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ABSTRACT  
   

Coral diseases have become a major vector of change in coral reef physical 

architecture, functional ecology, and community structure. While the field of spatial 

community characteristics and coral disease research is growing, major gaps exist in the 

combination of the two areas of study. Here, I visually assessed over 100,000 massive 

Porites corals across 41 reefs in South Kona, Hawaii to investigate the spatial ecology of 

visually compromised corals. These corals were assessed for seven specific health 

conditions common to the region: algal infection, pigmentation response, algal 

overgrowth, Ramicrusta infection, skeletal growth anomalies, Porites trematodiasis, and 

tissue loss syndrome. Only 6.6% of corals surveyed exhibited a compromised health 

state and overall condition severity was low; less than 10%. Attributes representing 

colony assemblage structure showed few observed patterns with the severity and 

prevalence of these coral health conditions. Additional findings revealed that coral 

colony traits such as perimeter length had a positive effect on the presence of seven 

different coral health conditions. Whereas the interaction of both increasing colony 

surface area and perimeter length was negatively associated the presence of the health 

conditions. By using global and local spatial statistics, I uncovered trends in reefscape- 

and colony-level spatial patterns of health-compromised corals. Significant spatial 

structure existed among colonies based on their health condition severity. However, I 

found infrequent non-random spatial patterns in most reefs in South Kona.  
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Introduction 

Coral diseases have caused changes to coral reefs globally (Young et al., 2020; 

Harvell et al., 2007; Patterson et al 2002; Richardson et al., 1998). Diseases afflicting 

corals have been observed worldwide, but for many, what causes them and how they 

spread across reefscapes is still unknown (Aeby 2015; Harvell et al., 2007; Thurber et 

al., 2020). Major areas of disease prevalence, and thus disease research, have occurred 

in the Caribbean, Hawaii, and the Indo-Pacific (Aeby et al., 2011; Ruiz-Moreno et al., 

2012; Harvell et al., 2007). Unlike coral bleaching events or storm damage, snap events 

that cause major damage over a short period (Pascoe et al., 2021), coral disease is an 

active form of reef decay that can degrade reefs over the long term (Maynard et al., 

2015).  

Despite a multitude of studies in laboratory and field settings, only a handful of 

the pathogens, bacteria, or viruses that cause certain diseases have been identified 

(Thurber et al., 2020; Work and Meteyer 2014). However, over the past several 

decades, studies measuring drivers and processes that influence coral disease have 

been widely implemented (Caldwell et al., 2020; Caldwell et al., 2016; Aeby 2015; Couch 

et al., 2014; Harvell et al., 2007). Local stressors have been found to exacerbate the 

prevalence and severity of existing coral disease (Magel et al., 2019; Sheridan et al., 

2014; Burns et al., 2011). For example, increased sedimentation (Harvell et al., 2007), 

coastal development (Caldwell et al., 2020, Burns et al., 2011), excess nutrients 

(Yoshioka et al., 2016), and marine heat waves (Maynard et al., 2015) have been shown 

to influence coral disease prevalence and severity. In a study from the Caribbean, corals 

that experienced bleaching had a 51-times higher rate of disease than pre-bleaching 

disease levels (Miller et al., 2019). The continuation of marine heatwaves and coral 

bleaching events is predicted to increase the severity of coral disease worldwide 
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independent of local stressors; causing coral disease to become as great of a threat to 

reef decline as coral bleaching by 2050 (Maynard et al., 2015; Ward et al; 2007).  

Over the past several decades, field assessment surveys have been the most 

prominent way of assessing and studying coral disease (Montilla et al., 2019). Field 

investigations have focused on establishing the distribution and demographics of 

diseased corals (Aeby et al., 2011; Burns et al., 2020; Couch et al., 2021; Couch et al., 

2014; Muller et al., 2020; Nicolet et al., 2017). Disease assessment studies use a diver-

based approach to 1) identify the number and size of colonies, 2) identify the 

presence/absence of a given or multiple diseases, and 3) determine the severity and 

extent of diseased or afflicted tissue on each colony (Caldwell et al., 2016; Couch et al., 

2021; Winston et al 2018; Walsh et al., 2013). More recent advancements in survey 

methods and technology allow for fine-scale remote sensing (< 1 m resolution) and 

Structure from Motion (SfM) surveys (< 1 cm resolution) to advance and accelerate coral 

reef assessments and in-situ surveys (Couch et al., 2021; Bayley and Mogg 2020;  

Pederson et al., 2019; Fox et al., 2019;  Edwards et al., 2017; Ferrari et al., 2017; 

Bryson et al., 2017). 

 Evolving methodologies to collect coral community and coral health data have 

been used to quantify specific coral colony metrics such as surface area, perimeter 

length, colony diameter, growth rates, and spatial patterns of coral species and 

morphologies (Sandin et al., 2021; Pederson et al., 2019; Burns et al., 2015). Studies 

have found that the accuracy of SfM surveys relative to in-situ diver-based methods yield 

comparable results, and that there may be “no gold standard” for data collection on both 

coral health and community composition (Burns et al., 2020; Couch et al., 2021). These 

new methodological techniques have created opportunities to ask more complex 

questions about the spatial ecology of corals and their diseases. Burns et al., (2016) 
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used colony-scale 3D models from SfM surveys and found that skeletal growth 

anomalies expressed nonrandom patterning across colony surfaces. Edwards et al., 

(2017) and Pederson et al., (2019) found spatial patterns of coral colonies that are taxon 

specific and are influenced by colony size across reefscapes. While the field of spatial 

community characteristics and coral disease research is growing, major gaps exist in the 

combination of the two areas of inquiry.  

Understanding how trends of diseased corals are related to coral assemblage 

structure, spatial patterns of corals, and specific coral traits remains an evolving area of 

research. The use of spatial coral colony characteristics and coral disease data may 

reveal how disease is spreading among coral assemblage groups, as well as how the 

spatial relationship between colonies influences disease severity. As coral reefs change, 

inquiries investigating different assemblage structures and colony traits may provide 

useful information to managers and conservationists on ways to reduce or control the 

spread of a given health condition or infectious disease. Here, I investigate the 

relationship between seven specific health conditions and corals in the genus Porites, 

specifically focusing on those with massive morphologies. I ask the following questions: 

1) do reefscape-scale patterns of coral density, spatial structure, and size class influence 

the severity and prevalence of a given coral health condition, 2) is the presence of a 

health condition related to coral traits such as colony perimeter and colony surface area, 

and 3) does spatial patterning exist among corals with more severe health conditions? 

The results and methods used in this study will provide insights into how health-

compromised corals are distributed among assemblage patterns as wells as provide 

insight into how health conditions can be mapped.  

 

Materials and Methods 
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Site Description 

 

I focused on reefs located in the South Kona District of Hawaii Island, USA (Figure 1). 

This region has been identified as one of the most intact reef systems in terms of coral 

cover in the State of Hawaii (Asner et al., 2020). These reefs are dominated by coral 

species in the genus Porites, with both branching and massive morphologies. Shallow 

water benthic substrates are composed of basalt and igneous boulders, whereas 

intermediate and deeper depths have a mix of basalt spurs and calcareous reef 

substrates. 

 

Figure 1. Map of study location (a) Hawaii island, southeastern most island in Hawaiian 
archipelago. South Kona Region of Hawaii Island highlighted in red, (b) State of Hawaii, 
and (c) a typical massive Porites coral colony that characterizes reefs in the study area. 
 

Field Sampling 
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Initial site selection utilized sites from the annual South Kona Initiative (SKI) reef 

surveys (Asner et al., 2021). These surveys used a stratified random sampling process 

that empirically characterizes marine coastal habitats by benthic and near-shore 

composition (Asner et al., 2020 & 2021). This type of sampling design aimed to capture 

the variance that exists in reef habitat types from 0 - 18 m, while accurately capturing the 

habitat variance across the region. My study used the 117 sites and data collected from 

these surveys that took place in the months June - August 2020. A full description of the 

stratification and site selection method can be found in the methods section of Asner et 

al. (2021). 

 

Data Analysis and Creation 

 

At each site, I conducted a 10 m x 10 m SfM survey to generate 3D reconstructions of 

benthic substrates at sub-centimeter resolution. 3D reconstructions were created using 

Agisoft Metashape software (Version 1.7 Agisoft LLC 11 St. Petersburg, Russia, 

191144) to produce spatially referenced mosaics detailing coral colonies and benthic 

substrates within the survey area. Methods for model and mosaic development are 

described in Burns et al. (2015) and Bayley and Mogg (2020). Unlike standard SfM 

surveys, I collected photos at an elevation of 0.25 m - 0.50 m off the benthos as 

opposed to the traditional 1 m elevation. By collecting photos this way, I achieved higher 

pixel density per cm as well as a higher picture density per point. I traced individual 

corals by genus and morphology type, focusing on Porites corals with massive 

morphologies (Figure 2). Colony delineations were made around colony borders using 

Mask R-CNN; an initial unsupervised classification technique described in Chen et al. 

(2019). Annotations output from the Mask R-CNN models were visually assessed and 
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edited when necessary in the software platform TagLab (Visual Computing Lab) (Pavoni 

et al., 2020). Visual assessments on Mask R-CNN annotations were for the precision 

and accuracy checks of model predicted annotations. When annotations did not 

accurately capture a colony boundary or misidentified a coral, these edits were corrected 

in TagLab. I converted colony delineations into shapefiles in TagLab for use in further 

assessments of spatial metrics and to determine individual colony surface area, 

diameter, and perimeter length. 

 

Figure 2. Mosaic maps of an example South Kona site at multiple scales (Top) and 
mosaic maps with cleaned Mask R-CNN massive Porites annotation (Bottom).  
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Multidimensional Latin Hypercube Sampling 
 

Due to the extensive time requirement when conducting coral health surveys, I 

used quantitative approach to reduce the number of sites at which digital coral health 

surveys were conducted based on the variance within data. I looked at variables that 

describe the site-level assemblage structure of massive Porites colonies and used four 

metrics to describe assemblage structure: colony density (corals per m2), size class 

diversity (H’), average colony size (m2), and a site level spatial pattern index based on 

the size of colonies. A description of how these data were generated can be found in 

Appendix A. I used multidimensional Latin hypercube sampling to assess the variance 

within and between independent variables across sites. Sites that capture the variance 

among all sites were selected to reduce the number of redundant sites that have the 

same assemblage structure. The process for this sampling uses binning based on 

percentiles of the assemblage variables. I used three bins assessing the 0 - 33, 33 - 66, 

and 66 - 100th percentile of each variable. For each combination of binned variables, a 

single site was selected at random from the sites that fell into that bin (McKay et al., 

2000). By conducting my analysis in this manner, I reduced the sites and therefore time 

it took to conduct coral health sampling while capturing the variance that exists spatially 

and ecologically within these assemblage structure variables and study region. 

 

Coral Health Surveys 

 

Burns et al., (2020) and Couch et al., (2021) found that both coral community surveys 

and coral health surveys yield comparable results when diagnostically comparing in-situ 

diver-based methods to digital SfM mosaic surveys. My coral health surveys used these 

new digital methods and focused on massive Porites annotations from the reduced 
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number of sites. Because the cause of many diseases has yet to be determined, the 

difference between what constitutes a compromised health state and a disease remains 

vague. Thus, for the purposes of this study, I will refer to “diseased” and “health-

compromised corals” as those with “health conditions”. For each site, I assessed Porites 

colonies for seven health conditions: Algal infection (ALG), pigmentation response 

(PRS), algal overgrowth (ALOG), Ramicrusta infection (RAMI), skeletal growth 

anomalies (SGA), Porites trematodiasis (PTR), and tissue loss syndrome (TLS) (Figure 

3). Coral health surveys were linked to individual coral shapefile polygons to map health 

conditions directly to mosaic annotations (Supplementary Figure 1). These health 

conditions were selected due to their prevalence in South Kona as well as use in past 

coral health surveys (Couch et al., 2014). Ramicrusta Infection is new to coral health 

surveys in Hawaii due to the discovery of Ramicrusta hawaiiensis in the archipelago in 

2021 (Sherwood et al ., 2021), as well as its newly found distribution across South Kona 

(Grady et al., in prep). A full description of each health condition is in Appendix A. My 

assessment of each colony included the presence/absence of each health condition as 

well as the severity of those present. Prior to coral health surveys, surveyors were 

calibrated using pre-annotated colonies to minimize surveyor bias. All coral health 

surveys were analyzed in ArcMap GIS (Version 10.7.1 Environmental Systems 

Research Institute, Inc.) in conjunction with Agisoft Metashape software for use of both 

the mosaic, 3D model, and individual images to maximize angles and determine colony 

health effectively. 



  9 

 

Figure 3. Images of massive Porites corals with different compromised health states: (a) 
Ramicrusta  Infection, (b) Algal Overgrowth (image pending), (c) Tissue Loss Syndrome 
(image pending), (d) Pigmentation Response, (e) Skeletal Growth Anomalies, (f) Porites 
trematodiasis, and (g) Algal Infection. 
 

Coral Health and Assemblage Statistical Analysis  

 

To assess relationships between site level massive Porites assemblage structure 

and coral health conditions, I used an Ordinary Least Squares (OLS) regression model. 

Two independent response variables describing coral health condition, prevalence and 

proportional severity, were calculated to site level. Health condition prevalence was 

quantified as the number of afflicted corals per every thousand corals. Coral health 

severity data were transformed prior to analysis to unbound the data using a logit 

transformation, from data that existed between 0 and 100 to a continuous variable. The 

assemblage predictor variables were scaled to a mean of zero and standard deviation of 

one to remove units and make estimates comparable between variables. Massive 

Porites assemblage structure predictor variables included colony density, size class 

diversity, and a site level spatial pattern index. Predictor variables were assessed for 
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multicollinearity using Variation Inflation Factor (VIF) scores prior to statistical analysis. A 

VIF score above 5 was used as a cutoff for multicollinearity occurring between variables. 

No variable had a VIF score above 2, and therefore all were kept in the models. 

Residuals were visually inspected graphically for each model.  

 

Coral Health and Colony Trait Statistical Analysis 

 

To assess the relationship of colony traits with colony health data, I used 

Generalized Mixed Effects Models (GLMMs). For this analysis, I used each individual 

colony assessed during the coral health surveys as a replicate, where the presence or 

absence of each health condition followed a binomial distribution. Coral trait data, colony 

surface area, perimeter length, and the interaction between surface area and perimeter 

length were used as fixed effect predictor variables. Because colonies were nested 

within sites, and the number of colonies varied at each site, site was used as a random 

effect in the model. Predictor variables were scaled to a mean of zero and standard 

deviation of one prior to analysis. The interaction terms were assessed using a 

Likelihood Ratio Test (LRT) to infer if there was more information provided by assessing 

increases in both variables together rather than just independently.  

 

Coral Health Reefscape and Colony Spatial Analysis  

 

To define the spatial pattern of health-compromised corals at colony and reef 

scales, I used Global Moran’s I indices. A Global Moran’s I statistic is one of the most 

common ways to test for non-random spatial patterns and spatial structure (Moran 

1950). Afflicted corals may exhibit spatial structuring simply because the corals at a 
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given site exhibit spatial structuring, so I included both health compromised and healthy 

colonies in the analysis. For every healthy colony, the severity value was given a 0. For 

each site, a Moran's I test used a site's unique MaxdiffK statistic as the Euclidean 

distance and a Gaussian weighting scheme (Appendix A). This assesses the maximum 

differential clustering distance within a cluster of corals at a site, weighting corals nearer 

to each other higher than those farther away. Each Moran's I test was compared against 

199 random permutations and a pseudo p-value was calculated to compare the resulting 

p-value from the test to that of the 199 randomly generated spatial patterns. The I-value 

from each test described the spatial pattern of health compromised corals based on their 

severity per health condition. At sites where significant departures from randomness 

existed, a Getis-Ord Local statistic (GI*) was used to identify areas where health 

condition clusters occur among colonies (Ord and Getis 1995). Where a Global Moran’s 

I test will indicate if a site has significant clustering or dispersion based on a health 

condition’s severity, a Getis-Ord Local statistic will show exactly which colonies have 

clustering based on their condition severity and show condition hotspots. I use G values 

from the Getis-Ord Local statistic and individual colony shapefiles to indicate the level 

and intensity of the spatial pattern. I generated Individual site maps as data products to 

show varying levels of spatial structuring. A full schematic of the methods is located in 

Figure 4. 
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Figure 4. Schematic visualizing the workflow of site selection, field and lab surveys, data 
collection and development, data upscaling, analyses, and data products.  
 

Results 

 

South Kona Coral Health Trends 

 

My initial site level investigation used the 117 sites from the annual South Kona 

Intensive reef surveys. Of these 117 sites, model alignment and mosaic construction 

errors occurred in six of them, with 111 successful mosaics generated. Of the remaining 

111 sites, I removed an additional five sites due to benthic cover consisting of only sand 

with no corals present. The remaining 106 sites had 280,720 massive Porites colonies 

with an average site density and standard error of (25.7 ± 1.87 m2), a size spatial index 

of and standard error (0.012 ± 0.001), diversity among sizes and standard error 
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measuring (1.05 ± 0.021), and an average size and standard error of (0.0034 ± 0.0002 

m2). Multidimensional Latin hypercube subsampling indicated that it was possible to 

reduce these 106 sites to 41 while still capturing the same variance within the study 

region (Supplementary Figure 2 and 3). The 41-site subset had a total of 100,098 

massive Porites corals with an average site density and standard error of (25.7 ± 2.94 

m2), a size spatial index and standard error of (0.012 ± 0.003), diversity among sizes and 

standard error of (1.05 ± 0.035), and an average size and standard error of (0.0034 ± 

0.0004 m2) (Supplementary Figure 4; Supplementary Table 1). 

 
Massive Porites corals were affected by all seven of the diseases and health 

conditions in this study. Of the 100,098 corals visually assessed, 6,667 (6.6%) colonies 

were in a visually compromised health state. The prevalence at which these corals 

health conditions occurred and their average severity are reported in Table 1. Average 

severity illustrates the overall health of all corals by condition and site, but it 

misrepresents the severity proportional to those corals that are in a compromised health 

state. To address this, I calculated proportional severity which is the average severity of 

only the colonies in a visibly compromised health state (Table 1). Health Condition 

prevalence was calculated by the ratio of compromised colonies to total colonies. This 

incident prevalence was multiplied by 1,000 to obtain the prevalence of compromised 

colonies per 1,000 colonies for each health condition (Table 1). 

Table 1. Regional level metrics (means of site means) describing the mean severity, 
mean proportional severity, prevalence of health condition presence per 1000 colonies, 
and number of sites where present (n). Mean severity is the severity of each health 
condition across all corals at a site. Proportional severity is the mean of only those corals 
that had a given condition.  
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Coral Health and Reefscape Coral Assemblage Relationships 

 

The OLS multiple regression models reported interesting findings regarding the 

relationship between the health condition proportional severity and health condition 

prevalence with the massive Porites reefscapes assemblage structure variables. Tissue 

loss syndrome was the only health condition to show a significant relationship with 

proportional severity and an assemblage variable: colony density (R2 = 0.24). Skeletal 

Growth Anomaly was the only health condition to show relationships with condition 

prevalence and assemblage variables: colony density (R2 = 0.12) and size class 

diversity (R2 = 0.12). A full description of these OLS multiple regression results are 

available in Appendix A in Supplementary Table 2 and Table 3. 

 

Patterns Among Coral Health and Colony Traits 

 

The GLMMs indicated strong relationships with each of the seven health 

conditions for both colony perimeter length and colony surface area (Figure 5, Table 2). 

For algal overgrowth (ALOG), algal infection (ALG), and Porites trematodiasis (PTR) 

increases in perimeter length were associated with increased probability of these health 

conditions. I found that for conditions Ramicrusta infection (RAMI), tissue loss syndrome 

(TLS), pigmentation response (PRS), and skeletal growth anomalies (SGA), the 
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magnitude of the positive effect of perimeter length was lower compared to the other four 

health conditions (Figure 5). The GLMMs also indicated that surface area was a 

potential indicator for compromised health except for Ramicrusta infection and Porites 

trematodiasis. While surface area had a significant effect, it is weaker compared to 

perimeter length (Figure 5, Table 2).  

Table 2. Log-odds-probability coefficient estimates and p-values from the GLMMs. 

 

 

Figure 5. Log-odds-probability coefficient estimates for predictors in GLMMs for seven 
coral health conditions. Predictor variables were standardized prior to model 
computations to make log-odds-probability estimates comparable; horizontal lines are 
95% confidence intervals. Only significant coefficients were plotted all estimates are 
reported in Table 2. 
 

The interaction between perimeter and surface area showed interesting trends 

for the presence of all health conditions (Figure 5). Each of the seven models’ likelihood 

ratio tests indicated that the models with interaction terms revealed that the interaction 



  16 

between perimeter and surface area of corals provides additional information compared 

to models without the interaction. With the exception of algal overgrowth and surface 

area, perimeter and surface area on their own were positive, and the interaction between 

the two had a negative effect on the presence of each of the health conditions. The 

interaction term refers to a linear ratio between perimeter length and surface area. The 

two covariates increasing together causes a net negative effect on the seven health 

conditions within these data. On contrast, when one of these two variables increases or 

decreases independently from the other, a positive effect is observed in the models.    

This was particularly the case for algal overgrowth, algal infection, and Porites 

trematodiasis.  

As perimeter length had the largest positive effect for the presence of these 

health conditions, additional probability curves were created using results from the 

GLMMs for each health condition to further interpret the results from these analysis  

(Figure 6). Each of these probability curves suggests that as the perimeter length of a 

colony increases, the expected probability of having a particular health condition also 

increases. With health conditions such as algal overgrowth and pigmentation response, 

smaller colony lengths have a higher expected probability of a health condition being 

presence. Whereas tissue loss syndrome and Ramicrusta infection have high expected 

probabilities only in colonies with larger perimeters (> 5 m).  
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Figure 6. Each curve displays the expected probability of a given health condition based 
on the perimeter length in meters. Supplementary Figure 5 displays individual graphs for 
each health condition and site.  
 

Coral Health Reefscape and Colony Spatial Trends  

 

Reefscape- and colony-level spatial assessments of severity revealed interesting 

trends about the spatial patterns of coral health conditions. Ramicrusta infection had the 

highest percentage of sites (33.3%) where clustered spatial patterning and non-random 

patterning existed. In contrast, conditions such as algal infection had the lowest number 

of sites (0.06%) with non-random patterns (Table 3). No one health condition showed 

spatial clustering at every site surveyed. Skeletal growth anomalies had nine sites 

(16.6% of sites where present) that had a significant dispersion pattern, suggesting that 

at these reefscapes skeletal growth anomalies are systematically dispersed among 

colonies. 
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Table 3. Finding from Moran’s I tests indicating if spatial patterning was present among 
the seven health conditions assessed. Percent data refers to percent of sites only at 
which health conditions were present (n = number of sites out of 41). % Sites with 
clustering refers to the proportion of sites where clustering occurred relative to the sites 
where the health condition was present. A full description of the site level Moran’s I 
results can  be found in Appendix A under Supplementary Table 4. 
 

Local spatial assessments using Getis-Ord local statistics were particularly useful 

when identifying hotspots of individual health conditions. The G values from the local 

statistics were mapped onto individual colonies to not only show where colonies in a 

compromised health state are, but also identify which colonies are within a significant 

health condition cluster (Figure 7).  
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Figure 7. Examples of significant G values from Getis-Ord local statistics mapped onto 
individual coral colonies. Dark red corals indicate cluster focal points whereas lighter red 
colors indicate outer sections of hotspot or weaker clusters. Light gray polygons 
represent individual coral colonies not in health condition clusters but that may still have 
a health condition. (a) Ramicrusta  infection, (b) algal overgrowth, (c) pigmentation 
response, (d) skeletal growth anomalies. The health conditions algal infection, tissue 
loss syndrome, Porites trematodiasis were not included in these local spatial statistics as 
they did not meet criteria for local statistics.  
 

Discussion  

 

I visually assessed over 100,000 massive Porites corals across 41 reefscapes in 

South Kona, Hawaii to investigate the spatial ecology of individual corals in a health-

compromised state. South Kona massive Porites corals were observed to have small 

sizes, loosely clustered spatial patterns, high density, and low size diversity. This 

suggests that these corals are small, that high recruitment is occurring, and that they are 

found in loosely clustered assemblages. Attributes representative of colony assemblage 

structure (spatial pattern, density, diversity in size classes) had little effect on the 

severity prevalence of health conditions. Surface area and perimeter length proved to be 

strong indicators for the presence or absence of the seven coral health conditions 

examined here. Spatial patterning of health condition severity occurred among the seven 

health conditions, but a random spatial pattern was the dominant pattern observed.  

My findings show that when perimeter length and surface area increase together 

linearly, the effect on the presence of these health conditions is negative. Colony size 

(diameter) has previously been an indicator of certain conditions such as skeletal growth 

anomalies and tissue loss syndrome (Caldwell et al., 2020); however, my assessment 

breaks down colony size into more specific traits. This trend could be representative of 

the way coral health conditions cause partial mortality on massive Porites corals. These 

corals, when healthy, have radial spherical growth patterns (Sandin et al., 2020; 
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Forsman et al., 2009). As health conditions cause partial mortality, this morphology may 

become more obscure and lose its natural spherical shape. This, in turn, can increase 

the perimeter length and change the surface area to perimeter length ratio. Increased 

perimeter and surface area proportion suggests larger, rounder, and healthier colonies 

that have not experienced partial mortality from health conditions. Further hierarchical, 

multiscale, and temporal investigations into how colony size and trait dynamics relate to 

health condition presence and colony growth metrics may further reveal this relationship.  

By using global and local spatial statistics, I uncovered reefscape- and colony-

level spatial patterns of health compromised corals. I found that spatial patterns exist, 

and that significant clustering and dispersion occur, in health condition severity. 

However, I found infrequent non-random spatial patterns in most reefs in South Kona. 

Skeletal growth anomalies was a unique condition in that 39% of the reefs where 

present exhibited a nonrandom pattern either dispersion or clustering. However, little is 

known about the cause of skeletal growth anomalies (Burns et al. 2016). The 

presence of localized spatial structure among colonies due to the severity of a specific 

condition suggests localized spread of disease (Burns et al., 2016). For three of the 

health conditions surveyed, localized spread may not be a function of the vectoring of a 

health condition but could be mediated by the environment or by the biology of individual 

colonies. Algal overgrowth and pigmentation response were the two most common 

conditions present and can be the result of a wide range of factors (Couch et al., 2014). 

The health conditions Ramicrusta infection, Algal Infection, and Porites 

Trematodiasis are caused by specific vectors that have potential to move through a 

reefscape and spread locally or systemically between corals (Aeby 2015). 

The use of SfM mosaics to investigate coral health patterns represents a 

systematic and archivable way to collect spatial data. This form of methodology typically 
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can yield a wide variety of data that would be impractical to assess in-situ during a dive. 

SfM data sets can be further strengthened when used in temporal studies to measure 

hundreds of thousands of specific corals, their traits, and their health states through 

time, something that cannot be achieved via in-situ surveys. However, we must 

recognize that extracting individual health information from detailed mosaics and 3D 

models may be more challenging than looking at a colony underwater. It is likely that for 

certain health conditions, skeletal growth anomalies and Porites trematodiasis, 

digital coral health surveys underrepresent the prevalence at which these conditions 

occur (Burns et al., 2020).  

I used polygon centroids as the coordinate for spatial analysis. While this is 

common in both spatial statistics in all fields and in corals, it skews or biases how close 

polygons are to one another. Larger colonies have centroids naturally farther from the 

colony (polygon) edges, whereas smaller colonies have them closer. This creates a 

differential between colony centroids that may not exist between colony edges and 

naturally puts larger colonies farther away from its neighboring colonies in the spatial 

assessment. This may have affected the overall results of the spatial analysis due to the 

sensitivity of spatial weight matrices. The use of a MaxdiffK statistics as the distance 

between individual colonies at each site may reduce sensitivity in the Moran’s I analysis. 

However, further developments in spatial analysis that use multiple spatial points per 

coral feature may be the only way to reduce centroid-to-edge bias. This study represents 

one approach to using spatial matrices when conducting spatial analysis. It is highly 

likely that different statistical or mathematical approaches when creating spatial matrices 

such as different Euclidian distances or position weighting would change the overall 

outcome of the spatial pattern results. Specific to SfM annotations, corals are often not 

directly touching, and thus spatial matrices commonly used in grids such as rook or 
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queens’ continuity matrices would further bias these resulting I-values. I recommend that 

future studies, particularly those assessing coral annotations, take caution designing and 

approaching spatial analysis with these types of data. 

First order spatial effects, those relating to external factors or influences that 

drive spatial patterns, occur among coral spatial data. One of the most common external 

factors is benthic substrata and corals inability to settle or grow on sand or loose 

substrates. This creates a bias when assessing spatial patterns of individual coral 

colonies due to blank spots or areas that are comprised of sand and thus massive 

Porites corals and their coral health conditions are incapable of occurring spatially in 

these areas. As a result, corals may cluster spatially simply due to limited availability 

within a given 10 x 10 m area due to or lack of hard substrate. My use of a Global 

Moran’s I assessed the spatial dependence between specific health condition values 

among colonies rather than the overall spatial pattern of corals. While this does not 

completely rule out inherent first order effect bias, it may address the issue contextually 

and provide insight into future studies. My addition of including healthy colonies, those 

with a severity of 0% for each health condition, into this spatial analysis also aided in 

reducing the overall influence of these first order effects as it look at all massive Porites 

corals within a site rather than those just in a visibly compromised state.  

As research in coral spatial patterns progresses, knowledge gaps still exist. Here, 

I used large volumes of colony-scale 3D data; however, a surprising lack of statistical 

frameworks can implement 3D spatial weight matrices. Because of this, I used standard 

2D weight matrices. To date, no study has been able to statistically assess the pattern of 

coral distribution spatially at the colony scale in 3D, due to few spatial statistics using 3D 

matrices. Previous studies (Pederson et al., 2019; Edwards et al., 2017; Burns et al., 

2016) have assessed the spatial pattern of either colony distribution or colony health in 
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2D, but all (including mine) lacked a statistical approach using a third dimension (wij 2D 

vs wijk 3D) in the spatial analysis. New spatial statistics or existing statistics should be 

further developed to measure 3D spatial clustering to assess the pattern of coral 

assemblages, disease severity, and growth of corals across 3D reef architecture.  

Spatial pattern of both corals and their health conditions are important metrics to 

assess as reefs change and adapt to future conditions. I implemented a sampling 

technique that integrated remote sensing data that captured regional habitat variation 

and combined it with in-situ remote sensing using SfM. I examined the relationship of 

massive Porites coral health conditions and their assemblage structure, colony traits, 

and spatial patterning. I focused on effectiveness of colony traits as predictors for the 

presence of these health conditions. While I did not detect an effect of assemblage 

structure on the prevalence or severity of health conditions among corals, this does not 

necessarily mean no pattern exists. Further investigation and temporal tracking of the 

spatial distributions of site or reefscape level assemblages in a health compromised 

state may reveal further trends. The South Kona reefs monitored in this study observed 

less than 7% of massive Porites in a visibly compromised health state, but as conditions 

change and new diseases spread, understanding ecological spatial patterns of these 

corals will be critical for coral conservation and determining the spread of diseases. The 

findings presented here, and the new methodological approaches implemented in this 

study, can be rapidly applied to existing marine monitoring programs to track the spread 

of coral health conditions. The addition of a temporal component to these methods may 

help the predictive capabilities of managing coral health under future conditions. While 

these methods provide strong archivable and spatial components, evolving them further 

will allow for increased understandings of the interaction between corals and their 

surroundings. 
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Massive Porites Site Reduction Data  

We used four metrics that describe massive Porites spatial distribution and colony 
characteristics at each site: colony density, size class diversity, average colony size (m2), 
and a site level spatial index. We quantified colony density by the (n) number of colonies 
divided by the total survey area to measure colonies m2. Size class diversity uses a coral 
size binning system commonly used in coral health surveys (Aeby 2006), using the 
longest axis of a coral colony as colony size. Each coral colony is placed in one of the 
following bins: (a) 0-5 cm, (b) 5-10 cm, (c) 10-20 cm, (d) 20-40 cm, (e) 40-80 cm, (f) 80-
160 cm, or (g) >160 cm. Each size class is used to calculate the Shannon Diversity 
Index (Shannon 1958) to capture the diversity of sizes that occurs at each site. This 
index is a combination of alpha diversity and evenness and aims to assess the range 
and distribution of coral sizes at a site. Average colony size is calculated by using the 
mean 2D polygon surface area. The spatial index is determined by using a Global 
Moran’s I test and using the Moran’s Index statistic as an indicator for spatial patterning. 
An index at or nearer 1 indicates a site with highly clustered corals, at or near 0 indicates 
a random distribution, and at or nearer -1 indicates highly dispersed corals. A Ripley’s K 
statistic using site coral annotations was conducted to calculate the MaxdiffK statistic. 
The MaxdiffK is the maximum differential at which spatial structuring occurs compared to 
100 theoretical permutations or configurations (Burns et al., 2016). We use the MaxdiffK 
statistic as the Euclidean distance in the specified bandwidth for the Global Moran’s I 
test to test for spatial autocorrelation and determine the spatial index at each site as well 
as for all site level spatial analysis. 

 
Descriptions of surveyed coral diseases and health conditions 

 
Algal Infection (ALG) is the cause of filamentous algae directly growing onto live coral 
tissue. This direct infiltration often causes polyp stress which may lead to pigmentation 
response or partial mortality  

 
Pigmentation response (PRS) like that sub-acute tissue loss can be caused by several 

various causes and sources. Pigmentation Response is the creation of a fluorescent 
protein in response to a stressor at or around an afflicted area (Kubomura et al., 2021) 
that can be present across an entire colony or localized to one area. 

 
Algal Overgrowth (ALOG) refers to the presence of any algae that is actively 
overgrowing or smothering coral colonies and causes direct 
harm/abrasion/injury/response to tissue.  

 
Ramicrusta  Infection (RAMI) is a form of algal overgrowth/infection where algae of the 
genera Ramicrusta  can be seen overgrowing/infecting the live tissue of a given colony. 
Unlike many algae, Ramicrusta  spp. can readily overtake coral colonies, smothering 
and killing live coral tissue. 

 
Skeletal growth anomalies (SGA) are a health condition that is the hyperplasia of the 
corallite structure in each colony and prevents normal cellular and biological function 
such as feeding, reproduction, defense, and lipid production (Burns et al 2016., Burns 
and Takabayashi 2011; Sale et al., 2019). 
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Porites Trematodiasis (PTR) is a health condition that influences only the genus Porites 
and is caused by parasitic trematode and forms a metacercarial cyst in the 
gastrovascular cavity within the polyp’s tentacles of Porites spp (Aeby 2015; Aeby 1998). 
The result is the infected tissue that is unable to feed, the production of enzymes 
creating a pigmentation response, and an increase in nematocysts requiring further 
energy production (Aeby 1998).  

 
Tissue Loss Syndrome (TLS) is a generalization term that refers to a condition where a 
loss of tissue takes place at a progressive rate and could be the cause of any number of 
sources (Winston et al., 2018). 
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Supplementary Figure 1. Examples of orthomosaic (Center), coral annotations with 

severity levels (Left), and coral annotations with presence or absence of a compromised 

health state (Right). 
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Supplementary Figure 2. Comparisons of mean and standard error values for the four 

coral assemblage structure variables from the original SKI sites and the subset coral 

health survey sites.  
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Supplementary Figure 3. Map Of South Kona Intensive Study sites (Left) and map of 

41subsetted sites that coral health surveys were conducted at.  
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Supplementary Figure 4. Distribution of the assemblage structure variables summarized 

to site level means: spatial index (Top Left), average size (Top Right), size class diversity 

(Bottom Left), density (Bottom Right). Dotted line signifies variable mean. 
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Supplementary Figure 5. Probability curves where each line represents a sites probability 

curve for a health condition and perimeter length. (a) Ramicrusta  Infection, (b) Algal 

Overgrowth, (c) Tissue Loss Syndrome (image pending), (d) Pigmentation Response, (e) 

Skeletal Growth Anomalies, (f) Porites Trematodiasis, and (g) Algal Infection. 
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Supplementary Figure 6. Graphical results of Ripley’s K statistic from an example SKI 

site. Grey envelope indicates the distribution of 100 theoretical permutations of corals for 

the example site, red dashed line indicates the average theoretical observed spatial 

pattern, and the thicker black line indicates the observed spatial pattern and the given 

radius (r). The Blue Arrows indicate the MaxdiffK Statistic, and the red arrow indicates 

the radius at which the maximum differential of observed spatial clustering occurs 
among corals at this site.  
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Supplementary Table 1. Table of South Kona Intensive sites used and individual site 

variables for hypercube sampling. Reduction percentile bins one, two, and three are also 

included.  
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Supplementary Table 2. Finding from OLS multiple regressions assessing trends between 

individual health condition proportional severity and site level assemblage variables. 

Reported below are the coefficient estimates and p-value for each covariate, and overall 

model p-value and adjusted R2. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ALG PRS ALOG RAMI SGA PTR TLS 

β-Est p-value β-Est p-value β-Est p-value β-Est p-value β-Est p-value β-Est p-value β-Est p-value 

Colony Density 0.165     0.268     0.047    0.530     0.081 0.183 -0.031 0.838 -0.165 0.107 0.001    0.960     0.597 0.003 

Size Class Diversity 0.097 0.483     0.011     0.876     -0.034 0.540 -0.254 0.088 0.149 0.146 0.059    0.036 0.053 0.767 

Spatial Index  0.175     0.242     0.048     0.521     -0.105 0.088 -0.194 0.216 0.113 0.236     0.006    0.793     -0.174 0.366 

p-value 0.235 0.737 0.058 0.198 0.049 0.158 0.006 

Adj-R2 0.034 -0.045 0.114 0.045 0.123 0.058 0.223 
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Supplementary Table 3. Finding from OLS multiple regressions assessing trends between 

individual health condition prevalence per 1000 Porites massive colonies and site level 

assemblage variables. Reported below are the coefficient estimates and p-value for each 

covariate, and overall model p-value and adjusted R2. 
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Supplementary Table 4. Finding from Moran’s I test indicating if spatial patterning was 

present among the seven health conditions assessed. 

 


