
Incorporating Human Cognitive Limitations Into Sequential Decision Making

Problems and Algorithms

by

Sriram Gopalakrishnan

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved October 2022 by the
Graduate Supervisory Committee:

Subbarao Kambhampati, Chair
Siddharth Srivastava
Matthias Scheutz

Yu Zhang

ARIZONA STATE UNIVERSITY

December 2022



ABSTRACT

With improvements in automation and system capabilities, human responsibilities

in those advanced systems can get more complicated; greater situational awareness

and performance may be asked of human agents in roles such as fail-safe operators.

This phenomenon of automation improvements requiring more from humans in the

loop, is connected to the well-known “paradox of automation”. Unfortunately, humans

have cognitive limitations that can constrain a person’s performance on a task. If one

considers human cognitive limitations when designing solutions or policies for human

agents, then better results are possible.

The focus of this dissertation is on improving human involvement in planning

and execution for Sequential Decision Making (SDM) problems. Existing work al-

ready considers incorporating humans into planning and execution in SDM, but with

limited consideration for cognitive limitations. The work herein focuses on how to

improve human involvement through problems in motion planning, planning inter-

faces, Markov Decision Processes (MDP), and human-team scheduling. This done by

first discussing the human modeling assumptions currently used in the literature and

their shortcomings. Then this dissertation tackles a set of problems by considering

problem-specific human cognitive limitations –such as those associated with memory

and inference– as well as use lessons from fields such as cognitive ergonomics.

i



To my parents (Dhamayanthi Gopalakrishnan and Gopalakrishnan Srinivasan) and

my brother (Pradeep Gopalakrishnan). Thank you for the love, support, and the

space you gave me to chart my own path.

ii



ACKNOWLEDGEMENTS

When I started my research journey, I was an enthusiastic researcher floundering

in the research process with lofty and impractical ideas. I still have lofty ideas–which

I hope now are more practical– and I think I’ve made progress in terms of research

maturity. The lion’s share of the credit for this belongs to my advisor Prof. Subbarao

Kambhampati. Thank you helping me through my growing-pains as a researcher,

and being a source of insights.

I’d like to thank my committee members (Prof. Siddharth Srivastava, Prof. Yu

Zhang, and Prof. Matthias Scheutz) for understanding my work, and helping improve

it. It takes a lot of effort to pore over research, and I greatly appreciate your support

and guidance. Without you, my dissertation would not have come to fruition.

I would not have gotten started in research, if not for Dr.Hector Munoz-Avila.

Thank you for collaborating with me on interesting ideas, and introducing me to the

world of automated planning.

Along my research journey, I was fortunate to have collaborators outside Arizona

State who worked with me. Thank you for sharing your time and energy with me. I’d

like to thank Dr. Daniel Borrajo for his guidance, and fruitful collaborations. Your

calm, methodical approach to looking at a problem helped me be more measured in

how I thought about and presented my research. I was also fortunate to be able to

work Dr. T. K. Satish Kumar on a very interesting problem; you set the standard for

me on clever algorithms that connect across different disciplines. Dr. Ugur Kuter,

thank you for being a part of my first research paper with Dr.Munoz-Avila, and

providing me with early guidance. I’d also like to thank Dr. Cynthia Rudin who

indirectly helped motivate the research direction herein. Your talk in 2020 at the

International Conference on Automated Planning and Scheduling helped give me the

iii



confidence needed to pursue my research direction. Your work helped me think more

pragmatically about how our systems and algorithms would interact with humans.

I think completing a doctorate also requires having a good support system. My

family gave me much of this. My parents (Dhamayanthi Gopalakrishnan and Gopalakr-

ishnan Srinivasan) were particularly patient and supportive through the gruelling

times and foul moods that happen during a PhD. My brother, who constantly encour-

aged me and gave me sage advise, was another pillar on this journey. A big source

of support and joy was my yochan lab-family (Yantian Zha, Utkarsh Soni, Sarath

Sreedharan, Mudit Verma, Sachin Grover, Zahra Zahedi, Alberto Olmo, Tathagata

Chakraborty, Lin Guan, Anagha Kulkarni, Lydia Manikonda, Sailik Sengupta, Sid-

dhant Bhambri, Karthik Valmeekam) and larger asu-family (Monica Dugan, Pamela

Dunn, Jaya Krishnamurthy, Christina Sebring). You were there to help navigate

through tough times, and share in the laughter to make things lighter. I’d like to

particularly thank Yantian Zha, Utkarsh Soni, and Mudit Verma for working closely

with me, and Sarath Sreedharan for helping me thinking through a lot of ideas. The

final pillar of support were the people at my "home away from home" during my

doctoral studies. Eric (Rick) Johnson, thank you for being a supportive and lively

roommate and landlord for 5 years. It has been a pleasure. I’d also like to thank

Adam Jesuadon, Steven Madler, and Shomit Barua who were fellow travellers during

my journey at Arizona State University.

I’d like to end by thanking the people who make Arizona State University work.

Thank you for making ASU possible. At ASU, I had the luxury of immersing my self

in research, and met wonderful, supportive, and inspirational people. It has been a

privilege to be a part of ASU.

iv



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 MODELING HUMAN COGNITIVE LIMITATIONS FOR SDM . . . . . . . . 6

3 MOTION PLANNING IN HUMAN-ROBOT SHARED SPACES . . . . . . . 12

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Measures for Position-based Predictability . . . . . . . . . . . . . . . . . 23

3.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.1 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.7 Human-subject Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 TRADING OFF VALUE FOR REDUCED POLICY COMPLEXITY . . . 42

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Problem Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Delay Effect From Policy Confusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5 Policy Computation Algorithm for SAMDP. . . . . . . . . . . . . . . . . . . . . . . 51

4.5.1 Computing Reidentification Action Likelihoods . . . . . . . . . . . . . 52

4.5.2 Translating to the Equivalent MRP . . . . . . . . . . . . . . . . . . . . . . . 53

v



CHAPTER Page

4.5.3 GVPI Search Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5.4 Trading Value for Reduced Complexity . . . . . . . . . . . . . . . . . . . . 54

4.5.5 Obtaining the Classification Likelihood Matrix . . . . . . . . . . . . . 55

4.6 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6.1 Warehouse Worker Domain Setup . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6.2 Gridworld Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6.4 Human Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 ACCOUNTING FOR BEHAVIORAL RESPONSE TO UNCERTAINTY

IN MDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Problem Definition and Human Model Used . . . . . . . . . . . . . . . . . . . . . . 71

5.2.1 Human Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.2 POMDP With Human Execution Under Uncertainty . . . . . . . 72

5.3 Computing Human Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Policy Computation for POMDP-HUE . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4.1 Human Agent Policy Iteration(HAPI) . . . . . . . . . . . . . . . . . . . . . 79

5.4.2 HUE Branch And Bound Policy Search (H-B&B) . . . . . . . . . . 80

5.4.3 Upperbound for Partial Policy Completions . . . . . . . . . . . . . . . . 82

5.4.4 Upperbound as Applied In H-B&B . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.5.1 Gridworld Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.5.2 Gridworld Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

vi



CHAPTER Page

5.5.3 Warehouse Worker Experimental Setup . . . . . . . . . . . . . . . . . . . . 93

5.5.4 Warehouse Worker Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.6 Human Subject Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.8 Summary and Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6 CO-PLANNING IN FACTORED STATE SPACES . . . . . . . . . . . . . . . . . . . . 107

6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.4 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.5 Embedding a Planning Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.5.1 TGE-viz Graph Embedding Algorithm . . . . . . . . . . . . . . . . . . . . 112

6.6 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.6.1 Results and Analysis for Graph Embeddings . . . . . . . . . . . . . . . 115

6.6.2 Mixed Initiative User Interface With TGE-viz . . . . . . . . . . . . . . 117

6.7 Summary and Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7 TEAM TASK ASSIGNMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.4 Solving APT Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.4.1 Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.4.2 Search Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

vii



CHAPTER Page

7.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.1 Summary of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.2 Recommendations for Computing Human Friendly Solutions . . . . . . . 142

8.3 Avenues for Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

viii



LIST OF TABLES

Table Page

3.1 Average Time Taken for Varying Graph Sizes and Number of Terminal

Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Classification Likelihood Matrix (φ) for Warehouse Worker Domain,

Where (S,m,l) Stands for (Small,medium,large) and “w" Means Bub-

blewrap Needed. Columns Sum to 100%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Transition Likelihood Matrix; Rows Are States and Columns Are Ac-

tions. Recall Actions Maps 1:1 to States and So Have Matching Names.

Each Entry is a Tuple of a Set of States From State Space S, and the

Probability Of Transition to One of the States in That Set. Capitalized

S is the Entire Set of States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Reward for State,Action Pairs; Rows Are States and Columns Are

Actions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Mean and Standard Deviation for the Number of Correct Actions and

Total Actions Executed for the Simple and Difficult Policies . . . . . . . . . . 67

5.1 Policy Value Results for a 5x5 Grid. Each of the Primary Columns

Changes One Experiment-Parameter, and Holds the Other Two Con-

stant. Each Entry Has the Best Policy Value From Hapi, the Optimal

Value Found by H-B&B, and the Ratio of the Two. All Values Rounded

Down to Two Decimal Places. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 Policy Value Results for a 10x10 Grid. Each of the Primary Columns

Changes One Experiment-Parameter, and Holds the Other Two Con-

stant. Each Entry Has the Best Policy Value From Hapi, the Best

Upperbound Found by H-B&B After 30 Minutes, and the Ratio of the

Two. All Values Rounded Down to Two Decimal Places. . . . . . . . . . . . . . . 91

ix



Table Page

5.3 Number of Nodes Opened by H-B&B Before Finding Optimal Solution,

for a Policy Search Tree of Size 425 In 5x5 Grid Experiments . . . . . . . . . . 92

5.4 The Total Time Taken (In Seconds) By HAPI, Followed by the Time

Taken for H-B&B in 5x5 Grid Experiment Settings . . . . . . . . . . . . . . . . . . . 92

5.5 The Total Time Taken (In Seconds) By HAPI, Followed by the Time

Taken for H-B&B in 10x10 Grid Experiment Settings. H-B&B Was

Terminated in 30 Minutes and Only the Tightest Upperbound Was

Taken. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.6 Transition Likelihood Matrix; Rows Are States and Columns Are Ac-

tions. Recall Actions Maps 1:1 to States and So Have Matching Names.

Each Entry Is a Tuple of a Set of States From State Space S, and the

Probability of Transition to One of the States in That Set. Note: Cap-

italized S Is the Entire Set of States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.7 Reward for State,Action Pairs; Rows Are States and Columns Are

Actions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.8 Classification Likelihood Matrix (pc) For Warehouse-Worker Domain,

Where (S,M,L) Stands for (Small,Medium,Large) And “W” Means Bub-

blewrap Needed. Columns Sum to 1000%. . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.1 Graph Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.1 Likelihood of Finishing Execution by Maximum Makespan for McTs

and Tabu Search Given Different Configurations of Topological Depth

(H), Number of Agents (A = |A|), Priority Levels (P = |P |)) And

Maximum Makespan (M). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

x



Table Page

7.2 Second Set of Results For Likelihood of Finishing Execution by Maxi-

mum Makespan for McTs and Tabu Search Given Different Configura-

tions of Topological Depth (H), Number of Agents (A = |A|), Priority

Levels (P = |P |)) And Maximum Makespan (M).. . . . . . . . . . . . . . . . . . . . . 135

xi



LIST OF FIGURES

Figure Page

1.1 Dimensions of Human Involvement in SDM Problems . . . . . . . . . . . . . . . . . 3

2.1 A Categorization of the Facets Pertinent to Human Cognition in SDM

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Increasing Levels of Realistic Approximation of Human Cognition;

Resource-Constraints Approach Human Psychological Process Model.

[43] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 A Hospital Floor With Robot Navigation-Graph That Connects the

Kitchen and Medicine Cabinet to All Patient Rooms. The Grid Squares

Are the Vertices of the Navigation-Graph, and the Directed Lines Are

the Edges; Only One Branching-Vertex (In Red) Has More Than One

Outgoing Edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 A Hospital Floor With Robot Navigation-Graph That Uses Only the

Shortest Paths to Go Between Kitchen and Medicine Cabinet to All

Patient Rooms. The Grid Squares Are the Vertices of the Navigation-

Graph, and the Lines Are the Edges; Every Vertex/Position Is a Branching-

Vertex in This Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 An Autonomous Guided Vehicle (AGV) Following a Path Laid Out in

Tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Example of Graph Minimization for Graph Size, and Minimization for

Position-Based Predictability. Blue Vertices Are the Terminal Ver-

tices That Must Stay Connected, and Vertices Highlighted in Red Are

Branching Vertices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 WPC Measure With Varying Optimality Cutoff . . . . . . . . . . . . . . . . . . . . . . 34

3.6 WPC Measure With Varying Terminal Vertices . . . . . . . . . . . . . . . . . . . . . . 35

xii



Figure Page

3.7 NV/NBV With Varying Optimality Cutoff . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.8 NV/NBV with varying terminal vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.9 Average Suboptimality of Paths ChosenWith Increasing Allowed-Suboptimality

of Candidate Paths for GSC and BVC Cost Functions . . . . . . . . . . . . . . . . 37

3.10 Problems Given in the Human Subject Experiments; Problem 1 (Left)

Has More Branching Vertices and Problem 2 (Right) Has Fewer. . . . . . . 37

4.1 Policies With Identical Value in an MDP, but Can Have Different Val-

ues After Accounting for Errors and Uncertainty Effects . . . . . . . . . . . . . . 45

4.2 Expected Value of Policies Generated With Varying ω in Gridworld . . . 60

4.3 Confusion Score of Policies Generated With Varying ω in Gridworld . . 61

4.4 Expected Value of Policies Generated With Varying ω in Warehouse

Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 Confusion Score of Policies Generated With Varying Ω In Warehouse

Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6 Expected Value (Blue) and Confusion Score (Orange) of Policies Gen-

erated During Search in Gridworld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.7 Expected Value (Blue) and Confusion Scores (Orange) of Policies Gen-

erated During Search in Warehouse Domain . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.8 The Simple Policy (Left), and Difficult Policy (Right) Given to Users

to Execute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 Additional State Added to MDP for State 1 to Account For Different

Inference Likelihoods by the Human Agent . . . . . . . . . . . . . . . . . . . . . . . . . . 73

xiii



Figure Page

5.2 Example of a Partial Stochastic Policy (Left) Whose Probabilities for

Every Action (A1,A2) Are the Same or Lower Than the Right Policy.

“A∗” Is the Remaining Likelihood That an Action Can Be Assigned to

(Optimizable). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 The Policy on the Right–While Having Lower Total Probability Used

Up–Will Not Have a Higher Value for Any Policy Completion Than

the Optimal Completion for the Policy on the Left, if A1 Has a Higher

Reward Than A2 Since the Probability of A2 Is Larger in the Right-

Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4 Box Plot of HAPI Policy Values for Warehouse-Worker Domain With

Varying Reward Noise Range; Values Normalized by the Policy Value

From Branch and Bound Search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5 Box Plot of HAPI Policy Values for Warehouse-Worker Domain With

Varying Discount Factor (Γ); Values Normalized by the Policy Value

From Branch and Bound Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.6 A Colored Gridworld Domain inWhich an Agent Determines the States

by the Color; Initial States Are Annotated as Well. . . . . . . . . . . . . . . . . . . . 101

5.7 The Two Policies for the Second Phase of Human Subject Experiments.

The Left Policy Is the Optimal Policy Without Considering the Effects

of Uncertainty, and the Right Is the Optimal Policy After Accounting

for Uncertainty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.1 Existing Visualization For Planners. Clockwise: SPIFe, Fresco, Con-

ductor, WEBPLANNER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2 High-level algorithm for embedding a transition graph . . . . . . . . . . . . . . . . 112

xiv



Figure Page

6.3 Building the graph for embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.4 Process to update the embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.5 Loop process for Procedure in Figure 6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.6 Logistics Domain Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.7 Barman Domain Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.8 Plan Trace in Modified Logistics With Tge-Viz for the Goal of Deliv-

ering the Package to City 6 Location 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.9 Alternate Plan Trace in Modified Logistics With Tge-Viz for the Goal

of Delivering the Package to City 6 Location 3. . . . . . . . . . . . . . . . . . . . . . . . 118

6.10 Interface For Collaborative Planning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.11 Filtering the Display to Only Propositions; Current State Propositions

in Red, and All Others in Blue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.12 Display of Action Information When an Action Node Is Highlighted . . . 120

6.13 Subplan Generated by Planner After User Clicks a Subgoal . . . . . . . . . . . 121

6.14 Extending the Plan to the Next Goal From the Plan in Figure 6.13 . . . . 122

7.1 Example of a Multi-Agent STN That Cannot Be Solved Without Pre-

emption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.2 Categories of Rcpsp Problem From Operations Research Literature

From [44] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

xv



Chapter 1

INTRODUCTION

The availability of troves of data, high-speed communication, and ubiquitous com-

puting through the “Internet Of Things" [10] has resulted in large changes in the way

our society produces and consumes. This is so much so that the term “Industry

4.0" [66] has been coined to denote a new industrial revolution (Industry 3.0 was

the advent of computers into the workplace). Central to this revolution is the adop-

tion and improvement of algorithms and methodologies from computer science [67].

As these technologies seep into more of everyday life –beyond their affect on indus-

trial production– their impact on people has also come under scrutiny; this includes

concerns about privacy [47][70], human performance/behavior[32], job automation[4],

ethical/societal impacts of algorithms [108] have become important issues in public

debate, research, and legislature. The need for better integration with humans has

become a pivotal concern as automation becomes more sophisticated.

One of the ironies of automation [11] is that more advanced automation can also

demand higher cognitive performance from humans in their roles as supervisors, team-

mates, or fail-safe operators. In order for Industry 4.0 technology –especially the

algorithms underlying them– to interface better with people, we need to consider the

limitations and preferences of people when designing or modifying existing algorithms.

Given the impetus to account for human limitations, the work herein focuses

on how to incorporate such limitations and human needs into a set of Sequential

Decision Making (SDM) problems and associated algorithms. This work is focused

on the context of the human agent being an active participant (planner or actor)

for improving or deciding outcomes in SDM problems; this is as opposed to a more

1



passive role such as an observer or consumer that might only require explanations or

interpretable behavior, and not actively participate.

The difficulty of working with algorithms has received attention in single-step

decision making; one such work is on classifier systems that considers how humans

classify and gives explanations in a similar manner[21]. The use of classifiers in

critical decision making, has brought algorithm inscrutability and biases under the

microscope. A notable instance of this, is classifier use in the criminal justice system

[111].

However, a lot of the emphasis in computer science research for usability from

the algorithmic side has been in the context of the system explaining it’s decisions or

being interpretable [31], and less on other factors of human-machine interaction such

as information load and attention demands. The work in this dissertation incorpo-

rates human-compatibility issues directly into algorithms and approaches in a set of

sequential-decision making (SDM) problems. There is prior literature on humans in

SDM problems; these typically incorporate humans as agents in the problem setting

and use mental models with varying assumptions to mirror human limitations. We

will discuss these modeling approaches in the following chapter. A general distinction

between the approaches in this work and existing approaches to the problems tackled

herein, is that we try to stay agnostic to the human computational model; we instead

translate human cognitive limitations into resource limitations or problem-specific

outcomes or models, and fold them into our algorithms. Another distinction with

existing SDM research is that it is often the robot that works around the human’s

limitations or behavior, i.e. the onus is on the robot to carry or support the human.

This ignores the question of how to compute policies for the human to execute, or

how to empower them to perform better in SDM settings. This requires thinking

about how human limitations interact with the problem and objectives; this is what

2



this dissertation focuses on. Each of the successive chapters will focus on a problem

and make more detailed comparisons against the relevant literature for that problem.

On the topic of designing for human-compatibility, there is also a vast literature

on human interfaces, and associated design philosophies [102][3] that consider how

to represent information for humans. The field of cognitive ergonomics [51] broadly

encompasses the study of how to design for humans (interfaces, products and the

like). Research in this field has also identified the need for algorithmic advances that

interface better with humans in order to improve adoption and efficacy, such as in

algorithms for air traffic management [56]. We will borrow ideas from these related

fields to apply in SDM problems.

When discussing the human’s involvement in SDM, we study it as per the dimen-

sions illustrated in Figure 1.1. We focus more on the active participation of the human

Figure 1.1: Dimensions of Human Involvement in SDM Problems

in the execution of policies/plans or in the planning process; not that the human just

provides low-fidelity feedback ( a more passive/consumer role). The primary focus

of this dissertation is how to improve human involvement in planning and execution

for SDM problems. There is existing work that considers humans in planning and

3



execution, but without emphasis on incorporating cognitive limitations for improving

human involvement. We study how to improve human involvement through problems

in motion planning, planning interfaces, Markov Decision Processes (MDPs), and

human-team scheduling (presented in that order). The problems herein are :

• Robot motion in shared spaces with humans: We study the problem of con-

straining robot paths such that they are easily predictable with just the current

position of the robot. This is to minimize the attention costs on the human,

which will in turn reduce human effort for path planning in shared spaces (with

robots).

• Co-planning in factored state space: In large factored state spaces, when a

human and machine are co-planning, it can be hard for a human to bring to

mind all the relevant alternative actions and pertinent state information. We

tackle the problem of representing the state space and plans, and use principles

from the interface design literature [102]. This work considers our memory

limitations during co-planning, how to display pertinent information, and enable

joint planning.

• Policy Complexity Minimization: When computing a policy for an MDP setting,

if the policy is the same across similar states (by human perception), then the

policy can be simpler or easier to follow. The reduced policy complexity can

make execution faster and more accurate. This is what we explore with this

problem, which considers our inferential limitations and attention.

• Policies that account for human response to uncertainty: When people follow a

policy and they are uncertain about a state, they might take additional sensing

actions to resolve the uncertainty and still make errors. Accounting for this

4



would help generate policies that work better with people. This problem con-

siders a problem specific human behavior, i.e. our response to uncertainty when

following a policy, and how it can be incorporated into the policy computation.

• Assignment and prioritization of tasks for human teams: The final problem we

discuss in this work is on how to assign and prioritize tasks such that a team of

humans –like software engineers– can better complete a set of interdependent

tasks. We develop an approach to do so without constant central oversight that

is typical of current planning and scheduling techniques, and explicitly account

for preemption costs incurred when switching between tasks. This problem

considers our cognitive costs when task switching, and how it factors into a

plan for satisfying makespans (deadlines).

Each of the problems is given it’s own chapter, in which we present the motivation

for the problem followed by the it’s formalization. In the motivation and problem

formalization, we highlight the cognitive limits pertinent to each problem and how

we tackle them. We then describe the methodology employed for each problem, and

experiments done to validate our methods. We also discuss in each chapter, a compar-

ison with related-work and how our emphasis on cognitive limitations distinguishes

our work from others. Finally we present avenues for continuing the research direction

in that chapter. Before we delve into these problems, we first discuss the pertinent

aspects of human cognition (with respect to SDM) that has been explored in existing

literature, as well as what aspects need more consideration.

5



Chapter 2

MODELING HUMAN COGNITIVE LIMITATIONS FOR SDM

The relevant components of human cognition for SDM can be broadly categorized

into memory, attention , inference, and performance affectors. The last one is a catch-

all for factors like the impact of stress, frequent task-switching, preferences/biases,

and the like. The components are illustrated in Figure 2.1 and we will refer to these

components and their relevant limitations –such as limited capacity for short-term

memory– when discussing each of the problems we explore. While the components

are displayed as separate categories, they do in fact affect each other; for example,

inference is affected by attention, and together determine situational awareness [110]

of a system or setting. This categorization of cognitive components is to help us

to think about the different parts involved in cognition, and subsequently help us

think of how aspects of a problem setting are connected to these components. Each

component can be thought of as a resource with a finite capacity; a person has a

finite capacity for attention, working-memory, capacity to juggle different tasks, and

so forth. The primary approach taken in this work is to optimize for, or limit the

demand on these cognitive resources. This is as opposed to building a model of the

human agent to simulate behavior. We will shortly explain our reasons for choosing

this direction by discussing the modeling assumptions in the existing literature and

their shortcomings.

6



Figure 2.1: A Categorization of the Facets Pertinent to Human Cognition in SDM

Problems

We first note that the idea of considering cognitive resource limitations when ap-

proximating the human computational process is already present in cognitive science

literature [43]. From said literature, figure 2.2 discusses one way of thinking when ap-

proximating human cognition; one can approach the psychological process of humans

by starting with an optimal computation process and increasing resource-constraints

on the computational model. With this in mind, we discuss the assumptions and gaps

with current approaches.

7



Figure 2.2: Increasing Levels of Realistic Approximation of Human Cognition;

Resource-Constraints Approach Human Psychological Process Model. [43]

We start with existing assumptions about human inference and decision making.

The baseline assumption is to consider humans as rational agents and that they take

the action or choice that is optimal in the problem setting. This is often used as

a starting assumption when incorporating humans into problem settings, or when

focusing on the knowledge (model) differences to explain differences in inference [20].

An improvement on this assumption is bounded-rationality [93] which comes from

behavioral economics and has been adopted in computer science literature as well.

One models human decisions as being “bounded-rational" [68], sometimes also called

“noisy-rational" or “Boltzmann rational". It is so called since the likelihood of a

8



decision is determined by a Boltzmann distribution where the typical energy term is

replaced by the value of the decision. Another variation of bounded-rational behavior

modeling is in work done by [112] that tries to model human agents as interleaving

planning and execution; their variation on bounded-rational is through limiting the

look-ahead in planning, since humans are limited in their capacity to rollout a full

plan to a goal.

One can also learn a controller for mimicking human decisions based on samples of

human action-trajectories. The generalizability of such a controller would naturally

be dependent on the similarity between the test conditions and the training data, as

well as the state representation of the controller. While it seems like a good idea,

it maybe arbitrarily bad as recent work by [8] has shown. In the previously men-

tioned work, the authors show that (verbatim)“ (1) No Free Lunch result implies it is

impossible to uniquely decompose a policy into a planning algorithm and reward func-

tion, and (2) that even with a reasonable simplicity prior/Occam’s razor on the set

of decompositions, we cannot distinguish between the true decomposition and others

that lead to high regret. To address the issue of determining an appropriate reward

or planning parameters of a person, we need simple ‘normative’ assumptions, which

cannot be deduced exclusively from observations.". These statements were made in

the context of learning human preferences or reward functions from behavior. The

normative assumptions refer to assumptions on the human’s planning or reward that

are needed to decompose the reward correctly and cannot be inferred from observa-

tions alone. The point we want to highlight here, is that a parameterized agent-model

for representing humans that is fitted to trajectories is not a panacea (won’t neces-

sarily generalize well); one needs to make and use specific assumptions about human

behavior for a particular setting. On top of this, one needs to remember that for

some behaviors (policies), using just Markovian rewards would be inadequate to ex-

9



plain/capture a set of policies or trajectories [1]. So blind reward fitting is a bad

idea.

Another issue with modeling humans is that research has shown humans deviate

from optimality in systematic or non-random ways [55], so noisy or bounded-rational,

and optimal inference models do not seem defensible. There has been work done

that tries to accounts for systematic deviations when learning preferences [33], but

this too would run into the same problem discussed in [8]. One may need instance

specific assumptions and expectations of human behavior as espoused in [8]. Lastly,

with respect to suboptimal-inference models of human agents, there is no explicit

consideration given to memory limitations, attention limitations, or stress as causes

of suboptimality, or how handling them can improve outcomes.

An example of an assumption when trying to predict how humans will act is

risk-aversion, which would fall under “Performance-Affector" in the categorization in

Figure 2.1. There is some work in the computer science literature that considers hu-

mans as agents preferring options with lower risk [64] and that may explain the lion’s

share of decisions in some problem settings. This is inline with the type of consider-

ations we make in this document, and in Chapter 5 we make such an assumption on

how humans might respond to uncertainty.

Other than human inference limitations, there is work that considers other cog-

nitive limitations in existing computer science literature. One example of this is the

approach in [79] and [78] which considers memory-limitations when predicting hu-

man decisions in a Partially Observable Markov Decision Process (POMDP). The

authors state that the bounded-memory modeling decision is an instance of bounded-

rationality, except the suboptimal behavior (state inference) is due to limited memory

or recall biased towards recent events as opposed to inferential errors. Another work

that considers a different human limitation is by [82]; the authors develop an approach

10



to account for human attention errors. In their approach, a model of systematic errors

in feature detection (blindspots) is learned and used to determine when to transfer

control to a human agent, and when not to.

In this work, we consider human limitations but we do not focus on explicitly

modeling the human computational process. Rather, we develop algorithms and

approaches that reduce demands on cognitive resources, or incorporate systematic

human errors, while remaining agnostic with respect to the underlying human com-

putational process. An analogous idea from the existing literature, is the work on

Sparse Linear Integer Models (SLIM) [99]. This considers how humans work better

with integer weights in linear models. The pertinent part of the problem that made

cognitive effort harder was the granularity of the model-weight values; more decimal

places made comparison and inference harder. SLIM was in turn inspired by the Ap-

gar scoring system [18]. In that system, nurses would compute a score to evaluate the

health of new-born infants by summing up integer-value scores associated with easily

detectable features. The score would then determine the medical response (policy

action).

Similar to the aforementioned approaches, we identify the key problem-aspects of

certain sequential decision making problems that affect the cognitive demand made

on the human agent. This can be the number of state-features for the human to

pay attention to, or the memory required for tasks. These aspects are then explicitly

incorporated into the problem as constraints or objectives. By staying agnostic with

respect to details of the human computational process, we can help human actors

while avoiding the pitfalls of (mis)fitting a cognitive model.

11



Chapter 3

MOTION PLANNING IN HUMAN-ROBOT SHARED SPACES

One of the guidelines in the work by [32] is to minimize the number of logical

branches in a task in order to handle complexity and make interaction easier. We

apply this to robot motion in spaces cohabited by humans in order to make robot

motion more predictable. The SDM problem tackled here is path prediction, and we

consider how limited human attention, and computational capacity can be accounted

for when designing how a robot should move.

3.1 Motivation

When humans move in the same space together, we are often able to do so with

little effort, and often make normative assumptions about other people based on an

(often correct) shared theory of mind. It maybe a lot harder to infer robot motion,

especially if they do not have the same modalities like other humans; the robots

maybe trolley bots on wheels and not have a head and torso. So when robots cohabit

the same space as people, easy predictability of robot motion becomes very important

to allow the humans to co-navigate in the space. This is the work done in [40] and is

the focus of this chapter.

To motivate this problem, let’s consider multiple humans and robots moving in

settings like hospitals or restaurants. When humans and robots are moving in the

same space, it can get very challenging for both to move seamlessly due to the difficulty

in mental modeling the other. If there are multiple robots, motion planning is made

much harder for the human. For the human to plan their path, predictability of other

agent’s (robot) motion is very important.

12



The approach herein to this problem is built on a simple premise; If the human

is given only the current position of the robot, then the more the number of possible

future trajectories, the harder is the problem of bounding the robot’s future positions.

As in, the possible future locations of the robot increases, and this consequently makes

it harder for the human to navigate in the space without potential path conflicts.

Bounding the robot’s motion is possible by constraining the possible trajectories a

robot can take from any position, and minimizing the areas in which the robot can

move.

One might ask, why not make the robot handle all the navigation effort? This

is the direction of some of the existing research which has shortcomings such as the

robot freezing [97] or moving haphazardly from being unable to compute a path that

conforms with the motion of multiple people moving in the space.

We take a different approach from the trends in existing literature. If we assume

the robots have a fixed set of tasks –such as serving food between the kitchen and

tables, or transporting medicine between a cabinet and patient beds– then we could

compute a restricted navigation-graph to make navigation easier for both humans and

robots in the space, and keep each task’s motion path costs within a multiplicative

bound of optimal path costs. Such an approach can also reduce the hardware and

computation requirements for the robots in the space. Limiting motion like this is

what was done with Automated/Autonomous Guided Vehicles (AGVs) which are

already in use for industrial settings, and even hospitals with mature technology [34].

AGVs followed a predefined path, often laid out with tape (like rails for a train)

to move between positions (see Figure 3.3 source [85]). The AGV’s grid (which

determine what paths can be taken) were laid out for the sake of optimizing task

output. In this paper, we propose computing the AGV grid (as a directed graph)

for more predictability of trajectories by humans. Predictability is very important

13



for human robot interactions [61] and more predictability would improve adoption of

AGV’s in everyday settings like restaurants.

Constraining the robot’s navigation-graph –where and how robots can move (like

in Figure 3.1)– and communicating it to the humans in the space by markers or tape

can help in two ways. One way is by simplifying the path planning of the robot; it

is now helpfully limited to computing paths on the navigation-graph. Another way

it helps is by making the robot’s motion more predictable to the humans. It does

this by limiting the space the robots can occupy and how they can move. This helps

reduce the complexity of, or negate the need for mental modeling of the robot by the

human. People can see that the robot is limited to following the laid out markers.

Humans that know the path of the robots tend to help in the navigation by simply

not blocking or adapting their movement to avoid conflicts, as humans in the space

can be seen as non-competitive or collaborative. This idea of modeling the human as

working with the robot in navigating the space was used in [97], [60], [77], [6].

The involvement of the humans in effective robot navigation is almost necessary

when dealing with many humans and robots in the same space as the robot might

freeze [97] [98] or move haphazardly because it was unable to compute a path that

is conformant with the motion of all humans in the space. This is why predictability

of robot path is very important, as it enables easy and effective involvement of the

humans in the space.

This work focuses on the computation of the navigation-graph for robots to make

predictability as easy as possible, and with minimal information. Minimal information

and effort is important as we cannot expect the human –who has their own tasks–

to invest non-trivial cognitive effort in predicting motion. This is why we focus on

position-based predictability, where the future trajectory of the robots can be predicted

or bounded from the current position alone. Since predictability is deemed to be a very

14



desirable quality in robot navigation from a human factors perspective [61] it would

affect adoption or acceptance of robots in any setting. With respect to optimizing for

cognitive resources, which is the thrust of this proposal, we reduce the attention and

inference costs for the human. By reducing both, we reduce the situational awareness

demands [110]. Situational awareness is broken into three levels in [110]: level 1 is

perception of situational elements ; level 2 is information integration; and level 3 is

projection of future status and actions of situational elements . We make level 1

and 3 easier as the perception information needed is just the current position, and

projection of future states is made easier by limiting the robot motion and displaying

the navigation graph/grid on the floor (AGV tape).

In Figures 3.2 and 3.1 a nurse is moving in the space with robots. Certain regions

are blocked out (black) due to furniture, walls or other motion constraints. If the

nurse (in the example) is moving down towards a patient’s room in the middle, then

in the case shown in Figure 3.2 the nurse wouldn’t know how the robots would move

and cannot easily come up with a non-conflicting path. The robots might also reverse

their direction if their task priorities change. In Figure 3.1 the nurse can easily infer

that the robots will only be moving away and can walk straight to the patient door.

This is because the navigation-graph has only 1 “Branching-Vertex" (position), which

are vertices with more than one outgoing edge. In Figure 3.2, every position is a

branching-vertex for the robot’s navigation and so the possible fewer positions are

many.

Fewer branching vertices mean fewer possible trajectories from any position and

so makes prediction or bounding of robot motion easier. This comes at the expense

of path costs between positions associated with tasks (called terminal vertices). Re-

ducing branching vertices while keeping path costs within acceptable bounds are the

main objectives of our approach. This corresponds to one of the good design prin-

15



Figure 3.1: A Hospital Floor With Robot Navigation-Graph That Connects the

Kitchen and Medicine Cabinet to All Patient Rooms. The Grid Squares Are the

Vertices of the Navigation-Graph, and the Directed Lines Are the Edges; Only One

Branching-Vertex (In Red) Has More Than One Outgoing Edge

ciples suggested by existing literature on how to design for humans by [32]; in that

work they suggest to “minimize logic branches". Specifically (verbatim) “Minimize

complexity by reducing the linkages and conditional operations contained in the au-

tonomy, avoiding modes with their multiple-branch logic as much as possible. ". In

our approach to this problem, that guidance translates to minimizing the number of

branching vertices in the robot’s navigation graph.

If we compute the robot’s navigation graph with fewer branching vertices, we can

use it to layout the path of Autonomous Guided Vehicles as in Figure 3.3. This

makes the path of the AGV easier to predict for the human with less attention and

information.

In this chapter, we will first discuss the relevant work on human-robot interac-

tion with respect to motion. Then we will formalize the problem of computing the

navigation-graph for position-based predictability, as well as introduce measures for

16



Figure 3.2: A Hospital Floor With Robot Navigation-Graph That Uses Only the

Shortest Paths to Go Between Kitchen and Medicine Cabinet to All Patient Rooms.

The Grid Squares Are the Vertices of the Navigation-Graph, and the Lines Are the

Edges; Every Vertex/Position Is a Branching-Vertex in This Example.

position-based predictability. Finally we will talk about a hill-climbing approach to

solving the problem and empirical evaluation for it.

3.2 Related Work

In the area of robot motion planning with humans in mind [29] [30], Dragan et al.

assume that the robot has a model that can help predict what motion the human will

infer, and move predictably according to that model. Along a related line of thinking

[57] considers how the robot’s actions communicate intent to the human, and use

it for better collaboration. An implicit assumption in such work is that the human

pays non-trivial attention to the actions of the robot to make this inference, which

is defensible when the human and robot are doing the same or related tasks, or in a

sparse setting like at home. In our settings of robot motion (hospitals, restaurants,

banks), we expect the humans will at most glance at the robot or use peripheral vision

17



Figure 3.3: An Autonomous Guided Vehicle (AGV) Following a Path Laid Out in

Tape

to determine where it is (not invest time intently observing the robot); the humans

would be preoccupied with their own independent goal-directed behavior. There is

also work [13] that considers inferring the hidden mental state of humans to infer their

intent with POMDPs and use that to coordinate better. In all of the aforementioned

work, if there are many people moving in the space, then it may be computationally

intractable or just not possible for the robot to act and conform to all of the humans’

intents or mental models. This leads us to the work on robot motion around larger

groups of people.

In the literature that tackles robot navigation in groups/crowds, the approaches

taken include modelling group dynamics using Gaussian processes [97] to infer how the

crowds will move use it for navigation. Naturally this would require more hardware to

sense and compute crowd dynamics and it is not clear how effective this actually is; to

our knowledge, the approach has only been tested on constrained simulations. A more

pressing concern is if there are any useful or predictable crowd dynamics in settings

like hospitals. Such dynamics may exist in busy pedestrian crossings where there are

general directions of motion. We think such predictable dynamics are unlikely to exist

18



in settings like hospital where movement is dictated by individual hospital staff goals

which can be very hard to predict. Another concern is how seamless the motion will

be as the predictability of motion is known to be important from a human factors

perspective [61], this was not evaluated in the referenced work on crowd modelling

with Gaussian processes [97]. We expect people moving around the robot without

consistent dynamics would result in jerky, inconsistent movement. This leads to

inconsistent signals given to the human, and hurt navigation coordination with the

human. If robot goals or priorities can change dynamically, then the predictability

of motion is worsened. In the approach we support, by restricting the robot to

simply following the markers on the floor, which communicates a directed navigation-

graph, there is much less uncertainty on how the robot will move. The only source

of uncertainty is in how the robots will move/turn at branching vertices, and by

minimizing the number of these, we further improve predictability.

Other methods for navigation in crowds include using Inverse reinforcement learn-

ing [59] [100], and Deep reinforcement learning techniques [23], [22] which also con-

sider human gaze in the feature set. With IRL approaches, if motion dynamics of peo-

ple change –which can happen with changes in furniture and space rearrangement–

then the relearning time is not considered in such work. With our method, if the

space configuration changes do not overlap with the navigation-graph, we can safely

ignore it. If they do, we simply update the initial graph with the new space con-

figuration (and capture which vertices and edges are blocked), and compute a new

navigation-graph and replace the old one’s markers/tape. Additionally, it is not clear

how predictable the motion with IRL techniques is, as that aspect was not evaluated.

Similar problems like motion predictability and robustness to environment reconfig-

uration would plague deep-RL methods( [23], [22]). In these, experiments were done

in simulations, and no consideration was given to the predictability of the motion

19



by humans. In contrast, AGV navigation using tape laid on the floor has a his-

tory of real-world use in hospitals and industrial settings. To bring this approach to

more settings, we take the position that further improving predictability of motion is

paramount for adoption in more commercial settings. The approach herein is about

how to compute the navigation-graph that is laid out, such that motion is very easily

predictable. This allows the humans to move easily in the space even with multiple

robots, as they know the robot’s hard motion constraints; they do not have to build

much trust in the robot’s navigation and collision avoidance abilities. This is likely to

matter more with bigger robots, as they are perceived as more of a threat to physical

safety [50]. On top of improving predictability, one can incorporate any additional

advancements for soft robotics [9], collision avoidance, and human gaze detection for

use in further improving the safety and acceptability in everyday settings.

Our approach also connects to recent literature on environment design, in which

the environment is configured to make prediction by humans easier [62]. Obviously,

we do not explicitly reconfigure the environment; we only limit the environment in

the robot’s model for its motion. In environment design work on predictability with

respect to the human, one assumes the goal is known to the human, or that the human

has observed a prefix of a plan’s actions and can infer the rest assuming they can infer

optimal path completions. These are assumptions that we want to remove for the

settings we consider (restaurants, banks, hospitals). Humans in such spaces are not

paying significant attention to the actions or know the set of goals of the (possibly)

multiple robots moving, nor can they be expected to invest effort computing optimal

path completions to these goals. There can also be new humans entering the space

regularly with no familiarity. So making predictability as trivial as possible, and from

just the current position (as AGVs do) becomes important.

With respect to the computation and algorithmic aspect of the approach herein,

20



our work computes a navigation-graph in a problem setting similar to Strongly Con-

nected Steiner Subgraph(SCSS) [35] problem. Our optimization for position-based

predictability is done with two objectives: (1) minimize the space (vertices and edges)

used by the robot in it’s navigation between terminal vertices; (2) minimize the num-

ber of branching vertices, and thus possible paths that a robot can take from any

position. The former is what the SCSS problem does, but to the best of our knowl-

edge no variants of SCSS explicitly considers minizing branching vertices. There are

graph problems that consider branching vertices, but with only a single source node

as far as we know; this is the problem of Directed Steiner Tree with Limited Diffusing

vertices (DSTLD), which has applications in multicast packet broadcasting [105].

Solutions to DSTLD optimizes for the total edge-weight cost of the tree (Steiner

tree problem), and limits the number of branching vertices (which they call diffusing

vertices) but only from a single source node. They do not consider the problem of

optimizing the number of branching vertices for paths between multiple source and

destination vertices (which we do). There is also no thought given for individual path

costs between vertices (only total edge weight). Another such problem in this vein

of literature, is the Rectilinear Steiner Arborescence (RSA) [84] which is the rectilin-

ear version (manhattan distances) of Directed Steiner Tree problem . In RSA, the

objective is to compute the minimum length (sum of edge cost) directed tree, that is

rooted at an origin point and connected to N vertices. The problem is known to be

NP-complete [91] to compute a solution that is less than a specified length, and so

NP-hard to optimize (minimize) for the total length. RSA (like DSTLD) is just for a

single-source, and pays no heed to pairwise path costs between terminals.

21



3.3 Problem Formulation

The problem of graph minimization for position-based predictability is given by

the tuple

Pmin = 〈G, T, C,W 〉 (3.1)

where

• G is the directed graph defined by its vertices and edges (V,E). This graph

captures the all the allowed motion of the robot. Any motion constraints like

protected areas or one-way corridors are captured in the graph as well (dropped

vertices, and one-way edges).

• T is the set of ordered vertex pairs that need to remain connected in the mini-

mized graph. Each pair appears twice (both orderings of the pair) to represent

both directions of connectivity. The vertices will be called terminal vertices,

and we refer to the ordered pair of vertices as a “task", as we think of them as

being associated to a task. These are locations of importance for a task like a

medicine cabinet, or it could be the door connecting to an adjacent room that

the robot needs to reach.

• C is the function that returns the cutoff cost (maximum allowed) distance

associated to each task in T. The cost of the paths in the final minimized graph

should be less than the specified corresponding cutoff.

• W is a function that returns the weight of each pair in T. This weight can be

the probability of the task, or an importance weight (if some tasks need to be

done more quickly).

The objective is to reduce the input graph G so that in the resultant (output)

navigation-graph, position-based predictability is easier, and the path costs between

22



terminal vertices are above a threshold defined by the cutoff function C. Often a trade

off will be necessary between path costs and predictability. Measures for position-

based predictability are formalized in the following section. Note that we do not

expect the human to predict the entire path suffix from the current position of the

robot; people certainly do not predict other pedestrians’ full trajectories before mov-

ing. Rather, we want to make it easier to bound the possible paths or positions that

the robot might occupy. This information would help the human decide where to

move for their next steps, and if the robot is likely to move in the same spaces.

3.3.1 Measures for Position-based Predictability

We describe herein measures for position-based predictability and justify their

definitions.

Weighted Prediction Cost (WPC ): If the navigation-graph has fewer branch-

ing vertices, and each of them having a smaller branching factor (number of out-

edges), then it makes the motion more predictable for the human; fewer possible

future robot trajectories for the human to consider. Vertices with only one outgoing

edge require minimal thought, and trajectories with a sequence of vertices with just

one outgoing edge are trivial to predict from just the current position of the robot;

these are ideal conditions for predictability (trivial cost).

We first describe the WPC measure before defining it. There are two components

in WPC, the first counts the number of branching vertices that appear on the paths

for the robots tasks, and weights it according to the values given in W . This is

then multiplied by the sum of the branching factor of those branching vertices. Two

terms are necessary as graphs might have the same sum of branching factors but

different number of branching vertices or vice versa. We need both the number of

branching vertices to be fewer and their branching factor to be smaller to make

23



predictability easier. 3 branching vertices with branching factor 2 is treated as worse

than 2 branching vertices with branching factor 3. This is because every branching-

vertex breaks the ideal of just one trajectory for as many steps as possible. If the

human has to cross one of the robot’s paths after a branching vertex, the human may

take a different path, or slow down to see how the robot turns (assuming they want

to avoid conflict like in [97], [60]). Such a situation would occur more often with

more branching vertices. So the count matters as well as the sum of branching factors

(number of trajectories). The branching factor matters because fewer trajectories lets

the human plan a path around any of the future trajectories more easily (less space

covered). A smaller WPC implies a simpler graph of robot motion for position-based

prediction. Zero WPC, meaning zero branching vertices implies the robots movements

are all trivially predictable since there is only one action (direction) it can take from

every position. WPC is defined as :

WPC(G, T,W ) =
∑
t∈T

∑
v∈SPV (G,t)

W (t) ∗ 1[deg+(G, v) > 1]

×
∑
t∈T

∑
v∈SPV (G,t)

W (t) ∗ deg+(G, v) (3.2)

where SPV (G, t) returns the shortest path vertices for the input task (t) in the

graph (G) being evaluated, and deg+(G, v) returns the outdegree of the vertex(v)

in the graph(G). If there are multiple shortest paths for a task, then the path that

contributes the least cost to WPC is used. What this translates to–in terms of the

robot’s motion–is that when the robot is moving on the path associated to T , the

human observing it at any position will have to consider fewer (ideally only 1) possible

future trajectories when trying to move and avoid any conflicts.

Weighted Ratio NV/NBV : where NV is the number of vertices and NBV is

the number of branching vertices. This measure represents the number of vertices or

24



steps in a sequence with no branching, and is weighted by the task weights. If the

weights are just the probabilities of the tasks, then this measure returns the average

number of steps before encountering a branching-vertex. So a larger NV/NBV value

implies longer paths with no branching, i.e. going one-way for longer distances; this

makes path predictions using only the position trivial for many parts of the graph.

NV/NBV is formalized as:

NV/NBV (G, T,W ) = ∑
t∈T

∑
v∈SPV (G,t)W (t)∑

t∈T
∑

v∈SPV (G,t)W (t) ∗ 1[deg+(G, v) > 1]
(3.3)

What this means for the human in the space, is that they don’t need to consider

multiple paths for moving shorter distances. They just need to see that in the next

"N" steps or units of time, the robot will not be near the human. This was illustrated

in Figure 3.1. If the nurse was moving to the middle door at the bottom, then the

human knows with a glance that the robots will only ever move further away from the

human and never towards them, or cross them (as per the navigation-graph). The

human doesn’t need to infer the full path of each of the robots, which would require

unnecessary effort. Even knowing both the robots’ goals doesn’t necessarily make

the cognitive effort minimal. For the human (the nurse) to reach their goal (middle

door) they just need to know or bound the immediate next few steps to determine a

uninterrupted path to their goal (middle door). Any additional effort is unnecessary,

and thus undesired.

An example of the type of navigation-graph optimization that this work does is

shown in the rectilinear grid-graph in Figure 3.4. The blue vertices are the terminal

vertices and vertices highlighted in red are branching vertices. In the figure, we show

two graph minimizations; one that focuses only on graph size (number of vertices and

25



edges), and another minimization that optimizes for position-based predictability

(fewer branching vertices and graph size).

Figure 3.4: Example of Graph Minimization for Graph Size, and Minimization for

Position-Based Predictability. Blue Vertices Are the Terminal Vertices That Must

Stay Connected, and Vertices Highlighted in Red Are Branching Vertices.

Both these measures involve branching vertices. We provide supporting evidence

for our intuition in the human subjects experiments that fewer branching vertices

make position-based predictability easier.

3.4 Methodology

Our problem of (navigation) graph minimization for position-based predictability

is one of constrained optimization. We want to find a graph that minimizes WPC

and has a high value for NV/NBV, while connecting all the required pairs of terminal

vertices in T within the cost constraints specified through C. To find such a minimized

graph, we used a hill-climbing search approach. The two key components in our

approach are (1) finding a diverse set of paths for each task (ordered pair of terminal

vertices), and (2) evaluating (for comparison) the different graph candidates during

the hill climbing search.

26



Before we go into the details, we highlight a challenging aspect of this problem

which motivates our methodology choice. Specifically, the number of possible com-

bination of paths between terminal vertices for a graph can explode in size based

on the number of vertices and graph-connectivity; denser implies more path options.

The difficulty in optimization comes from the fact that we cannot choose a path be-

tween terminal vertices independent of the other paths. This is because the number

of branching vertices is not known until we combine the paths for all pairs of termi-

nal vertices. This leads to a combinatorial explosion in the number of possible path

combinations (and thus graphs), and so makes it challenging to compute the optimal

graph.

To make the computation tractable, we limit ourselves to using a fixed number

of paths for each task in T . This initial population of paths determines the quality

of the outcome of the search, and choosing this population is the first step of our

approach. In this regard, one set of helpful constraints are the cost cutoffs for the

paths. This helps constrain our search space in terms of the paths to consider. The

paths are obtained through shortest-path search for each ordered pair of vertices in

T . After one path is found for a task, the weights of those edges are doubled and the

process is repeated to help build a diverse set of alternative paths. After we build the

candidate pool of paths per task, we start the hill-climbing search.

This brings us to the other part of the search process, and that is generating

and comparing successive graph candidates. For generating new candidates for a

given graph in the search, we only consider single-path replacements to the graph.

We do this using the population of paths we stored in the first step. This is how

new candidate graphs are generated during the search. We may replace or just drop

a path if there exists another path in the candidate graph –using edges from other

paths– that is within the cutoff. If a replacement breaks the connectivity between any

27



terminal vertex pair, it is not considered. We compare the cost of all the candidate

graphs produced at each step, and greedily take the candidate with the lowest cost

(we will discuss cost functions used for comparison soon). If no better candidate exists

at a step in the search, we stop the search process. Lastly, we use a fixed number

of random restarts (5 restarts) to repeat the hill climbing process, and use the best

result over all. Each iteration starts with a graph that is a combination of randomly

chosen paths for each task.

As maybe apparent, the cost or evaluation function is pivotal to the algorithm. We

test our hill climbing approach with two relevant cost functions that are intended to

minimize for the effort of an observer for position-based predictability. We start with

discussing the baseline cost function, which we then modify for our proposed (main)

cost function. The baseline cost function is simply the sum of weighted vertices and

edges. We will call this the Graph-size cost or GSC. It is so called since a smaller graph

with fewer vertices and edges would have a lower GSC cost. GSC is analogous to the

optimization objective of the SCSS problem(see related work for SCSS description).

Based on our correspondences with the authors in [35], [24] the SCSS algorithms

therein were theoretical and not implemented. The connection with SCSS problem

was part of the motivation for setting GSC as the baseline, as well as the fact that

making the navigation graph as small as possible ought to help predictability; this

stems from the intuition that a smaller graph could result in fewer possible paths to

consider.

One difference between how we use GSC and the SCSS problem is that SCSS does

not consider individual path costs between terminal nodes, which is important for our

navigation problem; during search in graph space we ensure that the path between

any pair of terminal nodes doesn’t exceed the specified cutoff. The other difference

with SCSS, is that the weights of the nodes and edges is affected by the weight of

28



the tasks on whose paths they appear in (in the computed subgraph). So the weights

are dynamic unlike in SCSS. The importance of this is apparent when we consider

the task weights as task frequency. The paths associated to more frequent tasks are

taken more often, and so those paths should be more predictable. The weights are

given in the problem input W . GSC is defined as:

GSC(G, T,W ) =
∑

e∈E(G)

max
{t|t∈T,e∈SPE(G,t)}

W (t)+

∑
v∈V (G)

max
{t|t∈T,v∈SPV (G,t)}

W (t) (3.4)

where V (G) returns the vertices in the graph, E(G) returns the edges in the graph,

and SPE(G, t) returns the shortest path edges for the task(t) in the graph(G), and

SPV (G, t) returns the shortest path vertices for the input task (t) in the graph (G).

We use the maximum of the task weights of the tasks whose shortest path uses

that edge or vertex. This encourages the search to prefer graphs that reuse the same

vertex or edge in the paths for multiple task. The drop in cost would be greater

when paths of tasks with higher weights use the same edges and vertices. Note that

while GSC doesn’t explicitly consider branching vertices, it would implicitly favor

fewer branching vertices when possible; a branching-vertex increases the number of

edges for every step after it, as opposed to if the path didn’t branch. This would

increase the edge cost part of the GSC score. So any approach to minimization for

position-based predictability should be no worse than this baseline’s performance for

the predictability scores defined in the problem formulation section.This brings us to

our cost function which builds on GSC to explicitly incorporate branching vertices.

We will refer to this cost function as Branching-Vertices Cost (BVC). The function

29



is as follows:

BV C(G, T,W ) = WPC(G, T,W ) ∗GSC(G, T,W ) (3.5)

where WPC is as defined earlier in Equation 3.2

Graph minimization with BVC as compared to minimization with GSC will tell us

if simply minimizing the graph for the number of vertices and edges (GSC) is sufficient

to optimize for our position-based predictability measures, or if it is better than

BVC in human-subject studies. If so, then our BVC cost, that explicitly considering

branching vertices, would not be necessary; the need for considering branching vertices

is central to this work. GSC gives us a plausible baseline to use in human-subject

experiments for position-based predictability. It represents the stance that minimizing

just for the size of the graph is enough and ignoring branching vertices doesn’t hurt

predictability.

Note that we do not directly optimize to increase NV/NBV as that biases the

search to use longer paths in the resultant graph for getting a higher value in this

measure. The cutoff input in C is the upper limit, but we think it desirable to keep

the paths as short as possible. So we do not explicitly incorporate the NV/NBV

measure into the cost.

3.4.1 Computational Complexity

For our problem over rectilinear graphs, it is hard to compute optimal solutions as

even a special case with all tasks having the same (single) source vertex is NP-Hard to

optimize even if we only consider minimizing the edge-cost in the graph; that special

case is the Rectilinear Steiner Arborescence (RSA) problem, which is discussed in the

related work. So we resort to approximate methods like hill-climbing.

With respect to our algorithm’s complexity, for the first step of computing the

30



population of paths for each task in T, the entire subroutine should take

O(PopulationSize) * (|E|+|V|log|V|)); where (|E|+|V|log|V|) is from the running time

of shortest path using Dijkstra’s algorithm. The “PopulationSize" is the size of the set

of shortest paths for the tasks used in the hill-climbing search. We will also present

empirical results for the time taken in Table 3.1 in the Results Section(VI).

Since our approach is a hill-climbing approach, it is an anytime algorithm. We

can stop at any point and get the best solution found until then. With more random

restarts and letting the algorithm run longer, one can get better solutions as is ex-

pected with hill-climbing. This computational cost is one-time when setting up the

space, and only needed again if the space configuration changes.

3.5 Experiments

To evaluate the graph minimization with our hill climbing algorithm, we run our

algorithm on randomly generated 20x20 grids. This is intended to reflect a room or

hall of a building. The robots have to move through this space between terminal

vertices; terminal vertices could be doors connecting to other rooms, or locations rel-

evant to a task. We start with a fully connected grid with adjacent vertices connected

bidirectionally. All edges are of unit distance. Then we randomly drop 20% of the

vertices and 20% of the remaining edges; dropping vertices and edges represents the

spaces used for furniture, obstacles, corridors, walls etc. Lastly we arbitrarily select

the terminal vertices from the remaining vertices. All ordered pairs of terminal ver-

tices define the set T . We vary the number of terminal vertices selected from the set

{3, 4, 6, 8}. When this parameter is not being varied (in the subsequent plots), the

default value is 6. Another parameter that we vary in our experiments is the cutoff

cost C for the path costs between the terminal vertices. The cutoff cost is set as a

multiple of the shortest path cost for each pair of terminal vertices, so it is a bound

31



on suboptimality. If the cutoff is 2, then only paths that are less than or equal to

twice the optimal cost are considered. In our experiment we vary this value from the

set {1, 2, 3, 5} where 1, means only optimal paths are considered. When this param-

eter is not being varied (in the subsequent plots), the default value is 3. Lastly, the

weights W are randomly assigned to all tasks in the range [0, 1) and normalized so

they would sum to 1. In total, the experimental settings include every combination

for the number of terminal vertices and cutoff bound. For each unique setting, we

generate 10 random graphs (setting the random seed in the code from 0 to 9) and

ran the algorithm with both cost functions on the same graphs. This allows us to

get a range of predictability measures produced by the two approaches for the same

setting.

With respect to algorithm parameters, the maximum number of candidate paths

for each task (t ∈ T ) used during the search process for all experiments was capped

at 20; there may not exist as many paths within a specified cost cutoff, and so it is

the maximum number. The search process considers combinations of these paths to

find a good solution. The number of random restarts for the hill-climbing search was

fixed at 5.

The algorithm was programmed in Python, and using networkx [45] for graph

operations including generating random graphs, and shortest path computations. The

experiments were run on a PC with Intel® Core™ i7-6700 CPU, running at 3.40GHz

on Ubuntu 16.04 with 32 GB of memory.

3.6 Results and Analysis

We present the results comparing the two cost functions (GSC and BVC) side by

side for each measure and the same dimension of variation. Each boxplot represents

the variation for that measure in that setting. Recall that for the WPC measure,

32



lower is better, and for NV/NBV higher is better.

In Figure 3.5 and 3.7 we vary the suboptimality of paths allowed in the search.

For those plots, the number of terminal vertices is kept constant at 6. The plots

show position-based predictability measures in general improve as we allow for more

suboptimal paths, i.e. the WPC measure decreases and NV/NBV increses. This is

expected as there are more possible paths for the search algorithm to work with. The

BVC cost function does consistently better than GSC for all settings.

In Figure 3.6 and 3.8, we vary the number of terminal vertices while keeping the

maximum suboptimality of allowed paths at 3. The position-based predictability

measures worsen with more terminal vertices. This is unsurprising as the search

process has to satisfy more task paths in T which increases the likelihood that more

branching vertices are needed since non-intersecting paths within the cutoff may not

be possible. We see that the BVC cost function performs better than GSC here as

well.

GSC does improve position-based predictability measures with an increase in al-

lowed suboptimality. Reusing vertices and edges for different paths, (which GSC

encourages during the search) can reduce the number of branching vertices. However,

our data indicates that it pays to explicitly factor in the branching vertices into the

cost; using the BVC cost function consistently gives better results in position-based

predictability measures.

In Figure 3.4, we see one example of the typical case where GSC cost minimizing

does worse than BVC for position-based predictability; BVC results in a much more

predictable navigation-graph, similar to the images of the hospital setting in Figures

3.2 and 3.1.

One might be concerned that the reason BVC does better in the NV/NBV mea-

sure when the suboptimality allowed increases, is because longer paths are being

33



abused. In Figure 3.9, we show the average suboptimality of the paths in the mini-

mized graph using GSC and BVC while varying the allowed suboptimality of the ini-

tial candidate paths. The number of terminal vertices is fixed at 6. While the average

suboptimality does increase, BVC keeps it lower than 2-suboptimal, and is compara-

ble to GSC. This is because BVC (like GSC) considers the edge cost; so longer paths

are avoided as they would increase the cost considerably. So the NV/NBV measure

is improved more by the fewer number of branching vertices, and not by the use of

very long paths.

Figure 3.5: WPC Measure With Varying Optimality Cutoff

Lastly, we present the data for time-taken for different settings in Table 3.1. The

factor that affects time the most is the number of terminal nodes, rather than the

graph size. One might expect as much since the search is over combinations of paths

between terminals. More terminal nodes would imply more paths are needed for

connectivity, and the search space is commensurately larger as well.

34



Figure 3.6: WPC Measure With Varying Terminal Vertices

Figure 3.7: NV/NBV With Varying Optimality Cutoff

3.7 Human-subject Experiments

In our human-subject experiments, we sought to evaluate if minimizing branching

vertices really does make a difference on the cognitive effort in reasoning about paths.

The problems we presented to the participants (Figure 3.10) were made from a 6x6

grid with 20% of the edges removed, and 5 arbitrarily chosen terminal nodes. There

35



Figure 3.8: NV/NBV with varying terminal vertices

Graph Size Terminal Nodes Time Taken

20x20 8 334

40x40 8 798

30x30 8 551

20x20 10 1176

30x30 10 2152

40x40 10 3005

Table 3.1: Average Time Taken for Varying Graph Sizes and Number of Terminal

Nodes

were two robots in each problem, and a path defined for the human to move, as illus-

trated in Figure 3.10. The robots moved on the blue circles as allowed by the black

arrows, and the human moved on the yellow circles according to the red arrows. All of

them move 1 step at the same time. We asked the participants to determine at what

step the human and a robot would collide (we make it easier by telling them there

would be a collision). We presented two problems: problem 1’s graph was produced

from the 6x6 grid by optimizing with GSC and had fewer vertices(14 in number) but

more branching vertices(3); problem 2 was optimized by BVC and had more ver-

36



Figure 3.9: Average Suboptimality of Paths Chosen With Increasing Allowed-

Suboptimality of Candidate Paths for GSC and BVC Cost Functions

tices(16) and fewer branching vertices(1). Our objective was to see if it took less time

for the same user to answer correctly for the problem with fewer branching vertices.

We chose such an evaluation approach as we wanted to compare the time taken when

thinking/reasoning about paths when only the number of branching vertices changed.

We try to control all other variables such as the number of steps in the human’s path,

and the number of overlapping positions with the robot’s navigation graph.

Figure 3.10: Problems Given in the Human Subject Experiments; Problem 1 (Left)

Has More Branching Vertices and Problem 2 (Right) Has Fewer.

37



We considered that there could be a wide disparity in the cognitive ability of people

to reason about paths, so we adopted the within-subject approach in our experimental

design; we compare the performance difference with respect to the same person, and

not across people. The null hypothesis is that the mean time difference is 0 (no

impact of branching vertices). If our assumption on the effect of branching vertices

was sound, then the mean time difference should be less than 0 (takes less time with

fewer branching vertices). We fix the human path, rather than let the participant

choose their own path, as we wanted to control the variables of the study as much as

possible, to isolate the effect of branching vertices.

Before we presented the problems to the subject, we first show an animated ex-

ample of the human and robots moving in a different grid. We showed examples of

a safe path and a path with a collision. Then we presented a practice problem with

two robots and a fixed human path. The subject had to get the practice problem cor-

rect before proceeding to the test problems; the practice problem was on a different

grid(problem setting) than the test cases. The two test problems were presented in

a randomized order. The subject can only proceed to the next problem after getting

the first problem correct; this was needed so we could compare the time taken, which

in turn reflected relative difficulty and cognitive effort. At the end of the experiment

we debriefed participants by explaining the purpose of the experiment, and gave them

the option to reach out to us for more information. Our human subject study had

IRB approval.

To make the comparison fair, the human path in both problems was of the same

length (7 steps), and overlapped with the robot positions the same number of times

(3 positions) as can be seen in Figure 3.10. In both problems, the human collides

with a robot on step 5, which the participants ofcourse did not know. So, they had

to rollout the path for the robots for the same number of steps before they could

38



infer a collision. We matched the human path and robot navigation-graph as closely

as possible; this was possible since they came from the same initial graph. We made

sure that atleast one branching-vertex in both problems was involved in determining

when the human collided with the robot. So the major difference in the two problems

are the additional branching vertices in problem 1, which would naturally create more

paths to consider. We hypothesized that this should make the user take longer to

answer (more difficult).

We also worked to minimize the carryover effect in within-subject experiments;

showing problem 1 first can make problem 2 easier due to familiarity. By first present-

ing the animated example and a practice example, we sought to sufficiently prepare

the user, and give less of a learning benefit after doing either of the test problems

first. We also randomized the order of problems to avoid order affecting the results.

All participants were from the Amazon Mechanical-Turk(Mturk) service [28] and

filtered by “masters" qualification for users (users that had a good track record).There

were 36 subjects in total. We tracked the time taken and guesses made for each

problem. Of the 36 data points, 7 were removed. Of the 7, 2 were removed as it was

apparent they were randomly guessing (we recorded guesses and time of the guess).

4 were removed because they were extreme outliers, as in the subjects took in excess

of 201 seconds for a problem. We computed the outlier cutoff using the interquartile

rule [86]. By this rule, we add 1.5× IQR (inter quartile range) to the 75th percentile

value to get the upperbound; the lower bound similarly calculated from the 25th

percentile value, and this was below zero and so ignored. Note that the outlier data

points also supported our hypothesis as time taken for problem 2 was much less

than problem 1, but we eliminated them due to them being extreme outliers which

would hurt the paired t-test evaluation. The last remaining data point was removed

because the user solved both problems in 2 seconds which implied they either knew

39



the answers or repeated the test under a new ID. Once we have the time taken for

solving each problem, we take the difference between the time taken for problem 1

and 2 (for each user), and run a paired t-test [52]. We were looking for evidence at

the 5% significance level (p-value 0.05). The mean difference in time taken was -47.53

seconds, i.e. problem 2 on average takes less time. The statistical significance of this

result comes from the paired t-test analysis done with the Scipy library. The p-value

computed is 0.0006, which means we can reject the null hypothesis of no difference

in time taken with high confidence. If we only consider the data with problem 1

appearing first, the mean difference is -49.08 and the p-value is 0.0118. If we only

consider the data with problem 2 appearing first, the mean difference is -46.5 and the

p-value is 0.0185. So we can reject the null hypothesis, and we have strong confidence

in the mean difference being lower in favor of fewer branching vertices. The average

time to do problem 1 and 2 was 87 seconds and 38 seconds respectively. We certainly

do not expect people to invest such amounts of time navigating around robots. The

time taken was because we asked people to count the steps of the human and robot

and indicate the earliest possible step at which they would collide. Counting to get

the exact and earliest collision step, and having to consider combinations of path

segments is why the time cost is higher. In reality, humans do not count to get the

exact time or step of a path-conflict, only that we intuit there might be one and

adjust our path. Our human-subjects problem was to evaluate the relative cognitive

cost in path-reasoning when there are more branching vertices, and the data supports

this. We expect this relative cognitive cost to translate to humans moving in the real

world alongside robots using our approach.

40



3.8 Summary

In this chapter we presented the problem of computing the navigation-graph

for position-based predictability. We then defined measures for position-based pre-

dictability with justifications for them. We presented and evaluated a hill-climbing

algorithm to minimize graphs for position-based predictability. We also conducted

human-subject studies to show that fewer branching vertices can make the problem

of reasoning about robot motion from it’s current position alone easier.

We posit that the navigation-graphs output by our approach can be used to deter-

mine how an AGV or any mobile-robot’s grid/paths ought to be laid out; this would

help make motion prediction easier for humans, especially when there are multiple

robots moving in the space. Predictability would help make the robots feel safer, the

space more comfortable, and thus help with the adoption of AGVs and other mobile

robots in more settings.

The focus in this chapter was on the robot behaving so as to make it easier for the

human to act, without controlling the human’s actions or policy. In the next chapter,

we will focus on how to compute policies for human agents.

41



Chapter 4

TRADING OFF VALUE FOR REDUCED POLICY COMPLEXITY

In this chapter, we focus on computing policies for humans that consider the

errors we make and managing the complexity of policies. In the work by [32], one

reason why it is important to compute a policy for human agents to execute –rather

than just focusing on the automated system’s policy– is Out Of The Loop (OOTL)

performance. OOTL is when the human has become aware of an error with the

autonomous agent, and has to take over. One must expect low situational awareness

[32] as the overseer (human) might not pay attention as the autonomous agent works

fine most of the time. When the human has to jump back in, the user maybe under

stress to address the situation, and so the policy computed ought to consider the

effects of stress and fallible execution. In a SDM problem, errors can cascade and so

care must be taken on deciding appropriate policies to consider the errors we make.

One of the guidelines in [32] is to reduce task complexity which advocates for reducing

the number and complexity of actions. In the work we did [41], this translates to less

complex policies, and we will define what complex means shortly. We compute these

policies in the context of Markov Decision Processes (MDP). In this problem setting,

while managing policy-complexity, we consider human perception (attention) errors

and how that affects execution in a SDM problem, as well as human behavior under

uncertainty. Human responses to uncertainty is something we have not seen treated

42



for SDM in the computer science literature, and will also be discussed in Chapter 5.

4.1 Motivation

MDPs have been used extensively in many applications([12],[53],[106]) but what

if the agent that has to act in such a scenario is a human, the optimal policy maybe

too complex to reasonably expect a human to execute it accurately or quickly. Our

cognitive and perceptual limitations may result in mistakes, such as confusing similar

states. We may also take longer to execute an optimal policy since it requires more

cognitive effort to discern between similar states, which is necessary when the policy

for those states are different. A sub-optimal but simpler policy that can be more

faithfully and quickly executed can be preferable in some scenarios. Other than

OOTL performance, there is precedent for preferring simpler policies in the medical

literature; one example of this is the Apgar score[7]. It is a policy that relies on

a simple scoring method to determine what action to take with newborn babies.

Doctors and nurses are taught a simple scoring system on few easily measured signals

to determine the health(state) of the baby and act according to this single score.

A more complex policy that is conditioned on more or granular measurements and

prior states could result in costly mistakes. Additionally, when the same policy has

to be executed many times, a lower cognitive load would also be preferable to avoid

over-taxing the human.

In this chapter, we specifically consider the problem of confusing similar states–

what is called “state-aliasing" here– and how that could affect the value of a policy

in Markov Decision Processes (MDP). We work with the assumption that a policy

which uses the same action across similar states is easier to follow or execute (which

we show in human studies), and that similar states can potentially be confused with

each other (state-aliasing), especially under time pressure or other stressors. This

43



state aliasing can lead to errors in execution due to misidentifying states. It can also

result in delays in execution when similar states have different actions in the policy

and so the human might pause to resolve uncertainty. If the actions were the same

across similar states, then there is no need to wait and discern the states properly.

We tackle human response to uncertainty more in the next chapter.

The approach in this chapter is connected to prior work by [107], which considers

state-aliasing through errors in perception (robot sensors). However, their objective

is to improve the sensing policy (active perception) so as to have a better internal

representation for the policy execution. Doing the same with humans would add to

the difficulty of following the policy, and we cannot expect the user to consistently

compute accurate posterior likelihoods given a sensing process. Instead, we take the

likelihood of the human agent (mis)classifying states as an input. These classification

likelihoods can be empirically determined through evaluating the human; we will

discuss this more shortly.

To illustrate the problem, let us consider a simple version of a Warehouse Worker

domain. In this domain, a worker is at the end of a conveyor belt and customer orders

of different sizes arrive. The human has to decide the size of the box needed (small,

medium, or large). If (for example) the difference in cost of box sizes is very small,

then the simplest policy is to always use the large box. This would save on delays to

decide the right action. If the policy actions are easily decided, then more orders are

completed (greater throughput), and the company can profit more in the long run.

More importantly, the cost of erroneous execution– trying to put a medium-sized order

in a small box– is avoided. If one were to ignore policy execution errors and delays,

the optimal policy computed for the original MDP could actually be suboptimal

when it is executed by the human due to the delays and errors in execution. Such

execution errors can especially be pronounced in high-stress situations, which tend to

44



cause people to miss perceptual cues (Tunnel vision/Tunneling hypothesis), and poor

cognitive performance [94].

In this chapter, we formally define the problem of computing a policy for a State-

Aliased MDP (SAMDP). In our definition, we describe how to model two effects of

state-aliasing on human policy execution; the likelihood of inaction (delay) and the

likelihood of erroneous execution (which we will connect to observation likelihoods

and POMDPs). We also quantify the notion of policy-confusion likelihood. We then

discuss a modified policy-iteration algorithm that searches for policies that optimize

for value while considering delays and erroneous execution. Our algorithm also sup-

ports weighting the search to bias the search towards lower policy confusion likelihood;

such policies can be easier for humans to follow.

Figure 4.1: Policies With Identical Value in an MDP, but Can Have Different Values

After Accounting for Errors and Uncertainty Effects

4.2 Related Work

In the scientific literature on teaching humans a policy to execute, there is a strong

precedent for giving simpler policies to humans. As mentioned, the Apgar score [7] is

one such example from the medical literature. "Super Sparse Linear Integer Models

(SLIM)" by [99] is another example, as discussed in Chapter 2. Recall that in SLIM

authors build sparse linear models with emphasis on smaller integer weights because

45



they make computation by humans easier and more reliable. The approaches focus on

making inference easier, and in this problem we focus on aligning the policies across

similar states to make policy-inference easier.

Prior work[65] on a connected problem of policy summarization and assume that

humans will infer the same or similar policy-action based on similarity of states in

the domain model of the human. They propose an Imitation Learning (IL) based

summary extraction that uses a Gaussian Random Field model [114] for human policy

extrapolation. They considered that people use the similarity between states for

generalizing policy summaries to states that were not part of the summary. For one

of their domains, they reported that 78% of their participants used state similarity

based policy-summary reconstruction. The authors also argued that state similarity

could have an effect regardless of the objective or reward for the state. This will be in

accordance with our modeling choice of having the (mis)classification between states

be independent of rewards and goals. Finally, their IL method led to better policy

summaries, and using state similarities helped. This mirrors the approach here in

that state-similarity –which in our case can lead to state aliasing or misidentification

– ought to be considered for generating better policies.

Recall that one of the effects of state aliasing on policy execution is delayed ex-

ecution, which we will model in our problem setting. This can bring time into the

problem. Adding time and variable length action duration to MDPs can make it a

Semi-Markov Decision Processes(SMDP). SMDP considers the case when time be-

tween one decision and the next is a random variable. This has some similarities to

how we model delay time since the number of delay steps in a state becomes a random

variable. However, there are two critical differences. First, the cause of the delay is

not due to an explicit action in the policy nor dependent on the current state alone.

Rather, the delay is due to state aliasing and policy differences between those similar

46



(aliased) states. Second, SMDPs are Markovian, whereas this chapter addresses a

problem in which the actions of states are coupled and so becomes Non-Markovian.

If we ignore the policy execution delay due to confusion and just think about

the state-aliasing, then this problem can be seen as a Partially-Observable Markov

Decision Process (POMDP) problem where the likelihood of confusing states each

other becomes the observation function of POMDPs. If we were to tackle that limited

version of the problem with POMDP solvers, there is still the issue that we cannot

give a POMDP policy to the human; a policy that is conditioned on belief state

(likelihood of possible states). We cannot expect the human to track their posterior

state likelihoods accurately. POMDP policies can also be defined by histories of

observations. If we think of the state that the human inferred as an observation

emitted by the state (the human only knows this "observation"), then the policy we

return is akin to a POMDP policy conditioned on a history of 1 observation; these

are called reactive controllers [69]. Note that this would be ignoring the delay effect

from policy confusion.

4.3 Problem Definition

The problem of generating policies for a State-Aliased MDP (SAMDP) is defined

by the tuple 〈S,A, T, r, γ, φ, p〉. Each of the terms are defined as follows:

• S is the set of states in the domain;

• A is the set of actions including a∅ which is a state reidentification action

• T : S × A× S → [0, 1] is the transition function that outputs the likelihood of

transition from one state to a successor state after an action. This includes the

reidentification action transitions.

47



• r : S × A → R is the reward function. This includes the reward associated to

reidentification actions.

• γ is the discount factor

• φ : S × S → [0, 1] is the likelihood of classifying the first state as the second .

This is due to state similarities.

• p : S → [0, 1] is the likelihood of starting in a particular state.

The objective is to output is a policy π : S → A that seeks to maximize the policy

value (equation 4.2) while mitigating the delays by keeping the policy confusion score

low (equation - 4.3). One must account for the classification likelihoods when com-

puting the policy since the policy that is actually executed (and the value) is affected

by them. The Classification likelihood (φ) is the pivotal factor in this problem. If

there was no classification of states (state aliasing), then it is a standard MDP, and

policy iteration would solve it.

The similarity or rather the mis-classification of states due to the similarity can

lead to policy execution errors. This can happen when the incorrect identification

of states causes the actions of the aliased states to be executed in the current state.

The probability of an action in a state for a given policy after accounting for the

classification likelihoods is defined by Equation 4.1.

πφ(s, a, π) =
∑
s′∈S

φ(s, s′) ∗ π(s′) (4.1)

where π(s, a) returns the likelihood of the action in the input state for the deter-

ministic policy π, and πφ is the probabilistic policy after consider effects of state-

uncertainty. Due to this effect on policy, the problem setting becomes non-markovian

as the action and transitions in one state is affected by that of another state. Note

48



that the likelihood of an action is further changed when we consider delay actions,

which we will discuss in the following section. For now, consider πφ(s, a, π) as the

likelihood of taking an action under the effects of state uncertainty. The value after

the policy after accounting for state-uncertainty is:

Vφ(π, p) =
∑
s∈S

p(s) ∗ V (πφ, s) (4.2)

where V : π × S → R is the value of the state for the policy πφ; πφ is the resultant

policy after the effects of state-aliasing are applied to the input policy pi, as defined

in Equation 4.1. The effect of aliasing is erroneous execution due to misidentifying a

state, whose likelihood is captured by φ(.).

The state classification likelihood also determines policy confusion score, where

the confusion score is formalized as:

CS(π, p) =
1

|S|
∗
∑
s1∈S

∑
s2∈S

φ(s1, s2) ∗ 1[π(s1) 6= π(s2)] (4.3)

The confusion score will lie in the range [0, 1] where a score of 0 implies all similar

states have exactly the same action. A score of 1 can only happen if a state is always

mistaken for another state and the policy mismatches.

The reasoning for this quantification of confusion is as follows; if any pair of states

can be confused with each other, but the action in the policy is different, then it adds

to the likelihood of policy confusion. How much it adds to confusion is determined

by the likelihood of confusing the two states, given by φ, and the policy given to the

human π; two very similar states with different actions adds more to the confusion

score than two less similar states with different actions (less likely to confuse the two

actions). So the classification likelihood is used as the weight when considering each

pair of states whose actions in the policy do not match. For an example of policies

49



that have different policy confusion scores but comparable values, see the gridworld

example in image 4.1 where the sole reward is obtained by transitioning into the

bottom-right grid. Note that we do not assume that the classification-likelihood (φ)

is symmetric; in some settings the state identification maybe biased.

4.4 Delay Effect From Policy Confusion

Recall that when state-uncertainty is a problem, we consider two effects on policy

execution; incorrect policy execution, and delay in policy execution. The incorrect

execution due to uncertainty was described in Equation 4.1.

The other effect is the action delay. After observing the real state, the human

might infer that it is the (most likely) state s1; this can be thought of as the maximum

aposteriori probability (MAP) state in the human’s mind after seeing the real state in

the environment. However, the human might not be certain and think that it could

be another state s2 as well. If the actions are different in the policy for these two

states, then one might spend additional time observing the environment again rather

than act, resulting in a delay. If the actions were the same in the possible states, then

the human can act without further delay. For example, in the Warehouse Worker

domain, the policy is that all customer orders can be put in the large boxes. So,

regardless of the workers confusion about the order size, they can act without further

state-resolution and avoid delays.

We model the likelihood of delay in policy execution as increasing with the number

of states that the current state could be confused with, and have different actions

in the policy. We model this delay as a special action that represents the agent

reidentifying the state due state confusion. We assume that the human knows the

policy or has access to the policy via a chart or device, so there is no consideration for

forgetting the policy. The likelihood of reidentification action –which is the cause of

50



delay in policy execution– is determined by the policy and state confusion likelihoods.

We define this in Equation 4.4.

p(a∅, s) =
∑

i∈{1...|S|}

φ(si, s) ∗
∑

j∈{i+1...|S|}

φ(sj, s)∗

1[π(si) 6= π(sj)]

(4.4)

This is the likelihood of one reidentification action. The likelihood of two reiden-

tification actions is the product of two probabilities, and so forth with the likelihood

of many successive reidentification actions becoming geometrically smaller.

Given this delay action (a∅), the probability of a policy action, previously defined

in Equation 4.1 becomes:

πφ(s, a, π) = (1− p(a∅, s))
∑
s′∈S

φ(s, s′) ∗ π(s′) (4.5)

With Equations 4.4 and 4.5, one has the complete definition of the probabilistic

policy (πφ(.)) that we model the human as executing for a given deterministic policy.

With this, we can compute better policies that minimize the effect of uncertainty and

tradeoff with policy-complexity.

4.5 Policy Computation Algorithm for SAMDP

Finding an optimal solution to the SAMDP problem is challenging since the prob-

lem is both non-markovian and requires optimizing two sometimes opposing objec-

tives; namely the policy value and confusion score. To handle this, we adopt a modi-

fied policy iteration approach that we call Global Value Policy Iteration (GVPI). The

confusion score of a policy is factored into the value computation by the reidentifi-

cation actions which occur more often in complex policies. When selecting actions

during policy iteration, we need to consider not just the local value effect, but also the

51



effect on the value of other states. This is because the possible state misidentification

couples the policy of different states; this means the policy in one state affects the

policy in another, and so affects the value of other states (possibly negatively). This

can lead to update loops and never converge. So at each step of policy iteration, we

consider the average value of over all states as the measure by which we update the

policy.

When we evaluate a policy change in GVPI, we first compute the likelihood of

reidentification actions for each state after the policy change. Then we compute

the state transition likelihoods for that policy (including the reidentification action

transitions), and compute the corresponding Markov Reward Process (MRP)[54].

Using this MRP we compute the value for all state using a closed form computation

(will discuss shortly). We compute a score over the values for all states and use that

to choose the action in policy iteration. Since we consider all state values, we dubbed

this G̈lobal-Value Policy Iteration̈. We did try a policy gradient approach as well

(search over the space of soft policies), and found GVPI to perform better for our

experiments. We now explain our approach in detail.

4.5.1 Computing Reidentification Action Likelihoods

In each policy iteration step of GVPI, we start with a deterministic policy. First,

we account for the delay due to policy confusion. We compute this reidentification

action likelihood as in Equation 4.4. The remaining probability 1− p(a∅) is the like-

lihood of the human acting. Then we account for erroneous execution by considering

the probability that the incorrect state was inferred. So the likelihood of an action

being executed is defined by Equation 4.1. This gives us the updated policy πφ that

accounts for delays and erroneous execution.

52



4.5.2 Translating to the Equivalent MRP

After computing the updated policy, we compute the equivalent Markov Reward

Process (MRP) associated to that policy; this is done by computing the transition

likelihoods between ordered pairs of states based on the policy. The reward for each

state is the reward for each action taken from that state, multiplied by the likelihood

of that action being taken. This includes the reidentification action and the associated

reward (cost) of that action in that state; it may not always be that reidentification

action results in staying in the same state.

The reason we transform it to an MRP is that it allows us to exactly compute the

values of all states in one closed form computation (Equation 4.6).

~vs = (I − γ ∗ Pss′)−1 ∗ ~rs (4.6)

Where I is the identity matrix, and Pss′ is the probability of transition between

two states, which is defined by the policy.

4.5.3 GVPI Search Process

After computing the value of the states, we do not just sum or take the average

of the state values, rather we consider the average of the inverse of state values as in

Equation 4.7.

ps(π, p) =
∑
s∈S

p(s) ∗ 1

Vπφ(s) + 1
(4.7)

where πφ is the policy derived from the input policy π after applying the effects of

state aliasing as described in Equation 4.1. V (πφ, s) is the value of this policy after

applying the reidentification action likelihoods in Equation 4.4.

With this score, GVPI iteratively proceeds to minimize this score, it does not

53



maximize like in policy iteration since we have taken the inverse of the value. We

chose to score actions this way because we observed that optimizing for the sum of

state values can cause the policy iteration search to ignore the value of some states

in favor of high value states since the overall sum is greater. In some problems, this

maybe acceptable. But for some others, such as in gridworld, it produces more policies

where the goal state is not always reachable from all states, which is undesirable.

This score helps improve the state values of all states more uniformly; increasing the

value of a state with value 0 contributes more to reducing the score (which is to be

minimized) than improving a state with a higher value.

As one might intuit, this policy iteration search is not guaranteed to find the

optimal policy for the expected value. Rather it is a means to generate a set of

good policies that optimize for expected value and account for delays in execution.

Repeated random restarts help find better policies, and in each attempt it will stop

when the policy can no longer be changed to improve the score. This is as opposed

to using standard policy iteration which could end up in infinite loops for SAMDPs.

Since SAMDPs are non-markovian and the state policies are coupled, the policy

update in one state could reduce the value of another state by changing it’s policy.

The policy iteration procedure could get stuck updating back and forth between

coupled states, which we saw when we tried to solve SAMDPs with policy iteration.

4.5.4 Trading Value for Reduced Complexity

Thus far we have not discussed how to explicitly penalize the search process for

policy confusion. By incorporating a reidentification action into the execution when

policies are confusing (similar states, different actions), the policy search automat-

ically goes towards simpler policies unless the reward is sufficiently higher to merit

additional risk of confusion. If one is interested in searching for even simpler policies,

54



our methodology also supports pushing the search process to look for policies of lower

confusion score, which will often come at the expense of value. The policy score is

updated to allow this as in Equation 4.8

ps2(π, p) = (1− ω) ∗ ps1(π, p) + ω ∗ CS(π, p) (4.8)

where CS is the confusion score from Equation 4.3 and ω is a hyperparameter

between [0, 1] which determines the emphasis given to reducing confusion, where 1

means the search will focus purely on reducing confusion. Additional scaling of the

two scores was not helpful because the ps1 score is already in the range [0, 1], and so

too is the confusion score.

For an example of the kind of simple policies found by GVPI for a gridworld

setting, see Figure 4.8. The policy on the right is the simpler policy output by GVPI.

The policy on the left is the optimal policy without considering state-aliasing, that is

output by standard policy iteration for the original MDP. The left policy has a lower

expected value in SAMDP, and a higher policy confusion score.

4.5.5 Obtaining the Classification Likelihood Matrix

The likelihood of two states getting misidentified would be affected by the domain

features being used, and a person’s perceptual capabilities. In this paper we take the

state classification probabilities as input.

In an actual application, the probability of state classification (also misclassifica-

tion) may need to be empirically determined. For example, in the warehouse worker

domain an employee could be tested to see how they classify packages by a supervisor.

This can be used to compute the classification likelihoods. When determining these

likelihoods, the human should be asked to classify within some desired time cutoff or

as quickly as possible. The classification likelihoods would be affected by the time

55



allowed to identify a state for that domain. Then based on classification likelihoods,

a policy maybe tailored specifically to that person. This data may also be averaged

over groups of people, and a standard policy could be developed.

Alternatively, the state classification likelihood could be defined by normalized

state similarities. This is reasonable if a similarity function that reflects human per-

ception is available for the domain. We take such an approach for our human studies

which will be discussed.

4.6 Experiments and Results

We tested our algorithm on two domains; Warehouse Worker and Gridworld. The

discount factor was set to γ = 0.9. We varied the weight for reducing confusion (ω)

between [0, 1] in increments of 0.1. For each setting, we ran the GVPI search 10 times.

4.6.1 Warehouse Worker Domain Setup

In the Warehouse Worker domain, a worker stands at the end of a conveyor belt

on which customer orders are sent. The customer orders comprises of a group of

products. Each order needs to be put into a small, medium, or large box. Additionally,

the worker has to decide if bubble wrap is necessary for the products in the order.

The states in this domain is what kind of an order a set of products actually is,

and there is an associated correct action for each order type. The state and action sets

are defined by the cartesian product of the set of box sizes {small,medium, large},

and if bubble wrap is needed {wrap, no_wrap}. For example a set of glass items

could be a small order that requires a small box with bubblewrap, small × wrap.

When a worker sees an order, it is not always apparent what box size is needed. For

some orders, they may mistake a small order for a medium sized one or vice versa.

Additionally, due to the diversity of products, the worker has no idea which products

56



actually need bubble wrap or not. For example there maybe tempered (hardened)

glass products that do not need bubble wrap, but the worker might not know this.

In our conceptualization of this domain, after the worker goes through basic train-

ing in the warehouse, the worker is evaluated by the supervisor to evaluate how they

classify orders. This becomes the classification likelihoods for φ. Based on this, a pol-

icy is developed for the worker by considering the company’s average estimates for the

money made per order when using different types of packaging (reward specification),

and the likelihood of order types.

We now detail the domain configuration settings we used in our experiments for

the warehouse domain. The classification likelihoods are shown in Table 4.1. The

likelihood of a worker confusing any small order with any medium sized order or vice

versa is 16.34%, and is the same for misclassifying any medium with any large order.

The likelihood of confusing a small order with a large order is less than 1%. The

likelihood of the worker correctly determining if bubblewrap is needed is 50% across

all order sizes; there are so many products that their accuracy for determining if

bubble wrap is needed is random.

l l × w m m × w s s × w

l 32.68% 32.68% 12.50% 12.50% 0.98% 0.98%

l × w 32.68% 32.68% 12.50% 12.50% 0.98% 0.98%

m 16.34% 16.34% 25.00% 25.00% 16.34% 16.34%

m × w 16.34% 16.34% 25.00% 25.00% 16.34% 16.34%

s 0.98% 0.98% 12.50% 12.50% 32.68% 32.68%

s × w 0.98% 0.98% 12.50% 12.50% 32.68% 32.68%

Table 4.1: Classification Likelihood Matrix (φ) for Warehouse Worker Domain,

Where (S,m,l) Stands for (Small,medium,large) and “w" Means Bubblewrap Needed.

Columns Sum to 100%.

The transition likelihoods are defined in Table 4.2, where the rows are states, and

57



columns are actions. Each entry is a tuple of successor state and probability. The

rewards for each state action pair are defined in Table 4.3

l l × w m m × w s s × w

l S,16.66% S,16.66% {l},100% {l},100% {l},100% {l},100%

l × w S,16.66% S,16.66% {l × w},50% {l × w},50% {l × w},100% {l× w},100%

m S,16.66% S,16.66% S,16.66% S,16.66% {m},100% {m},100%

m × w S,16.66% S,16.66% S,16.66% S,16.66% {m × w},100% {m × w},100%

s S,16.66% S,16.66% S,16.66% S,16.66% S,16.66% S,16.66%

s × w S,16.66% S,16.66% S,16.66% S,16.66% S,16.66% S,16.66%

Table 4.2: Transition Likelihood Matrix; Rows Are States and Columns Are Actions.

Recall Actions Maps 1:1 to States and So Have Matching Names. Each Entry is a

Tuple of a Set of States From State Space S, and the Probability Of Transition to

One of the States in That Set. Capitalized S is the Entire Set of States

l l × w m m × w s s × w

l 1.0 1.0 0 0 0 0

l × w 0.9 1.0 0 0 0 0

m 0.9 0.9 1.0 1.0 0 0

m × w 0.8 0.9 0.9 1.0 0 0

s 0.8 0.8 0.9 0.9 1.0 1.0

s × w 0.7 0.8 0.8 0.9 0.9 1.0

Table 4.3: Reward for State,Action Pairs; Rows Are States and Columns Are Actions.

With regards to the domain dynamics, if the worker tries to put a medium sized

order in a small box, the action will fail, and they will stay in the same state. Using

any box size smaller than necessary will fail, but any larger size box will work. A

successful action will transition to the next order (state) based on the probability

of different types of orders. For our experiments we used a uniform distribution of

customer orders (states). Lastly, the reward for using the exact action for an order

is 1. The reduction in reward if a larger box is used is −0.1, and a further reduction

58



of −0.1 is incurred if bubblewrap was needed but wasn’t used. If bubble is used but

not needed, there is no reduction in reward; we consider that the cost of bubblewrap

in comparison to the monetary reward for a completing an order is negligible.

4.6.2 Gridworld Experimental Setup

For our experiments in Gridworld, we used a 10x10 grid (100 states). The actions

include moving up, down, left and right. The transitions are deterministic. The

likelihood of confusing a grid position with another grid state is determined by the

L1 distance as defined in Equation 4.9. This results in neighboring grid states being

much more likely to get confused with the current state than those further away.

Taking an invalid action, such as moving up from the top row of the grid results in

no motion. The agent would get a reward of 100 for transitioning into the goal state

in the bottom-right corner.

φgrid(s, s
′) =

L1(s, s′)2∑
s′′∈S L1(s, s′′)2

(4.9)

4.6.3 Results

The Expected Value of policies after accounting for delays and erroneous execution

are shown in Figures 4.4 and 4.2. The box plot shows the upper and lower quartiles,

and the circles represent outliers. The trendline connects the median values from each

setting of ω. The first setting with a “*" represents the optimal policies discovered

policy iteration in the original MDP. We do 30 random restarts to get a set of optimal

policies for the original MDP. The expected value of these “MDP-optimal" policies

are not optimal after accounting for delays and errors in execution in the SAMDP.

The policies found by GVPI are often better, especially for lower settings of ω for

both domains. In both domains as ω increases the expected value goes down as

59



expected. The expected value for gridworld may seem low but that is expected since

it is averaged over 100 states with only 1 state having all the reward. Add to this the

reward discounting, delays and erroneous execution, the values computed are smaller

than one might expect. We verified this by hardcoding the known optimal policy

which accounts for delays and execution errors, and it’s expected value averaged over

all states is 0.34.

Figure 4.2: Expected Value of Policies Generated With Varying ω in Gridworld

The confusion score of policies generated by varying ω are shown in Figures 4.3

and 4.5 for gridworld and warehouse domain respectively. To interpret these correctly,

please keep in mind that the maximum confusion score a policy can have is 1, by our

definition in Equation 4.3. In the confusion graphs of both domains, one will notice

that the policy confusion is already quite low even with ω = 0. This is because the

effects of policy confusion is already folded into the computation of value in GVPI

through the delay effect and erroneous execution. A simpler policy would have less

60



Figure 4.3: Confusion Score of Policies Generated With Varying ω in Gridworld

of both, and so it is naturally preferred during the search. Increasing ω only serves

to push the search even more towards simpler policies.

For Gridworld, the median confusion value of the policies decreases more gracefully

with increasing ω. We think this is likely due to the spread and availability of policies

with different tradeoffs between value and confusion. This is not so in the Warehouse

domain. Increasing the weight for confusion only results in it getting stuck at worse

local optima in the search. We think this is due to the sparsity of policies. Also,

note that the absolute value of the policy confusion is still low; the worst it does

is 0.175 and the maximum confusion a policy can achieve in this domain is 1.0. In

comparison, the optimal-in-MDP policies have a much higher(worse) confusion score,

and their corresponding range of expected values in the SAMDP is low (Figure 4.4.

In both domains, we see high variance for expected value and confusion, especially

in the middle range of ω values, which corresponds to the tradeoff difficulty during

61



Figure 4.4: Expected Value of Policies Generated With Varying ω in Warehouse

Domain

the search. Lastly, we show the expected value and confusion of policies in one plot

for each of the domains in Figures 4.6 and 4.7 respectively. The blue dots represent

policies discovered by GVPI, and the orange dots are the optimal-MDP policies. This

is also to show that GVPI explores the space of tradeoffs between expected value and

confusion.

4.6.4 Human Studies

We conducted a human study to test the hypothesis that the execution perfor-

mance of humans using a simple policy is higher in contrast to when a difficult (higher

likelihood of confusion) policy is given. We gamified the study by asking each par-

ticipant to execute a policy as given in Figure 4.8 by matching a displayed color to

the appropriate arrow direction and maximize their score. The same of participants

62



Figure 4.5: Confusion Score of Policies Generated With Varying Ω In Warehouse

Domain

repeated the game twice; for a difficult policy and for a simple policy. The correct

policy was always displayed on the side, so they did not have to memorize it, only

follow it. Our objective was only to measure the number of actions, number of correct

actions and error rate. These measures reflect how well the human can follow a given

policy.

Note that some color states are intentionally visually similar to other color states

to cause state-aliasing. The participants were filtered by their ability to distinguish

between different colors so that they could execute both difficult and simple policies.

The table 4.4 shows results for the 41 participants in this study.

63



Figure 4.6: Expected Value (Blue) and Confusion Score (Orange) of Policies Gener-

ated During Search in Gridworld

We wanted to see if the number of actions executed was greater with the simpler

policy; since less confusion likelihood should imply fewer delays. We are especially

the number of correct actions (throughput). We also wanted to check if the rate of

errors was lower. Since data from the two settings of simple and difficult policies may

have unequal variances, we used a Welch’s t-test (one-tail) to evaluate the results.

We used the implementation in the Scipy python library [104]

For the total number of actions executed by a participant, we can reject the null

hypothesis that the number of actions executed is the same or lower with the simpler

policy than the difficult policy; the one-tailed T-test gave a p-value of < .00001.

64



Figure 4.7: Expected Value (Blue) and Confusion Scores (Orange) of Policies Gener-

ated During Search in Warehouse Domain

For the second hypothesis, that a simpler policy yields a higher number of correctly

executed actions, a one-tailed T-test gave a p-value of < .00001. So with a very low

likelihood of error, we can say our hypothesis held good in this human study. The

results are clearly significant at p < 0.05.

We are also interested in the rate of errors when executing the simple versus

difficult policies. We wanted to show that the rate of errors in a difficult policy is

more than that of a simple policy. A one-tail T-test for the rate of errors (number

of errors/total attempts) was significant only at a p-value of 0.065. So while we have

good reason to believe this to be the case, we cannot say with confidence (p-value <

65



0.05) that the rate of errors is definitely lower. There might have been other factors

affecting the rate of errors that we had not considered, such as the speed of execution

of the simpler policy. One possible effect is that when the participants were acting

very fast with the simpler policy, the likelihood of errors went up.

We also note that our GVPI algorithm consistently outputs the simpler policy

shown in Figure 4.8 for a simple MDP corresponding to the human studies. In

this MDP, the rewards are 1.0 for the correct action(s) in the simple policy, 1.1

for the actions that are different in the difficult policy (see Figure 4.8), and 0 for

all other actions. Transitions to successor states are independent of the action and

equally likely; we needed this to test policy execution uniformly across all states. The

discount factor γ was 0.9, and we modeled the state classification likelihoods such

that similar color states were equally likely (50%) to be confused as each other. The

simpler policy output by GVPI is desirable since the additional reward for choosing

the optimal action is small compared to the loss that could be incurred due to delays

and incorrect execution.

Overall, our human studies show that giving a simpler policy reduces the delays

(higher number of actions executed) and increases the throughput (number of correct

actions). This translates to more rewards accrued. The rate of incorrect actions was

not conclusively shown to be lower, even if the data gives us good reason to think so.

There could be more factors that affected the execution, such as the rate of policy

execution. Running each trial for longer might give us more conclusive data.

66



Figure 4.8: The Simple Policy (Left), and Difficult Policy (Right) Given to Users to

Execute

Simple Policy (µ, σ) Difficult Policy (µ, σ)

Correct Attempts 26.34, 5.62 17.95, 3.77

Total Attempts 28.12, 6.13 19.68, 3.82

Table 4.4: Mean and Standard Deviation for the Number of Correct Actions and

Total Actions Executed for the Simple and Difficult Policies

4.7 Summary

In this chapter, we describe the problems that can arise from state aliasing when

humans execute a policy; these are execution errors and delays in policy execution.

We formally define the problem of computing policies in SAMDPs and define how

delays and errors can be computed for a given policy in the SAMDP using the state

classification likelihood. We discuss how the state classification likelihood can be

empirically evaluated for human agents and also how domain rewards can be ap-

67



propriately discounted to account for state detection time. Given the description of

SAMDP, we present a modified policy iteration algorithm (GVPI) which searches for

policies that account for delays and errors, and optimize the expected value. GVPI

also allows searching for simpler policies by increasing a hyperparameter that penal-

izes policy confusion score. Lastly, we conducted human studies to show how our

assumptions translate to real-world behavior.

Complexity tradeoff is one possible consideration when computing policies for

humans. Another consideration is how human’s behave in the face of uncertainty

that can arise when state inference is complex or difficult; we will tackle this in the

following chapter.

68



Chapter 5

ACCOUNTING FOR BEHAVIORAL RESPONSE TO UNCERTAINTY IN MDP

In the previous chapter we considered that the human may just delay their action

due to uncertainty, and considered this delay while deciding how to tradeoff policy-

complexity and policy-value. In this chapter we will focus more on the human response

to uncertainty during inference. We extend the human response to uncertainty from

being just a delay or inaction-step, to the human taking extra-sensing actions and

updating their belief. An everyday example of this would be a person looking around

to get a better sense of their location if they are uncertain where they are when

following directions (a policy). We apply this response to uncertainty during state

identification when following a policy in MDPs. This is the work done in our paper

[42].

5.1 Motivation

When human agents have uncertainty in what to do, we may take additional

sensing actions to try and resolve the state uncertainty(assuming policy knowledge

is not the probelm) or repeat unhelpful previous perceptual actions. We treat these

actions as coming from an extra-sensing policy of the human, and not part of the

policy given to execute; they are a consequence of the human’s uncertainty. We

cannot programmatically control these, as we would with a non-human agent. In this

work, we model the extra-sensing behavior as a state-specific extra-sensing action.

As a result of the extra-sensing action, there can be cases when the agent’s uncer-

tainty might get reduced, as well as cases where the additional sensing does not make

a difference (in expectation) in identification errors; a human agent might do them

69



anyway as they are the only options to resolve uncertainty. In the approach here,

we are not trying to remove uncertainty during execution; we expect it to persist in

certain problems despite efforts to minimize it. Efforts to minimize it are important,

but orthogonal to our work (we discuss these in the related work). We instead try

to account for the effects of uncertainty when computing a policy to get better poli-

cies. An optimal policy (in terms of domain dynamics) which ignores the effects of

uncertainty on execution behavior can be markedly suboptimal.

Just as in the previous chapter (Chapter 4), we consider that if the action is

the same across the possible states in the human’s mind, then the human will act

without additional actions or delays. Since we are trying to infer the information in

a person’s mind, problems with mental modeling come into this problem. However,

we do not need a complex mental model for this problem. What we need are just the

likelihoods of certain events. Specifically, events like the likelihood of inferring state

2, when the person is in state 1. We also need a model of how they respond to being

uncertain. We need a simple state-specific probabilistic model of the human agent’s

inference which can be built empirically and problem-specific; we do not need or want

to make assumptions on the type of inference (optimal, noisy-rational). Given this,

we can compute better policies for human execution by accounting for how people

make mistakes and respond to uncertainty.

In this chapter, we formally define the problem of computing a policy that accounts

for human uncertainty during execution in an MDP, and how that makes it a POMDP.

Having framed the problem, we will discuss two methodologies to solve it, and present

experimental results on two domains; a gridworld domain and a warehouse worker

domain. This will be followed by a discussion on the related work, and avenues for

extending this research direction.

70



5.2 Problem Definition and Human Model Used

In this work, we assume that the underlying MDP problem is fully observable

(the ground truth state is knowable). However, when the human enacts a policy, the

human’s limitations leads to suboptimal execution due to state uncertainty during

execution. So we need a policy that accounts for the human’s state uncertainty

and associated execution behavior. We will build up to the formal definition of the

problem by first discussing the human model used. Then we will define how it is

incorporated it into a POMDP for computing a better policy for humans.

5.2.1 Human Model

The human model is defined using the probability of inference events and extra-

sensing events given a ground-truth state. For a set of domain states S, we define the

human model as H = 〈pc, pu, ψ0, ψ1〉, and the terms are defined as follows:

• pc : S × S → [0, 1] gives the likelihood of classifying(identifying) one state as

another; pc(ŝ|s∗) where s∗ is the true state, and ŝ is the best-guess state that

the human agent thinks it is. We will use the ŝ symbol above a state to indicate

the human’s guess of the state.

• pu : S × {Si ∈ 2s} → [0, 1] gives the likelihood of being uncertain between

a set of states (Si) for a given true state. For example, pu({si, sj}|s∗) is the

probability of the human considering {si, sj} as the possible states when the

true state is s∗. We will refer to such Si sets as a “possible-set", and reflects the

mental-state or belief state of the agent; it represents what states they think

are possible.

• ψ0 : S → [0, 1] is a bias term that affects the probability of the extra-sensing

71



action being taken. So even if the human infers only one state, they may not

feel confident and take additional sensing actions anyway; this is what the bias

term (ψ0) captures.

• ψ1 : S → [0, 1] is a scaling-factor that is the additional probability of extra-

sensing action being taken when the agent is uncertain about the right policy

action. If there is more pressure to act, or the human-agent tends to be im-

pulsive, this number would be lower to make the probability of extra-sensing

action lower.

5.2.2 POMDP With Human Execution Under Uncertainty

Given this human model, the problem of a POMDP with Human Execution under

Uncertainty (POMDP-HUE) is defined by the tuple 〈S,A, T, r, γ, pi, H, S2〉. Each of

the terms are defined as follows:

• S is the set of states in the problem.

• A is the set of actions in the domain, and an additional a+ which is the extra-

sensing action.

• S2 contains one successor state to every state in S, and is reached only when

a+ is taken. This captures the change in human’s mental state (belief state)

after the extra-sensing action. This is illustrated for a single state in Figure 5.1.

This is effectively folding the belief state into the state space.

• T : S
⋃
S2 × A × S

⋃
S2 → [0, 1] is the transition function that outputs the

likelihood of transition from one state to a successor state after an action. This

includes the extra-sensing action (a+) dynamics.

72



• r : S
⋃
S2 × A → R is the reward function. This includes the cost/reward

associated to extra-sensing actions.

• γ is the discount factor

• pi : S → [0, 1] is the probability of a state being the initial state

• H refers to the human model as defined by 〈pc, pu, ψ1, ψ0〉. These terms are

unique to each state, even between the state in S and it’s corresponding state

in S2, as the uncertainty can change after extra-sensing action. For details on

how to compute the human model terms, please see [42].

Figure 5.1: Additional State Added to MDP for State 1 to Account For Different

Inference Likelihoods by the Human Agent

The objective in the POMDP-HUE problem is to output a deterministic policy

(πd : S → A) that optimizes for policy value (equation 5.3) after accounting for effects

of uncertainty –that we will shortly quantify– determined by the human model H.

The deterministic policy is a mapping from a problem state to an action. The state

as inferred by the human can be seen as a noisy observation emitted by the real state.

73



This makes it a POMDP, and why we refer to the objective as computing a reactive

controller for a POMDP. Reactive controllers were defined in influential prior works

[69] [73]. Before we define the objective function, we state the reasoning that was

used to define it.

In this problem we make the assumption that the human’s inference and uncer-

tainty is predominantly influenced by the current state only either because of the

domain, or because the human agent was instructed to do so. This makes sense espe-

cially in settings when the policy is set as an OOTL (out of the loop ) default policy

for when automation fails as we discussed at the start of Chapter 4.

Furthermore, we consider that if a person is uncertain over a set of possible states

in their mind, and if the policy conflicts between these states, then the human is more

likely to take extra-sensing actions to try to resolve uncertainty (which we show in

our human subject studies). Put another way, the uncertainty that matters when

executing a policy, is about what the right action is; it is not to perfectly detect

the state. If the action is the same across states then the human is not likely to

care about resolving state uncertainty. Building on this, we define the likelihood of

the extra-sensing action (which is denoted by a+) being taken as a function over the

policy.

Since extra-sensing actions and state uncertainty affect execution of a policy, any

deterministic policy given to the human (πd), when actually executed by the human

can become a stochastic policy; πp : (S × A|πd) → [0, 1]. The first effect from

uncertainty, is the likelihood of taking an extra-sensing action in a state (s∗ ∈ S
⋃
S2)

is defined as follows:

74



πp(s∗, a+|πd) = ψ0(s∗) + ψ1(s∗)×∑
Si∈2S

pu(Si|s∗)× 1[0 <
∑

s1,s2∈Si

1[πd(s1) 6= πd(s2)]]
(5.1)

where 1[.] is the indicator function. In short, the equation says is that if one of

the states in the possible-set of states(Si) has a policy action that doesn’t match with

another, then the likelihood of extra-sensing action (a+) can increase by pu(Si|s∗).

For any given state, the number of possible states of uncertainty are likely to be few,

not the full powerset (2S). For example, in a gridworld setting, the current state’s

possible-sets may involve neighboring states (positions), but not ones further away.

The extra-sensing action could translate to many types of actions; these could

include calling a supervisor or colleague for help, or re-checking state features. The

specific dynamics of the extra-sensing actions are domain dependent. For this paper’s

presentation, we limit the effect of extra-sensing actions in that it can improve the

inference likelihood of the human agent, but doesn’t change the ground truth state.

In terms of the problem definition, this means the state transitions from a state in S

to the corresponding state in S2 are like in Figure 5.1.

In addition to taking extra-sensing actions, the other effect of uncertainty is on

the likelihood of choosing a policy action from the given policy πd, and is as follows:

πp(s∗, a|πd) = (1− πp(s∗, a+, πd))×∑
si∈S

pc(ŝi|s) ∗ 1[πd(si) = a]
(5.2)

This says that the likelihood of an action in a state, depends on what states the

human infers. If states with action a1 are more likely inferred in the current state,

then a1 is more likely to be taken. This probability is multiplied by the probability

75



of not taking the extra-sensing action in the state; this ensures the probabilities sum

to 1. Finally, the overall value of the determinisitic policy πd given to the human is

defined as:

V (πd) =
∑
s∈S

pi(s) ∗ Vπp(s) (5.3)

where Vπp(s) is the state value in the underlying MDP with the stochastic policy πp

which included the effects of uncertainty. The value is a weighted sum of state value,

where the weights are the initial state likelihood given in pi(.).

5.3 Computing Human Model Parameters

Our work focuses on the computing the policy for a human model defined in terms

of 〈pc, pu, ψ0, ψ1〉. Part of the appeal of this approach for us in modeling the human

agent, is that we only need probabilities of events. We do not have to make any

assumptions on inference-limitations such as bounded or noisy-rational assumption

on human inference [93], [112]. The probabilities can be estimated from empirical

data. We present an empirical approach to collect the data needed to compute the

probabilities; we use this approach in our human subject studies as well.

Since the model parameters are dependent on the state, we can collect data by

testing the human agent on just the task of state detection. The human agent is pre-

sented multiple instances (trials) of each state –state samples are ordered randomly–

and asked to look at the state following a predefined perception-policy. The percep-

tion policy could be as simple as a time limit on looking at state information before

acting; for example, in manufacturing, a time limit is important as it translates to

cost. Alternatively, the perception policy could be a predefined series of perception

actions. After the perception-policy, we ask what they think the possible states are

(can be more than one) and what they think the most-likely state is. Most impor-

76



tantly, we ask if they would like to confirm their answer of they think the correct

state is, or look at the state again (extra-sensing) before confirming their answer. For

this process, we would count the following for each state:

• Ci(ŝi|s∗):The number of times a state (si) was inferred (most-likely state to the

human) for a given state (s∗).

• Cu(Si|s∗): The number of times the person inferred a set of possible states

(Si ⊂ 2S) for a given state. This includes the empty set, and singleton sets with

one state. The count Cu({si}|s∗) of a singleton set {si} will be atleast as much

as Ci(ŝi|s∗); it can be greater if (for one of the trials) the human only considers

one state as possible but is also uncertain, and takes an extra-sensing action.

• Ce0(s
∗): How often a person took an extra-sensing action when uncertain, and

their set of possible states was either 1 or none.

• Ce1(s
∗): How often a person took the extra-sensing action when they reported

they were uncertain over two or more possible states.

Note than when a person takes one or more extra-sensing actions, we consider all

subsequent counts separately; these counts are used is to compute the human model

parameters for states in the set S2, separate from S.

Using the data collected we compute the human model parameters as:

pc(ŝi|s∗) =
Ci(ŝi|s∗)∑
sj∈S Ci(sj|s∗)

(5.4)

pu(Si|s∗) =
Cu(Si|s∗)∑

Sj∈2S Cu(Sj|s∗)
(5.5)

ψ0(s
∗) =

Ce0(s
∗)∑

Sj∈{S:S∈2S ,|S|≤1}Cu(Sj|s∗)
(5.6)

77



ψ1(s
∗) =

Ce1(s
∗)∑

Sj∈{S:S∈2S ,|S|>1}Cu(Sj|s∗)
(5.7)

These definitions are so that ψ0 captures the likelihood of taking extra-sensing

action even without any inference conflict (but the human was not confident in their

inference), or the human was unable to infer any state. On the other hand, ψ1 is the

likelihood of taking extra-sensing actions when uncertain; this covers the cases when

the human’s inference results in 2 or more states being possible (conflicting inference).

If ψ1 is much less than 1, it would mean that the human decides to act more often

than resolve uncertainty even if uncertain. One can think of ψ1 as a reflection of

the pressure to act on the human agent, or a reflection of their patience to resolve

uncertainty.

5.4 Policy Computation for POMDP-HUE

Finding an optimal solution to the POMDP-HUE problem is at least as difficult

as computing a reactive (memoryless) controller for a POMDP, which is what our

problem reduces to if one ignores the extra-sensing action; this can be done by setting

ψ0 = 0, ψ1 = 0 for all states. Computing a reactive controller has been shown to be

NP-hard ([69]). To handle this computational complexity, we present two algorithms.

One is a hill-climbing algorithm for computing good albeit suboptimal policies quickly,

and to handle larger state spaces. The other is a branch-and-bound algorithm for

computing the optimal policy at higher computational cost, which is suitable for

smaller state spaces and also for bounding the suboptimality of the hill-climbing

approach for larger state spaces.

78



5.4.1 Human Agent Policy Iteration(HAPI)

We call our hill climbing approach Human-Agent Policy Iteration (HAPI) which

takes the greedy best step to change the policy while accounting for human agent’s

uncertainty effects. In HAPI we start with a random deterministic policy (πd), and

compute the corresponding stochastic policy after state aliasing (πp as defined by

equations 5.1 and 5.2). We then determine the value of this stochastic policy by

equation 4.2. Then (in the hill climbing step) for each possible policy change we

compute the new policy value, and select the action to change the policy. This is

repeated until no better changes can be made. Each step’s computational complexity

is O(|S|4|A|); this is because each step tests a number of changes no more than |S||A|,

and the value of a fixed policy can be computed in O(|S|3) by computing the state

transition likelihoods for that policy and using the following closed form computation

in Equation 5.8(standard equation for value computation in a Markov Reward Process

(MRP) (See [54] for more details on Markov processes):

~vs = (I − γ ∗ Pss′)−1 ∗ ~rs (5.8)

Where ~vs is the vector of state values, Pss′ is the transition probability matrix for

a given policy, and ~rs is the vector of expected rewards at each state (which can be

computed for a fixed policy).

The total time taken for HAPI will naturally be problem specific; the number of

improvement steps will depend on the initial point and the possible improvements in

the domain. Additional random restarts can improve the outcome, as is common in

hill-climbing approaches.

79



5.4.2 HUE Branch And Bound Policy Search (H-B&B)

HAPI is helpful to quickly find a good policy. However, if one wanted the optimal

policy, then the following branch and bound approach –which we will refer to as

H-B&B can be used for smaller state spaces. It can also be used to bound the

suboptimality of the policy found by HAPI, which can be used to decide if further

iterations of HAPI would be worthwhile or not.

This branch-and-bound searches in policy space by choosing an action for a state

at each level in the search tree. We assume the reader is familiar with the basics of

branch and bound [14]. At any given point in the policy search, only a partial policy

is defined. We need a lowerbound, and an upperbound to determine if the node in

the search tree should be expanded. We set the initial lowerbound as the value of the

policy output by HAPI search.

We still need a helpful upperbound that accounts for the extra-sensing action. To

compute this, we use an MDP relaxation of the POMDP-HUE for a given partial

policy. This is done by assuming perfect state observability only for the remain-

der of the undefined states (policy not yet assigned), and using a lower-bound for

the likelihood of errors and extra-sensing actions for the other states. We call this

a “Partially-Controlled MDP" (PC-MDP). We compute the optimal policy (includ-

ing extra-sensing actions) for this PC-MDP using value iteration and that is the

upperbound. This idea of using an easier MDP to bound the state-value in branch-

and-bound is similar to the bound employed in [73] except theirs does not consider

or allow any notion of extra-actions. The gist of it is as follows: If one can set a

lower-bound for the probability of state-misidentification and extra-sensing actions

in all states, then by optimizing for the remainder of the policy action probability

in each state, the policy-value obtained will be equal to or greater than any other

80



possible policy completion. A trivial lower-bound would be to assign zero probability

to errors, i.e. s1 6= s2 → pc(s1|s2) = 0, and extra-sensing actions (πp(s, a+|πd) = 0)

for the states whose policy is not yet defined. Then optimizing the PC-MDP policy

would give the upperbound for state-value. Our bound considers the effect of prior

decisions in H-B&B to give a tighter, more helpful upperbound for the search pro-

cess. This is done by using the human model H parameters and lower-bounding the

likelihood of extra-sensing action by removing undefined states from the probability

computation in Equation 5.1. The pruning effects of our upperbound will be shown

in the results. The proof for our upperbound will follow shortly.

In each step in the branch and bound, we need to run value iteration on the PC-

MDP. In our algorithm, we stop value iteration after a certain number of iterations; we

set number of iterations(k) to 1000 in our experiments. We then take an upperbound

for each state’s value computed as vk(s) + ε∗γ
1−γ (Chapter 17 [87]) where ε here is ||vk−

vk−1||. This error is added to the policy value to set the upperbound.

The size of the policy search tree is unfortunately large; it is |A||S| if we assume

the same number of actions (|A|) in each state. However, a good upperbound and

ordering the states intelligently can greatly prune the tree. We order the nodes in the

search tree using the following score:

score(s) = (
1

|S|
+ pi(s))×

∑
s′inS

pc(s|s′)× max
a∈A(s′)

r(s′, a) (5.9)

This function increases the score of a state based on how likely a state is to be

the initial state (pi(s)) since those state values determine the overall policy value

(Equation 4.2). It also considers the likelihood that other states are confused with

it, because the policy decision for those states will affect the state value for others

too (due to state confusion). This likelihood is scaled by the max reward possible in

the other states. The scaling is because we want to order policy decisions for states

81



based on how much they influence the policy-value; so we prioritize decisions affecting

higher reward/lower cost states. This score (Equation 5.9) can help us make pivotal

policy decisions sooner in the search process, and work with the upperbound to prune

the search tree faster. In the next section we will discuss the upperbound used in

H-B&B and how it is computed

5.4.3 Upperbound for Partial Policy Completions

Before we go into the details of how the upperbound is computed, let us review

the equations that define how the stochastic policy –which is actually executed– is a

function of the deterministic policy, the classification probabilities, and uncertainty

probabilities.

The first pertinent equation is the likelihood of extra-sensing action is a function

of the state as well as the policy defined over other states; this was defined in Equa-

tion 5.1. The likelihood of normal policy actions (not extra-sensing) was defined in

Equation 5.2, and the value of a policy was defined in Equation 5.3.

The key idea used is that we can get an upperbound by relaxing the POMDP

–partial observability of the state due to human uncertainty– into a perfect ob-

servability setting, like the assumption made in [73]. We call this relaxed MDP,

a partially-controlled MDP (PC-MDP) for reasons that will become clear. During

policy search in H-B&B each node in the search tree is a partial-policy; by partial-

policy we mean that only some of the states have an assigned action in πd , which

is the deterministic policy to be given to the human. This partial policy needs to

be kept in the PC-MDP for it to be a useful bound. Some key differences with the

Branch and Bound approach in prior work [73] is that we do not use a cross product

between the policy graph and MDP (which doubles the state space), and we need

to account for the extra-sensing action. In order to do so we leverage the following

82



theorem:

Theorem: A partial stochastic policy whose every state-action prob-

ability is the same or lower than those of another partial policy, can be

completed and optimized to get the same or better value as any completion

of the other partial policy

This is best understood starting with an illustration in Figure 5.2.

Figure 5.2: Example of a Partial Stochastic Policy (Left) Whose Probabilities for

Every Action (A1,A2) Are the Same or Lower Than the Right Policy. “A∗” Is the

Remaining Likelihood That an Action Can Be Assigned to (Optimizable).

Note that it is not enough that the total probability that is optimizable is lesser

for a completion to have a better or equal policy-value than another. Even if the

overall sum of probabilities for the partial policy is lower, if any one action has more

probability than the other partial-policy, then this statement is not guaranteed to

hold. A very simple example of this case is shown in Figure 5.3 in a single-state

problem with two actions that loop back (a multi-arm bandit with discounted future

rewards). In this even if we reduce the overall fixed action-probability from the policy

on the left, the policy on the right will not have a greater possible policy-completion

(see Figure for details).

Let us now see how the upperbound value is computed for H-B&B. In the PC-

83



Figure 5.3: The Policy on the Right–While Having Lower Total Probability Used

Up–Will Not Have a Higher Value for Any Policy Completion Than the Optimal

Completion for the Policy on the Left, if A1 Has a Higher Reward Than A2 Since the

Probability of A2 Is Larger in the Right-Policy

MDP at a search node in H-B&B, each state might have some of their actions fixed

with a certain probability (hence Partially-Controllable MDP). This partial-policy

comes from the prior decisions made during policy search in H-B&B. This PC-MDP

can be converted into an equivalent MDP by updating the action transitions and

rewards to account for the partially-defined policy actions (combining them); this is

done by taking the expected sum for transitions and rewards. The probabilities used

for this expected sum are determined by the partially defined policy at each node

in the policy-search tree. In this derived MDP, any deterministic policy will have

a policy-value greater than or equal to any stochastic-policy in the derived action

space. Note that the statement “a deterministic policy’s value will be greater or equal

to that of a stochastic policy” is true for all MDPs (well established).

Now let’s connect this to the example in Figure 5.2; in it the partial-policy on the

right has every defined action’s probability as the same or lower to the case on the

left. So any policy-completion –assuming policy in other states are the same– for the

84



case on the right will have greater or equal value than any possible policy-completion

for the left-case. So if we can lower bound the defined action’s probabilities based on

the partial-policy at each search node, the optimal policy-value in the derived MDP

would be an upperbound for any policy-completion of that partial-policy. Having

defined how the upperbound is determined for H-B&B, let’s apply it to the search

process.

5.4.4 Upperbound as Applied In H-B&B

As we have seen in equation 5.2, a determinisitic policy translates to a stochastic

policy after accounting for uncertainty effects. Using the same functions, a partial

deterministic policy at each node of the H-B&B search space can be mapped to a

partial stochastic policy. If we could do so, then we could relax the setting to a fully

observable MDP and compute the optimal value of the PC-MDP as an upperbound

using the logic stated previously.

The problem with what we have said so far is that we cannot know the partial

probabilities of the actions (including a∅) until the entire policy is complete. So

instead, we compute a lower bound on final action probabilities in a state. The

lowerbound for delay probability (πsa(s, a∅, πd)) is computed by considering that all

undefined state policies will not conflict with the state-policies defined thus far, i.e.

πd(si) == πd(sj) where si represents the state’s whose policy is defined, and sj is

an undefined state. Then the probability is computed as per equation 5.1. So now

we have lower-bounded the probability of a+. We still need to lower-bound the

probabilities for the normal policy actions.

For the policy action probabilities, the lower-bound likelihood changed from Equa-

tion 5.2 to Equation 5.10. In this, we use the maximum probability of extra-sensing

actions possible from any policy completion. The maximum possible delay is com-

85



puted by considering the worst case of policy conflicts; every state that can be misclas-

sified and not yet assigned a policy action will have a different action to the current

state. This results in the maximum possible likelihood for extra-sensing action.

πsa(s, a, πd) = (1−max_delay(s, πd))×∑
si∈S

pc(ŝi|s) ∗ 1[πd(si) = a]
(5.10)

Now we have probabilities for actions in the current partial-policy that are less

than or equal to the probabilities for the same actions in any possible policy comple-

tion. With these probabilities we can get the optimal policy-value of the associated

“PC-MDP" (discussed in the previous section) by value iteration. As previously dis-

cussed, the policy value –when all the fixed action probabilities are lower– will be

greater than or equal to any policy completion on the original partial policy.

This upperbound was verified in our experiments, that the bound converges from

above(monotonic and non-increasing) to the true policy value for any completion of

the partial policy. To ensure that it is an upperbound during actual computation,

we add MDP value-iteration error bounds to the policy value computed. The policy

value used after k-iterations of value-iteration becomes vk(s) + ε∗γ
1−γ (Chapter 17 [87])

where ε here is ||vk−vk−1||. Alternatively, one could set a target error ε and determine

the number of iterations needed as d log(2Rmax/(ε(1−γ))
log(1/γ

e [87].

With the error bound added, we have a true upperbound for H-B&B at every

node in the search. We will present empirical results to show that the number of

nodes pruned in the search tree is appreciable, and that this is not a trivial bound.

86



5.5 Experiments and Results

We tested our algorithms on two sizes of gridworld domains, 5x5 and 10x10 to see

how the performance changes with state space size. We also tested our approach on

the warehouse worker domain introduced in the previous chapter.

5.5.1 Gridworld Experimental Setup

The dynamics in this gridworld are as described in the previous chapter. For

testing our algorithms, we repeated HAPI ten times (10 random restarts) for each

experimental setting and consider the best value as the output from HAPI. As for

H-B&B search, it ofcourse need only be run once.

First we present the Gridworld experiments on 5 × 5 grids where H-B&B was

allowed to run to completion. We varied the properties of the MDP to see how well

HAPI performs compared to H-B&B. The actions for each state (defined by agent

position) are the standard ones; these are move up, down, left, and right. The goal is

the bottom right square like in Figure 5.6, albeit without the colors (colors are used

in the human subject studies). The goal state is an absorbing state, and the reward

is 100 upon transitioning into it. When the agent takes the extra-sensing action (a+),

it reduces by half both the error likelihood (pc() of incorrect state detection) and

probability of incorrect possible-sets pu (possible-sets that have states other than the

ground truth). Taking a+ results in a state transition to a parallel state in S2 (as

in problem definition and Figure 5.1). S2 states have the same action effects but

with different pc and pu functions. Subsequent extra-sensing actions from this state,

returns to the same state. This means additional extra-sensing actions from S2 does

not change the inference outcomes (pc and pu) of the agent in our experiments.

All action transitions are stochastic with a 5% chance of transitioning to a random

87



neighboring grid position or stay in place. All actions will have a random cost for

each experimental setting. An invalid action (like moving up from the top of the grid)

results in the agent staying in the same state and incur the cost assigned to that state

and action. The extra-sensing action has a cost of 1.

As for the likelihoods of confusing states (pc), we define the likelihood of confusing

a grid state (position) with another based on the L1 distance between positions. pc is

defined in Equation 5.11. The equation is simply saying that neighboring states are

much more likely to be confused with each other than with those further away.

pc(s|s′) =
1/(L1(s, s′) + 1[s = s′])m∑

s′′∈S 1/(L1(s, s′′) + 1[s = s′′])m
(5.11)

where m is a scalar. We set it to 5 for our experiments. This makes the likelihood

of confusing one state with another that is more than 1 step away to be very small.

Lastly, we add the +1 to avoid dividing by zero. As for the possible-sets in pu, we

limit ourselves to sets of size 1 and 2. The probability of each set (pu(.)) are computed

using equation 5.12.

pu({s2, s1}|s∗) = pc(ŝ2|s1) ∗ pc(ŝ1|s∗)+

pc(ŝ1|s2) ∗ pc(ŝ2|s∗)
(5.12)

Note s1 can be the same as s2 in Equation 5.12; those cases correspond to the

pu(.) probability for possible-sets of size 1. Lastly, in the agent model, ψ0 was set to

0.05 –which means when there is no inference conflict the agent may still take a+ 5%

of the time– and ψ1 to 0.9.

With respect to the experimental settings, we first present results of a 5x5 grid,

with one additional mental-state (S2 state) per state. We used a smaller grid first

because while HAPI (hill-climbing) can handle larger sizes of grids, branch and bound

88



(H-B&B) solving speed drops very quickly. This is because the policy space grows

as |A||S|; even a 5x5 grid has 425 ≈ 1.1 × 1015 policies. However, the search pro-

cess eliminates most policies quickly, and the bound helps immensely with pruning

the policy space (which we will show in the results). Engineering improvements to

speed up H-B&B through parallelization and memory management is left as future

improvements. We posit that for a single task’s policy (for a human agent) even

state-sizes around 25 can be sufficient for some problems. For example, a basic car-

maintenance policy for owners would have a few states and associated actions to deal

with issues such as oil-change, car battery-health and such. We also present results

for a 10x10 gridworld setup, where the branch and bound approach serves to bound

the suboptimality of the policy found by HAPI.

To evaluate the algorithms, we focused on varying three parameters: (1) The

discount factor γ, whose default value is 0.7; (2) the likelihood of random actions

whose default value is ρ = 0.05; (3) A “reward noise range" parameter (RNR) to add

random rewards to each of the actions in the grid and whose default value is 2; an

RNR = 2 would result in random rewards for each action in the range [−1, 1], i.e.,

uniformly distributed about 0.

We chose to vary the discount factor since a larger discount factor couples the

policy decisions more strongly (since the state value is affected by states further

away). We also chose to add random rewards to each of the actions other than the

goal actions to make the search more challenging. Lastly, increased random action

likelihood meant that states which had both high reward and high cost actions are

less attractive than if there was no random action likelihood.

Our tcode was implemented in python using “pybnb" library for branch and bound,

and PyTorch and NumPy for matrix operations. The experiments were run on a PC

with Intel® Core™ i7-6700 CPU, running at 3.40GHz on Ubuntu 20.04 with 32 GB

89



of memory.

5.5.2 Gridworld Results

We first present the values of the policies discovered for the 5x5 grid experiments

in Table 5.1. The best policy discovered by HAPI approach was either very close to

optimal, or optimal in all cases. The takeaway is that for this experimental setting,

HAPI with 10 iterations found either a very competitive value or the optimal policy

value in all cases. We found this to be the case in the 10x10 grid setting as well (with

the random costs and stochastic transitions) in Table 5.2. For those experiments, we

only used H-B&B to find an upperbound and use it to define the suboptimality of

the policy value found by HAPI; the last number in each table entry is the ratio with

the upperbound. In the 10x10 grid setting as well, HAPI was able to perform well. A

related point is that H-B&B was able to find a good upperbound to the policy value

within 30 minutes, which can be helpful in deciding if further iterations of HAPI

might be worthwhile or not.

Discount Factor

(RNR=2, ρ=0.05)

Reward Noise Range

(ρ=0.05, γ=0.7)

Random Action Probability

(RNR=2, γ=0.7)

γ Values RNR Values ρ Values

0.3 11.87, 11.87, 1.0 0 33.67, 33.67, 1.0 0.05 34.16, 34.17, 1.0

0.5 19.05, 19.05, 1.0 1 33.89, 33.89, 1.0 0.1 33.65, 33.65, 1.0

0.7 34.16, 34.17, 1.0 2 34.16, 34.17, 1.0 0.15 33.08, 33.08, 1.0

0.9 69.45, 69.45, 1.0 4 34.75, 34.75, 1.0 0.2 32.46, 32.46, 1.0

Table 5.1: Policy Value Results for a 5x5 Grid. Each of the Primary Columns Changes

One Experiment-Parameter, and Holds the Other Two Constant. Each Entry Has the

Best Policy Value From Hapi, the Optimal Value Found by H-B&B, and the Ratio of

the Two. All Values Rounded Down to Two Decimal Places.

90



Discount Factor

(RNR=2, ρ=0.05)

Reward Noise Range

(ρ=0.05, γ=0.7)

Random Action Probability

(RNR=2, γ=0.7)

γ Values RNR Values ρ Values

0.3 3.17, 3.48, 0.91 0 11.14, 11.47, 0.97 0.05 11.56, 12.29, 0.94

0.5 5.26, 5.65, 0.93 1 11.27, 11.83, 0.95 0.1 11.17, 11.86, 0.94

0.7 11.56, 12.29, 0.94 2 11.56, 12.29, 0.94 0.15 10.77, 11.4, 0.94

0.9 43.9, 45.91, 0.96 4 12.28, 13.48, 0.91 0.2 10.36, 10.97, 0.94

Table 5.2: Policy Value Results for a 10x10 Grid. Each of the Primary Columns

Changes One Experiment-Parameter, and Holds the Other Two Constant. Each

Entry Has the Best Policy Value From Hapi, the Best Upperbound Found by H-B&B

After 30 Minutes, and the Ratio of the Two. All Values Rounded Down to Two

Decimal Places.

To show the effectiveness of the bound used in H-B&B for pruning the policy

search space, we present in Table 5.3 the number of nodes opened by our branch and

bound search before finding the optimal solution for 5x5 grid. The number of nodes is

significantly less than the policy space of 516, which is helpful because the cost of each

node is high since we run value iteration on each node for the associated PC-MDP.

This also shows that our upper bound was helpful in pruning the policy search tree.

91



Discount Factor

(RNR=2, ρ=0.05)

Reward Noise Range

(ρ=0.05, γ=0.7)

Random Action Probability

(RNR=2, γ=0.7)

γ Nodes opened RNR Nodes opened ρ Nodes opened

0.3 41713 0 20649 0.05 7981

0.5 5525 1 12573 0.1 7297

0.7 7981 2 7981 0.15 6785

0.9 11933 4 27589 0.2 6401

Table 5.3: Number of Nodes Opened by H-B&B Before Finding Optimal Solution,

for a Policy Search Tree of Size 425 In 5x5 Grid Experiments

Additionally the time taken by both algorithms are presented in Tables 5.4 and

5.5 for the two grid sizes.

Discount Factor

(RNR=2, ρ=0.05)

Reward Noise Range

(ρ=0.05, γ=0.7)

Random Action Probability

(RNR=2, γ=0.7)

γ Time(sec) RNR Time(sec) ρ Time(sec)

0.3 30.09,1788.25, 0 31.51,1175.24, 0.05 31.3,521.97,

0.5 38.73,293.87, 1 33.53,769.04, 0.1 30.08,497.26,

0.7 31.3,521.97, 2 31.3,521.97, 0.15 31.7,498.22,

0.9 34.37,2148.27, 4 29.87,2285.57, 0.2 33.98,482.82,

Table 5.4: The Total Time Taken (In Seconds) By HAPI, Followed by the Time Taken

for H-B&B in 5x5 Grid Experiment Settings

92



Discount Factor

(RNR=2, ρ=0.05)

Reward Noise Range

(ρ=0.05, γ=0.7)

Random Action Probability

(RNR=2, γ=0.7)

γ Time(sec) RNR Time(sec) ρ Time(sec)

0.3 13887.44,1800.19, 0 11439.52,1800.36, 0.05 13978.69,1800.52,

0.5 15079.82,1800.31, 1 10434.4,1800.84, 0.1 12784.0,1800.6,

0.7 13978.69,1800.52, 2 13978.69,1800.52, 0.15 10832.57,1801.0,

0.9 11442.28,1802.08, 4 12596.2,1800.67, 0.2 9614.67,1800.86,

Table 5.5: The Total Time Taken (In Seconds) By HAPI, Followed by the Time

Taken for H-B&B in 10x10 Grid Experiment Settings. H-B&B Was Terminated in

30 Minutes and Only the Tightest Upperbound Was Taken.

5.5.3 Warehouse Worker Experimental Setup

This domain is as introduced in the previous chapter; the state and action sets

are defined by the cartesian product of the set of box sizes {small,medium, large}

({s,m, l}), and if bubble-wrap (soft padding) is needed or not {∅, w}. For example a

group of items with glass items could be a small order that requires a small box with

bubble-wrap, small × wrap (represented as s × w). When a worker sees an order,

it is not always apparent what box size is needed. Additionally, due to the diversity

of products, the worker has no idea which products actually need bubble wrap or

not. For example there maybe tempered (hardened) glass products that do not need

bubble-wrap, but the worker might not know this and use bubble-wrap anyway.

In this work, we changed the transitions and rewards for the domain. The tran-

sition likelihoods are defined in Table 5.6, where the rows are states, and columns

are actions. Each entry is a tuple of successor state and probability. The rewards for

each state action pair are defined in Table 5.7

Thus far we have only talked of package sizes. The other dimension is whether

93



l l × w m m × w s s × w

l S,16.66% S,16.66% {m},100% {m},100% {l},100% {l},100%

l × w S,16.66% S,16.66% {m,m × w},50% {m,m × w},50% {l × w},100% {l× w},100%

m S,16.66% S,16.66% S,16.66% S,16.66% {s,s × w},50% {s,s × w},50%

m × w S,16.66% S,16.66% S,16.66% S,16.66% {s,s × w},50% {s,s × w},50%

s S,16.66% S,16.66% S,16.66% S,16.66% S,16.66% S,16.66%

s × w S,16.66% S,16.66% S,16.66% S,16.66% S,16.66% S,16.66%

Table 5.6: Transition Likelihood Matrix; Rows Are States and Columns Are Actions.

Recall Actions Maps 1:1 to States and So Have Matching Names. Each Entry Is a

Tuple of a Set of States From State Space S, and the Probability of Transition to One

of the States in That Set. Note: Capitalized S Is the Entire Set of States

l l × w m m × w s s × w

l 1.0 1.0 0 0 0 0

l × w 0.9 1.0 0 0 0 0

m 0.9 0.9 1.0 1.0 0 0

m × w 0.8 0.9 0.9 1.0 0 0

s 0.8 0.8 0.9 0.9 1.0 1.0

s × w 0.7 0.8 0.8 0.9 0.9 1.0

Table 5.7: Reward for State,Action Pairs; Rows Are States and Columns Are Actions.

an order needs bubblewrap (soft packaging material) or not. If an order is large and

needs bubble-wrap, then packaging it as medium without bubble wrap gives a lower

reward and transitions to “medium-size with-bubble wrap" state 50% of the time, or

medium-size (no bubble wrap) state for the other 50% of the time. This is to reflect

that the user might have packaged the items that required bubble wrap already. The

analogous transition happens with medium-sized orders that require bubble wrap.

As for the reward. The right action–right size and addition of bubble wrap if

needed– gives a reward of 1.0. All other suboptimal actions gives a lower reward. How

much lower is randomly determined by the Reward Noise Range (RNR) parameter.

94



We vary this parameter between 0.1, 0.2, 0.3, 0.5. Based on this parameter the reward

is randomly reduced by upto this amount for each action.

The other part of the experimental setup is the classification likelihoods which are

shown in Table 5.8. The likelihood of a worker confusing any small order with any

medium sized order or vice versa is about 16%, and is the same for misclassifying

any medium with any large order. The likelihood of confusing a small order with

a large order is less than 1%. The likelihood of the worker correctly determining if

bubblewrap is needed is 50% across all order sizes; there are so many products that

their accuracy for determining if bubble wrap is needed is random.

l l × w m m × w s s × w

l 32.68% 32.68% 12.50% 12.50% 0.98% 0.98%

l × w 32.68% 32.68% 12.50% 12.50% 0.98% 0.98%

m 16.34% 16.34% 25.00% 25.00% 16.34% 16.34%

m × w 16.34% 16.34% 25.00% 25.00% 16.34% 16.34%

s 0.98% 0.98% 12.50% 12.50% 32.68% 32.68%

s × w 0.98% 0.98% 12.50% 12.50% 32.68% 32.68%

Table 5.8: Classification Likelihood Matrix (pc) For Warehouse-Worker Domain,

Where (S,M,L) Stands for (Small,Medium,Large) And “W” Means Bubblewrap

Needed. Columns Sum to 1000%.

The probability of uncertainty pu(.) is computed using the same method as for

the gridworld experiments. The pu(.) probabilities were set by taking the average of

the classification probabilities from each pair of states, computed as :

pu({s2, s1}|s∗) = (
pc(ŝ2|s∗) + pc(ŝ2|s1)

2
) ∗ pc(ŝ1|s∗)

+(
pc(ŝ1|s∗) + pc(ŝ1|s2)

2
) ∗ pc(ŝ2|s∗)

(5.13)

We ensured that the probability of the cases for any given state sum to 1. This

equation

95



This would mean that if two states had a high probability in pc of being inferred

in the state s∗, then the likelihood that the agent would be uncertain between those

two states is higher too. Lastly, we set ψ1 = 1.0, ψ0 = 0 for our experiments. The

extra-sensing action cost is -0.1. The extra-sensing action in our experiments does not

improve the inference likelihoods. This represents the case when the human repeats

unhelpful sensing actions, or is just delayed due to uncertainty.

In our experiments we vary the reward noise range (RNR) parameter as { 0.1,

0.2, 0.3, 0.5} for one set of experiments, these are presented in Figure 5.4. We also

vary the discount factor as 0.3, 0.5, 0.7, 0.9. These results are presented in 5.5. The

default RNR is 0.0 when it is not being varied, and the default discount factor is 0.7.

We also set the probability of taking a random action is 5% to add more stochasticity

into the domain. For each setting we run HAPI 30 times and present the distribution

of the policy value (Equation 4.2) normalized by the value of the policy returned by

branch and bound. Since the branch and bound policy value is optimal , we expect

the range to be [0,1].

96



Figure 5.4: Box Plot of HAPI Policy Values for Warehouse-Worker Domain With

Varying Reward Noise Range; Values Normalized by the Policy Value From Branch

and Bound Search.

97



Figure 5.5: Box Plot of HAPI Policy Values for Warehouse-Worker Domain With

Varying Discount Factor (Γ); Values Normalized by the Policy Value From Branch

and Bound Search

5.5.4 Warehouse Worker Results

In all the experiments, as we wanted, the branch and bound policy has the highest

value. The HAPI policy search found the optimal policy value atleast once out of 30

iterations, which is what we hoped. The variance in policy value found by HAPI is

a lot more than in the grid world experiments. The trend of incresing variance in

policy value for HAPI as discount factor increases is not as evident in this domain as

it was in gridworld. This maybe because of fewer states.

98



The surprising trend is that as the RNR parameter was increased (less reward for

actions) HAPI seemed to find the optimal policy a lot more consistently. It is easy

to see why this holds in the limit when all the rewards are zero and the only cost is

from inaction (extra-sensing action). Then the optimal policy is any policy that has

the same action across all states, of which there are many and easy to find. We were

surprised that the effect of the extra-sensing action was pronounced even with smaller

values of RNR. Indeed the optimal policies found were just to put all state orders in

the large-box with bubblewrap, which fits out intuition; if the difference in rewards

is negligible, then use the action that applies to all states and avoids extra-sensing

actions.

99



5.6 Human Subject Experiments

For our human subject experiments we wanted to see if our assumptions hold, with

respect to human policy execution under state uncertainty. We use a small grid world

setting, and use colors to define each state in order to introduce state uncertainty from

perception. The full grid is as illustrated in Figure 5.6. In the underlying MDP, each

action has costs as illustrated in Figure 5.6, and all undisplayed actions have a cost

of -10. There is a reward for reaching the goal at the bottom right position (+10).

After reaching the goal position, the state then changes to a random new position

from a set of initial states.

Our objective in this study was to first build an averaged human model using the

procedure described in Section 5.3, and then use that model to compute a policy that

accounts for the uncertainty effects. The performance using this policy is then com-

pared to the human agents’ performance using the optimal policy for the underlying

MDP. The state space was designed so that some sets of states (the color associated

to them) are visually similar, like “Green 1" and “Green 2" in Figure 5.6, and cause

uncertainty.

All participants were recruited using the “Prolific" service for online studies, and

prescreened using using their service for vision (can see colors clearly). We also asked

3 questions at the start of our study to test if participants could distinguish between

lighter and darker shades that look similar. All prolific participants are above 18

years of age, and equal division of male and female participants (as they identify) was

requested for the study (Prolific handles this part). No other demographic information

was collected. Gender or age based comparisons are out of the scope of this study.

Our human-subject studies had IRB approval, and we gave clear information about

the purpose of the experiments to our participants in the consent form before the

100



Figure 5.6: A Colored Gridworld Domain in Which an Agent Determines the States

by the Color; Initial States Are Annotated as Well.

experiments. We also debriefed the participants, and gave the option to contact us

for more information.

In the first phase, we collect data to build an (averaged) model of a human agent

for the task. This means computing < pc, pu, ψ0, ψ1 > for each state (including S2

states). We do this using a preliminary study that displays the colors used in the

main study, and asks the human to match a color displayed (colored square) on the

left of the screen to a list of numbered colors on the right of the screen. The color was

only shown for 0.5 seconds, but the table on the right was permanently displayed.

They were given the option to see-again if they were uncertain by pressing the back

arrow key; doing so gives us a clear indication of the extra-sensing action.

In this study, before the human can submit their answer or ask to see the color

again, we ask them to enter their guesses as to which colors they think it could have

101



been. Example, if a color Green1 was displayed the user might enter (1, 2) which are

the indices for the two green shades, or just enter one color if they were confident in

their decision.

The participants were paid a flat amount, as well as an additional 0.1 dollars for

every correct answer as an incentive to get it correct. We used data from 16 partici-

pants for this phase, each participants was asked 15 questions; colors were randomly

sampled during testing. We use the data collected to compute the parameters of the

human model as per the equations in Section 5.3.

As one might expect, the two shades of green, and two shades of red causes

participants to request to see the color again, as well as make the most mistakes.

All the unique (non-similar) colors that we tested the participants with were easily

identified with almost no errors and no extra-sensing actions. We saw this for many

unique colors during our initial testing, and so felt confident that we were not showing

the colors for too short a duration. One interesting note was that people seemed more

likely to confuse the darker shade of red with the lighter shade than vice versa; this

was not the case for the shades of green which was much less confusing.

After computing the human model parameters, we use it to compute the optimal

policy using H-B&B for the grid MDP in the study. We also computed the optimal

policy by value iteration which ignores state-uncertainty. These were the two policies

given to the humans in phase 2 of the study, and are displayed in Figure 5.7; the

policy on the left is the optimal policy of the MDP (ignores) uncertainty, and the

policy on the right is the one that accounts for uncertainty. The discount factor γ

was set to 0.9 to compute the policies.

Just as in phase 1, we display a color on the left of the screen for 0.5 seconds. This

color corresponds to their current position in the grid as in Figure 5.6. We ask the

participant to press the arrow key corresponding to the color seen using the policy

102



Figure 5.7: The Two Policies for the Second Phase of Human Subject Experiments.

The Left Policy Is the Optimal PolicyWithout Considering the Effects of Uncertainty,

and the Right Is the Optimal Policy After Accounting for Uncertainty.

displayed on the right, and so navigate through the underlying grid. After each step

the color of the new position is displayed. The participant can see a color again by

pressing the "Control" button (extra-sensing a+ action). We track every button press

and their progress through the grid. When they reach the goal state, the state is reset

to another of the initial states, for a total of 3 times. The initial states are shown in

Figure 5.6. We used 20 participants for this phase, and had to drop one data point

as the data suggested they were randomly guessing for both policies.

Using the data collected, we wanted to see if using the policy that accounted for

uncertainty translated to more reward accrued. We took the difference between the

reward accrued in each run (initial to goal state) with it’s corresponding run in the

other policy. On average the cost incurred by the policy that accounts for uncertainty

is less by 1.45. We ran a dependent t-test for paired samples; the same participant

103



did both corresponding runs, and so we treat the data as paired samples. We set the

significance level for t-test at α = 0.05, and ran the paired t-test using the scipy-stats

library in python [104] to see if the policy with uncertainty was better (one-sided test).

We got a t-test statistic value of 2.240 which corresponds to a p-value of 0.0147. Thus

we can reject the null hypothesis that the policy with uncertainty gives the same or

worse value than the optimal policy without uncertainty.

For our experiments, given the simplicity of the problem we found it sufficient

and easier to build an averaged human model and use it for all participants. Ide-

ally one would build a human model unique to a person. Such an averaged model

could be tuned with fewer additional data points per person, using a Bayesian ap-

proach to computing the parameters (using a dirichlet distribution for tracking the

priors). Overall, our human-subject studies give support to the idea that policies

which consider state uncertainty are executed faster and more reliably.

5.7 Related Work

If the effect of uncertainty was limited to only erroneous state detection (as cap-

tured by pc(.) in the human model), one can frame the problem in this chapter as

computing the reactive controller for a POMDP and use prior methods in [69] and

[73]. However, none of the prior methods handle the case where additional (extra-

sensing) actions are taken by the agent due to state uncertainty or any function of

policy decisions. This can result in different policies between our approach and prior

reactive controller approaches if such actions are indeed taken; We verified this by

setting ψ1, ψ0 to be zero (so no extra-policy actions are taken). This reduces our

H-B&B to computing the standard POMDP reactive controller based on pc(.) as the

observation likelihood. We found that the policy and values were suboptimal when

there were higher costs of extra-sensing actions; this fits our intuition as the reactive

104



controller is explicitly ignoring those.

An extension of reactive memoryless controllers is history-based controllers [63]

which considers mapping history of observations to policies as opposed to just the

current observation (state history of 1). These policies might work well for human

agent execution as one need only consider the history of states and not ask the human

to explicitly track prior probability distributions, which is a much higher cognitive

load. However, such policies are still susceptible to state uncertainty in the human’s

mind for the same perceptual and cognitive difficulties as in the single observation

(single history) case. For this work we limited ourselves to history of 1 state. We will

consider extending this to longer histories in future work, and we do not think it a

trivial extension as the human model needs to consider sequences of possible-states,

and how state-action decisions affect the uncertainty.

On a different but related note, there is work that considers “blindspots" in an

agent’s representation [81]. These blindspots can arise due to a mismatch in the state

space during training versus execution, or limitations in representational capabilities.

There is a follow-up work that focuses specifically on a human agent’s blindspots [83]

and reducing errors. The approach here attacks the problem from a different angle,

and do not try to minimize the errors for a given policy; we instead try to compute

a policy that accounts for human errors and behavior in response to uncertainty.

Lastly, there is work that considers how human decisions can change based on

when the outcome is sampled or when they have to make their decision, and that

work is aptly called Decision Field Theory. It considers that the outcome of human

choice between different prospects (of different risks) will vary based on the time of

sampling the decision. If we apply this to our problem in this chapter, we might

consider the effects of time restrictions on human policy behavior. We could analyze

how the errors and likelihood of extra-sensing actions change if the human is forced to

105



act within a fixed time period. This is left as a direction to be explored in extensions

to the approach herein.

5.8 Summary and Extensions

In this chapter, we define the problem of computing a reactive policy that ac-

counts for human execution behavior under state uncertainty. This work tackled the

cognitive limitations for inference in state identification when executing a policy, and

we also considered the human response to uncertainty during that inference. We for-

malized a probabilistic model of the human agent’s inference and behavior, as well

as how to compute the parameters in it. We then presented two algorithms (HAPI

and H-B&B) to compute policies for our problem, and show experimental results in

a gridworld setting.

Lastly, we conducted human subject studies to show an example of how the hu-

man model can be empirically derived, and use it with our H-B&B algorithm to

compute the optimal policy for our problem. We show that this policy resulted in

statistically more reward accrued than the optimal MDP policy that ignores the ef-

fects of uncertainty. Our human-subject studies supports the considerations we make

for our human model such as expecting identification errors between similar states

and extra-policy actions.

Thus far in the dissertation, we have discussed how to compute robot policy to

make human decisions easier (Chapter 3), how to compute policies that are easier for

humans (Chapter 4), and policies that consider human behavior under uncertainty

(Chapter 5). Next we look at a different problem in SDM, that of the human as a

planner, and present an approach and interface for co-planning with an automated

planner.

106



Chapter 6

CO-PLANNING IN FACTORED STATE SPACES

In Chapter 3 we discussed how reasoning about robot motion plans can be made

easier, and the human can navigate the space with less effort. However, humans

reasoning about, and planning in factored (and abstract) state-spaces is a different

challenge. When human agents are co-planning with automated planners, it would be

unreasonable to assume that humans have the same memory and recall of pertinent

information as a machine, and so we sought to tackle this issue. In this chapter, we

incorporate human-factors design principles from Ecological Interface Design [102] to

develop an approach and interface for co-planning in factored spaces. This includes

visualization of state features and plans, showing pertinent action information, and

co-planning through sub-goal specification.

6.1 Motivation

One of the barriers to the adoption of automated planners is their usability. This is

due to the amount of time and knowledge needed to interpret any output and interact

with the planner. An area in which we can improve usability is plan trace and domain

visualization. Current plan trace visualizations often represent plans in a pipeline or

linear fashion (as we will see). If there is no complete ordering of actions, adjacent

actions may have no immediate relationship or dependence. So the user would have

to keep the effects of actions in mind, and connect it with a future action to realize the

need for the prior action. Consequently, the user may have to parse the entire plan,

before beginning to conceptualize about other possible plans. This is because the

user needs to know about the dependencies across the plan. This high cognitive load

107



often leads to mental fatigue in the user, which reduces the quality of plan criticism

in mixed-initiative planning. Thus, it is important to present information in a visual

and easy-to-parse (and recall) format. This would allow users to quickly generate

alternate plans, or modify existing ones and compare them.

To address such problems, we can use the Ecological Interface Design (EID) Prin-

ciples [102] –which helped set the standards for design in complex human-machine

systems– specifically the EID principle that require that the correct affordances (ac-

tions) are easily inferable to the operator. To this end, we introduce TGE-viz (Tran-

sition Graph Embedding visualization), a visualization approach that uses ideas from

graph embeddings to display the transition graph of a domain in 2 dimensions. Graph

embeddings are a popular method to reduce the vast amount of information in graphs

by embedding their vertices to a continuous space to speed up analytics [16]. Lower

dimensional embeddings allow humans to be involved in the analysis. We can intu-

itively see structures (clusters and shapes) and relative distances, which can be used

to augment any automated analysis. It is this intuitive understanding and human

insight that we hope to bring into mixed-initiative planning.

We will first discuss the related work for this problem, followed by relevant con-

cepts of graph theory which will be used in this chapter. This is followed by the

discussion of the user interface for plan trace visualization, and interacting with the

automated planner. The work in this chapter was previously communicated in [39].

6.2 Related Work

Existing plan trace and domain visualizations present information in a sequential

manner with no notion of the rest of the domain. Examples of such representations are

Conductor [15], MAPGEN [5], SPIFe [26], Fresco [19] and Webplanner[71]. These can

be seen in Figure 6.1. Fresco [19] tries to remedy the issue of single-plan only/linear

108



Figure 6.1: Existing Visualization For Planners. Clockwise: SPIFe, Fresco, Conduc-

tor, WEBPLANNER

representations by displaying top-k plans. However, it is still left to the user to

painstakingly parse the actions of each plan trace of the top-k plans to determine the

differences and alternatives. In comparison, our plan trace visualization allows the

user to visually parse differences and then go into details as needed. We will now go

into some details of our approach to highlight the benefits of our approach.

6.3 Background

We assume the reader is familiar with STRIPS style planning, for more details on

it, we refer the reader to [36]. This section will focus on a few graph theory concepts

utilized for TGE-viz.

In graph theory, Hopcount is one of the metrics to measure distance between

nodes. Hopcount between two nodes is number of hops or links on the shortest path

between the two nodes.

HA→B = min
K

(PA→B(k)) (6.1)

where HA→B is the hopcount between A and B, and PA→B(k) is the number of

109



intermediate nodes on the kth path from A to B. This concept comes from networks

research, where one considers the number of devices a message must pass through.

The shortest path may have a larger hop-count than the minimum possible hop-

count between two nodes; this can happen if edge weights are different. For our case

with deterministic transitions, all edge weights are the same (equals 1), and so hop-

count corresponds to shortest-path cost. If one uses probabilistic transitions with

probabilities as edge-weights, this would change.

Another useful measure for our problem is “Closeness" of a node ni; it is the

average hopcount from a node (ni) to all other nodes. Typically the reciprocal of the

total hopcount from ni is used [49] as the closeness measure (as in Equation 6.2).

Cni =
1

Σnj∈N/{ni}Hni→nj
(6.2)

Closeness indicates how tightly coupled a node is with other nodes. So the average

closeness Cg over all nodes in the graph is used as a measure of the closeness of the

overall graph. The radius is another helpful metric. First we define the eccentricity

of a node as the longest hopcount to any other node. The radius of a graph is the

minimum node eccentricity over all nodes. We will shortly discuss the relationship

of these graph metrics to the quality of TGE-viz embeddings after first defining the

problem of embedding a factored space.

6.4 Problem Formulation

The objective of TGE-viz is that given a domain specification, find embeddings

for all grounded propositions and grounded actions such that the nearest neighbors

of the graph over grounded actions and propositions are preserved. This optimization

measure is used to capture the structure and relationships of the domain. Henceforth,

we shall refer to the undirected graph with the actions and propositions of the domain

110



as just the transition graph. Actions are connected to propositions if the propositions

are in the preconditions or effects of the actions. For this work, we only use positive

propositions to minimize the information load on the human operator.

The input to the problem is the set of all grounded actions Ga. Each ga is the

triple (P, a, E), where P is the set of precondition propositions (each of which is a

string), a is a string that represents the grounded action, and E is the set of effects.

All the nodes in the domain are represented by τ = V
⋃
A, where A is the set of all

action strings from Ga, and V is the set of all propositions in the domain.

The graph is built by adding edges between every action a ∈ A and proposition

v ∈ V that is a precondition or effect (includes the delete list) in Ga. The output

is the set of tuples (ti, ei) where ti is the ith term of τ , and ei is its embedding.

The embeddings are optimized such that neighboring nodes in the graph are closer

together, and non-neighbors are further away. Having defined the problem, we will

now look at an approach to embedding the domain graph using force-directed graph

embeddings.

6.5 Embedding a Planning Domain

Graph embedding is a rich field with many algorithms that have their relative

merits. For this work we experimented with Multi-Dimensional Scaling (metric and

non-metric MDS), Locally Linear Embedding, Isomaps, and Spectral clustering. The

aforementioned algorithms were run with the implementations in Sci-kit python li-

brary [80]. We found that what worked best was a variation of Force-based graph

embedding [37], which is one of the original techniques of graph embedding, and was

intended to provide helpful visualizations of graphs (often called a graph drawing

algorithm). There are many variants within this class of graph drawing algorithms as

compared in [96]. We chose to code a variant of the Fruchterman-Reingold algorithm

111



for its simplicity, speed and scalability for large transition graphs.

6.5.1 TGE-viz Graph Embedding Algorithm

The high-level algorithm for TGE-viz is in Figure 6.2, which builds the transition

graph and then updates the embeddings. The crux of the algorithm is in how the

graphEmbedder(A, τ, iterations = 1500)

1 G ← BuildGraph(A)

2 \\ Initialize the embeddings between 0,100 in 2d

3 E ← InitEmbeddings(τ ,0,100,2)

4 For i ∈ range(0, iterations) do

5 E ← UpdateEmbeddings(E,G,τ, α=1.0)

6 return E

Figure 6.2: High-level algorithm for embedding a transition graph

embeddings are updated from their initial random positions. This is in Figure 6.4.

Each node is pulled towards it’s neighbors with a force proportional to the distance

between them. Each node is also repelled from non-neighbors R by a force inversely

proportional to the distance between them. For each iteration, we randomly select

only log(|τ |) nodes for repulsion (into the set R) to speed up computation. At each

iteration, the node can only move up to a set max-distance α. More even distribution

of embeddings can be achieved by repelling from all non-neighbors in every iteration,

rather than a random set of size log(|τ |). However, this will not scale well with very

large number of nodes, and it is not necessary to produce helpful visualizations of the

domain.

This embedding algorithm works well for a lot of graph configurations, and the

112



BuildGraph(Ga)

1 G ← ∅

2 For ga ∈ Ga do

3 \\ each action is comprised of a set of preconditions,

4 \\ the actionID, and set of effects

5 (P,a,E) ← ga

6 For each v ∈ P
⋃
E do

7 G = G
⋃

{(a,v)}

Figure 6.3: Building the graph for embedding

degree of usefulness of the visualization depends on the graph measures of “closeness”

and “radius” (that was explained in the previously in this chapter). We tested our

approach to analyze the embedding performance with the following experiments.

6.6 Experiments and Results

We ran TGE-viz on various configurations of two qualitatively different domains

from the automated planning literature, viz. Logistics and Barman domains. In

Logistics the objective is to transport boxes from their starting location in cities to

their destination using a mix of trucks and airplanes. The standard logistics domain

allows airplanes to fly to all airport locations. This allows for very little variability in

the underlying graph structure. So, we added constraints to let certain airplanes only

access specific airport locations (specific cities), and not all airport locations. This is

done with a static property assigned to airplane objects. We added this modification

to give the graph more structure and separation between different parts of the domain

as evidenced by the low average-closeness score and larger radius measures in Table

113



UpdateEmbeddings(E,G, τ, α = 1.0)

1 \\ E is the current set of embeddings

2 \\ create a copy into B (base set)

3 B = copy(E)

4 E ← ∅

5 \\ randomly select log(|τ |) number of terms for repulsion

6 \\ more cost-efficient that repelling from all non-neighbors

7 R ← RandomSelect(τ, log(|τ |))

8 For w ∈ τ do

9 \\ For loop described in Figure 6.5

10 return E

Figure 6.4: Process to update the embeddings

6.1.

On the other hand, the Barman domain involves making cocktails using a variety

of ingredients and recipes defined in the domain description, using shot-glasses and a

shaker to mix ingredients. This domain has an underlying graph that has high average

closeness score. This is because there are significantly more actions that connect a

proposition to another, and each proposition is connected to a much larger ratio of

the total set of propositions by very short hopcounts. As a result, the closeness is

higher and radius of the graph is much smaller as seen in Table 6.1.

Barman serves to highlight the kind of domains where the embeddings using TGE-

viz will be less separated. As we will see in the results, even in the Barman domain,

we can see the structure in the domain and glean information.

Recall that we modified the domains to see how the embedding performs with

114



1 attrForce ← ~0

2 repelForce ← ~0

3 ~w ← GetCurrentEmbedding(w,B)

4 For each n ∈ neighbors(G,w) do

5 ~n← GetCurrentEmbedding(n,B)

6 attrForce = attrForce + (~n− ~w)

7 For each r ∈ R do

8 ~r ← GetCurrentEmbedding(r,B)

9 \\ repulsion is inv proportional to distance

10 repulsion = |τ |
log(|τ |) ∗

1
~r−~w

11 repelForce = repelForce + repulsion

12 ~m← attrForce - repelForce

13 ~d = min((~m, ~m/|~m|) ∗ α)\\ limit by learning rate

14 E ← E
⋃
{(w, ~w + ~d)}\\ store updated embedding

Figure 6.5: Loop process for Procedure in Figure 6.4

different domain structures. For Logistics domain we increased the connectivity be-

tween cities by adding airplanes that connect them. In Barman, we increased the

number of cocktails and shot-glasses (cups).

6.6.1 Results and Analysis for Graph Embeddings

The embeddings for various configurations of Logistics and Barman are presented

in Figures 6.6 and 6.7, their graph measures in Table 6.1

For the Logistics embeddings in Figure6.6, C1, C2, ...C7 encirle the propositions

115



Figure 6.6: Logistics Domain Embeddings

Figure 6.7: Barman Domain Embeddings

Table 6.1: Graph Metrics

Name Average Closeness Radius

Logistics 1 0.067 18

Logistics 2 0.079 20

Logistics 3 0.086 16

Logistics 4 0.090 16

Barman 1 0.429 2

Barman 2 0.41 2

116



and actions related to transportation within each of those eponymous cities. The

embeddings between cities represent the transportation of a package between them.

As we add more airplanes and possible actions to transport packages between cities,

the graph embeddings update to reflect this in their structure. The clean separation

and structure is because the Logistics graphs have a low closeness score (think degree

of connectivity), and the radii are larger. This will result in the TGE-viz algorithm

spreading the propositions and actions wider in the embedding space. This makes it

easier to extract information from the visualization.

On the other hand, Barman domain has a very high closeness score and small

radius. So the embeddings are not as spread out as in Logistics and thus makes it

less clean (separated) for visualization and ascribing meaning to clusters and paths in

the embedding space. Even in the densely connected Barman domain we can clearly

see separation in the embeddings as highlighted in figure 6.7. The propositions and

actions related to each shot-glass (cup) form protruding prongs from the center. The

propositions and actions related to mixing ingredients in the shaker and making

cocktails are in the center. Very weakly connected nodes that have few edges like

clean_shot1 and clean_shaker are pushed to the periphery.

Hence, one way to determine how well a domain’s transition graph can be visu-

alized with TGE-viz is to use the closeness and radius scores of the graph. Lower

closeness and higher radius scores are better. Using such graph embeddings, we now

present the first version of our user interface that lets a user visualize plan traces with

respect to the entire domain structure, and interact with the planner through it.

6.6.2 Mixed Initiative User Interface With TGE-viz

After computing the 2-d embeddings, we will now discuss how one can display

them in an interactive interface to allow a human operator to be involved in the

117



Figure 6.8: Plan Trace in Modified Logistics With Tge-Viz for the Goal of Delivering

the Package to City 6 Location 3.

Figure 6.9: Alternate Plan Trace in Modified Logistics With Tge-Viz for the Goal of

Delivering the Package to City 6 Location 3.

planning process. We will also discuss the features added to help ease the cognitive

load of the user.

Given a set of embeddings for propositions and grounded actions, we developed

a proof-of-concept user interface in PyGame [92] to represent/visualize those embed-

dings and co-plan with an automated planner. Figure 6.8 is a screenshot capture

of our interface. The interface first displays all the propositions and actions in the

domain. The actions are green, the current state propositions are red, and other

propositions are displayed in blue. The background can be switched between white

and black depending on the user’s preferences. The initial state is fed in through a

problem.pddl file in the standard pddl format [46].

118



Figure 6.10: Interface For Collaborative Planning.

The two dimensional embeddings are displayed in an interface with actions and

propositions are colored with two different colors to help the human parse the points as

in Figure 6.10. Our interface allows the user to turn off the display of actions, and only

see the propositions, as in Figure 6.11. Additionally, the current state propositions are

displayed in a different color (red) to help with human parsing the visual information.

Our interface also allows zooming in and out of certain regions, as well as turning off

actions in the display. Such display of information is coherent with the guidelines from

EID for Knowledge Based Behaviors (KBB); for KBB the recommendation is that

(paraphrased) “represent the work domain in the form of an abstraction hierarchy

to serve as an externalized mental model that will support knowledge-based problem

solving" as stated in [101]. The abstractions support we have is through filtering

actions and propositions, as well as through the zoom functionality. Additionally,

when the user hovers their mouse over a node in the display, the pertinent information

appears on the top-left as in Figure 6.12; this could be the action information such

as precondition and effects, or the proposition name.

Thus far we have spoken of how humans can glean information, but we also need to

119



Figure 6.11: Filtering the Display to Only Propositions; Current State Propositions

in Red, and All Others in Blue

Figure 6.12: Display of Action Information When an Action Node Is Highlighted

120



consider how they can collaborate in the planning. Our approach allows the human to

set subgoals and ask a back-end planner –fast downward [48] for our implementation–

to generate a plan to that sub-goal as in Figure 6.13. If that plan is satisfactory, then

successive subgoals can be assigned and the plan is extended from the previous state

as in Figure 6.14. If a sub-plan is not satisfactory, then the user can reset the planning

to the initial state using the “Reset Planning" button. Adding support for undoing

and redoing are additional improvements that we left out our proof-of-concept. The

plan is displayed with action numbers on the visual interface, and correspond to the

action order in the text/terminal output of the same plan; this is as returned by the

backend planner which we also display to the user

Figure 6.13: Subplan Generated by Planner After User Clicks a Subgoal

6.7 Summary and Extensions

One limitation of the current approach is that we only embed the propositions

and not their negations. This is helpful in limiting the information displayed to the

121



Figure 6.14: Extending the Plan to the Next Goal From the Plan in Figure 6.13

human. If each proposition corresponds to a value in a multi-valued fluent, then

only embedding positive propositions maybe sufficient and cover the state space.

For example, "package1 in location 3" or "package1 in location 5" are both values

associated to the fluent "package1 location". Adding "not package1 in location 3"

when it is in location 5 is redundant. However, this may not always be sufficient. For

some domains we may have to embed the negations of propositions too depending on

the variables and actions definitions in the domain. This can be incorporated into

the existing approach by adding the negations to the embedding set.

With respect to the interface, there are some extensions that could help. One

could display time and other costs associated with the actions in the plan traces

displayed on the embeddings. The user should be able to toggle these on and off, to

minimize information load.

In summary, our TGE-viz approach allows visualization of plan traces in the

context of the transition graph of domain, embedded in 2d space using force-directed

embeddings. This enables the human in mixed-initiative planning to intuitively and

122



quickly analyze plan traces overlayed on it. Alternate plans can be formulated easier,

and our interface provides an easy way to interact with the automated planner. The

primary human limitation we tackle here is memory; it would be unreasonable to

expect the human to remember all domain information and think of all possible

alternatives for actions easily. We also allow the human to limit the information

presented, to help with information load. We think that interfaces such as ours

which reduce the information and cognitive load of the user will help the adoption of

automated planners.

For acting and planning with humans thus far, our problems have considered an

individual human in the loop. In the next chapter, we tackle a problem involving

a team of humans, and how task switching costs can limit team performance in

completing a set of tasks.

123



Chapter 7

TEAM TASK ASSIGNMENT

In this chapter we focus on human teams and the problem of assigning tasks

linked by sequencing constraints (partial-ordering) for completing a common set of

goals. Team members maybe required to switch between tasks to satisfy a deadline

(makespan). Existing scheduling approaches either ignore or treat the cost of task

switching improperly as we will discuss. For people, task switching is a non-trivial

performance affector, and this cost has been well documented in the human factors

literature [74][109],[72]. In this chapter we will explicitly consider the time cost of task

switching when assigning tasks for a team of humans. We also develop an approach

that allows one (such as a team manager) to limit the amount of task-switching to

satisfy deadlines associated to goals. Note that in this chapter, we use the word task

to mean an action in a plan for completing a set of goals. This work involves the

human both during planning and execution. In planning, the team members provides

their estimates for the time taken for each task, and their availability. In execution,

it is the humans that actually execute the tasks, and we consider their task-switching

costs during execution.

7.1 Motivation

Organizations need to manage human teams to accomplish their goals by planning

to complete a set of tasks within time and resource constraints. As an example, in

the Agile methodology for software development –which was our initial motivating

setting– in which tasks are assigned to team members typically every two weeks [2].

In most cases, there are dependencies among these tasks, as well as priorities. Other

124



key characteristics of these type of planning&scheduling (P&S) tasks are: (1) uncer-

tainty in the task duration; (2) availability of team members (affected by holidays,

time-off); (3) task-specific qualifications (e.g., only a developer trained on Javascript

programming can develop the front-end interface); and (4) there may be limited or

no central-control during the execution, as people’s tasks are assigned at the start of

the planned period, and then control is local i.e. each person decides what to work

on. In relation to this last characteristic, if a team member can work on a blocking

task that is a prerequisite for other tasks, then they might preempt their current task

to work on it. Once that is done, then they can resume working on the preempted

task. In this way, that team member would unblock others who might be idly waiting

because they are not qualified to do it.

The objective of a P&S solution in our setting is to compute a task-to-human

assignment that considers the following: tasks dependencies, goal prioritization,

makespan, resource constraints (agent availability and qualifications), uncertain tasks

duration, distributed control, and preemption capabilities of agents. Note that in this

paper, tasks are low-level activities like actions in a plan. A good solution to the type

of P&S problems herein, would increase the likelihood of task completion within the

planning period.

The contributions of our approach include the formalization of a real-world P&S

problem, and the adaptation of two search algorithms to solve it, viz. Tabu search

and Monte Carlo Tree Search (MCTS). We also evaluated these approaches on diverse

and randomly generated problem instances. Our experimental results show the ability

of the algorithms to effectively compute task assignments and their priorities that

leverage preemption to improve outcomes in this problem setting.

125



7.2 Related Work

In SDM, an approach to execution control under uncertainty is Dynamic Contro-

lability (DC) [75] for Simple Temporal Networks with Uncertainty(STNU) [103; 89].

However, such DC approaches require a central controller for dispatching, and contin-

uous monitoring of the execution state which is not available in our problem setting.

Distributed Multi-agent STNU (MaSTNU [17]) sought to address the problem of dis-

tributed control when communication with a central agent is absent or intermittent.

It computes multiple STNUs, one for each agent.

However, without enabling preemption of tasks (context switching), these ap-

proaches cannot satisfy the makespans in some problems. Figure 7.1 shows an ex-

ample, where there is no solution even without uncertainty (contingent links). In the

example, we use a disjunctive condition using the representation used in [25] which

is there to indicate an agent can only do one task at a time and no-preemption. We

also have an external edge that enforces synchronization between agents (using the

representation from [17]). In this example, there is no assignment to D2 or E2 that

allows satisfying all constraints. However, if we allow preemption, it lets us ignore the

disjunctive constraint. Then E2 can be started at t=0, preempted at t=6 to finish

D2, and then return to E2. This would satisfy all makespans (displayed in red).

126



Figure 7.1: Example of a Multi-Agent STN That Cannot Be Solved Without Pre-

emption.

Another framework is probabilistic STN (PSTN), where the uncertain durations

follow a probability distribution, which is an assumption we make in our work as well.

There is recent work on computing a dynamic control schedule for PSTNs [38], and

another one for using Monte Carlo Tree Search [88]. These methods still require a

central controller.

From operations research (OR) literature, our problem maps to Resource Con-

strained Project Scheduling Problems (RCPSP). There are different dimensions to

RCPSP problems. In a recent survey on RCPSP problems [44], the dimensions were

categorized into (1)resource type, (2) activity concepts, (3)objective function, (4)

availability of information. With respect to these dimensions, our problem is defined

as (1)renewable resources (human agents)(2) preemptable activities (3) time-based

objectives (4) Stochastic durations. The RCPSP dimensions and where our problem

is situated is displayed in Figure 7.2. We have not found any RCPSP work that

considers both stochastic durations and preemption with a makespan objective. The

127



approaches we found in RCPSP literature that consider preemption have determinis-

tic durations. These approaches either have no penalty for interruption [76] or impose

a hard limitation on the number of interruptions [113] to account for preemption cost

without explicitly considering it in the constraint satisfaction problem.

Figure 7.2: Categories of Rcpsp Problem From Operations Research Literature From

[44]

The last branch of relevant literature is from Operating Systems (OS), specifically

from Real Time Operating Systems (RTOS) [95]. In such systems, process prior-

ities are used to interrupt/preempt the current activity on a processing unit, and

switch control. Priorities become very useful when most of the tasks have uncertain

durations, or are affected by exogenous events (interrupts), and the execution is dis-

tributed across different processes. The closest analogy to our problem we found in

RTOS literature is Worst Case Execution Time (WCET)[90]. WCET is especially

used to certify safety critical systems like automotive controllers; the RTOS response

128



to various test-loads is evaluated to make sure the processing time for critical tasks

is within a safety cutoff. This is different from our problem in that we do not tune

our approach to satisfy a fixed makespan for certain tasks. Rather, ours is a general

purpose (assignment) algorithm to handle variable makespans, and constraints over

agent availability, and qualifications.

7.3 Problem Formulation

Our problem of Assignment and Prioritization of Tasks (APT) for Distributed

Execution is given by the tuple < π, T,A, P,G, γ, w,m, δ, q, a, β > where:

• π: Partial Order Plan represented by a directed acyclic graph (DAG = <

T,E >) where T is the set of vertices of the DAG, and correspond to the

tasks in the plan, and the directed edges capture the ordering dependencies.

• T : set of tasks

• A: set of agents.

• P : fixed set of priority levels assignable to the actions. P ⊂ Z+

• G: set of goals.

• γ : G→ 2T : tasks associated to each goal. A goal is considered complete when

it’s associated tasks are done.

• w : G → R+: importance weight (priority) of each goal. Different from

assignable task priority.

• m ∈ R+ is the maximum makespan within which the goals ought to be com-

pleted.

129



• δ : T × R+ → [0, 1] defines the probability of completing a task in a given

amount of time.

• q : A× T → {0, 1}: qualification function; q(ai, tj) = 1 if agent ai can perform

task tj.

• a : A×R+×R+ → {0, 1}: availability function; a(ai, t1, t2) = 1 if ai is available

between t1 and t2.

• β : A× T → R+ is the preemption cost function that tells how much additional

time a task will take because it has been preempted.

A solution (output) to the APT problem consists of finding an assignment function

α : T → A and prioritization function ρ : T → P that fulfill the temporal and resource

constraints (given by π, q and a). In order to compare different solutions, we define a

scoring function for goal completion. The score of a plan is the weighted probability of

goal completion within the maximum makespan (m). This is defined in Equation 7.1.

∑
g∈G

w(g)∑
g′∈Gw(g′)

× prob(c(g, α, ρ) < m) (7.1)

prob(.) returns the probability, and c(.) is a stochastic function that returns the

completion time of goal g for a given assignment and prioritization. c(.) is determined

using a simulator of the execution process that we will describe next in the following

section.

7.4 Solving APT Problems

We use a search-based approach to solving APT. To estimate the goodness of

solutions –given the stochasticity of task durations– we developed a simulator to

sample and rollout execution trajectories for a given assignment and prioritization

130



of tasks. In the following sections we will describe the simulator and the search

algorithms that use it to solve APT.

7.4.1 Simulator

The simulator takes in the problem components and a potential solution (given

by α and ρ) and returns a sampled value of the c(.) function. The simulator samples

durations for each task, and simulates execution. We use a discrete-time simulator.

A continuous-time simulator would be faster, but a discrete simulator implicitly con-

siders the slack from human behavior like reading emails. Thus, it better fits the

problem setting we are interested in. At each step, the simulator determines which

task an agent works on based on their backlog; backlog is the set of tasks ready and

incomplete at that step. Tasks assigned to an agent as per α(.) will appear on their

backlog when task dependencies are completed. The simulator includes certain key

dynamics:

• Completion time: when a task is assigned to an agent’s backlog, it comes with its

priority level (given by ρ) and the time required to complete the task (sampled

using δ).

• FIFO: when two tasks arrive to an agent’s backlog with equal task priority (set

by ρ), the agent works on the first task that arrived. If they arrive at the same

time, then the order is arbitrary.

• Agent availability: when an agent is working on a task, progress is made on the

task only during the time when the agent is available (given by a(.) ). When

the agent is available, the time required to complete the task is decremented by

one time-step of the simulator.

131



• Preemption: when a higher-priority task enters the backlog, it will preempt the

current task, which will return to the backlog. The time needed for completion

of the preempted task will increase (as per β).

The simulator returns the completion time of each goal in G. Completion times

are used by the search algorithms to find good assignments and prioritizations of

tasks. In this work, we consider all tasks as preemptible. Non-preemptible tasks can

be easily supported by checks in the simulator. The rest of the methodology remains

unchanged.

7.4.2 Search Algorithms

We present two stochastic search approaches to solve APT problems: Tabu search

and MCTS. Both use simulations to evaluate the value of a solution using Equation

7.1. In Tabu search, we start with a random initial solution, and take local improve-

ment steps until no more improvements greater than a specified threshold are possible.

We iterate the process (random restart) for as many times as possible within a time

limit. The tabu list in tabu search only keeps the solutions obtained at the end of

each iteration.

For MCTS, the nodes at each level in the tree correspond to a partial assignment

of tasks with priorities (a partial solution). Each successor node adds an assignment

and a priority for a task. During MCTS search, the process steps through each node

and recursively selects the best-child node based on the average reward of the node,

(initialized to 0); this is only if the node is already fully expanded. If the node is not

yet fully expanded, i.e. only a subset of children have been evaluated, then a random

node from the remaining children is selected to be opened. Each node is evaluated

by random rollout, i.e. random assignments and prioritizations for the remaining

tasks (subject to the qualification constraints). The reward at the leaf node (end of

132



a rollout) is the average score returned by 30 simulations of the complete solution

obtained at the leaf node. This reward is backpropagated to each of the parent nodes,

and the average reward is updated. When the allowed time for search has expired,

MCTS may not have opened a terminal node of the search tree (which would have

all tasks assigned). In that case, we take the best leaf-node from amongst the nodes

opened so far; this would only have a partial assignment of tasks. We then complete

the assignment using a hill-climbing search for the remainder with no random restarts

or tabu list. This is needed because unlike MCTS for the games of Chess or Go, we

need a complete solution and not just the next decision in the search tree. In our

experiments, we did not utilize exploration with upper confidence bounds [58]. We

found that exploration resulted in worse solutions when limited by the cutoff time;

we attribute this to MCTS taking more time to explore than exploit/discern between

good partial solutions that were found early.

One of the algorithmic decisions that helped improve results in MCTS was to

order the task assignment decisions intelligently. We run a topological sort on the

partial-order plans DAG and use the topology levels to order tasks in the search

tree. The rationale is that decisions made for tasks (nodes) at lower topological levels

would impact downstream decisions, so it makes more sense to decide these first.

Additionally, since goals have importance weights associated to them, we further

order task assignments in MCTS based on the highest weight of the goals that require

them. Lastly, our MCTS code was built upon the standard implementation of the

algorithm [27] as implemented in the python mcts library.

7.5 Experiments

We evaluate the Tabu and MCTS algorithms on 6 randomly generated APT prob-

lems. We give each algorithm a time limit of 30 minutes. The number of tasks in

133



Goals

H a p m g0 g1 g2 g3 g4 MCTS Tabu

3 4 1 163 1 1 2 1 1 0.86 0.83

3 4 3 163 1 1 2 1 1 0.99 0.93

3 6 1 163 2 2 1 3 3 0.99 1.0

3 6 3 163 2 2 1 3 3 1.0 1.0

3 4 1 156 2 3 1 0.04 0.0

3 4 3 156 2 3 1 0.48 0.4

3 6 1 156 1 2 1 2 2 1.0 1.0

3 6 3 156 1 2 1 2 2 1.0 1.0

3 4 1 165 3 3 3 1 3 1.0 1.0

3 4 3 165 3 3 3 1 3 0.93 0.99

3 6 1 165 3 3 2 1.0 1.0

3 6 3 165 3 3 2 1.0 1.0

Table 7.1: Likelihood of Finishing Execution by Maximum Makespan for McTs and

Tabu Search Given Different Configurations of Topological Depth (H), Number of

Agents (A = |A|), Priority Levels (P = |P |)) And Maximum Makespan (M).

each plan is fixed to 30. So, a plan DAG with fewer levels/depth will have more tasks

per topology level resulting in a wider graph. The number of goals was randomly set

between [3, 5], and each goal weight was randomly set between [1,3]. Each task from

the last topological level was randomly assigned to one of the goals. The simulation

time-step was 1 hour. The following problem features were randomly generated:

Task Time: The time required per task is stochastic, and follows a uniform

distribution between two limits. The limits are sampled from a normal distribution

134



Goals

H a p m g0 g1 g2 g3 g4 MCTS Tabu

6 4 1 169 2 1 3 0.32 0.33

6 4 3 169 2 1 3 0.34 0.33

6 6 1 169 1 3 3 1.0 1.0

6 6 3 169 1 3 3 1.0 1.0

6 4 1 174 2 1 1 1.0 1.0

6 4 3 174 2 1 1 1.0 0.99

6 6 1 174 3 1 2 1.0 1.0

6 6 3 174 3 1 2 1.0 1.0

6 4 1 154 1 2 3 3 0.51 0.59

6 4 3 154 1 2 3 3 0.7 0.76

6 6 1 154 3 2 3 3 1.0 0.84

6 6 3 154 3 2 3 3 1.0 1.0

Table 7.2: Second Set of Results For Likelihood of Finishing Execution by Maximum

Makespan for McTs and Tabu Search Given Different Configurations of Topological

Depth (H), Number of Agents (A = |A|), Priority Levels (P = |P |)) And Maximum

Makespan (M).

with a mean of 8 (hours), and standard deviation of 3; the smaller sampled value is

the lower bound.

Agent Availability: Each agent is available during random intervals of time to

make the search more challenging. We start with the agent being available for the

max duration of a problem. Then, for each hour, the likelihood of an agent taking

time off starting from any given hour is 0.05. If an agent takes time off, the duration

135



is sampled from a Gaussian distribution with mean 8 and standard deviation 4.

Likelihood of Task Dependency: Each task has a 5% chance of being con-

nected to any other task. This is on-top of the single edge needed to enforce the

depth of the DAG underlying the partial plan.

Qualifications: Each task requires a qualification to perform it. Each agent is

assigned a subset of the possible qualifications, with at least one agent having each

qualification. The likelihood of an agent having an additional qualification is 0.25.

We fixed the number of qualifications to 4.

The makespanm was set to 60% of the sum of all the tasks’ duration upper bound.

We set this value empirically based on results from using a team of 3 agents and 1

priority level; the score using Equation 7.1 was often below 50% with either search

algorithm, so we chose it as a challenging makespan. Given these variations in problem

parameters, we posit that our problem generation is sufficiently parameterized to

produce diverse, and challenging problems.

During simulation of an assignment on a plan, when an agent’s task is preempted

by a higher priority task, we set the penalty to a fixed amount; 0.5 hours additional

time to complete the preempted task. For our experiments, we vary the following:

topology of the underlying DAG - we set the depth to 3 or 6, which affects the longest

sequence of dependencies; number of agents - we used teams of 4 and 6 people; priority

levels - we used 1 and 3 priority levels to evaluate the effects of preemption. All code

was written in python and experiments were run on a PC with Intel® Core™ i7-6700

CPU, running at 3.40GHz on Ubuntu 20.04 with 32 GB of memory. All random

elements are controlled by a seed.

136



7.6 Results

In Table 7.1 and 7.2, we present the results on 6 randomly generated problems;

each problem’s data is separated into a sub-table. The score under the MCTS and

Tabu columns is computed as per Equation 7.1, and is the averaged result of 100

simulation runs. For 4 agents, when the number of priorities increases from 1 to 3,

the success rate increases appreciably for both algorithms, except in one anomalous

case which we attribute to the stochastic nature of the search. Having more priority

levels alleviates the agent resource constraint. An example of this is when only one

agent has a necessary qualification for many tasks, that agent becomes the bottleneck.

By allowing preemption, that agent can switch tasks and improve outcomes. For

example, in the second graph we see an increase in the score from 4 agents with

1 priority level, to 4 agents and 3 priority levels. The reason for that is only one

agent had the qualification required for 8 longer tasks. When the same partial plan

was run with 6 agents, there were two more agents who had that qualification, and

that helped the success rate jump to 1.0. Both MCTS and Tabu search performed

comparably well, and so we cannot say one is better. It is unsurprising that with 6

agents (even with just 1 priority) both methods tend to find seemingly optimal score

solutions, except for the last graph when Tabu search only finds a 1.0 score solution

with 3 priority levels and not with 1 priority level.

7.7 Summary

In this work, we presented a new type of P&S problem (APT) that resembles a

set of real world problems. The main differences with prior work is the combination

of distributed control during execution and the agent’s ability to preempt tasks. We

presented the adaptation of two search algorithms, MCTS and Tabu search, to solve

137



these problems. The experimental results show that both algorithms provide promis-

ing results for APT problems. The results also show that when agents are able to

preempt their current tasks, the goal completion score improves appreciably.

138



Chapter 8

CONCLUSION

In this final chapter, we will summarize the work done herein, followed by recom-

mendations on how to incorporate human limitations into other SDM settings based

on what was learned during the research. We end with open problems for future

research that require incorporating human limitations.

8.1 Summary of Research

We looked at the problem of incorporating human cognitive limitations when

computing solutions for a set of sequential decision making problems. The primary

thrust of this work was that using problem-specific human models (Chapters 4, 5)

and task-proxies (Chapters 3, 7), is a sensible approach when computing solutions for

humans. We studied how cognitive limitations –such as limited attention, and infor-

mation load– could be factored into the problem constraints and assumptions, so as

to improve the quality of interaction with a human-in-the-loop. By using task-specific

proxies, assumptions, and behavioral models, we avoid the pitfalls of using a general

cognitive model or assumptions on human intelligence –like bounded-rationality or

finite-lookahead for inference– that we discussed in Chapter 2. We also studied good

design principles for human-planner interactions and built an interface based on those

principles.

The specific problems we looked at included the following: computing policies for

humans when acting in a setting that can be modeled as an MDP; computing robot

path trajectories when humans and robots are moving in the same space; computing

task assignments and their priorities for distributed execution in human teams; and

139



how to design an interface for human and automated-planner interaction.

With respect to computing policies for humans, we looked at two settings. In

the first setting, we considered how to tradeoff policy-complexity with policy-value to

find policies that are easier to execute. We defined an easier policy as one that had

the same actions across similar states. Similarity of states was input, and could be

determined by how likely a human was to confuse two states, or based on the number

of feature similarities. We computed policies using a modified policy iteration method

that used a weighted sum of policy-value and complexity where both were scaled to

be in the range of [0, 1].

In the the second setting for computing human policies, we considered the human’s

response to uncertainty, and how by modeling the costs and dynamics of that response,

one could come up with better policies for humans to execute. We presented two

methods to compute policies for this setting: a faster, heuristic-method using policy

iteration that can handle larger state spaces; and a method to compute the optimal

policy for the problem setting using a branch-and-bound method that is suitable for

smaller state spaces. In both these settings for computing the human policy, we used

a problem specific human model of how human inference and behavior is affected by

the domain and policy given to the human. We use statistical models of errors and

responses, and incorporate them into the computation process.

With respect to human robot interaction, we consider the problem of determining

how to layout paths for an AGV (autonomous guided vehicle). In this problem,

we consider that the robot(s) have a specific set of tasks to perform and points of

interest that need to remain connected in the final graph comprising of all the paths

that the robot can move on. We consider that the human pays limited attention

to the robot and cannot invest significant time considering all possible combination

of paths that the different robots moving around that person might take. So when

140



computing the robot paths to layout on the floor, we emphasize predictability of

the robot motion from just the current position alone. We do this by minimizing

the number of branching vertices in the overall graph. In our literature review we

found this to be a novel graph problem, with the closest analogues being the Strongly

Connected Steiner Subgraph (SCSS) (which does not consider branching/diffusing

vertices), and Directed Steiner Tree with Limited Diffusing vertices (DSTLD) (which

has a single source node and doesn’t consider path costs). To tackle this problem,

we presented a hill-climbing approach to search the space of combination of paths

that are within an acceptable path-cost for each task and minimizing the number of

branching vertices.

With respect to planning for distributed human teams, we presented the problem

of Assignment and Prioritization of Tasks (APT), a novel and real-world inspired

problem setting to help human teams complete projects with limited communication

and distributed execution (applicable for offshore/multi-national teams or remote

work). The requirement of the human team members in this problem is that they

will switch to another task when they know it is of a higher priority level. In order

to reduce the cognitive and execution cost of task switching, we allow the number of

priority levels (and thus maximum number of switches) usable by our search method

to be limited by the user. The objective of the policy is to complete all the tasks

within the deadline(makespan) with a high probability. This is done using MCTS and

Tabu search. Both search approaches performed comparitively well in our experiments

involving randomly generated partial-order plans with varying topological depths and

dependencies.

The preceding problems we described involved the human directly following a

policy, or being an active participant, while at most giving information for the plan-

ning/computing process but not actively involved in computing the solution (such as

141



proposing or correcting parts of the solution). In our work on defining the planning

interface for humans and automated planners we also considered cognitive costs for

humans as co-planners. With respect to human-planner interfaces, our work [39] fo-

cused on developing an interface that reduced the cognitive burden of remembering

and holding all the domain information –such as all possible state-feature values or

grounded actions– by embedding it in a 2-d representation and displaying it. The

display of information and features of the interface was guided by principles from

cognitive ergonomics, specifically Ecological Interface Design (EID) principles. Our

interface allowed one to manage information load, and allowed the human to specify

subgoals and guide the automated planner through different plans , while helping the

human think of alternative plans.

8.2 Recommendations for Computing Human Friendly Solutions

Based on the work done herein, we gleaned a few principles that can be useful

when developing solutions for human-in-the-loop SDM problems.

A general observation that applies to a lot of problems that require human cog-

nitive effort is that one has to trade-off value with cognitive effort; this effort could

be inferential effort, demands on memory, attention costs, and such. Identifying the

key cognitive factors (like memory) in each problem is pivotal, and ought to influ-

ence the selection of the problem-specific human-model or task-proxy, as well as the

methodology.

Using a task-proxy, instead of a human cognitive model, when possible, can make

the problem easier to work with –like what was done in Chapters 3 and 7– as it doesn’t

require parameter tuning/learning on a problem-specific human model. However, the

solutions do still need to be validated with human-subject experiments.

With respect to building a human-model of behavior for a specific problem, the

142



more specific the model is to the problem and expected behavior, the better. More

general models that are fit to problems can have a greater risk of incorrectly fitting

as was shown in the work by [8].

On the note of problem-specific human models, it can be important (for outcome

measures) to consider problem-specific behaviors like extra-sensing actions in Chap-

ter 5, or risk-aversion behavior. These problem-specific assumptions, or normative

assumptions, can make an appreciable difference to the quality of outcomes. Consid-

ering how the human would behave in different problem situations ought to influence

the computational model. For example, it can be helpful to consider under what

situations in a problem might cause a human agent to be stressed, and make poorer

decisions and have less attention.

Lastly, for running human subject studies in SDM problems, it is especially im-

portant (and often difficult) to isolate the particular cognitive facet(s) as much as

possible –such as working memory, inferential ability, attention, and such– and en-

sure that variation in other facets are not influencing the results. For example, if

inferential performance is being studied, memory should be eliminated as an issue

by clearly displaying or highlighting all the pertinent information. If not carefully

controlled, one runs the risk of confounding effects due to the interplay of attention,

memory, and inference in human cognitive performance.

8.3 Avenues for Future Research

In addition to the individual problem extensions discussed in each chapter, there

are quite a few open problems that can be worth studying.

For computing human policies to execute, one of the issues is the number of

features that the human has to pay attention to, which can influence state-inference

outcomes. Reducing the features that need to be attended to would ease the attention-

143



cost to the human and can reduce the errors in policy-execution as well. So explor-

ing this trade-off can be an interesting avenue for research. Another direction for

human-policy computation is to determine what sets of options (partial state-action

mappings) to teach a human user, such that their outcomes improve across one or

more MDPs. This is akin to determining the playbook/strategies to use in a sport;

one cannot compute a complete policy or expect the human to remember it, so we

compute partial policies and model how the human might put them together when

executing. The assumptions would of course have to be tested with human-subject

experiments.

In summary, this dissertation highlights the importance and value of incorporat-

ing human cognitive limitations when coming up with solutions for human-in-the-loop

SDM problems. The fields of cognitive ergonomics, and psychology have a wealth of

information on cognitive limitations and good principles for human-friendly design.

Some of this knowledge was adapted and applied to the SDM problems presented

herein. We use task proxies (constraints or optimization objectives) and problem-

specific models of human behavior to translate cognitive limitations into problem

components that we can incorporate when computing solutions. We hope this disser-

tation inspires continued work in this interesting and useful direction.

144



REFERENCES

[1] Abel, D., W. Dabney, A. Harutyunyan, M. K. Ho, M. Littman, D. Precup
and S. Singh, “On the expressivity of markov reward”, Advances in Neural
Information Processing Systems 34, 7799–7812 (2021).

[2] Abrahamsson, P., O. Salo, J. Ronkainen and J. Warsta, “Agile software develop-
ment methods: Review and analysis”, arXiv preprint arXiv:1709.08439 (2017).

[3] Abras, C., D. Maloney-Krichmar, J. Preece et al., “User-centered design”, Bain-
bridge, W. Encyclopedia of Human-Computer Interaction. Thousand Oaks:
Sage Publications 37, 4, 445–456 (2004).

[4] Acemoglu, D. and P. Restrepo, “Artificial intelligence, automation, and work”,
in “The economics of artificial intelligence: An agenda”, pp. 197–236 (University
of Chicago Press, 2018).

[5] Ai-Chang, M., J. Bresina, L. Charest, A. Chase, J.-J. Hsu, A. Jonsson, B. Kanef-
sky, P. Morris, K. Rajan, J. Yglesias, B. Chafin, W. Dias and P. Maldague,
“MAPGEN: Mixed-initiative planning and scheduling for the Mars Exploration
Rover mission”, IEEE Intelligent Systems 19, 1, 8–12 (2004).

[6] Althoff, D., D. Wollherr and M. Buss, “Safety assessment of trajectories for nav-
igation in uncertain and dynamic environments”, in “2011 IEEE International
Conference on Robotics and Automation”, pp. 5407–5412 (IEEE, 2011).

[7] AmericanAcademyOfPediatrics, “The apgar score.”, Advances in neonatal care:
official journal of the National Association of Neonatal Nurses 6, 4, 220 (2006).

[8] Armstrong, S. and S. Mindermann, “Occam’s razor is insufficient to infer the
preferences of irrational agents”, Advances in Neural Information Processing
Systems 31 (2018).

[9] Arnold, T. and M. Scheutz, “The tactile ethics of soft robotics: Designing wisely
for human–robot interaction”, Soft robotics 4, 2, 81–87 (2017).

[10] Ashton, K. et al., “That ‘internet of things’ thing”, RFID journal 22, 7, 97–114
(2009).

[11] Bainbridge, L., “Ironies of automation”, in “Analysis, design and evaluation of
man–machine systems”, pp. 129–135 (Elsevier, 1983).

[12] Boucherie, R. J. and N. M. Van Dijk, Markov decision processes in practice,
vol. 248 (Springer, 2017).

[13] Broz, F., I. Nourbakhsh and R. Simmons, “Planning for human–robot interac-
tion in socially situated tasks”, International Journal of Social Robotics 5, 2,
193–214 (2013).

145



[14] Brusco, M. J., S. Stahl et al., Branch-and-bound applications in combinatorial
data analysis, vol. 2 (Springer, 2005).

[15] Bryce, D., P. Bonasso, K. Adil, S. Bell and D. Kortenkamp, “In-situ domain
modeling with fact routes”, in “Proceedings of the Workshop on User Interfaces
and Scheduling and Planning, UISP”, pp. 15–22 (2017).

[16] Cai, H., V. W. Zheng and K. Chang, “A comprehensive survey of graph embed-
ding: problems, techniques and applications”, IEEE Transactions on Knowledge
and Data Engineering (2018).

[17] Casanova, G., C. Pralet, C. Lesire and T. Vidal, “Solving dynamic controlla-
bility problem of multi-agent plans with uncertainty using mixed integer linear
programming.”, (2016).

[18] Casey, B. M., D. D. McIntire and K. J. Leveno, “The continuing value of the
apgar score for the assessment of newborn infants”, New England Journal of
Medicine 344, 7, 467–471 (2001).

[19] Chakraborti, T., K. P. Fadnis, K. Talamadupula, M. Dholakia, B. Srivastava,
J. O. Kephart and R. K. Bellamy, “Visualizations for an explainable planning
agent”, arXiv preprint arXiv:1709.04517 (2017).

[20] Chakraborti, T., S. Sreedharan, Y. Zhang and S. Kambhampati, “Plan expla-
nations as model reconciliation: Moving beyond explanation as soliloquy”, in
“26th International Joint Conference on Artificial Intelligence, IJCAI 2017”, pp.
156–163 (International Joint Conferences on Artificial Intelligence, 2017).

[21] Chen, C., O. Li, D. Tao, A. Barnett, C. Rudin and J. K. Su, “This looks like
that: deep learning for interpretable image recognition”, Advances in neural
information processing systems 32 (2019).

[22] Chen, C., Y. Liu, S. Kreiss and A. Alahi, “Crowd-robot interaction: Crowd-
aware robot navigation with attention-based deep reinforcement learning”, in
“2019 International Conference on Robotics and Automation (ICRA)”, pp.
6015–6022 (IEEE, 2019).

[23] Chen, Y., C. Liu, B. E. Shi and M. Liu, “Robot navigation in crowds by
graph convolutional networks with attention learned from human gaze”, IEEE
Robotics and Automation Letters 5, 2, 2754–2761 (2020).

[24] Chitnis, R. H., H. Esfandiari, M. Hajiaghayi, R. Khandekar, G. Kortsarz and
S. Seddighin, “A tight algorithm for strongly connected steiner subgraph on two
terminals with demands”, in “International Symposium on Parameterized and
Exact Computation”, pp. 159–171 (Springer, 2014).

[25] Cimatti, A., A. Micheli and M. Roveri, “Dynamic controllability of disjunc-
tive temporal networks: Validation and synthesis of executable strategies”, in
“Thirtieth AAAI Conference on Artificial Intelligence”, (2016).

146



[26] Clement, B. J., J. Barreiro, M. J. Iatauro, R. L. Knight and J. D. Frank, “Spatial
planning for international space station crew operations”, in “Proceedings of the
International Symposium on Artificial Intelligence, Robotics and Automation
in Space”, (Citeseer, 2010).

[27] Coulom, R., “Efficient selectivity and backup operators in monte-carlo tree
search”, in “International conference on computers and games”, pp. 72–83
(Springer, 2006).

[28] Crowston, K., “Amazon mechanical turk: A research tool for organizations and
information systems scholars”, in “Shaping the future of ict research. methods
and approaches”, pp. 210–221 (Springer, 2012).

[29] Dragan, A. and S. Srinivasa, “Generating legible motion”, (2013).

[30] Dragan, A. D., Legible robot motion planning, Ph.D. thesis, Carnegie Mellon
University (2015).

[31] Du, M., N. Liu and X. Hu, “Techniques for interpretable machine learning”,
Communications of the ACM 63, 1, 68–77 (2019).

[32] Endsley, M. R., “From here to autonomy: lessons learned from human–
automation research”, Human factors 59, 1, 5–27 (2017).

[33] Evans, O., A. Stuhlmüller and N. Goodman, “Learning the preferences of igno-
rant, inconsistent agents”, in “Thirtieth AAAI Conference on Artificial Intelli-
gence”, (2016).

[34] Fazlollahtabar, H. and M. Saidi-Mehrabad, Autonomous guided vehicles, vol. 20
(Springer, 2015).

[35] Feldman, J. and M. Ruhl, “The directed steiner network problem is tractable for
a constant number of terminals”, SIAM Journal on Computing 36, 2, 543–561
(2006).

[36] Fikes, R. E. and N. J. Nilsson, “Strips: A new approach to the application
of theorem proving to problem solving”, Artificial intelligence 2, 3-4, 189–208
(1971).

[37] Fruchterman, T. M. and E. M. Reingold, “Graph drawing by force-directed
placement”, Software: Practice and experience 21, 11, 1129–1164 (1991).

[38] Gao, M., L. Popowski and J. Boerkoel, “Dynamic control of probabilistic sim-
ple temporal networks”, in “Proceedings of the AAAI Conference on Artificial
Intelligence”, vol. 34, pp. 9851–9858 (2020).

[39] Gopalakrishnan, S. and S. Kambhampati, “Tge-viz: Transition graph em-
bedding for visualization of plan traces and domains”, arXiv preprint
arXiv:1811.09900 URL https://arxiv.org/pdf/1811.09900.pdf (2018).

147

https://arxiv.org/pdf/1811.09900.pdf


[40] Gopalakrishnan, S. and S. Kambhampati, “Minimizing robot navigation-graph
for position-based predictability by humans”, arXiv preprint arXiv:2010.15255
URL https://arxiv.org/pdf/2010.15255.pdf (2020).

[41] Gopalakrishnan, S., V. Mudit and S. Kambhampati, “Synthesizing policies that
account for human execution errors caused by state aliasing in markov decision
processes”, ICAPS 2021 Workshop on Explainable AI Planning URL https:
//openreview.net/pdf?id=aqRrDbKxOel (2021).

[42] Gopalakrishnan, S., V. Mudit and S. Kambhampati, “Computing policies that
account for the effects of human agent uncertaintyduring execution in markov
decision processes”, arXiv preprint arXiv:2109.07436 URL https://arxiv.
org/pdf/2109.07436.pdf (2022).

[43] Griffiths, T. L., F. Lieder and N. D. Goodman, “Rational use of cognitive re-
sources: Levels of analysis between the computational and the algorithmic”,
Topics in cognitive science 7, 2, 217–229 (2015).

[44] Habibi, F., F. Barzinpour and S. Sadjadi, “Resource-constrained project
scheduling problem: review of past and recent developments”, Journal of project
management 3, 2, 55–88 (2018).

[45] Hagberg, A. A., D. A. Schult and P. J. Swart, “Exploring network structure,
dynamics, and function using networkx”, in “Proceedings of the 7th Python in
Science Conference”, edited by G. Varoquaux, T. Vaught and J. Millman, pp.
11 – 15 (Pasadena, CA USA, 2008).

[46] Haslum, P., N. Lipovetzky, D. Magazzeni and C. Muise, “An introduction to
the planning domain definition language”, Synthesis Lectures on Artificial In-
telligence and Machine Learning 13, 2, 1–187 (2019).

[47] Hathaliya, J. J. and S. Tanwar, “An exhaustive survey on security and privacy
issues in healthcare 4.0”, Computer Communications 153, 311–335 (2020).

[48] Helmert, M., “The Fast Downward planning system”, JAIR 26, 191–246 (2006).

[49] Hernández, J. M. and P. Van Mieghem, “Classification of graph metrics”, Delft
University of Technology, Tech. Rep pp. 1–8 (2011).

[50] Hiroi, Y. and A. Ito, “Are bigger robots scary?—the relationship between robot
size and psychological threat—”, in “2008 IEEE/ASME International Confer-
ence on Advanced Intelligent Mechatronics”, pp. 546–551 (IEEE, 2008).

[51] Hollnagel, E., “Cognitive ergonomics: it’s all in the mind”, Ergonomics 40, 10,
1170–1182 (1997).

[52] Hsu, H. and P. A. Lachenbruch, “Paired t test”, Wiley StatsRef: statistics
reference online (2014).

[53] Hu, Q. and W. Yue, Markov decision processes with their applications, vol. 14
(Springer Science & Business Media, 2007).

148

https://arxiv.org/pdf/2010.15255.pdf
https://openreview.net/pdf?id=aqRrDbKxOel
https://openreview.net/pdf?id=aqRrDbKxOel
https://arxiv.org/pdf/2109.07436.pdf
https://arxiv.org/pdf/2109.07436.pdf


[54] Ibe, O., Markov processes for stochastic modeling (Newnes, 2013).

[55] Kahneman, D., S. P. Slovic, P. Slovic and A. Tversky, Judgment under uncer-
tainty: Heuristics and biases (Cambridge university press, 1982).

[56] Kistan, T., A. Gardi and R. Sabatini, “Machine learning and cognitive er-
gonomics in air traffic management: Recent developments and considerations
for certification”, Aerospace 5, 4, 103 (2018).

[57] Knight, H., “Expressive motion for low degree-of-freedom robots”, (2016).

[58] Kocsis, L. and C. Szepesvari, “Bandit-based monte-carlo planning”, in “Proceed-
ings of ECML’06”, (2006).

[59] Kretzschmar, H., M. Spies, C. Sprunk and W. Burgard, “Socially compliant
mobile robot navigation via inverse reinforcement learning”, The International
Journal of Robotics Research 35, 11, 1289–1307 (2016).

[60] Kruse, T., A. Kirsch, E. A. Sisbot and R. Alami, “Exploiting human coopera-
tion in human-centered robot navigation”, in “19th International Symposium in
Robot and Human Interactive Communication”, pp. 192–197 (IEEE, 2010).

[61] Kruse, T., A. K. Pandey, R. Alami and A. Kirsch, “Human-aware robot naviga-
tion: A survey”, Robotics and Autonomous Systems 61, 12, 1726–1743 (2013).

[62] Kulkarni, A., S. Sreedharan, S. Keren, T. Chakraborti, D. E. Smith and
S. Kambhampati, “Design for interpretability”, in “ICAPS Workshop on Ex-
plainable AI Planning (XAIP)”, (2019).

[63] Kumar, A. and S. Zilberstein, “History-based controller design and optimization
for partially observable mdps”, in “Proceedings of the International Conference
on Automated Planning and Scheduling”, vol. 25 (2015).

[64] Kwon, M., E. Biyik, A. Talati, K. Bhasin, D. P. Losey and D. Sadigh, “When
humans aren’t optimal: Robots that collaborate with risk-aware humans”, in
“2020 15th ACM/IEEE International Conference on Human-Robot Interaction
(HRI)”, pp. 43–52 (IEEE, 2020).

[65] Lage, I., D. Lifschitz, F. Doshi-Velez and O. Amir, “Exploring computational
user models for agent policy summarization”, arXiv preprint arXiv:1905.13271
(2019).

[66] Lasi, H., P. Fettke, H.-G. Kemper, T. Feld and M. Hoffmann, “Industry 4.0”,
Business & information systems engineering 6, 4, 239–242 (2014).

[67] Lee, C. and C. Lim, “From technological development to social advance: A
review of industry 4.0 through machine learning”, Technological Forecast-
ing and Social Change 167, 120653, URL https://www.sciencedirect.com/
science/article/pii/S0040162521000858 (2021).

149

https://www.sciencedirect.com/science/article/pii/S0040162521000858
https://www.sciencedirect.com/science/article/pii/S0040162521000858


[68] Lin, R., S. Kraus, J. Wilkenfeld and J. Barry, “Negotiating with bounded ra-
tional agents in environments with incomplete information using an automated
agent”, Artificial Intelligence 172, 6-7, 823–851 (2008).

[69] Littman, M. L., “Memoryless policies: Theoretical limitations and practical
results”, From animals to animats 3, 238–245 (1994).

[70] Liu, B., M. Ding, S. Shaham, W. Rahayu, F. Farokhi and Z. Lin, “When ma-
chine learning meets privacy: A survey and outlook”, ACM Computing Surveys
(CSUR) 54, 2, 1–36 (2021).

[71] Magnaguagno, M. C., R. F. Pereira, M. D. Móre and F. Meneguzzi, “Web
planner: A tool to develop classical planning domains and visualize heuristic
state-space search”, in “Proceedings of the Workshop on User Interfaces and
Scheduling and Planning, UISP”, pp. 32–38 (2017).

[72] McDonald, J. D., L. A. DeChurch, R. Asencio, D. R. Carter, J. R. Mesmer-
Magnus and N. S. Contractor, “Team task switching: A conceptual framework
for understanding functional work shifts”, in “Proceedings of the Human Fac-
tors and Ergonomics Society Annual Meeting”, vol. 59, pp. 1157–1161 (SAGE
Publications Sage CA: Los Angeles, CA, 2015).

[73] Meuleau, N., K.-E. Kim, L. P. Kaelbling and A. R. Cassandra, “Solving pomdps
by searching the space of finite policies”, arXiv preprint arXiv:1301.6720 (2013).

[74] Monsell, S., “Task switching”, Trends in cognitive sciences 7, 3, 134–140 (2003).

[75] Morris, P., N. Muscettola, T. Vidal et al., “Dynamic control of plans with
temporal uncertainty”, in “IJCAI”, vol. 1, pp. 494–502 (2001).

[76] Moukrim, A., A. Quilliot and H. Toussaint, “An effective branch-and-price algo-
rithm for the preemptive resource constrained project scheduling problem based
on minimal interval order enumeration”, European Journal of Operational Re-
search 244, 2, 360–368 (2015).

[77] Müller, J., C. Stachniss, K. O. Arras and W. Burgard, “Socially inspired motion
planning for mobile robots in populated environments”, in “Proc. of Interna-
tional Conference on Cognitive Systems”, (2008).

[78] Nikolaidis, S., A. Kuznetsov, D. Hsu and S. Srinivasa, “Formalizing human-
robot mutual adaptation: A bounded memory model”, in “2016 11th
ACM/IEEE International Conference on Human-Robot Interaction (HRI)”, pp.
75–82 (IEEE, 2016).

[79] Nikolaidis, S., Y. X. Zhu, D. Hsu and S. Srinivasa, “Human-robot mutual adap-
tation in shared autonomy”, in “2017 12th ACM/IEEE International Conference
on Human-Robot Interaction (HRI”, pp. 294–302 (IEEE, 2017).

150



[80] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot and E. Duchesnay, “Scikit-learn: Ma-
chine learning in Python”, Journal of Machine Learning Research 12, 2825–2830
(2011).

[81] Ramakrishnan, R., E. Kamar, D. Dey, E. Horvitz and J. Shah, “Blind spot
detection for safe sim-to-real transfer”, Journal of Artificial Intelligence Research
67, 191–234 (2020).

[82] Ramakrishnan, R., E. Kamar, B. Nushi, D. Dey, J. Shah and E. Horvitz, “Over-
coming blind spots in the real world: Leveraging complementary abilities for
joint execution”, in “Proceedings of the AAAI Conference on Artificial Intelli-
gence”, vol. 33, pp. 6137–6145 (2019).

[83] Ramakrishnan, R., V. Unhelkar, E. Kamar and J. Shah, “A bayesian approach
to identifying representational errors”, arXiv preprint arXiv:2103.15171 (2021).

[84] Rao, S. K., P. Sadayappan, F. K. Hwang and P. W. Shor, “The rectilinear
steiner arborescence problem”, Algorithmica 7, 1, 277–288 (1992).

[85] robotics, C., “One way automated guided vehicle”,
http://www.agvrobotor.com/sale-10982400-one-way-automated-guided-
vehicle-hospital-smart-cart-agv-with-magnetic-drive-sensor.html, accessed:
2020-10-06 (2021).

[86] Rousseeuw, P. J. and M. Hubert, “Robust statistics for outlier detection”, Wiley
interdisciplinary reviews: Data mining and knowledge discovery 1, 1, 73–79
(2011).

[87] Russell, S. and P. Norvig, “Artificial intelligence: A modern approach, global
edition 4th”, Foundations 19, 23 (2021).

[88] Saint-Guillain, M., T. S. Vaquero and S. A. Chien, “Lila: Optimal dispatch-
ing in probabilistic temporal networks using monte carlo tree search”, in “31st
International Conference on Automated Planning and Scheduling”, p. 38 (2021).

[89] Shah, J. A., J. Stedl, B. C. Williams and P. Robertson, “A fast incremental
algorithm for maintaining dispatchability of partially controllable plans.”, in
“ICAPS”, pp. 296–303 (2007).

[90] Sharma, M., H. Elmiligi and F. Gebali, “Performance evaluation of real-time
systems”, International Journal of Computing and Digital Systems 4, 01 (2015).

[91] Shi, W. and C. Su, “The rectilinear steiner arborescence problem is np-
complete.”, in “SODA”, pp. 780–787 (Citeseer, 2000).

[92] Shinners, P., “Pygame”, http://pygame.org/ (2011).

[93] Simon, H. A., “Bounded rationality”, in “Utility and probability”, pp. 15–18
(Springer, 1990).

151

http://pygame.org/


[94] Staal, M. A., “Stress, cognition, and human performance: A literature review
and conceptual framework”, (2004).

[95] Stankovic, J. A. and R. Rajkumar, “Real-time operating systems”, Real-Time
Systems 28, 2-3, 237–253 (2004).

[96] Sund, D., “Comparison of visualization algorithms for graphs and implementa-
tion of visualization algorithm for multi-touch table using javafx”, (2016).

[97] Trautman, P. and A. Krause, “Unfreezing the robot: Navigation in dense, in-
teracting crowds”, in “2010 IEEE/RSJ International Conference on Intelligent
Robots and Systems”, pp. 797–803 (IEEE, 2010).

[98] Trautman, P., J. Ma, R. M. Murray and A. Krause, “Robot navigation in dense
human crowds: Statistical models and experimental studies of human–robot
cooperation”, The International Journal of Robotics Research 34, 3, 335–356
(2015).

[99] Ustun, B. and C. Rudin, “Supersparse linear integer models for optimized med-
ical scoring systems”, Machine Learning 102, 3, 349–391 (2016).

[100] Vasquez, D., B. Okal and K. O. Arras, “Inverse reinforcement learning algo-
rithms and features for robot navigation in crowds: an experimental compar-
ison”, in “2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems”, pp. 1341–1346 (IEEE, 2014).

[101] Vicente, K. J., “Ecological interface design: A research overview”, Analysis,
Design and Evaluation of Man–Machine Systems 1995 pp. 623–628 (1995).

[102] Vicente, K. J. and J. Rasmussen, “Ecological interface design: Theoretical foun-
dations”, IEEE Transactions on systems, man, and cybernetics 22, 4, 589–606
(1992).

[103] Vidal, T. and M. Ghallab, “Dealing with uncertain durations in temporal con-
straint networks dedicated to planning” ’, in “ECAI”, pp. 48–54 (PITMAN,
1996).

[104] Virtanen, P., R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cour-
napeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt,
M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones,
R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. Van-
derPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero,
C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt
and SciPy 1.0 Contributors, “SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python”, Nature Methods 17, 261–272 (2020).

[105] Watel, D., M.-A. Weisser, C. Bentz and D. Barth, “Directed steiner tree with
branching constraint”, in “International Computing and Combinatorics Confer-
ence”, pp. 263–275 (Springer, 2014).

152



[106] White, D. J., “A survey of applications of markov decision processes”, Journal
of the operational research society 44, 11, 1073–1096 (1993).

[107] Whitehead, S. D. and L.-J. Lin, “Reinforcement learning of non-markov decision
processes”, Artificial Intelligence 73, 1-2, 271–306 (1995).

[108] Whittlestone, J., R. Nyrup, A. Alexandrova, K. Dihal and S. Cave, “Ethical and
societal implications of algorithms, data, and artificial intelligence: a roadmap
for research”, London: Nuffield Foundation (2019).

[109] Wickens, C. D., A. Santamaria and A. Sebok, “A computational model of task
overload management and task switching”, in “Proceedings of the human factors
and ergonomics society annual meeting”, vol. 57, pp. 763–767 (SAGE Publica-
tions Sage CA: Los Angeles, CA, 2013).

[110] Woods, D. D., “Coping with complexity: the psychology of human behaviour in
complex systems”, in “Tasks, errors, and mental models”, pp. 128–148 (1988).

[111] Zeng, J., B. Ustun and C. Rudin, “Interpretable classification models for recidi-
vism prediction”, Journal of the Royal Statistical Society: Series A (Statistics
in Society) 180, 3, 689–722 (2017).

[112] Zhi-Xuan, T., J. Mann, T. Silver, J. Tenenbaum and V. Mansinghka, “Online
bayesian goal inference for boundedly rational planning agents”, Advances in
Neural Information Processing Systems 33, 19238–19250 (2020).

[113] Zhu, J., X. Li andW. Shen, “Effective genetic algorithm for resource-constrained
project scheduling with limited preemptions”, International Journal of Machine
Learning and Cybernetics 2, 2, 55–65 (2011).

[114] Zhu, X., J. Lafferty and Z. Ghahramani, “Combining active learning and semi-
supervised learning using gaussian fields and harmonic functions”, in “ICML
2003 workshop on the continuum from labeled to unlabeled data in machine
learning and data mining”, vol. 3 (2003).

153


	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	MODELING HUMAN COGNITIVE LIMITATIONS FOR SDM
	MOTION PLANNING IN HUMAN-ROBOT SHARED SPACES
	Motivation
	Related Work
	Problem Formulation
	Measures for Position-based Predictability

	Methodology
	Computational Complexity

	Experiments
	Results and Analysis
	Human-subject Experiments
	Summary

	TRADING OFF VALUE FOR REDUCED POLICY COMPLEXITY
	Motivation
	 Related Work
	Problem Definition
	 Delay Effect From Policy Confusion
	Policy Computation Algorithm for SAMDP
	Computing Reidentification Action Likelihoods
	Translating to the Equivalent MRP
	GVPI Search Process
	Trading Value for Reduced Complexity
	Obtaining the Classification Likelihood Matrix

	Experiments and Results
	Warehouse Worker Domain Setup
	Gridworld Experimental Setup
	Results
	Human Studies

	Summary

	ACCOUNTING FOR BEHAVIORAL RESPONSE TO UNCERTAINTY IN MDP
	Motivation
	Problem Definition and Human Model Used
	Human Model
	POMDP With Human Execution Under Uncertainty

	Computing Human Model Parameters
	Policy Computation for POMDP-HUE
	Human Agent Policy Iteration(HAPI)
	HUE Branch And Bound Policy Search (H-B&B)
	Upperbound for Partial Policy Completions
	Upperbound as Applied In H-B&B

	Experiments and Results
	 Gridworld Experimental Setup
	Gridworld Results
	Warehouse Worker Experimental Setup
	Warehouse Worker Results

	Human Subject Experiments
	Related Work
	Summary and Extensions

	CO-PLANNING IN FACTORED STATE SPACES
	Motivation
	Related Work
	Background
	Problem Formulation 
	Embedding a Planning Domain 
	TGE-viz Graph Embedding Algorithm

	Experiments and Results
	Results and Analysis for Graph Embeddings
	Mixed Initiative User Interface With TGE-viz

	Summary and Extensions

	TEAM TASK ASSIGNMENT
	Motivation
	Related Work
	Problem Formulation
	Solving APT Problems
	Simulator
	Search Algorithms

	Experiments
	Results
	Summary

	CONCLUSION
	Summary of Research
	Recommendations for Computing Human Friendly Solutions
	Avenues for Future Research


	REFERENCES


