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ABSTRACT

As intelligent agents become pervasive in our lives, they are expected to not

only achieve tasks alone but also engage in tasks with humans in the loop. In such

cases, the human naturally forms an understanding of the agent, which affects his

perception of the agent’s behavior. However, such an understanding inevitably deviates

from the ground truth due to reasons such as the human’s lack of understanding of

the domain or misunderstanding of the agent’s capabilities. Such differences would

result in an unmatched expectation of the agent’s behavior with the agent’s optimal

behavior, thereby biasing the human’s assessment of the agent’s performance. In this

dissertation, I focus on when these differences are due to a biased belief about domain

dynamics. I especially investigate the impact of such a biased belief on the agent’s

decision-making process in two different problem settings from a learning perspective.

In the first setting, the agent is tasked to accomplish a task alone but must infer

the human’s objectives from the human’s feedback on the agent’s behavior in the

environment. In such a case, the human biased feedback could mislead the agent to

learn a reward function that results in a sub-optimal and, potentially, undesired policy.

In the second setting, the agent must accomplish a task with a human observer. Given

that the agent’s optimal behavior may not match the human’s expectation due to

the biased belief, the agent’s optimal behavior may be viewed as inexplicable, leading

to degraded performance and loss of trust. Consequently, this dissertation proposes

approaches that (1) endow the agent with the ability to be aware of the human’s biased

belief while inferring the human’s objectives, thereby (2) neutralize the impact of the

model differences in a reinforcement learning framework, and (3) behave explicably

by reconciling the human’s expectation and optimality during decision-making.
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Chapter 1

INTRODUCTION

1.1 Problem Statement

Intelligent agents are quickly becoming parts of our daily lives in a variety of

domains, including smart home, autonomous driving, entertainment, education and

so on. In such domains, the agents are expected to perform in human inhabited

environments and even collaborate closely with them, rather than accomplishing tasks

alone. Similar as in a human-human team, the human always has a belief about

her agent teammate’s domain dynamics, together with her objectives by which an

expectation of the agent’s behavior is generated and it would influence the human’s

evaluation of the agent’s task performance in a human-agent team. However, the

human belief is inevitably biased (i.e., deviates from the ground truth domain dynamics

as model differences), as shown in Figure 1, due to several factors, such as asymmetry

in knowledge of the world, misunderstanding of the agent’s capability, and human’s

bounded rationality. Such biased belief would potentially bring about an expectation

that largely deviates from the agent’s optimal policy and result in a wrong evaluation

of the agent’s behavior. For a human-in-the-loop learning task, the human may provide

the agent with ratings, preferences, demonstrations, critiques and so on, from which

the agent learns human rewards and optimizes policy. Moreover, the biases could come

from human rewards, belief about the dynamics or computations in decision-making.

In this dissertation, we would assume the human is noisily rational and investigate

the impacts of model differences within the domain dynamics. We mainly focus

1



Figure 1. Human biased belief about the agent’s domain dynamics in a human-agent
team.

on three learning tasks, reward learning with biased belief about domain dynamics,

preference-based reinforcement learning under biased belief, and policy optimization

under human expectation subject to the biased belief about domain dynamics.

First of all, for a human-in-the-loop learning task, the agent is tasked to learn a

reward function by soliciting human’s feedback on its own behavior. In a human-agent

team, the ability of the agent to understand the human’s intent and preferences

becomes a determinant for achieving effective human-agent teaming. Reinforcement

learning agents usually learn by interacting with the environment and optimizing its

behavior with respect to the received reward signals which is predefined by the system

designer. However, manually designing a reward function that correctly conveys

what the human really wants is challenging, especially in complex domains and tasks.

Instead of relying on expensive and vulnerable reward engineering, the methods of

learning a reward function using human data has been studied extensively before. Some

researchers (Ng and Russell 2000) formulated this problem as an Inverse Reinforcement

Learning (IRL) problem (Russell 1998). The reward function is recovered from optimal

policies or behaviors demonstrated by human experts. Such expert demonstrations,

2



however, are often difficult to obtain in real-world tasks. To address this problem,

learning methods based on non-expert user feedback of the agent’s behavior, such as

ratings and preferences, (Daniel et al. 2014; Dorsa Sadigh, Sastry, and Seshia 2017;

Cui and Niekum 2018; Lee, Smith, and Abbeel 2021; Christiano et al. 2017; Wirth

and Fürnkranz 2013c; Busa-Fekete et al. 2014) are developed and attracting more

attentions. The intelligent agent demonstrates selected rollouts to the human to solicit

human’s feedback on them, from which the agent learns to optimize its policy that is

consistent with the human’s feedback.

A prevalent approach introduced in existing work is that we model the human

feedback generation process with a surrogate reward function. This surrogate reward

function is learned from the observed human feedback in a supervised learning

framework. The agent then optimizes its policy by maximizing the discounted sum

of this learned surrogate reward function. But, does this surrogate reward function

accurately describe the human’s objectives? Consider a teacher teaches something to

a student. Even with an identical objectives, different belief about the student would

make the teacher have different expectation on the student and teach in different

ways. Similarly, in a human-agent team, the agent learn the task objectives from

the human’s feedback on its behaviors. The human usually provide feedback that

contains information of a policy the human want the agent to follow (i.e., expectation

of the agent’s behavior). As we interpret that such expectation is determined by

the human’s true objectives and her belief about the domain dynamics, the learned

surrogate reward function actually consist of information of both of them, and it

cannot properly convey the objectives solely, especially when the belief about the

domain dynamics is different from the ground truth, as shown in Figure 2.

A common assumption made implicitly in these prior works is that the human
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Figure 2. The surrogate reward function learned from the human feedback contains
information of objectives together with the human belief about domain dynamics. It
doesn’t accurately describe the objectives solely and it is a “biased” version of the
objectives subject to the human belief about domain dynamics.

always maintains a correct belief of the agent’s domain dynamics, and the belief

impact is overlooked in the learning process. This, however, may not be the case in

many scenarios especially with non-expert users (Kahneman 2011; Herman et al. 2016;

Reddy, Dragan, and Levine 2018; Gong and Zhang 2020). Having a biased belief about

the dynamics could lead to biased (not just noisy) feedback for the agent’s behavior,

resulting in an inaccurate estimation of the human’s reward function, sub-optimal

behavior, and potentially undesired behavior to the humans.

Consider a mobile robot that is tasked to deliver packages on campus. Even though

the robot is fully water-proof, when it is raining, a human user (due to the biased

belief that the robot may be damaged in rain) may still prefer the robot to navigate

under covered areas. In such cases, the robot may be misled to learn that navigating

through covered areas generates more reward and choose to navigate through those

areas even when it is sunny outside, leading to sub-optimal behaviors. To address

such issues, the learning agents must remove the restrictive assumption that humans

have a correct belief about the agent’s dynamics, and take into consideration the

human biased belief while learning a surrogate reward function. Thereby, the agent
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is more like to recover the human’s objectives and learn a policy with near-optimal

performance.

Other than reward and policy learning under human biased belief about the domain

dynamics, another problem setting where the human biases would impact the agent’s

decision-making is the need to behave explicably (i.e., being easily understood by

the human and match the human’s expectation) in a human-agent team. Consider a

human is working with a coworker. It would be beneficial to the team if her behavior

is explicable, especially not surprises or confuses her coworker. Similarly, when the

agent accomplishes a task along with a human, choosing its optimal behavior without

considering the human observer or collaborator could be seen as inexplicable. Such

behaviors would increase the human cognitive load, undermine the human’s trust

of the agents and hurt the teaming performance to some extent. (Gunning 2017;

Chakraborti, Kambhampati, et al. 2017; Zhang et al. 2016, 2017).

Consider an automated factory where a robotic agent is assisting a human co-worker

to fetch various parts in an assembly task. The human would maintain expectations

of the robot in terms of the objects the robot could handle. When the human has a

biased belief about the agent’s domain dynamics, the model difference would result in

the agent’s behaviors does not match the human’s expectation. For example, when

the human underestimates the robot’s capability of handling high-value but delicate

objects, she may intentionally choose to fetch an object by herself that would be

more efficient for the robot, or try to stop the robot midway. If the robot still insists

in fetching the delicate objects following its own optimal policy. Such inexplicable

behavior would make the human lower her trust on it and consequently hurt the team

performance. Therefore, to be a good team player, the agent is required to respect

human expectation of its behaviors while accomplishing the tasks.
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Learning the hidden expectations requires support from humans. Existing work

on IRL (Ng and Russell 2000; Abbeel and Ng 2004; Ramachandran and Amir 2007;

Ziebart et al. 2008; Ziebart, Bagnell, and Dey 2010) can be used to learn the human

expectation using observed expert demonstrations, and reward learning methods

(Daniel et al. 2014; Sadigh et al. 2017; Erdem et al. 2020) performs learning tasks

from human feedback to learn the expectation. However, as we discussed above, they

all implicitly assume that the human maintains an accurate understanding of the

agent’s domain dynamics and interprets any deviations from optimality as noise.

While noise introduces variations, bias determines the average of errors (Kahneman

2011). The misalignment between the human’s expectation and an agent’s chosen

behaviors can be attributed to the human’s biased belief about the domain dynamics.

Similar to prior work, we assume that the human generates her expectation of the

agent based on the belief about the dynamics and her objectives. Human biased belief

can significantly impact her decisions and judgments. Hence, overlooking human belief

in the agent’s learning process could result in the agent’s behaviors diverging from the

human’s expectations, while overweighting them could result in the agent deviating

from its design purposes. Thus, addressing human biases is a fundamental problem of

reconciliation.

A good team player is required to respect the others’ expectations when appropriate,

potentially at the cost of losing its own optimality. The challenge in developing such an

ability for an intelligent agent lies in learning about the human’s hidden expectations

and planning to trade off optimality for meeting those expectations. Similar problems

have been studied in classical planning (Zhang et al. 2017; Kulkarni et al. 2019;

Chakraborti, Sreedharan, et al. 2017) but can hardly scale. Moreover, it remains

unexplored in stochastic domains with continuous state and action spaces. Generally,
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the agent is required to behave in an expected way and simultaneously be aware of

the biased belief so as to trade off optimality with human preferences appropriately.

Motivated by such scenarios, we emphasize the necessity of taking the human biased

belief into account while policy learning in order to obtain efficiency as well as

explicable behaviors.

1.2 Related Work

1.2.1 Learning from Human Feedback

Researchers have formulated the problem of inferring the human’s intent and

preferences as an IRL problem (Russell 1998) where the goal is to recover the human’s

preferences as a reward function. IRL is often solved using various optimization

techniques with expert demonstrations as the input (Ng and Russell 2000; Abbeel

and Ng 2004; Ziebart et al. 2008; Boularias, Kober, and Peters 2011; Ramachandran

and Amir 2007). However, expert demonstrations (with or without noise) are often

difficult to obtain in real-world tasks. More recently, researchers start focusing on

learning with non-expert feedback on the queries of the intelligent agent’s behaviors,

often in the forms of ratings (Daniel et al. 2014), comparisons (Dorsa Sadigh, Sastry,

and Seshia 2017), or critiques (Cui and Niekum 2018; Zhang and Dragan 2019).

Furthermore, Preference-based Reinforcement Learning (PbRL) has been successful

in various tasks (Wirth and Fürnkranz 2013c). The preferences can be used to learn a

policy directly via estimating a distribution of parametric policy space (Wilson, Fern,

and Tadepalli 2012), or to compare and rank policies (Busa-Fekete et al. 2013, 2014).

Moreover, a preference model can be learned, then it is used to get a ranking for actions
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given a state, then derive a policy (Hüllermeier et al. 2008; Wirth and Fürnkranz

2013a, 2013b). However, these approaches suffer from feedback efficiency issues such

that it needs many human preference data to achieve near-optimal policy. Another

line of PbRL is to learn a surrogate reward function which can be used to optimize the

policy. Christiano et al.(Christiano et al. 2017) models the reward function using deep

neural networks which scale it to much complex tasks. PEBBLE (Lee, Smith, and

Abbeel 2021) is proposed recently to improve the sample- and feedback- efficiency by

unsupervised pretraining and off policy learning with reward relabeling. These prior

work, however, rely on an implicit assumption that the non-expert user maintains

a correct understanding of the agent’s domain dynamics. When the user is biased,

especially under non-expert settings, it may lead the agent to learning a wrong reward

function and result in undesired behavior.

1.2.2 Model Asymmetry and Reconciliation in A Human-Agent Team

Researchers have been investigating the model differences between human and

agent in the form of domain dynamics (Zhang et al. 2017; Chakraborti, Kambhampati,

et al. 2017; Chakraborti et al. 2019; Reddy, Dragan, and Levine 2018; Gong and

Zhang 2020). Formulated in the form of classical planning setting, Chakraborti et al.

(Chakraborti, Sreedharan, et al. 2017; Kulkarni et al. 2019) leverage the differences

between the domain models to generate explanations to the human. But, in these

work, the human belief model is assumed to be given a prior which is impractical for

the real world problems. Reddy et al. (Reddy, Dragan, and Levine 2018) manages to

learn the human belief model in the presence of reward function using inverse soft
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Q-learning method. Then the learned belief model is used to assist human decision

making.

The problem of generating communicative actions or behaviors has been well

studied as a subarea in explainable AI, where explicable planning is a representative

method (Zhang et al. 2017; Kulkarni et al. 2019; Gong and Zhang 2018; Zakershahrak

et al. 2018). The key characterization of explicable planning method revolves around

the idea of model reconciliation where an agent makes decisions based on two models

instead of one (Chakraborti, Sreedharan, et al. 2017; Chakraborti, Kambhampati,

et al. 2017; Chakraborti et al. 2019). Zhang et al. (Zhang et al. 2017) formulated the

problem as a learning and planning problem, where the human’s expectation of the

agent’s behavior is learned through a labeling process, which captures the human’s

belief about the agent’s dynamics. A metric for explicability is defined based on the

learned labeling schema and then used to regularize the planning process to synthesize

explicable plans. Kulkarni et al. (Kulkarni et al. 2019) considered it directly as

a distance learning problem (Chakraborti, Sreedharan, et al. 2017) and generated

explicable plans by minimizing an explicability distance between plans from the two

models. A strong assumption was made that the human’s model was provided a

priori. These prior methods addressed the problem in a classical planning setting (e.g.,

PDDL) under deterministic domains, which is not suitable for stochastic environments

with continuous state and action spaces. Furthermore, they considered the biased

belief about dynamics only.
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1.3 Dissertation Outline

The rest of the dissertation starts with a study in Chapter 2 on reward learning

under human biased belief about the domain dynamics (Gong and Zhang 2020). We

introduce an approach that estimates the human reward function while taking into

account the human’s belief about the agent’s dynamics in the learning process. It

demonstrates that the proposed methods can successfully recover the true reward

function while a wrong reward functions are learned with baseline methods which

have no concern about the human biased belief. It then followed by a work that aims

to neutralize the effects of biased belief in preference-based reinforcement learning

(Gong and Zhang 2022b) in Chapter 3. We focus on learning the agent policy from

human feedback and we propose to learn a reward function and belief model together

from the human feedback. We demonstrate that even if we may not learn a perfect

reward function, we would find a reward function that describes what the human

really wants the agent to behave and obtains improved performance in terms of

trajectories returns on ground truth reward function, while the prior PbRL method

shows poor performance. In Chapter 4, we will introduce the problem of explicable

policy search (Gong and Zhang 2022a) and propose a solution that learns a surrogate

reward function that encodes the information of the human’s reward and belief about

dynamics, and it can be easily integrated into policy optimization process to generate

explicable and efficient behaviors. Finally, the dissertation is concluded in Chapter 5

with discussions on future work.
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Chapter 2

GENERALIZED REWARD LEARNING WITH BIASED BELIEFS ABOUT

DOMAIN DYNAMICS

2.1 Introduction

With the rapid advancement in AI and robotics, intelligent agents begin to play

an important role in our lives in many different areas. Intelligent agent will soon

be expected to not only achieve tasks alone, but also engage in tasks that require

close collaboration with their human teammates. In such situations, the ability of the

agent to understand the human’s intent and preferences becomes a determinant for

achieving effective human-agent teaming. The problem of inferring human’s intent

and preferences has been studied extensively before. Some researchers (Ng and Russell

2000) formulated this problem as an Inverse Reinforcement Learning (IRL) problem

(Russell 1998). The reward function is recovered from optimal policies or behaviors

demonstrated by human experts. Such expert demonstrations, however, are often

difficult to obtain in real-world tasks. To address this problem, learning methods based

on non-expert user ratings of the agent’s behaviors (Daniel et al. 2014; Dorsa Sadigh,

Sastry, and Seshia 2017; Cui and Niekum 2018) are developed. A common assumption

made implicitly in all these prior works is that the human always maintains a correct

understanding of the agent’s domain dynamics. This, however, may not be the case

in many scenarios especially with non-expert users. Having a biased belief about the

agent could lead to biased (not just noisy) ratings for the agent’s behaviors, resulting

in an inaccurate estimation of the human’s reward function.
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Consider a robot vacuum cleaner that is tasked to clean the floors in a house.

Suppose that the robot vacuum is designed to clean most floor types except for

hardwood since it is too slippery for the robot to grasp onto (so it may be stuck in

a room with a hardwood floor once entered). Consider a user who is asked to rate

the robot’s behaviors. Given a set of trajectories of the robot cleaner (with most of

the areas covered except for the living room with a hardwood floor), the robot may

get low ratings even though it should have received high ratings had the user known

about the robot’s capabilities (which are expressed in terms of domain dynamics). On

the other hand, the robot may receive high ratings (even though it should not have)

when it stays (stuck) in the living room but somehow manages to clean it (albeit

much less efficiently), if the user had the belief that the robot was designed to clean

only one room at a time.

In this work, we remove the restrictive assumption that humans have a correct

belief about the agent’s domain dynamics. Our goal is to recover the true reward

function under biased beliefs. We refer to this problem as Generalized Reward Learning

(GRL) and propose a method called Generalized Reward Learning with biased beliefs

about domain dynamics (GeReL) that infers the latent variables governing both the

reward function and human’s belief together in a Bayesian setting based on human

ratings of the agent’s behaviors. Due to the complex forms of the posteriors, the

problem is formulated in a variational inference framework (Jordan et al. 1999; Bishop

2006). The variational posterior distribution of the latent variables for estimating

the true posterior is optimized using a black-box optimization method (Ranganath,

Gerrish, and Blei 2014). To reduce the variance of Monte Carlo estimates of the

variational gradients, we factorize the updating rules according to the independence

of the latent variables and apply control variate to make the optimization converge
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faster. By inferring the reward function and the human’s belief about the agent

simultaneously in this way, our learning method is able to recover the true human

preferences while at the same time maintain an estimate of the human’s biased belief.

As such, our method addresses a key limitation of the existing methods and hence

has broad impacts on improving the applicability and safety of robotic systems that

work closely with humans.

To evaluate our method, we perform experiments in a simulated navigation domain

and with a user study in the Coffee Robot domain (Boutilier, Dearden, and Goldszmidt

2000; Sigaud and Buffet 2013) where biases are introduced by varying the robot’s

appearances. We compare GeReL with a variant of Simultaneous Estimation of

Rewards and Dynamics (SERD) (Herman et al. 2016), Maximum Entropy IRL

(MaxEnt-IRL) (Ziebart et al. 2008), and another baseline approach that uses our

inference method but maintains the same assumption as in MaxEnt-IRL (that the

human’s understanding of the agent is correct). In the latter two methods, the true

domain dynamics is used and held fixed during learning. Results show that GeReL

can better recover the true reward function under such biased beliefs when compared

to these other methods. Furthermore, when biases are present, the learned preferences

could be completely opposite to the ground truth, suggesting that such a method is

indeed valuable for addressing biases in robotic applications.

2.2 Our Approach

The workflow of GeReL is presented in Figure 3. The intelligent agent will

first randomly generate a set of demonstrations for querying the human for ratings.

Then, the ratings of the demonstrations will be used to infer both the human’s reward
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Figure 3. Workflow of GeReL. Using the robot’s true transition model, the robot
randomly generates a set of demonstrations which are evaluated by the human. The
human is assumed to provide his rating for each instance according to the reward
function and his belief about the robot’s domain dynamics. The ratings will be used
to update the estimated reward function and human’s understanding of the robot.
Gray circles denote the latent variables while the observed are in white.

function and his belief. The system terminates when it meets the convergence criterion.

Similar to prior work on reward learning, we assume that the human is to always

maximize the rewards (Ng and Russell 2000; Abbeel and Ng 2004), so that his ratings

can be estimated given the reward function and his belief of the domain dynamics.

2.2.1 Problem Formulation

More specifically, given an agent’s demonstration ζ, we assume that the human

would rate it according to two factors, the reward function RH and his belief about

the agent’s domain dynamics T hR. When the human’s belief is different from the true

agent’s domain dynamics, the rating may be biased and could then lead to a wrong

14



interpretation of the human’s preference. This setting introduces the Generalized

Reward Learning (GRL) problem as follows:

Given:

• Agent’s demonstrations Z;
• Human’s ratings ΓH for each instance in Z.

To determine:

• Human’s true reward function RH ;
• Human’s belief T hR about agent’s domain dynamics.

To solve this problem, we formulate the environment as a Markov Decision Processes

(MDP). An MDP is defined by a tuple (S,A,R, T, λ) where S is a finite set of states,

A is a finite set of actions, and R : S 7→ R is the reward function that maps each state

to a utility value. T : S × A× S 7→ [0, 1] is the transition function that specifies the

probability of transitioning to the next state when you take an action in the current

state. λ is the discount factor that determines how the agent favors current rewards

over future rewards.

Similar to prior work on reward learning (Ng and Russell 2000; Abbeel and Ng

2004), we formulate the reward function RH for a state s as follows:

RH(s) = w · Φ(s)

where Φ = [ϕ0, ϕ1, . . . , ϕk]
T denotes a set of predefined features for states and w =

[w0, w1, . . . , wk]
T denotes a set of weights for the features. The agent’s domain

dynamics (i.e., the true domain dynamics) is captured by a transition function and

assumed to be given. Likewise, the human’s belief about the agent’s domain dynamics

is modeled also as a transition function T hR, which is hidden. T hR is assumed to follow

a set of probability distributions Θ = [θ1,θ2, . . . ,θ|S|×|A|] where θi = p(s′|s, a) is a

distribution for a fixed s and a. These distributions capture the human’s prior belief

about the agent.
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To rate a agent’s behavior ζ, we assume that the human will first generate his

expectation of the agent’s behavior as an optimal policy generated using his reward

function RH and belief about the agent T hR. Then the behavior of the agent is compared

with the optimal policy to generate a rating γH . Hence, our learning task in this work

becomes to learn the weights w and transition probability distributions Θ.

2.2.2 Methodology

The inference problem above is often solved by optimizing the posterior probability

with respect to the latent variables. However, due to the complex forms of the

posteriors, we formulate the problem in a variational inference framework (Jordan

et al. 1999; Bishop 2006). Our goal is to approximate the posterior distribution

p(w,Θ|ΓH ,Z), where ΓH ,Z are the observations and w, Θ the latent variables.

We assume that w follows a multivariate Gaussian distribution N (µ,Σ). For

simplicity, we assume that Σ is given a priori. For Θ, we need to select a prior for

each θi as a probability distribution. We assume that each θi follows a Dirichlet

distribution Dir(αi), which encodes a distribution over distributions. Let A =

[α1,α2, . . . ,α|S|×|A|], and thereby, µ and A are the parameters we need to learn. As

a result, our variational posterior distribution becomes q(w,Θ|µ,A), which is the

posterior of the latent variables that correspond to the reward function and human’s

belief about the agent’s domain dynamics governed by µ and A. It thus transforms

the problem of inferring RH and T hR into a problem of finding µ and A to make

q(w,Θ|µ,A) to be close to p(w,Θ|ΓH ,Z).

As a variational inference problem, we optimize the Evidence Lower BOund
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(ELBO):

L(q) = Eq(w,Θ) [log p(ΓH ,Z,w,Θ)− log q(w,Θ)]

where p(ΓH ,Z,w,Θ) is the joint probability of the observations ΓH ,Z and latent

variables w,Θ. In order to make it computable in our task, we apply black-box

variational inference (Ranganath, Gerrish, and Blei 2014) to maximize ELBO via

stochastic optimization:

⟨µ,A⟩ = ⟨µ,A⟩+ ρ · ∇⟨µ,A⟩L(q)

where the learning rate ρ follows the Robbins-Monro rules (Robbins and Monro 1951).

We compute the gradient of ELBO with respect to the free parameters µ and A and

∇⟨µ,A⟩L(q) is derived as follows:

∇⟨µ,A⟩L(q) = Eq(w,Θ)[∇⟨µ,A⟩ log q(w,Θ|µ,A)

· (log p(ΓH ,Z,w,Θ)− log q(w,Θ|µ,A))] (2.1)

From Equation (2.1), we can see that the gradient of ELBO is the expec-

tation of the multiplication of the score function (Hinkley and Cox 1979)

(i.e., ∇⟨µ,A⟩ log q(w,Θ|µ,A)) and instantaneous ELBO (i.e., log p(ΓH ,Z,w,Θ) −

log q(w,Θ|µ,A)) with respect to our variational posterior distribution. The detailed

derivation of ∇⟨µ,A⟩L(q) is presented in (Ranganath, Gerrish, and Blei 2014).

The form of ∇⟨µ,A⟩L(q) is not directly computable. Given that µ and A are

independent parameters in our setting, we compute ∇µL(q) and ∇AL(q) respectively

and update them separately:

µ = µ+ ρµ · ∇µL(q)

A = A+ ρA · ∇AL(q)
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This also allows us to apply the mean-field assumption that gives the following

factorization:

q(w,Θ|µ,A) = q(w|µ) · q(Θ|A)

Then we can rewrite the gradient of ELBO as follows:

∇⟨µ,A⟩L(q) = Eq(w)Eq(Θ)

[
∇⟨µ,A⟩(log q(w|µ) + log q(Θ|A))

· (log p(ΓH ,Z,w,Θ)− log q(w|µ)− log q(Θ|A))]

Take q(w|µ) as an example, following the derivations in (Ranganath, Gerrish, and

Blei 2014), the gradient of ELBO with respect to µ becomes:

∇µL(q) = Eq(w)

[
∇µ(log q(w|µ)) · Eq(Θ) [log p(ΓH ,Z,w,Θ)− log q(w|µ)− log q(Θ|A)]

]
Note that the first term Eq(w) [∇µ (log q(w|µ)] = 0 (Ranganath, Gerrish, and Blei

2014). Hence the last term in the instantaneous ELBO can be considered as a constant

with respect to q(w) and canceled out. ∇µL(q) then becomes:

∇µL(q) = Eq(w)

[
∇µ(log q(w|µ)) · (Eq(Θ) [log p(ΓH ,Z,w,Θ)]− log q(w|µ))

]
(2.2)

Different from (Ranganath, Gerrish, and Blei 2014), in our problem, the expectation

of the log joint probability log p(ΓH ,Z,w,Θ) cannot be canceled out since w and Θ

happen to be in the Markov blanket of each other. Based on the relationship among

these variables as shown in Figure 3, the log probability can be factorized as follows:

log p(ΓH ,Z,w,Θ) = log p(ΓH |Z,w,Θ) + log p(w) + log p(Θ) + log p(Z) (2.3)

Putting Equation (2.3) back into Equation (2.2), we obtain:

∇µL(q) = Eq(w) [∇µ(log q(w|µ))

· (Eq(Θ) [log p(ΓH |Z,w,Θ)] + log p(w)− log q(w|µ))] (2.4)
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where the expectation of the terms log p(Θ) and log p(Z) with respect to q(Θ) are

constants and can be canceled out since Eq(w)[∇µ(log q(w|µ)] = 0. Now we have

obtained the gradient of ELBO with respect to the latent variable µ as presented in

Equation (2.4). Similarly, the gradient of ELBO with respect to each αi ∈ A is as

follows:

∇αi
L(q) = Eq(θi)

[
∇αi

(log q(θi|αi)) · (Eq(w) [log p(ΓH |Z,w,Θ)] + log p(θi)− log q(θi|αi))
]

Both p(w) and p(θi) are priors, which are assumed to follow a multivariate Gaussian

distribution and a Dirichlet distribution respectively.

In the equations above, log p(ΓH |Z,w,Θ) =
∑

log p(γH |ζ,w,Θ) since the demon-

strations and ratings are conditionally independent from each other. p(γH |ζ,w,Θ)

indicates how likely the human would give a rating γH for the demonstration ζ given

the parameters for the reward function and human’s belief about the agent. We

assume a Gaussian distribution N (γH |γ̃H ,ΣγH ) where γ̃H is the estimated mean of

the human’s ratings given w and Θ, and ΣγH is assumed to be given to simplify the

discussion. As discussed earlier, the estimated mean rating of a demonstration is

assumed to depend on two factors, the reward function and the human’s belief about

the agent’s domain dynamics. They together determine the human’s expectation of the

agent’s behavior, which corresponds to the optimal policy for the agent in the human’s

mind. In this work, we assume that the rating is proportional to the geometric mean

of the human’s softmax policy applied to the demonstration. Moreover, we define

γmax to be a constant that represents the highest rating that may be given. Following

our discussion, the estimated human’s rating can be computed for a demonstration

ζ = {(s1, a1), (s2, a2) . . . (sn, an)} as:

γ̃H = γmax ·

(
n∏
i=1

π̃(ai|si)

) 1
n
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where n is the length of the demonstration, and π̃ is the estimated human’s softmax

policy computed using w and Θ.

Variance Reduction: The computation of ∇µL(q) and ∇αi
L(q) above cannot

be performed directly due to the intractability of computing the expectations. Hence,

we approximate the gradients using sampling methods (Hastings 1970). With Monte

Carlo samples, the gradients are estimated as follows:

∇̂µL(q) ≜
1

S

S∑
s=1

[∇µ (log q(ws|µ)) · (log p(ΓH |Z,ws,Θs) + log p(ws)− log q(ws|µ))]

where S is the number of samples, and ws ∼ q(w), Θs ∼ q(Θ).

These estimated gradients, however, may have a large variance which could hinder

the convergence of our approach. Therefore, it is necessary to reduce the variance.

(Ross 2002) introduced control variate that represents a family of functions with

equivalent expectations. With control variate, we can instead compute the expectation

of an alternative function which has a smaller variance. Let f be the function to be

approximated, function f̂ is defined as:

f̂ = f − a · (g − E[g])

where g serves as an auxiliary function that has a finite first moment. f̂ can be

proven to have smaller variances with an equivalent expectation, where the factor

a is computed to minimize the variance (Ranganath, Gerrish, and Blei 2014) as

a = cov(f,g)
var(g)

. In this work, we select the expectation of the score function (i.e.,

Eq(w) [∇µ (log q(w|µ))] and Eq(Θ) [∇αi
(log q(Θ|αi))]) to be g.

We present GeReL in Algorithm 1. Given the agent’s demonstrations and the

corresponding ratings, we leverage the human’s ratings to update the parameters µ

and A of our variational posteriors q(w) and q(Θ) via stochastic optimization. The

gradients of the ELBO with respect to µ and A are approximated using Monte Carlo
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Algorithm 1 Generalized Reward Learning with Biased Belief about Domain Dy-
namics (GeReL)
Input: the agent’s demonstrations Z, human’s ratings ΓH , variational posteriors
q(w) and q(Θ), MaxIter
Output: µ and A
1: Initialize: free parameters µ and A for q(w) and q(Θ)
2: Let t = 1.
3: while t < MaxIter or convergence not met do
4: Draw S samples from q(w) and q(Θ)
5: for s = 1 to n do
6: π̃ ← the human’s expected policy for the agent
7: Γ̃H ← estimated human’s ratings for Z given π̃
8: Compute fµ, gµ, fαi

, and gαi

9: end for
10: Compute aµ and aαi

11: Approximate ∇̂µL ≜ 1
S

∑S
s=1[fµ − aµgµ] and ∇̂αi

L ≜ 1
S

∑S
s=1[fαi

− aαi
gαi

]

12: Compute learning rates ρµ and ραi
with ∇̂µL, ∇̂αi

L

13: Update µ = µ+ ρµ∇̂µL and αi = αi + ραi
∇̂αi

L
14: end while
15: return µ and A

sampling. Furthermore, we take advantage of control variate to reduce the variance

of the gradient estimates. Lastly, the parameters, µ and A, are updated in each

iteration with an adapted learning rate based on AdaGrad (Duchi, Hazan, and Singer

2011). GeReL terminates when the convergence criterion is met.

2.3 Evaluation

To evaluate our approach, we conduct two sets of experiments in a simulated

grid-world navigation domain and a Coffee Robot domain (Boutilier, Dearden, and

Goldszmidt 2000; Sigaud and Buffet 2013) with a user study. The simulation will be

focusing on validating our learning method under biased beliefs. The user study will

serve two purposes, showing that 1) human users are easily biased in our problem
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setting; 2) our algorithm learns the correct human preferences under such biases, while

prior methods that ignore such biases would fail.

2.3.1 Simulated Navigation Domain

In the first experiment, we test the performance of GeReL in a grid-world navigation

domain which contains 7× 7 = 49 states. We set one reward state (i.e., location) that

has a large positive weight (i.e. 5) and one penalty location with a large negative

weight (i.e., -5). They are randomly located at corners of the grid-world. The agent

starts at a random state and its goal is to maximize the rewards. There are four

actions, {1 (Up), 2 (Down), 3 (Left), 4 (Right)}, which can transfer the agent from

the current state to another state.

To test our algorithm, we simulate two types of biased human beliefs about the

agent’s domain dynamics. 1) Reversed Up & Down : the human believes that action

1 would take the agent down and action 2 would move it up instead. 2) Rotated

Belief : human believes that the action 1 would move the agent left, the action 2 would

move it right, the action 3 would move it up and the action 4 would move it down.

The human’s reward function for each state is defined as a weighted summation of

an inverse distance metric to the reward and penalty states (i.e., the closer it is to

the state, the more influence that state has on its reward). The demonstrations are

randomly generated via the agent’s true dynamic model. The human’s ratings are

simulated using the true human reward function and biased belief about the agent’s

domain dynamics following a Gaussian distribution.

We compare GeReL with two baseline methods that assume that the human

maintains the correct belief about the agent’s domain dynamics, namely MaxEnt-IRL
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Figure 4. Rewards learned by different approaches.

(Ziebart et al. 2008) and GeReL−, with the latter basically uses GeReL without

updating the domain dynamics. In both baseline methods, the true agent’s domain

dynamics is used during learning. In addition, a variant of the Simultaneous Estimation

of Rewards and Dynamics (SERD) algorithm (Herman et al. 2016) implemented that

learns both the reward function and dynamics based on ratings (the original method

does not apply to our problem setting) is used in the comparison, which relies on soft

value iteration that requires the value functions to assume certain shapes to perform

well. To obtain demonstrations for MaxEnt-IRL, we generate them based on the

softmax policy of the human. All of the four methods are provided with the same

amount of demonstrations. All the results are averaged over multiple runs.

Figure 5, 6, 7 show the results for the Reversed Up & Down setting. The result

shows that GeReL can successfully recover the human’s reward function and belief

about the agent’s domain dynamics while GeReL− and MaxEnt-IRL converge in

the completely opposite direction since they do not consider that the human’s belief

could be biased. On the other hand, SERD converges in the right direction, but the

learned values are farther from the ground truth than GeReL in all cases. This is

due to the smoothing effect of soft value iteration. In addition, we compute the KL

divergence of the softmax policy generated by the estimated reward function and
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Figure 5. Comparison of the performance in terms of reward learning among GeReL,
SERD, GeReL−, MaxEnt-IRL with the prior also shown.

human’s belief with that of the ground truth to examine how well we can estimate

the human’s expectation of the agent’s behaviors. Similar trends are observed among

all the methods.

The comparison of the rewards learned by these four methods with the ground

truth is presented in Figure 4. Both GeReL and SERD converge to the correct pattern

of rewards in terms of their relative magnitudes. SERD shows less sensitivity to the

magnitudes since soft Bellman equation would lead to an entropy augmented reward

function (Haarnoja et al. 2017). The adverse effect of learning from biased ratings is

clear from the figure for GeReL− and MaxEnt-IRL, which both fail to recover the true

preferences. The results for both settings are presented in Table 1, which show similar

performances in between the two settings. It confirms that GeReL can effectively

estimate the human’s reward function under biased beliefs.
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Figure 6. Comparison of the performance in terms of belief learning among GeReL,
SERD, GeReL−, MaxEnt-IRL with the prior also shown.

Figure 7. Comparison of the performance in terms of expectation recovery among
GeReL, SERD, GeReL−, MaxEnt-IRL with the prior also shown.
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d(R) d(Θ) d(π) d(R) d(Θ) d(π)

Reversed Up & Down Rotated Belief
GeReL 12.17 0.06 0.11 12.61 0.08 0.23
SERD 16.43 0.38 0.47 17.62 0.57 0.63

GeReL− 26.72 0.56 1.46 23.96 0.91 1.43
MaxEnt-IRL 23.32 0.56 1.68 28.02 0.91 1.55

Table 1. Comparison of GeReL, SERD, GeReL−, and MaxEnt-IRL for the two settings
in our simulation with respect to the L2 distance between the estimated values and
the ground truth. The third column (i.e., d(π)) shows the KL divergence between
the estimated human’s expectation of the agent’s softmax policy and that under the
ground truth.

2.3.2 User Study with the Coffee Robot Domain

Besides the experiments in a simulated domain, we also conduct a user study.

Through the study, we hope to demonstrate that humans can be easily biased in our

problem setting, which may lead to biased ratings that could have led to a wrong

interpretation of the human preference. In such cases, we will show that GeReL

can accurately identify the situation. We apply the Coffee Robot domain (Boutilier,

Dearden, and Goldszmidt 2000; Sigaud and Buffet 2013) in this user study, which is

illustrated in Figure 8. This is a typical factored MDP domain described by 6 binary

features which represent whether it is raining, whether the robot has a coffee, etc.

The task of the robot is to buy a cup of coffee from a cafe and deliver it to a person

in his office. When it is raining, the robot could choose to either operate in the rain

or use an umbrella to stay dry. However, using an umbrella while holding the coffee

cup may cause the coffee to spill.

To create a situation where biases may be present, we design two experimental

settings with two different types of robots: a mobile robot and a humanoid, as seen in

Figure 8. We anticipate that the appearance would introduce human biases (Haring
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Figure 8. The Coffee Robot domain. The weather could be rainy or sunny, and the
robot may choose to use an umbrella or operate in the rain. We use two types of
robots (humanoid vs. mobile) to perform the same set of demonstrations that cover
the various situations that may occur.

et al. 2018) in terms of their capabilities of handling the task. To reduce the effects

that the human subject would improve their understanding over time, we generate

only 8 demonstrations for each robot that include various scenarios that may occur,

such as for a sunny or rainy day, for whether or not the robot takes the umbrella,

and for whether or not the robot spills the coffee. The ground truth for the domain

dynamics is set such that the humanoid is less likely to spill the coffee while using the

umbrella than the mobile robot.

We publish the experiments on Amazon Mechanical Turk (MTurk), as shown in

Figure 9, 10, 11. To remove invalid responses, we insert a sanity check demonstration

with random actions, which should have received the lowest rating. We recruited 20

participants for each setting. After removing those that failed the sanity check or

with very short response time (< 3 min), we obtained 12 valid responses for each

setting with ages ranging from 23 to 61 (the ratio of males to females is 2 : 1). Each
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Figure 9. The introduction of the tasks on MTurk. We present the appearance of one
of the two types of robots (humanoid) to the participants.

Figure 10. Questions for eliciting the paticipants’ belief and rewards of the domain
and task.
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Figure 11. One demonstration of the coffee robot is illustrated to the participants.
They need to rate it using the slider below.

participant is provided with instructions about the domain at the beginning. To avoid

the influence from viewing the demonstrations, immediately after the instructions, we

ask the participants two questions as follows:

• Q1: How much more likely do you feel that the robot may spill the coffee while using

an umbrella?

• Q2: How much do you care about the robot being wet?

The first question is designed to elicit the participant’s belief about the robot’s domain

dynamics while the second question is for the participant’s preference. Their feedback
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Question p-value Mobile Humanoid
(Q1) Domain Dynamics 0.047 2.92 3.58
(Q2) Weight Preference 0.027 2.83 3.67

Table 2. Averaged participants’ responses to the two questions for each setting before
viewing the demonstrations. They are asked in a 5-point Likert scale where 1 is the
lowest and 5 the highest.

for each setting is presented in Table 2. The participants of the mobile robot setting

believed that the robot would be less likely to spill the coffee while holding the umbrella

than the participants of the humanoid setting. Notice that this is in contrast to the

ground truth. Meanwhile, the participants expressed more concern about the robot

getting wet in the humanoid setting than the mobile robot setting.

After the questions, we asked the participants to rate the demonstrations. Accord-

ingly, we find that the ratings for the demonstrations where the robot operates in the

rain without an umbrella, or takes an umbrella in a sunny day to be rated low in the

humanoid setting. In contrast, in the mobile setting, fewer demonstrations received

low ratings. These results supported our assumption that the human are easily biased

when working with robots.

Next, we run our method under each setting to see whether our method can recover

from such biased beliefs. For comparison, we also run GeReL−, which performed

similarly to MaxEnt-IRL in our simulation task. We run each method for each

participant in both settings. The ratings are normalized to remove inconsistencies

across different participants. The results are presented in Figure 12. We observed

that the learned probability of spilling coffee while holding an umbrella by GeReL for

the humanoid robot setting is generally larger than the mobile robot setting. This

represents the estimated human understanding of the domain dynamics, which is

consistent with the participant’s feedback shown in Table 2. Furthermore, GeReL
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Figure 12. Feature weights learned by GeReL and GeReL−.

learned that the participants cared more about the robot getting wet in the humanoid

setting than the mobile robot setting, which is also consistent with the participant’s

true preference. In contrast, GeReL− discovered just the opposite!

2.4 Conclusion

In this work, we looked the Generalized Reward Learning (GRL) problem and

proposed a method called GeReL to address it. GeReL removes the assumption

that the human always maintains the true belief about the agent’s domain dynamics.

To develop the method, we formulated the GRL problem in a variational inference

framework to infer the parameters governing the reward function and the human’s

belief about the agent simultaneously. To reduce the effort for obtaining training

samples, we used the human’s ratings of agent demonstrations. We evaluated our

approach experimentally using a simulated domain and with a user study. The results

showed that GeReL outperformed prior approaches that could have misinterpreted

the human preferences when such biases are not considered. We showed that GeReL
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could recover the true human preferences effectively even under such a challenging

setting.

Once the biased domain dynamics is obtained, the next question is how to use

it. The simplest method of course is to inform the human about his biases and hope

that it would work. An alternative method that is often considered in the area of

human-aware planning is that the agent could, instead of always pursue optimal

behaviors, behave to match with the human’s expectation whenever feasible, so as

to behave in an explicable manner. In contrast to the multi-objective MDP problem

(Roijers et al. 2013; Chatterjee, Majumdar, and Henzinger 2006) which has more than

one reward function to optimize, in this problem, the agent maintains two transition

functions, one for its own dynamics and the other for the human’s belief of it. There

already exists work that looks at this problem (Zhang et al. 2017; Chakraborti,

Sreedharan, et al. 2017).

Like all reward learning problems, the solution is not unique. This is commonly

known as the non-identifiability issue. In general reward learning (GRL), an ad-

ditional complexity is the learning of the transition function, which unfortunately

only aggravates the issue. So far, we are not aware of any solutions to this problem

except for the ones that introduce inductive biases on the priors or the error functions,

such as Bayesian IRL (Ramachandran and Amir 2007) and apprenticeship learning

methods (Abbeel and Ng 2004). In this regard, our work also introduces an inductive

bias by assuming a form of the posterior as a multivariate Gaussian distribution.

In terms of simultaneously learning different factors, there exist prior results (Arm-

strong and Mindermann 2018) that argue against it and prove that it is impossible

to determine one without assuming some form of the other. However, we note that

the negative results apply only to the situation where one of the factors is the compu-
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tational process. Consider the function C(R,M) = Γ. When C is given, the choices

of r ∈ R and m ∈ M are connected to the corresponding value of γ ∈ Γ. However,

if only m is given, we may choose any r and then simply remap (choosing a c ∈ C)

(r,m)’s to their corresponding γ’s. This flexibility of the computational process is the

core reason of the negative results. However, the non-identifiability issue is still there.
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Chapter 3

NEUTRALIZING THE IMPACT OF BIASED BELIEF IN PREFERENCE-BASED

REINFORCEMENT LEARNING

3.1 Introduction

Reinforcement learning agents learn by interacting with the environment and

optimizing its behavior in terms of the received reward signals. Providing proper

reward signals is critical to the agent learning the right behavior. However, manually

designing a reward function that expresses what the human really want is challenging,

especially for complex domains and tasks. Instead of relying on expensive and

vulnerable reward engineering, Preference-based Reinforcement Learning (PbRL)

(Akrour, Schoenauer, and Sebag 2011; Wilson, Fern, and Tadepalli 2012; Busa-Fekete

et al. 2013, 2014; Wirth and Fürnkranz 2013c; Christiano et al. 2017; Lee, Smith,

and Abbeel 2021) replaces the requirement of hand-engineered reward functions with

human preferences between the agent’s behaviors, which are easier to solicit. Typically,

a surrogate reward function is learned to be consistent with the observed preference,

then leveraged to optimize the intelligent agent’s policy. The existing PbRL literature

generally builds on the insight that the human provides feedback depending on her

expectation (i.e., the policy the human thinks the agent should follow). Thus, the

introduced surrogate reward function actually describes the human expectation, rather

than the human reward function. The human expectation can be influenced by both

her reward function and belief about the domain dynamics. The approaches may

work in cases where the human belief doesn’t affect the human’s expectation and
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Figure 13. The human user observes the robot’s behavior and provides preferences
based on her own reward model and belief about the agent’s domain dynamics, which
may be different from the true dynamics. Our goal is to infer the reward function
while neutralize the impact of such bias, thereby obtain an optimal policy.

judgement much. In many scenarios, however, the human holds a biased belief about

the domain dynamics which could bring about biased feedback about the agent’s

behaviors. Thereby, it would mislead the reward learning, result in suboptimal and

degraded performance, even introduce unintended consequences. Thus it is improper

to directly use the learned surrogate reward function as the reward function, especially

in cases the human belief about the domain dynamics are biased.

Consider a mobile robot that is tasked to deliver packages on campus. When it has

to cross the street, the optimal behavior is to go through the pedestrian crossing. But,

a human user may have a biased belief about the agent’s capability (i.e., dynamics)

such that she thinks the agent are poorly capable of avoiding collision when there are

lots of people around. Thus, the human would prefer the agent going through the

pedestrian bridge where there are fewer people, but further away and would cost more

energy. According to the human preference, the agent may misunderstand what the

human really wants and infer that it will gain more rewards by going through the

pedestrian bridge. In such cases, the agent would learn a policy that chooses to use

the pedestrian bridge all the time, even it is adept in avoid obstacles and this policy
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is quite inefficient and will cost much more energy. To address issues like this, the

learning agents must have the capability to consider the human belief while learning

the reward function and neutralize the impact of the human’s biased belief about

domain dynamics in PbRL.

In this work, we assume the human is noisily rational at generating her expectations.

The human expectation are generally determined by the human rewards and belief

about the domain dynamics (Reddy, Dragan, and Levine 2018; Gong and Zhang

2020). Therefore, for the scenarios where the human’s belief is biased (i.e., deviation

from the true domain dynamics) which is very likely to happen in the real world

(Kahneman 2011; Herman et al. 2016; Reddy, Dragan, and Levine 2018; Gong and

Zhang 2020), the biased belief would lead to biased feedback that can misguide the

learning process, resulting in slow convergence, sub-optimal behaviors, and potentially

safety risks to humans. The problem setting is illustrated in Figure 13. In this work,

we formulate the problem as PbRL under human biased belief about domain dynamics

(PrefBias). Similar to prior work (Wirth and Fürnkranz 2013c; Christiano et al. 2017;

Lee, Smith, and Abbeel 2021), the agent aims to infer a surrogate reward function

from the human’s preference between pairs of segments of the agent’s behavior. What

distinguishes our work from the prior work is that our goal is to learn a reward

function with consideration of the human’s biased belief. The key challenge is that

we need to learn two models (i.e., reward and belief) instead of reward function

only. We model both the reward function and human’s belief using Bayesian neural

networks (BNN) in order to capture the uncertainty and take advantage of potential

informative priors. Given the human’s preferences, we assume the preferences are

generated in terms of both models following the Bradley-Terry framework (Bradley and

Terry 1952) and update the model parameters alternately via a variational Bayesian
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inference framework (Blundell et al. 2015; Kingma, Salimans, and Welling 2015). We

assume that the human’s belief about the dynamics can be treated as disturbed true

domain dynamics. An estimated dynamics model is learned by interacting with the

environment (Kurutach et al. 2018; Clavera et al. 2018; Wang et al. 2019) and serves

as the prior of the human’s belief. To get informative queries, we select queries that

are predicted most differently with respect to agent’s and human’s model. The agent’s

policy is optimized within a standard reinforcement learning framework with respect

to the learned reward function. Note that, the estimated human biased belief is not

used for policy learning, and it is utilized to assist in inferring the surrogate reward

function. The agent’s policy is determined by the learned reward function and true

domain dynamics.

The main contribution of this work lies in generalizing PbRL under biased human

belief, which is common in real-world tasks. We first validate our method on two

2D navigation domain in which the human’s preference is synthesized according

to manually introduced models with biases. It is then tested on a modified lunar

lander domain (Brockman et al. 2016) and two typical locomotion domain from

PyBullet (Coumans and Bai 2021), with synthesized human models as well. We

compare PrefBias with a state-of-the-art PbRL method, unsupervised PrEtraining

and preference-Based learning via relaBeLing Experience (PEBBLE) (Lee, Smith, and

Abbeel 2021) with synthetic human feedback. A state-of-the-art RL method, Soft

Actor Critic (SAC) (Haarnoja, Zhou, Abbeel, et al. 2018; Haarnoja, Zhou, Hartikainen,

et al. 2018) with the true reward function is applied to provide us oracle performance.

The results show that PrefBias outperforms PEBBLE and is comparable to SAC in

terms of trajectory returns. Our method successfully recovers the agent’s optimal
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policies while the human feedback is provided under biased belief. We also investigate

the influences of different priors and query sampling approaches.

3.2 Related Work

Preference-based Reinforcement Learning (PbRL) has been successfully applied

in various tasks (Wirth and Fürnkranz 2013c). The preferences can be used to learn

a policy directly via estimating a distribution of parametric policy space (Wilson,

Fern, and Tadepalli 2012), or to compare and rank policies (Busa-Fekete et al. 2013,

2014). Moreover, a preference model can be learned, then it is used to get a ranking

for actions given a state, then derive a policy (Hüllermeier et al. 2008; Wirth and

Fürnkranz 2013a, 2013b). However, these approaches suffer from feedback efficiency

issues such that it needs many human preference data to achieve near-optimal policy.

Another line of PbRL is to learn a surrogate reward function which can be used to

optimize the policy. Christiano et al. (Christiano et al. 2017) models the reward

function using deep neural networks which scale it to much complex tasks. PEBBLE

(Lee, Smith, and Abbeel 2021) is proposed recently to improve the sample and feedback

efficiency by unsupervised pretraining and off policy learning with reward relabeling.

The surrogate reward function, however, describes the human expectation, rather

than the reward function. We interpret the human expectation as determined by the

human reward function and her belief about the domain dynamics. While the belief

deviates from the true domain dynamics and impact the human feedback being biased,

especially under non-expert settings, it may lead the agent to learning a wrong reward

function and result in degraded performance, even undesired behavior.

Researchers have been investigating the model differences between human and
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agent in the form of domain dynamics (Zhang et al. 2017; Chakraborti, Kambhampati,

et al. 2017; Chakraborti et al. 2019; Reddy, Dragan, and Levine 2018; Gong and

Zhang 2020). Formulated in the form of classical planning setting, Chakraborti et al.

(Chakraborti, Sreedharan, et al. 2017; Kulkarni et al. 2019) leverage the differences

between the domain models to generate explanations to the human. But, in these

work, the human belief model is assumed to be given a prior which is impractical for

the real world problems. Reddy et al. (Reddy, Dragan, and Levine 2018) manages to

learn the human belief model in the presence of reward function using inverse soft

Q-learning method. Then the learned belief model is used to assist human decision

making. Furthermore, GeReL (Gong and Zhang 2020) uses a variational inference

method to infer both the reward function and human belief in simple discrete domains

by soliciting the human’s ratings of the agent’s behavior, which would be used to

generate the agent’s policy. Our work has a similar problem setting as in (Gong and

Zhang 2020), but uses human preferences between agent’s behavior, and focuses on

continuous domain. In our work, the reward and human belief are modeled using

BNNs such that it can scale to complex continuous control tasks. We aim to infer

the reward function from human feedback while consider the human belief about the

domain dynamics meanwhile.

3.3 Our Approach

3.3.1 Preliminaries

Reinforcement learning requires access to a reward function that incentive the

agent to learn right behavior. However, the reward function is difficult to specify,
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especially for complex domain and task. Without the hand-engineered reward function,

PbRL provides an alternative: the agent solicits a human teacher’s preference between

a pair of behaviors and learn a surrogate reward function that is consistent with the

observed feedback. The learned surrogate reward function is then be used to optimize

the agent’s policy.

3.3.1.0.1 Deep Reinforcement Learning from Human Preferences

Christiano et al. (Christiano et al. 2017) proposed a framework that models the

probability that the human prefers one behavior segment over another as proportional

to exponentiated sum of a surrogate reward function r̂, following the Bradley-Terry

framework (Bradley and Terry 1952) as in Equation (3.1).

p̂(τ1 ≻ τ2) =
exp

∑
r̂(s1t , a

1
t )

exp
∑
r̂(s1t , a

1
t ) + exp

∑
r̂(s2t , a

2
t )
, (3.1)

where τ is a sequence a states and actions {(s1, a1), . . . (st, st)}. τ1 ≻ τ2 indicates the

event that segment τ1 is preferable to segment τ2. The surrogate reward function r̂ is

learned by minimizing the cross entropy loss using the observed preference data. The

agent then optimize its policy to maximize the discounted sum of r̂ using existing RL

algorithms. Consider the surrogate reward function r̂ may be non-stationary since it

is updated during learning, Christiano et al. (Christiano et al. 2017) used on-policy

RL algorithm PPO for policy optimization.
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3.3.1.0.2 PEBBLE

In order to improve the sample and feedback efficiency, Lee et al. (Lee, Smith, and

Abbeel 2021) introduce a new PbRL framework PEBBLE that improves Christiano et

al. (Christiano et al. 2017) work from two main aspects:

• Unsupervised exploration: Before collecting human feedback, the agent is pre-

trained using intrinsic motivation (Oudeyer, Kaplan, and Hafner 2007; Schmid-

huber 2010) (i.e., the state entropy H(s) = −Es∼p(s)[log p(s)]) to learn how to

generate diverse behaviors. Thus, the agent’s behavior could have a better state

coverage and collect more informative human feedback.

• Off-policy RL with reward relabeling: PEBBLE proposed to use a state-of-

the-art off-policy RL algorithm SAC (Haarnoja, Zhou, Abbeel, et al. 2018;

Haarnoja, Zhou, Hartikainen, et al. 2018) to improve the sample-efficiency of

on-policy RL algorithm. Moreover, to overcome the non-stationary problem in

reward learning, PEBBLE relabels all the past experiences every time it gets

the updated surrogate reward function.

3.3.2 Problem Formulation

Existing PbRL methods endow the intelligent agent with the ability of learning

from human preferences that convey the information of the policy the human teacher

wants the agent to follow. Therefore, the observed preferences describes the human’s

expectation, rather than the reward function. We interpret the expectation as deter-

mined by both human’s reward function and her belief about the domain dynamics.

When the belief is biased (i.e., deviates from the true domain dynamics), the human
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teacher may provide preferences that mislead the agent to learn a wrong reward func-

tion. Thereby, optimizing such a reward function may result in degraded performance

and unintended behaviors. In this work, we remove the restrictive assumption that

the human always maintains a correct belief about domain dynamics and aim to learn

a reward function that captures what the human really wants while taking biased

human belief into consideration simultaneously. We formalize the problem as follows:

Given:

• Agent’s rollouts in the environment,
• Human’s preference data for pairs of behavior segments of the agent.

To determine:

• A surrogate reward function,
• Estimation of human’s belief about the domain dynamics,
• Agent’s policy that optimizes the surrogate reward function under

the true domain dynamics.

To solve the problem, we propose a method called PbRL under biased belief about

domain dynamics (PrefBias). The workflow of our approach is demonstrated in Figure

14. The human’s preference between a pair of behavior segments would be determined

not only by the cumulative rewards but also the occurrence probability of the agent’s

behavior with respect to the human belief. The surrogate reward function and belief

model are estimated alternately from the human’s preference data. Finally, the agent’s

policy is optimized in terms of the learned reward function.

3.3.3 Methodology

The environment is formulated as Markov Decision Processes (MDPs). MDPs is a

tuple, (S,A, f, r, γ, ρ), where S is a set of states of the environment, and A denotes a
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Figure 14. Workflow of our approach. Intelligent agent collects data by interacting
with environment. We then select a set of trajectory segments to solicit the human
preferences about the agent’s behaviors which will be used to learn a surrogate reward
function and human belief about domain dynamics. The agent’s policy is optimized
using the learned reward function.

set of actions. f : S × A 7→ S describes the domain dynamics, r : S × A 7→ R is a

reward function. Discount factor γ determines how the agent favors current rewards

over future rewards. ρ is a distribution over the initial state. In the following sections,

we will talk about three main components of our method: inference from human

preference; human preference modeling; and queries selection.

3.3.3.1 Inferring Reward function and Human Belief Simultaneously

We aim to learn a surrogate reward function while inferring the human belief

at the same time. We use r̂w(s, a) and f̂Hϕ (s, a), which are parameterized by w and

ϕ, to characterize the reward function and the human’s belief about the domain

dynamics, respectively. Given the observed human preference Dpref , our goal is to

infer the posterior distribution of the model parameters p(w, ϕ|Dpref). However, it

is intractable to learn the posterior directly since it requires the computation of the

integral of p(Dpref). We introduce a variational posterior q(w, ϕ; Ω) to approximate
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the true posterior distribution, where Ω is a set of parameters governing w and ϕ. In

this work, we assume both w and ϕ follow Gaussian distributions such that Ω consists

of means and standard deviations of w and ϕ, i.e., Ω = (µw, σw, µϕ, σϕ). To capture

the uncertainty in the model parameters, r̂w(s, a) and f̂Hϕ (s, a) are modeled using

two Bayesian Neural Networks (BNN). For r̂w(s, a), the output is a real value. For

f̂Hϕ (s, a), the network is two-headed as we assume each transition follows a Gaussian

distribution. It outputs the mean and standard deviation of the next state given s

and a instead of an exact estimation. Similar as in the work of Bayes By Backprop

(Blundell et al. 2015), we aim to learn a variational posterior distribution that is close

to the true posterior which is measured by the Kullback–Leibler (KL) divergence:

Ω∗ = argmin
Ω

DKL [q(w, ϕ; Ω)∥p(w, ϕ|Dpref )] .

The objective function can be written as:

F(Ω, Dpref ) = DKL [q(w, ϕ; Ω)∥p(w, ϕ|Dpref )]

= DKL [q(w, ϕ; Ω)∥p(w, ϕ)]− Eq(w,ϕ;Ω) [log p(Dpref |w, ϕ)] . (3.2)

We assume w and ϕ are independent from each other such that q(w, ϕ; Ω) =

q(w; Ωw)q(ϕ; Ωϕ) where Ωw = (µw, σw) and Ωϕ = (µϕ, σϕ). The Equation (3.2) then

becomes:

F(Ω, Dpref ) = Eq(w;Ωw)q(ϕ;Ωϕ) [log q(w; Ωw)q(ϕ; Ωϕ)− log p(w)p(ϕ)]

− Eq(w;Ωw)q(ϕ;Ωϕ) [log p(Dpref |w, ϕ)]

= Eq(w) [log q(w)− log p(w)]︸ ︷︷ ︸
DKL[q(w)∥p(w)]

+Eq(ϕ) [log q(ϕ)− log p(ϕ)]︸ ︷︷ ︸
DKL[q(ϕ)∥p(ϕ)]

−Eq(w)q(ϕ) [log p(Dpref |w, ϕ)]︸ ︷︷ ︸
log−likelihood

.

(3.3)

For brevity, we omit the parameters of the variational posteriors. In Equation (3.3), the

first two terms are KL divergence between the variational posterior distributions and
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the priors for w and ϕ respectively. The last term is the expectation of log-likelihood

of Dpref in terms of variational posteriors. In order to update the parameters of our

posterior distributions, we take the gradients for Ωw and Ωϕ separately:

∇ΩwF(Ω, Dpref )

= ∇ΩwEq(w;Ωw) [log q(w; Ωw)− log p(w)]−∇ΩwEq(w;Ωw)q(ϕ;Ωϕ) [log p(Dpref |w, ϕ)] ,

and similarly,

∇Ωϕ
F(Ω, Dpref )

= ∇Ωϕ
Eq(ϕ;Ωϕ) [log q(ϕ; Ωϕ)− log p(ϕ)]−∇Ωϕ

Eq(w;Ωw)q(ϕ;Ωϕ) [log p(Dpref |w, ϕ)] ,

where p(w) and p(ϕ) are the priors in the form of Gaussian distributions as well.

To overcome the problem of high variance in learning process, the trick of local

reparameterization (Kingma, Salimans, and Welling 2015) is applied.

Prior. We have no information about the reward function. Thus, the mean of p(w)

is initialized randomly using a uniform distribution. When informative knowledge

of the reward function is given, the prior can also be easily set to convey the expert

knowledge. For the belief about the domain dynamics, other than random initialization,

we explore an alternative prior. We assume that the human’s belief about the agent’s

dynamics can be treated as disturbances of the true dynamics. Hence, we set the

mean of p(ϕ) to be the parameters of an estimated true dynamics model during the

inference. Similarly, any other priors of human’s belief can also be utilized into the

learning paradigm by leveraging distinct domain knowledge.
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3.3.3.2 Human Preference Model

The log-likelihood of the human preference data can be rewritten as the summa-

tion of the log-likelihood of each instance d in the data set, i.e., log p(Dpref |w, ϕ) =∑
log p(d|w, ϕ). For p(d|w, ϕ), we attribute the human preference between two seg-

ments (i.e., τ1 and τ2) to the difference between the evaluation of each segment.

Following the Bradley-Terry model (Bradley and Terry 1952), the human preference

model is formulated using f̂Hϕ and r̂w as:

p̂(τ1 ≻ τ2|w, ϕ) =
p̂(τ1|w, ϕ)

p̂(τ1|w, ϕ) + p̂(τ2|w, ϕ)
, (3.4)

where p̂(τ) accounts for the probability of occurrence of the trajectory τ and is defined

in the form of probabilistic view of RL (Levine 2018) that consists of both f̂Hϕ and r̂w:

p̂(τ) ∝ ρ(s0)

(∏
t

f̂Hϕ (st+1|st, at)

)
exp

(∑
t

r̂w(st, at)

)
. (3.5)

The main differences between Equation (3.5) and the preference model proposed

in Equation (3.1) is that, rather than exp (
∑

t r̂w(st, at)) solely, we assume that the

human’s assessment of the agent’s behavior will also affected by her belief about the

agent’s dynamics f̂Hϕ . For reward learning, we fit the human data to the preference

model and optimize the cross entropy loss as in (Christiano et al. 2017):

loss(r̂) = −
∑

(τ1,τ2,µ)∈D

µ(1) log p̂[τ1 ≻ τ2] + µ(2) log p̂[τ2 ≻ τ1].

3.3.3.3 Queries Selection

During training, the agent collects transitions Ddyna by interacting with the

environment. The queries for soliciting human’s preferences is then selected from Ddyna.
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Algorithm 2 PbRL under biased belief about domain dynamics (PrefBias)

1: Initialize the robot’s policy πθ, robot dynamics f̂ψ(s, a), human’s belief about
dynamics f̂Hϕ (s, a), reward function r̂w(s, a) and empty sets Ddyna and Dpref .

2: repeat
3: Collect samples from environment f using πθ and add them to Ddyna.
4: Train f̂ψ(s, a) using Ddyna.
5: repeat
6: Actively select K pairs of segments from Ddyna to solicit human preferences

and add them to Dpref .
7: Infer f̂Hϕ (s, a) and r̂w(s, a) using human’s preference data Dpref with f̂ψ(s, a)

to be the prior of f̂Hϕ (s, a).
8: until present a predefined number of samples
9: Update πθ using SAC with r̂w(s, a).

10: until the policy performs well in real environment f

To mitigate the burden on the human, we should select queries that maximize the

information we can receive from the human’s feedback. In prior PbRL work (Christiano

et al. 2017; Lee, Smith, and Abbeel 2021), several query sampling approaches has been

explored, such as uniform sampling, disagreement-based sampling, and entropy-based

sampling:

• Uniform sampling: We pick K pairs of segments uniformly at random from the

transition buffer.

• Disagreement-based sampling: We first generate the initial batch of 3 × K

pairs of segments uniformly at random, measure the variance across ensemble of

preference predictors (Equation (3.4)), and then select the top K from them.

• Entropy-based sampling: Similarly as disagreement-based sampling, we first

generate the initial batch of 3 × K pairs of segments uniformly at random,

measure the entropy of a single preference predictor (Equation (3.4)), and then

select the top K pairs of segments with high entropy.
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In this work, we explore an additional method (i.e., preference disagreement-based

sampling) that relies on both agent’s model and human belief. To find queries that

better elicit the information of the human biased belief model, we consider the queries

that have most different preferences estimated using both the agent’s model and

learned human belief model during the training process,

q∗n = argmax
qn

DKL

[
p̂(qn; r̂w, f̂ψ)∥p̂(qn; r̂w, f̂Hϕ )

]
where r̂w is the surrogate reward function, f̂ψ in the estimated true dynamics model,

and f̂Hϕ is the learned human belief. p̂ is the probability that the human would prefer

one behavior segment over another. It is computed using Equation (3.4) with the

given models.

3.3.3.4 Algorithm Overview

The algorithm is presented in Algorithm 2. We define the agent’s policy as

πθ : S 7→ A which is parameterized by θ. The data is collected by interacting with the

environment using πθ. In order to investigate the performance of using true domain

dynamics as the prior of human belief model, we need to learn an estimated model

from the environment. The dynamics approximator is presented as a neural network

f̂ψ(st, at) which is parameterized by ψ. The dynamics model is learned by minimizing

L2 one-step prediction loss.

minψ
1

|Ddyna|
∑

(st,at,st+1)∈Ddyna

∥∥∥st+1 − f̂ψ(st, at)
∥∥∥2
2
,

where Ddyna = {(st, at, st+1), . . . } is the training data set that stores the agent tran-

sitions. We use Adam optimizer (Kingma and Ba 2014) to solve this supervised

learning problem. To avoid overfitting, several standard techniques are applied, such
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as using validation set for early stopping, and normalization for inputs and outputs

of the network (Clavera et al. 2018; Kurutach et al. 2018). To make it feasible that

f̂ψ(s, a) being the prior of f̂Hϕ (s, a), it has the same architecture of f̂Hϕ (s, a). Dpref

is used to learn the surrogate reward function r̂w(s, a) and human’s belief about the

domain dynamics f̂Hϕ (s, a). The agent then optimizes its policy in terms of r̂w(s, a)

and f̂ψ(s, a). For policy learning, a state-of-the-art RL method, Soft Actor Critic

(SAC) (Haarnoja, Zhou, Abbeel, et al. 2018; Haarnoja, Zhou, Hartikainen, et al. 2018)

is applied to learn the agent’s policy πθ. We tried both Proximal Policy Optimization

(PPO) (Schulman et al. 2017) and SAC. The latter gives us better performance. Note

that, to ensure σw and σϕ are always non-negative, we parameterize them with ρw

and ρϕ and transform σw and σϕ with the softplus function (Blundell et al. 2015),

σ = log(1 + exp(ρ)).

3.4 Evaluation

We evaluate the performance of our method on a set of continuous controls tasks.

The goal of the experiments is to verify that our method can successfully infer a

surrogate reward function that results in a policy with higher trajectory returns

and being close to the oracle performance with the ground truth reward function.

Moreover, the baseline PbRL method is hardly recovering a policy that performs

efficiently in the environment as measured by the ground truth reward function.
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3.4.1 Experiments Setups

3.4.1.1 Learn from Simulated Human Models

Similar as the standard problem setting of PbRL (Wirth and Fürnkranz 2013c;

Akrour, Schoenauer, and Sebag 2011; Busa-Fekete et al. 2013, 2014; Christiano et

al. 2017; Lee, Smith, and Abbeel 2021), the agent interacts with the environment to

collect the trajectories, but have no access to the underlying reward signals. It has to

solicit the human’s preference between segments of the agent’s trajectories, and use

the human feedback to infer a surrogate reward function. In our work, we assume the

human evaluates the agent’s behavior based on both her reward function and belief

about the agent’s dynamics, rather than rewards only. Hence, we design a human belief

model which is different from the true domain dynamics. A synthetic human teacher

provides preference based on the ground truth reward function and the fictitious

human belief model. Using the simulated human model, we can quantitatively verify

the efficacy of our method compared to alternative approaches.

3.4.1.2 Baselines

For evaluation, we compare our method with two baselines.

• Soft Actor Critic (SAC) (Haarnoja, Zhou, Abbeel, et al. 2018; Haarnoja,

Zhou, Hartikainen, et al. 2018). It is a state-of-the-art off-policy RL algo-

rithm. We run SAC with the underlying ground truth reward signals from the

environment. It would provide us the oracle performance.

• unsupervised PrEtraining and preference-Based learning via rela-
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BeLing Experience (PEBBLE) (Lee, Smith, and Abbeel 2021). This is

a state-of-the-art PbRL approach. It builds upon the work of (Christiano et

al. 2017). In order to improve the sample and human feedback efficiency, the

authors pre-train the policy to be learned with intrinsic motivation to explore,

and relabel the replay buffer with previous learned reward to mitigate the effects

of a non-stationary reward learning. It implicitly assume the human has a

correct belief about the domain dynamics. Hence, it may learn a wrong reward

function from the human preference which are affected by the biased belief.

3.4.2 Benchmark Tasks

3.4.2.1 2D Navigation Task

We start with two 2D navigation tasks as shown in Figure 15a and 15b. The gray

areas are walls. For domain Navigation 1, we consider three types of terrains, such as

dirt, ice, and sand. There are two corridors in the environment separated by a wall

in the center. The agent is at the center right initially. Its task is to navigate to the

goal area (green) at the center left. The upper corridor (blue) has ice on it and the

lower corridor (yellow) is sandy. The state space has two variables: the coordinates of

the agent in x and y. The action space specifies the velocity and orientation of each

action of the agent. The agent would receive a reward of +10 as it reach the goal.

There is also a living reward of −1 for each time step. In this domain, the human’s

belief about the capability of the agent handling different types of terrains may be

different from the true dynamics. Thereby biased feedback would be provided subject
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to the biased belief, and mislead the reward learning. We design the true dynamics

and simulated human belief as follows.

• True Dynamics: The agent is capable of handling the icy terrain, but may be

stuck in the sand.

• Human Belief: The agent’s behavior would be much more stochastic due to

the slippery road condition, and dealing with the sandy terrain well although

being slow sometime.

For Navigation 2, there is a pit in the center which is indicated in brown. The

agent would be penalized by −10 as reaching the pit. The agent starts from the upper

right of the map. Its task is to navigate to the goal area in upper left. In this domain,

the human has a biased belief about dynamics where the agent is approaching the pit

area.

• True Dynamics: The agent is capable of moving nearby the pit area.

• Human Belief: The agent may fall into the pit when it is getting closer to it.

With this biased belief, the human would have a different expectation of the agent’s

behavior and prefer the suboptimal trajectories.

3.4.2.2 Lunar Lander Task

This is classical control task from OpenAI gym (Brockman et al. 2016). The

lander is tasked to land as close to the target landing pad between two flag poles as

possible, making sure that both side boosters are touching the ground. If the lander

moves away from landing pad it loses reward. Episode finishes if the lander crashes
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(a) Navigation 1 (b) Navigation 2

(c) Lunar lander (d) Hopper (e) Cheetah

Figure 15. Illustration of the domains we test on.

or comes to rest. The observation space consists of 8 states: the coordinates of the

lander in x&y, its linear velocities in x&y, its angle, its angular velocity, and two

booleans that represent whether each leg is in contact with the ground or not. In this

work, we conduct experiments on the continuous version of lunar lander. The action

space is described by two factors. The first coordinate of an action determines the

throttle of the main engine, while the second coordinate specifies the throttle of the

lateral boosters. Reward for moving from the top of the screen to the landing pad and

coming to rest is about 100-140 points. If the lander moves away from the landing

pad, it loses reward. If the lander crashes, it receives an additional -100 points. If it

comes to rest, it receives an additional +100 points. Each leg with ground contact is

+10 points. Firing the main engine is -0.3 points each frame. Firing the side engine is

-0.03 points each frame. Solved is 200 points (Gym Documentation). In order to test
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our method, we modify the domain dynamics of which the human has no information

and would raise biases.

• True Dynamics: There is invisible solar wind blowing from left to right. Wind

is simulated by changing a percentage of the left action to no-op and reinforcing

the right action.

• Human Belief: In the space, the lander operate in a vacuum. The lander

traces are only controlled and influenced by its engines.

The human is not aware of the solar wind in the environment, thus having a biased

belief about the domain dynamics in that area. It could result in learning a wrong

reward function using the human preference between behavior segments if we don’t

take the biased belief into consideration.

3.4.2.3 Locomotion Tasks

We consider two typical locomotion tasks developed using the Bullet physical

simulator (Coumans and Bai 2021): Hopper and Cheetah (see Figure 15d and 15e).

The planar one-legged hopper introduced in (Lillicrap et al. 2015) has a state space

of 14 dimensions and an action space of 4 dimensions. It is tasked to move forward

and rewarded for torso height and forward velocity. The cheetah is introduced based

on the work by (Wawrzyński 2009; Wawrzyński and Tanwani 2013). It has a state

space of 18 dimensions and an action space of 6 dimensions. The agent is tasked to

move forward as quickly as possible with a cheetahlike body that is constrained to the

plane. The reward is linearly proportional to the forward velocity up to a maximum

of 10m/s.
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Figure 16. Learning curves on the task Navigation 1 as measured on the ground truth
reward.

In this work, we modify the agent dynamics by adding stochasticity to dynamics

which is unknown to the human.

• True Dynamics: The dynamics is a bit more stochastic by applying a small

amount of noise to some of the transitions.

• Human Belief: The agent is operating reliably.

The agent’s stochasticity would largely influence the agent’s policy learning and may

behave differently compared to when the agent is more reliable. Such discrepancy

brings about the misguided preference data and would impact the reward learning

with the implicit assumption that the human holds a correct belief about the agent’s

dynamics.
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Figure 17. Learning curves on the task Navigation 2 as measured on the ground truth
reward.

Figure 18. Learning curves on the lunar lander task as measured on the ground truth
reward.
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Figure 19. Learning curves on the hopper task as measured on the ground truth
reward.

Figure 20. Learning curves on the cheetah task as measured on the ground truth
reward.
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(a) Navigation 1 (Left: PrefBias; Right: PEB-
BLE)

(b) Navigation 2 (Left: PrefBias; Right:
PEBBLE)

Figure 21. Trajectories learned by PEBBLE and PrefBias agent in 2D navigation
domains. For each domain, the left is for PrefBias agent while the right is for PEBBLE
agent.

3.4.3 Results and Discussions

Figure 16, 17, 18, 19, and 20 shows the learning curves of PrefBias with different

number of synthetic human feedback and that of PEBBLE on five testing domains.

We also show the learning curve of SAC which serves as oracle performance. For

domains Navigation 1 and Navigation 2 (see Figure 16 and 17), PrefBias (green) with

800 queries reaches the performance as SAC (pink) while PEBBLE obtains less return.

We believe that this is because the surrogate reward function learned by PEBBLE is

misguided by the biased belief and hardly capture the human’s objectives. Especially

for navigation 1, we notice that the trajectory returns of PEBBLE agent first reach

the oracle performance and then goes down. That is because the PEBBLE agent

initially finds the near-optimal policy during exploration, while the learned surrogate

reward function later misleads the agent to navigation other areas while avoiding the

icy corridor. Moreover, note that PrefBias would take more timesteps to converge

since it has two models and more parameters to optimize and needs more data and

timesteps to learn. The trajectories of PrefBias and PEBBLE agents is illustrated in

Figure 21. For each domain, PrefBias is on the left is PrefBias and PEBBLE is on
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the right. We can see that in navigation 1, the PEBBLE agent navigates through the

sandy corridor which gives us a suboptimal behavior because it learns that it will be

penalized navigating on ice. PrefBias agent could successfully neutralize the biased

belief and recover the optimal behavior as SAC. Similarly, in navigation 2, PEBBLE

learns to keep distance from the pit area and take a detour subject to the learned

reward subject to the biased belief, while PrefBias could find the shortcut to the goal.

Figure 18, 19, 20 show the performance of PrefBias and PEBBLE on three more

complex domains. For Lunar Lander (see Figure 18), both PrefBias and PEBBLE fail

to match the SAC performance. For Hopper (see Figure 19), PEBBLE presents very

poor performance as almost stay around a return of 0 after attempts at the early stage

of learning process while PrefBias achieves much better performance. But notice that

PrefBias has larger variance since the Prefbias may take more data and steps to learn.

Similarly, for Cheetah (see Figure 20), PrefBias can better match the performance of

SAC, compared to PEBBLE baseline.

3.4.3.1 Effects of Different Priors

One problem of previous PbRL methods is that they omits the effects of potential

biased belief and only learn a surrogate reward function which would be subject to

the biases. Thus, it is important to consider human belief while learning reward from

the human preferences. We believe that a better understanding of the human belief

could contribute to learning a reward function that describes what the human really

wants. Build on a BNN framework, we could leverage the advantage of prior to infer
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Figure 22. L2 error between estimated human belief model and ground truth on the
navigation task.

Figure 23. L2 error between surrogate reward function and ground truth on the
navigation task.
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Figure 24. Learning curves on the navigation task as measured on the ground truth
reward.

the human belief. In this work, we make the prior to be a Gaussian distribution,

but explore two ways to set the mean of it: Random initialization and True Domain

Dynamics-based initialization. For the first method, we randomly configure the mean

of the prior distribution. For the second method, we assume that the human belief

is a disturbed true domain dynamics and use the parameters of an estimated true

domain dynamics model as the mean of the prior distribution. Figure 22 shows the

comparison between these two different priors in terms of human belief learning. We

can see that PrefBias can learn a belief that matchs the ground truth while taking

the parameters of an estimated domain dynamics model as the prior. Similarly, the

True Domain Dynamics-based initialization outperforms the random initialization in

terms of reward and policy learning (see Figure 23 and 24). Therefore, taking the true

domain dynamics into consideration while setting the prior could help us estimate the

human belief model and learn a surrogate reward function that better captures the
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human’s objectives. Moreover, we believe that a prior that contains information of the

model differences and domain knowledge would further benefit the learning process.

3.4.3.2 Explore Different Query Sampling Methods

In the experiments, we use diagreement-based sampling method for PEBBLE which

gives us best performance. For PrefBias, we investigate the performance of several

query sampling methods: Uniform, Disagreement-based, Entropy-based sampling. We

also introduce an alternative sampling method, especially for our problem scenarios.

We call it Preference Disagreement-based sampling. It aims to select queries that

maximize the difference of the preference estimated in terms of agent’s and human

model which could help us infer the biases in the human belief efficiently. We tested

all the sampling methods. The preference disagreement-based sampling demonstrates

slightly better performance, but not much. That could be because the queries selected

elicit information much about the belief, but not to balance the information gain of

the reward learning.

3.5 Conclusion

In this work, we investigate the problem of PbRL under human biased belief.

Without consideration of the human belief, the learned surrogate reward function

could be wrong and result in suboptimal or unintended behaviors. We propose to

learn a reward function while taking the human belief into account. Both reward

function and human belief are modeled using BNN. Their parameters are updated

from the human preference data in a variational Bayesian framework. The learned
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reward function is then used to optimize the agent’s policy. We evaluate and compare

our method with a state-of-the-art PbRL baseline on several continuous control tasks.

The results show that our method can successfully neutralize the belief biases and

reach near-oracle performance compared to the baseline method.

Note that we focus on the scenarios that the human is not observing the agent’s

policy execution where the agent should work in a effective way with respect to its

own model and optimize the true reward functions. In such cases, the agent may

behavior weirdly from the human’s perspective, but is effective with respect to the

true dynamics. There raises the problem of how to get an explicable behavior to the

human. It will be investigated in Chapter 4.
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Chapter 4

EXPLICABLE POLICY SEARCH

4.1 Introduction

Intelligent agents are quickly becoming a part of our daily lives in a variety of

domains, including smart home, autonomous driving, education, and so on. In such

domains, the agents are expected to perform in human inhabited environments and

even collaborate closely with them. Members in such a collaborative setting often form

conscious and subconscious expectations of each other and the success of collaboration

depends on whether such expectations can be met. A key challenge here is that

the human’s expectation may not align with the agent’s optimal behavior. Hence,

agents choosing their optimal behaviors without considering the human observers or

collaborators could be seen as unexpected, leading to degraded team performance

and loss of trust (Gunning 2017; Chakraborti, Kambhampati, et al. 2017). To be

good team players, these agents are required to respect human’s expectation for their

behaviors.

Consider a drone navigation scenario in Figure 25 where a drone is tasked to

navigate from the starting position (as shown) to a destination. On a good day,

the drone would be expected to mostly navigate straight to the goal with some air

perturbation. However, there is a heavy wind today that changes the domain dynamics

(which a human observer is unaware of) and it becomes impossible for the drone

to navigate as usual. Two alternatives are illustrated where the drone navigates

in a zigzag and a curved pathway. The curved pathway is more optimal since it
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Figure 25. Motivating scenario to demonstrate explicable trajectories.

makes fewer sharp turns (due to the windy condition) but the former is likely to be

perceived as more expected to the human observer, given its closeness to the expected

behavior. We note here that the explicable behavior goes beyond simply choosing

from or combining the agent’s optimal behavior with the human’s expected behavior.

Hence, achieving such a capability requires a more fundamental treatment. In the

experiments, we will show that our learning agent can generate novel behaviors that

are rarely seen in training scenarios.

The problem setting of explicable policy search (EPS) is illustrated in Fig. 26.

The learning agent learns its behavior with a given engineered reward model, rA, in

the task environment under the true domain dynamics TA. The human generates

her expectation of the agent’s behavior πHA based on T HA that captures her belief or

understanding of the true domain dynamics, and her reward model rH , which may

be different from TA and rA, respectively. The differences may be due to personal

preferences in the reward model, biases and misunderstandings about the domain
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Figure 26. Problem setting of EPS. Shaded nodes are known to the agent and unshaded
nodes are unknown.

dynamics, etc. In the traditional learning setting, the agent computes the optimal

policy π under its models for behavior generation, which could be different from its

expectation formed by the human based on her models. Note that rA and rH could be

different since rA may not accurately describe the human’s preferences. In this work,

we encourage the agent to respect T HA since: (a) it is hard to change; (b) the agent’s

behavior may become inexplicable and even lose human trust if we don’t take T HA

into consideration. Moreover, the agent is tasked to consider both rA and rH instead

of rH merely, for two reasons: (a) rA potentially captures the human’s preference to

some extent and it could make the learning process faster as an inductive bias; (b)

rA may specify some attributes regarding the agent’s ability by the system designer

which are neglected or unknown to the human.

EPS is fundamentally a model reconciliation business (Chakraborti et al. 2019).

In such a setting, considering the learning problem only from the perspective of the

agent would sabotage the teaming when the agent’s behavior differs from human’s

expectation. Our method considers any feedback the human may provide to the agent

based on her expectation of its behavior (generated under her models) to help the
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agent improve. Hence, our method has a variety of applications where machines must

be tuned to individual users, such as an autonomous vehicle that learns to improve its

driving behavior based on its owner’s feedback but at the same time must abide by

standardized operating requirements to ensure safety, comfort, etc. In our problem,

we assume that the human is nosily rational at generating her expectation of the

agent to accommodate her computational limitations. While noisy rationality may not

perfectly describe our computational model (Shah et al. 2019) due to various cognitive

biases, modeling humans as such has been a common practice and demonstrated as a

reasonable assumption in prior methods (Oaksford and Chater 2007; Baker, Saxe, and

Tenenbaum 2011). Furthermore, similar to prior work on explicable planning (Zhang

et al. 2017; Kulkarni et al. 2019), we assume that the human is a sole observer of

the agent. Extending it to an collaborative setting requires additional machinery

and will be discussed in future work, with steps already taken in a classical planning

setting (Zakershahrak et al. 2018).

In this work, we formulate explicable policy search (EPS) in Markov Decision

Processes (MDPs). The goal is to learn a policy that reconciles between maximizing

the long-term return (based on the engineered reward model rA) and minimizing

the deviation of the agent’s behavior from the human’s expectation of it, which is

quantified by an explicability score. We formulate the problem as a linear combination

of two objectives and show that such a simple treatment already yields substantial

benefits in our evaluation. The challenge in this problem formulation mainly lies in the

fact that the human’s expectation is hidden and must be learned. A straightforward

solution involves learning both the human’s belief about the domain dynamics (T HA )

and her reward model (rH) from human feedback, which is possible but impractical.

Instead, we show that the information needed from them for EPS can be sufficiently
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encoded by a surrogate reward function, which is much easier to learn. Such a reward

function can then be incorporated into a policy search process to recover an explicable

policy. The final modified reward function for EPS bears some similarity to maximum

entropy reinforcement learning (Haarnoja et al. 2017; Haarnoja, Zhou, Abbeel, et

al. 2018) but is derived under a completely different motivation.

For evaluation, we design a set of navigation domains where the human’s feedback

on her expectation of the agent’s behavior is synthetically generated based on the

true domain dynamics modified with various “misunderstandings”. We compare our

method with three baselines that are selected to represent the traditional RL methods

to demonstrate the key advantages of EPS under model differences. Furthermore, to

show its real-world relevance, we conduct a human study in an autonomous driving

domain (Leurent 2018) where we design driving scenarios to elicit existing human

biases about the vehicle’s domain dynamics that could be dangerous to ignore during

learning. The results show that our method can intelligently generate explicable

behaviors that are safe and preferred over those of the baselines.

The contribution of this work is three-fold. First, we introduce and formulate

explicable policy search, which extends explicable planning to a reinforcement learning

setting and to stochastic domains with continuous state and action spaces. Second, we

propose a practical solution for this challenging problem by introducing a surrogate

reward function learned from human feedback data, which sufficiently encodes the

necessary information for explicable policy search. Third, we evaluate our learning

method extensively with simulations and human subjects.
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4.2 Related Work

The problem of generating communicative actions or behaviors (a.k.a. explainable

planning) has been well studied as a subarea in explainable AI. Various terms have

been introduced for explainable planning that are different but share similarities, such

as legibility, explicability, transparency, etc. For a review of their differences, refer

to here (Chakraborti et al. 2019). For example, legible motion planning (Dragan,

Lee, and Srinivasa 2013) is about generating motion trajectories to better reveal the

underlying goal of the agent. Explicable planning that we study in this work (Zhang

et al. 2017; Kulkarni et al. 2019; Gong and Zhang 2018; Zakershahrak et al. 2018)

differs from legible planning in that it focuses on plans that better align with the

human’s expectation given the goal. The key characterization of explicable planning

methods revolves around the idea of model reconciliation where an agent makes

decisions based on two different models instead of one (with a focus on domain

dynamics) (Chakraborti, Sreedharan, et al. 2017; Chakraborti, Kambhampati, et

al. 2017; Chakraborti et al. 2019). Zhang et al. (Zhang et al. 2017) formulated the

problem as a learning and planning problem, where the human’s expectation of the

agent’s behavior is learned through a labeling process. A metric for explicability is

defined based on the learned labeling schema and then used to regularize the planning

process to synthesize explicable plans. Kulkarni et al. (Kulkarni et al. 2019) considered

it directly as a distance learning problem (Chakraborti, Sreedharan, et al. 2017) and

generated explicable plans by minimizing an explicability distance between plans

from the two models. A strong assumption was made that the human’s model

was provided a priori. while it is difficult to obtain in most cases. Prior methods

on explicable planning addressed the problem in a classical planning setting (e.g.,
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PDDL (Fox and Long 2003)) under deterministic domains. We argue that explicable

planning should also be considered in a learning setting where human users can

provide feedback on the agent’s behavior for the agent to improve over time (i.e., for

personalization). Furthermore, extending explicable planning to a learning setting

makes the approach applicable in stochastic environments with continuous state and

action spaces. Differing from the prior work, we consider that the user’s reward

model may also differ from the agent’s, but assume the differences do not introduce a

discrepancy in the perception of the agent’s “goal”. Considering multiple candidate

goals is the setting of legible planning (Dragan, Lee, and Srinivasa 2013).

As seen from Figure 26, estimating the human’s expectation requires learning both

the human’s belief about domain dynamics and her reward model based on human

feedback. Existing work on inverse reinforcement learning (IRL) (Abbeel and Ng

2004; Ramachandran and Amir 2007; Ziebart et al. 2008) and reward learning (Daniel

et al. 2014; Sadigh et al. 2017; Erdem et al. 2020) learns the reward model from

human data with the assumption that the human has access to an accurate model

of domain dynamics. However, they implicitly assume that the human maintains

an accurate understanding of the agent’s dynamics and explain any deviations from

optimality as noise. While noise introduces variations, bias determines the average of

errors (Kahneman 2011). Human biases can significantly impact our decisions and

judgments. It was shown that the human’s inaccurate belief of domain dynamics may

skew the human feedback and lead to learning the opposite preferences with respect to

the human’s true reward model (Gong and Zhang 2020). A similar situation exists in

policy learning for which various methods have been devised that use human feedback,

which include reward shaping, policy shaping (Griffith et al. 2013), and interactive RL

(Knox and Stone 2009; MacGlashan et al. 2017; Christiano et al. 2017; Lee, Smith,
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and Abbeel 2021). When the human has an inaccurate belief of domain dynamics, as

we will show, it can lead to non-convergence during learning or high variances in the

learned behaviors for these methods. While it may be possible to learn the human’s

belief of the domain dynamics separately (Reddy, Dragan, and Levine 2018), the

belief and human’s reward model are generally tightly coupled in the human feedback

and should be jointly learned. Joint learning is possible (Herman et al. 2016; Gong

and Zhang 2020) but very challenging due to its high dimensionality, which makes

it impractical for real-world domains. When considering only differences in domain

dynamics, our problem may be viewed as a form of off-dynamics learning (Eysenbach

et al. 2020) that addresses transfer learning from a source to a target domain. However,

we do not have direct access to the target domain in EPS, which is hidden in the

human’s mind.

4.3 Our Approach

4.3.1 Problem Formulation

In this work, we formulate any task domain as a Markov Decision Process (MDP).

An MDP is represented by a tupleM = (S,A, T , r, ρ, γ), where S is the set of states,

A the set of actions, T (s|s, a) the transition function, r the reward function, ρ(·) the

initial state distribution, and γ the discount factor. For the problem setting as shown

in Figure 26, we need to consider two MDPs. Assuming the two MDPs share the

same S, A, ρ, and γ, one is the agent’s modelMA with the true domain dynamics

TA and the engineered reward function rA, and the other is the human’s model of
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expectation MH
A with her belief about the domain dynamics T HA and the human’s

reward function rH . For explicable policy search, TA, T HA , and rH are unknown.

Definition 1. Explicable Policy Search (EPS) is the problem of searching for

a policy via learning to maximize two objectives: the expected cumulative reward, and

a policy explicability score between the agent’s policy under MA and the expected

policy under the human’s model MH
A .

In this work, we consider a linearly weighted sum of the two objectives:

π∗ = argmax
π

Eπ,TA
[∑

t

γtrA(st, at)︸ ︷︷ ︸
cumulative reward

]
+ λ E(π,MA, π

H ,MH
A )︸ ︷︷ ︸

policy explicability score

, (4.1)

where π and πH denote the agent’s policy and human’s expected policy, respectively.

We combine the two objectives linearly via a reconciliation factor λ to be consistent

with the literature (Zhang et al. 2017; Kulkarni et al. 2019) and simplify the technical

development.

We introduce the policy explicability score for stochastic environments, which

differs fundamentally from the explicability scores defined in the prior work. The

policy explicability score does not consider the similarity between any two trajectories

as considered in the explicability scores in the prior work: they are orthogonal aspects

of explicability that are equally important. In (Zhang et al. 2017; Kulkarni et al. 2019),

explicability scores have been considered as a similarity metric between the agent’s

plan and the expected plan in the human’s mind. Working in a stochastic setting,

foremost, requires us to consider distributions of trajectories. Hence, a natural choice

for the policy explicability score is the negative KL-divergence of the two distributions

of trajectories under the agent and human’s models and policies, respectively. In such

a case, the second objective in Equation (4.1) becomes a measurement of consistency

between the generated agent’s trajectories and the human’s expectation. Intuitively,
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this means that an agent that only learns to maximize it would learn to replicate (as

closely as possible) what the human expects the agent to behave–exactly what we set

out to pursue! In such a case, Equation (4.1) can be rewritten as:

π∗ = argmax
π

Eπ,TA
[∑

t

γtrA(st, at)

]
+ λ · −DKL(pA(τ)∥pHA (τ)), (4.2)

where pA(τ) and pHA (τ) denote the distributions of trajectories for the agent and

human, respectively.

Remark : Depending on whether the agent’s state and action are observable, the

distribution of trajectories must be computed differently. When both the state and

action are observable, the human would be able to contrast both the agent’s action

and resulting state with her expectation; otherwise, only the observable part needs

to be considered. In the following discussion, we assume that both the state and

action are observable. For explicable policy search, the implication here is that the

agent optimizing Equation (4.2) would actively avoid parts of the state space where

either its policy differs from the human’s expectation or the dynamics differs, which is

reflected in the final solution derived.

4.3.2 Explicable Policy Search (EPS)

To present our learning method, we start by expressing the probability distribution

of the agent’s trajectories and human’s expectation. We parameterize the agent’s

policy using θ. The probability of realizing the agent’s trajectory τ with πθ (and

similarly for the human’s expectation) is:

pA(τ) = ρ(s0)
∏
t

TA(st+1|st, at)πθ(at|st), pHA (τ) = ρ(s0)
∏
t

T HA (st+1|st, at)πHA (at|st).

(4.3)
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Given these two distributions, we can now derive our solution for EPS. Since both

objectives in Equation (4.2) are expressed as expectations over the same distribution of

trajectories (i.e., pA(τ)), we can combine them after rewriting the policy explicability

score in Equation (4.2) as follows:

−DKL(pA(τ)∥pHA (τ))

= −EpA
[∑

t

log TA(st+1|st, at)+log πθ(at|st)−log T HA (st+1|st, at)−log πHA (at|st)
]
+C,

(4.4)

where C is a constant. The main challenge in solving the optimization problem in

Equation (4.2) now lies in the fact that neither the human’s policy πH nor her belief

of the domain dynamics T HA are known.

4.3.3 Surrogate Reward Function

Equation (4.4) can be merged into Equation (4.2) such that the log terms essentially

reshape the engineered reward function. In such a case, a straightforward approach is to

learn the human’s belief about the domain dynamics and her expected policy separately

based on human feedback, while maintaining estimates of the true domain dynamics

and current agent’s policy. While possible, it is inefficient and unnecessary. Instead,

we propose to use a surrogate reward function. The goal is to learn such a function uH

that retains the necessary information about the human’s belief of domain dynamics

and expected policy for policy search, i.e., uH
.
= log T HA (st+1|st, at) + log πHA (at|st).

Intuitively, we learn a reward function that alone can explain the human’s expec-

tation of the trajectories–a reward function that introduces the same distribution

of the expected trajectories. At the same time, we must take care to minimize the
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human feedback to make it practical. A popular approach that imposes feasible

input requirement on human is preference-based RL (Wirth et al. 2017; Christiano

et al. 2017). For EPS, instead of soliciting human preferred trajectories, we can present

pairs of trajectories and ask humans to comment on which one is more expected. Then,

we can fit a reward function that would “prefer” more expected trajectories. More

specifically, we can try to correlate the distribution of expected trajectories with the

surrogate reward function to be learned as follows:

pHA (τ) ∝ exp

(∑
t

uH(st, at)

)
. (4.5)

Proposition 1 There exists a unique reward function uH such that trajectory dis-

tribution under the softmax human preference model with uH described above matches

with the human’s expected trajectory distribution given in Equation (4.3).

When we compare mathematically the two equations of pHA (τ) (i.e., Eqs. (4.3) and

(4.5)), we see that the only way to match the distributions is by satisfying:

∑
t

uH(st, at) =
∑
t

log T HA (st+1|st, at) +
∑
t

log πHA (at|st) + C1.

One straightforward way for this is to set uH(st, at) = log T HA (st+1|st, at)+log πHA (at|st).

In the other direction, since the trajectories may be of various lengths in general

(including the length of 1 as special cases), we can conclude further that:

uH(st, at) = log T HA (st+1|st, at) + log πHA (at|st) + C1.

Plugging this result into any trajectory of length greater than 1, we can conclude that

C1 = 0.

This means that uH in such a case becomes equivalent to log T HA and log πH

for representing the distribution of expected trajectories, which implies that the
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information needed from T HA and πH for optimizing Equation (4.2) can be substituted

with uH . uH can be learned by applying preference-based learning with a softmax

preference model based on human feedback as described earlier (more details to follow).

To learn the unique surrogate reward function and avoid the non-identifiabillity

issue (Russell 1998), however, requires the learning to be globally optimized. In our

implementation, we simply normalize the learned rewards. Now, we rewrite Equation

(4.2) based on the above result:

θ∗
.
= argmax

πθ

EpA
[∑

t

γt
(
rA(st, at) + λ

(
uH(st, at) +HTA [st+1|st, at] +Hπθ [at|st]

))]
.

(4.6)

Note that Equation (4.6) is an approximation of the original objective in Equation

(4.2) by ignoring the influence of the discount factor on the surrogate reward function

and entropy terms. This allows us to use them to reshape the reward function. We can

view this objective function as two parts. The first two terms, rA(st, at) + λuH(st, at),

requires the agent to maximize rewards from two sources: the engineered reward and

the surrogate reward learned from human feedback. These two reward functions are

weighted according to the reconciliation parameter as expected. The second part of

this objective function is HTA [st+1|st, at] +Hπθ [at|st], which are two entropy terms.

The first term is for the agent’s domain dynamics while the second term is for the

target policy.

The second entropy term for the target policy (referred to as “policy entropy”) is

well studied in the maximum entropy (MaxEnt) RL framework. (Haarnoja et al. 2017;

Haarnoja, Zhou, Abbeel, et al. 2018), However, we note that this term in our work is

derived for a completely different reason. In MaxEnt RL, maximizing Hπθ encourages

the agent to explore during learning and increase robustness. Given a fixed surrogate

reward function, this term in EPS likewise encourages stochasticity in the agent’s
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policy to increase robustness. A more distinguishing feature of explicable policy search

lies in the first term. Maximizing HTA encourages the agent to prefer parts of the

environment where there is more stochasticity, which we refer to as “environment

entropy”. The incentive here is to reduce the influence to the policy explicability

score due to differences in the agent’s policy and expected policy. Intuitively, at more

stochastic parts of the environment where action choices for the agent matter less,

the agent’s trajectory is more likely to match with the human’s expectation even

when the agent’s policy and the expected policy differ. Exploring in stochastic parts

of the environment would provide more flexibility to search for the behavior that is

explicable to the human.

Connections to RL problems: The optimization target in Equation (4.6) relates

to those used in various RL methods under special conditions. For example, when

the underlying domain is deterministic, the optimization criterion becomes that of a

multi-objective maxEnt RL problem. When rA is identical to uH , the optimization

criterion is exactly that of off-dynamics RL. When the human maintains an accurate

belief about domain dynamics and her reward function coincides with the design

reward function, it reduces to standard RL. Moreover, although our formulation

presents such close connections, the main difference from others is that we aim to

reconcile the task performance with explicability level in terms of human model.

Expectation-based Preferences: For learning uH , we apply a preference-based

learning framework. We request humans to provide their feedback on which segment in

a pair of segments {(σ1, σ2)} extracted from the agent’s trajectories is more expected.

To consider noise in human feedback, the human’s expectation preference is formulated

as follows (Christiano et al. 2017):

P̂ [σ1 ≻ σ2] =
exp

∑
uH(s

1
t , a

1
t )

exp
∑
uH(s1t , a

1
t ) + exp

∑
uH(s2t , a

2
t )
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Algorithm 3 Explicable Policy Search (EPS)
1: Initialize the agent’s policy πθ, true domain dynamics TA, surrogate reward

function uH , and an empty set D.
2: for t = 1 · · ·max iterations do
3: Collect samples from environment using πθ and add them to D.
4: Train TA using D.
5: repeat
6: Select m pairs of trajectory segments from D to solicit expectation preferences.

7: Learn uH using human feedback data.
8: until presented a predefined number of sample pairs
9: if reached a predefined batch size then

10: Update πθ based on the reshaped reward in Equation (4.6).
11: end if
12: end for
13: return πθ

We learn uH to minimize the cross entropy between our prediction of the expectation

preferences and feedback data. In order to efficiently solicit the human’s expectation

preference for the agent’s behavior, we leverage uncertainty-based sampling (Christiano

et al. 2017; Lee et al. 2021) to select traces for the human in an active learning fashion.

To estimate TA, we assume it follows a Gaussian distributions and model it using a

two-headed neural network that outputs its mean and logarithm of standard deviation

given the state and action. The agent interacts with the environment and collects

transition data for learning. TA is estimated using a data-driven method by minimizing

the L2 one-step prediction loss (Kurutach et al. 2018). We use Soft Actor Critic

(SAC) (Haarnoja, Zhou, Abbeel, et al. 2018) for policy learning but other policy

search methods are also applicable. To alleviate the issue of non-stationary prediction

of expectation preferences during learning, we relabel the data samples every time

uH is updated (Lee, Smith, and Abbeel 2021). The algorithm for EPS is present in

Algorithm 3.
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4.4 Evaluation

We evaluate our method on a set of continuous navigation domains with synthetic

human models and a simulated autonomous driving domain with a human subject

study. The study is IRB approved and all protocols have been followed. The synthetic

experiments are used to validate the effectiveness of our method for searching for

explicable policies. The user study is to 1) confirm that our beliefs about domain

dynamics can be inaccurate or biased, which can affect our judgements and lead

to severe consequences if ignored, and 2) show that our method can effectively

address such hidden issues by achieving an intelligent reconciliation between the task

performance and human’s expectation.

4.4.1 Synthetic Navigation Domains

We conduct experiments on four navigation domains with continuous state and

action spaces, as illustrated in Figure 27. The environment of all the task domains

is in the form of a 7× 7 continuous grid-world. The state space consists of the 2D

location of the agent in the domain. The action space consists of velocity and angle

of the agent’s move. Moreover, we added Gaussian noises to each move to simulate

stochasticity in the real-world. For all the domains, the agent starts from the upper

left corner and aims to navigate to the goal area (depicted in green). We introduce

the domains as follows:

• Domain 1 (D1): This domain is adapted from the classical cliff walking domain

(Sutton and Barto 2018). There is one pit area with −100 penalty and a goal

area with +100 reward in the environment. The reward of each (s, a) pair
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depends on how much the action a forwards the agent towards the goal when it

is at state s. Moreover, there is an additional living reward (i.e., −1) for each

step. The environment is shown in the first row in Figure 27. The dark grey

area around represents the walls. The brown block is the pit and the green

block in the upper right corner is the goal. The agent starts from the upper left

corner and aims to navigate to the goal.

• Domain 2 (D2): Similar to domain 1, this domain contains one pit area and a

goal area. The true rewards and dynamics are the same as domain 1. The only

difference is that the location of the pit area is moved one block down. Now,

the agent has two possible ways to reach the goal that are separated by the pit.

The environment is shown in the second row in Figure 27.

• Domain 3 (D3): As shown in the third row in Figure 27, the goal is at the

bottom right corner of the environment. There are two paths starting from the

upper left corner (i.e., the initial position) to the goal separated by an impassable

area in the middle. The path passing through the top is an icy road (depicted

in blue) and the pit is at its right end. The other path passing through the

left is covered with sands (shown in yellow). The environment reward is the

same as the first two domains. However, the dynamics model is different while

navigating on different road conditions. In this domain, the agent is adept at

moving on the icy road while extremely clumsy (i.e., can easily get stuck) on

sand.

• Domain 4 (D4): The domain is a modified version of domain 3. The only

difference is that the agent is now more proficient with sands–it is slower on

sand but still maneuverable. The environment is shown in the fourth row in
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Figure 27 where the sandy road on the left is illustrated in darker yellow to

indicate that it is more navigable for the agent.

We built in various human biased models for these four domains. For simplicity, we

modified the human’s belief about the domain dynamics only while keeping the reward

function the same. This should not impact the evaluation results since we have shown

that the surrogate reward function can encode biases in both. For Domain 1 (D1)

and Domain 2 (D2), the human believes that the agent is more likely to fall into the

pit when it is close by (i.e., more stochastic) and the agent can navigate stably while

further way; the truth is everywhere is the same. For Domain 3 (D3) and Domain 4

(D4), the human believes that the agent would easily slip on ice and it is more likely

to fall into the pit while moving close by. Moreover, the human believes that the agent

can readily handle sandy roads. The truth is that the agent is proficient on ice but can

easily get stuck on sand in D3. For D4, the agent is in addition capable of handling

sand albeit being more costly. In general, D1 and D2 is designed to demonstrate that

EPS is able to generate novel behaviors other than the optimal agent’s policy and the

human’s expectation. D3 and D4 examines how the EPS agent determines as it has

to choose to follow between optimal agent’s policy and the human’s expectation. The

human’s preferences for the agent’s behaviors is generated synthetically with respect

to ground truth human model.

4.4.1.1 Baselines

We compared our method to three baselines to illustrate its advantages compared

to the traditional RL methods that do not consider model differences: Soft Actor

Critic (SAC) (Haarnoja, Zhou, Abbeel, et al. 2018), Deep RL from Human Preferences
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(DRLHP) (Christiano et al. 2017), and Policy Shaping (PS) (Griffith et al. 2013).

SAC optimizes policy with respect to the engineered reward function and true do-

main dynamics without considering the human’s expectation. DRLHP uses human

expectation-based preferences for the agent’s behavior to estimate a reward function

and applies it to guide policy search. It ignores the engineered reward function. For

SAC and DRLHP, we could not use reward signals from both sources due to their

different formats. The closest competitor to EPS is policy shaping. Policy shaping

learns two policies using reward signals from the environment and human expectation

preferences, respectively. A combination policy is then obtained by multiplying them

together. It also seeks to combine different information sources that are however

assumed to be consistent. That is why it has difficulty handling situations where the

human’s expectation and agent’s optimal behavior conflict (see D3 in Figure 27).

4.4.1.2 Results and Discussion

Table 3 and 4 shows the average return and policy explicability score of EPS

compared to the baselines over 100 rollouts. The policy explicability score is computed

using Equation (4.4) based on the synthetic human models. For EPS, the reconciliation

parameter λ is tuned manually to show the different behaviors compared to the

baselines in Figure 27, with λ ∈ [2.0, 2.8]. For all domains, EPS achieved the highest

policy explicability score and followed the best performer for average return. PS

performed well on most tasks while being considerably worse than others in D3.

Due to the conflict between the human’s expectation and task priorities in D3, the

method failed to achieve a meaningful combination. DRLHP performed poorly on all
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D1:

D2:

D3:

D4:

(a) Human (b) EPS (c) SAC (d) DRLHP (e) PS

Figure 27. Comparison of different learning methods with human’s expectation (left).
The dark grey area represents the walls. The brown area is the pit (with -100 penalty)
and the green area is the goal (with +100 reward). The blue area represents icy roads
and the yellow area represents sandy roads.

the domains because preference-based learning methods have difficulty dealing with

domains with sparse or delayed rewards, which makes credit assignment challenging

and results in large variations. Since EPS also applies a preference-based learning

method to learn the surrogate reward function, we demonstrate this using the learned

function. As shown in Figure 28, this function has a significant amount of uncertainty

so is not ideal for guiding policy search. Although it adds variability into policy

83



(a) D1 (b) D2 (c) D3 & D4

Figure 28. Visualization of the learned surrogate reward functions for D1-D4. The
darker the lower reward value and the brighter the higher.

Domain EPS SAC DRLHP PS

D1 95.53 (1.88) 97.46 (1.53) 74.51 (29.92) 93.91 (3.55)
D2 94.07 (2.43) 95.65 (1.98) 23.28 (43.71) 95.55 (3.17)
D3 96.80 (1.16) 94.47 (2.77) -50.76 (56.49) -178.76 (63.88)
D4 92.37 (1.80) 93.27 (2.03) 26.52 (49.02) 90.11 (14.79)

Table 3. Comparison of EPS to baselines using averaged return.

Domain EPS SAC DRLHP PS

D1 95.53 (1.88) 97.46 (1.53) 74.51 (29.92) 93.91 (3.55)
D2 94.07 (2.43) 95.65 (1.98) 23.28 (43.71) 95.55 (3.17)
D3 96.80 (1.16) 94.47 (2.77) -50.76 (56.49) -178.76 (63.88)
D4 92.37 (1.80) 93.27 (2.03) 26.52 (49.02) 90.11 (14.79)

Table 4. Comparison of EPS to baselines in terms of explicability score.

learning, it serves very well as an auxiliary objective by informing the agent where

the human expects it to perform.

We show sampled trajectories for EPS, the baselines, and the human’s expectation

computed using the synthetic human models in Figure 27. In D1 and D2, SAC agent

always chooses the shortest path while EPS agent takes a detour that bypasses the

pit and hence is more explicable. In D3 and D4, SAC agent chooses the path passing
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(a) Domain 1 (b) Domain 2 (c) Domain 3 (d) Domain 4

Figure 29. EPS agent’s behaviors for different domains when there are no human
biases.

through the top since the agent can get stuck on sandy roads in D3 and the top path

is more efficient in D4. It is worth noting that EPS agent makes different decisions on

these two domains. It selects the top path in D3 when the sandy road is difficult to

navigate even though it is against the human’s expectation. However, when it can

better navigate on sand in D4, it chooses to respect the human’s expectation to be

more explicable, at the cost of lowering task performance. Policy shaping agent is also

successful in D4, but gets stuck in D3, because simply multiplying two different policies

could result in a new policy that is uninformative, irrespective of the λ used (e.g., when

we have p1 = (0.1, 0.9), p2 = (0.9, 0.1), the resulting policy from multiplying them

would always be p = (0.5, 0.5)), which can lead to poor behaviors. In summary, we

show that EPS can successfully generate effective behaviors that achieve an intelligent

reconciliation between the human’s expectation and task priorities. It can generate

novel reconciled behaviors (D1 and D2), stick to the task priorities (D3), or follow the

human’s expectation (D4), as appropriately.
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Figure 30. Comparison of the learning process of EPS and SAC in terms of return.

4.4.1.3 Synthetic Experiments Without Biases

We show that our method reduces to SAC when there is no human bias. The goal

here is to examine that our method could recover the agent’s optimal policy when

human preference data is not biased. Figure 29 illustrates the behaviors of EPS agent

without human biases. It successfully recovered the SAC agent’s behavior as shown in

Figure 27. We also present the cumulative rewards of EPS and SAC during the policy

learning process in Figure 30. For all domains, we find that these two approaches are
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comparable (as expected) with EPS perhaps slightly better. EPS helped the agent

learn faster since the surrogate reward function served now as a good inductive bias.

4.4.1.4 Sensitivity Analysis of the Reconciliation Hyperparameter

As shown in Equation (4.6), the hyperparameter λ reconciles between the reward

from environment and the surrogate reward learned from the human data. To better

understand the effect of this parameter algorithm, we consider a spectrum of the value

of λ and compare the generated behaviors in all domains. We illustrate the generated

behaviors with different λ in Figure 31. For all domains, it shows that the lower the

λ, the closer the behavior is to the SAC agent, while the higher the λ, the closer the

behavior is to the human’s expectation. The range we tested is λ ∈ [0.0, 3.0]. Note that

a similar weighting factor may arguably be used in policy shaping to achieve a similar

reconciliation effect. However, policy shaping is fundamentally ill-posed (and hence

much less robust) when the human’s expected behavior and the optimal behavior differ

significantly as seen in D3 from Figure 27. In real-world applications, this parameter

should be set in a domain specific way, similar to the discussion in (Zhang et al. 2017;

Kulkarni et al. 2019). In our work, we manually tune the λ value for each domain.

The automatic tuning of it will be studied for future work.

4.4.2 Autonomous Driving Domain

We used a simulated autonomous driving domain (Leurent 2018) to evaluate our

method with human subjects and demonstrate its real-world relevance, as illustrated

in Figure 33. The state space is featured by the position and velocity of the ego-vehicle
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(a) Domain 1 (b) Domain 2 (c) Domain 3 (d) Domain 4

Figure 31. EPS agent’s behaviors with different λ in all domains. Light green
trajectories have smaller λ values while dark green trajectories have larger λ values.

and nearby vehicles. The action space consists of five discrete actions. Initially, the

autonomous driving vehicle (green) is running on the highway with a car in front of it

(blue) on the same lane and with the same speed. The task of the autonomous driving

agent is to handle situations when the front car slows down quickly and abruptly.

One common type of cognitive bias is the availability bias, which reflects humans’

tendency to overestimate the likelihood of events with greater availability in memory.

Such biases can occur in driving since we regularly drive under familiar conditions. To

design an experiment where such biases are present, we considered scenarios with a

regular driving condition and a sleety condition where the vehicle’s domain dynamics

became more stochastic due to slippery roads. With the availability bias, however,

humans are likely to make the same decisions under these similar but in actuality

different conditions, leading to safety risks.

The user study consists of two phases: training and testing. At the beginning of

the training phase, we requested the participates to provide the importance ratings

for several factors governing the autonomous driving behavior (Cheung et al. 2018) in

a 5-point Likert scale, such as average speed (3.42), distance to the front car (4.57),

relative speed to neighboring cars (3.28), and lane following (3.78). The average

participants’ responses are shown in the parentheses above. Their responses served
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as the engineered reward model (rA) and are linearly combined. For example, the

distance to the front car is directly associated with collision and hence given a larger

weight. Before human data collection, we also presented the participants with the

vehicle’s behavior after braking under the regular condition when the front car slows

down suddenly. Then, given the information that it is driving on a sleety day, we

selected segments that showcased different vehicle behaviors after braking (i.e., braking

behaviors under different effectiveness). The participants were asked to select which

one matched their expectations the most. Their responses were used to validate the

availability biases in this experiment. Then, we collected human data by actively

selecting pairs of trajectory segments for the participants to compare with. The

collected data was used to train our method and the baselines. Then, we showed

rollouts of the learned policy for each method to new participants and asked them to

rate those rollouts in the testing phase.

4.4.2.1 Results and Discussion

Our user study was published on the Amazon Mechanical Turk (MTurk) as shown

in Figure 32 and 33. We recruited 15 participants for training with an average age

of 39. Each of the participant was paid 1 dollar for this 20 minutes task. They

were provided with instructions about the scenarios at the beginning. Next, they

were asked to provide their importance ratings for several factors (features) regarding

driving behaviors. After these questions, we asked the participants to select his or her

preferred behavior from a pair of ego-vehicle’s trajectory segments. The queries were
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Figure 32. Solicit human’s preference of several important feature regarding driving
behaviors.

selected manually. The selected queries covered various scenarios, such as, slowing

down by braking, immediately steering to the other lane, and so on.

To sift out invalid responses, a sanity check demonstration was added that showed

a collision, which should not be preferred under any situation. We recruited 15

participants for training, and one failed the sanity check. For the bias validation

question, 12 out of 14 valid participants chose that the ego-vehicle would slow down

effectively on a sleety day when braking. This reflects the availability bias that the

participants had, which can lead to collisions on a slippery road if ignored. We also

noticed that the participants preferred to brake than steer in general during training,
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Figure 33. Scenario introduction and eliciting the human expectation-based preference.

EPS SAC DRLHP

Avg. Rating 7.6 5.0 5.9

Avg. Return 11.0 11.9 9.6

Table 5. Comparison between EPS and baselines on an autonomous driving domain.

which accords with the participants’ responses that attached a high importance rating

to distance to the front car and lane following.

The testing phase occurs on a sleety day. The behavior of EPS, SAC, and DRLHP

agents are illustrated in Figure 34, 35, and 36 respectively. SAC agent (see Figure 35)
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steers immediately when the front car slows down. It is the most efficient behavior

with the most return on a slippery road since braking would not be effective. DRLHP

agent (see Figure 36), on the other hand, chooses to brake while staying in the same

lane. Such a behavior, however, is more likely to lead to a collision (risk to human

passengers). As we can see from Figure 36, the agent is getting dangerously close

to the vehicle in the front. EPS agent (see Figure 34) first chooses to brake (to

be explicable), and then steers to the other lane (to stay safe and continue moving

forward), which maintains both explicability and task efficiency.

We demonstrated these rollouts in the testing phase to new participants. We

informed the participants that the vehicle was running on a sleety day. Each participant

was required to provide ratings to all the demonstrations ranging from 1 to 10. We

obtained 15 valid responses. Interestingly, the participants rated EPS agent the most

preferable, followed by DRLHP and SAC agents. The average rating for each agent

and its standard deviation are shown in Figure 34, 35, and 36. We note that the

results contradict with the importance ratings solicited for the engineered reward

model, which should have led to preferring the steering behavior as chosen by the SAC

agent on slippery roads. This further suggests that the participants had a biased belief

about the vehicle’s dynamics (i.e., braking is as efficient under the regular condition

as under the sleety condition). Regardless, our agent chose the behavior that was

both explicable and safe.

The reconciliation hyperparameter used to generate the explicable policy was 2.0.

We presented results about the returns besides human ratings in Table 5. In terms

of the reward function we obtained in the training phase, the SAC agent performs

the best. In addition, DRLHP agent obtained a significantly lower return compared

to the other two since it was more likely to collide with the front car when it chose
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Figure 34. EPS agents’ behaviors in the autonomous driving domain illustrated in
three characteristic steps from the top to bottom for each agent. Its average rating
and standard deviation are (µ = 7.6, σ = 2.4).

Figure 35. SAC agents’ behaviors in the autonomous driving domain illustrated in
three characteristic steps from the top to bottom for each agent. Its average rating
and standard deviation are (µ = 5.0, σ = 2.3).

to brake on a slippery road. Our EPS agent appropriately balanced in between the

reward and human’s expectation (that is biased).
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Figure 36. DRLHP agents’ behaviors in the autonomous driving domain illustrated in
three characteristic steps from the top to bottom for each agent. Its average rating
and standard deviation are (µ = 5.9, σ = 2.2).

4.5 Conclusion

In this work, we introduced and formulated the problem of explicable policy search

that considers model differences between the learning agent and its human observer.

We developed an efficient solution by learning a surrogate reward function that was

then used to recover an explicable policy. Our method significantly extends explicable

planning to an RL setting and to stochastic environments with continuous state and

action spaces. We evaluated in simulations and with human subjects. Results showed

that our approach could better handle situations under model differences than several

baselines and thus contributed a critical tool to achieving explainable human-agent

interaction.

We assume that the human’s (inaccurate) belief about the domain dynamics

does not easily update as observations of the agent are made. For scenarios where

inaccuracies stem from intrinsic cognitive biases that are difficult to change, this
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is a reasonable assumption. In other cases where discrepancies were due to, e.g.,

information asymmetries, the belief can change dynamically and needs to be actively

monitored (Hanni and Zhang 2021). Other possible directions include more complex

combinations of the expected return and policy explicability score, as well as weighted

policy explicability scores to incorporate trajectory similarity as considered in prior

work (Zhang et al. 2017; Kulkarni et al. 2019).
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Chapter 5

CONCLUSION

In this dissertation, we investigate the problem settings where the human’s biased

belief about the domain dynamics would influence the intelligent agent to learn the

human’s objectives, recover the optimal policy, and the way of behaving while working

along with a human observer. Several approaches are present to address these problems

that are raised by such model differences in human-aware decision making process.

In chapter 2, we introduce the Generalized Reward Learning (GRL) problem

where the human biased belief about the domain dynamics may affect the reward

learning, and propose a method called GeReL to recover the reward function while

taking the human belief into consideration. To develop the method, we formulated the

problem in a variational inference framework to learn the parameters governing the

reward function and the human’s belief about the domain dynamics simultaneously

from observed human’s ratings of agent demonstrations. We evaluated our approach

experimentally using a simulated domain and with a user study whose results showed

that GeReL outperformed prior approaches that could have misinterpreted the human

objectives when such biases are not considered, and it could recover the true human

objectives effectively even under such a challenging setting.

In chapter 3, we investigate the problem of preference-based reinforcement learning

(PbRL) under human biased belief about the domain dynamics. Without consideration

of the human belief, the learned surrogate reward function could be wrong and result

in suboptimal or undesired behaviors. Similarly, we propose to learn a reward function

while taking the human belief into account. To be applied on continuous control tasks,
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both reward function and human belief are modeled using Bayesian neural networks.

Their parameters are updated from the human preference data in a variational Bayesian

framework. The learned reward function is then used to optimize the agent’s policy.

We evaluate and compare our method with a state-of-the-art PbRL baseline on several

continuous control tasks. The results show that our method can successfully neutralize

the belief biases and reach near-oracle performance compared to the baseline method.

In chapter 4, we introduced and formulated the problem of explicable policy

search that considers model differences between the learning agent and its human

observer. We developed an efficient solution that learns a surrogate reward function

from human preferences between pairs of behavior segments. This learned surrogate

reward function was then used to recover an explicable policy. Our method extends

explicable planning to an RL setting and to stochastic environments with continuous

state and action spaces. By evaluating in simulations and with human subjects,

we show that our approach could better handle situations under model differences

than several baselines and thus contributed a critical tool to achieving explainable

human-agent interaction.

For future work, we believe that it is worth investigating how to learn an informative

prior of the human biased belief in the work of reward learning and PbRL under

human biased belief, especially for the model differences caused by common biases. We

may learn a prior model through crowdsourcing. Such prior model could potentially

captures the information of what the biases are like within a group of human users in

certain scenarios and guide our approaches in chapter 2 and chapter 3 to recover the

human belief and learn a reward function that describes the human’s objectives much

more efficiently and accurately. In addition, the learning frameworks proposed in

chapter 2 and chapter 3 have to learn two models in the meanwhile. The complexity of
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the learning process make it impractical for some real-world problems. A recent work on

PbRL (Knox et al. 2022) introduces a new framework that learns a advantage function

from the human’s feedback which is leveraged directly in the policy optimization

process. It contains information of the human’s expectation. While it also doesn’t

consider the effects of the biased human belief on the learning process, the learned

expectation would not be optimal and may be inapplicable for the learning agent

to follow in the environment. It is still worth studying how to neutralize the belief

biases without explicitly learning both a reward function and an estimated belief

model. The learning of advantage function could be an interesting starting point. Also,

consider that we have learned the human’s expectation of the agent, whether we can

borrow some insights from domain adaptation community to enable the agent adapt

the learned expectation into the ground truth domain dynamics could be another

promising direction of future work as well.

In addition, for all the work in this dissertation, we assume that the human’s

belief about the domain dynamics does not easily update as observations of the agent

are made. For scenarios where the model differences stem from intrinsic cognitive

biases that are difficult to change, this is a reasonable assumption. In other cases

where discrepancies were due to, e.g., information asymmetries, the belief can change

dynamically and needs to be actively monitored (Hanni and Zhang 2021). In turn,

the agent’s behavior could influence the human belief. In order to achieve a better

teaming, the agent should be able to teach the human the correct domain dynamics by

detecting the model differences and communicating the ground truth via its behaviors.

Another possible direction of future work is regarding the reconciliation parameters

in the framework of explicable policy search. We manually set it to be a fixed value,

while the agent should be able to respect the human expectation of its behaviors
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in various levels for different states and scenarios. Moreover, the model differences

between the human belief and ground truth domain dynamics could be global (i.e.,

apply to the whole state space) or local (i.e., only for a subarea of the environment).

To make the reconciliation factor dynamic in terms of how different are the models in

each state is an attractive characteristic of the problem of explicable policy search

and potentially a promising research direction that is worth investigating.

Furthermore, one of the limitations of our approaches proposed in this dissertation

is the application of them to real-world problems and scenarios with real robots and

humans. There exists several open challenges regarding human-agent interaction

within the real-world tasks, such as, how frequent the intelligent agent should be

interacting with the human users, how many human responses we need for learning, the

needs for considering the impacts of fatigue or irrationality in human-agent interaction

process, and how to effectively reduce the load from human, and so on. In addition,

we need to consider the scenarios where the human and intelligent agents are working

together (e.g., closely collaborative scenarios) which is pervasive for real-world tasks,

rather than human as an observers only. We believe that research should not only be

done in the simulations and discussed on papers. It should also be able to effectively

applied to real-world tasks and benefit the real human users. Bridging the gaps

between examining the proposed approaches in simulation and in real-world tasks

with real robots and human users would also be an inspiring future goal we aim to

achieve!
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