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ABSTRACT

The future will be replete with Artificial Intelligence (AI) based agents closely col-
laborating with humans. Although it is challenging to construct such systems for
real-world conditions, the Intelligent Tutoring System (ITS) community has proposed
several techniques to work closely with students. However, there is a need to extend
these systems outside the controlled environment of the classroom. More recently,
Human-Aware Planning (HAP) community has developed generalized Al techniques
for collaborating with humans and providing personalized support or guidance to the
collaborators. In this thesis, the take learning from the ITS community is extend
to construct such human-aware systems for real-world domains and evaluate them
with real stakeholders. First, the applicability of HAP to ITS is demonstrated, by
modeling the behavior in a classroom and a state-of-the-art tutoring system called
Dragoon. Then these techniques are extended to provide decision support to a human
teammate and evaluate the effectiveness of the framework through ablation studies
to support students in constructing their plan of study (iPOS). The results show that
these techniques are helpful and can support users in their tasks. In the third section
of the thesis, an ITS scenario of asking questions (or problems) in active environ-
ments is modeled by constructing questions to elicit a human teammate’s model of
understanding. The framework is evaluated through a user study, where the results

show that the queries can be used for eliciting the human teammate’s mental model.
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Chapter 1

INTRODUCTION

Artificial Intelligence (Al) is being applied to many of our day-to-day activities
such as driving to various places (through automated cars like Waymo), providing
personalized assistance (through interactive voice assistants like Alexa or Google
Now), and much more Many of these systems have been integrated in industries like
manufacturing (automated production lines), finance (checking anomalies in trans-
actions), healthcare (machine learning based diagnosis), education (helping students
learn through feedback), and so on. Al techniques have made this possible, as they
can learn complex patterns from data for intelligent short-term decision making. For
example, a smart car learning to react after detecting other cars based on it’s sensory
inputs. However, these systems are neither human-aware as they do not account for
human biases or preferences in their decision making process, nor, they are part of
active teams as they are not working with active humans or supporting or guiding
them in their complex activties. These properties can be particularly helpful in com-
plex working environments such as hospitals, or a classroom, where a robot can be
an active teammate with the nurse or a teacher and support them in patient care or
guiding students to solve their problems (like a personalized teacher). Through this
thesis, we understand the current state of such systems that were designed to work
in the active environments especially with students and use them as motivation for
designing generalized human-aware Al based systems to work with several different
experts in a domain-independent fashion.

Intelligent Tutoring System (Anderson et al., 1985) were the original automat-

ed/intelligent systems, earlier called Computer Assisted Instruction (Steinberg, 1991).



They have over fifty-year long history of research and development to design some of
the first intelligent systems to closely work with humans. The research community has
explored to provide support to students and bring in expert tutors wherever necessary,
thus reducing the burden on the instructor as well as improving student’s learning
experience. There are many existing tutoring systems to teach various subjects, such
as, physics (Schulze et al., 2000), dynamic systems based on first-order differential
equations (VanLehn et al., 2017), SQL (Mitrovic, 2003), etc. There have been some
subject independent tutoring systems that are modeled towards a specific method
of teaching, such as Q&A interaction-based system (Graesser et al., 2005). These
systems have been successful at tracking a students learning (Corbett and Anderson,
1993; Piech et al., 2015), ask them questions (Barla et al., 2010; Zhang and VanLehn,
2016) to improve interaction with humans. These methods have continuously evolved
over the years to domain specific tutoring cases. ITS framework has also been able
to support more recent development in web-based teaching through MOOCs, where
students learn at their own pace. Although these systems have been at the forefront
of technology and have been thoroughly tested through human-studies, there is a
need for a domain independent framework that can drive different kinds of student
oriented learning experience. Moreover, there is also a need to extend the learning
from ITS to other domains, while constructing human-aware intelligent systems for
other domains.

More recently, Human-Aware Planning (HAP) or Human-in-the-loop Planning
(HILP) or Human-Aware AI (HAAI) techniques (Kambhampati and Talamadupula,
2015) have shown promise, as they reason about the model of the human using auto-
mated planning techniques. Automated Planning techniques are domain independent
techniques that has developed generalized methods to inference using a structured

model (Ghallab et al., 2004). Human-aware Al techniques have extended these tech-



niques to incoroporate human’s mental model for reasoning about automated system’s
decisions (Kambhampati and Talamadupula, 2015), synthesize behavior explicable to
the human-in-the-loop (Kulkarni et al., 2016), and explain their decision using the
human’s understanding of the task (Chakraborti et al., 2019b), etc. These techniques
have also been applied to many domains, such as urban search and rescue (Tala-
madupula et al., 2010a), decision support settings (Vadlamudi et al., 2016), or even
in commercial settings of warehouses (Liang et al., 2015), restaurants (Berezina et al.,
2019). They can also assume many roles, such as the role of a personalized assistant
to a human supervisor (Grochow, 2020) or as a teacher managing the dialogue be-
tween student and the tutoring system (Rahati and Kabanza, 2010). Although these
systems can be applied to diverse settings, evaluating them with human stakeholders
has become a central challenge.

To summarize, where HAP techniques can be generalized they have been tested
on very few real-world scenarios. Moreover, the learning from tutoring systems also
needs to be generalized to other complex domains for working with active human-
teammates. Thus, to motivate our work, we look at ways to bring learning from ITS
to HAAI and use it for active teaming scenarios where robot can provide support or
actively learn the teammate’s model for seamless collaboration. In this work, first we
present a survey of how tutoring systems have been developed to work with students.
Then we discuss how the generalized human-aware planning framework can be used
to develop the theoretical background to support students and teachers working with
an I'TS in a domain-independent fashion by modeling state-of-the-art tutoring system,
such as Dragoon (VanLehn et al., 2016). We also show how personalized behavior
can be developed to support more recent technologies. For the second part of our
work, we model an important scenario of asking questions for tutoring system to an

active teaming scenarios, i.e. to ask questions for human-robot teaming. Before we



Figure 1.1: Depicts the human-aware Al setting. M is the human’s model, M%
represents the robot’s (or planner, software agent’s) model and M1 represent human’s
understanding of the robot’s model M*. Human-Aware Al proposes that automated
agent should use M while collaborating with the human. This framework can be
extended to include robot’s understanding of the human’s model M for collaborating
with an active human-teammate.

get into the details of our work, we will describe the specific aspects of Human-Aware
Planning techniques and research in Intelligent Tutoring System community that will
be useful to understand our work.

1.1 Human-Aware Planning

Human-Aware Planning (HAP) framework proposes improved collaboration be-
tween human and robot by using human’s mental model in robotic agent’s decision
making process (Kambhampati and Talamadupula, 2015). If we assume M% and M
are the Al agent’s and human’s model respectively; then agent’s (henceforth agent
used for an Al agent only) understanding of the human’s model M* can be repre-
sented as M. Tt is assumed to be a close approximation of the teammate’s (hence-
forth teammate is always the human member of the team) model M. Human-aware
planning proposes that robot should use M instead of it’s own model to act in the

environment with humans (Kambhampati and Talamadupula, 2015). For example,



if we apply the framework to a robot providing explanations, then the agent should
use M instead of M® to provide explanations (Chakraborti et al., 2017b). This
framework has been applied to showcase different kind of behaviors with humans,
such as being explicable (Kulkarni et al., 2016), predictable (Dragan et al., 2013),
and also provide explanations for it’s decisions (Chakraborti et al., 2019b). Expli-
cability means the robot performs actions that match human’s understanding of the
robot, i.e. ideally it uses M instead of M%. Obviously, M¥# is the human’s model,
hence robot can only approximate the model, however, ideally we assume the robot’s
approximation is equivalent to M. A robot’s plan is predictable when the robot is
explicable and executes easiest to predict sub-plan (Chakraborti et al., 2019a).
With active teammates, a new model M gets added to this tale of three models
(Chakraborti et al., 2018b). The agent needs to consider M with it’s own model M~
in it’s decision making process. Extending the original framework to incorporate M
can be useful to support, teach and collaborate with human-teammates. For example,
if we apply this extended framework to ITS, then M?® represents the model of the
tutoring system, i.e. all the actions a tutoring system can perform, such as presenting
a problem to the student, guiding them through the problem solving process, provide
feedback, etc. M* is the model of the student, i.e. all the actions it can perform
on the interface of the ITS, and the concepts they have learned. M represents
the system’s understanding of the human, such as the concepts they have learned or
practiced and the problems they can solve and their model for interacting with the
interface. Generally, M is an approximation and is learned from the behavior of
the human and we assume the approximation is close to the original mental model.
We also assume that the approximated model M is granular enough to be useful for
planning in the environment. In this work, we are looking at collaboration between

the human and automated agents. Thus, the planning task for the agent is based on



Figure 1.2: In ITS setting, same human works with different tutoring systems, where
none of them tend to incorporate the student’s understanding of the system. Instead,
they ensure the learning and understanding of the specific topic through interaction.
the teammate’s current requirements. For example, for a tutoring system, goal is to
support the student solve the problem presented on the interface and to help them
complete their practice material.

The updated generalized framework for human-aware Al with active human-
teammates, can be applied to many different human-robot settings. However, due
to lack of stakeholders and also due to domain specific challenges, evaluating them
through user studies can be challenging. We believe Intelligent Tutoring System can
be used to evaluate these techniques and these techniques can provide personaliza-
tion techniques for the supporting students in classroom scenario as well as the more
recent systems for independent learning through MOOCs. Before we present the de-
tails for how these techniques can be used for I'TS in future sections, we will discuss

a review of the theory from the tutoring system community.



1.2 Intelligent Tutoring System

A system that presents a problem to a student, provides feedback to them and ask
the instructor for intervention at the relevant moment is called an Intelligent Tutoring
System (Anderson et al., 1985). The feedback provided while solving a problem,
is an essential part of a tutoring system and it separates ITS from computer-aided
instruction. Infact, it has been shown that if the system can provide the right feedback
at the right moment, then it can be as effective (if not more) as a personal human
tutor (VanLehn, 2011). Ideally, the system needs to understand the student’s response
and provide feedback to them. However, this process is simplified by comparing the
student’s response against an ideal response for the action they perform. For example,
Dragoon tutoring system provides feedback of correct /incorrect after comparing every
response to the correct solution for the problem (VanLehn et al., 2017), on the other
hand Autotutor parses the natural language based response provided by the student
and looks for the keywords that are partly missing from the response to provide
feedback for those important keywords (Graesser et al., 2005).

The construction of an ITS can be divided into four modules — user interface,
knowledge base, student model and pedagogical module (Dede, 1986). The user
interface helps the student to interact with the system. Knowledge base includes the
material for teaching and questions for helping the student practice the knowledge
concepts. Student model holds the current model of the concepts that the student has
already learned. Pedagogical module encapsulates the strategy for providing feedback
or questions based on the student model. This structure has become a template for
constructing different tutoring systems. A normal construction cycle for tutoring
system involves understanding the student model to design the pedagogical strategy

and finally develop the interface. In case if the pedagogical strategy is general enough,



then knowledge base can be developed for different topics (domains), thus showcasing
some degree of domain independence. For example, Autotutor (Graesser et al., 2005)
was designed as dialogue based tutoring system and it has been used for teaching
electronics, computers, physics etc. Similarly, Dragoon (VanLehn et al., 2016) which
teaches first order differential equations, has been used for teaching dynamic systems,
electronics, etc. Although these systems have been able to achieve some degree of
domain independence, it still needs to go a long way for the tutoring system to change
the pedagogical strategy based on the student’s responses. For example, changing
from dialogue based pedagogy to simple correct/incorrect pedagogy for students who
are expert in the material.

The behavior of an intelligent tutoring system can be divided into outer loop
and inner loop (Vanlehn, 2006). Outer loop is responsible for choosing the relevant
practice problem, ideally based on the concept student has learnt. Several strategies
have been evaluated for asking different sequence of questions such as multi-armed
bandits to maximize concepts learnt by the student (Clement et al., 2013). Inner
loop represents step-by-step evaluation of the student’s work and providing feedback
to support student while solving the problem. A lot of different techniques have been
used to provide feedback to students such as correct/incorrect or provide hints to
elicit the correct answer (Chi et al., 2008). Decisions for both the outer and the inner
loop of the behavior are internally decided by the pedagogical module of the tutoring
system.

Construction of an ITS describes different places HAAI techniques can be applied
to support both outer and inner loop decisions in predictable and explicable manner.
These techniques depend on the model of the interface and the concepts that the
student has to learn, which can be described by the tutor (Grover et al., 2018a) or

they can be learned through data of the behavior in the environment (Tian et al.,



2016). The model can be dynamically updated and based on goal-directed learning,

specific strategies to improve student’s learning can be applied.
1.3 HAATI and ITS for the Future — Contributions

As we head into the future, where we would want several robots and automated
agents to support us in our daily activities and work with us like teammates by
helping us in the activities which can be require complex decision making, thus,
showcasing the need to create human-aware system to enter our world. They should
incorporate our understanding in their decision making process. This thesis lays
the foundation for human-aware framework for active teaming, where it connects
the intelligent systems (i.e. the ITS) to this framework, and also describes how they
should be extended to trickier scenarios in other domains. We overcome the challenges
of “inmates running the asylum” (Miller, 2017), and evaluate the framework proposed

through user studies. The outline of the thesis is —

Chapter 2 presents a literature survey of Intelligent Tutoring System and Al tech-

niques that have been applied for teaching the students.

Chapter 3 discusses application of state-of-the-art human-aware planning tech-
niques to tutoring scenarios such as providing feedback to students and support more

recent phenomenon of online learning through dynamic curriculum.

Chapter 4 discuses the first user study to evaluate the framework described in
chapter 3. The results show that HAAI techniques are effective in providing support
to the human decision makers such as students while working on a sequential decision

making problem.



Chapter 5 discusses a novel method to refine M by asking directed question(s).
This problem is at the intersection of both human-aware AI and ITS, as asking
questions for learning student’s current model and support learning is part of the

outer-loop and for HAAI it can support collaboration in human-robot teams.

Chapter 6 discusses the user study and results for evaluating the framework pre-

sented in the previous chapter.

Chapter 7 presents the concluding thoughts for how these communities can work
together to create automated systems for collaboration and support the humans in

their tasks.
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Chapter 2

AI TECHNIQUES FOR ITS - A LITERATURE SURVEY

To understand the application of Al techniques, we review some of the fifty year
literature of Intelligent Tutoring System. First we understand some of the basic
theories that helped develop various methodologies for teaching. We also discuss some
of the basic cognition models that have been applied to understand different aspects
of learning. Then we present how state of the art ITS are being constructed and
present some recent examples that have been used in several classrooms, followed by
several student modeling techniques, used to model the learning of the student while
interacting with a tutoring system. Then we summarize some of the Al techniques
that have been used to provide feedback to students, or present questions to them.
Finally we present discuss the challenges faced and some Al techniques developed to
support recent techniques such as massive open online courses (MOOCs) and recent
ideas like classroom orchestration.

2.1 Fundamental Theory

In this section we discuss some of seminal works that have shaped the current
state of ITS. It includes one of the earliest classification for evaluating effectiveness
of instruction, followed by more recent cognition model to better understand the
connection between cognition and knowledge which was later generalized to the idea
of knowledge concepts across different subjects. Finally, we present a model that has

been used to understand the effectiveness of different modes of teaching.
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Bloom’s Taxonomy

— Bloom et al. (1956) proposed the first classification of educational objectives to
define the expectations from students and help measure the result of instruction.
The taxonomy divided the learning process into six major categories — Knowledge,
Comprehension, Application, Analysis, Synthesis and Fvaluation. Knowledge in a
specific field provided to students was divided into three categories, i.e., the specifics,
how to deal with the specifics, and different principles and theories in the field. Each
category was further sub-divided to broadly explain the different types of knowledge
that belonged to each category. The other five categories were related to various
students’ steps for acquisition of knowledge where comprehension to synthesis are
considered the most important educational goals. From the student’s perspective,
the first step is comprehending the knowledge through translation, interpretation, and
extrapolation. Then they apply the knowledge followed by the analysis of different
elements, relationships, and organization principles. Synthesis represents producing
or deriving new relations and operations. Finally, the evaluation process included
both internal evaluation through evidence and evaluating through external criteria

(Krathwohl, 2002).

Revised Bloom’s Taxonomy

— If one looks closely at Bloom’s taxonomy Bloom et al. (1956), one can realize it
consists of two different dimensions — knowledge to be acquired by the student and the
cognitive process for obtaining it. Thus, the original Bloom’s taxonomy was revised
to create these two dimensions (Anderson and Krathwohl, 2001). The knowledge
dimension consists of four different kinds of knowledge that a student needs — factual,

conceptual, procedural, and meta-cognitive. The cognitive process dimension was
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divided into six categories (based on the five dimensions of original taxonomy) —
remember, understand, apply, analyze, evaluate and create. Comprehension from the
original taxonomy was divided into remember and understand, and the rest of the
steps were similar in definition to the original taxonomy. More interestingly, these two
dimensions could be arranged on a table with different topics should be placed. For
example, a simple history lesson would be factual knowledge/remember, and solving
a math problem could be placed in procedural knowledge/analyze (Krathwohl, 2002).

As discussed, Bloom’s taxonomy (both original and revised) describes different
knowledge and cognitive processes that a student should learn. However, there is a
need to understand various activities in a classroom. Thus, we look at relatively new
theories that go further to define both knowledge and cognitive process that student

partakes in a classroom.

ACT and ACT-R

— Applied Cognition Theory (ACT) Anderson (1983) and ACT-Revised Anderson
(1993, 1996) was designed to describe the connection between knowledge and cogni-
tion. The procedural knowledge consists of production rules; defined using declarative
knowledge. The smallest unit of declarative knowledge was called chunks. Complex
cognition is constructed using different production rules together. Authors divide the
process of complex cognition in knowledge acquisition (acquiring the relevant chunks
of knowledge) and using the knowledge-based on memory (Anderson, 1996). ACT-R
theory of complex cognition was based on earlier views such as Human Associative
Memory (HAM) (Anderson and Bower, 1973), to model several memory-based behav-
iors through experiments or the theory about the human method of problem-solving
(Newell et al., 1972). The authors directly applied these theories for teaching LISP

(Anderson et al., 1995). Recently, the schema structures based division of declarative

13



knowledge has been widely used in teaching algebra (VanLehn et al., 2020), as well
as constructing complex population dynamic models using tutoring systems such as
Dragoon (VanLehn, 2013; Grover et al., 2018b).

However, these theories have been able to describe only one way to represent
knowledge, i.e., through template-like structures applied to topics such as LISP or
algebra, where the combination of these rules forms complex applications. On the
other hand, there have been theories that can be applied to other topics or even other
activities in a classroom such as, hierarchical division of knowledge to constant and
variable concepts and the kind of activity that supports learning in the classroom.

We will now discuss these frameworks.

KLI Framework

— Knowledge Learning and Instruction (KLI) framework (Koedinger et al., 2010) tries
to generalize earlier theories across science, math, and language learning domains.
They structured it around defining taxonomies across three essential parts of the
classroom KLI by first defining different kinds of events that occur for a student —
learning event, instructional event, and assessment events that occur while a student
works on a topic. They distinguish between these events as observable (instructional
and assessment) and unobservable (learning events). They explain that instructional
events cause learning events and the knowledge components affect the assessment
events.

The knowledge is divided into the smallest acquired unit called knowledge compo-
nents (KCs). Koedinger et al. (2010) further divides the KCs into two different types
— constant and variable. If the KC is a fact, such as the area of a circle is 7 * 2,

it is a constant KC, and variable KC would be asking a student to find the area of

a circle with radius hems. In this framework, they take student interaction into the
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picture, i.e., recognizing the kind of KC and the response from the student. Thus,
we get three different kinds of interaction — constant-constant, variable-constant, and
variable-variable. Constant-constant KC would be in the case — what is the accelera-
tion due to gravity (where students’ response would be 9.8m/sec?). Variable-constant
would be — what is the unit of volume. Variable-variable is to apply a hypothesis for
different quantities. Constant-variable is not possible from a student interaction.
However, I believe a tutor uses this kind of interaction to create a general under-
standing using examples.

Taxonomy for learning events is also divided into three types — memory and
fluency-building, induction and refinement, and understanding and sense-making. As
the name suggests, memory and fluency building is the first process where a student
compiles the knowledge non-verbally. Induction and refinement is also a non-verbal
learning process where students find connections between different knowledge com-
ponents and refine these bigger structures. Understanding and sense-making is a
verbal process where they apply KCs and understand their rationale. They further
use these two taxonomies to define different instructional principles for every learning
process. This framework connects theoretical ideas to real-world classroom teaching

and provides taxonomies that can help improve the learning process.

ICAP Framework

— There are four different modes of engagement — Interactive, Constructive, Active,
and Passive (ICAP). The framework evaluates these modes for their effect on learning
in a classroom. Chi and Wylie (2014) describe these four modes of engagements to
show theoretically and empirically that Passive < Active < Constructive < Interactive

is the order of impact on learning. It only looked at evaluating a different mode of
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engagements and assumed underlying knowledge and cognitive processes were similar
to earlier frameworks Chi and Wylie (2014).

These frameworks divide the tutoring process into two critical dimensions (from
Bloom’s taxonomy), knowledge and cognitive task. These two dimensions have been
separated into various categories, sometimes based on a domain-dependent or domain-
independent fashion. This research dates back to the 1950s, whereas the automated
tutoring system were developed for the first time in the 1970s. These theories form
the baseline to many modern tutoring systems that will be discussed in the next

section.
2.2 ITS — Construction and Types

Since the advent of computer systems, many computer-based tutoring systems
have been constructed to provide individual tutors to students, such as computer-
aided instructions, computer-based training, or web-based homework. Scholar is
sometimes referred as the first tutoring system which provided CAI based on the
task material provided by the tutor called frames (Carbonell, 1970). Vanlehn (2006),
mentions these systems do not follow any pedagogical techniques to provide intelli-
gent feedback to the students. On the other hand, Intelligent Tutoring System (ITS)
(Anderson et al., 1985) has a separate pedagogical module for providing feedback to
students. It can be classified based on many different paradigms. I will present some

of these classifications and then present some example ITS.
2.2.1 Modules of an ITS

An ITS can be divided into four modules — user interface, knowledge base, student
model, and pedagogical module, based on its construction (Dede, 1986). The user

interface helps the student to interact with the system. The knowledge base includes
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the material for teaching and questions for helping the student practice the knowledge
concepts. The student model holds the current model of the concepts that the student
has already learned. The pedagogical module encapsulates the strategy for providing
feedback or questions based on the student model. This structure has become a tem-
plate for constructing different tutoring systems. A typical construction cycle for the
tutoring system involves understanding the student model to design the pedagogical
strategy and develop the interface. If the pedagogical strategy is general enough, then
the knowledge base can be developed for different topics (domains), thus showcasing
some degree of domain independence. For example, Autotutor (Graesser et al., 2005)
was designed as a dialogue-based tutoring system, and it has been used for teaching
electronics, computers, physics, etc. Similarly, dragoon (VanLehn et al., 2016) which
teaches first-order differential equations, has been used for teaching dynamic systems,

electronics, etc.
2.2.2 Knowledge Representation

As discussed, ITS provide intelligent feedback to students, and the tasks represent
the internal knowledge of the system. I'TS has been divided into two broad categories
— model tracing and constraint-based tutoring systems, based on how the student can
work with the interface. Model tracing compares the students’ solution of the assign-
ment to the correct solution provided by the tutor. For example, Dragoon (VanLehn
et al., 2016) and TopoMath (VanLehn et al., 2020) are model tracing tutoring sys-
tems, and the student’s responses are compared to the correct model of the task.
Constraint based systems evaluate the student response to ensure every constraint
is correctly satisfied in the response. For example, SQL tutor (Mitrovic, 2003) is a
constraint-based system, where every response from the student is evaluated to test

if the student’s response satisfies the constraints for specific queries.
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2.2.3 Behavior of an I'TS

The behavior of a tutoring system represents its reasoning capability and the
way a student can interact with it. Various decisions taken by a tutoring system
can be divided into two stages — outer loop and inner loop (Vanlehn, 2006). The
outer loop involves deciding the sequence of tasks that a student performs. Several
strategies have been evaluated for asking a different sequence of questions, such as
multi-armed bandits to maximize concepts learned by the student (Clement et al.,
2013). Inner loop represents the step-by-step evaluation of the student’s work and
providing feedback to support the student while solving the problem. Now I will

discuss some of the critical decisions taken in each loop individually —

Outer Loop

As described earlier, the outer loop is responsible for providing practice problems to

students.

Task Selection Usually, the task sequence is manually defined by the teacher.
Recently, many different strategies have been tried to present problems to students.
For example, providing them a list of problems to complete (in no specific order)
and letting them choose the next problem, or, ensure mastery of the concept for
students called mastery learning and then go to problems for next concept (Bloom,
1984), or maintain a detailed model of KCs mastered by the student to and choose
the task based on the intersection of the mastered concepts and the concepts that the
student is supposed to practice (macroadaption) (Anderson et al., 1995; Shute, 1993).
Macroadaption has been applied in many different ways, which we will be discussing
in some detail in the later section. However, various factors has to be kept in mind

during task selection (Emre, 2020) —
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e Zone of Proximal Development — the student is neither bored nor struggling in
solving the new problem, i.e., they can progress while solving the problem (Lee,

2005).

e Spacing and Sequencing effect — space between two similar tasks (with similar

kind of concept application) is relatively far apart.

e Relational graph of concepts — the relative dependency between concepts is

maintained.

Here we have highlighted the critical factors for automatic task selection. The

exact techniques are discussed after discussing the student model.

Inner Loop

As the name suggests it runs on every step that a student performs, where the stu-

dent’s step is assessed and feedback or hints are provided to the student.

Feedback is provided at every step while solving a problem. Two different kinds
of feedback can be provided — (1) minimal feedback and (2) error-specific feedback.
Minimal feedback refers to providing binary or simple feedback whether the step
or the problem has been solved correctly. For example, Dragoon (Wetzel et al.,
2017) provides green/red (correct/incorrect) feedback on each step. Error-specific
feedback usually points to the exact step or part of the response that is incorrect.
For example, Andes (Gertner and VanLehn, 2000) suggests checking the specific part
of the response (such as trigonometric equation) to the student. A central challenge
for the tutoring system is to find when to provide feedback to the student. Based on

when the feedback is provided, I'TSs can be divided into three major categories —
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e Immediate feedback — The feedback is provided as soon as the student completes

a step of the problem.

e Delayed feedback — Usually, it refers to providing the feedback at the end of the
problem. For example, in Sherlock (Katz et al., 1998) student is provided the
feedback in review mode after they have completed the problem and submitted

their attempt.

e Demand feedback — The feedback is provided when the student explicitly asks

for it.

There can be many complex strategies to provide feedback, such as delaying the
feedback for a student when it is nearing mastery of a concept, whereas someone who is
practicing a new concept is provided feedback immediately. In many instances, these
feedback strategies are modeled based on the tutor’s behavior (Collins et al., 1988).
On the other hand, error-specific feedback is presented in many natural language-

based tutoring systems.

Hints are provided when the student has provided a wrong answer to the step, or
they are stuck at what step to execute. The central challenge to provide hints to
students is when the system should provide a hint, what step it should provide a hint
on and how it should provide hint (Vanlehn, 2006). Some of the factors for when to
hint depends on whether the student is stuck with the step. It is suggested that the
hint should be provided for the next step that the student is trying to complete.
There has been much work to define various strategies for how to provide hints
to students. Generally, the idea is to provide a general hint and then move to more
specific hints, with the final hint providing the student’s answer. The final hint

is many times called the bottom-out hint. It ensures that the student continues
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progressing through the problems. In other cases, different strategies are applied
based on the student’s response to the problem. For example, in AutoTutor (Graesser
et al., 2005) the system provides a hint when the student provides an incomplete
answer to the problem in the form of asking questions from them. There has been
some work to find an optimal strategy for tutoring action or the kind of hint that

should be provided to the student (elicit/tell) (Murray et al., 2004; Chi et al., 2010).

Knowledge Assessment is useful to the instructor, student, and the tutoring
system. The instructors or a tutoring system can use the assessment to define the
next task or as a heuristic to improve students’ learning in some capacity, whereas
a student can use it for self-evaluation. However, the fundamental challenge for
assessment is its grain size. For example, a final grade at the end of the semester
does not provide enough information about the student’s topics, and a fine-grained
assessment of every step being reported might not help the teacher a lot either. Thus,
a general strategy for assessment is to count the learning events for the concepts or
even count the failures (Vanlehn, 2006). More involved methods are part of student

modeling, which will be discussed in the next section.

Gaming the System refers to shallow techniques that a student may choose to
solve the problem and finish the unit. Such techniques involve help abuse, where a
student might choose to provide some incorrect very quickly to reach the bottom-
out hint and use that to progress in the problem. This kind of student behavior
is studied in the literature (Muldner et al., 2010), and many strategies are applied
for understanding the causes of it (Baker et al., 2009). Baker et al. (2009) found
that unhelpful hints and un-intuitive software features led to students gaming the

system. Muldner et al. (2010) analyzed the log data for Andes tutoring system while
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teaching physics found that up to 22.5% tutor-student turn pairs were gamed out of
18.4% actions were gaming of hints. They further evaluated that the time spent on
high-level hints was 9.2 seconds vs. 5.7 seconds for the students gaming the system.
Similarly, students with a higher tendency for gaming the system spent less time on

the bottom out hint (10.9 seconds vs. 7.5 seconds).

2.2.4 Examples of ITS

In this section, I will look at some of the examples of Intelligent Tutoring Systems.

Algebra Cognitive Tutor is one of the most widely used tutoring systems used
to teach algebra (Anderson et al., 1995). The inner loop consists of a student solving
a problem using multiple representational tools, such as an equation solver. The
outer loop follows the complex strategy based on the student model, and exercises
are selected to ensure enough practice for each KC. The tutor analysis each step of
the student by comparing it to anticipated steps using a rule-based problem solver.
Hints are provided when a student asks for it, and the tutor chooses what step to

hint at.

AutoTutor is a natural language dialogue-based tutor where a human head talks
to a student like a teacher. The tutor presents a task (a single question) to the
student, and they respond with an essay-like answer to the question Graesser et al.
(2005, 2012). At every step for the inner loop, the student types the answer or asks
a question (which usually means that the student is asking for help. Step analysis
happens by matching the student’s response to its list of possible correct-incorrect

responses. The tutor also has a set of knowledge components that have to be correctly
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applied for task completion. Once a student’s answer applies all of them, the task is

completed, and the next task is chosen from a list of tasks.

SQL tutoring system teaches writing a query for relational databases (Mitrovic,
2003). It is a constraint-based tutoring system, where a constraint consists of a
relevance condition and satisfaction condition. The tutor ensures for all true relevance
conditions corresponding satisfaction condition is also true in the student’s response,
else the constraint is violated. The student usually has to submit the query and
ask for feedback from the tutor. If multiple constraints are violated, then the tutor

chooses the important constraint to provide the hint.

Dragoon is a model-tracing tutoring system is used to teach dynamic model con-
struction (based on first-order differential equation) (Wetzel et al., 2017; VanLehn
et al., 2017). Each task consists of constructing a dynamic model where the step
requires defining different quantities and relationships (interaction) between them.
The simplest interaction between basic quantities is called schemas, and they com-
bine to solve the problem. The system provides immediate feedback with three levels
of hint, where the third hint adds the correct value in the interface. The outer-loop
consists of a pre-defined sequence of models that constructs real-world scenarios such
as modeling the rabbit and wolf population, with the relationship between quantities

become more complex with every problem.

Andes is a physics tutoring system, where a student solves a physics problem using
tools provided in the system and enters the final answer while showing all the steps to
solve the problem (VanLehn et al., 2005). In the outer-loop, the student selects the
problem, and the inner-loop consists of the student performing various kinds of steps

such as entering the equation or defining a vector, etc. The tutor provides minimal
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immediate feedback (red/green incorrect/correct). Students can initiate two different
kinds of help — ask for a hint for the next step or ask for step analysis (the system
will provide error-specific feedback if the step is incorrect). Step evaluation compares
the student response to valid responses in the tutor’s model.

Several tutoring systems do not tend to follow these kinds of structures. Game
based tutoring systems are based gamine environment where a student plays a char-
acter in the form of a game (sometimes as a student himself that can be with or
without other students) tries to solve the game and earn rewards (Jackson and Mc-
Namara, 2013, 2011). It helps develop skills that require long-term interaction. The
student gets hints from the environment it has to use while solving problems, earns
rewards/trophies, unlocks new features, etc., to keep them motivated. Physical robots
have also been used to keep younger students involved, and there has been some re-
search on their effectiveness in tutoring (Walker and Burleson, 2012). More recently,
virtual reality-based interfaces have been used to support students in a classroom
(https://www.prismsvr.com/, start-up Brett is working with, they have launched
courses for teaching Maths this Fall for schools in New York). There are some open-
ended tutoring systems as well in which the students learn through experimenta-
tion, and there are multiple ways to complete the same problem, such as virtuallabs
(Scheckler, 2003).

Vanlehn (2006) suggests that the student should be given feedback or hint based
on the student’s approach. Although most of these tutoring systems have a single
solution to a problem, however, there are a few that provide freedom to students
to solve the problem in a free approach, such as, Andes (Gertner et al., 1998; Van-
Lehn et al., 2010) or Virtuallabs (Scheckler, 2003). There has been some work in
detecting what the student is trying to do in lab based open systems, where the au-

thors used plan libraries to find the plan and the goal that the student is trying to
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achieve (Mirsky et al., 2017). Our work (Grover et al., 2018a) on integrating human-
aware planning techniques with Dragoon, make use more recent out-of-the box plan

recognition methods (Ramirez and Geffner, 2010) for the same purpose.
2.3 Student Modelling

The inner loop of an ITS involves assessing the student’s knowledge. These sys-
tems tend to model and maintain the current state of the student’s knowledge, which
can be further used for assessment and pedagogical strategies. The models are con-
structed using the student’s activity and responses. Pavlik Jr et al. (2013) divide
these models into — programmed models, overlay models, knowledge space models,
dialogue student models, state and trait identification models. Most of these mod-
els are for different types of assessment and do not model the student’s skill. For
example, programmed models were constructed to create a sequence of tasks for the
student to practice (Pavlik Jr et al., 2013). Similarly, dialogue student models were
tutoring systems based on natural language dialogue with students, such as, Why-
Atlas (VanLehn et al., 2002) or AutoTutor (Graesser et al., 2012, 2005). On the other
hand, overlay models model the student’s understanding of the KC using some Q-
matrix, which maps the problem to KC required to solve the problem. It divides the
dependency structure of the domain and learns the parameterized model through the
model fitting. We will be talking about some of these techniques that model students
skill —

2.3.1 Item Response Theory

IRT is one of the oldest models which falls under the traditional psychometry
methods for latent variable testing (Harvey and Hammer, 1999; Lord, 1952). IRT

is computationally expensive compared to Classical Testing Theory methods (CTT).
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However, it incorporates many extra features compared to old CTT methods. The
chance of correctly answering the problem is calculated using learned parameters.
It assumes that the student’s response to a question depends on their ability and
difficulty of the question. Since it is used for testing, when no feedback is given to
the student, IRT is assumed to be a static model and does not model the change in
the student’s knowledge. The probability that a student would respond to a query
is calculated as logistic regression with parameters for student ability and the item
difficulty (Wilson et al., 2008; Rasch, 1993). Performance Factor Analysis (PFA)
(Pavlik Jr et al., 2009) uses extra learnable parameters to incorporate the number
of times student has practiced a KC. PFA has shown comparable results to BKT
(Pavlik Jr et al., 2009).

2.3.2 Bayesian Knowledge Tracing

On the other hand, the learning community assumes that student knowledge for
a specific knowledge concept exists in two states — mastered (1) or not-mastered (0).
A posterior probability is calculated when a student solves a problem involving the
KC, using the prior probability of mastered and the correct and incorrect response.
If the student keeps practicing, the student can transition from one state to another
with transition probability and guess the answer or make a mistake based on emission
probabilities. If we assume these transition and emission probabilities stay constant
over time, then the knowledge tracing method can be represented using a hidden
Markov model (Corbett and Anderson, 1994). BKT also assumes that the application
of every KC is independent, and the transition and emission probabilities vary due
to different KCs.

An important point to note is that IRT and BKT are based on orthogonal as-

sumptions. However, they model the chance of students solving the problem cor-
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rectly. Thus, there have been many attempts to merge these two models with some
success (Khajah et al., 2014a; Gonzélez-Brenes et al., 2014; Xu and Mostow, 2012).
Gonzélez-Brenes et al. (2014), discusses extending to more general features such as
sub-skills, and uses the values as logistical regression to represent emission probabil-
ities or transition probabilities. It found that emission probabilities were assumed
to be constant. These models face two major challenges, learn the parameter val-
ues and different parameters of the models giving rise to the same predictions about
student performance (called identifiability) (Beck and Chang, 2007; van De Sande,
2013). There have been many Expectation-Maximization (EM) based approaches
to learning the parameter values, such as Feature-Aware Student Tracing (FAST)
(Gonzalez-Brenes et al., 2014) and Latent Factor Knowledge Tracing (LFKT) (Kha-
jah et al., 2014a). There is a toolkit to learn the model parameters for vanilla, HMM
using Bayesian Network toolkit (Chang et al., 2006; Xu and Mostow, 2011). There
are other monte Carlo approaches with different sampling methods as well (Khajah
et al., 2014b). Khajah et al. (2014Db), found that the combined networks had statisti-
cally significant improvement for Area Under the Curve (AUC) values for combined
models in 3 out of 4 datasets.

Identifiability problem in BKT is a well-known problem and refers to the scenario
that multiple BKT parameters can have similar predictions about student perfor-
mance (Beck and Chang, 2007; van De Sande, 2013). Doroudi and Brunskill (2017),
discusses that the problem of identifiability is conflated and misunderstood for BKT.
They suggest that BKT models are identifiable under the condition P(G) # 1— P(S)
(Doroudi and Brunskill, 2017) and P(G) + P(S) < 1 van De Sande (2013). Fur-
ther, Doroudi and Brunskill (2017), discuss that the more important problem is lack

of semantically degenerate values learnt by the model. If you notice the condition
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P(G) + P(S) < 1 is a stricter condition than P(G) # 1 — P(S5), and I believe that

the methods should learn semantically viable solutions.
2.3.3 Deep Knowledge 'Tracing

Deep knowledge tracing (Piech et al., 2015) refers to modeling time-series data
(student’s responses) using Long-Short Term Memory (LSTMs) (Hochreiter and Schmid-
huber, 1997) a variant of Recurrent Neural Network (RNN) (Williams and Zipser,
1989). Encoding the input for the neural network-based method is the central chal-
lenge. Piech et al. (2015) uses one-hot encoding to set up the input from the student,
which includes the question answered by the student and whether the response was
correct or incorrect. The output represents whether a particular student answered the
problem correctly at a given time. Surprisingly, the Deep learning method performs
well for the given data and shows higher AUC values as compared to both BKT and
PFA (Piech et al., 2015). I believe some of the biggest challenges for deep learning
methods are in comparison to BK'T, where hidden states represent whether a student
has mastered the KC or not. However, hidden states in LSTMs are encoded in a
special encoding space and have no physical meaning. Thus, they lack degeneracy
claims for students, and we are dependent on the output alone.

Another critical point to note is that Piech et al. (2015) have also used large
datasets for 47,000 students working with khan academy. This kind of data is not
available for learning parameters in many cases. 1 believe the third challenge that
they face is, the input is the one-hot encoding of individual activity and not a skill or
a KC. Thus there system is not extendable to specific skills and combinations of the
skills. Xiong et al. (2016), have tried to reproduce the previous results with smaller

datasets, however even they have not extended the ideas to skills.
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2.4 Use of Al Techniques in ITS

AT is used to create Adaptive Learning Technology (ALT) (Aleven et al., 2016).
ALT represents the techniques for modifying the interface in some form based on the
previous data from the students. These techniques support three different levels of
adaptivity — (1) design level adaptivity, (2) task level adaptivity, and (3) step level
adaptivity. I will be presenting the use of Al technology on two levels, i.e., task level
and step level adaptivity. The student model is helpful for all these steps, and the Al

techniques used for student modeling have been discussed in the previous section.
2.4.1 Task Level Adaptivity

A tutoring system has to assign the task to students. Ideally, the system should
ensure the task chosen is in the zone of proximal development, maximizes learning,
is personalized based on the student’s current model, etc. In many cases, these tasks
are decided by the tutor to fit an average student, and these tasks are not well suited
for the least and most skilled students (Lee and Brunskill, 2012). Mousavinasab
et al. (2021) discusses 53 different studies that use several intelligent techniques, out
of which only 1 has task level adaptivity, which is also a misnomer for interactive
activity, which can be chosen based on the topic and not suggested by the tutoring
system. However, there is some work in automated task selection based on Multi-Arm
Bandit techniques (MAB) (Bubeck and Cesa-Bianchi, 2012).

Clement et al. (2014) discusses two different methods for dynamically selecting
the practice problems. The authors define a set of parameters for each problem and
an R-table representing the level of knowledge required to solve the problem (value
between (0, 1)). They use this value to update the student’s capability based on their

response (correct or incorrect solution). Then they use the student model values to
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dynamically find the next problem based on the utility of change. This algorithm was
called RiIARIT (Right Activity at the Right Time). Evaluating RiARIT for a class
showed promising results, as it either led to modeling the problem KCs for students
or the students (with a higher level of understanding) progressed faster through each
unit faster (Clement et al., 2013). They also developed where they did not update
the student model and directly calculated utility without using the student model
based on the zone of proximal development and empirical estimation, called ZPDES
(Zone of Proximal Development) (Clement et al., 2014). Evaluation using simulated
students showed statistically significant results compared to pre-defined order. Since
ZPDES did not use the student model, it performs worse in comparison to RiARiT
(Clement et al., 2014). Mu et al. (2017) improved the ZPDES algorithm to use
the student model (in a similar manner as RiIARiT) and analyzed it with simulated
students. They found that the method performed better than the expert-defined
problem definition for simulated students.

There has been some work to create a deep learning-based task selector (Emre,
2020). An LSTM (improved RNN) was used to find the next question for the students.
It was tested using an online course for organic chemistry, with 3000 problems. The
mapping of KCs and the problem was provided by tutors (or subject matter experts).
The baseline for the evaluation was the questions selected by the students, and their
comparison showed that the LSTM based question suggestions were more accurate in
predicting the next helpful question and whether the student would be able to answer
the question correctly.

There have also been some POMDP based approaches to decide the activity or
task for the student (Rafferty et al., 2011, 2016). They model the student as a
partially observable state, and the tutoring system is the acting agent. In some

cases, the policy is calculated using decision-theoretic methods for the single-step
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look ahead method. They create three different kinds of policies memoryless where
there is no idea about the student model, and thus there is a fixed policy here which
is just based on the utility (which could mean that it maximizes the number of topics
learned in each step), with memory but discrete model, and with memory with the
continuous model. The control is random policy. The evaluation shows continuous
model performs a little better than the discrete model, and every model beats the
random model. However, I cannot entirely agree with the random policy, as I believe
the control should be the static teacher’s policy. Then it would give a comparison
of whether the task level optimization affects learning for students who need more
support. However, this evaluation was performed by Mu et al. (2017) which did not
include the teaching material. They were able to show that the personalized practice
tasks for students performed better for simulated students as compared to the expert
policy.

There has been some work for automated question generation and automated an-
swering. These research topics fall under natural language processing to generate
questions from paragraphs (Zhang, 2015) or improve responses using data such as
Winograd challenge (Levesque et al., 2012). On the other hand, question generation
has had some research in I'TS literature to generate questions that can push students
to have a more profound thought process. Such questions are generated by using a
semantic network to represent the relationship between the concepts. Zhang and Van-
Lehn (2016), evaluates such questions for fluency, relevance, ambiguity, pedagogy, and
knowledge depth. Their evaluation shows that students have found these questions
to be similar to the textbook. However, tutors found that these questions lacked
topic depth compared to expert-generated questions. Zhang and VanLehn (2017)
evaluated question generation and presenting them based on the student model, and

it showed that adaptive question selection for automated generated questions shown
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higher learning gains. More recently, Pan et al. (2020) has tried to tackle the problem
of generating deeper (neural network-based) questions that require higher analytical
skills from students. They use attention-based neural networks to generate questions
and evaluate them for fluency, relevance, and complexity to show improved results

compared to baseline.
2.4.2 Step Level Adaptivity

A student’s step is the single-step interaction between the student and the interface
to solve the problem. Step level adaptivity means the changes that the tutoring
system makes based on the different student responses. A tutoring system can take
many steps after every response, such as, provide feedback or hints for the next step.
Mousavinasab et al. (2021) presents 53 different studies for tutoring systems, out of
which around 50% had some degree of step level capabilities to provide intelligent
feedback or hints. The tutoring system ensures that a student does not get stuck
with the problem and understands the KC, and retains it to apply in the future.

Step level adaptivity involves two stages — (1) understanding the student input and
(2) deciding the tutoring system’s response. Al techniques have been used in both the
stages, such as AutoTutor uses NLP techniques to understand the student response
(Graesser et al., 2012), and decision-theoretic approaches to decide the response of
the tutoring system (Murray et al., 2004). I will only discuss the AI techniques
for decision-making employed to calculate the tutoring system’s policy. Generally,
there is a static policy to provide feedback and hints to students, such as, provide
correct /incorrect feedback and, if incorrect provide incrementally abstract to more
pointed hints, where the final hint provides the answer to the student (called bottom-

out hint) (VanLehn et al., 2016, 2010).
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Murray et al. (2004) uses decision-theoretic (DT) methods to choose the tutoring
system’s action from — prompt, hint, teach, or do nothing using positive feedback,
negative feedback or do (explain how to do the step). The authors created a detailed
student network, which provided the concepts that the student had practiced and
tracked the state of the problem (by tracking the possible actions of the student).
They calculated the utility of each action by single-step lookahead. The transition
parameters were set using expert knowledge, and the highest utility action was exe-
cuted. They applied the approach to teaching calculus and reading using two different
interfaces. They evaluated the system to understand the behavior and found it ra-
tional and sensitive to the internal weight changes. They were also able to verify
that the system can emulate the behaviors of the tutor. Other systems used decision-
theoretic approaches, such as the first version of Andes (physics tutoring system) used
DT approaches to decide the next step for the students. However, their evaluation
in comparison to tutors did not match their predictions for various reasons (Gertner
et al., 1998). iTutor tutoring system for teaching Newtonian mechanics also used
dynamic bayesian networks deciding the problems to present (Pek and Poh, 2004).

Chi et al. (2008) used reinforcement learning techniques to choose the type of
feedback (elicit or tell) to provide students or execute a self-explanation step (ask
the student to justify the step) while working on a natural language-based physics
tutoring system. They used model-based approaches to learn the transition func-
tion by executing random actions with students (data was collected from students
directly). The state was defined based on 6 (ternary) features, and there were two
actions in each state — Elicit/Tell or Justify/Skip-Justify. They tried two different
kinds of reward functions (normalized gain — normalized change of post-test to pre-
test), dichotomized gain (+100, -100), exploratory (random). They were able to show

that out of the policies evaluated for each reward function; normalized gain had the

33



highest learning gains. There have been many other RL-based approaches in which
the data was collected using simulated students, and their application to real students

showed favorable results (Beck et al., 2000; Iglesias et al., 2009).
2.5 Recent Developments

MOOCs and social learning — A growing population has brought two most sig-
nificant challenges to the fore, providing individual attention to students and improv-
ing absorbing or retention of knowledge. Massive Open Online Courses (MOOC)
(Pappano, 2012) were constructed to provide personalized attention in mind where
students can learn through social interaction across a variety of platforms and par-
ticipate in the learning process as a community. This is the Learning 2.0 paradigm
Seely Brown and Adler (2008), and requires a rethink of the affordances McLoughlin
and Lee (2007) expected from current learning tools. One of the many advantages of
social or online platforms for learning is peer feedback and community participation
— i.e., social learning (Burke, 2011). This involves two critical aspects — knowledge
advancement as a community (Scardamalia and Bereiter, 2006) and information pro-
cessing (Webb, 2013) on the part of the individual student as a member of that
community.

MOOCs face many challenges in retention. Online courses that were started had
a course completion rate of 10% (Hone and El Said, 2016). There has been some
research to understand the factors affecting the low completion rate. Hone and El Said
(2016) tested different hypothesis for content and interaction among 379 students.
They found that the course content can explain 79% of the variance in retention and
its perceived effectiveness and the interaction with the instructor. Moreover, they
found no significant difference in the completion rate based on gender, level of study,

or the MOOC platform.
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Classroom Orchestration — ITS has always been imagined to accompany the
classroom setting. A tutor explains knowledge concepts for the unit and uses a
tutoring system for the practice material. The process of holding such classroom
activities with or without the help of technology is called classroom orchestration
(Dillenbourg and Jermann, 2010). The tutoring system supports the teachers by
learning fine-grained student models. However, another way to support them is to
provide a real-time update for the class progress in the classroom, or call the tutor

in case a student is stuck (preferably intelligently) (VanLehn et al., 2019).

Jigsaw classroom — The idea of dividing students into smaller groups to work to-
gether on tasks is called a jigsaw classroom (Aronson, 2002). Based on increasing the
randomness among groups and suggested ten steps to creating better groups (https:
//www.jigsaw.org/#steps). It has been shown that constructing such groups can
help to build compassion among students and improve academic results (Perkins and
Tagler, 2011). Even we have tried to construct groups of students with different levels
of understanding for the concepts that can support students teaching each other. We
show empirically that such groups can help in faster progress among students Grover
et al. (2018a).

In this chapter we have discussed how several techniques applied to model the
student’s learning and change in their model of understanding. Automated task
planning has a similar definition of the model, where it attributes to the change
in current state learning only through the actions a student would perform on the
interface. It can track different techniques that a student can apply while solving a

problem. We further explore this idea in the next chapter of the thesis.

35


https://www.jigsaw.org/#steps
https://www.jigsaw.org/#steps

Chapter 3

WHAT CAN AUTOMATED PLANNING AND HAAI DO FOR ITS?

In the earlier chapters we introduced automated task planning, and human-aware
AT framework. In this chapter we present this formal approach applied to I'TS. This
chapter is divided into four sections. First, we introduce different aspects of computer
based learning where automated planning can be useful, then we look at these tech-
niques formally to explain what these techniques are and what are the assumptions.
Then we describe application of these techniques to model the behavior of a tutoring
system called Dragoon, and also model a classroom to provide support to the teacher.
Finally, we showcase specific examples of these techniques from Dragoon, and other
parts of the classroom.

3.1 Introduction

While the last decade has seen massive advances in technologies aimed at creation
and dissemination of knowledge across a variety of platforms, concerns remain as to
how effectively this knowledge is absorbed at the user (student) end. This is especially
true for both massive open online courses (MOOCs) and also for (rapidly growing sizes
of) physical classrooms where targeted attention towards individual students is often
hard to provide. The state-of-the-art in student and instructor support technology has
traditionally struggled to catch up with the demands of the rapidly evolving landscape
of education in the 21% century. In this paper, we address this by proposing a
framework for the design of generic course-independent student and instructor support
capabilities using techniques in the field of human-aware planning, and demonstrate

those features in Dragoon, a celebrated intelligent tutoring system.
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3.1.1 Learning 2.0

The world of learning is indeed changing fast - information can now be provided
across a variety of platforms to large groups of people who can access on demand
knowledge and participate in the learning process as a community. This is the Learn-
ing 2.0 paradigm (Seely Brown and Adler, 2008), and requires a rethink of the affor-

dances (McLoughlin and Lee, 2007) expected from current learning tools.

Learning on Demand

Learning on demand refers to the increasing popularity of individual student-centric
and topic-driven learning achieved on the web — i.e. students pick a particular topic
they want to learn about and actively consume content just based on that, instead
of participating in an entire class or following through an entire curriculum. For
example, consider that you want to learn about regression — you could log on to
Coursera, complete the relevant tutorials and assignments on regression, and leave
the course. This requires a rethink of traditional curriculum generation and course
recommendation approaches that would traditionally compute end to end curricula
for an entire class. It follows that such new approaches must be able to leverage

detailed student models to provide effective support.

Social Learning

One of the many advantages of social platforms for learning is peer feedback and com-
munity participation — i.e. social learning (Burke, 2011). This involves two critical
aspects — knowledge advancement as a community (Scardamalia and Bereiter, 2006)
and information processing (Webb, 2013) on the part of the individual student as a

member of that community. In a sense, this can even be seen as a proxy towards pro-
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viding individual classroom attention from the instructor. However, forming study
partners remains an arduous task, especially in large classrooms such as in online
learning communities where students usually do not know most of their classmates
(or their skill sets). It is also fraught with the usual pitfalls associated with group
work including individual students hogging all the group activity or slackers not con-
tributing to the group activity at all (Mesch, 1991). Without principled drivers for
building in-class communities that can promote learning, effective collaborations are
hard to achieve. As such, forming useful teams for collaborative study can become
a problem by itself rather than a facilitator for learning to the extent that students
can end up spending too much effort in forming and maintaining teams or just prefer
to study by themselves, thus leaving the potential benefits of a social learning envi-
ronment largely untapped. Recent work has shown that peer recommendations can
have positive impact (Labarthe et al., 2016) on student engagement but has remained

ambiguous (Bouchet et al., 2017) as to the best way to go about it.
3.1.2 A Brief History of I'TS and Al

ITSs are aimed to provide personalized support to students and bring in expert
(human) tutors in the loop wherever necessary, thus reducing the burden on the
instructor as well as improving the learning experience of the student. In fact, it
has been shown that when designed correctly, an I'TS can be as effective as a human
teacher (VanLehn, 2011). A thorough description of the different components of ITSs
can be found in (Vanlehn, 2006). Existing applications of such systems range from
solving numerical problems like Andes (Gertner and VanLehn, 2000) which can help
in teaching basic laws of physics (Schulze et al., 2000), Dragoon (VanLehn et al.,
2017), Q&A type problems as in Autotutor (Graesser et al., 2005) or for an SQL

tutor (Mitrovic, 2003). ITSs, of course, go beyond individual information processing
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stage and find uses in knowledge building as a community (Magnisalis et al., 2011)

as well, thereby embracing the principles of the Learning 2.0 paradigm.

Student Assessment Models

One of the most important capabilities an I'TS needs to have is to be able to estimate
the (mental) model or capabilities of the student. This has been explored in the
context of the (1) item response theory (IRT) (Hambleton et al., 1991) which treats
learning and testing as separate processes and the (2) Bayesian knowledge tracing
(BKT) theory (Corbett and Anderson, 1994) which considers a more dynamic model
of the student state. The latter becomes more relevant in the context of I'TSs that
can provide more dynamic feedback and hints as discussed next. Indeed this is an
issue where Al techniques have been deployed before for dynamic modeling of the
evolution of the student model in terms of knowledge components, concentration /
focus levels, etc. (Murray et al., 2004). This includes different techniques such as
decision theoretic approaches (i.e. Markov Decision Processes or MDPs) (Murray
et al., 2004; Murray and VanLehn, 2006), and reinforcement learning (Chi et al.,
2010; Mandel et al., 2014; Mandel, 2017). This paper assumes for the most part *
that these techniques are available and builds on top of that assumption, i.e. being
able to estimate the student model is necessary for I'TS techniques and we want to
demonstrate, from the perspective of automated planning how this can be exploited

to provide a better learning experience to a student.

n fact, the “model reconciliation” technique discussed later can handle uncertain models (Sreed-
haran et al., 2018) and can even be modified to function as an estimator for the student model but
this is outside the scope of the paper.
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Feedbacks and Hints

Once the ITS has estimated a model of the student, it can provide targeted feedback
to improve the learning process. Existing work in this area (Barnes and Stamper,
2010; Stamper et al., 2013; Rivers and Koedinger, 2013, 2017) has largely focused on
I'TSs operating as recommender systems. This paper is largely situated in this space
but aimed at providing much more sophisticated feedback in both the inner and outer

loops (Vanlehn, 2006) of an ITS which requires longer-term sequential reasoning.
3.1.3 What can Planning Bring to the Table?

Automated planning, as a field, has been around ever since the inception of Al,
and is considered a necessary ability of any autonomous system — the ability to reason
about and decide on a course of action (CoA) or plan given the current state of the
world. Many of the challenges faced in the design of an ITS bears parallels to the
planning agenda — making a curriculum, solving a given problem, or in general dealing
with the combinatorics of orchestrating a class can be potentially seen through the
lens of planning, i.e. computing a sequence of steps given a set of constraints. This
was the starting point of our investigation in this direction.

However, when operating with humans in the loop, traditional planning techniques
are not sufficient (Kambhampati and Talamadupula, 2015). A “human-aware” plan-
ner must be able to take into account the (mental) model (Chakraborti et al., 2017a)
of the user. Recent work (Sengupta et al., 2017) has looked at how planning tech-
niques can evolve in the context of decision support to guide the planning process of a
human decision-maker. This includes support for plan validation, critiquing, recom-
mendation, explanations, and so on. Much of the discussion here derives inspiration

from recent advances in the planning community along these directions.
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Contributions

Thus, to answer the question what automated planning can do for the ITS scene, we

build on the following two features of planning techniques —

e Domain independence — Planning techniques have been particularly geared
towards domain-independent solutions — i.e. algorithms that can work across
a variety of domains provided in higher-level specification. This is especially
useful in the contexts of I'TSs which have traditionally been restricted to class

or course specific solutions that do not generalize; and

e Model-based reasoning — Personalized support for students require higher level
and sequential reasoning about the course and student models, planning tech-

niques remain ideally suited for this.

In this paper, we expound on the above two themes to —

- Provide targeted feedback when students are stuck on problems by leveraging

the student model; (Section 3.3.2)

- Compute on demand curriculum based on class materials requested by the stu-

dent; (Section 3.3.3)

- We will show how this technique can be used to teach concepts to a student
to attain different levels of expertise as desired by the student; and
- We will show how student models may be composed to form joint plans of

study.

- Generate class curriculum in the spirit of social learning by including fellow

classmates in a student’s curriculum while also guaranteeing desired properties
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of the curriculum — e.g. that students not only learn but also apply all the

concepts at least once. (Section 3.3.4)

We do not, of course, set out to model the full scope of challenges 2 in building
and end-to-end ITS. However, we recognize that much of the existing work on de-
ploying ITS systems, if not in conceptualizing them, has focused on specific learning
platforms or courses without any coherent approach or general principles of design
and implementation of the roles usually attributed to ITSs. The aim of this paper is
thus to introduce techniques from the planning community that can formalize some
of these concepts and provide a generalized framework for building such systems from
the ground up. This has useful implications for both the planning as well as the edu-
cational technologies communities — i.e. the former can provide solutions to existing
problems in ITSs (as we demonstrate in this paper) while feedback form the learning
community can provide useful feedback towards the refinement of said techniques,
including defining new areas of research of mutual interest. The biggest advantage of
such an approach, as mentioned above, is that the techniques are domain-independent,
i.e. they are defined at the procedural level and can be grounded with the description
of a particular course as specified by the instructor. Of course, the problem of knowl-
edge representation is (for a specific course and assignments in it) remain a challenge,

but the I'TS features themselves generalize given the proposed planning framework.
3.2 Background

In the following, we will introduce concepts from the planning literature that will

be used in the rest of the paper.

2For example, the current discussion only focuses on the learning and interaction phase and does
not include post-hoc reflection / evaluations as explored in (Katz et al., 2000, 2003; Connelly and
Katz, 2009)
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A Classical Planning Problem (CPP)

(Russell and Norvig, 2003) is the tuple M = (D,Z,G) with domain D = (F, A) -
where F' is a set of fluents that define a state s C F', and A is a set of actions - and
initial and goal states Z,G C F. Action a € A is a tuple (¢, pre(a ﬂi ) where ¢,
is the cost, and pre(a eﬁt C F are the preconditions and add/delete effects, i.e.
Srm(s,a) | L if s = pre(a); else du(s,a) | sUefff(a) \ eff (a) where dpq() is the
transition function. The cumulative transition function is da(s, (a1, a9, ..., an)) =
Im(Opm(s,ar), {ag, ... a,)).

A CPP is represented using the Planning Domain Definition Language or PDDL
(McDermott et al., 1998).

A Plan Generator Module (PGM)

(Helmert, 2006) computes a solution to a CPP M as sequence of actions or a (satis-
ficing) plan m = (ay,aq, . .., a,) such that d,(Z, ) = G. The cost of 7 is C'(7w, M) =
Y wer Ca if 0 (Z, ™) |= G; 00 otherwise. The cheapest plan 7* = argmin, C (7, M) is
the optimal plan with cost C}.

A Plan Validation Module (PVM)

(Howey et al., 2004) outputs, given plan 7 and planning problem M, True iff d,(Z, 7) =

G; False otherwise.

A Plan Recognition Module (PRM)

(Ramirez and Geffner, 2010) outputs, given a partial plan & and a planning problem

M, a plan 7 that maximizes the probability that 7 is a sub-plan of m —

7 < argmin_ P([# ]’,ﬂ”')
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Note that the above approach does not directly compute this. Instead, we use the
compilation approach from (Ramirez and Geffner, 2009) to compute the optimal plan

that satisfies a set of observations given a goal as the output of the PRM.

A Landmark Generation Module (LGM)

(Hoffmann et al., 2004) outputs, given a planning problem M, a set of state (or
action) landmarks £ containing states (or actions) that must be passed through (or

executed) in any satisficing solution of M. Thus —

- An action landmark a € A requires that a € 7

Vi dm(Z,7) = G.
- A state landmark s C F' is such that V7 : dm(Z,7) = G, H[ﬁ]lgigﬂ om(Z, ) E
s. (Zhu and Givan, 2003)
A Human-Aware Planning Problem (HAP)
is given by the tuple ¥ = (M, M) where M = (D TH GH) is the human’s
understanding of the planning problem M (Chakraborti et al., 2017a, 2019b).
An Explicable