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ABSTRACT

Image segmentation is an important and challenging area of research in computer vi-

sion with various applications in medical imaging. Image segmentation refers to the

process of partitioning an image into meaningful parts having similar attributes. Tra-

ditional manual segmentation approaches rely on human expertise to outline object

boundaries in images which is a tedious and expensive process. In recent years, Deep

Convolutional Neural Networks have demonstrated excellent performance in tasks

such as detection, localization, recognition and segmentation of objects. However,

these models require a large set of labeled training data which is difficult to obtain

for medical images. To solve this problem, interactive segmentation techniques can

be used to serve as a trade-off between fully automated and manual approaches. This

allows a human expert in the loop as a form of guidance and refinement together with

deep neural networks.

This thesis proposes an interactive training strategy for segmentation, where a

robot-user is utilized during training to mimic an actual annotator and provide cor-

rections to the predicted masks by drawing scribbles. These scribbles are then used as

supervisory signals and fed to the network; which interactively refines the segmenta-

tion map through several iterations of training. Further, the conducted experiments

using various heuristic click strategies demonstrate that user interaction in the form of

curves inside the organ of interest achieve optimal editing performance. Moreover, by

using the popular image segmentation architectures based on U-Net as base models,

segmentation performance is further improved; signifying that the accuracy gain of

the interactive correction conform to the accuracy of the initial segmentation map.
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Chapter 1

INTRODUCTION

1.1 Background

Image segmentation consists of dividing an image into meaningful segments to

distinguish different objects in an image. It plays an important role in medical imaging

and computer aided diagnosis in order to separate various structures such as heart,

spleen, knee, brain and blood vessel from images. This clinically useful information

assist the radiologists in diagnosis, study of human anatomy, localization of pathology

and treatment planning.

With the advent of deep learning, the performance of image segmentation algo-

rithms has greatly increased. This success is attributed to the rise of neural networks

with deeper architecture and the use of large annotated datasets. Collecting high-

quality expert annotations demands an intensive and time-consuming labour which

may not be manageable at large scales. Thus, semi-automatic segmentation methods

which integrate user input to guide segmentation, appears to be an efficient alterna-

tive to mitigate the annotation effort.

There have been many different methods being proposed for interactive segmen-

tation. In some earlier works such as GrabCut by Rother et al. (2004), GeoS by

Criminisi et al. (2008), and GraphCut by Freedman and Zhang (2005), an energy

functional is often minimized so that its local minimum is at the boundary of the

object. In recent years, studies by Wang et al. (2018a), Jang and Kim (2019) have

explored the interactive strategy by combining user interactions with CNNs. In these

approaches users provide clicks, scribbles, points, extreme points, super-pixel an-
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notations or bounding boxes as additional supervision to improve the results from

automated approaches. We explore all these heuristics as well as how to encode them

to minimize the number of interactions that the user provides at test time.

In this work, an interactive training strategy is proposed which improves the seg-

mentation accuracy. The CNN is trained with user simulated inputs to edit the

segmentation. Results on a prostate dataset from NCI-ISBI 2013 challenge show su-

perior performance with the curve based user-interaction in comparison to other user

feedback strategies. Moreover, using the recent state-of-the-art segmentation archi-

tecture nnU-Net by Isensee et al. (2018) as the base segmentation model, further

performance improvement is observed using interactive training on Medical Segmen-

tation Decathlon dataset.

The unique challenges posed by medical image analysis have suggested that retain-

ing a human end user in deep learning enabled segmentation system, will speed-up

annotations and be able to refine existing methods.

1.2 Terminology

Image segmentation approaches can be grouped into three categories.

• Manual Segmentation: Manual segmentation refers to a process where each

pixel of the image is manually assigned to a class. This is done by a user by

manually drawing the borders of object of interest or using techniques such as

painting with a brush and marking the area covered by the object. Although

this method is believed to be more accurate, it is tedious, time-consuming and

prone to inter-observer and intra-observer variability.

• Fully Automatic Segmentation: Automatic segmentation methods can segment

images without user interaction. The segmentation is performed using super-

2



vised techniques that train from manually-annotated labeled examples or unsu-

pervised curve initialization approaches based on the minimization of the energy

functional. Recently, deep learning techniques with convolutional neural net-

works (CNNs) have achieved best performance in many public benchmarks and

challenges. Despite their success, these methods require a lot of labeled data

to train, as well as a long training time and specialized hardware (GPU) to

construct the model.

• Interactive Segmentation: Even though automatic image segmentation achieves

impressive performance, it may still need to be refined to become accurate and

robust enough for clinical use. Another approach which combines the automatic

and manual approaches is called semi-automatic or interactive segmentation.

This allows users to explicitly control the predictions using interactive input to

indicate mis-segmentation.

1.3 System Design

In comparison to automatic segmentation, interactive segmentation provides user

interaction to the network as an additional input or feedback. This way the image

segmentation accuracy can be improved for practical applications since the model has

a feedback control loop.

The design of such a system can be viewed as the following three modules/steps.

1. User Module

The user provides input by placing scribbles and marking the correct boundary

for the object.

2. Network Module

3



A segmentation architecture is adopted that takes images as input along with

the user provided information in the form of clicks/scribbles.

3. Output Module

Initial set of clicks along with the input image is passed to the network to get

the initial prediction.

The user corrections are taken into account for any misclassified points and passed

as input to Step 1. The above steps are performed iteratively until the user gets the

satisfied result and then the process is terminated.

Figure 1.1: System Design

The process of an interactive segmentation strategy is shown in Figure 1.1. In

this semi-automatic process, the knowledge provided by the user via interaction in

the form of clicks/scribbles assists the system in the segmentation process. The

system learns to use interactions to predict better boundaries of the object; as these

user-interactions provide high-level information indicating the object and background

regions. In each iteration, the prediction is updated until a satisfactory segmentation

result is obtained.

1.4 Comparison with InterCNN

• In this work, we have used nnU-Net as the base segmentation model to show

that even though the prediction from base segmentation model can influence

4



the percentage gain, user-interaction can refine segmentation further for higher

accuracy.

• In InterCNN, users needed to supply clicks as region scribbles around the objects

of interest to guide segmentation; we have formalized user input via various

representations.

• We demonstrate the performance of our proposed framework on Prostate dataset

from NCI-ISBI 2013 Challenge and Heart, Spleen, Pancreas, Hippocampus

dataset from Medical Segmentation Decathlon that shows the generalizability

of our approach.
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Chapter 2

RELATED WORKS

There have been several approaches being used for semantic segmentation. In this

section, we review some of these state-of-the-art techniques.

2.1 Active Contour Models

Kass et al. (1988) proposed snakes algorithm to segment the images by means

of energy minimization. In this approach, an initial contour is deformed along the

boundary of an object in response to internal forces, external image forces and user

defined constraints. These models are very sensitive to noise and the initial curve,

which limits their practical applications. Other well known examples are active con-

tour without edge (ACWE) by Chan and Vese (2001), geodesic active contours by

Yezzi et al. (1997) and fast global minimization-based active contour model (FGM-

ACM) by Bresson et al. (2007).

2.2 Neural Networks for Semantic Segmentation

With the introduction of deep learning algorithms, convolutional neural networks

(CNNs) have significantly improved performance for segmentation tasks. Various clas-

sification architectures like Alexnet by Krizhevsky et al. (2012), VGG by Simonyan

and Zisserman (2014), GoogLeNet by Szegedy et al. (2015) and ResNet by He et al.

(2016) have been adapted to create semantic segmentation networks.

The most well known architecture U-Net by Ronneberger et al. (2015), uses the

encoder-decoder architecture where the input image is down-sampled and then up-

sampled to get image segmentation. U-Net’s novel architecture has skip connections
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which are designed to forward feature maps from down-sampling path to up-sampling

path to avoid losing high-resolution information.

Various extensions of U-Net have been developed, a W-shaped network is proposed

for 2D medical image segmentation task by Chen et al. (2018), Çiçek et al. (2016)

proposed 3D U-Net architecture that deals with 3D volumetric data directly, Milletari

et al. (2016) introduced a similar architecture, V-Net, which employs residual con-

nections to design a deeper network for end to end segmentation of prostate cancer,

Zhou et al. (2018) proposed U-Net++ with the integration of additional convolution

layers in the form of dense skip connections in U-Net and tested their method on a

variety of medical datasets. Some of the other relevant works includes H-DenseUNet

by Li et al. (2018) for liver and tumor segmentation, PDV-Net by Hatamizadeh et al.

(2018) for fast and automatic segmentation of pulmonary lobes from chest CT im-

ages, ASDNet by Nie et al. (2018) who designed attention model to segment prostate

images with higher accuracy, Attention U-Net by Oktay et al. (2018), Gated-UNet

by Schlemper et al. (2019) and nnU-Net by Isensee et al. (2018) which have also

leveraged the attention concept into medical image segmentation.

2.3 Interactive Segmentation

As discussed previously, neural networks have been used in an effective way for

performing semantic segmentation. However, supervised training of such models re-

quire large amount of high quality labels and acquiring such labelled data is tedious

and often incur high costs. In order to reduce the cost of labeling, semi-automated

or interactive methods have been proposed. Interactive approaches allows human-

computer interaction to obtain more accurate segmentation.

Grabcut by Rother et al. (2004) and Graphcut by Freedman and Zhang (2005) are

classic interactive segmentation models, which segment objects by gradually updating
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the appearance model. More recently, building on advances in deep learning, CNN

models have been extensively used for interactive segmentation. DeepIGeoS proposed

by Wang et al. (2018b) uses geodesic distance transforms of scribbles as an additional

input to the CNN for interactive segmentation of foetal MRI images and brain tumor

images. Sakinis et al. (2019) uses point clicks that are modelled as Gaussian kernels

and put them as input to an FCN for segmenting medical images. In BIFSeg, Wang

et al. (2018a) proposed image-specific fine-tuning and incorporates bounding boxes

and scribble based interaction. Here, users first draw a bounding box, the area

inside this bounding box is considered as input to CNN to obtain an initial result,

thereafter which users perform an image-specific fine-tuning to make CNN provide

better segmentation results. Deep extreme points (DEXTR) by Roth et al. (2019),

requires the user to click on the extreme boundary points of an object, generating

initial segments via a random walker algorithm and then train a fully-supervised

segmentation network.

Castrejon et al. (2017) proposed Polygon-RNN which predicts vertices of a poly-

gon that are iteratively corrected. Several improvements to Polygon-RNN is done in

Polygon-RNN++ by Acuna et al. (2018) where a better learning algorithm is pro-

posed to train the model using reinforcement learning. Furthermore, Curve-GCN by

Ling et al. (2019) represents object as a graph and use Graph Convolutional Network

(GCN) for predicting the locations of all vertices simultaneously. In Curve-GCN, N

control points are first initialized along a circle. These current coordinates are con-

catenated with features extracted from the corresponding location and propagated

via a GCN to predict a location shift for each node. When human-in-the-loop, the

annotator iteratively moves wrong control points onto their correct locations. Sim-

ilarly, Pixel2Mesh by Wang et al. (2018c) also exploited a GCN to predict vertex

locations of a 3D mesh.
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2.4 CNNs with ACM

In recent years, researchers have also combined techniques like Active Contour

Models (ACM) with deep learning approaches. One approach is to use these models

as a post-processing step to improve an initial segmentation map. A different ap-

proach is to formulate new loss functions inspired by ACM principles. Hatamizadeh

et al. (2019a) have proposed Deep Active Lesion Segmentation (DALS), an automated

segmentation framework that utilises a level-set ACM formulation with a per-pixel-

parameterized energy functional and a novel multiscale encoder-decoder CNN that

learns an initialization probability map along with parameter maps for the ACM.

In another work, Marcos et al. (2018) proposed Deep Structured Active Contours

(DSAC), combining ACMs and CNNs for segmenting aerial images. Chen et al.

(2019) proposed leveraging traditional active contour energy minimization into CNNs

via a new loss function that combines the geometrical information with region simi-

larity thus achieving better results than others. In an extended work, an end to end

backpropagation trainable, fully-integrated FCN-ACM combination was introduced

by Hatamizadeh et al. (2019b) in Deep Convolutional Active Contours (DCAC).

9



Chapter 3

METHODOLOGY

In this thesis, we present a two-step deep learning training framework. First, a

supervised learning-based segmentation network is trained which takes original image

as input and outputs an initial segmentation mask. Second, an interaction network

is trained that utilizes the input image, the prediction from previous step, and a user

interaction in form of scribble for segmentation refinement.

3.1 Base Segmentation network

We use a U-Net (Figure 3.1) based neural network architecture to predict an

initial segmentation mask as shown in Figure 3.2. We also train a 3D nn-UNet by

Isensee et al. (2018) as it is a robust and self-adapting framework with the ability

to dynamically adapt to the details of the datasets (median patient size, input patch

size, batch size, etc.) and amount of available GPU memory.

3.2 Interactive Segmentation network

We utilize the architecture based on InterCNN by Bredell et al. (2018) which allows

for the network to have two additional inputs, user edits in the form of scribbles and

most recent prediction.

3.2.1 User Interaction

User guidance is provided by generating clicks which acts as a guidance signal to

the network. Two types of user emulated inputs are generated:

10



Figure 3.1: Unet Architecture From Ronneberger et al. (2015)

1. Foreground Clicks: These are placed within the area of interest to guide the

network towards predicting foreground.

2. Background Clicks: These are placed in the false positive areas which have been

incorrectly segmented as foreground regions.

Let Sf and Sb denote foreground and background clicks respectively. These inter-

actions are given to the network in the form of an image with the same spatial aspect

ratio as input image. All the pixels in the scribble image have zero value except

for pixels corresponding to foreground and background clicks. In case of multi-class

segmentation, clicks are generated corresponding to each class and are then combined

together to get the final scribble image.

3.2.2 Training Strategy

The initial predictions (P0) are received from a base segmentation network. These

predictions are then compared with ground truth (G). The mislabelled pixels are

11



Figure 3.2: Base Segmentation Network (BSeg). Used for the Generation of Initial
Prediction Mask and Scribbles.

Figure 3.3: Overview of Our Interactive Segmentation Network (IntSeg). The Fore-
ground Click (Pink) and Background Click (Blue) Constitute Our Encoding for Fore-
ground and Background Correction to Create Scribbles. The Scribbles and Previous
Prediction Are Concatenated with the Input Image to Form a 3-channel Input for the
CNN. The Network Is Trained Iteratively Using the Simulated User Edits to Improve
Segmentation Accuracy.

identified and the scribble image (S0) is generated by the emulated user model. The

input images (I) along with the initial predictions (P0) and scribbles (S0) are fed to

the IntSeg network. Subsequently, the IntSeg network generates a new prediction

(Pk) and corresponding scribble (Sk), which are then fed to the model at the next

interaction (k). During each interaction (k), cross entropy loss is computed and the

network weights are updated through back-propagation. This is done iteratively over

multiple rounds (K).

The scribbles used during training should ideally be provided by users. However,
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this is not feasible and hence we emulate user clicks by simulating the expected

annotator behavior. Moreover, we train with a certain annotator noise model, by

perturbing the position of clicks as we expect some inconsistent inputs from the

annotators.

Similarly, at test time, we iteratively sample the clicks for correcting the predicted

mask with the same annotator noise model, as used in training.

3.2.3 Simulating Annotations

First, mislabelled pixels are identified based on the prediction by comparing it

with the ground truth mask. For example, Figure 3.4 (e) is the difference map which

shows incorrectly labelled pixels. The black and white region shows false positive

Rfp and false negative Rfn regions respectively. We have simulated various annotator

behaviour by using different types of user-inputs or clicks.

Figure 3.4: Example Shows (a) Input Prostate Image (b) Initial Prediction from
Base Segmentation Network (c) Ground Truth Mask (d) Ground Truth and Initial
Prediction Overlaid Together (e) Difference Map to Show Clearly the False Positive
and False Negative Regions

1. Region Clicks: A 5x5 region/patch is placed randomly in the incorrectly pre-

dicted area for Rfp and Rfn correction (Figure 3.5 (a)).

2. Region Clicks within the largest connected component: For both Rfp and Rfn

regions, the largest incorrect cluster region is selected and the user emulated

13



(a) (b) (c)

(d) (e)

Figure 3.5: Different Types of Annotation Methods. Here the Markings in Pink and
Blue Color Shows the Scribble/Clicks Used for Foreground and Background Correc-
tion Respectively.

clicks are placed in that region (Figure 3.5 (b)). This error region is the largest

connected group of pixels of ground truth mask that has been mislabelled.

3. Region Clicks at the center of the largest connected component: The user anno-

tators tend to correct the error by clicking at the center of the incorrect region.

To replicate this behaviour, the largest incorrect cluster region is selected and

erosion is performed to get the center of the cluster. A 5x5 region is placed at

the center of this cluster (Figure 3.5 (c)).

4. Curves: We believe that scribbles are an efficient way for annotators to create

corrections in the error regions. It is particularly favoured since user can simply
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draw a curve by dragging the cursor inside the error region instead of precisely

drawing the object boundaries.

The user drawn curves are emulated by utilizing image skeletonization. For

Rfp and Rfn regions, the largest incorrect cluster region is selected and is skele-

tonized to 1 pixel width to match the expected behaviour of the user drawn

curve (Figure 3.5 (d)). These scribbles are then smoothed using erosion and

dilation to introduce some amount of noise.

5. Full region: The complete largest connected component is selected as scribble

for Rfp and Rfn correction (Figure 3.5 (e)). This user interaction strategy is

practically not feasible in a realistic use case as it requires annotators to mark

the complete incorrect cluster. Therefore, this simulation is used just for a

comparison.
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Chapter 4

EXPERIMENTS

4.1 Data

In this work, we have utilized training datasets (as they include ground truth

annotations) from public challenges, namely Medical Segmentation Decathlon and

NCI-ISBI 2013 Challenge.

1. NCI-ISBI 2013: We adopt the T-2 weighted MRIs of the Prostate dataset from

the NCI-ISBI 2013 challenge which in total contains 60 volumes from differ-

ent patients. We utilize the 29 subjects which have multi-class ground truth

segmentations, consisting of 2 labels namely central gland and peripheral zone.

We randomly divide the dataset into 4 groups D1-D4. D1 contains 15 patient

data and is used for training the base model, D2 consists of 23 patients (includ-

ing D1) and is used for training interactive model, D3 is used for validation and

contains 1 patient, G4 contains the remaining five patients which are used for

testing. For benchmarking against other approaches, we kept the same dataset

split for the base segmentation and interactive segmentation algorithms.

2. Medical Segmentation Decathlon: The medical decathlon challenge (MSD) pro-

vides ten different tasks on 3D CT/MR image segmentation. These tasks are

selected to cover a large proportion of the dataset variability in the medical

domain. We have used four public datasets from the challenge.

• Heart: The dataset includes 20 MRI scans covering the entire heart ac-

quired during a single cardiac phase (free breathing with respiratory and
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ECG gating). Images were obtained on a 1.5T Achieva scanner.

• Spleen: The spleen dataset consists of 41 portal venous phase CT scans

from patients undergoing chemotherapy treatment for liver metastases at

Memorial Sloan Kettering Cancer Center.

• Pancreas: The MSD Pancreas Tumors dataset is labeled with both pan-

creatic tumors and normal pancreas regions. The training set contains 282

portal venous phase CT cases.

• Hippocampus: The dataset contains 263 training samples which have been

used to segment two neighbouring small structures i.e. anterior and pos-

terior hippocampus.

Dataset Modalities Total Classes No. of Samples

Prostate (NCI-ISBI) MRI(T2) 2 29

Heart MRI 1 20

Spleen CT 1 41

Pancreas CT 2 282

Hippocampus MRI 2 260

Table 4.1: Properties of Different Datasets from Medical Segmentation Decathlon
(2018) and NCI-ISBI (2013). For the 4 MSD Datasets, All Models (Base and Inter-
active) Are Trained from Scratch and Evaluated Using Five-fold Cross-validation on
the Training Set.

4.2 Implementation details

Training with NCI-ISBI Prostate dataset. We trained the base U-Net network

for 400 epochs. The learning rate was set as 0.0001 and the images were randomly
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flipped horizontally/vertically, rotated, resized and cropped before feeding into the

network. In addition, Adam optimizer and Cross Entropy loss was used for training.

Training with MSD dataset. We used nnU-Net framework (base model) for train-

ing on MSD dataset that adapts itself to any given dataset without user intervention.

Hence, all the hyperparameters tuning and design choices such as the U-Net archi-

tecture, dice loss, data augmentation were automatically determined by nnU-Net.

Interactive segmentation network is trained on both datasets for K number of

interactions per batch. Hence, predictions from each batch are updated iteratively

with the respective scribbles and fed into the network for K interactions. We train our

model with the Adam optimizer for 80 epochs with learning rate 0.0001 and apply data

augmentation by vertical or horizontal flipping, cropping and random rotation. For

pre-processing, all the images were normalized by mean value and standard variation

of the training set.

4.3 Metrics

For quantitative evaluation, we measured the Dice score as 2|Rg∩Rp|
|Rg |+|Rp| , where Rp

and Rg are the regions predicted by model and the ground truth. A robot user is

used to simulate user-annotations during testing up to K interactions. Figures 5.1 –

5.3 reported the average segmentation accuracy (mean Dice score) across the first 10

iterated clicks on each dataset.
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Chapter 5

RESULTS

5.1 Base Segmentation Results

Once BSeg is trained, we evaluate it on the samples reserved for testing purposes.

Figure 5.2 and Figure 5.3 shows the initial segmentation performance at interaction

0 using nnU-Net as the base segmentation model. Figure 5.1 shows the results on

Prostate dataset using a U-Net architecture.

5.2 Interactive Segmentation Results

We utilize the initial prediction from BSeg and train interactive network from

scratch. Figure 5.1 - Figure 5.3 shows a clear gain in performance with the number

of interactions using IntSeg.

Table 5.1 summarizes the number of clicks needed for each annotation method

(scribble) to reach a certain performance. It can be observed that our skeleton method

(curve) outperforms other approaches on all the datasets.

5.3 Ablation Study

To further validate our results, we conduct ablation study on the heart and spleen

dataset. We define the performance by carrying out a percentile study of the data

distribution. Various performance points are p max (max performance), p 25 (25th

percentile), p 50 (50th percentile), p 75 (75th percentile), and p min (min perfor-

mance).

The entire test dataset (population) is divided into four equal splits (sub-population)
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Figure 5.1: Comparison of Different Types of Annotation Strategy on Prostate
Dataset. Simple Strokes (Curves) Behave Better than the Alternatives.

Figure 5.2: Comparison of mDice Scores Vs Interactions on (a) Heart and (b) Spleen
Dataset Using Region (5x5) and Skeleton Scribble. Both Type of Clicks Bring Im-
provements in Every Interaction

Figure 5.3: Comparison of mDice Scores Vs Interactions on (a) Hippocampus and
(b) Pancreas Dataset Using Skeleton Scribble. The Performance at Interaction 0 Is
Obtained Using nnU-Net as Base Model.
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Dataset Scribble 0 1 2 3 4

Prostate Region (5x5) 0.8598 0.8896 0.9095 0.9256 0.9373

Prostate Centroid (5x5) 0.8598 0.9264 0.9512 0.9624 0.9672

Prostate Curve 0.8598 0.9611 0.9824 0.9874 0.9899

Heart Region (5x5) 0.8889 0.9039 0.9168 0.9250 0.9340

Heart Curve 0.8889 0.9385 0.9606 0.9728 0.9797

Spleen Region (5x5) 0.9673 0.9763 0.9801 0.9830 0.9849

Spleen Curve 0.9673 0.9907 0.9940 0.9950 0.9958

Pancreas Curve 0.7706 0.8743 0.9015 0.9130 0.9189

Pancreas Cancer Curve 0.8170 0.9027 0.9432 0.9512 0.9551

Anterior Hippocampus Curve 0.8957 0.9413 0.9553 0.9630 0.9692

Posterior Hippocampus Curve 0.8473 0.9134 0.9357 0.9492 0.9579

Table 5.1: Results of Different Proposed Scribble Type in Interaction Network on Five
3D Segmentation Tasks Across Organs, Diseases, and Modalities for Interactions 0 to
4.

based on the performance percentile, as [p min, p 75], (p 75, p 50], (p 50, p 25],

(p 25, p max]. We then emphasize on the images with inaccurate segmentation and

indicate the helpfulness of user-annotations in interactive training strategy.

Figures 5.4 and 5.5 shows that the average performance gain after one and two

interactions for [p min, p 75] and (p 75, p 50] sub-population. Results suggest that

the IntSeg model learns to use guidance information given to the model through

scribbles, as the poorly segmented p 50% of images show a remarkable improvement

in performance. Since, the improvement of performance is significant, it reflects the

importance of user-clicks.
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Figure 5.4: Cumulative Histogram Shows the Performance Improvement for Images
[p min, p 75] with Interactions 0-2 for Dataset (a) Heart and (b) Spleen. The Mean
Dice Score Increased From 0.572 to 0.890 after 2 Interactions for p 25% of Images in
Case of Heart Segmentation. For Spleen, the Average Performance Increase Is From
0.829 to 0.974.

Figure 5.5: Cumulative Histogram Shows the Performance Improvement for Images
(p 75, p 50] with Interactions 0-2 for Dataset (a) Heart and (b) Spleen. The Mean
Dice Score Significantly Increased for (p 75, p 50] Sub-population.

5.4 Influence of the Annotation Strategy

The type of scribble used for correction is important and can influence the per-

formance. Hence, we evaluate performance across different scribble inputs as shown

in Figure 3.4 on the Prostate dataset from NCI-ISBI 2013 challenge.

As shown in Figure 5.1, we observe that the best performance is achieved when

the largest incorrect cluster is considered a scribble. However, this may be impractical

for annotators to mark the complete cluster. We also notice that skeleton approach
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clearly increases the benefits of the annotations compared to other encoding; the

mDice score is increased by 10% in just one interaction. Finally, other region based

interactions have also been evaluated which rely on clicks; also bringing considerable

improvement in performance. Through these experiments, we demonstrate the effec-

tiveness of good specification of user interaction to minimize the number of clicks and

maintain high quality segmentation.

5.5 Influence of the Iteration Training Parameter

IntSeg is trained for K number of iterations per batch. Hence, predictions from

each batch are updated iteratively with the respective scribbles and fed into the

interactive network for K iterations. K is varied from 5 to 15 to check the influence

of the number of iterations during training.

Figure 5.6 shows the results of varying K on Prostate data. It is seen from figure

that with lower K the performance improvement is lower in comparison to when K

is 10 or higher. Although, the improvement is not substantial when K is higher than

10.

Figure 5.6: Segmentation Performance on Multi-class Prostate Dataset (a) Central
Gland and (b) Peripheral Zone Using Region Scribble.
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5.6 Influence of the Base Model

We compare the significance of the base model on the performance. This also al-

lows us to study if the initial quality of the segmentation maps influences annotations

to refine its prediction. Here, we use an empty mask as an initial prediction to train

interactive network architecture. As we can see in Figure 5.7, the use of base model

clearly improves the segmentation performance.

Figure 5.8 shows the decrease in average length of scribble for first 10 interactions.

The significant variation in scribble length can be explained by their initial prediction.

In case of blank mask, the annotator draws a curve having average length 109 per

instance over two rounds of interactive segmentation. In comparison, our approach

reaches 98% mean Dice score in an average curve length of 70 per instance. We thus

present a trade-off between annotation effort and quality.

Figure 5.7: Comparison of Using Two
Different Initial Segmentation Mask on
the Prostate Dataset.

Figure 5.8: Influence of the Initial Seg-
mentation Mask on the Average Curve
Length per Interactions.

5.7 Qualitative Results
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Figure 5.9: Qualitative Results of Prostate Segmentation. Binary Segmentation Is
Performed by Combining the Labels of Central Gland and Peripheral Zone. Each
Row Shows the Input Image, Ground Truth, Prediction from Base Model, Prediction
at Interaction 1 and 2 Using Skeleton Scribble.
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Figure 5.10: Visual Comparison of Two Annotation Strategies for Heart (Rows 1 and
2) and Spleen (Rows 3, 4 and 5) Segmentation. Each Row Shows the Input Image,
Ground Truth, Prediction from Base Model, Prediction at Interaction 2 Using Region
Scribble and Skeleton Scribble Respectively. It Can Be Observed That Skeleton
Scribble Achieves a Larger Improvement of Accuracy from the Initial Segmentation
When Compared with the Use of Region Scribble.
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Chapter 6

CONCLUSION

A semi-automatic training strategy has been proposed which utilizes user-scribbles to

guide the network to correct segmentation error. The user-model emulates an actual

annotator and generates scribbles for training the network. The model continuously

improves with each iteration from new information provided by the user scribble and

updated prediction. Various user interactions were evaluated and it is found that

the proposed skeleton based simulation scheme performs better than a region based

scribble. Further, we observe that this requires far less user inputs compared with

other scribbles and achieves higher accuracy in just two to three correction.

Also, we present an extensive ablation study to examine the significant perfor-

mance gain for poorly segmented examples. Results suggest that the interaction

network better handles the erroneous region in the form of skeleton feedback, to yield

high quality segmentations.

Moreover, we show our models’ strong generalization capabilities by evaluating our

approach across different datasets and domains. Finally, we demonstrate that using

interaction network on top of the state-of-the-art segmentation architecture, improves

the prediction accuracy further compared to when the base model is a simple encoder

decoder architecture.
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