapter 5

MODEL ELICITATION THROUGH DIRECT QUESTIONING

Today, robots are working in several domains, such as in a kitchen to cook a meal

(Bollini et al., 2013), in restaurants as service robots, 1 etc. Robots need to work in-

dividually for these tasks, and in the future, there will be a need to closely collaborate

with us and provide active support to complete our tasks and activities. For improved

collaboration there will be a need to know and understand our true mental model,

that must be either learned or provided to these systems. However, these models can

be inaccurate and the system might need to actively update them through interac-

tion with the teammate. In this work, we look at how an automated system/agent

can construct directed questions to elicit specific parts of the human mental model.

Please note, that we use robot or agent interchangeably for the automated system

and user or teammate for the human member of the team.

Asking questions to learn more about someone is an age old method. Especially in

education where human tutors apply several questioning strategies to learn about the

student’s model. One of those strategies, diagnostic questioning (Fairbairn, 1987) asks

multiple choice questions where every choice sheds light on student’s misconceptions.

For example, consider asking students a speed, distance and time problem, such as,

calculate the time taken to travel 100 miles at a speed of 50 miles/hr. One of the

options could be 50 ∗ 100 = 5000, and its selection would mean that student fails

to understand the relation between speed, distance and time. On the other hand,

automated systems such as intelligent tutoring systems have designed techniques to

1http://travel.spotcoolstuff.com/unusual-restaurants/bangkok/
hajime-robot-restaurant

93

http://travel.spotcoolstuff.com/unusual-restaurants/bangkok/hajime-robot-restaurant
http://travel.spotcoolstuff.com/unusual-restaurants/bangkok/hajime-robot-restaurant

ask different sequence of questions, chosen from a set of questions for the student to

practice (and not for diagnosis) all the topics (Clement et al., 2013, 2014).

Generally, working with human teammates in their working environment should

mean, that the robotic agent neither has a defined set of questions to ask from team-

mate, nor has the ability to understand everything teammate might convey in answer

to any generic query. Thus, the agent has to construct it’s queries, and also evaluate

possible responses for each one of them. These queries have to question different

behaviors in the environment. Using diagnostic questioning methodology, ideally the

agent would want to construct a query, where every possible response points to a

specific model in the set of potential models. However, constructing such a query can

be computationally expensive or it could be cognitively overwhelming for the human

teammate to solve. Thus, the constructed queries have to consider the teammate’s

computational capabilities, should be easy to understand for the teammate and the

agent should be able to parse the response to update it’s underlying models.

Another challenge faced while constructing questions that are not difficult to un-

derstand and do not overwhelm the teammate is the lack of understanding about

the way humans think or handle information. The education community has spent

decades to understand how students conceptualize or interpret knowledge (Ortony

and Rumelhart, 1977), such as, knowledge can be in the form of concept maps (No-

vak and Cañas, 2006) or in the form of causal rules (Shultz, 1982), or the form of

concept images (Vinner and Hershkowitz, 1980). There has also been some work

on how we use these knowledge structures by understanding how students construct

formal mathematical proofs (Moore, 1994). There have been studies to test various

hypotheses, but the research is inconclusive in general conditions.

Knowledge Elicitation. The field of knowledge engineering was motivated to con-

struct domain-specific expert systems to perform human tasks. Expert systems were

94

Figure 5.1: A human teammate is working on one of the robots and has an under-
standing MH of robot’s model (M). When the company buys a new robot (model
M′) but the human teammate’s model MH does not change and can cause damage
to the robot or effect the collaboration of the team.

automated systems that were designed to execute expert-level tasks. Engineering

these systems required an understanding of the cognitive processes employed by hu-

mans to solve a task (Cooke, 1999). In the 90’s knowledge engineering for expert

systems was divided into two separate processes of knowledge acquisition and repre-

sentation (Cooke, 1999). Knowledge acquisition represented the process of acquiring

the expert model, and representation meant representing the knowledge for inference.

Domain knowledge represented as “facts” and “rules” took center stage constructing

these systems (Feigenbaum, 1989).

Knowledge acquisition for expert systems consists of different activities such as

knowledge elicitation, which is also considered a sub-field of knowledge engineering

(Regoczei and Hirst, 1992). Knowledge elicitation refers to explicating knowledge

structures underlying human performance. In the past, expert systems were provided

these knowledge structures, and knowledge elicitation was confused with the repre-

sentation. However, it slowly evolved to understanding the expert solving strategy

that could not be attributed to strategy, as much as to domain-specific facts and rules

95

(Glaser et al., 1988). Thus, the community realized the importance of eliciting expert

knowledge from the tasks where simple representation methods were inadequate.

Initial methods for knowledge elicitation were based on measuring performance

to compare knowledge between different experts, such as measures of reaction time

and error rate (Bailey and Kay, 1986). Some methods involved direct extraction of

knowledge through expert responses. However, these methods were riddled with error

and bias, and the expert’s verbal report and intuitions were often flawed (LaFrance,

1992). It has been shown that different knowledge elicitation methods may tap dif-

ferent types of knowledge (Hoffman, 1989). It has also been observed that there is a

knowledge elicitation gap between verbal reports and the performance, sometimes due

to implicit and explicit knowledge (Broadbent et al., 1986). The more recent methods

involved model construction for the expert’s knowledge which could represent reality

to a varying degree (Compton and Jansen, 1990).

(Cooke, 1999) divides knowledge elicitation methods into four different categories

– observation, interviews, process tracing, and conceptual methods. Observation

refers to observing an expert while solving a simulated or a contrived task (Hoffman

et al., 1995). Interviews are usually the most frequently employed methods to elicit

expert knowledge based on asking unstructured questions (Cullen and Bryman, 1988).

Process tracing methods were used for procedural knowledge and refer to using the

data of the sequential tasks to elicit expert knowledge. Some of the popular methods

are the “think-aloud” technique while solving a problem (Van Someren et al., 1994)

or providing verbal reports of tracking an expert or interviewing them (Ericsson

and Simon, 1984). Finally, conceptual methods refer to learning domain-dependent

concepts or conceptual structures using relatedness information taken from experts

interviews (Cooke, 1999). Please note that these tasks are based on either learning

from some traces or asking questions.

96

Our work looks at knowledge elicitation in an active teammate scenario, where

the expert is working in the same environment as the automated system. We assume

that the system’s knowledge about the user’s model is in the form of structured rules

and facts, and the agent wants to elicit knowledge about the subset. Thus, it asks

directed questions to the user to elicit information about the specific rule, and the

agent refines the set of hypotheses based on the user’s response.

In general, a question consists of two parts – (1) the content of the query, and (2)

the set of possible answers. One needs to ask a question where the answer can provide

relevant information. However, an automated agent has structured knowledge with

the closed-world assumption to calculate and evaluate their decisions and lacks any

understanding of the human’s mental model. Thus, one of the major challenges faced

by an agent is to find a way to question the behavior of the teammate and understand

various responses by the teammate to update their structured model.

Human-in-the-loop planning (Kambhampati and Talamadupula, 2015), suggests

to incorporate the teammate’s model in the robot’s planning process. This work

supports the idea of hilp, where the agent can refine the robot’s understanding of the

teammate’s model. These questions should be easy to understand and directed to

refine the model. Thus, the major contributions for this work are –

(C1) generate questions while accounting for the gap between the structured model

and the unstructured (or unknown structured) model of the teammate,

(C2) incorporate the effect of uncertainty for generating questions,

(C3) derive relevant information from simpler answers like – (1) yes/no answers, or

(2) the complete plan if possible.

97

5.1 Background

In the intelligent tutoring system community, there has been a lot of work to

represent the knowledge of a student, usually based on the number of problems they

can solve. Sometimes, it can be represented using directed graphs, to depict a depen-

dency among different knowledge concepts called knowledge spaces (Falmagne et al.,

2006; Doignon and Falmagne, 2015). We also use such dependency graphs to rep-

resent a robot’s knowledge about their teammate’s model using STRIPS (Fikes and

Nilsson, 1971) as the causal dependency can be represented using cause and effect

for an action. Robust planning model (Nguyen et al., 2017) is used to represent the

uncertainty, as some conditions that may or may not be a part of the human’s model

of the environment. These probable conditions for preconditions and effects are called

annotations. We will now formally describe the annotated model.

The correct human’s model is represented asMH is one of the concrete models in

the set of models M = {M0,M1,M2, ...,Mn}. M is represented using a super-set of

predicates and operators of each models as M = 〈F ,A〉. F are the set of propositional

state variables or facts and any state s ∈ F . Any action a ∈ A is defined as a =

〈pre(a), eff±(a), �pre(a), �eff±(a)〉, where pre(a), eff±(a) are certain preconditions

and effects and �pre(a), �eff±(a) ⊆ F are the possible preconditions and possible

add/delete effects, where � being used to differentiate between the certain and possible

predicates. It implies that a precondition and effect may or may not be present in the

original model and are used to model the uncertainty in the robot’s understanding of

the human’s model. If their are n uncertain preconditions and effects then |M| = 2n.

A planning problem in the domain is given by P = 〈M, I,G〉, where I is the initial

state and G is the goal. δM is the transition function δM : S ×A → S. It can not be

executed in a state s 6|= pre(a); else δM(s, a) |= s ∪ eff+(a)/eff−(a). There are two

98

different transition functions for the condition when a specific action in a plan can’t

be executed (due to �pre(a) being true and not planned for), then the plan either

goes to a fail state (pessimistic) or the next action can still be executed (optimistic)

in the plan (Nguyen et al., 2017). An agent assumes an optimistic approach as it

is concerned about the interaction and the information about the feasibility of the

action. A plan π for the modelM is a sequence of actions π = 〈a0, a1, ..., an〉. A plan

is a valid plan if δM(I, π) |= G. A set of plans Π are Π = {π|∀πδM(I, π |= G}

Motivating example

Figure 5.1 shows the situation where a human teammate working with one robot

has to migrate to a new one. We now describe the move action for the new robot

compared to the earlier model. For a robot (such as fetch 2) it is essential to ensure

that the robot’s torso is NOT in the stretched state and the arm is tucked close to

the body, else it can lead to a fatal accident due to its tendency to topple while

turning. The previous model of the robot had no such requirements. The domain

for the new robot with uncertainty about the preconditions of a move action, i.e.

hand tucked (hand not stretched) and is crouch (torso not stretched). The robot’s

uncertain model of the human is –

(:action tuck

:parameter ()

:precondition ()

:possible-precondition ()

:effect (and (is_crouch)

(hand_tucked))

:possible-effect ()

)

2https://fetchrobotics.com/robotics-platforms/fetch-mobile-manipulator/

99

(:action crouch

:parameter ()

:precondition ()

:possible-precondition ()

:effect (and (is_crouch)

:possible-effect ()

)

(:action move

:parameter (?from ?to - location)

:precondition (robot-at ?from)

:possible-precondition (and (is_crouch)

(hand_tucked))

:effect (and (robot-at ?to)

(not (robot-at

?from)))

:possible-effect ())

There are two unknowns preconditions hence there are four possible models. If

the objects are defined in the model are – roomA and roomB. Then a question Q,

used to elicit human’s understanding can be defined as Q = 〈I,G〉, i.e. a planning

task,

I = {robot-at(roomA)},

G = {robot-at(roomB)}

and the possible answers in each model are –

π1 = 〈move(roomA, roomB)〉,

π2 = 〈crouch, move(roomA, roomB)〉,

π3 = 〈tuck, move(roomA, roomB)〉,

100

π4 = 〈crouch, tuck, move(roomA, roomB)〉

π1 shows that there are no preconditions in the human’s model, π2 means the precon-

dition of is crouch is present, and π3 shows that human has hand tucked precondition

and π4 both preconditions are true. Thus, based on the response, the robot can find

the specific model of the teammate.

An important point to note is that there might be a correct model for the envi-

ronment that might be known to the automated agent. However, the agent is only

trying to learn the exact human model MH . The correct model might be different

from the human model and may or may not be part of the set of models M.

Similarly, if we assume that the human has a structured model in the form of

STRIPS action or some other causal format, which might be possible in the case of

experts. Then the robot can ask if a specific precondition or effect is part of the action

in their model. The agent needs to ask these questions due to a lack of knowledge

about the human’s thought process and understanding of the environment.

5.2 Problem Formulation

After describing the robot’s understanding of the teammate’s model, we are now

ready to formally define the questions to elicit the behavior of the teammate.

Definition 1. Question is a tuple, 〈I,G〉, i.e. initial and the goal states. The

solution to a question are plans π such that δ(I, π) |= G. A sequence of questions

as Q = 〈〈I0,G0〉, 〈I1,G1〉, ..., 〈In,Gn〉〉, the tuple of sequential planning tasks where

predicates and actions are based on the agent’s uncertain model.

As per the definition, a question does not take into account the response from

the user. In a lot of previous work, responses have been to define the state of failure

(Verma et al., 2020), or provide specific model change and the model as the response

101

(Bryce et al., 2016). However, we believe that giving such responses can be computa-

tionally taxing for the teammate. The question was framed using a structured model,

but the responses are simple like – (1) whether the query has a valid plan, and (2) the

plan for the query in the teammate’s model. Before presenting our analysis for each

type of query in the next section, we first define the problem of asking questions from

the teammate and then discuss how uncertainty in the model affects these queries

and the plan constructed by the teammate.

Thus, interaction with the user is through structured questions, and the response

is in the form of a plan. For now, we assume that the user is responding with a plan,

but it can be computationally taxing for them to construct it. Thus, we look for

different responses in the next section, when we define a distinguishing query. Now

we formally define the problem of asking questions to the user.

Question Framing Problem

Given the tuple 〈M, Ie〉, find the sequence of questions Q to learn the correct model

with |Q| ≤ n, where n is the number of possible predicates.

M represents the annotated model of the robot and Ie represents the fully-specified

input state of the environment in which we are interacting with the human-in-the-

loop. Defining the initial state of the environment is useful, to support the interaction

between a teammate and the robot. Initial state Iq for any query q can be specified

as a set difference from the fully-specified initial state of the environment Ie.

Set of solutions

in a specific model M ∈ M to a particular question Q are the plans Π(M, Q) =

{π|∀π : δM(IQ, π) |= GQ}. In this paper we will write it as ΠMQ . The cost of a plan is

represented as C(π) =
∑
c(a), where c(a) is the cost of an action in the model M.

102

π∗ is the optimal plan in the set ΠMQ and C∗ represents the cost of the optimal plan,

i.e. C∗ ≤ C(π′),∀π∗, π′ ∈ ΠMQ .

Constrained and Relaxed models.

As we described earlier, for any n possible pre-conditions and effects, hence, there is

an exponential set of possible models (2n). It is computationally infeasible to analyze

all of them to generate questions. Thus, we look at two extreme models in the robot’s

model – (1) most constrained model Mcon and (2) most relaxed model Mrel. Mcon

is the model where –

• pre(a′) = pre(a) ∪ �pre(a),

• eff+(a′) = eff+(a), and

• eff−(a′) = eff−(a) ∪ �eff−(a),

where a′ is the transformed action in Mcon. On the other hand, Mrel is the model

where –

• pre(a′) = pre(a),

• eff+(a′) = eff+(a) ∪ �eff+(a),

• eff−(a′) = eff−(a)

where a’ is the transformed action in Mrel. Let Πq
Mcon

represent the set of solutions

to any question q in model Mcon and similarly, Πq
Mrel

represent the If a plan exists

in Mrel, then it exists in the rest of the model and the plan length is minimum in

min and highest in the Mcon (Sreedharan and Kambhampati, 2018). The cost of

actions is the same across all the concrete models in the robot’s model (as one of

them represents the model of the same hilp), C∗Mcon
is the cost of the optimal plan in

103

Mcon, and similarly C∗Mrel
for Mrel. The corollary follows from the construction of

relaxed and constrained models (Sreedharan and Kambhampati, 2018).

Corollary 1. C∗Mrel
≤ C∗Mcon

and Πq
Mcon

⊆ Πq
Mrel

.

The corollary follows from the method of construction of these models. Equality

in the corollary exists whenMrel is the same asMcon, and there is no uncertainty in

the model. Now we try to extend these properties to any model in the set of models.

We use these models to define whether a plan exists in the set of models for the initial

and goal states in the question. Now we look at whether an initial and goal state

exists for which we can ask humans to construct a plan.

Human Model.

We assume that the human model is one of the models in the set of robot’s model

MH ∈ M. Thus when presented with a question q, let Πq
MH represent the possible

set of solutions in the human’s model and C∗MH , is the cost of the optimal plan in the

human’s model. Given this current setup, we can say a few things about the solution

provided by the user to any question.

Corollary 2. Assuming user to be an optimal planner then for a specific question,

C∗Mrel
≤ C∗MH ≤ C∗Mcon

.

Corollary 3. If we relax the assumption of the optimal planner then we can say

that, Πq
Mcon

⊆ Πq
MH ⊆ Πq

Mrel
.

The corollary explains that the optimal solution constructed by hilp follows these

bounds. The corollary follows from corollary 1, where the human model is either the

most constrained or relaxed model for a subset of possible predicates. For comparison

between MH and Mrel, the MH is the most constrained version of the Mrel model

104

for a subset of constraints. Similarly, while comparing MH and Mcon, we can see

that MH is the most relaxed version of the Mcon model on the subset of original

constraints. Showing the bounds for the possible human solution to any question

doesn’t take the human model into account and applies to any model in M. These

models help us analyze different cases to formulate the properties of the queries based

on the plans that are possible in these models in the next section.

5.3 Distinguishing Query

Due to the combinatorial explosion, the agent can not search through all possible

initial and goal states, and the agent needs to generate a query from the bounds on

the human model. Thus, to analyze the specific initial and the goal state, we look at

the properties of the plans which should be discussed and then find the initial and goal

state that will support their execution. We start our analysis with the simplest case,

how to distinguish models with a single probable predicate (i.e., a single unknown

predicate in an in the model), and then generate a directed question when there are

many possible predicates in the model.

The solution provided by the user depends on the question posed by the agent,

and the query depends on the annotated constraint. If p is the predicate possibly (for

now assuming it’s a pre-condition) present in action a (we should be writing Ma�p,

but for simplicity, we writeM�p). Thus there can be four different models which the

agent needs to consider –

* M−p
con – Constrained model with p is not part of it.

* M+p
rel – Relaxed model with p is part of the model.

* MH−p – Human model with p is not part of the model.

* MH+p – Human model with p is part of the model.

105

Please note, a predicate p being part of the model means that it is present in the

specific action a, for which it was a possible predicate. It does not mean an abstracted

predicate from the model. Also, note that only one of the models MH−p and MH+p

is the true model. Given, the solution πH (provided by hilp of cost CH), and assuming

human is an optimal planner, there can be a few possibilities –

1. C∗H < C∗M+p
rel

, would mean that πH 6∈ ΠM+p
rel

as the solution plan cost provided

by hilp is less than the optimal plan cost in M+p
rel. Thus, MH−p is the real

human model, i.e. the constraint is not part of the human model.

2. C∗H ≥ C∗M−p
con

, would mean that πH 6∈ ΠM−p
con

as it is not a valid plan in M−p
con.

Thus, MH+p is the real human model, i.e. the constraint is part of the human

model.

In principle, the plan for the question posed by the agent to determine a constraint

p will be harder to execute in MH+p and easier in MH−p and help us distinguish

the models, which can be achieved by tweaking the initial state of the query. For

example, if p is not part of the initial state, then the human needs to achieve this pre-

condition to execute the action, only if the pre-condition is part of the human model.

Similarly, we can extend this idea to any possible effect e, where a plan involving the

action would be costlier to generate usingMH−e, as compared toMH+e by changing

the goal state (in different scenarios, i.e., with or without the effect e). We call such

queries distinguishing query.

Definition 2. A question Qp is a distinguishing query if the plan for it can distinguish

between models MH+p and MH−p.

Until now, we analyzed different possible models and the set of responses based

on the optimal plan in each model. In the next subsection, we look at the properties

of the plan that will be provided by the user πH for yes/no response.

106

5.3.1 Properties

There are exponential combinations for initial and goal state (exponential in the

number of predicates in the model), which can be queried. But we want to ask

questions that help us distinguish between a set of models and searching through all

possible initial and goal states is not possible. We have outlined the central idea where

the action with an unknown predicate has to be part of the plan for a distinguishing

query. Now, we will formally describe these properties and use them to generate a

query. For this, we introduce a topic from the planning literature called landmarks

to explain the properties of the plan.

Landmark.

A landmark L is a logical formula, where, ∀π : δ(I, π) |= G and for some prefix of

plan πpre = 〈a0, a1, ..., ai〉, i < n, δ(I, πpre) |= L. An action landmark is for any action

a,∀π : δ(I, π) |= G, a ∈ π (Keyder et al., 2010). For example, the G is a trivial

landmark and if there exists only one action a that reaches a particular fact f ∈ G,

then the action is an action landmark. Finding a landmark is a PSPACE-complete

problem (Hoffmann et al., 2004).

Proposition 1. Necessary condition for a question Qp to distinguish between models

M+p and M−p is ap ∈ L(M−p), where ap is the action with proposition p is a

landmark in model M−p for the query.

Proof. Proof is divided into two parts. First, we show that being a landmark is

necessary and then we show that landmark has to be of modelM−p. For the first part,

let’s assume if there is a plan π for a distinguishing problem Qp and such that ap 6∈ π.

Then δM+p(IQp , π) |= GQp and δM−p(IQp , π) |= GQp , i.e. the plan can be executed in

both the models. Which refutes the assumption that Qp is a distinguishing problem.

107

For the second part, observe that ΠM
+p

Qp
⊆ ΠM

−p

Qp
, i.e. every plan possible in more

constrained model (M+p) is also a plan in the less constrained model (M−p). Again,

if we assume that the action ap is a landmark inM−p, then there are some solutions

π ∈ ΠM
−p

Qp
\ ΠM

+p

Qp
, where ap is not a landmark. Following the previous corollary, we

can conclude that all plans have the property ap ∈ L(M−p).

An important point to note here is that we do not distinguish between fact p being

a pre-condition or effect for action because this condition is necessary for either of

them. The agent has to ensure that the action with a possible predicate is a landmark

action. One of the methods is to use the add effects as the goal of the question. In

theory, we can use this method to ensure that the action a is a landmark action in

the human’s model, but in practice, we need to assume that the human is an optimal

planner, and thus the action is an optimal landmark. Removing this assumption is

out of scope for this work and will be part of our future work. Proposition 1 can be

extended, that by ensuring that action a is a landmark inM−p, it is harder to achieve

all pre-condition for the action a in the constrained model M+p. The proposition

directly leads to two corollaries that can establish the distinguishing property.

Corollary 4. The distinguishing problem Qp should have atleast one solution in

M−p.

Proof. For the two models, we know that ΠM
+p

Qp
⊆ ΠM

−p

Qp
. Thus, if |ΠM−p

Qp
| = 0, means

there are no solutions in both the models and thus it can not distinguish either of

them.

Corollary 5. The distinguishing problem Qp should not be solvable in M+p.

Both the above corollaries follow from the way constrained and relaxed models

are constructed, where distinguishing problem Qp should have atleast one solution in

108

M−p, and no solutions inM+p. Thus, if the problem is solvable (either by executing

the plan in the environment or asking the human for the plan in their model) then

the fact is fictitious otherwise, the fact is real. The answer to the distinguishing query

is a simple yes/no, facilitating the interaction with the human-in-the-loop.

By using the proposition and the corollaries, we can propose a solution for QFP

where we ensure that the action (with possible proposition) is a landmark in the less

constrained model (M−p). In other words, finding a distinguishing question is about

finding a the initial and goal state, where the action is a landmark. We present the

algorithm for this in the next section. But, for now we want to continue this analysis

of the distinguishing question, to understand how do they effect the space of probable

models.

Difference between Pre-conditions and Effects.

The analysis stands true for any possible predicate, be it pre-condition or an effect,

and results in different ways of constructing models M−p and M+p. The basis for

constructing these models is that M+p is the constrained model, and M−p is the

relaxed one. Thus for any possible pre-condition and a delete effect – M+p is where

the predicate is true, andM−p is where the fact is not part of the action in the model.

Conversely, for add effectsM+p – the predicate is not part of the action in the model,

and M−p – predicate is part of the action in the model.

Another difference lies in the fact that how the query should be constructed for

a pre-condition or an effect. Here the idea is that M+p, it is difficult to achieve

those predicates. Thus, we need an initial state from which the pre-condition is not

achievable, and similarly for the effects the goal states have the extra predicate, thus

making it difficult for the user to achieve it. In other words, the agent is ensuring

109

that the teammate will fail in achieving the pre-conditions, if the predicate is part of

their model.

5.3.2 Proposition Isolation Principle (PIP)

Plan Generation Queries

In this section, we discuss how an agent can ask questions to ensure that uncertainty

about a predicate is not affected due to interaction with another possible predicate.

It is a brute force method to ask questions by isolating the predicate, i.e., there will

be n questions for n possible unknowns. The PIP method involves constructing the

two models –

• M+p is the most constrained model Mcon.

• M−p is M−p
con, i.e. most constrained model where the predicate is not present

in case of pre-conditions and delete effects, and considered part of the model in

case of add-effects.

It naturally follows that the models differ by a single predicate. UsingMcon to pursue

a landmark essentially helps isolate the specific predicate p by supporting both the

presence and absence of other predicates. For example, an action in the plan may

have a possible predicate as a pre-condition, then it is added to the initial state of

the query.

Proposition 2. Any question Qp, which distinguishes the model M+p and M−p, is

isolated by Mcon and M−p
con.

Sketch. To prove the statement, we need to understand that the models differ due

to the predicate p, thus all the plans will only differ due to the absence (presence, in

case of add effect) of the predicate in Mcon. Since, the plans are being constructed

110

forM−p
con the agent ensures that other possible or valid constraints (predicates in the

action) are either satisfied through the initial state or are easily achievable by actions

in the plan. In other words, the plans are possible in all the other models, and the

failure is due to the constraint (predicate) p. This completes the sketch.

The proposition 2 explains that by using the PIP method, the agent can ask ques-

tions about every predicate. It works on the idea of providing all the pre-conditions

that affect the action ap. If the user might fail to execute a plan involving ap, then it

is only due to the constraint p.

The teammate will either respond that a plan is possible in their model, or it is

not possible to reach the goal. The robot can understand each possible response,

where “yes” means hand tucked precondition is not part of the human model and

“no” means it is a precondition in the humans model. An important point to note is

that another possible predicate is crouch was made possible in the initial state, thus,

ensuring that if the user responds “no”, it could only be because of the presence of

hand tucked precondition, thus explaining the PI principle. This query depends on

the idea that tuck action is not part of the teammate’s model else this query can

not distinguish based on a yes/no response from them. Now we discuss when any

question is a distinguishing query.

Sufficiency Condition.

The agent uses a Mcon model to find the solution with the landmark. However, it

doesn’t prove that the same or similar plan involving the landmark action would be

optimal in the human model. Due to fewer constraints compared to Mcon, there

could be many other actions that could be used by the agent and thus might have a

different plan which might not involve the action. Thus, the agent needs to find this

scenario and prevent it by increasing the cost of executing other actions.

111

To understand these scenarios, the agent can convert action to a landmark by

adding it’s eff+(ap) as the goal. But it is always possible to have two or more

actions that provide a subset of the goal predicates (whose union is the goal set).

In the teammate’s model, the plan with these actions could be smaller. Thus, the

agent needs to ensure that these actions are harder to execute in any less constrained

model. Another scenario could be when an action that provides the precondition p

for action ap also satisfies another pre-condition in it. Thus, when the teammate’s

plan includes the action which provides the possible pre-condition, the agent can’t be

sure the action is for pre-condition p or not. It could be impossible to check all the

action combinations for every possible condition, but once the plan for the query is

known in con, the number of actions in the plan are finite, and thus evaluating these

conditions is feasible.

As explained earlier, it is computationally infeasible to exhaustively evaluate every

combination of initial and goal state. Thus, we look at the properties of the response

that can help us construct with these states. We assume an empty set of propositions

(as initial and goal state) and add the propositions that will be required for the valid

responses based on the properties –

(P1) To distinguish the models, a query (initial and goal state) should be solvable

only in M−p and not in M+p, i.e. in the less constrained model only.

(P2) The possible predicate has to be a landmark (Hoffmann et al., 2004) for the

given query, i.e. all the valid plans should make the predicate true at some

stage.

(P3) Due to other uncertain predicates the agent’s query needs to distinguish the

models Mcon and M−p
con, thus ensuring a plan possible in M−p

con will be a valid

plan in any MH except the constrained model Mcon.

112

Any query following property P1 is called a distinguishing query and automated agent

needs to follow while asking a query from the teammate. However, it is not sufficient

as the property does not incorporate the effect of uncertainty in other parts of the

model. Thus, we further discuss property P2 and P3.

An action landmark is an action executed at some point along all valid plans

that achieve a goal (Van Beek, 2005). Similarly, fact landmark is a predicate that

has to be true at some point along all valid plants that achieve the goal (Hoffmann

et al., 2004). The property P2 describes that the action with the possible predicate is a

landmark action. It ensures that the possible plans (or responses) from the teammate

is relevant to the possible predicate, and can help the robot distinguish between the

correct model based on simple answer such as “yes” or “no”. Thus, properties P1 and

P2 are sufficient for a robot to generate a query. However, it is still only true for a

single unknown predicate in the model.

Property P3, incorporates the uncertainty due to other predicates, and usesMcon

and M−p
con for generating a distinguishing query. As per the construction of Mcon,

all valid plans are valid in all relaxed models (including the human’s model MH ,

through corollary 2). Thus, the plans in Mcon and M−p
con differ due to uncertain

predicate p and the generated incorporates the affect of other uncertain predicates.

This property is called the predicate isolation principle (PIP) and helps the agent in

generating queries offline. These three properties are sufficient to ask a query from

the user, as the agent has evaluated – (1) possible responses from the teammate, and

(2) the effect of other uncertain predicates on the current query. Now, we define three

different types of queries that help the agent elicit the teammate’s model based on

the responses such as a “yes/no” or a πH ∈ Πq.

113

5.4 Decreasing Questions

In the previous section, we have shown how the agent can interact with the team-

mate, and ensure that every interaction can be useful. However, if the agent wants

to decrease the number of questions, it has to question more than one predicate, and

thus, there could be multiple reasons for the infeasibility of the query. There are con-

ditions when both M+p and M−p have another feasible solution. Thus, using PIP

and these conditions, every subset of the models is bound to have an optimal plan

and the agent uses the differing plans to infer the teammate’s model. The analysis as-

sumes the teammate is an optimal planner and the positive action cost for the model.

We present the step-by-step construction of such questions that we call templates, as

they can be merged to construct a query for more than one predicate, where every

subset of the model has a valid and optimal solution.

Pre-conditions.

For a proposition p which is a possible pre-condition of the action ap. For the action

to executed pre(ap) can be provided by – (1) initial state, or (2) executing another

action a′ where p ∈ eff(a′). When the precondition comes from the initial state,

then the distinguishing query can construct using an isolated proposition. Now, we

discuss how such a template exists and how a query can ensure different plans in both

the models (M+p and M−p).

Proposition 3. Distinguishing question for �p of an action ap has a distinct valid

plan in models M+p and M−p when for another action a′, p ∈ eff+(a′).

Proof. Assume for a given distinguishing problem Qp actions a ∈ L(M−p) and a′ can

be executed i.e. IQp = {pre(a) ∪ pre(a′)} \ {p} and GQp = {eff+(a)} \ {p} . For,

model M+p the plan is π = 〈a′, a〉. This plan is also a valid plan in M−p. But due

114

to optimality and non-zero action costs, the plan π is not an optimal plan inM−p as

pre-condition provided by a′ is not required in the model to execute action a. Thus,

the optimal plan will be π′ = 〈a〉 which is distinct.

Add Effects.

For possible add effects p = �eff c(a) an action a′ such that p ∈ pre(a′). If there is

another action a′′ where p ∈ eff+(a′′). Now we will discuss the template in some

more detail.

Proposition 4. Given three actions, a, a′, a′′ where p = �eff c(a) �eff c(a) ∈ pre(a′)

and �eff c(a) ∈ eff c(a′′) will have distinct plans in models M+p and M−p.

Proof. We will again use proof by construction. Consider a distinguishing proble Qp,

where IQp = {pre(a)∪pre(a′)∪pre(a′′)}\{p} and GQp = {eff+(a)∪eff+(a′)}\{p}.

This will ensure actions a and a′ are landmarks and a′′ can be executed. Now in the

case ofM−p (remember constructive effect are part of less constrained model, follows

from proposition 2), π = 〈a, a′〉, and for modelM+p, π = 〈a, a′′, a′〉, which completes

the construction.

The limitation of asking about binary interaction is that the agent is not using the

model structure. However, using the templates checks whether a particular causal

dependency exists in the teammate’s model. If it is not part of the true model then an

optimal plan will not use the specific action in the plan that provides a relationship.

In this case, we need to be sure there isn’t another causal dependency among those

actions, and in that case, the agent can’t be certain. The PIP principle holds for

asking questions like this and the agent has to isolate the predicates that it wants to

use for asking questions. Extra care has to be taken to ensure that the predicates

115

that are used as a template – (1) do not have more than one causal dependency, and

(2) do not have mutually exclusive relationships in the plans.

It is possible to combine the templates because every sub-model (with or without

the predicates) has a valid plan and if there aren’t any negative interactions between

pair-wise actions in the plan. Since its not feasible to check all the cases, we construct

a planning problem from the initial state of the environment which will be presented

in the next section.

Corollary 6. Given no destructive interactions between the actions, the templates

can be combined where each sub-space, such as M+p1,−p2 will have a distinct plan.

The proof follows from the assumption of lack of destructive interactions as the

plan for each sub-space is a union of distinct plans in the template. We can merge

the questions and even ask the teammate which plan from the set of plans is valid in

their model. If we check the motivating example, it shows the case of two template

queries for questioning about is crouch and hand tucked predicate in move action.

5.5 Different Types of Queries

In the previous section, we described the sufficient properties for generating a

“distinguishing query”. Although the analysis assumes the human responds with a

plan (πH), in this section, we analyze how the agent can elicit information from it.

Binary responses can elicit information about one predicate at a time, whereas a plan

can provide a lot more information. We look at three different types of queries –

solve, validation, and template and under what conditions an agent can use them to

elicit information about the unknown predicates. The solve and validation queries

have binary responses (based on the set of plans), and the template query has a plan

as the response.

116

Plan Generation Query (Plan). In this query, the initial and goal state follow

the above three properties and the teammate’s expected response is either “yes” or

“no”. Sometimes, it is difficult to understand the reason for a “no” response from

the teammate, but due to properties P2 and P3, the agent ensures that the failure is

due to the probable predicate only. However, this query is hard to construct due to

the ergodic environment, as there could be a plan in every model of M. Let’s see an

example of the query, for which we will assume that the teammate does not know

about action tuck. Thus the query for this question would be –

I = {is_crouch, robot-at(roomA)},

G = {robot-at(roomB)}

The teammate will either respond that a plan is possible in their model, or it is

not possible to reach the goal, where “yes” means hand tucked precondition is not

part of the human model and “no” means it is a precondition in the humans model.

An important point to note is that another possible predicate is crouch was made

possible in the initial state, thus, ensuring that if the user responds “no”, it could

only be because of the presence of the hand tucked precondition, due to isolation of

the predicate hand tucked.

Validation Query (Val). As explained earlier, it is sometimes infeasible to achieve

properties P2 and P3, i.e. have a valid plan only in M−p
con. However, an agent can

still ensure sufficient information can be elicited through “yes/no” response to the

query, such as, ask the teammate whether a plan exists in their model without using

a specific action tuck in the previous example. This can overwhelm the teammate

as the onus falls on them to find a valid plan in the constrained model (with fewer

actions). Instead, the agent can also provide the plan valid only inM−p
con. For example,

the query for hand tucked predicate will be –

117

I = {is_crouch, robot-at(roomA)},

G = {robot-at(roomB)}

π = 〈move(roomA, roomB)〉.

Now if the user responds “yes” hand tucked is not part of the teammate.s model, and

if they respond “no” then hand tucked is part of their model.

Solving (Plan) v\s Validating (Val) query. We have outlined a method that

will be discussed in the solution section, but there are still conditions that might

ensure the teammate’s plan might not include the ap. An agent can continue to con-

strain the set of possible plans by removing actions from the model or some other

condition. However, these extra additions can overwhelm the teammate as the com-

munication keeps getting complex and can burden the teammate in finding a plan.

The agent can ask the query as the initial, the goal state, and the plan. The team-

mate can respond to the validity of the plan in the model. In this scenario, the agent

needs to ensure that the plan can be executed only in the M−p
con. Where solving a

problem would have given more information, but currently, our framework handles

the human as an optimal agent. Thus, the agent can still ask the plan constructed

with the initial and goal state in M−p
con for validation.

Template Query. This query is used when there is a feasible plan in both Mcon

andM−p
con, however the plans differ due to the possible predicate is present or absent

in the true model. The plan change is due to the fact that the probable pre-condition

is an add effect of an action, which will be used before the action (or would be absent

inM−p
con. Similarly, in case of the possible eff+(ap), if another action a

′
p has predicate

p as a pre-condition and the robot is certain about it, the plan should include these

actions in the Mcon model and only a subset in M−p
con (only a

′
p). For example, using

118

the motivating example, tuck action has the effect hand tucked which is a possible

pre-condition for the move action. Thus the query for eliciting hand tucked will be –

I = {is_crouch, robot-at(roomA)},

G = {robot-at(roomB)}

and the possible responses are –

πMcon = 〈tuck, move(roomA, roomB)〉

πM−p
con

= 〈move(roomA, roomB)〉

Two important points to note here are how PIP was applied for isolating the hand tucked

precondition and the answer to the same question (as plan generation query), requires

more information to refine the teammate’s model. An important point to note is that

these templates can be combined to query about multiple predicates, the construc-

tion ensures a different optimal response in every model. For example, the motivating

example consists of query for two different predicates hand tucked and is crouch pred-

icates. Thus, this query can be used to gather more information in fewer interactions.

5.6 Proposed Solution

As we described in the earlier sections, a query is an initial and goal state in which

the action ap is an optimal landmark in the modelM−p
con. The easiest way to achieve

this is to define the goal state as the add-effects of the action ap. Finding an initial

state is difficult because we need to ensure that given any possible pre-conditions in

effect, the interaction should provide information. Thus, in this section, we describe

two algorithms – (1) to iterate over each unknown predicate and decide whether

templates can be combined, and (2) for generating the query.

The parent routine is to iterate over each unknown in an order decided byMjoin,

which assumes that all the unknown predicates are true. This model can’t be used for

119

Algorithm 1: Query Generation Algorithm (QGA)

Input : Ie,M−p
con, a

′, ap

Output: 〈Iq,Gq, πq〉

1 begin

2 G ← pre(a′) ∪ pre(ap);

3 π ← Solve(〈M−p
con, Ie,G〉);

4 πq ← 〈π, ap〉;

5 Iq, Itemp ← Project(Ie, π);

6 Gq,Gtemp ← eff+(ap) ;

7 for ax ∈ {a|a ∈ πq&eff+(a) ∈ Gq} do

8 f ← {f |f ∈ eff+(ax)&f 6∈ Gq};

9 Gtemp = Gtemp ∪ ¬f ;

10 end

11 for ax ∈ {a|a ∈ πq, p ∈ eff(a), pre(ap) \ p ∈ eff(a)} do

12 f ← {f |f ∈ pre(ap), f ∈ eff(ax), f 6= p};

13 Itemp = Itemp ∪ f ;

14 end

15 π ← Solve(〈M−p
con, Itemp,Gtemp〉);

16 if ap ∈ π then

17 return 〈Itemp,Gtemp, π〉;

18 else

19 return 〈Iq,Gq, πq〉;

20 end

21 end

120

analysis, as it is neither most constrained nor most relaxed, and the plans generated

may or may not be part of another model. Then we construct a relaxed planning graph

with pair-wise mutexes called graph-plan planning graph (Kambhampati et al., 1997).

It also supports the construction of templates by checking the conditions explained

in propositions 3 and 4 are satisfied and mutexes for plans to merge them.

Selecting Sequence of Queries First, the Mcon, Mrel, and Mjoin models are

constructed from M. Mjoin assumes that all the unknown predicates are true. This

model can’t be used for analysis, as it is neither most constrained nor most relaxed,

and it can’t be shown that the plans generated in this model are part of other models

too, such as in case of Mcon. But, it is useful for discerning all the threats to the

current plan returned by the query. In other words, this provides an exhaustive set

of causal links and possible threats that is possibly part of other models. In line 3,

we constructed a relaxed planning graph with pair-wise mutexes called graph-plan

planning graph (Kambhampati et al., 1997). It is used to find threats to the plan

sequence returned in the query generation algorithm as well as to merge the template

queries. Then we iterate over every p, ap combination to generate a query for each

unknown predicate. The returned template queries are merged based on pair-wise

mutual exclusion among plans, the initial, and the goal state.

Algorithm 1, generated queries for specific p, ap pairs. First, it solves a planning

problem, where the plan is to reach the preconditions of the action ap in the model

M−p
con. If the query is for the template, then preconditions of other actions is used as

well (follows from proposition 3 and 4). The solution of the planning problem and

then executing action ap as the goal is eff+(ap). The projection function finds the

subset of the initial state for constructing the plan, to ensure that other plans are not

feasible in the teammate’s model. Then we satisfy sufficiency conditions for the plan

121

using Mjoin. From lines 7-10, we handle every effect in ap that might be provided

by other actions. The negation of the pre-condition from these actions is added to

the initial and goal state. From lines 11-13, the algorithm checks if an action in the

plan threatens p. The threat is handled by removing the action from the plan and

adding its constraints to the initial state. Finally, it reevaluates whether the updated

initial and goal state constructs the plan in the constrained model or not. If the plan

still contains the action ap then the query is to validate the plan πq, instead of asking

them to generate the plan. This solution follows the complete analysis to ensure a

sufficient and minimal response from the teammate. The agent can ask the query

in any order due to PIP and sufficiency conditions because other constraints do not

affect the current query for any predicate. However, the sequence was derived from

the graph-plan planning graph for Mcon, based on the action closer to the initial

state.

5.7 Empirical Evaluation

We have theoretically discussed the process of generating questions. The question

generation method uses APDDL parser (Nguyen et al., 2013) based on PDDLPy 3 ,

and an optimal planner Fast downward (Helmert, 2006) to solve the planning prob-

lems. The results reported are from experiments run on a 12 core Intel(R) Xeon(R)

CPU with an E5-2643 v3 @3.40GHz processor and a 64G RAM. The experiments

were performed on – rover, blocksworld, satellite, and zenotravel 4 . The IPC do-

mains were the correct human model, and randomly chosen predicates were assumed

as possible predicates. An equal number of predicates were added to the actions

based on the parameters for the action. Special care was taken, to ensure that the

3https://pypi.org/project/pddlpy/

4https://github.com/potassco/pddl-instances

122

| � p| |Q| Val Plan Templ Time

Blocks

4 3.7 1.9 0.7 1.1 1.79

6 5.4 3.1 0.8 1.5 5.62

8 7.4 3.8 1.1 2.5 12.24

Rover

4 3.8 2.0 0.8 1.0 2.21

6 5.6 3.1 0.8 1.5 7.89

8 7.3 4.0 1.5 1.8 13.24

10 9.4 4.8 2.4 2.2 29.53

Satellite

4 3.7 1.8 0.8 1.1 2.11

6 5.5 2.9 1.2 1.4 6.48

8 7.4 3.9 1.8 1.7 13.69

10 9.3 4.8 2.5 2.0 25.55

ZenoTravel

4 3.7 1.8 0.9 1.0 2.05

6 5.4 3.0 1.0 1.4 5.93

8 7.4 3.9 1.5 2.0 12.97

Table 5.1: Comparison of different types of Queries.

123

Objects |Q| Val Plan Templ Time

8 5.6 3.1 0.8 1.5 7.89

15 5.7 3.1 1.0 1.4 8.02

22 5.6 3.0 1.3 1.3 8.45

29 5.5 3.2 1.1 1.3 9.11

Table 5.2: Effect of Ie on the Queries for Rover domain.

extra predicate did not make the action impossible by adding a mutex to already

available pre-conditions. Please note, that the predicates were randomly removed

from the lifted domain, and asking a question about any grounded action will localize

the human model in the lifted domain.

Table 5.1

shows the evaluation for the different number of unknowns and the time taken (in

seconds) to find the questions for the domains. The number of questions generated

and the time are averaged over 10 different runs. The decrease in the questions

is because some predicates were merged using the templates. Except for one case

in Rover (with 8 unknown predicates), where we were able to find two different

merging templates (thus total questions became 6), we usually had roughly 1 question

decrease in the problems. The average number of queries are presented in the table

for each domain. The algorithm needs to solve multiple planning problems, but due

to PIP query generation can be executed offline. All the queries were first constructed

and then validated with the human model (correct IPC domain). The table shows

that roughly half of the queries were through validation that was higher than our

expectations.

124

Table 5.2

shows varying the initial state condition on question generation. We constructed new

initial states by adding objects to the environment. We randomly removed three and

added three different predicates in the lifted domain and generated questions using

different initial states. The time and number of questions were averaged over ten

different random selections. We expected to observe an effect on time due to extra

objects for the time taken to solve multiple planning problems. But, since queries

were constructed using Graphplan Planning graph, we did not see any change in time,

just a very small increase. It shows that the size of the initial state does not affect

the queries, whereas the causal structure of the domain does.

5.8 Related Work

Our work of asking directed questions for model localization, and understanding

what every response from the teammate could mean has been motivated by the In-

telligent Tutoring System community. But the idea of learning models from data

points with specific queries or plan traces has been applied in active learning as well

as learning models from plan traces (behavior) for the environment.

Intelligent Tutoring System as a community is working towards maximizing the

learning of the students for procedural knowledge. Their central goal is to provide

a teacher to every student, and the biggest challenge for them is to understand the

model of the student from the work they do and provide feedback or new questions

to them. The process of generating questions for students has been used in the past

(Zhang and VanLehn, 2016), and they have also used structured knowledge bases

to generate more meaningful questions for concepts like photosynthesis (Zhang and

VanLehn, 2017). The modeling scheme in ITS is shallow where they represent the

125

knowledge of any concept as a hidden variable using HMM (Corbett and Anderson,

1993). Parameters learning using sequential data of student’s interaction for HMM

(Grover et al., 2018b) or deep neural networks (Piech et al., 2015). Based on the

learned models, they have also applied dynamic policies to present questions to stu-

dents using multi-armed bandits (Clement et al., 2014). Our work differs from the

ITS community as we are learning a detailed human model for collaboration. We

can see this as the first step towards having informative interaction with the user to

improve collaboration with them.

Learning planning model using traces. There has been some work to learn

the planning models using the behavior in the environment using state predicate

differences (Gil, 1994; Stern and Juba, 2017), weighted max-sat (Yang et al., 2007) and

finite state machines (Cresswell et al., 2009; Cresswell and Gregory, 2011). Author’s

(Zhuo et al., 2020) used deep neural networks to learn shallow machine learning model

and use it to predict behavior on the test set. There have been other structured

formulations such as Linear Temporal Logic (LTL) to represent the knowledge and

learning the model using behavior trajectories and an oracle to validate the model

(Camacho and McIlraith, 2019). In (Bryce et al., 2016), authors use a questioning

strategy to decrease the number of particles to find how the model has changed from

the original behavior. The response to the query is in the form of – model provided

by the user, labeled valid plan, or some specific predicate that is part of the model

now. Recently, there has been some work to infer the model by asking specific queries

in the form of the initial state and the plan (Verma et al., 2020). Their work differs

as they expect detailed responses, such as which step the plan can be executed in the

robot’s model, which can easily overwhelm the human teammate (due to interrogative

nature).

126

Active Learning has an oracle to question classes of specific data points (Settles,

2009). The community learns the underlying model with the help of an all-knowing

oracle. The difference with the field is that the data of plan traces is not readily

available to the agent, such as in scenarios of stream-based selective sampling (Cohn,

1994). Stream-based active learning ideas (Dagan and Engelson, 1995) are useful for

the continuous space of probability distribution but can’t be used directly in discrete

space of questions, where we instead have the generative model for the traces.

As we can see, the idea of questioning the user (or an oracle) for relevant infor-

mation is not new. In this paper, we have looked at how it is useful for human-robot

teaming. The essential part is to understand how to formally define interaction in

the form of question and answer and generate useful queries to localize the model,

and the application to the novel area comes with its different challenges.

Curriculum Generation idea is to learn the model by dividing into sub-tasks.

Generating questions or sequence of questions for the user to answer can be seen

as curriculum generation which can be useful in performing transfer learning. It has

been applied to supervised learning (Bengio et al., 2009) or for reinforcement learning

(Florensa et al., 2017). Reinforcement learning is to learn the task model by exploring

and executing actions in the environment. Curriculum learning has been specifically

applied for learning reward system of an MDP (Kearns et al., 2002) or use these

curriculum tasks to evaluate transfer learning among different tasks (Svetlik et al.,

2017). Where curriculum generation handles the task in a stochastic environment,

the stochasticity in our case is due to interaction with human. Learning their model

can be useful for similar collaboration (or can say transfer learning) for human-robot

teams.

127

All these areas have looked at specific parts of the problem, like active learning

community looks to chose the data points to ask the oracle, curriculum generation

works uses sequential learning and ITS community works towards generating better

questions and what are the psychological effects of these questions. We want to bring

these ideas together where we use sequential feedback from the teammate over the

generated questions to learn their model of the environment.

5.9 Conclusion and Future Work

Through this paper, we have shown how to construct queries with uncertainty in

the model. The robot expects simpler answers such as – (1) yes/no response, and (2)

if possible, a complete plan to decrease the number of interactions. It also evaluates

different conditions under which each query will have a response that can refine the

set of models. The construction using PIP ensures that every question can be asked

in any order and these queries can be constructed offline (provided it knows the set

of possible models). The evaluations show that these questions can be constructed

for any unknown predicate in the model.

In the future, we want to analyze a set of plans rather than the optimal plan. It

becomes a two-stepped process, a base framework which involves creating questions,

and getting information from the response of the user even if that response does not

involve the action ap but still reaches the goal. The agent has to optimize using the

value of information to generate queries, instead of assuming an optimal response from

the teammate. This analysis would be useful in general decision-making scenarios and

can lead to an open-ended discussion with automated agents.

128

Chapter 6

MAY I ASK A QUESTION – USER STUDY

Chapter 5 describes how robot can ask questions about unknown parts of the

model. We modeled the robot’s knowledge using robust planning models (Nguyen

et al., 2017) to model the robot’s uncertainty about specific parts of the domain. We

were able to construct queries about the behavior, that can help robot refine the hu-

man’s model or the differences between robot and the human teammate. The queries

ensured that any response from the teammate will help refine the robot’s uncertainty,

especially a “No” response can refine the set of models to handle assignment of blame

(Crant and Bateman, 1993) scenario. Different types of queries such as validation,

construction and template, were explored with the conditions when robot can ask

them.

We performed an ablation study to evaluate different aspects of query generation

process (especially time taken to generate such queries) and understand how effective

the queries can be for different predicates (or parts) of the model. We also evaluated

whether a bigger model effects the time taken to generate the query. It was shown

through evaluation that validation query and construction queries (with no plans

possible) can be constructed for every predicate in the model. On the other hand,

template queries could not be constructed for all the predicates, however, under

specific conditions, most of them could be merged to decrease the number of questions.

The ablation study provided important factors that effected the query generation

system; however, there is a need to evaluate whether these queries can be used for a

real-world human-robot teaming scenario. There is a need to construct a user study

to simulate a real-world interaction, where the robot or a planning system can ask

129

queries. It needs to check whether the human teammate understands these questions,

and whether the response can support elicitation of true human model. Thus, this

chapter, discusses the user study to evaluate the query generation process.

Asking questions is an integral part of many user studies, where a user is intro-

duced to a condition, and then questions are asked to understand the effect of the

conditions. It can be tricky to evaluate the effectiveness of a query generation pro-

cess as we can not ask them if they find the generated questions effective. However,

as we introduce the environment to the students, we assume that students have a

common vocabulary as the robot and ask them the rules applicable in solving the

problem. Through their responses, we will be able to match whether the students

understand the environment and compare the application of these rules through the

queries. Please note, having a similar vocabulary might not be feasible in the real-

world scenarios (Kambhampati et al., 2021), and thus, the agent might not be able

to ask the rules directly from the user. Moreover, it has been shown in the knowl-

edge elicitation literature that there is an elicitation gap between verbal reports while

asking the questions directly and evaluating the actual performance of the task due

to implicit and explicit application of the knowledge (Broadbent et al., 1986). In an

active environment, it is essential to evaluate the application of the knowledge instead

of merely checking memory recall of the environment dynamics.

Query generation process has made several simplifying assumptions to construct

queries about the behavior in the environment. For example, the query generation

process assumes that human is an active teammate (could be an expert in the envi-

ronment), and human’s understanding belongs to a set of models, where one of them

is the true model. Ideally, we would like to evaluate the system with human users

who are new to the working environment, such as, a new fire marshal, or a student

who has some understanding of their class material. Thus, the system can assume the

130

user’s knowledge can be represented through a set of models. However, evaluating

with these stakeholders can be difficult because to ensure all the students understand

the course material can be difficult for a 45 minute to a one hour user study. The

query generation process also assumes the queries are generated for specific parts of

the model that is unknown to the robotic agent. While modeling, it has been assumed

to be represented through predicates which may or may not be a part of the action.

Thus, we need to model an active environment in which both human and robot can

work or atleast robot can work as suggested by the human teammate. This chapter

provides several details about handling these challenges to conduct a user study.

Scenario for the user study is motivated from a simplified warehouse scenario. The

robot called Squeaky works in a warehouse which stores medicines in boxes as ordered

by robot expert Sam. The robot is supposed to follow some security protocols while

working in the warehouse, and Sam has an understanding of these rules. The company

is trying to add more robots, and to decrease the workload on Sam, it is also planning

to make a plan library which can help automate the planning process for the robots.

The planner is asking questions which Sam (the student taking the user study) is

supposed to answer to help build the plan library.

This chapter is divided into five sections. The first section, describes the warehouse

domain and followed by a section that reviews various types of queries presented in

earlier chapter and how they will be modelled for asking questions during the user

study. Then we describe the interface for the user study and different conditions that

students would be participating in. Then we provide details about the procedure

followed by the hypothesis and the results.

131

6.1 Warehouse Domain – Squeaky & Sam Team-up

The scenario for the user study has been setup on a simplified warehouse domain,

where Squeaky and Sam work together and the warehouse is used for storing medicine.

Due to cold temperatures for storing medicines, Sam can not work in the warehouse

and is responsible for providing commands to Squeaky. The company is trying to add

more robots and decrease the workload of Sam by creating a planner to automate

the process of giving commands to old and new robots. We use this story to create

a mental picture for the user. In this section we describe important parts of the

warehouse environment that are used for the study.

The warehouse consists of racks where medicines are stored, and boxes to store

the medicines. For simplification it is assumed that the racks have only one level

and look like a table. There are two tables Table 1 and Table 2. Boxes are of two

types, large box containing 10 bottles of medicines, and small box containing 2 boxes

of medicine. Figure 6.1 shows the image of a simplified warehouse with the robot

Squeaky.

Squeaky has certain capabilities for working in the warehouse. It can extend it’s

arm and torso to reach far off places, it can navigate in the warehouse to go to different

racks (or tables), and it can pick up boxes and put them down in the racks or can

manipulate stacks of boxes one over the other. There are some security protocols that

in reality is understood by Sam, and he ensures that Squeaky should perform actions

that do not cause accidents in the warehouse. The security rules as explained in the

user study are –

• While moving my torso should be in the contracted position, otherwise, I can

topple on the small wheels while turning.

132

Figure 6.1: Simplified warehouse domain for explaining various capabilities of the
robot Squeaky.

• While moving my arm should be tucked in, as extended arm is heavy and I can

topple.

• While picking up I can pick up both kind of boxes. Although, I can only pick

one box at a time.

• A large box can be stacked only on a large box, whereas a small box can be

stacked on both large and small boxes.

133

• I can pick up a large box only when my torso is in extended state, as I can hold

the block vertically.

• I can tuck my arm while holding a small box and not while holding a large box.

Thus, I can move while holding small box.

For the user study the students are asked question for their understanding of these

security rules. The questions are based on the theory as described in chapter 5 create

questions or validate plans based on different types of queries constructed using model

elicitation algorithms. In the next section we will review different types of queries to

explain there differences, and how they will be applied for the user study.

6.2 Query Generation Process – Review

Chapter 5 describes three different types of queries that the agent can use to refine

a user model. This section provides a small summary of these queries and how do

they differ. The summary of these queries is discussed in table 6.1. The queries are –

• Validation query – initial and the goal state with the plan. The user has to

respond to whether the specific plan would be valid in their model.

• Planning query – initial and goal state and user provides a valid plan in their

model.

• Template query – initial and goal state where the user’s plan provides a response

for multiple rules . Through this query, the agent can decrease the number of

interactions.

Table 6.1 provides a summary of three different queries. The validation query asks

the user whether a specific plan can be solved in their model, and the agent can refine

the model based on “yes/no” from the user. The query is limited to refining for a

134

Query

Type

Question Asked Response

assumed

No. of

Rules

Discussion

Validation

query

Initial State, Goal

State, Plan – Is the

plan valid in your

model?

Yes / No = 1 ∗ Binary responses can

provide information for a

single rule.

∗ To get information from

the negative response, the

user is asked about the

single rule. Thus the fail-

ure means the possible

rule is part of the user

model.

Planning

query

Initial State, Goal

State – Construct

a valid plan such

that Squeaky can

go from initial to

the goal state?

Possible

plan in

user’s

model

= 1 ∗ In this case the user

constructs the plan, with

the possibility that there

might not be a feasible

plan.

Can

include no

possible

plan as a

response.

∗ Since the user can

respond with failure

scenario, thus, robot can

infer information only

about a single rule.

135

Template

query

Initial State, Goal

State – Construct

a valid plan such

that Squeaky can

go from initial to

the goal state?

Possible

plan in

user’s

model

> 1 ∗ It is feasible to get infor-

mation about more than

one rule, when a plan

exists in every subset of

models.

∗ In chapter 4, we dis-

cuss the theoretical con-

ditions when a template

query can be constructed.

Table 6.1: Summary about different types of queries. Validation and planning query

provide information about one rule, even though the user needs to solve the problem.

Template query is useful to derive information about more than one rule. No. of

rules are the rules for which the query is generated by the robot.

single rule for the user. The planning query asks the user to construct a plan, where

constructing the plan can be more information. However, users can fail to construct a

plan in their model; thus, they can provide information about the single rule in their

model. We believe the planning query will ensure active participation compared to

the validation query, and the students will choose the rules applicable in the problems

with higher accuracy. Finally, the template query also asks the user to construct a

plan for the given problem. However, a failure response is not possible as there is a

possible plan in every possible model of the set, and thus the agent can refine multiple

rules in a single query. We theoretically describe the conditions under which template

queries are possible in section 5.4. Please note, based on the responses from the user,

136

Figure 6.2: Illustration of the May I Ask a Question interface for constructing the
plan, used for planning and template queries.

the queries can be classified into two broad categories, binary response (yes/no) for

the validation query, and a plan for planning and template queries. Thus, we created

two different interfaces for both categories which will be discussed in the next section.

6.3 May I Ask a Question – User Interface

Based on the responses provided from the student the queries can be classified into

two main categories – validating the plan/behavior suggested by the robot (yes/no

response), and constructing the plan for the question asked for planning and template

queries (a valid plan is the response). Thus we constructed two interfaces, one where

137

Figure 6.3: Illustration of May I Ask a Question interface for validation query

the user constructs a plan for the robot to follow, and an other where user validates

the plan presented to them for a specific initial and goal state. Figure 6.2, shows the

interface for constructing a plan, and figure 6.3 shows the interface for validating a

plan. Now we will describe both the interfaces in some detail, by first explaining the

common parts of the interfaces, followed by the differences between them, i.e. extra

interface module for constructing a plan for the query.

Validation interface. Figure 6.3 shows the interface used for queries where plan

is shown to the user with the initial and the goal state. The interface consists of

three panels, left panel shows the question to the user and thus it is called the query

138

panel. The plan is shown in the middle panel and is called the plan panel. Right

panel shows the rules that the student used for validating the plan and is called the

rules panel. A student is supposed to read the query (initial and the goal state) from

the query panel, understand the plan from the plan panel, select whether they plan

is valid or not from the module below the plan and check the rules that they think

were applied to solve the problem from the rules panel.

Construction interface. Figure 6.2 shows the interface used for the queries where

the plan will constructed by the student. The interface has a similar three panel

structure, however the difference lies in the query and the plan panel. In the query

panel, below the query module, there is a module to construct actions for adding in

a plan. The plan constructed by the user is shown in the plan panel. They need to

select whether they have completed the plan by toggling the button below the plan

panel. The same flow is followed as the validation interface, where the student reads

the query from the query panel, constructs the plan using plan construction module

below query module, toggle the button to alert the interface they have completed the

plan construction step in the plan panel, select the rules that were used to create the

plan and submit their response.

The study requires the person to be an expert in the warehouse domain and act

like Sam to provide responses. Thus, we describe the procedure in some detail in the

next section. The complete interface details can be checked in the appendix section.

It also provides all the forms that were provided to the students.

6.4 User Study – Sam Comes to Help

The user study has been constructed to evaluate the usefulness and effectiveness

of directed questions toward model elicitation of the user. To this end, May I Ask

139

a Question interface is constructed to first explain the scenario to students and

describe the security rules to them, conduct a pre-test to help them commit these

rules to memory, then ask them different types of directed queries, and at the end

take their feedback. In this section we provide details about different conditions for

conducting the user study, our hypothesis over those conditions and the procedure

that we evaluated while conducting the user study.

6.4.1 Conditions

As mentioned earlier there are three different queries that Squeaky can ask from

Sam, i.e. validation, planning and template queries. Based on the responses from

the user these queries can be classified into two main categories where the user ei-

ther provides a binary response to Squeaky, or constructs a plan to give a response.

However, our conditions are based on different types of queries –

(Cv) student validates a plan provided based on the validation query.

(Cp) student constructs a plan for planning queries.

(Ct) student constructs a plan for template queries, thus providing a response for

more than one rules at a time.

Please note, that there is no control condition, due to three reasons. First, we

are not trying to evaluate the effectiveness of these queries as compared to a control

case. Secondly, these queries do not evaluate the memorization of the security rules,

instead they evaluate the application of the security rules by discussing the behavior.

Thus, we ensure that the students have memorized the rules to a certain degree with

appropriate feedback at the start of the study. Finally, we are assuming that failure

to apply these rules means that the rule is absent from the student’s understanding

140

of the warehouse. Thus, on one hand, these models can be considered brittle and on

the other hand, in the real world scenario such (brittle) models exist. For example,

several experts forget to check specific conditions which can lead to accidents and one

can always argue that the accident was due to lack of knowledge or application or it

was a slip (Bayesian knowledge tracing models (Corbett and Anderson, 1993)).

Work in chapter 5 formulated and analyzed whether a structured robot’s model

can be used to construct questions about the behavior in the common working envi-

ronment, to elicit specific parts of the human understanding. Moreover, through this

study we are evaluating whether these queries are understood by the user and de-

spite the theoretical assumptions can be effective in eliciting the underlying human’s

model.

6.4.2 Aim of the Study

This study evaluates the utility and effectiveness of the queries to elicit the stu-

dent’s model from a set of models. Effectiveness can be measured using the number

of interactions to refine the models, clarity of the questions, and difficulty in response.

Theoretically, the number of interactions depends on the number of uncertain predi-

cates and the kind of expected response from the user. However, difficulty and clarity

of questions has to be evaluated through the user study. For example, in theory a

validation query should be easier to respond as compared to plan construction query,

as the student has to provide a binary response for a validation query. On the other

hand, for a validation query, giving a plan with the initial state and goal state can

confuse them as the plan might be inexplicable to them (Kulkarni et al., 2016), if

students are confused about other parts of the model, or if they do not participate

actively. Another example of different impacts of these queries could be, the template

queries decreases the numbers of interaction (under certain conditions); however, the

141

queries can be more difficult as the student will have to construct larger plans. Thus,

there are several challenges to measuring effectiveness of these queries.

ICAP framework (Chi and Wylie, 2014) discusses the effect of student participa-

tion in their learning. It states that there are four modes in which a student can

work on some material – interactive, constructive, active and passive. It also states

that interactive methods where student discusses the material with tutor or other

students is more effective in student learning than, constructive answering questions

on the material, than actively reading the material, than passively listening to a lec-

ture. Although our queries do not strictly follow these modes, however, a case can

be made that validation query is actively understanding the plan and planning or

template query is constructively working on the queries. Thus, the student would be

more involved and hence the clarity of planning and template queries could be higher.

However, there is a need to evaluate difficulty and clarity of these queries through

the user study and these measures will be used for evaluating the effectiveness. We

hypothesize that –

H1 – Difficulty of the query can be measured using –

H1a – the likert scale from the feedback will follow the order – D(Cv) < D(Cp) <

D(Ct), where D represents the difficulty rating.

H1b – time taken as a representation of the difficulty measure will follow the order

– T (Cv) < T (Cp) < T (Ct), where T represents the average time taken to

solve the query.

H1c – Due to the ease of solving queries, preference of the users will follow the

order – ρ(Cv) > ρ(Cp) > ρ(Ct), where ρ represents the preference measured

through feedback on the likert scale.

142

Figure 6.4: Video showing the pick up capability of the robot. We use a combination
of text and video to create a mental picture for the student, i.e. to make them expert
for handling Squeaky robot around the warehouse.

H2 – Clarity of the questions will be measured by the choice of correct rules for every

question. We expect template and planning query to have improved clarity

as it would involve students constructively (ICAP framework (Chi and Wylie,

2014)) working as compared to the validation query. Thus, the order for clarity

should be – κ(Cv) < κ(Ct) < κ(Cp), where κ represents the number of questions

students choose the correct rules and accurately respond to the queries. Please

note, that the clarity measure for planning query is assumed to be better than

the template queries.

These hypothesis are directed to the core aim of this user study, i.e. to understand

the sweet spot between a user’s preference for queries and there effectiveness.

6.4.3 Procedure

The study consists of six different web-based pages, that explains the warehouse

domain to the student, takes a pre-test to help students memorize the rules, introduces

the interface and then conduct the user study. Finally, the students are provide a

form to fill there feedback with a post test to write the security rules in their own

words. In this section we will discuss each page in some detail. The material provided

to the students while conducting the user study can be checked in Appendix B.

143

Figure 6.5: Describes the warehouse domain to the student followed by the chosen
security rules.

User study introduction consists of discussing about the robot Squeaky working

in a warehouse and Sam the robot expert who orders Squeaky to complete the task.

It discusses the intent of adding more robots and automating the process of providing

commands to Squeaky.

Robot capabilities includes introduction about the robot Squeaky, and its capa-

bilities. The capabilities are shown as small clips of the actions that Squeaky can

perform around the warehouse. Squeaky’s capabilities are it can pick boxes, move

around in the warehouse, stack boxes over each other, extend it’s arm and torso to

give it more reach. Then the page describes the warehouse, a simplified version of

the warehouse with tables and blocks is described. The simplified version consists of

one level racks which can be understood as a table, and two different kinds of boxes

(large and small). Figure 6.4 shows the screenshot of a video and the text to describe

pickup capability of the robot.

Finally, the page introduces the security rules that a student has to understand.

The rules can be checked in the warehouse domain section. Six rules are divided

into three sets of two rules, where one set is described to every student and one

set is randomly chosen from the other two sets of rules. Thus, every student is

144

Figure 6.6: Shows the pre-test presented to the students. It consists of four correct
and four distractor rules. The correct rules are rephrased from the original rules
shown to the students.

only shown four out of six rules. For example, the students are shown two rules for

motion of the robot, and only one set of the rule either about the robot stacking

different boxes (how boxes can be stacked on each other, rules 3 & 4 in the list) or

extended capabilities of Squeaky to move with the block in it’s hand (rules 5 & 6 in

the list). Different sets of rules creates different understanding among the students,

however, their understanding can be represented as the set of models. This also tests

the validity of our assumption that questions about the behaviors can elicit varying

models of the students as well. Figure 6.5 shows the description of warehouse domain

and the set of rules shown to the students. Link to videos and the complete text

description can be checked in Appendix B.

Pre test. Since, students needs to be an expert on the security rules, we use a pre-

test to help them memorize the rules. Pre-test shows a list of eight rules from which

the students select the correct rules. The rules are rephrased to test memorization,

and distractor rules are added to the list. For example if the rule is Squeaky can pick

only one box at a time, the distractor rules are Squeaky can pick many boxes at

a time. Every time a student selects the rules, they are provided feedback whether

145

Figure 6.7: Shows the feedback presented to the students while taking the pre-test.
Green color represents correctly chosen rule and Red color represents the incorrect
rule. With every incorrect selection feedback with the correct rule is presented.

Figure 6.8: Every student takes 3 iterations of pre-test, until they select all four
correct rules. After every iteration the set of correct rules originally shown to the
student are presented for them to read. Figure shows the set of correct rules shown
to them.

146

there selection is correct of not, and for feedback they are provided correct rule. A

student takes the pre-test thrice, and after every attempt a list of correct rules is

shown to them. Figure 6.6 shows one of the pre-test provided to the students, figure

6.7 shows feedback provided to the students, and figure 6.8 shows the list of correct

rules for feedback after each attempt. Please note, the correct rules are not rephrased,

and for each test they have to show memorization and understanding again. After

the final (third) attempt correct rephrased rules are shown to the students.

Interface introduction. After the pre-test, the interface shows a video to intro-

duce the study interface. The video consists of explaining all three panels for the

respective condition, i.e. validation interface or the construction interface (for plan-

ning and template queries). We also show video from the Gazebo robot simulator 1

where Squeaky is executing a plan constructed or shown on the interface. The video

helps student visualize an interaction between Sam and Squeaky, where Sam gives

it a plan and Squeaky executes in in the warehouse environment. Thus, making it

easier for the students to create sequential plans. For the construction interface, the

plan construction idea is also described in this video. Finally, video desccribes what

a student has to do complete the questions of the user study.

User study. Different conditions have varying questions and response methods.

For validation query, six questions are asked from the students where they provide

binary (yes/no) response, whether a plan will work in their model. Similary, for

planning query, students construct six different plans, and for template query they

construct four different plans. The query generation algorithm merged questions for

four predicates into two different queries. The other two predicates do not have

1https://docs.fetchrobotics.com/gazebo.html

147

https://docs.fetchrobotics.com/gazebo.html

possible plans in the constrained model (Mcon) and thus there is a possibility of

failure response, and the predicates can’t be merged. Please note, that even if the

students understand only four out of the six rules, they solve the queries for all the

security rules, as this will evaluate that despite the user lacking the knowledge about

two rules, our methods can elicit their understanding.

Feedback. Finally student answers some feedback through subjective questions

about their understanding of the user study, and objective questions (on five points

likert scale) to understand how difficult were the questions for them. All the questions

are compulsory and submitting the feedback completes the user study.

6.5 Experimental Results

The study was conducted online, where the students were recruited through flyers

on various slack channels and through emails to students of Computer Science Depart-

ment, through different friend. Forty people from several different schools at Arizona

State University filled the google form, such as computer science, law, business and

education. They were asked for their availability over a span of three days. Thirty-

two students participated in the user study with ten–eleven students participating in

each condition. These student were compensated $15 for their time. We couldn’t use

the data from two students as due to network issues all the query responses were not

received from one of the student. Another student completed the study in 6 minutes

with all the queries response as “No plans possible” and single line feedback. Thus,

we present the result from other thirty students (ten in each condition).

Out of these thirty students, twenty-six were from computer science department.

fourteen of these thirty students had worked with the robots in the past. Six students

were undergraduate students, sixteen were current Masters students at ASU, three

148

were doctoral students and four had already graduated with Masters degree. One

of them chose to not disclose their affiliation or current degree. The students were

randomly put into different conditions as the website directly chose the subset of rules

described to the students as well as the query to ask them questions. As explained

earlier, there were two subsets of rules that could be shown two students (four out of

six possible security rules). Out of thirty students the rules were evenly distributed

across the user study (fifteen with subset one and fifteen with subset two). However,

Cp had six–four distribution over the two subsets, and correspondingly Ct had four–

six distribution across the two subsets. Overall students spent 35.27 ± 11.24 minutes

doing the user study. Now we will look at some of the detailed results.

Hypothesis H1a In order to measure the difficulty to understand a question we

asked a subjective question – The question above were difficult to understand.

Figure 6.9 shows the response on Likert scale (1–5) where 1 is strongly disagree and

5 is strongly agree. The average score in all the conditions is around 2 (disagree) as

shown in the figure. Thus, hypothesis H1a does not hold. Overall score on the likert

scale shows that the questions were not difficult to understand for the students in all

the conditions.

Hypothesis H1b. In this hypothesis we compare the difficulty of each query, as

defined by the time taken to solve the problems. Figure 6.10 shows the average

time spent by students for the study for all three conditions. Table 6.2 shows the

p value statistic for T-test between all three variables. From the figure and the

table, it is clear that, on average a student took same time to complete the study

(no statistically significant relationship), the per query average is calculated as total

time taken / number of queries. As stated in the previous section, that student were

149

Figure 6.9: Bar graph showing the average Likert Score for the question – The
questions above were difficult to understand. There was no statistically sig-
nificant difference for any of the conditions.

asked question about the all the possible predicates, despite lack of knowledge about

the specific rules. As we can see, that there is a significant time difference between

T (Cv) < T (Ct) and T (Cp) < T (Ct), nothing can be said about the other relationships.

Thus, the hypothesis H1b holds partially, and the time taken by template is strictly

higher compared to both validation and planning condition. It also means that the

template problem as they take more time, can be considered difficult compared to

the construction and planning query.

Please note, that since the total time taken to get the information about the

queries is statistically insignificant, even if template query gets more information,

there is no decrease in time for asking them solve extra information. This can be

useful, as template query would be more difficult to solve (provide longer plans),

150

Figure 6.10: Two graphs showing the time taken to solve a query posed by Squeaky
in all three conditions. The total time for the user study is statistically significant for
T (Cv) < T (Cp) and T (Cv) < T (Ct), however per query time is statistically significant
for all three conditions. Average per query time is calculated as Total time / Number
of Queries. Validation and Planning query had six queries and Template query has
four queries.

Total time Average Per Query Time

Val Plan Temp Val Plan Temp

Val

Plan 0.052 0.052

Temp 0.064 0.918 0.0014 0.021

Table 6.2: T-test value matrix for each query comparison. The α value 0.05, and
with Bonferroni correction it is 0.05/3 = 0.0167.

151

however, there is no real gain in asking these difficult questions from the human

teammate.

Hypothesis H1c tests the ease of solving of these queries. We test it using the

Likert score for the question The questions above were pretty easy to solve

for you. Figure 6.12 shows the average score on the Likert scale (1–5) in each

condition. The t-test results were not statistically significant, however, the value for

Ct was on average lower than both Ct and Cp.

Figure 6.11: Bar graph showing the average Likert Score for the question – Intent
of asking the questions is not clear for the planner.. There was no sta-
tistically significant difference for any of the conditions.

Hypothesis H2 evaluates the clarity of the questions. The clarity is also evaluated

from two different methods. Figure 6.11 shows the average likert scale (1–5) score to

the question Intent of asking the questions is not clear for the planner

152

Figure 6.12: Bar graph showing the average Likert Score for the question – The
questions above were pretty easy to solve. There was no statistically signifi-
cant difference for any of the conditions.

in all three conditions. While comparing the t-test results aren’t statistically signif-

icant; however the overall score to the question is 2 (as shown in the figure). Thus,

students believe that the questions were clear and the rules to be applied for the

questions were easy to find. On the other hand, when comparing the values in each

condition, even though the values aren’t statistically significant the average value for

conditions Cv and Cp is comparable, and the value for Ct is slightly higher.

6.6 Discussion

(a) Applicability for model learning Condition Cv and Cp had 6 questions for

every student, and Ct had 4 questions where queries for R1 and R2 were merged, and

query for R3 and R5 were merged. In all the queries students provided the correct

response around 80% of the time (48/60 in Cv, 47/60 for Cp, and 30/40 in Ct). Correct

153

Hypothesis Outcome Comments

H1a ≈ Students perceived all the queries to be similarly easy, with

overall score of Disagree on the Likert Scale.

H1b 3 Average time taken per query was statistically significant

with template query taking highest time.

H1c ≈ Students felt that the queries were easy to solve, Template

Query (Ct) had the lowest rating for ease of solving.

H2 3/ ? The Likert scores were highest for Ct, overall students felt

the queries were understandable to them.

Table 6.3: Summary of results for the May I Ask a Question user study.

rules were chosen for 72% of the responses (43/60 in Cv, 42/60 for Cp, and 29/40 in

Ct). Correct query response is defined as the valid response given the question and set

of rules shown to the student. Similarly, correct rules were those when based on the

set of rules chosen, they provide the correct reasoning irrespective of the correctness

of the response. This, validates that students understood these queries and were

able to respond with some accuracy. Overall our results show, average time taken to

solve a single query increased for the template condition, however, total time taken to

complete the user study did not, i.e. answering queries for all six rules, took similar

amount of time. Thus, planning query maintains the right balance between ease and

getting the right information from the student.

(b) Post-hoc analysis As discussed earlier, the hypothesis of the user study were

constructed to showcase the application of question answering for learning the human

mental model. Some of the ideas from human-cognition and from the area of psy-

154

cholinguistics, such as discussing behavior to understand application of rules instead

of memorization and getting information from negative responses (such as “No” in

validation query or “no plan possible” for plan generation query) were used to gen-

erate these queries. Table 6.3 describes the summary of results for every hypothesis.

Although, the hypothesis for ease of solving and understanding only hold partially,

however, it supports the central theme of the user study that the all kinds of queries

can be applied for working with a teammate in the real world scenario. The difference

between these queries is that for a single query usually it’s better to ask the possible

plan from the user for the initial state, however, for sequence of queries the total time

taken is similar. This helps us conclude that asking plan generation queries or plan

validation queries is useful for lesser number of rules. However, with higher number

of uncertain rules, it is better to decrease the number of interactions using template

query, as students felt that the queries were equally difficult or easy to solve and

equally intuitive to understand.

(c) Novel user study An important point to note is that asking questions to

understand teammate’s model is widely used technique. This user study is unique in

the ways as it tests core properties of a query, that is whether the teammate can even

understand the question that robot is asking. The field of ITS has evaluated many

types of questions, and to the best of our knowledge such a user study has never been

constructed. In ITS, the core questions are about whether an interface can support

specific type of interaction or whether a student finds the interface useful to learn

specific material. This user study was constructed to evaluate the effectiveness and

intent of asking questions from a teammate.

155

(d) Plan for Validation query While constructing the plan for validation query,

special care was needed, as the plan has to be explicable from the student (Kulkarni

et al., 2016). This scenario effected one of the responses as Mcon model for a subset

of security rules was not correctly represented. For example, one subset of security

did not explain that squeaky can only lift a heavy block after extending it’s torso. If

we assumed the Mcon model had this rule, it would have expand torso action in the

plan, which can confuse the user. This scenario happened with one of the students,

who raised the concern about the extra action in the pilot tests. On the other hand,

this condition never occurred in the planning and template queries as the plan was

always feasible in the student’s model.

6.7 Conclusion

In the previous chapter we were able to theoretically describe how a robot can

construct directed question that can elicit a human teammate’s model. The important

conditions were ensuring agent asks questions such that every kind of response can

elicit some part of the model. In this chapter, we were able to show a scenario and

evaluate it through a user study. Students were able to provide response and every

response from them elicited the applicability of specific parts of the model. Different

types of queries and query types were evaluated. The results show that the questions

are easy to understand for the students, and also easy to solve.

Average time taken to solve a query increased when for the template condition,

however, overall time taken to complete the user study, i.e. answering queries for

all six rules, took same amount of time. Thus, planning query maintains the right

balance between ease and getting the right information from the student.

While constructing the plan for validation query, special care was needed, as the

plan has to be explicable from the student (Kulkarni et al., 2016). This scenario

156

effected one of the responses asMcon model for a subset of security rules was not cor-

rectly represented. For example, one subset of security did not explain that squeaky

can only lift a heavy block after extending it’s torso. If we assumed the Mcon model

had this rule, it would have expand torso action in the plan, which can confuse the

user. This scenario happened with one of the students, who ended up asking about

this extra action which was not needed in one of the pilot tests. On the other hand,

this condition never occurred in the planning and template queries as the user was

constructed the plan, and the plan was always feasible in their model.

157

Chapter 7

CONCLUSION

This thesis was motivated towards understanding the current state of the human-

aware systems and extend some of the fundamental ideas to different domains. Ini-

tially we looked at some of the technology as seen by ITS research community, and

applied some of the human-aware AI techniques to support students and teachers in

a classroom. Vanlehn (2006) described that, an ITS consisted of two loops – outer

and the inner loop. Outer loop runs every problem to choose the next problem for

the student and inner loop is applied to every step that a student takes while solving

a problem to provide feedback and hints. Through our work we have been able to

extended these ideas to other real-world domains, and evaluate the effectiveness of

these techniques. We have been able to show that through our work that automated

planning and human-aware AI is well suited to be applied for both long term and short

term inference, by modeling one of the state-of-the-art tutoring systems. Then we

applied the same framework towards supporting an expert and giving them both step-

by-step feedback as well as complete plan suggestions to solve the expert’s problem.

We also evaluated the effectiveness of these techniques through one of the first-of-its-

kind user studies for student experts. The results showed both plan validation and

plan suggestion could be used for such systems and can provide support to experts

in their complex tasks. Applying these techniques to different domains showcased

the applicability of these techniques to several real-world domains. In chapter 5 we

tried to generalize the outer loop of an ITS, and ask questions from an expert. The

underlying model definitions and techniques were motivated from automated task

planning literature, with more fundamental human assumptions that an automated

158

system should keep in mind. The user study showed that the questions constructed

using the framework can be applied for asking questions from experts. The empirical

evaluation showed the application of questions to several different domains.

From formal techniques such as automated task planning and human-aware AI

point of view, this work shows the usefulness of these upcoming frameworks to real-

world scenarios. Initially these frameworks were built to solve problems and provide

solutions directly to the expert. However, with the improving technology, one of the

central challenges is to interact directly with human-in-the-loop and incorporate their

thought process. Through this work we have shown that these formal techniques can

be applied to interact with the user and can support involved collaboration with

active human teammates. Obviously, there are many more challenges before robots

or planners can be seen interacting with the humans, however, our work has laid the

foundation to take formal methods and apply it to work with humans on real-world

applications.

7.1 Future Work

The work presented in this system takes the first steps towards bringing automated

systems to work with humans. This work has mainly focused on designing frameworks

with domain-independent techniques, and evaluating their usefulness through user

studies. This work can be extended to support several different domains such as,

Intelligent Tutoring Systems or many other domains to work with experts.

Intelligent Tutoring System community assumes partial observability about stu-

dent’s knowledge about concepts. They also assume that student’s understanding of

the stochastic and represent it as a chance that a student will correctly apply the

concept when provided by a problem. To apply these techniques there is a need to

handle stochasticity to accurately represent the student’s current knowledge state,

159

and thus, look for policies and support these actions of the students. While asking

questions, the agent can assume some knowledge of the unknown principle, and create

a policy robust enough to handle the uncertainty.

Evolving mental models. While collaborating with active teammates, there is a

need for the systems to track these evolving models. For example, if a student does

not understand some knowledge concept, and correctly applies the feedback provided

by the system in the next problem, the tutoring system might need to update MH
r

model to incorporate users understanding of the current environment. First, there is

a need to track these changes and secondly, the agents would also need to understand

the impact of these changes. Thus, providing personalized support to the active

human teammates.

Incomplete knowledge. AI techniques have close-world assumptions (Talamadupula

et al., 2010b). However, these techniques have to be extended to gracefully handle

unknown part of the models, such as, the human teammate is able to perform an

action that the robot believed was not possible, or had no knowledge about. These

properties can be incorporated through learning methods, or the system can ask the

active teammate to help them update their model. Please note, incomplete knowl-

edge is different from tracking evolving models, as tracking changes to the teammates

model is due to the environment that an agent could understand. Whereas, incom-

plete knowledge would mean that the system needs to understand something that it

has never experienced.

Domain dependent techniques. There have been many domain dependent tech-

niques, that communities use, such as

160

REFERENCES

Agarwal, M., T. Chakraborti, S. Grover and A. Chaudhary, “COVID-19 india dataset:
Parsing detailed COVID-19 data in daily health bulletins from states in india”,
CoRR abs/2110.02311, URL https://arxiv.org/abs/2110.02311v2 (2021).

Ai-Chang, M., J. Bresina, L. Charest, A. Chase, J.-J. Hsu, A. Jonsson, B. Kanefsky,
P. Morris, K. Rajan, J. Yglesias et al., “Mapgen: mixed-initiative planning and
scheduling for the mars exploration rover mission”, IEEE Intell. Sys. (2004).

Aleven, V., E. A. McLaughlin, R. A. Glenn and K. R. Koedinger, “Instruction based
on adaptive learning technologies”, Handbook of research on learning and instruc-
tion pp. 522–560 (2016).

Allen, J. F., “Mixed initiative planning: Position paper”, in “Proceedings of
ARPA/Rome Labs Planning Initiative Workshop, Tuscon, AZ”, (Morgan Kauf-
man, Palo Alto, 1994).

Amershi, S., D. Weld, M. Vorvoreanu, A. Fourney, B. Nushi, P. Collisson, J. Suh,
S. Iqbal, P. N. Bennett, K. Inkpen et al., “Guidelines for human-ai interaction”,
in “Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems, Glasgow, Scotland”, pp. 1–13 (ACM, 2019).

Amy Ahearn, “The Flip Side of Abysmal MOOC Completion Rates? Discovering the
Most Tenacious Learners”, https://goo.gl/DR7nxa, EdSurge (2017).

Anderson, J., “The architecture of cognition.”, Harvard Univ. press, Cambridge, MA
(1983).

Anderson, J., “Rules of the mind.”, Lawrence Erlbaum Associates Hillsdale, NJ
(1993).

Anderson, J. R., “Act: A simple theory of complex cognition.”, American psychologist
51, 4, 355 (1996).

Anderson, J. R. and G. H. Bower, “Human associative memory”, Winston and Son,
Washington, DC (1973).

Anderson, J. R., C. F. Boyle and B. J. Reiser, “Intelligent tutoring systems”, Science
228, 4698, 456–462 (1985).

Anderson, J. R., A. T. Corbett, K. R. Koedinger and R. Pelletier, “Cognitive tutors:
Lessons learned”, The journal of the learning sciences 4, 2, 167–207 (1995).

Anderson, L. W. and D. R. Krathwohl, A taxonomy for learning, teaching, and assess-
ing: A revision of Bloom’s taxonomy of educational objectives (Longman,, 2001).

Aronson, E., The jigsaw classroom: Building cooperation in the classroom (Scott
Foresman & Company, 1997).

161

https://arxiv.org/abs/2110.02311v2
https://goo.gl/DR7nxa

Aronson, E., “Building empathy, compassion, and achievement in the jigsaw class-
room”, in “Improving academic achievement”, pp. 209–225 (Elsevier, 2002).

Aronson, E., Cooperation in the classroom: The jigsaw method (Printer & Martin
Limited, 2011).

Bailey, W. A. and E. J. Kay, “Structural analysis of verbal data”, ACM SIGCHI
Bulletin 17, SI, 297–301 (1986).

Baker, R. S., A. De Carvalho, J. Raspat, V. Aleven, A. T. Corbett and K. R.
Koedinger, “Educational software features that encourage and discourage “gam-
ing the system””, in “Proceedings of the 14th international conference on artificial
intelligence in education”, pp. 475–482 (2009).

Barla, M., M. Bieliková, A. B. Ezzeddinne, T. Kramár, M. Šimko and O. Vozár, “On
the impact of adaptive test question selection for learning efficiency”, Computers
& Education 55, 2, 846–857 (2010).

Barnes, T. and J. Stamper, “Automatic hint generation for logic proof tutoring using
historical data”, Journal of Educational Technology & Society 13, 1, 3 (2010).

Beck, J., B. P. Woolf and C. R. Beal, “Advisor: A machine learning architecture for
intelligent tutor construction”, AAAI/IAAI 2000, 552-557, 1–2 (2000).

Beck, J. E. and K.-m. Chang, “Identifiability: A fundamental problem of student
modeling”, in “International Conference on User Modeling”, pp. 137–146 (Springer,
2007).

Bengio, Y., J. Louradour, R. Collobert and J. Weston, “Curriculum learning”, in
“Proceedings of the 26th annual international conference on machine learning”,
pp. 41–48 (ACM, 2009).

Berezina, K., O. Ciftci and C. Cobanoglu, “Robots, artificial intelligence, and service
automation in restaurants”, in “Robots, artificial intelligence, and service automa-
tion in travel, tourism and hospitality”, (Emerald Publishing Limited, 2019).

Bloom, B. S., “The 2 sigma problem: The search for methods of group instruction as
effective as one-to-one tutoring”, Educational researcher 13, 6, 4–16 (1984).

Bloom, B. S., M. D. Engelhart, E. Furst, W. H. Hill and D. R. Krathwohl, Taxon-
omy of educational objectives: The classification of educational goals; Handbook I:
Cognitive domain (New York: David McKay, 1956).

Bloom, B. S., C. of College and U. Examiners, Taxonomy of educational objectives,
vol. 2 (Longmans, Green New York, 1964).

Bollini, M., S. Tellex, T. Thompson, N. Roy and D. Rus, “Interpreting and executing
recipes with a cooking robot”, in “Experimental Robotics”, pp. 481–495 (Springer,
2013).

162

Bouchet, F., H. Labarthe, K. Yacef and R. Bachelet, “Comparing peer recommenda-
tion strategies in a mooc”, in “Adjunct Publication of the 25th Conference on User
Modeling, Adaptation and Personalization”, pp. 129–134 (ACM, 2017).

Broadbent, D. E., P. FitzGerald and M. H. Broadbent, “Implicit and explicit knowl-
edge in the control of complex systems”, British journal of Psychology 77, 1, 33–50
(1986).

Bryce, D., J. Benton and M. W. Boldt, “Maintaining evolving domain models”, in
“Proceedings of the twenty-fifth international joint conference on artificial intelli-
gence”, pp. 3053–3059 (2016).

Bubeck, S. and N. Cesa-Bianchi, “Regret analysis of stochastic and nonstochastic
multi-armed bandit problems”, arXiv preprint arXiv:1204.5721 (2012).

Burke, A., “Group work: How to use groups effectively.”, Journal of Effective Teach-
ing 11, 2, 87–95 (2011).

Camacho, A. and S. A. McIlraith, “Learning interpretable models expressed in linear
temporal logic”, in “Proceedings of the International Conference on Automated
Planning and Scheduling”, vol. 29-1, pp. 621–630 (2019).

Carbonell, J. R., “Ai in cai: An artificial-intelligence approach to computer-assisted
instruction”, IEEE transactions on man-machine systems 11, 4, 190–202 (1970).

Chakraborti, T., S. Kambhampati, M. Scheutz and Y. Zhang, “Ai challenges in
human-robot cognitive teaming”, arXiv preprint arXiv:1707.04775 (2017a).

Chakraborti, T., A. Kulkarni, S. Sreedharan, D. E. Smith and S. Kambhampati,
“Explicability? legibility? predictability? transparency? privacy? security? the
emerging landscape of interpretable agent behavior”, in “Proceedings of the Inter-
national Conference on Automated Planning and Scheduling, Berkley, California,
USA”, vol. 29, pp. 86–96 (2019a).

Chakraborti, T., S. Sreedharan, S. Grover and S. Kambhampati, “Plan explana-
tions as model reconciliation: an empirical study”, in “Proceedings of the 14th
ACM/IEEE International Conference on Human-Robot Interaction, Daegu, South
Korea”, pp. 258–266 (2019b).

Chakraborti, T., S. Sreedharan and S. Kambhampati, “Balancing Explicability and
Explanation in Human-Aware Planning”, in “AAMAS”, (2018a).

Chakraborti, T., S. Sreedharan and S. Kambhampati, “Human-aware planning revis-
ited: A tale of three models”, in “IJCAI-ECAI XAI/ICAPS XAIP Workshops”,
(2018b).

Chakraborti, T., S. Sreedharan, Y. Zhang and S. Kambhampati, “Plan explanations
as model reconciliation: moving beyond explanation as soliloquy”, in “Proceedings
of the 26th International Joint Conference on Artificial Intelligence”, pp. 156–163
(AAAI Press, 2017b).

163

Chakraborti, T., K. Talamadupula, M. Dholakia, B. Srivastava, J. O. Kephart and
R. K. Bellamy, “Mr.Jones – Towards a Proactive Smart Room Orchestrator”, in
“AAAI Fall Symposium on Human-Agent Groups”, (2017c).

Chang, K.-m., J. Beck, J. Mostow and A. Corbett, “A bayes net toolkit for student
modeling in intelligent tutoring systems”, in “International Conference on Intelli-
gent Tutoring Systems”, pp. 104–113 (Springer, 2006).

Chi, M., P. Jordan, K. VanLehn and M. Hall, “Reinforcement learningbased fea-
ture selection for developing pedagogically effective tutorial dialogue tactics”, in
“Educational Data Mining 2008”, (Citeseer, 2008).

Chi, M., K. VanLehn and D. Litman, “Do micro-level tutorial decisions matter: Ap-
plying reinforcement learning to induce pedagogical tutorial tactics”, in “ITS”, pp.
224–234 (2010).

Chi, M. T. and R. Wylie, “The icap framework: Linking cognitive engagement to
active learning outcomes”, Educational psychologist 49, 4, 219–243 (2014).

Clement, B., D. Roy, P.-Y. Oudeyer and M. Lopes, “Multi-armed bandits for intelli-
gent tutoring systems”, arXiv preprint arXiv:1310.3174 (2013).

Clement, B., D. Roy, P.-Y. Oudeyer and M. Lopes, “Online optimization of teaching
sequences with multi-armed bandits”, in “7th international conference on educa-
tional data mining”, (2014).

Cohn, D. A., “Neural network exploration using optimal experiment design”, in “Ad-
vances in neural information processing systems”, pp. 679–686 (1994).

Collins, A., J. S. Brown and S. E. Newman, “Cognitive apprenticeship: Teaching the
craft of reading, writing and mathematics”, Thinking: The journal of philosophy
for children 8, 1, 2–10 (1988).

Compton, P. and R. Jansen, “A philosophical basis for knowledge acquisition”,
Knowledge acquisition 2, 3, 241–258 (1990).

Connelly, J. and S. Katz, “Toward more robust learning of physics via reflective
dialogue extensions”, in “EdMedia: World Conference on Educational Media and
Technology”, pp. 1946–1951 (Association for the Advancement of Computing in
Education (AACE), 2009).

Cooke, N. J., “Knowledge elicitation”, Handbook of applied cognition pp. 479–509
(1999).

Corbett, A. T. and J. R. Anderson, “Student modeling in an intelligent programming
tutor”, in “Cognitive Models and Intelligent Environments for Learning Program-
ming”, edited by E. Lemut, B. du Boulay and G. Dettori, pp. 135–144 (Springer
Berlin Heidelberg, Berlin, Heidelberg, 1993).

164

Corbett, A. T. and J. R. Anderson, “Knowledge tracing: Modeling the acquisition of
procedural knowledge”, User modeling and user-adapted interaction 4, 4, 253–278
(1994).

Crant, J. M. and T. S. Bateman, “Assignment of credit and blame for performance
outcomes”, Academy of Management Journal 36, 1, 7–27 (1993).

Cresswell, S. and P. Gregory, “Generalised domain model acquisition from action
traces”, in “Twenty-First International Conference on Automated Planning and
Scheduling”, (Citeseer, 2011).

Cresswell, S., T. L. McCluskey and M. M. West, “Acquisition of object-centred do-
main models from planning examples”, in “Nineteenth International Conference on
Automated Planning and Scheduling”, (AAAI press, 2009).

Cullen, J. and A. Bryman, “The knowledge acquisition bottleneck: time for reassess-
ment?”, Expert Systems 5, 3, 216–225 (1988).

Dagan, I. and S. P. Engelson, “Committee-based sampling for training probabilistic
classifiers”, in “Machine Learning Proceedings 1995”, pp. 150–157 (Elsevier, 1995).

Dede, C., “A review and synthesis of recent research in intelligent computer-assisted
instruction”, International Journal of Man-Machine Studies 24, 4, 329–353 (1986).

Dillenbourg, P. and P. Jermann, “Technology for classroom orchestration”, in “New
science of learning”, pp. 525–552 (Springer, 2010).

Dillenbourg, P., G. Zufferey, H. Alavi, P. Jermann, S. Do-Lenh, Q. Bonnard, S. Cuen-
det and F. Kaplan, “Classroom orchestration: The third circle of usability”,
CSCL2011 Proceedings 1, 510–517 (2011).

Doerr, H. M., “Stella ten years later: A review of the literature”, International Journal
of Computers for Mathematical Learning 1, 2, 201–224 (1996).

Doignon, J.-P. and J.-C. Falmagne, “Knowledge spaces and learning spaces”, arXiv
preprint arXiv:1511.06757 (2015).

Doroudi, S. and E. Brunskill, “The misidentified identifiability problem of bayesian
knowledge tracing.”, International Educational Data Mining Society (2017).

Dragan, A. D., K. C. Lee and S. S. Srinivasa, “Legibility and predictability of
robot motion”, in “Proceedings of the 8th ACM/IEEE international conference
on Human-robot interaction, Tokyo, Japan”, pp. 301–308 (IEEE Press, 2013).

Emre, R. K., Developing a Neural Network Based Adaptive Task Selection System for
an Undergraduate Level Organic Chemistry Course., Ph.D. thesis, Arizona State
University, Tempe, USA (2020).

Ericsson, K. A. and H. A. Simon, Protocol analysis: Verbal reports as data. (the MIT
Press, 1984).

165

Fairbairn, D. M., “The art of questioning your students”, The Clearing House 61, 1,
19–22 (1987).

Falmagne, J.-C., E. Cosyn, J.-P. Doignon and N. Thiéry, “The assessment of knowl-
edge, in theory and in practice”, in “Formal concept analysis”, pp. 61–79 (Springer,
2006).

Feigenbaum, E. A., “What hath simon wrought?”, in “Complex Information Process-
ing”, pp. 185–202 (Psychology Press, 1989).

Feigh, K. M., A. R. Pritchett, T. W. Denq and J. A. Jacko, “Contextual control
modes during an airline rescheduling task”, Journal of Cognitive Engineering and
Decision Making 1, 2, 169–185 (2007).

Ferland, L. and S. Sanner, “Academic advising domain, at international plan-
ning competition (ipc) probabilistic track”, https://ipc2018-probabilistic.
bitbucket.io/#domains (2018).

Fikes, R. E. and N. J. Nilsson, “Strips: A new approach to the application of theorem
proving to problem solving”, Artificial intelligence 2, 3-4, 189–208 (1971).

Florensa, C., D. Held, M. Wulfmeier, M. Zhang and P. Abbeel, “Reverse curriculum
generation for reinforcement learning”, arXiv preprint arXiv:1707.05300 (2017).

Fox, M., R. Howey and D. Long, “Validating plans in the context of processes and
exogenous events”, in “Proceedings of the twentieth aaai conference on artificial
intelligence, Pittsburgh, PA”, vol. 5, pp. 1151–1156 (AAAI Press, 2005).

Gajos, K. Z., K. Everitt, D. S. Tan, M. Czerwinski and D. S. Weld, “Predictability and
accuracy in adaptive user interfaces”, in “Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, Florence, Italy”, pp. 1271–1274 (ACM,
2008).

Gertner, A. S., C. Conati and K. VanLehn, “Procedural help in andes: Generating
hints using a bayesian network student model”, Aaai/Iaai 1998, 106–11 (1998).

Gertner, A. S. and K. VanLehn, “Andes: A coached problem solving environment for
physics”, in “International conference on intelligent tutoring systems”, pp. 133–142
(2000).

Ghallab, M., D. Nau and P. Traverso, Automated Planning: theory and practice
(Elsevier, 2004).

Gil, Y., “Learning by experimentation: Incremental refinement of incomplete plan-
ning domains”, in “Machine Learning Proceedings 1994”, pp. 87–95 (Elsevier,
1994).

Glaser, R., M. Chi and M. Farr, “Overview – the nature of expertise”, LEA Hillsdale
NJ (1988).

166

https://ipc2018-probabilistic.bitbucket.io/#domains
https://ipc2018-probabilistic.bitbucket.io/#domains

González-Brenes, J., Y. Huang and P. Brusilovsky, “General features in knowledge
tracing to model multiple subskills, temporal item response theory, and expert
knowledge”, in “The 7th international conference on educational data mining”, pp.
84–91 (University of Pittsburgh, 2014).

Graesser, A. C., P. Chipman, B. C. Haynes and A. Olney, “Autotutor: An intelligent
tutoring system with mixed-initiative dialogue”, IEEE Transactions on Education
(2005).

Graesser, A. C., S. D’Mello, X. Hu, Z. Cai, A. Olney and B. Morgan, “Autotutor”, in
“Applied natural language processing: Identification, investigation and resolution”,
pp. 169–187 (IGI Global, 2012).

Grochow, J. M., “A taxonomy of automated assistants”, Communications of the ACM
63, 4, 39–41 (2020).

Grover, S., Online Embedded Assessment for Dragoon, Intelligent Tutoring System
(Arizona State University, 2015).

Grover, S., K. Arora and S. K. Mitra, “Text extraction from document images using
edge information”, in “2009 Annual IEEE India Conference”, pp. 1–4 (IEEE, 2009).

Grover, S., T. Chakraborti and S. Kambhampati, “What can automated planning do
for intelligent tutoring systems”, ICAPS SPARK (2018a).

Grover, S., S. Sengupta, T. Chakraborti, A. P. Mishra and S. Kambhampati, “ipass:
A case study of the effectiveness of automated planning for decision support”, in
“Proceedings of 14th International Conference on Naturalistic Decision Making,
San Fransisco, CA”, (2019).

Grover, S., S. Sengupta, T. Chakraborti, A. P. Mishra and S. Kambhampati, “Radar:
automated task planning for proactive decision support”, Human–Computer Inter-
action pp. 1–26 (2020a).

Grover, S., D. Smith and S. Kambhampati, “Model elicitation through direct ques-
tioning”, ICAPS, XAIP; arXiv preprint arXiv:2011.12262 (2020b).

Grover, S., J. Wetzel and K. VanLehn, “How should knowledge composed of schemas
be represented in order to optimize student model accuracy?”, in “International
Conference on Artificial Intelligence in Education”, pp. 127–139 (Springer, 2018b).

Grudin, J., “Ai and hci: Two fields divided by a common focus”, Ai Magazine 30, 4,
48–48 (2009).

Grudin, J., “Human-computer interaction”, Annual review of information science and
technology 45, 1, 367–430 (2011).

Hambleton, R. K., H. Swaminathan and H. J. Rogers, Fundamentals of item response
theory, vol. 2 (Sage, 1991).

167

Hancock, P. A. and M. H. Chignell, “Mental workload dynamics in adaptive interface
design”, IEEE transactions on Systems, Man, and Cybernetics 18, 4, 647–658
(1988).

Harvey, R. J. and A. L. Hammer, “Item response theory”, The Counseling Psychol-
ogist 27, 3, 353–383 (1999).

Helmert, M., “The fast downward planning system.”, JAIR (2006).

Hochreiter, S. and J. Schmidhuber, “Long short-term memory”, Neural computation
9, 8, 1735–1780 (1997).

Hoffman, R. R., “A survey of methods for eliciting the knowledge of experts”, ACM
SIGART Bulletin 108, 19–27 (1989).

Hoffman, R. R., N. R. Shadbolt, A. M. Burton and G. Klein, “Eliciting knowledge
from experts: A methodological analysis”, Organizational behavior and human
decision processes 62, 2, 129–158 (1995).

Hoffmann, J., J. Porteous and L. Sebastia, “Ordered landmarks in planning”, JAIR
URL http://dl.acm.org/citation.cfm?id=1622487.1622495 (2004).

Hone, K. S. and G. R. El Said, “Exploring the factors affecting mooc retention: A
survey study”, Computers & Education 98, 157–168 (2016).

Horvitz, E., “Principles of mixed-initiative user interfaces”, in “Proceedings of the
SIGCHI conference on Human Factors in Computing Systems, Pittsburgh, PA”,
pp. 159–166 (ACM, 1999).

Howey, R., D. Long and M. Fox, “Val: Automatic plan validation, continuous effects
and mixed initiative planning using pddl”, in “Tools with Artificial Intelligence
(ICTAI). 16th IEEE International Conference on”, pp. 294–301 (IEEE, 2004).

Iglesias, A., P. Mart́ınez, R. Aler and F. Fernández, “Learning teaching strategies
in an adaptive and intelligent educational system through reinforcement learning”,
Applied Intelligence 31, 1, 89–106 (2009).

Jackson, G. T. and D. McNamara, “Motivational impacts of a game-based intelligent
tutoring system”, in “Twenty-Fourth International FLAIRS Conference”, (2011).

Jackson, G. T. and D. S. McNamara, “Motivation and performance in a game-
based intelligent tutoring system.”, Journal of Educational Psychology 105, 4,
1036 (2013).

Kambhampati, S., E. Parker and E. Lambrecht, “Understanding and extending graph-
plan”, in “European Conference on Planning”, pp. 260–272 (Springer, 1997).

Kambhampati, S., S. Sreedharan, M. Verma, Y. Zha and L. Guan, “Symbols as a lin-
gua franca for bridging human-ai chasm for explainable and advisable ai systems”,
arXiv preprint arXiv:2109.09904 (2021).

168

http://dl.acm.org/citation.cfm?id=1622487.1622495

Kambhampati, S. and K. Talamadupula, “Human-in-the-loop planning and decision
support”, in “AAAI Tutorial”, (2015).

Katz, S., D. Allbritton and J. Connelly, “Going beyond the problem given: How hu-
man tutors use post-solution discussions to support transfer”, International Journal
of Artificial Intelligence in Education 13, 1, 79–116 (2003).

Katz, S., A. Lesgold, E. Hughes, D. Peters, G. Eggan, M. Gordin and L. Greenberg,
“Sherlock 2: An intelligent tutoring system built on the lrdc framework (pp. 227-
258)”, Facilitating the development and use of interactive learning environments.
Mahwah, NJ: Erlbaum (1998).

Katz, S., G. O’Donnell and H. Kay, “An approach to analyzing the role and structure
of reflective dialogue”, International Journal of Artificial Intelligence in Education
(2000).

Kearns, M., Y. Mansour and A. Y. Ng, “A sparse sampling algorithm for near-optimal
planning in large markov decision processes”, Machine learning 49, 2-3, 193–208
(2002).

Keyder, E., S. Richter and M. Helmert, “Sound and complete landmarks for and/or
graphs.”, in “ECAI”, vol. 215, pp. 335–340 (2010).

Khajah, M., R. Wing, R. Lindsey and M. Mozer, “Integrating latent-factor and
knowledge-tracing models to predict individual differences in learning”, in “Ed-
ucational Data Mining 2014”, (Citeseer, 2014a).

Khajah, M. M., Y. Huang, J. P. González-Brenes, M. C. Mozer and P. Brusilovsky,
“Integrating knowledge tracing and item response theory: A tale of two frame-
works”, in “CEUR Workshop proceedings”, vol. 1181, pp. 7–15 (University of
Pittsburgh, 2014b).

Khan, O. Z., P. Poupart and J. P. Black, “Automatically Generated Explanations
for Markov Decision Processes”, in “Decision Theory Models for Applications in
Artificial Intelligence: Concepts and Solutions”, pp. 144–163 (IGI Global, Hershey,
Pennsylvania, USA, 2012).

Kim, J., C. J. Banks and J. A. Shah, “Collaborative planning with encoding of users’
high-level strategies”, in “Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence”, pp. 955–961 (AAAI Press, 2017).

Klein, G., “Naturalistic decision making”, The Journal of the Human Factors and
Ergonomics Society (2008).

Koedinger, K. R., A. T. Corbett and C. Perfetti, “The knowledge-learning-instruction
(kli) framework: Toward bridging the science-practice chasm to enhance robust
student learning”, Cognitive Science (2010).

Krathwohl, D. R., “A revision of bloom’s taxonomy: An overview”, Theory into
practice 41, 4, 212–218 (2002).

169

Kulkarni, A., T. Chakraborti, Y. Zha, S. G. Vadlamudi, Y. Zhang and S. Kambham-
pati, “Explicable robot planning as minimizing distance from expected behavior”,
CoRR abs/1611.05497, URL http://arxiv.org/abs/1611.05497 (2016).

Labarthe, H., F. Bouchet, R. Bachelet and K. Yacef, “Does a peer recommender foster
students’ engagement in moocs?”, in “9th International Conference on Educational
Data Mining”, pp. 418–423 (2016).

LaFrance, M., “Excavation, capture, collection, and creation: Computer scientists’
metaphors for eliciting human expertise”, Metaphor and Symbolic Activity 7, 3-4,
135–156 (1992).

Langley, P., “User modeling in adaptive interfaces”, in “Proceedings of the seventh
international conference on User modeling, Banff, Canada”, pp. 357–370 (Springer-
Verlag New York, Inc., 1999).

Laskey, K. B., H. C. Marques and P. C. da Costa, “High-level fusion for crisis re-
sponse planning”, in “Fusion Methodologies in Crisis Management”, pp. 257–285
(Springer, 2016).

Lee, C. D., “Signifying in the zone of proximal development”, An Introduction to
Vygotsky 2, 253–284 (2005).

Lee, J. I. and E. Brunskill, “The impact on individualizing student models on nec-
essary practice opportunities.”, International Educational Data Mining Society
(2012).

Lesh, A. G. N., “Applying collaborative discourse theory to human-computer inter-
action”, (2004).

Levesque, H., E. Davis and L. Morgenstern, “The winograd schema challenge”, in
“Thirteenth International Conference on the Principles of Knowledge Representa-
tion and Reasoning”, (2012).

Liang, C., K. Chee, Y. Zou, H. Zhu, A. Causo, S. Vidas, T. Teng, I. Chen, K. Low and
C. Cheah, “Automated robot picking system for e-commerce fulfillment warehouse
application”, in “The 14th IFToMM World Congress”, (2015).

Lord, F., “A theory of test scores.”, Psychometric monographs (1952).

Maes, P., “Intelligent software”, Scientific American 273, 3, 84–86 (1995).

Maes, P., B. Shneiderman and J. Miller, “Intelligent software agents vs. user-
controlled direct manipulation: a debate”, in “CHI’97 Extended Abstracts on
Human Factors in Computing Systems, Atlanta, GA, US”, pp. 105–106 (ACM,
1997).

Magnisalis, I., S. Demetriadis and A. Karakostas, “Adaptive and intelligent systems
for collaborative learning support: A review of the field”, IEEE transactions on
Learning Technologies 4, 1, 5–20 (2011).

170

http://arxiv.org/abs/1611.05497

Mandel, T., “Refraction: Teaching Fractions through Gameplay”, https://goo.gl/
BrPpmV (2017).

Mandel, T., Y.-E. Liu, S. Levine, E. Brunskill and Z. Popovic, “Offline policy evalua-
tion across representations with applications to educational games”, in “AAMAS”,
(2014).

Manikonda, L., T. Chakraborti, K. Talamadupula and S. Kambhampati, “Herding
the crowd: Using automated planning for better crowdsourced planning”, Journal
of Human Computation (2017).

Mayer, R. E., “Frequency norms and structural analysis of algebra story problems into
families, categories, and templates”, Instructional Science 10, 2, 135–175 (1981).

McDermott, D., M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, D. Weld and
D. Wilkins, “PDDL-the planning domain definition language”, Technical Report,
Tech. Rep. (1998).

McLoughlin, C. and M. J. Lee, “Social software and participatory learning: Peda-
gogical choices with technology affordances in the web 2.0 era”, in “Proceedings of
ICT: Providing choices for learners and learning”, pp. 664–675 (2007).

Mercier, H. and D. Sperber, “Why do humans reason? arguments for an argumenta-
tive theory”, Behavioral and brain sciences 34, 2, 57–74 (2011).

Mesch, D. J., “The jigsaw technique: A way to establish individual accountability in
group work”, Journal of Management Education 15, 3, 355–358 (1991).

Miller, T., “Explanation in Artificial Intelligence: Insights from the Social Sciences”,
CoRR abs/1706.07269, URL http://arxiv.org/abs/1706.07269 (2017).

Mirsky, R., Y. Gal and S. M. Shieber, “Cradle: an online plan recognition algorithm
for exploratory domains”, ACM Transactions on Intelligent Systems and Technol-
ogy (TIST) 8, 3, 1–22 (2017).

Mishra, A. P., S. Sengupta, S. Sreedharan, T. Chakraborti and S. Kambhampati,
“Cap: A decision support system for crew schedulingusing automated planning”,
Naturalistic Decision Making (2019).

Mitrovic, A., “An intelligent SQL tutor on the web”, International Journal of Artificial
Intelligence in Education (2003).

Moore, R. C., “Making the transition to formal proof”, Educational Studies in math-
ematics 27, 3, 249–266 (1994).

Morrison, J. G., K. M. Feigh, H. S. Smallman, C. M. Burns and K. E. Moore, “The
quest for anticipatory decision support systems”, Human Factors and Ergonomics
Society Annual Meeting (2013).

171

https://goo.gl/BrPpmV
https://goo.gl/BrPpmV
http://arxiv.org/abs/1706.07269

Mousavinasab, E., N. Zarifsanaiey, S. R. Niakan Kalhori, M. Rakhshan, L. Keikha and
M. Ghazi Saeedi, “Intelligent tutoring systems: a systematic review of character-
istics, applications, and evaluation methods”, Interactive Learning Environments
29, 1, 142–163 (2021).

Mu, T., K. Goel and E. Brunskill, “Program2tutor: Combining automatic curriculum
generation with multi-armed bandits for intelligent tutoring systems”, in “Confer-
ence on Neural Information Processing Systems”, (2017).

Muldner, K., W. Burleson, B. Van de Sande and K. VanLehn, “An analysis of gam-
ing behaviors in an intelligent tutoring system”, in “International Conference on
Intelligent Tutoring Systems”, pp. 184–193 (Springer, 2010).

Murray, R. and K. VanLehn, “A comparison of decision-theoretic, fixed-policy and
random tutorial action selection”, in “Intelligent Tutoring Systems”, pp. 114–123
(2006).

Murray, R. C., K. VanLehn and J. Mostow, “Looking ahead to select tutorial actions:
A decision-theoretic approach”, International Journal of Artificial Intelligence in
Education 14, 3, 4, 235–278 (2004).

Narayanan, V., Y. Zhang, N. Mendoza and S. Kambhampati, “Automated planning
for peer-to-peer teaming and its evaluation in remote human-robot interaction”,
in “Proceedings of the Tenth Annual ACM/IEEE International Conference on
Human-Robot Interaction Extended Abstracts, Portland, US”, pp. 161–162 (2015).

Newell, A., H. A. Simon et al., Human problem solving, vol. 104.9 (Prentice-hall
Englewood Cliffs, NJ, 1972).

Nguyen, T., S. Sreedharan and S. Kambhampati, “Robust planning with incomplete
domain models”, Artificial Intelligence 245, 134 – 161 (2017).

Nguyen, T. A., S. Kambhampati and M. Do, “Synthesizing robust plans under incom-
plete domain models”, in “Advances in Neural Information Processing Systems”,
pp. 2472–2480 (2013).

Novak, J. D. and A. J. Cañas, “The theory underlying concept maps and how to
construct them”, Florida Institute for Human and Machine Cognition 1, 1, 1–31
(2006).

Ortony, A. and D. E. Rumelhart, “The representation of knowledge in memory”,
Schooling and the acquisition of knowledge pp. 99–135 (1977).

Pan, L., Y. Xie, Y. Feng, T.-S. Chua and M.-Y. Kan, “Semantic graphs for generating
deep questions”, arXiv preprint arXiv:2004.12704 (2020).

Pappano, L., “The year of the mooc”, The New York Times 2, 12 (2012).

Parasuraman, R., “Designing automation for human use: empirical studies and quan-
titative models”, Ergonomics (2000).

172

Parasuraman, R. and D. H. Manzey, “Complacency and bias in human use of au-
tomation: An attentional integration”, Human Factors: The Journal of the Human
Factors & Ergonomics Society (2010).

Parasuraman, R. and V. Riley, “Humans and automation: Use, misuse, disuse,
abuse”, Human Factors: The Journal of the Human Factors and Ergonomics Soci-
ety (1997).

Parasuraman, R., T. B. Sheridan and C. D. Wickens, “A model for types and levels
of human interaction with automation”, Trans. Sys. Man Cyber. Part A URL
http://dx.doi.org/10.1109/3468.844354 (2000).

Pavlik Jr, P. I., K. Brawner, A. Olney and A. Mitrovic, “A review of student mod-
els used in intelligent tutoring systems”, Design Recommendations for Intelligent
Tutoring Systems: Volume 1-Learner Modeling 1, 63–92 (2013).

Pavlik Jr, P. I., H. Cen and K. R. Koedinger, “Performance factors analysis–a new
alternative to knowledge tracing.”, Online Submission (2009).

Pek, P.-K. and K.-L. Poh, “A bayesian tutoring system for newtonian mechanics:
Can it adapt to different learners?”, Journal of Educational Computing Research
31, 3, 281–307 (2004).

Perkins, D. V. and M. J. Tagler, “Jigsaw classroom”, Promoting student engagement
1, 195–197 (2011).

Piech, C., J. Bassen, J. Huang, S. Ganguli, M. Sahami, L. J. Guibas and J. Sohl-
Dickstein, “Deep knowledge tracing”, in “Advances in neural information process-
ing systems”, pp. 505–513 (2015).

Rader, E., K. Cotter and J. Cho, “Explanations as mechanisms for supporting al-
gorithmic transparency”, in “Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems, Montreal, Quebec, CA”, p. 103 (ACM, 2018).

Rafferty, A. N., E. Brunskill, T. L. Griffiths and P. Shafto, “Faster teaching by pomdp
planning”, in “International Conference on Artificial Intelligence in Education”, pp.
280–287 (Springer, 2011).

Rafferty, A. N., E. Brunskill, T. L. Griffiths and P. Shafto, “Faster teaching via pomdp
planning”, Cognitive science 40, 6, 1290–1332 (2016).

Rahati, A. and F. Kabanza, “Automated planning of tutorial dialogues”, in “2010
International Conference on Autonomous and Intelligent Systems, AIS 2010”, pp.
1–6 (2010).

Ramı́rez, M. and H. Geffner, “Plan recognition as planning”, in “Proceedings of the
21st international joint conference on Artifical intelligence, Pasadena, California,
US”, pp. 1778–1783 (2009).

173

http://dx.doi.org/10.1109/3468.844354

Ramı́rez, M. and H. Geffner, “Probabilistic plan recognition using off-the-shelf clas-
sical planners”, in “AAAI Conference on Artifical Intelligence”, pp. 1121–1126
(Association for the Advancement of Artificial Intelligence, 2010).

Rasch, G., Probabilistic models for some intelligence and attainment tests. (ERIC,
1993).

Regoczei, S. B. and G. Hirst, “Knowledge and knowledge acquisition in the compu-
tational context”, in “The psychology of expertise”, pp. 12–25 (Springer, 1992).

Rivers, K. and K. R. Koedinger, “Automatic generation of programming feedback:
A data-driven approach”, in “The First Workshop on AI-supported Education for
Computer Science (AIEDCS 2013)”, vol. 50 (2013).

Rivers, K. and K. R. Koedinger, “Data-driven hint generation in vast solution spaces:
a self-improving python programming tutor”, International Journal of Artificial
Intelligence in Education 27, 1, 37–64 (2017).

Russell, S. and P. Norvig, Artificial intelligence: a modern approach (Prentice Hall,
2003).

Scardamalia, M. and C. Bereiter, “Knowledge building: Theory, pedagogy, and tech-
nology”, The Cambridge Handbook of the Learning Sciences pp. 97–118 (2006).

Scheckler, R. K., “Virtual labs: a substitute for traditional labs?”, International
journal of developmental biology 47, 2-3, 231–236 (2003).

Schulze, K. G., R. N. Shelby, D. J. Treacy, M. Wintersgill, K. VanLehn and A. Gert-
ner, “Andes: An active learning, intelligent tutoring system for newtonian physics”,
THEMES in Education 1, 2, 115–136 (2000).

Seely Brown, J. and R. Adler, “Open education, the long tail, and learning 2.0”,
Educause review 43, 1, 16–20 (2008).

Sengupta, S., T. Chakraborti and S. Kambhampati, “Ma-radar-a mixed-reality in-
terface for collaborative decision making”, in “Proceedings of User Interfaces and
Scheduling and Planning (uisp) workshop at 28th International Conference of on
automated planning and scheduling (icaps), Delft, Netherlands”, pp. 40–45 (2018).

Sengupta, S., T. Chakraborti, S. Sreedharan, S. G. Vadlamudi and S. Kambham-
pati, “RADAR - A Proactive Decision Support System for Human-in-the-Loop
Planning”, in “Proceedings of User Interfaces and Scheduling and Planning (uisp)
workshop at 27th International Conference of on automated planning and schedul-
ing (icaps), Pittsburgh, USA”, pp. 44–52 (2017).

Settles, B., “Active learning literature survey”, Tech. rep., University of Wisconsin-
Madison Department of Computer Sciences (2009).

Sheridan, T. B. and R. Parasuraman, “Human-automation interaction”, Reviews of
human factors and ergonomics (2005).

174

Sheridan, T. B. and W. L. Verplank, “Human and computer control of undersea
teleoperators”, Tech. rep., Massachusetts Inst of Tech Cambridge Man-Machine
Systems Lab (1978).

Shneiderman, B. and P. Maes, “Direct manipulation vs. interface agents”, interactions
4, 6, 42–61 (1997).

Shultz, T. R., “Rules of causal attribution”, Monographs of the society for research
in child development pp. 1–51 (1982).

Shute, V. J., “A macroadaptive approach to tutoring”, Journal of Interactive Learning
Research 4, 1, 61–93 (1993).

Smith, D. E., “Planning as an iterative process”, in “Proceedings of the Twenty-
Sixth AAAI Conference on Artificial Intelligence, Toronto, Ontario, Canada”, pp.
2180–2185 (AAAI Press, 2012).

Sreedharan, S., T. Chakraborti and S. Kambhampati, “Handling model uncertainty
and multiplicity in explanations via model reconciliation”, in “ICAPS”, (2018).

Sreedharan, S. and S. Kambhampati, “Handling model uncertainty and multiplicity
in explanations via model reconciliation”, in “Twenty-Eighth International Confer-
ence on Automated Planning and Scheduling”, (2018).

Stamper, J., M. Eagle, T. Barnes and M. Croy, “Experimental evaluation of automatic
hint generation for a logic tutor”, International Journal of Artificial Intelligence in
Education 22, 1-2, 3–17 (2013).

Steinberg, E. R., Computer-assisted instruction: A synthesis of theory, practice, and
technology (Routledge, 1991).

Stern, R. and B. Juba, “Efficient, safe, and probably approximately complete learning
of action models”, arXiv preprint arXiv:1705.08961 (2017).

Strimel, G. and S. Grover, “Compression of machine learned models”, US Patent
10,558,738 (2020).

Svetlik, M., M. Leonetti, J. Sinapov, R. Shah, N. Walker and P. Stone, “Automatic
curriculum graph generation for reinforcement learning agents”, in “Thirty-First
AAAI Conference on Artificial Intelligence”, (2017).

Talamadupula, K., J. Benton, S. Kambhampati, P. Schermerhorn and M. Scheutz,
“Planning for human-robot teaming in open worlds”, ACM Transactions on Intel-
ligent Systems and Technology (TIST) 1, 2, 1–24 (2010a).

Talamadupula, K., J. Benton, P. Schermerhorn, S. Kambhampati and M. Scheutz,
“Integrating a closed world planner with an open world robot: A case study”,
in “Proceedings of the AAAI Conference on Artificial Intelligence”, vol. 24, pp.
1561–1566 (2010b).

175

Tian, X., H. H. Zhuo and S. Kambhampati, “Discovering underlying plans based on
distributed representations of actions”, in “AAMAS”, (2016).

Vadlamudi, S. G., T. Chakraborti, Y. Zhang and S. Kambhampati, “Proactive de-
cision support using automated planning”, CoRR abs/1606.07841, URL http:
//arxiv.org/abs/1606.07841 (2016).

Van Beek, P., Principles and Practice of Constraint Programming-CP 2005 (Springer,
2005).

van De Sande, B., “Properties of the bayesian knowledge tracing model.”, Journal of
Educational Data Mining 5, 2, 1–10 (2013).

Van Someren, M., Y. F. Barnard and J. Sandberg, “The think aloud method: a
practical approach to modelling cognitive”, London: Academic Press 11 (1994).

Vanlehn, K., “The behavior of tutoring systems”, International Journal of Artificial
Intelligence in Education (2006).

VanLehn, K., “The relative effectiveness of human tutoring, intelligent tutoring sys-
tems, and other tutoring systems”, Educational Psychologist 46, 4, 197–221 (2011).

VanLehn, K., “Model construction as a learning activity: A design space and review”,
Interactive Learning Environments 21, 4, 371–413 (2013).

VanLehn, K., C. Banerjee, F. Milner and J. Wetzel, “Teaching algebraic model con-
struction: a tutoring system, lessons learned and an evaluation”, International
Journal of Artificial Intelligence in Education 30, 3, 459–480 (2020).

VanLehn, K., S. Cheema, S. Kang and J. Wetzel, “Auto-sending messages in an
intelligent orchestration system: a pilot study”, in “International Conference on
Artificial Intelligence in Education”, pp. 292–297 (Springer, 2019).

VanLehn, K., G. Chung, S. Grover, A. Madni and J. Wetzel, “Learning science by
constructing models: can dragoon increase learning without increasing the time
required?”, International Journal of Artificial Intelligence in Education 26, 4, 1033–
1068 (2016).

VanLehn, K., P. W. Jordan, C. P. Rosé, D. Bhembe, M. Böttner, A. Gaydos,
M. Makatchev, U. Pappuswamy, M. Ringenberg, A. Roque et al., “The architec-
ture of why2-atlas: A coach for qualitative physics essay writing”, in “International
conference on intelligent tutoring systems”, pp. 158–167 (Springer, 2002).

VanLehn, K., C. Lynch, K. Schulze, J. A. Shapiro, R. Shelby, L. Taylor, D. Treacy,
A. Weinstein and M. Wintersgill, “The andes physics tutoring system: Lessons
learned”, International Journal of Artificial Intelligence in Education 15, 3, 147–
204 (2005).

VanLehn, K., B. Van De Sande, R. Shelby and S. Gershman, “The andes physics
tutoring system: An experiment in freedom”, in “Advances in intelligent tutoring
systems”, pp. 421–443 (Springer, 2010).

176

http://arxiv.org/abs/1606.07841
http://arxiv.org/abs/1606.07841

VanLehn, K., J. Wetzel, S. Grover and B. van de Sande, “Learning how to construct
models of dynamic systems: An initial evaluation of the dragoon intelligent tutoring
system”, IEEE Transactions on Learning Technologies (2017).

Verma, P., S. R. Marpally and S. Srivastava, “Asking the right questions: Inter-
pretable action model learning using query-answering”, (2020).

Vinner, S. and R. Hershkowitz, “Concept images and common cognitive paths in the
development of some simple geometrical concepts”, in “Proceedings of the fourth
international conference for the psychology of mathematics education”, vol. 1, pp.
177–184 (1980).

Walker, E. and W. Burleson, “User-centered design of a teachable robot”, in “In-
ternational Conference on Intelligent Tutoring Systems”, pp. 243–249 (Springer,
2012).

Warm, J. S., R. Parasuraman and G. Matthews, “Vigilance requires hard mental
work and is stressful”, Human Factors: The Journal of the Human Factors and
Ergonomics Society (2008).

Webb, N. M., “Information processing approaches to collaborative learning”, Rout-
ledge Handbooks Online (2013).

Wetzel, J., K. VanLehn, D. Butler, P. Chaudhari, A. Desai, J. Feng, S. Grover,
R. Joiner, M. Kong-Sivert, V. Patade et al., “The design and development of the
dragoon intelligent tutoring system for model construction: Lessons learned”, In-
teractive Learning Environments 25, 3, 361–381 (2017).

Wickens, C. D., H. Li, A. Santamaria, A. Sebok and N. B. Sarter, “Stages and levels of
automation: An integrated meta-analysis”, in “Proceedings of the Human Factors
and Ergonomics Society Annual Meeting, San fransisco, California, US”, vol. 54.4,
pp. 389–393 (Sage Publications Sage CA: Los Angeles, CA, 2010).

Williams, R. J. and D. Zipser, “A learning algorithm for continually running fully
recurrent neural networks”, Neural computation 1, 2, 270–280 (1989).

Wilson, M., P. De Boeck and C. H. Carstensen, “Explanatory item response models:
A brief introduction”, Assessment of competencies in educational contexts pp. 91–
120 (2008).

Xiong, X., S. Zhao, E. G. Van Inwegen and J. E. Beck, “Going deeper with deep
knowledge tracing.”, International Educational Data Mining Society (2016).

Xu, Y. and J. Mostow, “Using logistic regression to trace multiple sub-skills in a
dynamic bayes net.”, in “EDM”, pp. 241–246 (Citeseer, 2011).

Xu, Y. and J. Mostow, “Comparison of methods to trace multiple subskills: Is lr-dbn
best?.”, International Educational Data Mining Society (2012).

Yang, Q., K. Wu and Y. Jiang, “Learning action models from plan examples using
weighted max-sat”, Artificial Intelligence 171, 2-3, 107–143 (2007).

177

Zhang, L., Biology question generation from a semantic network (Arizona State Uni-
versity, 2015).

Zhang, L. and K. VanLehn, “How do machine-generated questions compare to human-
generated questions?”, Research and practice in technology enhanced learning 11,
1, 1–28 (2016).

Zhang, L. and K. VanLehn, “Adaptively selecting biology questions generated from
a semantic network”, Interactive Learning Environments 25, 7, 828–846 (2017).

Zhang, Y., V. Narayanan, T. Chakraborti and S. Kambhampati, “A human fac-
tors analysis of proactive support in human-robot teaming”, in “2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Hamburg,
Germany”, pp. 3586–3593 (IEEE, 2015a).

Zhang, Y., V. Narayanan, T. Chakraborty and S. Kambhampati, “A human factors
analysis of proactive assistance in human-robot teaming”, in “IROS”, (2015b).

Zhang, Y., S. Sreedharan, A. Kulkarni, T. Chakraborti, H. H. Zhuo and S. Kamb-
hampati, “Plan explicability and predictability for robot task planning”, in “2017
IEEE international conference on robotics and automation (ICRA), Marina Bay
Sands, Singapore”, pp. 1313–1320 (IEEE, 2017).

Zhu, L. and R. Givan, “Landmark extraction via planning graph propagation”,
ICAPS Doctoral Consortium pp. 156–160 (2003).

Zhuo, H. H., Y. Zha, S. Kambhampati and X. Tian, “Discovering underlying plans
based on shallow models”, ACM Transactions on Intelligent Systems and Technol-
ogy (TIST) 11, 2, 1–30 (2020).

178

APPENDIX A

IPASS USER STUDY DOCUMENTS

179

This appendix shows all the documents that we provided to the students while
conducting the iPass user study. These documents were available to the students
throughout the user study. There were four different documents we shared –

• Consent form and receipt of payment.

• Small copy of M.S. CS handbook.

• Instruction manual describing the interface behavior.

Consent form and Payment form content below.

Study on Interactive Generation of CIDSE Plan of Study

I am Sachin Grover, a PhD student in the School of Computing, Informatics
and Decision Systems Engineering at Arizona State University. I am
conducting a research study to find out effective ways in which an
interactive planning software can provide support for human decision-
makers. The entire study will be conducted on a prototype interface
which allows the user to interactively build a plan of study or iPOS.

Subjects will be compensated $10 for their participation. The entire study
is likely to take under 30 mins to complete. The planning task itself
is restricted to 15 mins.

We will need to record all the responses provided by the participants
during the task, and each participant would additionally need to
complete a questionnaire at the end to be eligible for your payment.
You have the right not to answer any question and to stop participation
at any time without penalty. Your participation in this study is
completely voluntary.

Participating in this study will help us improve the quality of decision-
making of human decision-makers supported by AI-based systems. The
participant will also get to interact with and learn about the state-of
-the-art human-in-the-loop planning techniques. There are no
foreseeable risks or discomforts associated with your participation.

To protect your privacy, responses from participants will never be used
individually while compiling or presenting results for the study. The
results of this study may be used in reports, presentations, or
publications only in aggregate form. There will be no audio / video
recording.

If you have any questions concerning the study, please contact me at
sgrover6@asu.edu.

By signing below you are agreeing to be part of the study -

Name:

180

Signature:

Date:

After completion of study -

I certify that I have been compensated to the amount of $10 in recognition
of my participation in the study.

Name:

Signature:

Date:

MS C.S. Handbook , was designed to look like an original CS handbook for
Masters degree. Please find the content of the document below.

I. Objective of the handbook

The purpose of this handbook is to provide guidance and information related
to degree requirements, and general policies and procedures towards
making the interactive Plan of Study or iPOS for a Master of Science in
Computer Science with a thesis option.

Please read this document carefully. Note that in some cases you will find
differences between the actual Graduate College policies and procedures
in practice right now.

II. Deficiencies

Depending on prior academic preparation and accomplishments of an applicant
, deficiency courses may be specified to ensure adequate background
preparation.

Below is a list of prerequisites, along with the associated ASU course
numbers:

· CSE 230 - Computer Organization and Assembly Language Programming
· CSE 310 - Data Structures and Algorithms
· CSE 330 - Operating Systems
· CSE 340 - Principles of Programming Languages
· CSE 355 - Introduction to Theoretical Computer Science
· CSE 360 - Introduction to Software Engineering

III. MS Degree Requirements

Degree requirements for the MS include 10 graduate level courses beyond
deficiency courses. The MS is comprised of five major milestones, which
all students are required to complete successfully prior to graduation
:

181

a) Completion of all deficiency courses.
b) Completion of all coursework (including one for each area courses, i

.e. foundaiton, applications and systems)
c) Selection of 1 committee chair and 2 committee members to oversee

Thesis progress.
d) Specialization in one of three topics, i.e. AI, Big Data or

Cybersecurity.
e) Successful oral defense of an approved written thesis.

a. Coursework

The iPOS must contain 10 graduate level courses amounting to a total of 30
semester hours. Of these, at least one course has to come from all of
the three concentrations - Foundations, Systems and Applications (
consult Appendix).

Culminating Experience: CSE 599a and 599b Thesis
Note: Thesis credits (which are included in the count of 10 graduate

courses) can only be taken after appointment of a committee chair. CSE
599b has to be taken in the end.

In addition, you must complete a specialization in one of the following
topics.

Specialization in Cyber Security
Requires 9 credit hours from
· CSE 543: Information Assurance and Security (3)
· CSE 545: Software Security (3)
· CSE 548: Advanced Computer Network Security (3)

Specialization in Big Data
Requires 9 credit hours from
· CSE 510 Database Management System Implementation (3)
· CSE 512 Distributed Database Systems (3)
· CSE 572 Data Mining (3)

Specialization in Artificial Intelligence
Requires 9 credit hours from
· CSE 575: Statistical Machine Learning (3)
· CSE 574: Planning and Learning Methods in AI (3)
· CSE 571: Artificial Intelligence (3)

b. Selection of Faculty Advisor - Thesis Option

You must select a faculty advisor from the list of professors. The faculty
advisor must be from the same area of specialization. You cannot
complete your Specialization and Thesis Credits until you have selected
your advisor.

c. Thesis Supervisory Committee

182

In addition to the chair, you must appoint two more members of the Thesis
Advisory committee which advises the student during the formulation of
the research topic and during the completion of the research and thesis
. The non-chair members need not be in your specialization area.

d. Thesis

The iPOS must end in defense instead of a normal semester end.

e. Continuous Enrollment

Students must enroll in at least one course every semester.

International students must register for at least three courses. Only
Research Assistants (RA) or Teaching Assistants (TA) can register for
four courses in a semester.

It is not possible to register for more than four courses in a single
semester.

Every semester has a $1000 registration fee.
Each course enrollment requires a further $3000 fee.

This was followed by a table of courses and their specialization and the list of
professors with their specialization.

List of Approved 500 (Graduate Level) Area Courses

Course Course Title Foundations Systems Applications
CSE 509 Digital Video Processing X

CSE 510 Database Management
System Implementation

X

CSE 511 Semi-Structured Data
Management

X

CSE 512 Distributed Database
Systems

X

CSE 515 Multimedia and Web
Databases

X

CSE 520 Computer Architecture X

CSE 522 Real-Time Embedded
Systems

X

CSE 530 Embedded Operating
Systems Internals

X

183

CSE 531 Distributed and Multi-
processor Operating Sys-
tems

X

CSE 534 Advanced Computer Net-
works

X

CSE 535 Mobile Computing X

CSE 536 Advanced Operating Sys-
tems

X

CSE 539 Applied Cryptography X

CSE 543 Information Assurance
and Security

X

CSE 545 Software Security X

CSE 546 Cloud Computing X

CSE 548 Advanced Computer Net-
work Security

X

CSE 550 Combinatorial Algo-
rithms and Intractability

X

CSE 551 Foundations of Algo-
rithms

X

CSE 552 Randomized and Approx-
imation Algorithms

X

CSE 555 Theory of Computation X

CSE 556 Game Theory with Appli-
cations to Networks

X

CSE 561 Modeling and Simulation
Theory and Applications

X

CSE 563 Software Requirements
and Specification

X

CSE 564 Software Design X

CSE 565 Software Verification,
Validation and Testing

X

CSE 566 Software Project, Process
and Quality Management

X

CSE 569 Fundamentals of Statisti-
cal Learning and Pattern
Recognition

X

184

CSE 570 Advanced Computer
Graphics

X

CSE 571 Artificial Intelligence X

CSE 572 Data Mining X

CSE 573 Semantic Web Mining X

CSE 574 Planning and Learning
Methods in AI

X

CSE 575 Statistical Machine
Learning

X

CSE 576 Topics in Natural Lan-
guage Processing

X

CSE 577 Advanced Geometric
Modeling

X

CSE 578 Data Visualization X

CSE 579 Knowledge Representa-
tion and Reasoning

X

Table A.1: List of courses that were available for the students. Students could take
all the courses except special courses such as CSE 591 and CSE 598 courses for their
Masters degree.

We also presented another table to the students which described the specialization
of different professor in the department.

Instruction Manual. Finally, we showed the student a printed instruction manual
describing the ability of the interface. Picture A.1 shows the classification of the
interface into three panels. After this we described every panel one by one. The
actions described different abilities of the interface such as adding courses, choosing
specialization etc. We also described the application of each button, such as to
validating the plan, and plan suggestions.

185

Professor Foundation AI Big Data Cybersecurity

Charlie Coulborn X

Arunabha Sen X

Guoliang Xue X

Andrea Richa X

Adam Doupe X

Dijiang Huang X

Mohammad Sarwat X

Selchuk Candan X

Subbarao Kambhampati X

Huan Liu X

Yu Zhang X

Heni Ben Amor X

Table A.2: List of professors and their specialization. The specialization should
match the specialization a student is working towards in their thesis.

Figure A.1: Initial image of the instruction manual describing the three panel struc-
ture. Every condition had different image for the interface, and description of behav-
ior.

186

APPENDIX B

MAY I ASK A QUESTION USER STUDY DOCUMENTS

187

This appendix shows all the documents that we provided to the students while
conducting the May I Ask a Questionuser study. These documents were available
to the students throughout the user study. There were four different documents we
shared –

• Consent form.

• Study and warehouse storage description.

• Robot capabilities description.

• Rephrased pre-test rules and distractor rules given to students.

• Video describing the interface of the user study.

Consent form describes the initial study, it’s possible consequences, data we record
and precautions we will take with the private information.

I am Sachin Grover, a Ph.D. student in the School of Computing, Informatics
and Decision Systems Engineering at Arizona State University. I am
conducting a research study to find out effective ways to ask questions
for teaming between human and a robot. The study will be conducted
online using this interface.

You will be compensated $15 for your participation. The study will take
around 45 minutes to an hour to complete. The study consists of five
different screens after this consent form. First, you will be explained
a human-robot teaming scenario, followed by the capabilities and
security rules to be followed by the robot. After this we will test
your understanding of rules through two different sets of question
answers. This will be followed by a feedback form.

We will need to record your responses to the questions as well the feedback
form presented after the study. All the results will be presented in
aggregated form and no personal details (or any identifying information
) about you will be used anywhere. You have the right not to answer any
question and to stop participation at any time without penalty. Your
participation in this study is completely voluntary.

Through this study we want to see if a human-robot team can interact and
work together. It will help us improve the way robot-human teams can
work together by communicating with each other. The detailed scenario
for the team will be explained on the next page. There are no
foreseeable risks or discomforts associated with your participation.

To protect your privacy, your responses will never be used individually
while compiling or presenting the results for the study. The final
results may be used for reports, presentations and publications only in
aggregate form. We only record your name for the consent form and your
responses the questions and the feedback form. No audio or video is
recorded (neither on Zoom or anywhere else).

188

If you have any questions concerning the study, please contact me at
sgrover6@asu.edu. By writing your name and clicking the button you
accept the conditions for the study. The compensation for your work
will be done after completing the study.

Study description describes the three main actors in the user study – Sam,
Squeaky and the Planner. Although, in the chapter we don’t talk about the planner,
however, we introduce it to create a story around the requirement of asking questions
from Sam.

There is a Robot Squeaky that works in a warehouse storing vaccines. The
vaccines are stored in sub-zero (freezing) temperatures, which are
unsuitable for human workers. A robot expert Sam, monitors the area. He
is responsible for managing the vaccine orders and ensuring security
protocols for the warehouse. For the orders, Sam provides Squeaky
commands that Squeaky follows. Since Sam is the expert, he understands
how the robot functions and the steps to maintain security in the
warehouse.

Warehouse environment and security protocols affect the behavior of Squeaky
. For example, Squeaky can move freely around the warehouse. However,
for security reasons, it should keep it’s arm close to it’s body while
moving (called tucking the arm). Sam has to change the commands sent to
the robot based on many such small rules.

The company is trying to increase productivity and decrease Sam’s workload.
Thus, Squeaky has been equipped with a planner that can issue
sequential commands instead of Sam. The planner doesn’t know the
security rules that Sam knows, but it can learn them by asking
questions from Sam.

As a participant in this study, you play Sam. You will first learn about
the capabilities of Squeaky and become an expert, and then you will
learn the set of security rules. As you will be the expert in handling
Squeaky, you will need to know these rules well because you will need
to answer the questions asked by the planner as it acquires your
expertise. On the next page, we will describe the capabilities of
Squeaky, the warehouse environment and the security rules. There will
be a small test that you have to ace to prove your expertise before you
start answering planner’s questions. In the end, we will provide a
feedback form, where you will describe your understanding of the study.

Robot capabilities and warehouse description, introduces the robot, describes
the warehouse environment and the security rules that Sam follows. All the rules
have been described in Chapter 6. As described earlier, students are shown only 4
out of 6 rules. We use a combination of text and images to provide the information
to the student. The videos can be checked at the Youtube link provided with each
video. Figure B shows the Figure used to show robot Squeaky.

189

Figure B.1: Image of the robot Fetch used to introduce Squeaky to the student.

<Figure> Hi I am Squeaky. I am capable of moving in the warehouse, picking
up and moving stuff around the warehouse. Please check the videos below
to see my capabilities.

<Video>(https://youtu.be/6IuEaiy75vA) I can tuck and extend my arm to reach
far away stuff. The video shows the action of tucking the arm.
Similarly, I can also extend it as you will check below.

<Video>(https://youtube.com/shorts/1oOLQ0BeFWU) I also have an expandable
torso which increases my height. It helps me reaching different objects
and gives me space to move my arm. Video shows me expanding and
contracting my torso.

<Video>(https://www.youtube.com/watch?v=OCGFhJaNtpo) I have capability to
pick up stuff. In the video you can see that I can pickup as well as
putdown the box.

190

<Video>(https://youtu.be/k15lKskCMWU) I can move using the wheels in my
base. In the video I have been asked to move to a table.

I live at a Warehouse, which consists of serveral objects. To understand
the safety rules, I will describe the objects in the warehouse and then
describe the rules --

· Warehouse consists of -- racks and boxes.
· Racks where medicines are kept.
· For simplicity, assume that each rack has only one level.
· Boxes of medicine are of two types -- (1) large -- containing 10 bottles,

(2) small -- containing 2 bottles
· I am responsible for making stacks of boxes of medicines and move the

boxes around for storage purposes.

Security rules that I have to follow --

· While moving my torso should be in the contracted position, otherwise, I
can topple on the small wheels while turning.

· While moving my arm should be tucked in, as extended arm is heavy and I
can topple.

· While picking up I can pick up both kind of boxes. Although, I can only
pick one box at a time.

· A large box can be stacked only on a large box, whereas a small box can
be stacked on both large and small boxes.

· I can pick up a large box only when my torso is in expanded state, as I
can hold the box vertically.

· I can tuck my arm while holding a small box and not while holding a large
box. Thus, I can move while holding small box.

Pre-test consists of helping students memorize the security rules. The rules are
rephrased and distractor rules are added based on the basic rules that the student
can have. Below you can check the rephrased rules and the distractor rules for the
core rules. For every test, based on the rules shown to the user, four rephrased rules,
and four corresponding distractor rules are selected. The list is shown to the user in
random order. A student gives the pre-test three times.

Rephrased security rules --
· Squeaky’s torso should be in contracted position while moving.
· While moving squeaky should not extend it’s arm.
· Squeaky can only pick up one box at a time.
· A large box can be stacked only on large boxes.
· Squeaky can pick up large boxes only when it’s torso is expanded.
· Squeaky can not tuck it’s arm while holding the large box.

Distractor rules for rule 1 & 2 --
· Squeaky can move with it’s torso expanded.
· Squeaky can move without tucking it’s arm.
· Squeaky can freely move in the warehouse.

191

Distractor rules for rule 3 & 4 --
· Squeaky can pick up many boxes at a time.
· Squeaky can pick up many large boxes at a time.
· A large box can be stacked at any place.
· A small box can not be stacked on top of a large box.
· A large box can be stacked on a small box.

Distractor rules for rule 5 & 6 --
· Squeaky can easily pick up large boxes.
· Squeaky can move while holding any kind of box.
· Squeaky can tuck it’s arm while holding a large box.
· Squeaky can move while holding a large box

Feedback for distractor rules for rule 1 & 2 --
· Squeaky has small wheels and it should move with torso compressed.
· Squeaky has a heavy arm and it’s arm should be tucked in while moving.
· Squeaky has small wheels and heavy arm, thus it needs to follow safety

rules while moving in the environment.

Feedback for distractor rules for rule 3 & 4 --
· Squeaky can pick only one box at a time.
· Squeaky can pick only one large box at a time.
· A large box can only be stacked on a large box.
· A small box can be stacked on top of both large and a small box.
· A large can not be stacked on a small box.

Feedback for distractor rules for rule 5 & 6 --
· Due to extra weight Squeaky can pick up a large box after expanding it’s

torso.
· Squeaky can move while holding a small box, with it’s arm tucked in.
· Squeaky can tuck it’s arm while holding only a small box.
· Squeaky can move while holding only a small box.

User Interface details. Students are shown a video describing different parts of
the interface and how robot can work in a warehouse. The videos are chosen based
the query type and the rules that were shown to the students. Thus, we made four
different videos for two conditions and 2 different set of rules that are shown to each
user. The videos are –

· Validation query with rules 1, 2, 3 and 4 -- https://www.youtube.com/
watch?v=NscMijSBlIk

· Validation query with rules 1, 2, 5 and 6 -- https://www.youtube.com/
watch?v=CXn9CwhVSH8

· Construction query with rules 1, 2, 3 and 4 -- https://www.youtube.com/
watch?v=2Mh92XQidsI

· Construction query with rules 1, 2, 5 and 6 -- https://www.youtube.com/
watch?v=EhgYznhRT-c

192

Feedback Questions. After the study students are asked a set of objective and
subjective questions. They are as follows –

· Describe the rules that Squeaky has to follow in your own words.
· Describe in detail atleast 3 things you liked about the interaction

initiated by the planner.
· Describe in detail atleast 3 things you did NOT like about the

interaction initiated by the planner.
· Describe in detail what other features you would like to improve for the

interaction with human teammates.
· On a scale of 1 -- 5 rate -- The questions above were pretty easy to

solve for you.
· On a scale of 1 -- 5 rate -- The questions above were difficult to

understand.
· On a scale of 1 -- 5 rate -- Intent of asking the questions is not clear

for the planner.

First question in the feedback acts as a post-test question. We also ask about
some personal information, i.e. whether they have ever worked with a robot or not,
and what is their Major and department of study.

193

APPENDIX C

GLOSSARY OF TERMS

194

MH – Mental model of the human. Represents capabilities of the human teammate

as understood by themselves.

MR – Mental model of the robot. Represents tasks and actions that robot can execute

in the environment.

MR
h – Human’s understanding of the robot’s model.

MH
r – Robot’s understanding of the human’s mental model.

M – Set of mental models. Represent uncertainty about state of the predicates in

the true human mental model, using robust planning models.

M+p – Mental model where possible predicate p is assumed to be present in action a.

M−p – Mental model where possible predicate p is assumed to be absent in action a.

Mcon – Constrained mental model, where all the possible pre-conditions and delete

effects are assumed to be true.

Mrel – Relaxed mental model where all possible add effects are assumed to be true in

the model.

F – Set of predicates that are part of a model.

A – Set of actions in a model.

I – Initial state of a planning problem.

G – Goal state of a planning problem.

πM – Plan for solving a planning problem using a model M. Can be simplified to π

based on context.

195

APPENDIX D

IRB INFORMATION FOR USER STUDIES

196

Type of Review: Initial Study

Title: Human Factor Study on Planning for Human-Robot Teaming

Investigator: Subbarao Kambhampati

IRB ID: STUDY00003244

Category of review: (7)(b) Social science methods, (7)(a) Behavioral research

Funding: Name: DOD: Navy, Funding Source ID: N00014-15-1-2344;

Name: DOD: Navy, Funding Source ID: N00014-15-1-2027;

Name: DOD: Navy, Funding Source ID: N00014-13-1-0519;

Name: DOD-ARMYARL: Army Research Office (ARO),

Funding Source ID: W911NF-13-1-0023; Name: DOD: Navy,

Funding Source ID: N00014-13-1-0176

Grant ID:

Grant Title:

197

Documents Reviewed: PeopleBot-PPLB-RevA.pdf, Category: Other (to reflect any-

thing not captured above); Protocol-HRP-503a.docx, Cate-

gory: IRB Protocol; Questionnaire.pdf, Category: Measures

(Survey questions/Interview questions /interview guides/-

focus group questions); kambhampati-science-of-autonomy-

proposal-ONR.pdf, Category: Grant application; con-

sent.pdf, Category: Consent Form; kambhampati-radar-

proposal-ONR.pdf, Category: Grant application; tatha-

gata citiCompletionReport3675823.pdf, Category: Non-

ASU human subjects training (if taken within last

3 years to grandfather in); nao datasheet.pdf, Cate-

gory: Other (to reflect anything not captured above);

full proposal-Baoxin-ONR.pdf, Category: Grant applica-

tion; Instruction-Sheet.pdf, Category: Participant ma-

terials (specific directions for them); onr-robust-final-

ONR.pdf, Category: Grant application; recruit.pdf, Cate-

gory: Recruitment Materials; hri-prop-final-ARO.pdf, Cat-

egory: Grant application; Fetch spec download.pdf, Cat-

egory: Other (to reflect anything not captured above);

sarath citiCompletionReport5292377.pdf, Category: Non-

ASU human subjects training (if taken within last 3 years

to grandfather in);

Table D.1: IRB Details for the user studies

198

The IRB approved the protocol from 1/29/2016 to 1/28/2017 inclusive. Three

weeks before 1/28/2017 you are to submit a completed Continuing Review applica-

tion and required attachments to request continuing approval or closure. The contin-

ual reviews were submitted annually till September 2021 and the user studies were

conducted under this IRB.

If continuing review approval is not granted before the expiration date of 1/28/2017

approval of this protocol expires on that date. When consent is appropriate, you must

use final, watermarked versions available under the “Documents” tab in ERA-IRB.

199

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Human-Aware Planning
	Intelligent Tutoring System
	HAAI and ITS for the Future – Contributions

	AI TECHNIQUES FOR ITS – A LITERATURE SURVEY
	Fundamental Theory
	ITS – Construction and Types
	Modules of an ITS
	Knowledge Representation
	Behavior of an ITS
	Examples of ITS

	Student Modelling
	Item Response Theory
	Bayesian Knowledge Tracing
	Deep Knowledge Tracing

	Use of AI Techniques in ITS
	Task Level Adaptivity
	Step Level Adaptivity

	Recent Developments

	WHAT CAN AUTOMATED PLANNING AND HAAI DO FOR ITS?
	Introduction
	Learning 2.0
	A Brief History of ITS and AI
	What can Planning Bring to the Table?

	Background
	ITS as Planning
	Class Configuration
	Tips and Hints
	On-demand Curriculum Generation
	The Jigsaw Problem

	Introducing Dragoon
	The Isle Royale Workbook

	ITS as Planning in Action
	Tips and Hints (c.f. Section 3.3.2)
	On-demand Curriculum Generation (c.f. Section 3.3.3)
	Jigsaw Problem (c.f. Section 3.3.4)
	Conclusion

	IPASS – ACTIVE DECISION SUPPORT FOR STUDENTS
	Introduction
	Design Principles
	The iPOS Domain and Interface
	iPass– Decision Support Components

	Aim of the Study
	Experimental Results
	Hypothesis H1
	Hypothesis H2
	Hypothesis H3
	Qualitative Results

	Discussion and Future Work
	Conclusion

	MODEL ELICITATION THROUGH DIRECT QUESTIONING
	Background
	Problem Formulation
	Distinguishing Query
	Properties
	Proposition Isolation Principle (PIP)

	Decreasing Questions
	Different Types of Queries
	Proposed Solution
	Empirical Evaluation
	Related Work
	Conclusion and Future Work

	MAY I ASK A QUESTION – USER STUDY
	Warehouse Domain – Squeaky & Sam Team-up
	Query Generation Process – Review
	May I Ask a Question – User Interface
	User Study – Sam Comes to Help
	Conditions
	Aim of the Study
	Procedure

	Experimental Results
	Discussion
	Conclusion

	CONCLUSION
	Future Work
	REFERENCES
	IPASS USER STUDY DOCUMENTS
	MAY I ASK A QUESTION USER STUDY DOCUMENTS
	GLOSSARY OF TERMS
	IRB INFORMATION FOR USER STUDIES

