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ABSTRACT 
 
 The emergence of machine intelligence, which is superior to the best human talent in 

some problem solving tasks, has rendered  conventional educational goals obsolete, 

especially in terms of  enhancing human capacity in specific skills and knowledge 

domains. Hence, artificial intelligence (AI) has become a buzzword, espousing both a 

crisis rhetoric and an ambition to enact policy reforms in the educational policy arena. 

However, these policy measures are mostly based on an assumption of a binary human-

machine relations, focusing on exploitation, resistance, negation, or competition between 

human and AI due to the limited knowledge and imagination about human-machine 

relationality. Setting new relations with AI and negotiating human agency with the 

advanced intelligent machines is a non-trivial issue; it is urgent and necessary for 

human survival and co-existence in the machine era. This is a new educational mandate.  
 In this context, this research examined how the notion of human and machine 

intelligence has been defined in relation to one another in the intellectual history of 

educational psychology and AI studies, representing human and machine intelligence 

studies respectively. This study explored a common paradigmatic space, so-called 

‘cyborg space,’ connecting the two disciplines through cross-referencing in the citation 

network and cross-modeling in the metaphorical semantic space. The citation network 

analysis confirmed the existence of cross-referencing between human and machine 

intelligence studies, and interdisciplinary journals conceiving human-machine 

interchangeability. The metaphor analysis found that the notion of human and machine 

intelligence has been seamlessly interwoven to be part of a theoretical continuum in the 



 

 ii 

most commonly cited references. This research concluded that the educational research 

and policy paradigm needs to be reframed based on the fact that the underlying 

knowledge of human and machine intelligence is not strictly differentiated, and human 

intelligence is relatively provincialized within the human-machine integrated system. 
 Keywords: Cyborg, Artificial Intelligence and Education, Citation Network, 

Metaphor Analysis, Educational Paradigm 
  



 

 iii 

DEDICATION 
 
 
 

For my lovely wife Yuseung, and  
my son Jason Sehyun 

  



 

 iv 

ACKNOWLEDGEMENT 

This paper would not have been possible without the support of my professors, 

colleagues, and friends. First of all, I would like to express my deep gratitude to my 

dissertation committee chair and advisor Dr. Iveta Silova. She inspired and encouraged 

me to continue this study, sharing thoughtful advice and feedbacks all the time. This 

research was solely possible under the unique academic culture she has cultivated with 

her students at Arizona State University (ASU), experimenting with diverse methods and 

perspectives to illuminate our education from a different angle. We discovered and 

nurtured our Cyborg, the core concept of this dissertation research, within this academic 

culture, and through constant engagement in deep dialogue and thought experiments. My 

dissertation committee member, Professors Sherman Dorn, Ruth Wylie, and Yi Zheng, 

were a great support team who contributed to my research through inspiring feedback. 

Dr. Sherman Dorn encouraged me to develop this research topic in the Research Design 

class. His introduction of the book An Elusive Science: The Troubling History of 

Education Research written by Ellen C. Lagemann was a decisive trigger to develop my 

research idea. Dr. Ruth Wylie provided a thoughtful reflection on cognitive science and 

educational psychology's intellectual trends and history. Her creative and imaginative 

activities in the Center for Science and the Imagination at ASU were a source of 

motivation to pursue my research topic. Dr. Yi Zheng has always been supportive of my 

various statistical research. She helped me analyze a bulk of bibliographic network data 

and carefully reviewed my code line by line. We have also discussed the rise of machine 

learning in psychometric research and the implications of this new trend.  



 

 v 

Besides, this research was possible only in the ASU Mary Lou Fulton Teachers 

College (MLFTC) and its dedication to providing sufficient financial support and 

intellectual resources to the doctoral students. I can confidently say that I could not have 

finished this research in other institutions because the help and support of ASU and 

MLFTC were truly enormous and decisive to my study in many ways. Many other 

colleagues and friends read, reviewed, and listened to my research and gave me 

supportive feedback and encouraging comments. I am thankful to Woo Yeoung Kim, Dr. 

Sung Sang Yoo who shared their speculations on the scientification of education. I am 

also grateful to the Class of 2016 of the Educational Policy and Evaluation Program who 

gave me feedback in our classwork. 

  
 

  



 

 vi 

TABLE OF CONTENTS 

Page 

LIST OF TABLES ........................................................................................................... viii 

LIST OF FIGURES ........................................................................................................... ix 

CHAPTER 

1 INTRODUCTION ......................................................................................................1 

Background ..............................................................................................................1 

Problem Statement ...................................................................................................8 

Research Purpose ...................................................................................................13 

Definitions ..............................................................................................................14 

2 RESEARCH FRAMEWORK ...................................................................................17 

Paradigm ................................................................................................................17 

Paradigm Convergence ..........................................................................................17 

Cyborg: A Paradigm Convergence of Human and Machine Studies ....................19 

Exploring a Cyborg Space .....................................................................................27 

3 LITERATURE REVIEW .........................................................................................29 

Intellectual History Of Education Science .............................................................29 

Intellectual History Of Artificial Intelligence ........................................................57 

4 METHODS ...............................................................................................................69 

5 QUANTITATIVE ANALYSIS: BIBLIOGRAPHIC NETWORK ANALYSIS .....73 

Methodological Background ..................................................................................73 

Method ...................................................................................................................78 



 

 vii 

CHAPTER Page 

Findings .................................................................................................................85 

6 QUALITATIVE ANALYSIS: METAPHOR ANALYSIS ......................................97 

Methodological Background ..................................................................................97 

Method ...................................................................................................................99 

Findings ...............................................................................................................107 

7 CONCLUSION .......................................................................................................122 

Summary ..............................................................................................................122 

Policy Implications ..............................................................................................128 

REFERENCES ................................................................................................................135  



 

 viii 

LIST OF TABLES 

Table Page 

1. Multiple Layers Of Interdisciplinarity Measures .....................................................78 

2. The Number of Papers Per Each Category ..............................................................80 

3. Descriptive Statistics of Journal-Journal Bibliographic Coupling Network ............88 

4. Jaccard Similarity Index and Inter-Intra Coupling Scores per Discipline ...............91 

5. List of Interdisciplinary Journals in the AI Studies .................................................93 

6. List of Top 20 Most Cited Reference both from the Educational Psychology and AI 

Studies ....................................................................................................................103 

7. List of Top 20 Most Cited Authors both from the Educational Psychology and AI 

Studies ........................................................................................................................105 

8. Research Framework for the Metaphor Analysis ..................................................106 

  



 

 ix 

LIST OF FIGURES 

Figure Page 

1. Bibliographic Network’s Characteristic ..................................................................74 

2. Comparison of Directed Citation and Undirected Bibliographic Coupling Network

......................................................................................................................................78 

3. Annual Publication of Educational Psychology and AI Papers ...............................79 

4. Network Visualization: Evolution of Journal-Journal Bibliographic Coupling 

Network from 1961 to 2018 .....................................................................................86 

5. Journal-Journal Bibliographic Coupling Adjacency Matrix ....................................88 

6. Jaccard Similarity Index from 1961 to 2019 ............................................................90 

7. Visualization of Interdisciplinary Journals Identified through Community 

Detection ..................................................................................................................92 

8. Interdisciplinary Coupling Edges of the Sub-Disciplines ........................................94 

9. Proportion of Each Clusters in the Interdisciplinary Coupling Strength .................95 



 

 1 

CHAPTER 1. INTRODUCTION 

Background 

Human-like artificial intelligence (AI) is not sci-fi anymore. It is already 

here. Google kicked off the year of 2020 with the announcement that their advanced AI 

program had surpassed human doctors in predicting breast cancer with a mammography 

screening (McKinney et al., 2020). As the AI technology becomes widely adopted by the 

business sector, companies use the machine to automatically detect less productive 

workers and fire them (Jee, 2020). In terms of language ability, the Chinese AI engine, 

Baidu, scored 90 out of 100 in the General Language Understanding Evaluation (GLUE) 

benchmark test, surpassing the average human score of 87 (Hao, 2019; The General 

Language Understanding Evaluation, 2020). It is a non-trivial achievement considering 

that the GLUE includes human-level reading comprehension such as identifying a 

pronoun it from multiple candidate nouns, as well as detecting topic, logic, and common 

sense and knowledge. Much more substantive progress has been unraveling in the self-

driving auto technology area. The Tesla company promotes its full self-driving package 

equipped with almost all human drivers' features and has recently announced its full self-

driving plan. In 2019, autonomous trucks crossed the US from west to east in three days 

as they could run day and night without sleep. It is not even eye-catching news anymore 

that AI programs defeated human players in various games such as chess, Go, and 

Starcraft. AI robots now train themselves to find rules and patterns without any human 

input, with emergent intelligence technology. For instance, the OpenAI company created 

a robot hand that detects Rubic’s cubic problem solution and plays with it without any 

given initial clue of this object. Nasr et al. (2019) found that the deep neural network 
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designed for visual recognition learned the concept of quantification and abstract 

mathematical sense without explicit programming. Despite much skepticism about AI's 

true potential, it seems clear that living in a world transformed by AI technology is 

simply inevitable today.  

AI signals a technological advancement instrumental to our comfortable life and 

transforms our world from the fundamental level. More and more people believe that AI 

would bring cascade effects to industrial transformation and our society more broadly. 

Either with a positive or negative outlook, most scholars agree that the emergence and 

broad application of automated robots will mark a new revolution in human history, 

commensurate with the previous agricultural and industrial revolution (Bostrom, 2014; 

Harari, 2014; Schwab, 2016). From the perspective of big history, Harari (2014) saw that 

with the invention of AI, human evolution does not rely on natural selection anymore but 

more on intelligent design, which can create another independent life with a digitized 

human mind. Brynjolfsson and McAfee (2014) insisted that we had enhanced and 

augmented our physical body for the last two centuries since the industrial revolution 

initiated by the invention of a steam engine, which he named as the first machine age and 

then now is the moment of the second machine age wherein the intelligent machines 

enhance our mental force. Schwab (2016), a founder of the World Economic Forum 

(WEF), called this change the fourth industrial revolution, defining it as a megatrend 

driven by industrial automation. He saw that our next generation's significant challenges 

would come from this fundamental change in the industrial system. Bostrom (2014) 

considered that human civilization would reach a testing moment sooner or later due to 

the enhanced AI that outperforms humans in most intellectual domains, shifting the 
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ontological ground of human-being. Despite small variations in their perspectives, AI 

scientists and scholars commonly assume that there will be a point-of-no-return where the 

ontological ground of human-being will be significantly changed due to the 

outperforming AI. 

AI's invention also marks the end of human centrism, a continued epistemological 

legacy since the renaissance. We, humans, self-nominated ourselves as the most 

intelligent beings on earth, calling ourselves Homo Sapiens, the wise man. In this way, 

intelligence superior to other beings was a strong basis for recognizing ourselves as 

privileged beings. However, as the machinic intelligence emerges with AI technology, 

this presupposition becomes no longer tenable. Mazlish (1993) argued that the 

discontinuity assumed between humans and machines was demolished with the advent of 

intelligent machines. He recognized that any refusal to accept the machine as an 

intelligent being, whether it is fear or resistance, stemmed from our centrism sustaining a 

belief that we, humans, are unique beings not replicable by the other creatures. As an 

extension to Jerome Bruner, who insisted on three discontinuities assuming human as a 

pure, rational, unique, and superior creature, he called this persisting perception denying 

a connection between human and machine as the fourth discontinuity. He predicted that 

we would plan our future with these machines only after overcoming the discontinuity 

assumed between humans and machines. In a very similar manner, Haraway agreed that 

the development of machine intelligence is “the fourth wound” (Gane, p.141) to narcissist 

humanity. According to her statement, this new invention of machines implies that even 

machines can be lively like humans. She captured this point very succinctly by saying, 

“Our machines are disturbingly lively, and we ourselves frighteningly inert” (Haraway, 
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2016, p. 152). Like Mazlish (1993), she wanted people to accept the continuity between 

human and machine, being playful with the boundary to envision our future in the more 

flexible way  where we are decentered from our universe and more open to other beings.   

As robots proved their agility and intellectual superiority over humans, people 

started recognizing the disruptive AI technology's possible impact. The economists were 

one of the first to notice this change and explored its disruptiveness. The National Bureau 

of Economic Research (NBER) invited economists to the first conference on AI 

economics in 2017, and the proceedings were published as a book of The Economics of 

Artificial Intelligence: An Agenda. This book included the most extensive and systematic 

reviews that have been made so far by social scientists concerning the impact of AI 

technology on our society. In this book, the economists discussed the future social 

transformation based on expert-level knowledge of the most recent AI technology among 

prominent AI scholars. The papers covered the mechanism of AI, its impact on 

innovation practice, and its socio-economic impact. 

Although pessimists do not believe in dramatic technology-led economic 

development, this book's authors generally agreed that innovative technology could open 

up the next chapter of human history, boosting the quality of life and economic 

productivity. For these economists, AI, particularly the most recent development of 

machine learning (ML) algorithm revolutionizing AI mechanism, is the general-purpose 

technology (GPT), a game-changer of business, industry, and research mechanism, a 

significant upheaval to our existing social order. The GPT is a technology of technology, 

that can set new paradigm, and has high applicability across many different sectors. 

Examples of GPT are steam engines, electric motors, computer chips, and even human 
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intelligence. The economists said that whenever there was an invention of GPT, it 

revolutionized our civilization, bringing industrial revolutions. The AI is even regarded 

as the last invention because it imitates human intelligence, one of the most versatile 

GPTs, and even aims to surpass it. 

The economists believe AI to be the GPT for several reasons. Brynjolfsson et al. 

(2019) insisted that AI can be applied to a wide range of tasks in the current human 

occupation, more than 45% of the total 2,000 distinctive human tasks across occupations, 

and cultural and institutional resistance to the change is the only last barrier remaining at 

this moment. Taddy (2019) classified ML a GPT because it is getting cheaper and faster 

with a linear performance increase over time. Cockburn et al. (2019) saw that the 

invention of ML would bring a fundamental change in scientific inquiry tradition, 

shifting its focus away from mini-scale causal effect to massive multi-causal effect. They 

predicted that the ML would reshape the research and development (R&D), previously 

intensive but inefficient search tasks. Agrawal et al. (2019) insisted that given the fact 

that innovation occurs with a combination of existing knowledge, the ML, an algorithm 

good at combining accumulated big knowledge would take over human researchers’ role 

in creating innovation.  

Despite skepticism about AI's revolutionary impact, another consensus among the 

economists in this book was that the policy intervention should be ready for future 

economic transition led by automation. Although the authors generally agreed that AI 

would have a positive impact in the long term, they unanimously subscribed to the short-

term projection that social instability is inevitable due to massive job loss. They predicted 

that the consequence of automation in the short and medium-term would be a widening 
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gap between winners and losers. Firstly, there was a concern over the speed of 

automation in the industry, assuming that overhype of automation in the business and 

public sector in a relatively short period would bring a social crunch. The economists 

warned that the possible mismatch between labor demand and workers skills would 

translate into a vast and painful social burden (Acemoglu & Restrepo, 2019; Bessen, 

2019). Secondly, some of them were concerned about AI technology as it tends to replace 

human labor rather than enhance human capability. They suggested an extreme scenario 

that the AI would possibly replace human work almost 100%, considering its speed of 

improvement and sophistication at the current speed (Korinek & Stiglitz, 2019; 

Trajtenberg, 2019). This group of economists warned that our society should be ready for 

a fundamental restructuring of our job, economy, and life, whatever the speed of change 

toward automation we have. 

Now, governments and international organizations scrutinize AI in order to 

predict our future in the longer term. Recently, the US government embarked on a more 

systemic AI technology study to envision its broader social impact. The special report of 

the Executive Office of the President (2016) set the tone of policy intervention to prepare 

for the AI-triggered social transformation. This report predicted that 47% of current 

occupations would be destroyed by automation in a decade in its worst-case scenario. The 

report also saw that the most affected by this change would be low-income and low-

skilled workers. Based on this argument, the report suggested three policy directions, 

including enhancing research and development (R&D) capacity for AI, supporting 

education and training of the workers, and securing a social safety net for the massive job 

transition. According to this report, the US government scaled up its effort to be ready for 
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the AI technology transformation. The White House launched the American AI Initiative 

with a clear intention to maintain its industrial and research strength against the other 

international competitors. This initiative pledged to prioritize the AI sector and AI 

workforce development with a long-term investment in education and training. The 

federal government pledged to harness AI technology for government service and policy 

mechanisms. The impact of the US federal government's automation would be immense 

considering its power to set the standard of state bureaucracy and grant funding to 

research.  

At the international level, the Organization of Economic Cooperation and 

Development (OECD) has provided a serious policy and strategic approach in the advent 

of AI technology. In 2019, the OECD member countries declared the OECD Principles of 

AI, emphasizing that AI development should be responsible for its impact on human 

society (OECD, 2020). The principles focused on promoting democracy, 

humanitarianism, and social justice through AI technology. The OECD also mentioned 

that increasing transparency and explicability of the AI outcomes and mechanisms is the 

key to deploying AI technology with enhanced human-machine interaction. Also, G7 

Summit released the Statement on Artificial Intelligence in 2018, highlighting human-

centric, inclusive, and trustworthy AI innovation.   

In East Asian countries such as China, South Korea, and Japan, the divide 

between sci-fi and reality has already collapsed as the Google engineered AI program 

AlphaGo defeated the world human Go champion with a considerable margin in 2016 

South Korea. It was indeed a Sputnik moment for the East Asian countries where the 

people have played the Go more than 2,000 years and top players have been revered as 
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geniuses (Perez, 2017). Since then, AI technology has begun to dominate public 

discourse.. Also, people in East Asian countries have requested substantive government 

intervention plans to address the AI technology gap with the Western countries and 

enhance the social safety net in preparation for the expected massive job loss. In reaction 

to the AlphaGo shock, the East Asian country governments allocated a considerable 

budget to boost AI technology and established a governance system to support a social 

transition during the next industrial revolution (Perez, 2017, Asia Pacific Foundation of 

Canada, 2019). 

 

Problem Statement 

Despite the growing demand to study AI technology's social impact, there is not 

enough research in the education field on this issue. Such inattention is at odds with the 

emphasis on educational policy intervention in most current AI-related policy 

recommendations. Only recently, some scholars in education embarked on serious 

scrutiny of the intersection between disruptive AI technology and educational policy and 

practice. There are possibly three dimensions of the interplay between education and AI: 

(1) paradigmatic interplay at the research level, (2) practical application of automated 

machines for teaching, learning, and decision-making process, and (3) educational policy 

reform to prepare for automated industry. Nonetheless, most researches focused on the 

second and third dimensions of interplay, leaving  the first one relatively unexplored.  

Firstly, studies explore AI technology's practical application for teaching, 

learning, and educational decision-making process, estimating the effect of automation 

and digitization of educational processes. On the one hand, some studies explore AI in 
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education with the utilitarian perspective, emphasizing this technology's effectiveness in 

relation to the students’ learning and the school administrative system. An intelligent 

tutoring system (ITS) runs on AI engines customizing and individualizing students’ 

learning at the class level. At the administrative level, there are attempts to adopt a data 

dashboard, achievement prediction modeling, and automated student selection system to 

replace humans with algorithmic decision-making (Gulson & Webb, 2017a; 2017b; 

Marcinkowski et al., 2020). With this new AI-driven educational technology, scholars are 

interested in the effectiveness of this AI learning and administrative platforms compared 

to the conventional human-based system (see Corbett et al., 1997; Kulik, 2016; Ma et al., 

2014). One of these studies' focus is identifying the comparative advantage of machine-

human interaction against human-human interaction to enhance students’ learning. There 

has been still controversy over the effectiveness of machine-human interaction. There 

have been tensions between enthusiasts who advocate widespread technology diffusion in 

education and pessimists who criticize education technology as overhyping or a waste of 

money.  

On the other hand, some studies examine AI technology's application in education 

with a more critical perspective. These studies focus on the expansion of datafication and 

computational rationality of educational policy. This group of critical studies considers 

the increasing usage of data science, learning applications, an AI engine for the 

prediction of students’ performance, and rationalization of administrative allocation 

system as a symptom of big-brother governance (Decuypere, 2019; Gulson & Webb, 

2017a; 2017b; Means, 2019; Sellar & Gulson, 2019; Williamson, 2016). They insist that 

the black-box type of AI mechanism, an unexplainable decision-making procedure, can 
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cause ethical problems or even problems beyond our expectations. Also, they are 

concerned about the machines' biased decisions as they learn from human input, 

including a lot of noise and bias in it. The monopoly of the data infrastructure by the tech 

giants is also a concern for their critical research. 

Secondly, future work and labor are also foci of research interest, as the 

automated industry can significantly change our society in general. Thus, studies 

concentrate on workforce development concerning the replacement of human labor with 

the machinic forces. These studies emphasize educational policy reform to prepare for the 

automated industry considering education as an essential component to enhance STEM 

and R&D workforce development and instrumental to transforming society into a whole 

new era. However, there are two contrasting opinions surrounding the real impact of 

industrial automation. The educational policy reform scenario is substantially different 

depending on the belief in the potential power of AI. One group of scholars has serious 

concerns about the rising intelligent machines estimating their capacity to closely 

approximate human capacity. Economists such as Sachs (2019), Korinek and Stiglitz 

(2019), and Cockburn et al. (2019) consider automation as a real challenge as it can 

substitute a significant portion of human labor, and even high-skilled workers are not an 

exception. 

On the other hand, some studies consider AI technology as not being near to the 

human level capacity. They believe that humans will find their niche protected against the 

intelligent machines despite their increasing capacity. The belief in such a scenario is 

only possible as they assume fundamental discontinuity between human and machine 

intelligence. For instance, Aoun (2017), the author of Robot-proof: Higher Education in 
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the Age of Artificial Intelligence, insisted that future education should be designed to 

enhance “uniquely human cognitive capacity” (p. xviii), and raise our students to be 

creators. Similarly, Trajtenberg (2019) emphasized creative skill as the key for the 

workforce adaptation to the machine age, insisting on an educational revolution toward 

enhancing uniquely human skills. Oleinik (2019) insisted that the current AI model of 

neural networks is inherently limited to catch up with human creativity as it cannot 

generate metaphorical expressions, interact with other entities creating social 

connections, and predict unexpected patterns that the existing data do not provide.  

Despite this recent research boom exploring AI’s impact on education, a more 

fundamental level of intersection between AI and education at the paradigmatic and 

epistemological level remains unexplored. The scholars exploring AI's practical 

application in education tend to lean toward either of the opposite extremes: technophilic 

or technophobic perspectives. The former emphasizes the instrumental and utilitarian 

value of the AI for educational enhancement, while the latter frames human and machine 

relationships in terms of a dualistic rivalry. It reflects the fact that we perceive this 

technology as somewhat alien to ourselves. However, it seems misleading to consider the 

permanent divide between machine and human intelligence to be taken for granted, given 

the intellectual history wherein human and machine intelligence studies have been 

interrelated. As Mazlish pointed out, machine and human science is a “theoretical 

continuum”(Mazlish, 1993, p.6), cross-referencing and imitating each other. It is not a 

coincidence that the human brain and computing machines' comparative studies came to 

the fore at every critical historical juncture of the computing machines. For instance, John 

Von Neuman, a father of the modern computer, explained how the human brain and 
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computing machine could be explained with the unified theory of information processing 

in his famous book, The Computer and the Brain. At the dawn of machine learning (ML), 

Jeffrey Hinton and his colleagues, fathers of machine learning, published a book of 

Parallel Distributed Processing: Explorations in the Microstructure of Cognition. This 

book suggested parallel distributed processing (PDP) as a new architecture of machine 

intelligence imitation of the human brain process. In human science studies, the machine 

metaphor has been used to understand the human mind already for more than a century of 

its history. The physiological laboratory tradition established by Wilhelm Wundt (1832-

1920) made people conceive of the human mind as a materially constructed being. The 

computer machine's invention made scholars in human science imagine the human brain 

as an advanced information processor, which can process abstract symbols (Abrahamsen 

& Bechtel, 2012; Glaser, 1984; 1991). 

In that account, AI technology is a tool, paradigm, and epistemology of 

educational studies, especially for learning science and educational psychology 

interconnected with brain science. The intelligent machines reflect our zeitgeist, believing 

that the full features of human intelligence are based on materiality to be imitated 

mechanically. Unfortunately, the existing literature about AI technology, including 

education studies, have largely overlooked an intellectual history of the interplay between 

human and machine science studies, profoundly engaging with each other in creating a 

common knowledge of intelligence. Sciences of a machine and human intelligence are 

extensions of the human desire to strengthen our control and prediction power over the 

world by programming intelligence. They use the same language to represent information 

processing in biological and mechanical circuits. Thus, as Graham (2002) insisted, such 



 

 13 

advanced human science and technology made us reconsider a conventional way of 

defining a human as a purely natural organism, while the mechanical device of high 

intelligence was gradually “assimilated into nature as a fully functioning component of 

organic life itself” (p. 53).  

  

Research Purpose 

This research lies where the modern conception of human and machine 

intelligence is co-constructed or at least emerged as a twin birth. There is a growing need 

to explore this grey area where human and machine intelligence converge and are not 

conceptually differentiated as such hybridity was a force of framing our education as an 

education science, scientific modeling of human learning. This research hypothesizes that 

the underlying assumption on the human mind, intelligence, and behavior framing our 

modern education shares a common knowledge with machine science, which tested 

various hypothetical models of human-like intelligence and its optimization.  

Given this hypothesis, this research intends to describe how the paradigmatic 

hybridity between human and machine science studies is textured. This research 

examines how the studies of artificial intelligence and education science have interacted 

with each other by analyzing (1) the number of standard references they share as its 

paradigmatic commonplace and (2) the main conceptual anchors connecting these two 

seemingly distanced disciplines. With this extended recognition of the convergence 

between the two, this research ultimately strives to get a new sense of reality: Our 

modern education has been situated in parallelism between “mechanization of mind and 
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humanization of machine” (Dupuy, 2010b, p.229), thus ambiguously assuming the 

human mind as something in-between machine-like mind and human-like machine. 

Accordingly, the research questions are set as follows: What is the interplay 

between the studies of education science and AI studies at the paradigmatic level? 

• To what extent and how do they converge with each other? (Quantitative study) 

• What do they share as standard features in their basic conceptualization? 

(Qualitative study) 

• What are the implications of such convergence for the future of the education 

field? 

 

Definitions  

In this research, the education science means a subfield of education studies 

having mechanical perspective in the human mind and possibly including educational 

psychology, learning science, and cognitive science in education studies. These studies 

predominantly use scientific and mathematical models, mostly borrowed from the hard 

sciences such as biology, physics, and statistics, to explain humans’ mental phenomena 

and improve human learning. The pursuance of this scientific feature in the education 

science studies is well described in the paper of the National Research Council (NRC, 

2000, p. 3): 

The essence of the matter, the origins of the universe, the nature of the human 

mind—these are the profound questions that have engaged thinkers through the 

centuries. Today, the world is amid an extraordinary outpouring of scientific work 

on the mind and brain, on the processes of thinking and learning, on the neural 

processes that occur during thought and learning, and on competence 
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development. The revolution in the study of the mind that has occurred in the last 

three or four decades has important implications for education. 

This study specifically selected educational psychology to represent the education 

science because its size and impact are immense in educational studies' history 

(Lagemann, 2000; Mayer, 1992). From behaviorism to cognitive psychology, educational 

psychology has always been at the center of the education studies' research paradigm and 

continuously influenced educational policy and practice (Anderman, 2011; Mayer, 1992). 

Educational psychology scholars have been pushing forward scientification and 

rationalization of educational research and practice by framing educational psychologists 

as scientist-practitioners (Hagstrom et al., 2016) and diffusing medical discourse into the 

education sphere using diagnostic terms such as learning disability (Mehan, 2014).  

On the one hand, many people believe that AI targets human like cognitive 

behavior. Khakurel et al. (2018) define AI in this way: “AI can be described as a cluster 

of technologies and approaches, that is, statistical and symbolic that aim at mimicking 

human cognitive functions or exhibiting aspects of human intelligence by performing 

various tasks…” (p. 2). However, people often misunderstand one of the specific AI 

techniques machine learning (ML), as the entire AI technology community. A deep 

neural net, the core of the ML, is a massive parallel distributed model processing 

information in a complex network of superficial multilayered nodes and their connections 

exchanging input and feedback. Although the human neuron initially inspired the deep 

neural net, the technology evolved into much more abstract models combined with 

various statistics and mathematical theories. Recent AI research is goal-oriented, 

pursuing the best performance and prediction rate, not its modeling's explicability and 
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generalizability. Thus, people believing that ML is the AI are easily misled to conclude 

that AI is not related to human-like intelligence. However, the reality is much more 

complex, and AI is not defined in a single term and field of practice because AI is such a 

massive assemblage of various sub-disciplinary studies, and it has even constantly 

evolved into various shapes throughout history (Crane, 2003; Konar, 2000).  
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CHAPTER 2. RESEARCH FRAMEWORK 

 

Paradigm 

Paradigm is an essential concept in this research, which aims to explore the 

common area between the two distinct fields of education and machine science, or the so-

called cyborg space. Thomas. S. Kuhn first popularized this term and definition. He said 

that the scientific community is based on joint prior achievement providing foundational 

knowledge and practice, what he termed normal science and more broadly used the term 

paradigm to explain it. He defined a paradigm in terms of  “some accepted examples of 

actual scientific practice - examples which include law, theory, application, and 

instrumentation together - provide models from which spring particular coherent 

traditions of scientific research” (Kuhn, 1996, p.10). The paradigm indicates consensus 

and commitment – constituted of the standardized rules and theory to follow. Hence, the 

paradigm is maintained by “strong network of commitment” (p. 42) at the conceptual and 

methodological levels alike. The scholars can comfortably dwell in this consensual 

research practice because the existing knowledge and theory provide well-defined 

problems and questions for their research. However, Kuhn himself never clarified 

research methods to identify and substantiate the existence of a shared paradigm in 

scientific research (Small, 2003). His research was rather conceptual and philosophical, 

mostly supported by anecdotal and conceptual evidence, drawing criticism for its 

subjective interpretation of the paradigm and normal science (Haraway, 1972). 
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Paradigm Convergence 

Thus, this study refined an elusive Kuhn’s paradigm to create an operational 

definition of it in order to  identify, measure, and explore the interdisciplinary area where 

the research paradigms converge. Two approaches provide a methodological frame to 

study the scientific paradigm more systematically. First, Small (2003) insisted that the 

scientific paradigm is quantifiable and measurable through its bibliometric structure. The 

bibliometric structure is the academic community structure represented as a network 

among research papers and textbooks using their metadata such as authors, keywords, 

institutions, and cited references. Small (2003) wanted to make Kuhn’s elusive paradigm 

more testable by analyzing this quantifiable bibliometric network structure. He found that 

Kuhn alluded that communication and referencing patterns - the object of bibliometric 

analysis - can be evidence of a shared paradigm. Also, Kuhn emphasized that textbooks 

and references are crucial in reproducing past research achievements and maintaining a 

homogenous research paradigm among scholarly community members. Therefore, Small 

(2003) assumed that each research paper could be a proxy of a scientific concept, theory, 

methodology, and practice, although he admitted bibliometric interpretation is only an 

approximation to the original notion of paradigm raised by Kuhn. Then, shared keywords 

or references among these research papers represent the research paradigm.   

Second, shared metaphorical expression in the scientific community serves as 

evidence of a shared paradigm in the scientific community. Donna Haraway argued that 

Kuhn defined paradigm as a shared disciplinary belief and models used in exemplar 

research. Accordingly, she conceptualized the paradigm as a shared symbolic 

generalization built upon common belief, value, and exemplar research focusing on the 
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language and image use in the scientific community. Then, she insisted that the paradigm 

is composed of metaphors, a symbolic generalization of their modeling, saying 

“paradigms and their constituent metaphors are eminently community possessions whose 

principal value lies in their growing points” (Haraway, 1972, p. 5). Accordingly, her 

research traced the paradigm shift from mechanistic to organismic biology with a change 

in metaphor from atomism to animism. She insisted that such a metaphorical frame is 

pervasive in the real research practice, even influencing observation and lab testing. 

Therefore, in aggregate, the interplay between the educational science and AI 

studies at the paradigmatic level means a close communication between the two 

distinctive disciplines through specific cross-referencing patterns and shared 

metaphorical language expressions. This research aims to find evidence of such close 

communication between the two fields through bibliometric and metaphor analysis. 

Accordingly, this research will quantify the degree of paradigmatic convergence between 

the two fields through bibliometric analysis by measuring citation network structure and 

features. This research will also explore the detailed research content to find any 

language and symbolic evidence representing a shared metaphorical expression between 

the two fields. 

 

Cyborg: A Paradigm Convergence of Human and Machine Studies 

The concept and analogy of cyborg, which have been originally used to represent 

the human's transformed material basis, are irrevocably shifting due to the advanced 

technology. According to Muri (2006), Manfred Clynes and Nathan Kline were the first 

to coin the term cyborg to represent “self-regulating human-machine system” (p. 3). The 
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cyborg sometimes signaled humanity's bright future, expanding limited human capability 

beyond our material constraints by enhancing or transforming our physical body with 

new technology. Such a technophilic perspective or so-called transhumanism became a 

dominant paradigm of our modern society. Fukuyama (2004) pointed out the 

pervasiveness of transhumanistic desire in modern techno-science, occupying a dominant 

position that frames our socio-cultural fabric. In particular, he pointed out that the recent 

advancement of bio-medicine, gene therapy, and brain science reflects human desire to 

enhance itself to approximate the eternal being. Grunwald (2011) defined the modern 

world as a performance-enhancement society wherein everyone is obsessed with their 

enhancement to be in a better social position. In this social atmosphere, transhumanistic 

vision is not a radical idea anymore but everyone’s dream, thus being readily accepted 

and desired by the general public (Grunwald, 2011). In particular, the recent development 

of new technologies such as nanotechnology, biotechnology, cognitive science, artificial 

intelligence, and robotics reshaped the condition of human life. It enhanced 

transhumanists’ belief that our current definition of humanity is one in the permanent-

transitory human evolution process (Jeffrey, 2016).  

The general message from the most recent development of the transhumanists’ 

techno-philia is that the human mind and body are a materialistic, physical, and 

mathematical structure; thus, we can code and recode our operational functions to 

emulate its structure and function with reverse engineering technology. This paradigm's 

intellectual roots are cyberneticians of the early 20th century, including Norbert Wiener 

and Claude E. Shannon, who created the mathematical theory of machine and animal 

information processing. They claimed that the mathematical theory of the information 



 

 21 

process constituted of input, output, feedback, and control is commonly applicable to 

animate and inanimate beings and humans are not an exception (Wiener, 1985; 1989). On 

that account, Ray Kurzweil (2012a) emphasized the human brain and computer 

parallelism, explaining that “statements along these lines (the brain is not a computer) are 

akin to saying, “Applesauce is not an apple." Technically that statement is true, but you 

can make applesauce from an apple…a computer can become a brain if it is running brain 

software. That is what researchers, including myself are attempting to do” (p. 181). 

Kurzweil (2012a) argued that this brain-machine parallelism is a source to build a better 

intelligent machine for the next step of evolution. He suggested that biological 

understanding can inspire the creation of machine intelligence. The ultimate human 

enhancement through mechanical structure and function is the common desire lurking 

inside transhumanists’ dreams. Kurzweil's vision of uploading the mind to the computer 

is one of the outgrowths of technophilic vision to enhance humans beyond the organic 

frame. 

On the other hand, the cyborg has represented a dystopian techno-future where 

the machinic transformation severely impairs humanity's purity and integrity. Muri 

(2006) found that films and fiction used cyborg to describe “troubled, dark, corrupt, or 

post-apocalyptic future” (p. 4). In academia, there has been a prolonged technophobic 

sentiment. Religious critiques insist that once our mind escapes the organic body, we will 

lose our soul, the fundamental essence of the human endowment from God (Lilley, 

2013). According to Zimmerman (2011), Heidegger warned against the techno-

utopianism concerning human instrumentalization to serve the techno-industry. 

Zimmerman (2011) said that “According to Heidegger, even though humans may think 
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themselves to be in charge of technoscience, in fact, we are servants of the technological 

juggernaut. Technology is no longer a means to human ends, but rather an end in itself” 

(p. 104). He also pointed out that Heidegger was expressly against computer technology, 

calling it “the self-release of being into machination". This release takes a man into 

unconditional service. In a similar vein, Dupuy (2010b) denounced transhumanists’ 

endeavor, especially the cybernetics movement led by Norbert Wiener, calling it “a 

decisive step in the rise of antihumanism” (p. 228). Dupuy (2010b) claimed that cognitive 

science's primary task is demystifying the human mind as a mere machine kind, only 

threatening humanity. Francis Fukuyama (2004) also disputed transhumanism, calling it a 

dangerous scheme threatening American egalitarianism and liberalism. He considered 

that human equality was built upon an assumption that all human beings share some 

uneducable human essence, which became a bottom line to establish political liberalism. 

The posthumanists’ cyborgism suggested by Donna Haraway and her colleagues 

provided a new perspective of neither technophilic nor technophobic point of view. 

Through her academic essay  Cyborg Manifesto, Haraway (2016) suggested what we, 

especially for feminists, should be after this technological and material-based-modernity, 

where all the traditional boundary surrounding humans has irrevocably shifted. Cyborg 

was her creation to represent the hybrid and flexible boundari-ness of our being, against 

the humanistic and human-centered classical Western world view, which emphasized the 

fixed purity and essence of being human. She defined the cyborg as "a cybernetic 

organism, a hybrid of machine and organism, a creature of social reality as well as a 

creature of fiction" (Haraway, 2016, p. 5). This definition indicated that the cyborg is an 

ambivalent entity that is not only real but also fictitious. Firstly, the cyborg is a real thing 
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in that we have created our material bases on cybernetics and information theory, which 

included mechanization of our own body and social system. Our lives are conditioned by 

miniaturization, microelectronics, and mechanical, industrial circuits with an advanced 

electronic industry. Communication sciences translate our being into programmable 

codes, and biotechnology writes and rewrites that code. She succinctly summarized these 

conditions as "Biological organisms have become biotic systems, communications 

devices like others. There is no fundamental, ontological separation in our formal 

knowledge of machine and organism, of technical and organic" (Haraway, 2016, p. 60). 

Secondly, the cyborg is fiction, a metaphorical assemblage of the anti-humanistic ideal of 

Haraway. She mentioned that "A cyborg body is not innocent; it was not born in a 

garden; it does not seek unitary identity and so generate antagonistic dualisms without 

end (or until the world ends); it takes irony for granted. One is too few, and two is only 

one possibility" (Haraway, 2016, p. 65). Jeffrey (2016) saw this strategy of using cyborg 

as a metaphorical tool as her "deliberate irony" (p. 25), picking up cyborg, the product of 

modern industrial-military complex, as a symbol of fighting against the holistic and pure 

human ideal of humanism. 

Haraway herself was once a part of early transhumanists, a cybernetic group. In 

the interview with Gane (2006), Haraway revealed that her intellectual trace is similarly 

hybrid like a cyborg, trained in biology and laboratory experiment and then moving into 

critical and feminist movement studying science history. Given this dual background, 

there is sympathy toward her former colleagues and intellectual home in the lab on the 

one side of her mind. She confessed that she enjoyed meeting organisms in her early 

career in the laboratory as objects of knowledge. She said, "For me, it was always about 
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the materialities of instrumentation of organisms and laboratories, [I was] really 

interested in the various non-humans on the scene. The Cyborg Manifesto came out of all 

that" (Gane, 2006, p. 136). Haraway  said that she was also in the core group of 

cybernetic and biological study at her time under the advisement of Evelyn Hutchinson, 

one of the prominent biology scholars who adopted cybernetic theory for the biological 

descriptions.  

Haraway’s background and experience of once being a part of the cybernetic 

group in biology may have influenced her not to fear  the rapid technological advance but 

rather recognize it as a condition we live with. She said, "This is about those objects that 

we non-optionally are. Our systems are probabilistic information entities. It is not that 

this is the only thing that we or anyone else is. It is not an exhaustive description but it is 

a non-optional constitution of objects of knowledge in operation" (Gane, 2006, p. 139). 

Also, she mentioned that "I’m sympathetic to certain kinds of cybernetic efforts to think 

through autopoiesis" (Gane, 2006, p. 139), a little bit distancing herself from the critical 

theorist against transhumanism. She added that even though such a material condition has 

many problems, "we had better inhabit as more than a victim. We had better get it that 

domination is not the only thing going on here. We had better get it that this is a zone 

where we had better be the movers and the shakers, or we will be just victims" (Gane, 

2006, p. 139). She said that technology is not a thing to fear but rather a thing to play and 

live with, explaining, "The machine is us, our processes, an aspect of our embodiment. 

We can be responsible for machines; they do not dominate or threaten us. We are 

responsible for boundaries; we are they" (Haraway, 2016, p. 65). 
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What Haraway was most outrightly against was the dominance of any radical 

single vision and narratives. She criticized radical transhumanistic visions such as mind 

uploading to machines suggested by Morevec, blaming such insistence as ahistorical and 

short-sighted vision. Primarily, she emphasized that the mind without embodiment is an 

impossibility, saying, "I don’t care what you are talking about, but if you think that 

virtualism is immaterial, I don’t know what planet you are living on!"(Gane, 2006, p. 

148). She also said the situation wherein everything was turned into codable information, 

which is necessarily inseparable from the global capital and commodification of life, is 

not a desirable condition she imagined; instead, it was close to a nightmare. Besides, 

Haraway also criticized classic humanists for their human narcissism. Inspired by 

Derrida's essay on three wounds to human narcissism, constituted by Copernican, 

Darwinian and Freudian wounds, Haraway suggested the emergence of lively machines 

as the fourth wound of human-centric narcissism. By recognizing and adding lively 

machines near us to  the list of “the wounds of human narcissism,” Haraway emphasized 

our relationality with even non-organic existence. She also tried to provoke humanistic 

thinkers by reminding them of intelligent machines having a creative ability. On the same 

ground, she also criticized critical philosophers of technology, saying, "it is crazy to be 

stuck in that relentless complaint about technology and techno-culture and not getting the 

extraordinary liveliness that is also about us" (Gane, 2006, p. 142). 

Haraway dreamed of a fundamental ontological and epistemological turn, 

opposing the classic humanists’ ideal of pure soul and quality difference between humans 

and other beings. Transhumanists and cyberneticians insisted earlier that posthumanists 

also accept that subjectivity or intelligence can emerge from inorganic beings. Hayles 
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(2010) captured this point saying “…subjectivity is emergent rather than given…” (p. 

291). This point indicates that subjectivity can be emergent in any animate or inanimate 

beings in their embodiments, as she recognized the intelligent quality of connectionists’ 

deep neural circuit. Similarly, Braidotti (2013) realized that Guittari’s recent perspective 

about the self-organizing matters already recognized qualitative contingency between 

organic and inorganic matters, thus defining machines as intelligent and generative 

beings. The posthumanists and Haraway emphasize that recognizing a quality of 

machinic intelligence is to abandon a human-centric worldview and redefine ourselves as 

a more relational being. Hayles (2010) also stressed that in the posthumanist world view, 

“partnership between humans and intelligent machines replaces the liberal humanist 

subject's manifest destiny to dominate and control nature” (p. 288). She argued that our 

question is not whether we will become transhuman or not, but instead how we will 

incorporate intelligent machines. 

In that regard, posthumanists pursue coexistence with other intelligence agencies 

on the future planet. Hayles (1999) wrapped up her famous and controversial book 

of How we Became a Posthuman, saying: “Although some current versions of the 

posthuman point toward the antihuman (transhumanism) and the apocalyptic (anti-

transhumanism), we can craft others that will be conducive to the long-range survival of 

humans and of the other life-forms, biological and artificial, with whom we share the 

planet and ourselves” (p. 291). Braidotti (2013, p. 60) also mentioned that posthumanists’ 

relational boundary was almost limitlessly expanded beyond egoistic human self as such 

a transhumanists’ mechanistic and materialistic vision on consciousness convincingly 

claimed universality of subjectivity codable on the infinitely expandable circuit of 
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information. In this way, the posthumanists’ world view on the intelligent being expands 

beyond transhumanists' narrow and technical definition. In posthumanism, any intelligent 

entity is already ethically treated as an autonomous being, not the object of intervention 

or control. 

 

Exploring a Cyborg Space 

As illustrated so far, the concept of the ‘cyborg’ gives a glimpse of how to 

interpret human and machine integration in the time of advanced AI technology. 

Particularly, Haraway succinctly captured new posthuman conditions defined by fast 

evolving electronic, communication, and computational technology, using a cyborg 

metaphor that symbolizes human-machine hybridity. Haraway’s cyborg is also our 

imaginary being, based on a belief that humans and machines are the same kind of 

information processor, being considered comparable and even compatible. The cyborg 

has been considered a convincing theoretical model explaining modern revolutionary 

shifts with rising techno-science (Mirowski, 2002; Pickering, 2009). In the social science 

field, Mirowski (2002) attempted to frame modern economics as a cyborg science closely 

interacting with cybernetics and AI development. Pickering (2009) claimed that cyborg 

science, an inheritance of wartime regime in the 20th century, was instrumental in 

creating a new paradigm of social science studies. However, in education studies, an 

attempt to frame education as a cyborg science has been almost missing, although its 

knowledge is deeply rooted in the cybernetics-related mind sciences such as psychology, 

cognitive science, and neuroscience. Thus, this research will explain how the hybridity 

and convergence of human and machine intelligence and the learning process has 
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emerged in the intellectual history of cross-reference and the cross-metaphor of human 

and machine mechanisms. The next two literature review chapters will then introduce the 

intellectual history of education science and artificial intelligence wherein the cyborg, 

hybridity of human and machine, has been nurtured and become a dominant paradigm 

framing human and machine intelligence. 
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CHAPTER3. LITERATURE REVIEW 

Intellectual History Of Education Science 

Education study is multidisciplinary in nature, combining and interacting with 

various other fields of study such as philosophy, history, politics, sociology, psychology, 

statistics, anthropology, and economics (Lagemann, 2000; Mehta, 2013). At the same 

time, the multidisciplinary nature of the education study has made it vulnerable to outer 

influences. Lagemann (2000) pointed out the vulnerability of education study, saying that 

“…this domain of scholarly work has always been regarded as something of a stepchild, 

reluctantly tolerated at the margins of academe …” (p. x). In turn, as can be seen from the 

report commissioned by the National Research Council (Bransford et al., 2000; 

Shavelson & Towne, 2002), which declared education study as education science, such a 

vulnerability made education scholars and communities pursue its intellectual 

trustworthiness by borrowing scientific features from other sciences. Amongst the many, 

the so-called mind sciences (such as psychology, cognitive science, and neuroscience), 

which are characterized by rigorous experimental data collection methods, quantification, 

and objectification that mostly borrowed methodological orthodoxy from hard sciences, 

have made the most remarkable impact on the tradition of education study shaping its 

paradigmatic base (Glaser, 1984; 1991; Mayer, 1992; Bransford et al., 2000). On that 

ground, this chapter aims to illuminate the history of education studies from the 

perspective of broader intellectual currents which have shaped mind sciences in general. 

In particular, this paper focuses on how machines, with the advent of advanced science 

and technology, made people understand that the human mind is a machine, thus 
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reshaping a mechanical view of the human mind that has ruled mind sciences for the last 

several centuries. 

 

Defining the mechanical perspective 

The meaning of a mechanical perspective is manifold, but the mechanical 

perspective will be defined in two ways in this chapter. First and foremost, there is an 

explicit mechanical perspective that refers to machines to explain non-mechanic things 

such as organisms and natural phenomena. Such an analogy entails the presumption that 

machine and non-machinic beings are fundamentally the same, thus being comparable 

and even compatible with each other. Garber (2002, p. 185) found that the mechanical 

philosophers around the 18th century believed that “the whole world can be treated as if 

it were a collection of machines.” Robert Boyle, one of the founders of mechanical 

philosophy, depicted mechanical philosophy as an attempt to explain the natural 

phenomenon in reference to Strasbourg's clock (Van Lunteren, 2016, p.767). Berryman 

(2003) said that the mechanistic perspective considers machines a perfect guide in 

examining natural phenomena but not vice versa. Boden (2006, p. 58) classified 

Descartes as a perfect example of a mechanical thinker on the ground that “he often drew 

explicit analogies between living creatures and man-made machines, seeing these as 

different in their complexity rather than their fundamental nature.”  

           Sometimes a mechanical perspective can be implicit when there is no explicit 

reference to machines. This includes any attempt to explain the natural phenomenon with 

mechanistic features such as functional, physical, sensible, and material features. Garber 

(2002, p. 185) said “According to the mechanical philosophy, everything in nature is to 
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be explained in terms of the size, shape, and motion of the small parts that make up a 

sensible body.” According to Van Lunteren (2016, p. 767), Robert Boyle also defined 

mechanical philosophy “as the attempt to explain all natural phenomena in terms of those 

“two grand and most catholick principles of bodies, matter, and motion.” Osler (2001) 

defined mechanical philosophy as thinking that “sought to reduce all causality to the 

contact and impact between particles and matter” (p. 154). This means that a mechanical 

perspective is an attempt to borrow the logic of natural sciences such as physics and 

chemistry to explain organismic and metaphysical entities. Boden (2006) defined a 

mechanical view on the human mind as a belief that “the same type of scientific theory 

could explain processes in both minds and mind like artifacts” (p. 168). In a similar vein, 

one of the reasons Boden (2006) saw Descartes as a mechanical thinker was that “he 

believed that the principles of physics could explain all the properties of material things, 

including living bodies” (p. 58).  

            In addition to the explicit and implicit categorization, Berryman (2003) agreed 

that there can be an exclusive and inclusive categorization of the mechanical view 

depending on its level of tolerance for the other ways of explaining the natural 

phenomenon. Exclusive mechanical perspective enshrines a mechanical perspective as 

sole way of gaining real knowledge. Berryman (2003) insisted that all mechanical 

perspective is exclusive as it does not allow any room for other thinking such as vitalism 

or holism.  However, such a clear-cut distinction does not apply to every case. For 

instance, dualistic views are using a mechanical perspective in explaining only a part of 

the natural phenomenon (Hatfield, 1995). Therefore, this paper will recognize an 



 

 32 

inclusive mechanical perspective as one of the different options for identifying 

mechanical thinkers' positions in history, what I term a quasi-mechanical view.  

 

A Machine As A Metaphor 

As the machine has evolved, our social norms and epistemic bases have changed. 

A machine represented our modern mode of logical thinking, while it became a robust 

conceptual and linguistic tool to deepen our self-knowledge, thus perpetuating the co-

production of technology and social norms (Jasanoff, 2004). Using the most successful 

and sophisticated machines and artifacts as a reference point to explain natural 

phenomena, we defined and redefined the world and ourselves (Van Lunteren, 2016, 

Jasanoff, 2004). The latest development of such recognition position our mind as a 

machine, which can be called a mechanical view of the human mind.  

The mechanical view on the human mind did not come in a day or a week. There 

was a long historical evolution behind the scene, which incrementally formulated our 

paradigmatic and epistemological base. This paper assumes that this change was 

incremental in the following two ways. Firstly, the object of mechanical reasoning was 

expanded from nature to the human body and body to mind. Secondly, with the advent of 

more sophisticated and authentic machines, machines' initial analogical expression was 

gradually replaced by the spread of thinking that a mind is a real machine. In other words, 

as the machine perspective advanced, our mechanical perspective on the human mind 

evolved from quasi-mechanical to the explicit and exclusive mechanical view, making it 

impossible to comprehend the human mind without mechanical logic.  
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Nature As A Machine 

After the Renaissance, there was a growing tendency to understand the natural 

phenomenon as a mechanical process (Merchant, 1980). It was signaled by Henry Power 

(1623-1668): “I think it is no rhetorician to say that all things are artificial: for nature 

itself is nothing else but the art of God” (cited in Cook, 2001, p. 133). This statement 

exemplifies how people started depicting the god as scientists, engineers, or skilled 

craftsmen creating complicated machines as technology advanced (Bullock, 2008; Cook, 

2001). Banfield (2011) assumed that most of the modern hard sciences, such as physical, 

biological, and social sciences, share some “founding metaphors” (p. 105). He found that 

the founding metaphors were shifted from animal spirits to electrical currents. In other 

words, this transition in metaphor from spirit to machine indicated there was a growing 

tendency to understand nature as materials having a purposive function, not a mystic and 

metaphysical force. In terms of the machine used to describe the natural phenomenon, its 

symbolic representation has changed as technology advanced. Van Lunteren (2016) 

found that the dominant metaphorical symbol of the machine used in depicting natural 

phenomenon has been changed from clock, balance, steam engine and finally to 

computer. Besides, Cook (2001) found that Robert Boyle understood the universe as “the 

operations of a vast machine that ultimately depended on the external agency of the 

divine artificer who created it” (p. 140). Charles Babbage (1791-1871) tried to prove that 

geological transformation is a mechanical process moved by a machine developing a 

calculous machine that could simulate nature-like irregularity out of the systemic 

mechanical structure (Bullock, 2008). 
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A Human Body As A Machine 

As a corollary of nature's mechanization, people started to understand the human 

body as a machine. Descartes was one of the earliest pioneers who explicitly expressed 

an understanding of animals and a human body as a machine - materially constructed 

functionaries - and established the basic methodological frame of an experiment for 

physiology (Black, 2014; Boden, 2006; Gardner, 1985; Hatfield, 1995). Descartes 

understood that humans' bodily functions follow physical law; mostly, he described the 

heart as a heat engine and explained its mechanism based on pure physical law (Boden, 

2006). This mechanical understanding of the human body let Descartes envisage bodily 

organs as machines (Black, 2014). Descartes’ idea of the mechanical view on the human 

body remained a lingering impact on the Western intellectuals. Salisbury (2011) found 

that renowned scientists of the early 20th century such as Thomas Edison (1847 - 1931) 

and Hermann von Helmholtz (1821-1894) understood that a human body was largely 

based on materialistic and mechanistic condition. Most recently, Campenot (2016) even 

insisted that without electric power in our body, we would be just “less than vegetables” 

(p.1).  

On the other hand, Descartes’ version of a human's mechanical view was only a 

partial endeavor as he left human mind as a territory of a holistic and mystic soul, 

autonomously controlling the mechanical human body (Black, 2014; Boden, 2006). His 

description of the human mind was still ambiguous. Boden (2006) found that Descartes 

acknowledged the mind as having an independent and autonomous free will apart from 

the mechanical body, while he also recognized that body and mind are physically 

connected. That is, on the one hand, Descartes continued differentiating the holistic mind 
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from the mechanical body. However, on the other hand, Descartes also sensed that the 

mind and the physical brain are correlated. In this way, Descartes obscured the line 

between the materialistic and immaterialistic view of the human mind, putting 

uncertainty into its study. Hatfield (1995) considered that the Cartesian dualism of mind 

and body begot contradictory results. Firstly, the differentiation of mind and body 

justified establishing separate disciplinary study specific to the human mind, psychology. 

Secondly, but ironically, a Cartesian origin of psychology was made vulnerable to the 

intervention of physics and quantification of the human mind as Descartes also invented a 

physical approach to the human mind through physiological experimental study 

(Hatfield, 1995, p. 194). 

 

A Human Mind As A Machine 

It was not until there was a significant progress in the human brain's anatomy that 

the human mind was depicted as a mystic soul given by God. Salisbury (2011) suggested 

how the advanced anatomical skills, so-called technologies of seeing inside, changed our 

view of our brain and mind. For this, Salisbury examined the case of Broca's brain 

anatomy and penetration. Paul Broca (1824-1880) implemented an autopsy of one brain 

whose language competency was impaired and found that the brain damage at the brain's 

specific location was correlated to the dead person’s incompetency. Based on this 

discovery, Broca mapped out a brain structure with the conviction that a specific location 

in the brain may imply structural bases of certain functions of human minds. Salisbury 

(2011) considered that this localized brain function theory became the mechanical model 

of language production and mind. He insisted that people started using the metaphor of a 
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machine to describe brain functions as the technology opening up our skull to see inside 

of it advanced. For example, Wernicke described a damaged brain causing language 

problem as ‘the malfunctioning telegraph’ (Salisburg, 2011), and Edison admired the 

sophistication of the human brain by describing the brain’s subsets as a phonograph 

cylinder, one of his inventions (Salisburg, 2011). Besides brain anatomy, Boden (2006) 

and Husbands et al. (2008) found that at the end of the 19th-century, neuropsychologists 

influenced by Descartes’ mechanical view uncovered the mechanistic base of the nerve 

system in the human brain. One of the strange figures in this field, Alfred Smee, insisted 

that he could explain all types of human thought and behavior based on an electrical 

machine in the nerve system (Boden, 2006). Danziger (1990) saw that the advance of 

brain anatomy and physiology brought a view that brain function binds to structure; thus, 

the function of the human mind could only be defined through structural identification. 

 

Since the early 20th century in Western countries, more radical thought has 

emerged. At that time, some of the radical thinkers proactively conceptualized the human 

mind as a real machine, diverging from the metaphorical representation of the human 

mind in its previous time. Black (2014) concluded that thinking about the human mind as 

a machine entails the assumption  that “(minds) are interchangeable with other machines 

and whose functioning can be understood by looking at machines rather than our bodies 

themselves”(p. 9). He called this epistemological stance “backward causation”(p. 9). 

Boden (2006) explained how radical it was to bring an idea of the mind as a real machine 

in the early 20th century by saying, “Maybe minds are machines, too! As late as 1930, 
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this shock-horror thought had not even attained the status of a heresy. It was not a heresy, 

because no one believed it. Indeed, no one had even suggested it” (p. 168).   

These thinkers were from the various new fields of engineering, cybernetics, 

computation, and psychology. Admittedly, the development of computer and computer-

related information technology during the Second World War period through cybernetics 

and computer engineering made a significant contribution to mainstreaming this idea 

(Gardner, 1985). A father of modern computing and artificial intelligence, Alan Turing 

(1912-1954) was one of the early contributors of this paradigm shift, envisaging the 

human mind as a real machine (Husbands et al., 2008). Hodges (2008) found that his 

wartime experience of code-breaking of German’s communication system and following 

the success of mathematical development of computation made him incrementally 

convinced that minds are machines. McCulloch (1889-1969), as a psychologist,  said, 

“Everything we learn of organisms leads us to conclude not merely that they are 

analogous to machines but that they are machines’’(Boden, 2006, p. 182). Kenneth Craik 

(1914 - 1945) was also the pioneer of such a paradigm shift, who is often considered a 

founding father of cognitive psychology and cybernetics (Husbands et al., 2008). He 

raised the seemingly radical but critically influential idea that the human brain is one of 

the machine-kinds, not the other, based on his human nervous system's findings. 

Following him, Herbert Simon, one of the founding fathers of cognitive science and 

artificial intelligence, insisted that the human brain and computer are both adaptive 

information processors (Kline, 2011). 

 

Mechanical View In Mind And Education Sciences 
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As mentioned earlier, there is a view that the intellectual history of education 

study can be defined as a rationalization process pursuing more rigorous scientific 

knowledge and practice borrowed from mind sciences. In a sense, this rationalization 

process made the human mind's mechanical view more pervasive in education studies 

and mainstreamed such a view as a dominant epistemic base. In other words, a growing 

number of scholars in education studies started to explicitly depict the human mind as a 

machine, having specific quantifiable and material features. Some scholars were 

immersed into the mechanical view, accepting that the human mind can be understood 

with its materiality and functionaries in the same way that we measure objects in natural 

sciences such as physics, chemistry, and biology. Given this account, this section will 

present how the mind sciences accepted and cultivated the mechanical view of the human 

mind and then transferred this view to education studies. 

Charles Darwin and Wilhelm Wundt. America's early modern psychology was 

nurtured and inspired by Charles Darwin’s evolutionary theory (Boakes, 1984; Green, 

2009; Greenwood, 2008) and Wilhelm Wundt’s physiological psychology (Boakes, 1984; 

Danziger, 1990). It brought uncertainty to American psychology as Darwin was a 

naturalist believing the vital and active force of organisms, while Wundt was more geared 

toward fixating organisms under experimental mechanical conditions. This section will 

describe how this contradictory dream of naturalism and a mechanical worldview co-

created early American psychology.  

Firstly, Darwin’s evolutionary theory revolutionized the Western intellectual 

community by breaking the boundary between animal and human. Darwin’s naturalism 

promoted the view that humans and animals have a strong continuity, not fundamentally 
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differentiated but distinctive to a degree (Boakes, 1984; Greenwood, 2008). Both 

functionalism and behaviorism shared the common paradigmatic ground that animal 

psychology shares a significant commonality with human psychology (Greenwood, 

2008). More than anyone else, Darwin influenced American psychologists to the extent 

that John Dewey and Edward Lee Thorndike commonly believed that the human 

condition could be improved by psychological intervention and enhancement 

(Greenwood, 2008).  

Secondly, the German psychologist Wilhelm Wundt (1832-1920) frequently 

appears as a critical figure who influenced American psychology's foundational figures in 

psychology history books. For example, Danziger (1990) marked the establishment of 

Wundt’s psychology laboratory at the University of Leipzig as modern psychology's birth 

date. Influenced by his research advisor Helmholtz who had a rather rigorous 

materialistic view of the human mind, understanding the human mind as a particular state 

created by chemical-physical forces (Boakes, 1984), Wundt’s research was also driven by 

the mechanical understanding of the human mind. According to Danziger (1990), Wundt 

believed psychology was a supplemental form of physics studying psychological 

causality. His laboratory was run almost the same as chemistry and physics labs in any  

German university, thus serving as the birthplace of experimental psychology. Wundt 

intended to apply the experimental method developed in physiology to psychology and 

psychological issues in speculative philosophies (Boakes, 1984). Such an innovative and 

pioneering effort made him one of the most influential and prominent figures for the 

fledgling academic society of American psychology. 
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William James: Mind Is Not A Soul. In the mid 19th century in the US, new 

generational scholars in philosophy and other natural sciences were influenced by 

European thinkers such as Charles Darwin, Robert Spencer, and Wilhelm Wundt. 

William James (1842-1910) was usually considered a founder of American psychology; 

one of his students was Edward Lee Thorndike. Although James turned away from his 

initial enthusiasm for experimental psychology in his later career, revisiting metaphysical 

explanation of the human mind and soul, it is undoubtful that he advocated for the 

mechanical view of the human mind in his powerful writings, which influenced his 

students and readers significantly (Boakes, 1984; Evans, 1990; Greenwood, 2008). In 

other words, James was the first American psychologist who conceptualized the mind not 

as a soul, but a natural process, establishing an image of “naturalistic and secular 

representation of mind” (Evans, 1990, p. 443). James' secularization distinctly contrasted 

with the University of Cambridge's conservatism, which refused to acknowledge 

psychology as a natural science, denouncing it as a demeaning effort against religion 

(Greenwood, 2008). Also, inspired by Darwin’s evolutionary theory and Wundt’s 

physiology, James tried to explain human consciousness as evolutionarily purposive, and 

physiologically structured like a machine (Green, 2009). James emphasized the human 

brain's material and functional bases and its cerebral mechanism as a source of scientific 

knowledge of psychology. James (1892) argued that the physical state of the brain 

represents the state of mind 

We do not know precisely what a nerve current is, it is true, but we know a good 

deal about it. We know that it follows a path, for instance, and consumes a 

fraction of a second of time in doing so. We know that physically considered, our 
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brain is only a mass of such paths, which incoming currents must somehow make 

their way through before they run out. We even know something about the 

consciousness with which particular paths are especially 'correlated,' those in the 

occipital lobes, e.g., being connected with the consciousness of visible things. 

Now the provisional value of such knowledge as this, however inexact it be, is 

still immense. It sketches an entire programme of investigation and defines 

already one great kind of law which will be ascertained (p. 152).  

Functionalism And John Dewey: The Mind Is Not A Machine. Functionalism 

emerged around the 1890s in the US psychological community as a move toward 

revamping Wundt’s physiological psychology. The functionalists emphasized the 

adaptation of the human mind to the changing socio-cultural environment while refusing 

to recognize the impact of physical development at the physiological level (Green, 2009). 

Functionalists saw that functions are not necessarily bound to their physical structure as 

they are non-reducibly whole, but independently evolve and adapt to the given 

environment (Green, 2009).  

One of the representative figures of functionalist was John Dewey. Without a 

doubt, John Dewey has been recognized as one of the most influential scholars of 

education studies. Dewey’s ideas have a lingering effect on the educational discourse and 

practice broadly in the US. Lagemann (2000) saw that the intellectual legacy of Dewey is 

still alive, inspiring scholars and practitioners to seek alternative ways of education, 

despite his earlier defeat to Thorndike. Mehta (2013) insisted that in order to revamp the 

entire education system of the US, it is necessary to redesign schools as a “center of 

inquiry” according to the spirit and ideas of Dewey. Bereiter (2002) said that Dewey’s 
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educational philosophy revives whenever there is a futuristic reform discussion in 

education even this far after his life. As an educationist, Dewey is defined as a 

progressivist believing in human progress through education, and school as a powerhouse 

of social reform. He was a hegemonic rival of Thorndike with his situated, 

developmental, and less-technocratic philosophy (Lagemann, 2000). Unlike behaviorists, 

Dewey emphasized that humans can actively adapt to their ecological or social 

environment through continuous learning by experiencing (Popp, 2007). He also insisted 

that education should be designed not for the sake of other vague beliefs or assumptions 

on the human mind, but for the alignment with the intrinsic developmental pathway as 

preconfigured in students’ minds.  

John Dewey took a distinctively different pathway in his intellectual pursuit in 

both fields of education and psychology, compared to his contemporary scholars such as 

behaviorists (Lagemann, 2000). Thus, we can expect that he may be an exception from 

the mechanization trend of the human mind, advocating ideas for imagining humans 

differently. Such an expectation is half met. Firstly, John Dewey was very explicit in 

opposing the mechanization of the human mind. In his book titled How We Think, Dewey 

(1933) expressed his anti-mechanical sentiment describing human thinking as something 

that is not a machine: 

Thinking is specific, not a machinelike, ready-made apparatus to be turned 

indifferently and at will upon all subjects, as a lantern throws its light as may 

happen upon horses, streets, gardens, trees, or river…Thinking is not like a 

sausage machine that reduces all materials indifferently to one stereotyped, 
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marketable commodity, but is the power of following up and linking together the 

specific suggestions that specific things arouse. (p. 46)  

According to Lagemann (2000), Dewey was also explicitly against an attempt to 

define education as natural or hard science such as physics and chemistry. Bredo (1998) 

also insisted that Dewey refused to use metaphors of mechanical logic and warned 

against the reductionistic physiological process. Instead, he primarily considered 

education science as social scientists studying “the conditions which secure intellectual 

and moral progress and power” (Lagemann, 2000, p. 50).  He also wanted to establish a 

comprehensive naturalistic approach to education by borrowing conceptions and notions 

from biology and history (Bredo, 1998). In the same vein, he designed his laboratory 

school to counter the dominant movement of experimental psychology, targeting the 

nurturing of a democratic mind with adaptive social and vocational skills.  

On the other hand, Dewey’s psychological and philosophical presumptions for 

child education had the potential to be interpreted as a mechanical perspective in a 

broader sense. Admittedly, the machines of his time were not more than “sausage 

machine” and “lantern,” “indifferently” repeating simple motions regardless of any 

change in the given environment. Thus, it is understandable that Dewey abhorred any 

attempt to equate the human mind with the machine. However, in the computer age, 

adaptation and flexibility are not considered unique characteristics endowed to humans or 

other organisms. It is mainly due to the invention of highly sophisticated computer 

machines, which have been gradually upgraded with highly flexible features to various 

natural settings. The Information Age understands organism as the information itself, and 

its morphological formation is reduced to the coding of information; for organisms, it is 
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reducible to the coding of DNA. Popp (2007) was the one who most actively recognized 

the possibility to read Dewey mechanically. As he indicated, Dewey’s philosophy of the 

human mind is easily read and compatible with the mechanical philosophy of the 

cognitive neuroscientists. He argued that Dewey’s explanation of human thinking 

presaged a highly sophisticated information processing machine:  

Dewey constructs no evolutionary explanations of how our parallel processing 

brains can manipulate highly symbolic material, but he does recognize that the 

mind did emerge by way of natural selection and that the philosopher’s task is to 

help improve our cognitive architecture…If we again think of the mind as a 

virtual machine built of a set of rules for processing information, a good deal of 

the computing power of the mind is devoted to trying to use good sense in 

practical affairs. Dewey is trying to get us to edit or upgrade the rules we are 

using to manage our affairs. In other words, Dewey can be interpreted as showing 

us how to improve the rules that constitute our virtual-computing minds. (pp. 88-

89) 

Also, Herbert Spencer's influence on Dewey indicates that the mechanical 

perspective is indirectly connected to Dewey’s theory. Developmentalism of the child's 

mind, which advocated timely accurate instruction and teaching for the child according to 

their natural process of mental development, was a product of mechanists like Erasmus 

Darwin and Herbert Spencer inspired by phrenology and physiology (Tomlinson, 1996). 

The developmentalism of a child’s mind laid a foundation of  the logic of Dewey’s 

educational idea (Bredo, 1998; Popp, 2007). 
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In the aggregate, John Dewey and his functionalist approach was against the 

mainstream mechanistic experimental psychology of his time, but this does not 

necessarily mean that Dewey sidelined himself from the significant historical currents of 

mechanization of the human mind. That is, he was the one whose understanding of the 

human mind was one step ahead of  his contemporary scholars because of his insistence 

on a highly flexible and adaptable feature of the human mind, but his description of the 

human mind was in a sense mechanistic enough to be easily read and understood by the 

mechanists after his death. It means, Dewey’s conceptualization of the human mind 

resembled the machine of advanced information processing, which was yet to be invented 

at his time. In that account, Dewey can be considered as an unusual figure of his time. 

However, he is still not a drastic game-changer in the longer term perspective. He shared 

the basic assumption on the Neo-Darwinian human mind; the mind is a more advanced, 

adaptable, and resilient information processing machine that accepts knowledge 

following specific orders and patterns as it was designed.  

Behaviorism and Thorndike: Mind Is A Machine. Psychological research's 

behaviorist tradition assumes that mind or consciousness is not a proper element to study 

because they are elusive and metaphysical. Instead, the early behaviorists believed that 

only observable human behavior could be the object of psychology's scientific method. 

Levin (1987) saw that behaviorism symbolized the American spirit in the early 20th 

century representing a practical and optimistic atmosphere. Levin quoted Watson’s 

unwittingly but adamantly positive outlook on the use of behavioristic approach to the 

study of the human mind: “Give me a dozen healthy infants, well-formed, and my 

specified world to bring them up in and I’ll guarantee to take any one at random and train 
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him to become any type of specialist I might select - doctor, lawyer, artist, merchant 

chief, regardless of his talents, penchants, tendencies, abilities, vocations, and race of his 

ancestors”(p. 1683). Also, Levin (1987) pointed out that behaviorism was established 

when psychology was separated from its former affiliation to philosophy. This inevitably 

pushed psychologists to distance themselves from the metaphysical philosophy and made 

them reject introspection as a method of inquiry while acknowledging observable motor 

behavior. Such an approach was dominant in psychology until it was challenged by 

cognitivism in the 1950s (Lagemann, 1989).  

Thorndike was one of the most frequently mentioned figures in the influence of 

psychology on education in the early modern history of American education (Lagemann, 

2000; Mehta, 2013). At the same time, however, he was also one of the most stigmatized 

and haunted names in history such that “He faced the charge that his psychology was 

mechanistic and explained adequately only the most rote kinds of learning” (Glaser, 

1984). As a student of William James, primarily inspired by his early mechanical works 

in psychology, Thorndike was an ardent supporter of using measurable, quantifiable, and 

physical methods through a psychological experiment (Lagemann, 2000). Thorndike 

came from animal psychology and physiology, focused on the stimulus-response pattern 

of human behavior. He was also the one who very explicitly recognized the human mind 

as a machine. He stated: “The mind is, on the contrary, on its dynamic side a machine for 

making particular reactions to particular situations. It works in great detail, adapting itself 

to the special data of which it has had experience” (Thorndike & Woodworth, 1901, pp. 

249-250). 
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Like his contemporary scholars, Thorndike was well aware of physiology and 

actively used it to explain human behavior. Thorndike and Woodworth (1901) assumed 

that the high intellectual means having more physiological connection and association. 

They denied that there is a distinction in quality rather the quantity of the connection that 

decides the quality of intelligence and behavior: “…the person whose intellect is greater 

or higher or better than that of another person differs from him in the last analysis in 

having, not a new sort of physiological process, but simply a larger number of 

connections of the ordinary sort” (Thorndike & Woodworth, 1901, p. 415). Thorndike’s 

quantification of the human mind was closely related to his mechanical understanding of 

the human mind, which conceptualized the mind as a physically embedded function with 

features of motion, size, and structure. Thorndike & Woodworth (1901) said: 

Intellect might be exactly proportionate to the activity of the thyroid gland, or to 

the proportion of the brain weight to body weight, or to the number of associative 

neurons in the frontal lobes or to the intensity of a certain chemical process, and 

hence be measurable by observations of the thyroid’s action, or estimates of the 

brain’s volume, or by a count or measurement of neurons, or by a chemical 

analysis. (p.12) 

But, Thorndike could not use this sophisticated physiological measurement during 

his life as there was a limit in anatomical technology. Instead, he chose human behavior 

as a proxy to measure physiological states, which in turn represented a state of mind 

(Thorndike & Woodworth, 1901).  

Cognitivism: The Mind Is A Computer. The mechanical view of the human 

mind made a breakthrough after a long impasse of behaviorists’ simple rote mechanistic 
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vision. It was only possible as the new generational thinkers conceptualized the human 

mind as a computer, a highly versatile and sophisticated information processing machine 

(Abrahamsen & Bechtel, 2012; Boden, 2006; Crane, 2003; Gardner, 1985; Thagard, 

2005). As early as 1949, Warren McCulloch was already quite straightforward, insisting 

that a human mind is a computer machine and saying, “Man's brain is much the most 

complicated of computing machines, and it requires power to keep its relays in the 

operating range of voltage…The brain is a logical machine. Each of some ten billion 

relays has only two states: pulse or no pulse” (p. 492).  Ross Ashby (Ashby, 1951, p. 1, 

cited from Asaro, 2008), one of the founding members of the British cybernetics group, 

described this transformation in paradigm:  

It has become apparent that when we used to doubt whether the brain could be a 

machine, our doubts were due chiefly to the fact that by “machine" we understood 

some mechanism of very simple type. Familiar with the bicycle and the 

typewriter, we were in great danger of taking them as the type of all machines. 

The last decade, however, has corrected this error. It has taught us how restricted 

our outlook used to be; for it developed mechanisms that far transcended the 

utmost that had been thought possible, and taught us that “mechanism" was still 

far from exhausted in its possibilities. Today we know only that the possibilities 

extend beyond our farthest vision. (p. 149) 

From the 1940s to the 1960s, some changes were brewing under the mantle, 

initially dominated by behaviorists’ experimental psychology that had thrived for a while 

to create a new intellectual movement of cognitive science. Firstly, the wartime research 

efforts to create automated intelligent war machines begot a new understanding of the 
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human mind and its mechanism (Abrahamsen & Bechtel, 2012; Gardner, 1985; 

Lagemann, 2000). It laid the foundation for the mechanistic interpretation of the human 

mind with advanced modeling of human thinking as a physical, materialistic, and 

mathematical entity. The Macy Conferences, the first one held in 1946 until the tenth one 

in 1953, set the foundations of the modern computing and cognitive science (Dupuy, 

2010a). The participants were key figures of their fields of studies. Claude E. Shannon, a 

founder of information theory, established a mathematical and logical model of 

information processing (Dupuy, 2010a, Miller, 2003). In neuroanatomy and 

neurophysiology, Pitts and McCulloch attempted to establish a psychological model 

entirely through mechanical explanation combining functional and structural causal 

mechanisms of the human mind and brain (Dupuy, 2010a). They finally proved that a 

network like physical architecture could simulate logical function, that is, a Turing 

machine (Abrahamsen & Bechtel, 2012). Norbert Wiener developed an automated 

feedback machine inspired by the human nervous system's homeostatic system called 

cybernetics (Gardner, 1985). Cyberneticians led by Wiener assumed that “thinking is a 

form of computation” and “physical laws can explain why and how nature…appears to us 

to contain meaning, finality, directionality, and intentionality” (Dupuy, 2010a, pp. 3-4). 

John Von Neumann, working closely with cyberneticians and information theorists, 

developed a modern computer concept completing the functional and structural base of 

the information processing machine. In particular, by claiming that “anything that can be 

exhaustively and unambiguously described” can be simulated by computer, he declared 

that whatever we describe as a mechanism or function of the human mind can be 

simulated and subsumed by computer (Piccinini, 2018). As a consequence of the 
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diffusion of mechanical thinking, people started believing that the human brain should be 

computable and even the human mind is one of the computers - which is called 

pancomputationalism (Piccinini, 2018). This idea substantially impacted cognitive 

science's critical scholars later on, such as Jerome Bruner and George Miller (Boden, 

2006).  

Secondly, it became clear that behaviorists’ endeavor explaining the human mind 

only with observable behavior did not show any significant progress in handling more 

sophisticated theories in linguistics, computer science, and neurosciences (Gardner, 1985; 

Lagemann, 2000). The experimental method limiting objects only in stimulus and 

response did not show any sign of approximation to the higher level of human cognitive 

behaviors especially language competence and symbolic representation skills. Miller 

(2003) remembered how his close friend Noam Chomsky criticized the behaviorism as an 

erroneous orthodoxy: “As Chomsky remarked, defining psychology as the science of 

behavior was like defining physics as the science of meter reading” (Miller, 2003, p. 

142). Miller (2003) said that he, Chomsky, and Bruner wanted to revive interest in the 

human mind and cognition, opening up the black-box encapsulated by behaviorists who 

prevented any attempt to touch that box. In regard to this move, Abrahamsen and Bechtel 

(2012) stated, “Both metaphors (computer and communication metaphors) gave rise to 

information processing by offering engineering—based ways to open the “black box” 

between stimuli and responses and model mental activity” (p. 13). When Miller and his 

colleagues looked around to find an alternative to behaviorism, rising stars were 

innovating and restructuring the field of mind sciences, such as Claude Shannon, Norbert 

Wiener, Von Jon Neumann, Alan Newell, Herbert Simon, Marvin Minsky, and John 
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Macarthy frequently mentioned as founding fathers of modern computing and artificial 

intelligence (Glaser, 1984; Miller, 2003).  

Thirdly, the effort to topple  the bulwark of behaviorism and new technological 

development in computing coincided with mounting pressure to redefine whose 

perception of a human. As Cold War politics matured in the US, there was a 

governmental and political move to re-conceptualize humans as rational beings and 

American citizens as flexible and open-minded people against communists and 

conservatives (Cohen-Cole, 2014). The idealistic vision of intelligent humans was 

defined  as those who can think like scientists who can autonomously explore, discover, 

and utilize scientific knowledge. According to Cohen-Cole (2014), cognitive science was 

instrumental to this political process as a group of new mind scientists reimagined the 

human mind as highly flexible and rational, contrary to the dominant behaviorists’ vision 

and Dewey’s progressive education.  

In this context, the emergence of cognitive science is understood as a product of 

the convergence of various fields studying the nature of the human mind, such as 

computer science, linguistics, physiology, psychology, neuroscience, and biology, which 

initially diverged from the philosophy of mind in the late 19th century (Frankish & 

Ramsey, 2012; Gardner, 1985; Talkhabi & Nouri, 2012). George Miller (2003) saw that 

the interdisciplinary connection between computer science, linguistics, and psychology 

was the core building block of cognitive science. It signaled that the science had matured 

enough to directly tackle the issue of a higher level of human cognition, which had been 

intentionally black-boxed and replaced with observable human behavior by the 

behaviorists (Gardner, 1985). 
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From the 1950s to 1970s, the institutional and knowledge base of cognitive 

science was established. Whatever the reason behind explaining the foundation of 

cognitive science during this period, it seems evident that it was based on the human 

mind's mechanical view defining mind as a computing machine and borrowing concepts 

and theories from hard sciences. Glaser (1991) succinctly summarized this dominant 

trend: “The analogies between human cognitive processes and the mechanisms of 

mechanical and electronic systems, such as servomechanisms and computers, captured 

attention. This work helped set the stage for the present day modeling of human 

performance in information processing systems” (p. 130). Most of the early generational 

scholars of cognitive science pursued establishing the symbolic architecture of the human 

mind. Abrahamsen and Bechtel (2012) defined symbolic architecture as follows: 

“Symbolic architectures share a commitment to (1) representations whose elements are 

symbols and (2) operations on those representations that typically involve moving, 

copying, deleting, comparing, or replacing symbols. A rule specifies one or more 

operations (e.g., S —> NP VP)” (p. 16). The representative figures are mostly AI 

scholars such as Marvin Minsky, Alan Newell, and Herbert Simon, so in this chapter, I 

will skip the discussion of them and will only focus on cognitive scientists closely related 

to education science.  

 

George Miller was one of the most prominent scholars who initiated cognitive 

science as an independent study. He innovated psychological approach by introducing 

Shannon and later Noam Chomsky’s generative grammar (Boden, 2006). Influenced by 

the mechanical view of the human mind, Miller conceptualized the human mind's 
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information processing as a computational process codifying sound elements as bits or 

phonemes and proved his thesis using experimental study (Boden, 2006). He argued that 

human memory is limited to storing information, insisting on a magical number seven as 

a universal limit of memory capacity. He implicitly assumed that there must be 

physiological structure limiting our capacity saying, “There seems to be some limitation 

built into us either by learning or by the design of our nervous systems, a limit that keeps 

our channel capacities in this general range” (quoted in Boden, 2006, p.289). 

With George Miller, Jerome Bruner made a significant contribution to open a new 

field of study. Lagemann (2000) estimated that the opening of the Center for Cognitive 

Studies in 1960 was a decisive swing to formulate the field of cognitive science, wherein 

Miller and Bruner studied human cognition in various dimensions. Bruner did not 

explicitly pursue computation of the human mind as he was not familiar with computer 

programming, but just like his contemporaries, Bruner took advantage of using 

computation as a metaphorical representation in explaining human thinking. Bruner said, 

“New metaphors were coming into being in those mid-1950s and one of the most 

compelling was that of computing. . . “(quoted in Gardner, 1985, p. 29). His personal 

exchange with von Neumann nurtured his implicit acknowledgment of the human mind's 

computational perspective (Boden, 2006, p. 308). Boden insisted that Bruner was imbued 

with a computational perspective saying, “When Bruner spoke of an inferential 

‘mechanism’ underlying perception, he was thinking computationally if not 

programmatically” (2008, p. 308). Accordingly, Bruner understood human thinking as 

necessarily logical (Cohen-Cole, 2014; Gardner, 1985) and depicted the thinking process 

as information processing, including acquiring, retaining, transforming, storing, and 
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presenting information (Boden, 2006). Later on, Bruner’s students increasingly accepted 

computation modeling, and Marvin Minsky, a prominent scholar of artificial intelligence, 

referred to Bruner's contribution in his Steps Toward Artificial Intelligence (Boden, 

2006).  

Lastly, it seems noteworthy that D. E. Broadbent, a close friend of Miller (Boden, 

2006) and who frequently interacted with Miller and Bruner, conceptualized the 

flowchart of information processing of organisms borrowing a mechanical concept 

widely used in computer engineering. With this flowchart in mind, Boden (2006) 

considered that “the organism was here being presented as an integrated system” (p. 292). 

Also, Broadbent clearly stated that “nervous systems are networks of the type shown in 

Fig. 7 [the flowchart], and of no other type” (Broadbent, 1958, p. 304). It was the 

declaration that the human mind is a machine-kind constituted of an information 

processing mechanism and system - it was beyond just a metaphorical use of a computer. 

Instead, it was reverse causation of the human mind from its imitated artifact, a computer. 

Even though Broadbent denied categorizing himself as a positivist, his description of the 

mind system looks mechanistic due to his emphasis on the causal relationship between 

structure and function. Broadbent said, “It may often be preferable to explain a 

physiological fact by reference to its role in a well-understood psychological function’’ 

(Broadbent, 1958, p. 305). Also, he was sympathetic to computer modeling of the human 

mind  “The great merit of models which can be implemented on a computer ... is that they 

avoid many... ambiguities. I would firmly believe that in the long run any adequate 

account of human beings will have to be capable of computer implementation” (Boden, 

2006, p. 295). The computational modeling of the human mind is one of the dominant 
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research approaches in cognitive science. Thagard (2005) claimed that the computational-

representational understanding of the mind (CRUM) is one of the most foundational 

paradigms of cognitive science although there is opposition to this idea. Thagard (2005) 

posited that the CRUM became so popular in this field because the metaphor of computer 

explaining and describing human’s cognitive mechanism was powerful. The CRUM 

interprets a human's thinking process as data and algorithmic structure, adding accuracy 

and simplicity to the cognitive modeling. This metaphor can even be extended to the case 

of brain study, modeling the brain's neuronal process as parallel computational 

processing.  

The influence of cognitive science on education was immense and deemed to be 

positive. Lagemann (2000) estimated that the advent of cognitive science gave 

educational study a boost to become a real science more than anything else before. 

Lagemann put that “insights gleaned from cognitive science and applied to classroom 

instruction, combined with greater understanding of the ways in which cultural 

differences influence classroom exchanges, have opened a new potential for effective 

schooling” (2000, p.xiii). Glaser (1984) said that educational scholars and practitioners 

had more connection with the scientific experiment through cognitive science inquiry, 

which made the boundary between basic and applied science blurred. Glaser (1984) also 

added that the major discovery of cognitive science related to the mental process of 

learning required teachers equipped with domain-specific knowledge and the science of 

the learning process. 

Along with cognitive science, the mechanical view understanding the human 

mind as a computer became much more pervasive in education studies. Miller, Bruner, 
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and Broadbent, conceptualizing the human mind as a computer, were highly influential in 

the field of education studies. There was even more direct extrapolation of computation 

theory to human cognitive theory. For instance, Glaser (1984) remembered that the 

strategy to increase multiple computer processing power conceived by Minsky and Papert 

in 1974, was inspiring to many education scholars using cognitive science. This idea was 

innovative as it valued knowledge organizing strategy over the innate quality of thinking. 

Accordingly, Glaser, Chi, and Lesgold adopted the power strategy theory to the cognitive 

experiment of humans to prove how expert knowledge is different from that of a novice 

when it comes to organizing strategy of knowledge (Glaser, 1984). 

 

Conclusion 

The history presented so far in this chapter demonstrated that the effort to make 

education a science coincided with the general acceptance of the mechanical view of the 

human mind. Science and technology developing new advanced machines created an 

epistemological force to reframe nature and the human mind as a machine. In that 

process, the education studies were also subsumed under the psychologists' mechanical 

logic through the work of such scholars as James, Thorndike, and Dewey – although 

Dewey’s ideas do not explicitly reflect  the mechanical logic - as well as the cognitive 

scientists including Bruner and Miller. In particular, the findings of this section  imply 

that despite the widespread view amongst cognitive psychologists and even held by 

Lagemann that cognitive revolution brought the paradigm shift in mind sciences, it was 

instead a continuation of expanding the mechanical view of the human mind, a process 

initiated since the middle of the 19th century. 
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Intellectual History Of Artificial Intelligence 

  

Automated machines are transforming our society with advanced cognitive 

learning capacity. There is a view that this transformation may bring a fundamental shift 

to humankind comparable in its scope to the previous industrial revolutions in human 

history (Bostrom, 2014; Harari, 2014; Kurzweil, 2012a; Schwab 2016). Despite this 

substantial growth of AI technology, there is no consensus on AI's definition as it is such 

a massive assemblage of various sub-disciplinary studies, and it has evolved into various 

shapes throughout history (Crane, 2003; Konar, 2000). At best, we can get a rough 

glimpse of AI definitions by referring to some other scholars. Nilsson (2010) offered the 

following definition: “Artificial intelligence is that activity devoted to making machines 

intelligent, and intelligence is that quality that enables an entity to function appropriately 

and with foresight in its environment” (p. 13) Khakurel et al. (2018) said:  

AI can be described as a cluster of technologies and approaches, that is, statistical 

and symbolic that aim at mimicking human cognitive functions or exhibiting 

aspects of human intelligence by performing various tasks, mostly preceding 

analytical, analytical mostly preceding intuitive and intuitive mostly preceding 

empathetic intelligence. (p. 2)  

The most systematic and thorough definition came from Russell and Norvig 

(2001). They categorized AI  into four different approaches. The first approach pursues 

machines that can act like a human. The representative figure is Turing who defined 

“intelligent behavior as the ability to achieve human-level performance in all cognitive 
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tasks, sufficient to fool an interrogator” (p. 5). This approach did not heed much on 

internal logic of human thinking but instead focused on observable behavior. The second 

one is the thinking humanly approach, the so-called cognitive modeling approach. Simon 

and Newell initiated this movement and pursued a general problem solver (GPS) 

imitating the human cognitive process. The third one is thinking rationally approach, and 

in this tradition, scholars focus on a logical language system that can program AI as a 

rational agent. Lastly, there is a rational agent approach. In contrast to the cognitive 

modeling approach that imitates human cognitive features, this approach is more goal-

oriented, less focused on the internal logic structure. This approach takes whatever 

mechanism that can be perceived as a rational act at the surface value. It involves a deep 

learning approach.  

Despite the variations of  the definitions, it is evident that the field emerged and 

grew out of the desire to imitate the human mind. This fundamental desire enabled AI 

studies to maintain interaction with the human mind and behavior studies, such as 

cognitive science, biology, psychology, and philosophy. It implies that the quest for 

understanding the nature of human intelligence and building up the general intelligence 

machine has been inseparably intertwined with and inspiring to each other. Given this 

assumption, this chapter will explore the history of AI studies from its modern inception 

with a highlight to the interaction with human intelligence and brain studies. 

 

Bio-Inspired Early Intelligent Machines And Computers 

The Second World War was a critical event triggering interdisciplinary gathering 

of scholars from various fields. In both the US and the UK, the governments put much 
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effort to enhance human physical and cognitive capacity using various technologies such 

as biology, psychology, engineering, physics, and chemistry (Heims, 1991). This wartime 

situation created a new intellectual stream framing the human mind as a machine (Heims, 

1991; Husbands & Holland, 2008). It is often called a cybernetics movement, the 

precedence of an AI study (Kline, 2011). The cybernetics movement was a transatlantic 

phenomenon based on interaction in specific groups gathered in the conferences and the 

small seminars in the US and UK. The first generation of cybernetics scholars mostly 

came from psychiatric studies (Pickering, 2009). This gathering aimed to study brain 

mechanisms by creating an adaptive behavioral machine that can imitate animal or 

human behavior.  

On the US side, the Macy conference was the primary gathering of the 

cyberneticians (Heims, 1991). In the first conference in 1943, the presentations were 

mostly about the parallelism between computer machines and the human brain, setting 

the following conferences' direction. Warren McCulloch was interested in 

neurobiological, physiological, and engineering discoveries. John Von Neumann proved 

that metal tubes in the computer could function like neurons in the human brain. Lorente 

de No presented that the neuronal electrochemical impulse works with a computational 

binary zero and one signal system, proving that the human brain is a kind of computing 

machine. Norbert Wiener presented his idea of developing an autonomous machine with 

sensory motors and a feedback loop. Further, he suggested framing biology, statistics, 

psychology, and social science altogether as a common discipline handling an issue of 

communication and information processing. Heims (1991) esteemed this first conference 

as a watershed of the western intellectual history, putting that “Characteristically, the new 
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concepts spanned the human and the inanimate, leading to mechanical metaphors for 

human characteristics and anthropomorphic descriptions of machines” (p. 22).   

The British cybernetics started in the basement room in the National Hospital for 

Nervous Diseases, and this was the first venue for the Ratio club’s meeting (Husbands & 

Holland, 2008). The Ratio club members were mostly from the brain and neuronal 

studies. This group of scholars pursued a universal intelligence theory that can explain 

information processing in both the brain and machine. This desire was well-reflected in 

one of the themes discussed in the Ratio Club: “Can the members agree on definitions, 

applicable equally to all systems—biological, physiological, physical, sociological—cf: 

feedback, stability, servo-mechanism” (Husbands & Holland, 2008, p. 119). The British 

cyberneticians defined intelligence as adaptive behavior that constantly modifies its 

behavior based on the input or feedback loop with a contact to the outer environment. 

The representative artifact reflecting this simple but powerful definition of intelligence 

was Ashby’s Homeostats. Ashby was a critical figure who initiated an innovative 

approach to brain study, using rigorous mathematical measures and brain mechanism 

modeling (Asaro, 2008). His Homeostats maintained the system's stability by controlling 

output proportional to its given input, which constantly changed. It was the simulation of 

the organic feedback loop system. Another was Walter’s Tortoises, highly esteemed as 

the first-ever mobile autonomous robot. This robot could autonomously move, navigating 

the environment with its multiple sensorimotor systems that imitated the human nervous 

system. One of the club members was Alan Turing, and his later work on the 

conceptualization of the first modern computer was deeply influenced by this early 

cybernetic movement (Husbands & Holland, 2008). 
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Alan Turing is widely recognized as a father of modern computing, who 

suggested a universal computation principle, which was widely adopted in modern 

computer design (Nilsson, 2010). Turing designed a computer as a universal problem 

solver, later called the Turing machine. He proved that every Turing machine could solve 

universal problems once it was given an encoded input in the tape indicating how the 

other Turing machines operate. That means each Turing machine is designed to simulate 

and mimic whatever the other machines do; thus it is a universal problem solver, in other 

words, the Universal Turing Machine (UTM) (Crane, 2003, p. 98). Turing assumed that 

intelligence is a mental capacity to “process representations in a systemic way” (Crane, 

2003, p. 85). In this way, Turing indicated that the human brain is one of the machine 

kinds which is highly sophisticated enough to manipulate symbols. He truly believed that 

the human body could be built up with mechanical parts such as a camera, motors, and 

microphone (McCorduck, 2004). He said “The electrical circuits which are used in 

electronic computing machinery seem to have the essential property of nerves. They are 

able to transmit information from place to place, and also to store it” (Cited from 

McCorduck, 2004, p. 68). Given this claim, McCulloch and Pitts insisted that the human 

brain's neural system is a Turing machine with their experimental evidence. Von 

Neumann saw this discovery of McCulloch and Pitts as decisive proof that “anything that 

can be exhaustibly and unambiguously described is realizable by a Turing machine” 

(Piccinini, 2018, p. 436). The Universal Turing machine was indicative that there is a 

universally common intelligence identifiable across different embodiments. It means any 

function and structure logically recognizable by human cognition can be simulated by a 

Turing machine. One of the partial byproducts of this recognition, while having a 
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prolonged impact on the following generations of scholars, was that a human mind is a 

Turing machine. Thus, the invention of the Turing machine made the distinction between 

human and the machine intelligence ever more blurred and ambiguous. 

As much as he was dedicated to mechanizing the human mind, Alan Turing 

sought to create machine intelligence that could learn and evolve like human intelligence. 

He was eager to simulate the human learning mechanism in the advanced intelligent 

machines. According to Bostrom (2014), Turing assumed the child brain as the most 

idealistic model of an intelligent machine, quoting what he said: “Instead of trying to 

produce a programme to simulate the adult mind, why not rather try to produce one 

which simulates the child's? If this were then subjected to an appropriate course of 

education one would obtain the adult brain” (p. 23). Michie (2008) found Turing’s desire 

to approximate to adaptive human learning capacity from this following quote: 

Let us suppose that we have set up a machine with specific initial instruction 

tables, so constructed that these tables might on modify these tables… In such a 

case one could have to admit that the progress of the machine had not been 

foreseen when its original instructions were put in. It would be like a pupil who 

had learnt much from his master, but had added much more by his own work. 

When this happens I feel that one is obliged to regard the machine as showing 

intelligence. As soon as one can provide a reasonably large memory capacity it 

should be possible to begin to experiment on these lines. (p. 65) 

John Von Neumann is a well-known figure as an architect of the modern 

computer. He completed the computer's basic structure with a sequential program, 

machine language program, and modifiable memory (Von Neumann, 2002). However, it 
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is not widely acknowledged that the human brain mechanism inspired his modern 

computer design. In his book, Computer and Brain, he delicately compared the details of 

the artificial machine and human brain (Kurzweil, 2012b). This book shows how the 

early computer design and brain studies exchanged inspiration with each other. He is also 

a critical figure in the intellectual history of AI and mind sciences because of his 

membership to both first conferences of AI, Dartmouth Conference, and cognitive 

science, Hixon Symposium. He was also substantially immersed in the cybernetics 

movement - he was even a core member of the Macy conferences. His connection to 

Warren McCulloch is well-known, and he was inspired by the basic neural concepts such 

as conjunction, disjunction, and negation in organic feedback loops (Boden, 2006). In a 

sense, Von Neumann was the first person who explicitly translated organic neuron 

systems to design the mechanical digital computer by ignoring discrepancies between 

human and machine systems and seeking for convergence at the abstract level. His 

computer left a significant mark in the rest of AI history (Boden, 2006). 

 

Symbolism vs. Connectionism 

Since the AI study started its official history at the Dartmouth workshop in 1956, 

the AI scholars have been largely divided into symbolism and connectionism groups 

(Cardon et al., 2018). The most prominent approach in the early phase was symbolism. 

The representative figures of symbolism were John McCarthy, Marvin Minsky, Allen 

Newell, and Herbert A. Simon. The symbolism group identified the source of human-like 

intelligence as a symbolic logic system. This approach is often called deductive machine 

design (Cardon et al., 2018). That is because, in the symbolic AI, the machine has a 
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predetermined set of rules and programs enabling it to manipulate the input symbols to 

create output symbols, so-called heuristics. Advocates of symbolism defined intelligence 

as a set of rules such as “searching, knowing, recognizing, trying, remembering, 

choosing, and the like” (Boden, 2006, p. 317). Simon defined learning as “a permanent 

alteration in the repertoire of heuristics to guide search and actions of an information 

processing system, involving knowledge acquisition and increasing complexity of 

perceptual chunks” (Kao & Venkatachalam, 2018, p. 14). For instance, McCarthy 

designed the AI program by inserting axioms in the system and let the machine 

manipulate such representation through its program (Russell & Norving, 2001).  

The symbolism group referred to psychology and cognitive science and even 

significantly impacted these two fields. This interdisciplinary character of their research 

led them to attempt to humanize machines (Boden, 2006). Russell and Norvig (2001) 

named this AI approach as “thinking humanly approach” (p. 17). Accordingly, they 

proactively studied discoveries in cognitive science and adapted them to build up new 

machines. The symbolism group preferred to imitate the problem-solving mechanism of 

humans (Russell & Norvig, 2001).  

In 1980, Simon and Newell developed an AI machine called SOAR, which was a 

goal-directed machine. For this, they utilized various conceptions of cognitive science 

such as “integrated perception, attention, memory, association/inference, analogy, and 

learning” (Boden, 2006, p. 433). As their research matured, Simon claimed that machines 

have intelligence once they can fulfill goal-oriented tasks and adaptive behavior in 

various settings, simulating in chess play, solving math problems, and diagnosing 
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diseases (Frantz, 2003). The symbolism remained the most dominant paradigm of AI 

from the 1960s to the 1980s.  

In contrast to symbolism, connectionism is an approach to design the intelligent 

machine in an inductive way (Cardon et al., 2018). The connectionism defined human 

thinking as parallel information processing at a massive scale in the neural nets, 

producing emergent behavior. The initial inventors of this bio-inspired design approach 

were McCulloch and Pitts. According to Medler (1998), they designed each neuron to 

take input individually, producing on/off mode accordingly, and then as the sum exceeds 

a certain arbitrarily set threshold, the bigger neuronal system can be activated, creating an 

emergent pattern of behavior. This design is called inductive machine design, in which 

AI is programmed to produce a specific program capturing a pattern in the world when 

the massive amount of data is inserted into the minimally preconfigured program. This 

minimally designed program is a bio-inspired neural net. Specifically, this machine 

should be equipped with the following four properties: “1) The connectivity of units, 2) 

the activation function of units, 3) the nature of the learning procedure that modifies the 

connections between units, and 4) how the network is interpreted semantically” (Medler, 

1998, p. 22).  

The formalism of the connectionists’ modeling of the AI was developed further 

after McCulloch and Pitts' model. Selfridge developed a Pandemonium model, which 

processed image patterns on a massively parallel scale (Medler, 1998). This model 

processed information like nerve cells at the lower level while could manipulate the 

symbols at a higher level. Nilsson (2010) deemed the Pandemonium foreshadowed the 

most recently developed method of machine learning. The Perceptron developed by 
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Frank Rosenblatt is considered the first connectionists’ model that pioneered the machine 

learning algorithm (Boden, 2006; Cardon et al., 2018; Medler, 1998; Nilsson, 2010). 

Inspired by McCulloch and Pitts neural net modeling, Rosenblatt completed the machine 

learning system's design around the 1960s, about 50 years before it came to be 

recognized as the most potent AI architecture. He initially designed this model with a 

conviction that this would be the universal intelligence modeling not only for machines 

but for humans (Nilsson, 2010). He conceived that the neural net is constituted with 

input, intermediate, and output neurons. He assumed that only the intermediate or hidden 

layer of neurons could learn through the training, modifying its weight parameters with a 

statistical mechanism.  

The Perceptron became a model still widely used in machine learning software 

algorithm with minor modifications. The learning process in it is reduced into the simple 

mechanical process modifying parameters in the nerve system, deciding whether to turn 

on or off the specific level of nerve cells at each level. Konar (2000) described this 

learning process with a metaphor to a child’s learning of pronunciation:  

The hearing system of the child receives the pronunciation of the character “A” 

and the voice system attempts to imitate it. The difference of the mother’s and the 

child’s pronunciation, hereafter the error signal, is received by the child’s learning 

system through the auditory nerve, and an actuation signal is generated by the 

learning system through a motor nerve for adjustment of the pronunciation of the 

child. The adaptation of the child’s voice system is continued until the amplitude 

of the error signal is insignificantly low. (pp. 35-36)  
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The connectionists saw that intelligent behavior emerges as a consequence of a 

massive cascading effect activating nerve cells. This modeling's strength is the high 

responsiveness to the external stimuli modifying its next behavior to produce an optimal 

outcome (Raschka & Mirjalili, 2017). Again, this design is inductive as the intermediate 

layers of nerve cells are considered to operate in correlation with the input and output, 

which is only minimally designed in a statistical sense. 

Overall, the symbolism’s long endeavor since its inception from Dartmouth was 

sidelined from the mainstream AI studies with the rise of parallel distributed processing 

(PDP) model in the connectionism group (Cardon et al., 2018; Nilsson, 2010). David 

Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams announced their discovery, 

adding a mathematical modification to the Perceptron in a book Parallel distributed 

processing: Explorations in the microstructures of cognition in 1986, and reinstated their 

previous modeling in an article Learning representations by back-propagating error 

(Rumelhart et al., 1988). It became an early version of a deep neural network, the most 

dominant machine learning model in the 2010s. There was another new technological 

breakthrough in the connectionists’ approach of AI called reinforcement learning. The 

term reinforcement learning was borrowed from behaviorists’ psychology, which 

emphasized the trial and error process as a learning loop (Nilsson, 2010; Sutton & Barto, 

2018) - Nilsson (2010) and Sutton and Barto (2018) explicitly mentioned the name of 

Thorndike as an intellectual father of reinforcement learning. In reinforcement learning, 

the intelligent agent learns a shortcut to the outcome through random walks and valuation 

to each selected pathways. Each pathway's valuation is continuously updated and 

modified based on its additional experience of trial and error (Nilsson, 2010). 
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By far, the history of modern AI was illuminated with its connection to the 

understanding of human intelligence and its mechanism. This specific perspective taught 

us that the modern approach to developing advanced autonomous machines originated 

from the abstracted knowledge about human intelligence and the brain. The 

connectionists borrowed McCulloch and Pitts’ discovery of the neural net structure and 

its function to create a highly homeostatic machine, automatically adapting to the 

changing environment. Reinforcement learning is based on psychological behaviorism 

and is closely related to Thorndike’s study of stimulus and reaction mechanisms. The 

symbolism always pursued knowledge from psychology, cognitive science, and biology 

to simulate almost human-like intelligence mechanisms in machines. 
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CHAPTER 4. METHODS 

The literature review indicates that intelligence, traditionally considered an 

animated feature, has been understood as universal even for inanimate beings, including 

machines. In the same manner, education studies have also strived to gain authority by 

mechanizing its logic and assumption about  the human mind, traversing to hard sciences. 

This suggests that there has been a co-space where the studies, ideas, and meanings about 

human and machine intelligence interacting and even converging with each other. This 

study calls this interdisciplinary domain a cyborg space, where the study of universal 

intelligence looms over. Given that this convergence has never been explicitly explored 

before through any measure, this research aims to analytically describe how the studies of 

a human and machine intelligence have interacted with each other over time, thus 

creating an interdisciplinary space between the two seemingly distanced disciplines that 

share a common paradigm assuming that human and machine is compatible and 

interchangeable with each other. To reveal this hybridity, this research used sequential 

explanatory mixed methods. The mixed-methods included quantitative and qualitative 

research with a rigorous process of data collection and analysis, ultimately aiming to 

integrate views obtained from the different methodologies (Cresswell, 2014).  

The mixed-method study involves quantitative and qualitative data collection and 

analysis, ultimately aiming to integrate views from the different methods (Cresswell, 

2014). There are various reasons to adopt this relatively new research approach, but 

mostly they pursue dialectical resolution in the face of conflict and tension between 

qualitative and quantitative research traditions (Creswell et al., 2011). Occasionally but 

not exhaustively, the mixed method entails pragmatists’ approach given the primary goal 
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of answering the diverse research questions and problems. Also, recently, there is a 

growing pressure to increase research reliability and validity by triangulating various data 

sources (Hesse-Biber, 2010). In other words, there is a growing demand for the cross-

validation between different research approaches. More broadly, this research approach 

may include the following types of research: 

• focusing on research questions that call for real-life contextual understandings, 

multi-level perspectives, and cultural influences;  

• employing rigorous quantitative research assessing magnitude and frequency of 

constructs and rigorous qualitative research exploring the meaning and 

understanding of constructs;  

• utilizing multiple methods (e.g., intervention trials and in-depth interviews); 

• intentionally integrating or combining these methods to draw on the strengths of 

each; and 

• framing the investigation within philosophical and theoretical positions.  

(Creswell et al., 2011, p. 1) 

According to Cresswell (2014), the idea of combining qualitative and quantitative 

research methods came into being almost a half-century ago. Campbell and Fisk, in 1959, 

attempted to combine multiple methods and data in psychology research, which triggered 

more widespread usage of the mixed-method approach. The early recognition was that 

every method has its weaknesses to cover the whole research topic; but, these limitations 

could be  overcome by combining the methods. This approach brought to the fore the 

triangulation method in qualitative research. In the 1990s, a systematic effort to establish 

the research tradition of the mixed method first emerged. In 2003, the Handbook of 
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Mixed Methods in the Social and Behavior Sciences by Tashakkori and Teddlie was 

published, and this book comprehensively summarized the characteristics and procedures 

of the mixed methods. Now that the mixed methods gained growing attention, the 

community is expanding rapidly. Research journals dedicated to the mixed methods 

include Journal of Mixed Method Research, Quality and Quantity, Field Methods, and 

International Journal of Multiple Research Approaches (Cresswell, 2014).  

Creswell (2014) suggested several different research designs in the mixed-method 

approach based on the procedural method of merging and analyzing data. Firstly, there is 

an approach called a convergent parallel mixed method design. Creswell said that when 

the researchers were first motivated to use the mixed methods, they would present both 

qualitative and quantitative in parallel. The critical feature of it is to use the same 

variables and constructs to guide research questions and instrument design in both 

qualitative and quantitative research. Secondly, there is an explanatory sequential mixed 

method design. The researchers with quantitative research background preferred this 

design. In this design, the researchers initially conduct quantitative research and then 

design the next qualitative research session according to the quantitative research 

outcome. The quantitative research guides the next steps to follow in the complementary 

qualitative research session. The qualitative data analysis is supposed to provide more in-

depth information missing in the previous quantitative analysis. Thirdly, an exploratory 

sequential mixed methods design is precisely opposite to the explanatory sequential 

mixed method's order. For this time, the researchers do qualitative research first and 

design the next quantitative research based on the results. The intention is to generalize 

the findings from the narrow population in the qualitative research to the bigger size of a 
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quantitative research population. For instance, the researchers can use an interview with a 

representative small population sample to develop a valid psychometric questionnaire. 

Given the research questions design to emphasize quantitative data analysis and 

complement more detailed information through qualitative research, this research used 

the sequential exploratory study design, which allows the quantitative research data to 

illuminate more details in support of the qualitative research data (Cresswell, 2014). 

Accordingly, this research first implemented a quantitative study and then conducted a 

qualitative study to supplement more details. 
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CHAPTER 5. QUANTITATIVE ANALYSIS: BIBLIOGRAPHIC NETWORK 

ANALYSIS 

 
Methodological Background 

Bibliographic Network Analysis 

This research will use bibliographic network analysis method, one of the network 

science methods, to measure the extent to which educational psychology and AI 

engineering converge towards each other. Newman (2010) defined the network as “a 

collection of points joined together in pairs by lines” (p. 1). Dots in the network are called 

vertices, and lines connecting each dot are called edges. In other words, a network is a 

pattern of connections and network analysis seeks to capture a basic pattern of the 

connections by reducing complicated network features in nature into a rather abstract 

representation composed of vertices and edges. Bibliographic network (or citation 

network) means networks existing in the web of documents through a practice of citation. 

Academic, legal, and patent documents commonly attach a bibliography list at the end of 

the writing to reveal their source references. In this bibliographic network, each 

document is a vertex, and once document A refers to B, it is considered a directed edge 

between them (Newmann, 2010). Although there are various reasons to refer to a 

particular document, there is no doubt that researchers using citation networks 

acknowledge the fact that academic writing and knowledge production is not an isolated 

process, but a collective and cumulative process exchanging influence to each other 

(Biscaro & Giupponi, 2014). For instance, authors refer to papers by other authors to give 

them credit or even present radical opposition to the previous papers, forming a group of 
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scholars sharing common knowledge and cultural bases. Neumann (2010) considered “In 

general, however, if one paper cites another it is usually an indication that the contents of 

the earlier paper are relevant in some way to those of the later one, and hence citation 

networks (bibliographic networks) are networks of relatedness of subject matter” (p. 68).  

The bibliographic network has some distinctive features compared with the other 

network structures. Leicht et al. (2007) and Neuman (2010) provided the most accurate 

and comprehensive summary of the features. First, the bibliographic network is a directed 

network; the arrow comes from one document to another. For instance, if document A 

refers to document B, then the arrow comes from A to B but not vice versa. Second, the 

bibliographic network is relatively static in that once the document was published, the 

reference cannot be modified. On that account, the network tends to grow as time passes 

but never diminishes. Leicht et al. (2007) said that the bibliographic network's static 

feature intrigued many information scientists providing a laboratory-like condition of the 

network dynamics. Lastly, the bibliographic network is acyclic. Acyclic means that there 

is no circular loop in the network. It is a directed network; the arrow only comes from 

relatively current to the past one. For instance, document B published in 1950 cannot 

refer to document A published in 1980 as B was not published when A was published.   

Figure 1. 
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Measuring Convergence and Interdisciplinarity 

This study aims to measure the  level of convergence between the studies of 

educational psychology and AI engineering. Information science studies have focused on 

this issue for a while because they could predict a rise and fall of the interdisciplinary 

research field by measuring convergence and divergence between different group of 

papers (Karunan et al., 2017; McCain, 1998; Leydesdorff, 2006; Leydesdorff & Rafols, 

2011; Leydesdorff et al., 2017; Porter & Rafols, 2009). There are three different ways to 

measure a convergence between different disciplinary studies. First, the number of 

common papers categorized in two distinctive fields can represent a degree of 

convergence. Karunan et al. (2017) measured the degree of interdisciplinarity between 

two fields by measuring the number of common papers, labeled as multiple categories, 

thus searched in both topics in the search query. They calculated interdisciplinarity 

through a ratio of the number of common papers (A∩B) to combined papers (A∪B). 

Second, the exchanged number of direct citations between two fields can indicate a 

degree of convergence. Frank et al. (2019) studied citation networks between AI studies 

and other fields of study, including philosophy, art, sociology, chemistry, economy, etc. 

Based on the number of exchanged direct references, they concluded that there was less 

and even decreasing connection between AI and other studies such as psychology and 

philosophy. Similarly, Núñez et al. (2019) found that cognitive science, including AI 

studies as its relevant field, had developed less interdisciplinarity, observing the 

diminishing number of direct cross-reference with the other area of studies. Lastly, there 

is a measure of bibliographic coupling, which calculate the strength of the tie between 

documents at an aggregated level of journal, institution, author, and nation, based on the 
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number of commonly cited references by two different disciplinary studies (Glanzel & 

Czerwon,1996; Gazni & Didegah, 2016; Jarneving, 2007; Kessler, 1963; Sen & Gan, 

1983; Thijs et al., 2015; Zhao & Strotmann, 2008). Newmann (2010) put that “Two 

vertices in a network are structurally equivalent if they share many of the same network 

neighbors” (p. 211). The bibliographic coupling measure indicates the strength of the tie 

between documents simply measured by counting the number of shared network 

neighbors between vertex i and j – in the bibliographic network study, each vertex refers 

to the document, and each edge between the vertex means shared cited references. 

This research selected bibliographic coupling to measure AI and educational 

psychology research's similarity instead of using common papers and a direct citation 

network. There are two reasons for this. First, this research sought to find 

interdisciplinary interaction at the fundamental paradigmatic level. The paradigmatic 

interaction can be less visible because it does not exchange information directly with 

each other but brings a much broader impact on the fields as they influence symbols, 

concepts, theories, and models. This research aimed to reveal that even the papers not 

explicitly pursuing interdisciplinary studies could share similarities with the other fields 

because they are structurally embedded in the larger paradigmatic network where the 

interdisciplinarity emerges. Like the tip of the iceberg, a vast hidden layer of the network 

connection between the seemingly distanced two fields may lie beneath the surface. By 

definition, the bibliographic coupling means the network's hidden layer, the latent 

structure of the network showing co-membership and structural similarity among clusters 

(see, figure 2). As Klavans and Boyack (2007) said, the coupling tie and its strength 

represent a research paradigm that a group of researchers is commonly grounded. Thus, 
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this research excluded self-claimed interdisciplinary papers, because they explicitly 

pursue interdisciplinary studies. For instance, the International Journal of Artificial 

Intelligence in Education, as the name indicative of interdisciplinary field of AI and 

education studies, was categorized into Computer Science, Interdisciplinary Applications 

in the search database, and this research did not include Interdisciplinary Applications 

studies from the database’s category search. Second, even though some may want to 

study with the common papers and direct citation, there are very marginal numbers of 

common papers and direct citations between AI and educational psychology studies. A 

previous database search query did not create any overlapping papers or journals 

(common papers or journals)1. It means either that the two fields do not interact with each 

other through explicit and direct ways or that the database puts aside interdisciplinary 

studies to the separate categories reserved for interdisciplinary or applied studies, making 

them almost invisible in the category search. Therefore, the bibliographic coupling 

network was the best known measure of paradigmatic convergence and interdisciplinarity 

between different disciplinary studies for this research. 

Figure 2.  
 
Comparison of Directed Citation and Undirected Bibliographic Coupling Network 

 
1 Once I put the search keyword as “psychology, educational AND artificial intelligence, computer 
science”, it produced zero result, meaning that the database does not have any papers belong to educational 
psychology and artificial intelligence at the same time. 
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Table 1 
 
Multiple Layers Of Interdisciplinarity Measures  

 
Method 

Sampling  

The bibliographic data was retrieved from Web of Science (WoS), one of the 

largest databases of academic writings operated by Clarivate Analytics, previously run by 

Thomson Reuters. WoS is a recognized academic authority that started measuring 

academic impact and performance index, developing Science Citation Index (SCI) in 

1964. WoS pioneered online and digital database systems, publishing its index through 

CD-ROM and the internet. With this vast amount of digital academic data, Eugene 

Garfield, the founding father of WoS, opened up the field of information science 

Methods Size Interdisciplinary 
Connection How Connection is Made 

Common papers Marginally 
small 

Explicit, Direct Self-claimed 

Direct citation Relatively 
small 

Direct Direct cross-referencing  

Bibliographic 
coupling 

Relatively 
large 

Implicit, Indirect Indirect connection through 
the shared references 
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dedicated to academic indexing and citation network analysis (Moed, 2005). In this 

accumulated history, WoS was a preferred online database to retrieve a large set of 

bibliographic data (Calero-Medina & Noyons, 2008; Kajikawa et al., 2007; Leydesdorff 

& Rafols, 2009; Leydesdorff et al., 2012). 

Figure 3.  
 
Annual Publication of Educational Psychology and AI Papers 

 
 
For this research, I searched the large set of bibliographical data of AI and 

education studies using the Web of Science Core Collection database. This Core 

Collection database provides more detailed and full citation information than general 

search, including topic, country, institution, Web of Science category, funding source, 

geographical region, and etc. I searched a broad set of data related to AI and education 

psychology using the Web of Science category2. The Web of Science category (WC) has 

 
2 This was the search term and specific condition: WC=(Computer Science, Artificial Intelligence OR 
Computer Science, Cybernetics OR Robotics). Timespan: All years. Indexes: SCI-EXPANDED, SSCI, 
A&HCI, ESCI. And WC=(Psychology, Educational). Timespan: All years. Indexes: SCI-EXPANDED, 
SSCI, A&HCI, ESCI. 
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been used to map out academic disciplines before in the other studies (Leydesdorff & 

Rafols, 2009; Moya-Anegón et al., 2007; Rafols et al., 2010). This approach allowed 

access to the vast amount of papers from theoretical to various applied studies of AI and 

educational psychology, yielding 364,607 unique papers for the AI studies from 1900 to 

2018 and 120,049 unique papers for educational psychology from 1900 to 2018. The 

search query in the WoS retrieved 460,358 unique papers. Then, the initially searched 

papers were refined filtering out papers with anonymous authors, omitted citations list, 

and publication before 1961, the year when the AI paper firstly appeared in the database. 

In total, 33,003 papers were identified inappropriate after the screening in the R software 

program. After removing these papers, the count was reduced to 427,355.  

Table 1. 
 
The Number of Papers Per Each Category 
 
 Artificial 

Intelligence 
Educational 
Psychology 

Total 

Timespan 1961 - 2018 

Sources (Journals, Books, 
etc) 

1,014 109 1,124 

Documents 312,292 101,672 427,355 

Average years from 
publication 

14.2 27.1 16.9 

Average citations per 
documents 

21.58 20.99 20.78 

References 3,800,242 1,205,653 5,118,168 

Authors 258,382 100,505 355,983 

Documents per author 1.21 1.01 1.2 

Annual production growth 
rate 

13.38 3.32 5.53 

 
Analysis 
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This research used multiple data analysis  methods, including bibliographic 

coupling, Jaccard Index, inter-intra coupling ratio analysis, and community detection 

analysis methods. For this analysis, I used the Bibliometrix and igraph packages provided 

by R software, specialized for online bibliographic data analysis and network analysis per 

se, with a slight modification in their original function codes (Aria & Cuccurullo, 2017, 

Csardi & Nepusz, 2006).  

Bibliographic Coupling. The bibliographic coupling has been widely adopted in 

the bibliometric studies so far. Since Kessler (1963) first introduced this concept to 

measure the strength of ties between documents and to cluster documents based on this 

coupling strength, bibliographic coupling has been used to map a the research field (Zhao 

& Strotmann, 2008; Boyack et al., 2008), to identify the source of research ideas (Biscaro 

& Giupponi, 2014), to identify new research fronts and emerging topics (Jarneving, 

2007), and to measure the structural similarity between journals and databases (Klavans 

& Boyack, 2007). The shared number of commonly cited reference between documents is 

calculated as in the formula below: 

nij= åk AikAkj     

In this formula, nij is the number of shared cited references between document i 

and j, and Aik and Akj each indicates an adjacency matrix between document i and cited 

references k, and between k and j. By multiplying the two adjacency matrices and 

counting the sum, the total number of shared documents between i and j documents can 

be simply counted. In particular, the bibliographic coupling converts the directed citation 

network into an undirected network presenting each vertex as a document and their 

connected edges as a degree of similarity or tie between vertices. 
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Then, this individual document level coupling count can be aggregated to the 

coupling strength of higher cluster levels such as author and journal. There are many 

different ways of aggregation, but no consensus on the best method yet. Ma (2012) 

suggested that there are three ways of aggregating document-document coupling to the 

author-author or journal-journal coupling; simple, minimum, and combined method. The 

simple method is to simply assign a value of one for at least one shared cited reference, or 

zero otherwise regardless of how many times the cited reference appeared in each journal 

or author. Then, the binary score per each cited reference is aggregated at the journal or 

author level to show the number of shared cited references between journals or authors. 

For instance, the simple method measures the coupling strength as one, although the 

shared cited reference A appears three times in two journals of J1 and J2. If the J1 and J2 

share three distinctive cited references, their coupling strength is simply three. This 

simple method has been widely adopted for its convenience of calculation (Boyack et al., 

2008; Rousseau, 2010; Thijs et al., 2015). The minimum method is selecting the smaller 

number of times that the shared cited reference appears in each journal as a coupling 

strength. For instance, the shared cited reference A appears two times in journal J1 and 

three times in journal J2, then two is selected as the coupling strength between J1 and J2. 

The combined method is to multiply the appearance number of the shared cited reference 

A in journals J1 and J2. If the A appears two and three times for each J1 and J2 journal, 

then the coupling strength of J1 and J2 is 2 x 3=6. This combined method has also been 

commonly used in research because of its computing efficiency in processing big data 

(Aria & Cuccurullo, 2017; Batagelj & Cerinšek, 2013; Yan & Ding, 2012). This research 

used a combined method to aggregate document-document bibliographic coupling to the 
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journal-journal coupling strength to visualize and do the network analysis. Hence, the 

edge connecting two journal vertices means an abstracted index representing coupling 

strength between the journals in this research. The formula to produce aggregated 

coupling strength is: 

JC = DJT * DC (1)       JJ = JC * JCT(2) 

DJ is the [document x journal] incidence matrix and DC is [document x cited 

reference] incidence matrix. JC, [journal x cited reference] matrix can be derived from 

matrix multiplication of transposed DJ and DC. Then, JJ, [journal x journal] adjacency 

matrix can be calculated with JC and transposed JC matrix multiplication. In the JJ 

matrix, each matrix element indicates bibliographic coupling strength between two 

journals. This research presented the bibliographic coupling strength using descriptive 

statistics, network visualization, and adjacency matrix visualization. 

Jaccard Similarity Index. The Jaccard similarity index indicates the ratio of 

inter-cluster to total network coupling strength (Leydesdorff, 2007). The Jaccard 

similarity index helps to measure the relative size of interdisciplinary coupling against 

total coupling in the journal bibliographic coupling network. Then, this measure can be 

calculated by dividing a sum of inter-cluster coupling strength by a total sum of coupling 

strength of the entire network. 

EDUÇAI
EDUÈAI 

The Jaccard index is a normalization score ranging from 0 to 1; 0 means no 

overlap between two clusters or subgraphs, while 1 means perfect overlap. This index 

entails the relative size of the intersection against that of union between two clusters or 
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subgraphs. Thus, this research used this normalized similarity index as an indicator of 

interdisciplinary convergence between the studies of AI and educational psychology. 

 

Inter- To Intra-Disciplinary Coupling Ratio. The journals in the same 

disciplines can be connected to each other through a bibliographic coupling tie, and such 

an intra-disciplinary coupling is generally supposed to be bigger than inter-disciplinary 

coupling. It is because the journals in the same discipline are more likely to share 

common references with each other than those in the other disciplines considering their 

topic similarity and community culture. Thus, this research also compared the size of an 

intersection to that of a single cluster. That is, the relative size of inter-disciplinary 

coupling between AI and educational psychology studies was measured against the single 

intra-disciplinary coupling strength in total. The score also ranges from 0 to 1, and when 

the score approximates to 1, a perfect score, then it may mean the discipline is submerged 

into another discipline. 

!"#Ç$%
!"#

 (1)   !"#Ç$%
$%

 (2) 

Community Detection. Another way of measuring paradigmatic convergence 

between two different disciplines is the community detection method in the network 

analysis. While there are many kinds of community detection methods, this research used 

fast-and-greedy and Louvain clustering methods. The fast-greedy and Louvain clustering 

methods are commonly based on the modularity score. The modularity is a discrepancy 

between the observed number of edges in the same clusters and the edges in the random 

graph, the graph where the vertices are connected totally by a random chance. The higher 

modularity score means the clustering or modularity of the given graph is less by chance 
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but rather due to systemic reason (Csardi et al., 2016; Newman, 2004). These methods 

start by assuming that every single vertex belongs to separate clusters. Then, it calculates 

the change in modularity score in every step of merging two clusters and chooses the best 

option that can maximize modularity increase. Then, this research compared 

predetermined binary clustering according to the disciplines of AI and educational 

psychology to the identified network clusters based on the community detection methods. 

Using the fast-greedy community detection method, this research identified journals that 

belong to the clusters having both AI and educational psychology studies, labeling them 

as bridge or interdisciplinary journals located in the middle of the two disciplines. Using 

the Louvain community detection method, this research identified intra-journal clusters in 

each educational psychology and AI studies to see the differential network connection 

patterns depending on the sub-clusters in each field. 

 

Findings 

Bibliographic Coupling Network 

The journal-journal bibliographic coupling strength was measured to construct a 

coupling network. The coupling network showed a difference across the time from the 

1960s to 2010s. Figure 4 indicates the journal-journal coupling network. The yellow 

vertices mean educational psychology journals, while the green vertices are AI journals. 

The grey edges represent intra-disciplinary edges, connecting journals only in the same 

disciplines, and red edges mean inter-disciplinary edges, linking journals only in the 

different disciplines. The size of each vertex correlates with Pagerank centrality, one of 

the centrality measures giving more credit to the vertices having neighbors with higher 
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degree centrality (Newman, 2010, p. 175). The layout function positioning the vertices in 

the space was the multi-dimensional scaling (MDS). The figure clearly shows that the 

absolute size of the network has grown for the last half-centuries with an increasing 

number of journals and bibliographic coupling strength. The number of journals 

increased from 37 in the 1960s to 1,120 in the 2010s, growing almost 30 times larger. 

The number of edges between journals increased from 149 to 108,939 from the 1960s to 

the 2010s, the size about 731 times larger. The summation of bibliographic coupling 

strength, indicating similarity and interdisciplinarity of the two disciplines, increased 

from 1,654 to 3,077,102 in the same period. The network plot also shows a clear distance 

between educational psychology and AI studies as the vertices of the two fields are 

located at a separate left and right position in the network space. However, the connection 

between the two fields has been maintained and even dramatically increased over time. 

The network figures show that the red edges in the middle, indicating interdisciplinary 

edges, have increased over time with the growing overall size of the network. 

Figure 4. 
 
Network Visualization: Evolution of Journal-Journal Bibliographic Coupling Network 
from 1961 to 2018 
 

(a) 1961-1970 (b) 1961-1980 

  
© 1961-1990 (d) 1961-2000 



 

 87 

  
(e) 1961-2010 

 
(f) 1961-2018 

 
 

The visualization of the journal-journal adjacency matrix in the figure 5 also 

presents a similar result with the bibliographic coupling network visualization. The x-axis 

and y-axis of the figure indicate the same list of 1,120 journals from AI and educational 

psychology studies between 1960 and 2018. The dots on the pane mean a pair of journals 

have at least one shared common reference. Mostly, the clusters at the bottom-left are 

common references between AI journals, while those at the top-right are common 

references between educational psychology journals. The figures show a clear trend of an 

increasing number of AI studies and their clustering, while the educational psychology 

studies are pushed to the top-right corner of the pane. The dots in the top-left and bottom-
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right corner indicate shared documents across AI and educational psychology disciplines, 

and the figures show they grow over time.   

Figure 5. 
 
Journal-Journal Bibliographic Coupling Adjacency Matrix 
 

1961-1970 1961-1980 

  
1961-1990 1961-2000 

  
1961-2010 1961-2018 

  
 
Table 2. 
 
Descriptive Statistics of Journal-Journal Bibliographic Coupling Network 
 

N 1960~1970 1960~1980 1960~1990 1960~2000 1960~2010 1960~2018 

Vertex 37 51 89 326 1,014 1,120 
Edge 149 472 1,100 9,841 72,551 108,939 
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Edge weight 
(Coupling 
strength) 

1,654 10,787 31,597 163,062 1,000,600 3,077,102 

Mean edge 
weight 11.10 22.85 28.72 16.56 13.79 28.24 

 
Jaccard Similarity Index 

However, the increase of the absolute network size does not guarantee that there 

has been a growing trend of paradigmatic convergence between educational psychology 

and AI studies. Hence, this research examined normalized scores measuring structural 

similarity between different network clusters such as the Jaccard index and Inter-Intra 

network ratio ranging from 0 to 1. Figure 6 and Table 3 show that the Jaccard index has 

increased over time from about 1.5% to almost 2.2%, meaning that the proportion of 

interdisciplinary coupling strength has increased slightly relative to the total bibliography 

coupling strength in the entire graph. The historical trend shows that the size of 

interdisciplinary coupling peaked in the 1980s, then continuously decreased over time 

until the 2000s. Then, only recently, this decreasing trend was reversed to reach the peak 

again in the 2010s. This result shows a different dimension of interdisciplinary network, 

compared to the study of Frank et al. (2019), which suggested decreasing strength of 

direct reference between AI and other disciplines, including psychology studies. This 

finding rather indicates the strength of reference between AI and educational psychology 

studies in terms of the bibliographic coupling maintained the same or even strengthened 

slightly over time.  

 

Inter-Intra Disciplinary Coupling Ratio 
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The inter-intradisciplinary coupling ratio reveals a more detailed trend inside the 

bibliographic coupling network, making visible another facet of the bibliographic 

network. The score of the inter-intra coupling ratio usually indicates the relative size of 

interdisciplinary coupling strength to the intradisciplinary coupling strength. For instance, 

the inter-intra coupling ratio of educational psychology in the 2010s is about 26%, and it 

means the coupling strength between AI and educational psychology studies is about 

26% of the coupling strength only between educational psychology journals in this 

network. The 26% is not a trivial score of inter-intra coupling ratio because intra-

coupling strength is a significant measure of clustering journals into the same discipline. 

As this coupling ratio gets close to 1, the disciplinary boundary can become much more 

blurred while interdisciplinarity emerges, and even dismantle the established disciplinary 

boundary. The contradictory downward and upward trend of the ratio score in table 3 

may entail that the AI studies are becoming multidisciplinary, covering a vast range of 

social and behavioral science studies as it grows its publication size rapidly. It can also be 

interpreted that most key references shared among the educational psychology journals 

are also cited in the AI journals and provide a theoretical background to develop AI 

studies. 

Figure 6. 
 
Jaccard Similarity Index from 1961 to 2019 
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Table 3. 
 
Jaccard Similarity Index and Inter-Intra Coupling Scores per Discipline 
 

N 1960~1970 1960~1980 1960~1990 1960~2000 1960~2010 1960~2018 

Edge count 133 396 898 8,952  69,621 101,082 
EDU-EDU 125 350 583 1,122 1,585 2,965 

AI-AI 8 46 315 7,830 68,036 98,117 
EDU-AI 16  76 202 889 2,930  7,857 

 
Edge weight 

(Coupling 
strength) 

1,654 10,787 31,597 163,062 1,000,600 3,077,102 

EDU-EDU 1619 10,182 23,591 42,761 85,550 187,569 
AI-AI 10 430 7,290 116,852 900,303 2,822,206 

EDU-AI 25 175 716 3,449 14,747 67,327 
 

Jaccard 
Index 0.015 0.016 0.023 0.021 0.015 0.022 

Inter-intra 
coupling 

(Edu) 
0.015 0.017 0.029 0.075 0.147 0.264 

Inter-intra 
coupling 

(AI) 
0.714 0.289 0.089 0.029 0.016 0.023 

 
 

Community Detection  

Identifying Interdisciplinary Journals. Figure 7 and table 4 suggest the result of 

fast-greedy community detection in the journal-journal bibliographic coupling network. 

The community detection algorithm identified three clusters in the entire network, cluster 
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one for AI, cluster two for also AI, and cluster three for a mixture of AI and educational 

psychology journals. The red-colored vertices and edges in the network of figure 7 

indicates AI journals clustered together with the educational psychology journals, and 

their coupling edges. These interdisciplinary journals, all of which are AI studies, were 

identified to belong to a cluster where most of its member journals are from educational 

psychology studies. That is, these journals in table 4 were clustered together with the 

educational psychology studies, although they are AI journals according to the WoS 

database. There are many journals related to human-computer interaction, such as 

Advances In Human-Computer Interaction, International Journal Of Human-Computer 

Interaction, Human-Computer Interaction, Journal Of Human-Robot Interaction, and 

Brain-Computer Interfaces: Lab Experiments To Real-World Applications. Also, there 

are cybernetics studies of IEEE Systems Man And Cybernetics Magazine and 

Engineering Cybernetics. In aggregate, these interdisciplinary studies identified in the 

community detection analysis are mostly about human-machine interaction exploring 

cognitive compatibility between human and machine in various forms. The studies of 

human-machine interaction are to establish theoretical and physical continuum between 

human and machine intelligence.  

Figure 7.  
 
Visualization of Interdisciplinary Journals Identified through Community Detection 
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Table 4.  
 
List of Interdisciplinary Journals in the AI Studies 
  

Journal  Journal 
1 Advances In Human-Computer Interaction 26 Human Computer Interaction With Mobile 

Devices 
2 International Journal Of Human-Computer 

Interaction 
27 Visual Interfaces To Digital Libraries 

3 Human-Computer Interaction 28 Cognitive Technology: Instruments Of Mind, 
Proceedings 

4 Behavior & Information Technology 29 Engineering For Human-Computer Interaction 

5 International Journal Of System Dynamics 
Applications 

30 Haptic Human-Computer Interaction, 
Proceedings 

6 Journal Of Human-Robot Interaction 31 Logic Based Program Synthesis And 
Transformation 

7 Interacting With Computers 32 Human Error And System Design And 
Management 

8 Entertainment Computing 33 Intelligent Tutoring Systems, Proceedings 

9 International Journal Of Mobile Human Computer 
Interaction 

34 Cooperative Buildings: Integrating Information, 
Organization, And Architecture 

10 International Journal Of Social Robotics 35 Defense Applications Of Multi-Agent Systems 

11 International Journal Of Human-Computer Studies 36 Problem-Solving Methods: Understanding, 
Description, Development 

12 Machine Translation 37 Haptic And Audio Interaction Design, 
Proceedings 

13 Cognitive Systems Research 38 Constraint Solving And Language Processing 
14 AI & Society 39 Engineering Human Computer Interaction And 

Interactive Systems 
15 Universal Access In The Information Society 40 Intelligent Media Technology For 

Communicative Intelligence 
16 Journal Of Usability Studies 41 User Modeling 2005, Proceedings 
17 Annual Review Of Cybertherapy And Telemedicine 42 Affective Dialogue Systems, Proceedings 
18 Brain-Computer Interfaces: Lab Experiments To 

Real-World Applications 
43 Computer Human Interaction: Proceedings 

19 ACM Transactions On Human-Robot Interaction 44 Advances In Knowledge Acquisition 

20 IEEE Systems Man And Cybernetics Magazine 45 Multimedia, Hypermedia And Virtual Reality: 
Models, Systems 

21 Smart Graphics, Proceedings 46 Lessons From Learning 
22 Spatial Cognition Iv, Reasoning, Action 47 Networking: Connecting Workers In And 

Between Organizations 
23 Cognitive Brain Research 48 International Journal Of Man-Machine Studies 
24 Comparative Evaluation Of Multilingual Information 

Access Systems 
49 Engineering Cybernetics 
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25 User Modeling 2003, Proceedings   

 

Identifying Sub-Clusters In Each Field. The community detection created sub-

clusters in each AI and educational psychology studies. The Louvain cluster analysis 

detected five different sub-clusters in the AI field. The identified clusters in the AI were 

symbolic AI, neural network, image processing, robotics, and soft computing, while the 

clusters in the educational psychology were educational psychology, educational 

measurement, child development, and learning science studies. The cluster names reflect 

the dominant number of journal names in each cluster. For instance, the symbolic AI 

cluster included Expert Systems with Application, Kybernetics, Argument and 

Computation, and Cybernetics and Systems. Also the child development cluster has Child 

Development, Journal of Early Intervention, and Behavioral Disorder. The figure 8 

shows the interdisciplinary edges from the sub-cluster in each discipline. It indicates that 

the symbolic AI and neural network studies take most of the interdisciplinary edges in the 

AI side, while the educational psychology and educational measurement studies are two 

clusters having most interdisciplinary edges on the educational psychology side. Figure 9 

presents the change in interdisciplinary coupling proportion of the sub-clusters in each 

field. The most visible trend is that of the increasing proportion of symbolic AI and child 

development studies in the AI and educational psychology studies.  

Figure 8.  
 
Interdisciplinary Coupling Edges of the Sub-Disciplines 
 

1961-2019 Symbolic AI 1961-2019 Educational Psychology 
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1961-2019 Neural Network 1961-2019 Educational Measurement 

  
1961-2019 Image Processing 1961-2019 Child Development 

  

1961-2019 Robotics 1961-2019 Learning Science (Reading 
and Writing) 

  
1961-2019 Soft Computing  

 

 

 
Figure 9. 
 
Proportion of Each Clusters in the Interdisciplinary Coupling Strength 
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The quantitative analysis so far, adopting bibliographic network analysis method, 

identified the ‘cyborg space’ in the bibliographic network space between educational 

psychology and AI studies. There were four major findings. First, the findings confirmed 

the existence of a common source of knowledge between the two fields, the bibliographic 

coupling strength, which in turn was based on the number of shared cited references. The 

network visualization showed a non-trivial amount of interdisciplinary coupling strength 

between educational psychology and AI studies. Second, the Jaccard similarity index 

showed that the strength of the tie has slightly increased over time or at least maintained 

at the same level. Also, the inter-intra coupling ratio indicated that as the AI field 

expands rapidly, the educational psychology studies tend to be disproportionately 

affected by the AI studies. Third, the community detection analysis identified the 

interdisciplinary journals categorized together with the educational psychology journals, 

while belonging to the AI field according to the WoS category. These are mostly the 

studies of human-machine interaction and interface. Fourth, the community detection of 

each discipline identified the sub-disciplinary studies in the educational psychology and 

AI studies respectively. It showed that the interdisciplinary coupling has been largely led 

by symbolic AI and neural networks in the AI, and educational psychology and 

educational measurement studies in the education field. 
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CHAPTER 6. QUALITATIVE ANALYSIS: METAPHOR ANALYSIS 

Methodological Background 

Metaphor In Science Studies 

Over the last several decades, scholars highlighted the ideological and 

reproductive function of metaphor and found the real force framing our cognitive 

function and socio-ideology in the metaphorical usage of language (Goatly, 2007; Hasse, 

1988; Lakoff & Johnson, 1980). This perspective contrasts with the existing perception of 

the metaphor considering it as redundant, noisy, and decorative. Hasse (1988) argued that 

the importance of metaphorical use of language had been largely ignored, given a 

widespread belief that analytic and scientific description should be based on stable, 

reliable, and univocal expressions only consisting of literal statements. Against this 

taken-for-granted assumption, she insisted that “all language is metaphorical” (p. 1). She 

understood our language is a network system, a semantic web interwoven with its 

relationally to each other based on similarity and difference. 

This cognitive linguistic perspective on the metaphor has significant implications 

for the scientific studies as scientific discovery is mediated only through the language we 

use. Concerning this, Van Lunteren (2018) said: “Nature never speaks for itself. 

Classifications, analogies, technical vocabularies, and other conceptual tools that enable 

us to make sense of natural phenomena are as much of our own making as the 

instruments that we use to interrogate nature” (p. 763). Again, Hasse (2000) insisted that 

the scientific model is a metaphorical expression in its nature. For instance, DNA model 

built with a colored ball with its  connected network is itself a metaphorical expression. 

By describing the DNA structure with this network system of colored balls, people tend 
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to understand DNA as a connected system of distinctive molecules. Meanwhile, this 

metaphor tends to hide the features of size, weight, and shape of DNA as a consequence 

of using the specific kind of metaphorical expression. As hinted in Hasse's point that 

metaphorical expression has an emancipating force, the metaphor provides momentum to 

shift the epistemic and ontological base of scientific studies by breaking the existing 

semantic web in scientific thinking. This emancipatory aspect of metaphor enables 

scientists to create new theories and models such as string theory and orbital models, 

which is not achievable through literal expressions (Colburn & Shute, 2008). 

There are more studies exploring the relationship between science and 

technology, and metaphorical expressions. Colburn and Shute (2008) examined how the 

technological invention of the computer was first conceptualized based on the preexisting 

similarity with the real world, emerging similarity, and finally enforcing similarity as an 

effect of its creation. Greenwood and Bonner (2008) criticized the established view that 

scientific theory should be built upon “literal and precise” language, insisting that: 

“Metaphorical expressions constitute at least temporarily an irreplaceable element of the 

linguistic machinery of a scientific theory. These are metaphors which researchers 

employ to express theoretical claims for which no adequate literal paraphrase is known” 

(p. 160). They suggested an example of a computer, which does not have any established 

literal paraphrases that can capture the essential concept of it except for the metaphor of 

the human brain and mind. Struik et al. (2008) examined how the new field of plant 

neurobiology emerged by borrowing concepts and terms from animal physiology. They 

found that the scholars of this new field tried to explain a complex molecular 
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phenomenon in plants using metaphors of an animal mechanism such as synapses, 

neurons, and the brain system.  

Donna Haraway (1972) was one of the earliest thinkers  who recognized a 

significant implication of a metaphor for the science activities. In her doctoral 

dissertation, she traced the history of how the new paradigm emerged when 

developmental biology first appeared. To explain the transition in intellectual history, she 

borrowed the concept of Thomas Kuhn’s paradigm shift. In her dissertation research, 

Haraway built on the idea that Kuhn’s indication of paradigm is mainly constituted 

by  two factors: one is a member of communities and their interaction, and two is shared 

symbols and concepts amongst the members, which can be mediated through 

metaphorical expressions. She considered that metaphoric systems are “the core of 

structural coherence” of science, unlike the widely held assumption that objective and 

literal description is the gist of scientific statements. She found that at the moment of the 

paradigm shift in biology, “a major reorientation of fundamental metaphor occurred, 

leading workers in a field to see new problems and accept radically different sorts of 

explanations” (p. 8). More specifically, she revealed that new generational scholars of 

biology, who created a new sub-discipline of developmental biology, abandoned 

mechanical and vitalism metaphors and adopted organic metaphors as a new conceptual 

anchor.   

 

Method 

Max Black and Mary Hesse understood scientific modeling and theory building as 

a metaphorical process (Hesse, 2000). Black said the discourse of scientific modeling is 
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constituted by primary and secondary systems. He understood through the metaphorical 

discourse the primary system, literal meaning of the words, and associated with the 

secondary system, metaphorical meaning of the words. For instance, Black analyzed a 

statement “Life is a journey” as consisting of the primary system of life and secondary 

system of journey. Black said the primary system of life and secondary system of the 

journey come together to reframe our conventional view of life with a filter of the 

journey (Black, 1993). However, the metaphor is not a binary system of the primary and 

secondary system. Black and Hasse emphasized the interaction effect of the two systems 

creating a new space of meaning, which Black named as “associated common place.” 

Hasse pointed out when we just say “Man is a wolf,” not only the meaning of man but 

also that of wolf transform, resulting in the idea that wolves become more human as 

much as humans become more wolves. In this interaction, Hesse insisted, neither system 

can be considered as a genuine truth-bearer (Hesse, 2000). 

Building on the metaphor analysis approach undertaken by Black and Hasse, I 

conducted the metaphor analysis to identify the primary system, secondary system, and 

associated common place in the identified key shared references across educational 

psychology and AI studies. Firstly, this study identified specific metaphor expressions 

related to human and machine at the micro level, such as phrase, sentence, and paragraph. 

This approach targets only very explicit analogical statements or expressions. Secondly, I 

identified the metaphors more broadly analyzed at the document level to see how the 

primary and secondary systems associate with each other to create a new common place 

where machine and human are interconnected, compatible, and even non-discernable 

anymore. This method analyzed implicit and abstract indication of metaphorical 
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connection between human and machine, using statistical, mathematical, and mechanical 

assumptions and expressions. Then, finally, as Hesse stated, this study synthesized the 

analysis to interpret the metaphorical association between human and machine as an 

action to create a new world view, set a norm, and corresponding perspective (Hesse, 

2000). 

 

Sampling 

This research identified key shared references between AI and educational 

psychology studies from 1961 to 2019. There is no established consensus on how to 

measure the popularity across two or more than two different groups. Giving a combined 

score of popularity in the network is what degree centrality sometimes means. The degree 

centrality is a simple count of edges for each node and the nodes with large numbers of 

edges are ranked at the top of the table. However, in a complex network with many 

different modules, cliques, and clusters inside, degree centrality does not properly 

represent global popularity of the nodes. For instance, although one of the references was 

cited 100 times in AI studies, its global popularity will be low in general once it was 

referred 0 times in educational psychology. Meanwhile, although one of the references 

was cited only 50 times in AI studies, its global popularity can be higher in general if it 

was cited 50 times in educational psychology. Thus, balancing between global popularity, 

the popularity in more than one cluster, and local popularity, the popularity just in one 

cluster is a challenging issue to identify the key document in the complex network.  

Therefore, this research extracted top-20 most cited references both from 

educational psychology and AI studies based on the multiplication score of the citation 
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with a certain threshold. The multiplication method is calculating a citation score just 

simply multiplying the number of citations from educational psychology and AI studies 

for each reference. For instance, in table 5, Cohen, J. (1988) is at the top of the ranking 

table because its multiplication score, multiplying citations received from AI (246) and 

educational psychology (2426), is 596,796. The strength of multiplication compared with 

the simple addition is that it can filter out the references mostly cited only from one 

discipline. Additionally, this research considered the citation count of less than 50 from 

one discipline is not meaningful, setting 50 as a threshold to filter some references having 

disproportional citation counts. This filtering eliminated references having 5,000 from AI 

and 30 from educational psychology, to give an example, leaving  only the references 

having a lesser gap. The total number of cited references in the collected bibliographic 

data from AI and educational psychology studies in the WoS was initially 5,220,428. 

Then, the reference count cited at least once both from the two studies was 28,066, and 

after deleting references to less than 50 citations at least from one discipline, the count 

came down to 122. The top 20 cited references were identified in this list. 

This research also identified the top-20 most cited authors both from AI and 

educational psychology studies to complement the cited reference list. This list showed 

the authors having published papers that have been consistently cited by both fields. 

Then, this research identified papers written by the top authors: Cohen (1988), Dempster 

et al., (1977), Vygotsky (1978), Nunnally (1978), Newell and Simon (1972), Bandura 

(1986), McClelland et al. (1986), Cronbach (1951), Gibson (1979), and Anderson (1996). 

From this shortlist, the decision was made  to analyze Dempster et al., (1977), and 

Nunnally (1978) among the statistical papers, and Newell and Simon (1972), Anderson 
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(1983), Gibson (1979), McClelland et al. (1986), and Vygotsky (1978) among the 

psychology papers. The papers by Cohen (1988), Cronbach (1951), and Dempster et al. 

(1977) were excluded because their statistical theory now became a generic grammar of 

all statistical studies, thus not representing unique characteristics of the interdisciplinary 

space between educational psychology and AI. In the meantime, for the purposes of this 

study, I decided to select one statistical papers: Nunnally’s An overview of psychological 

measurement. Nunnally’s (1978) paper introduced a statistical approach in the general 

science for the psychological and behavioral science studies. Also, Newell and Simon 

(1972) and McClelland et al. (1986) were selected given the influence of the authors in 

the symbolic and connectionist AI studies, respectively. This study picked up Anderson 

(1983) due to his wide contribution in the AI studies across symbolic and connectionist 

AI. This research considered the unique position of Gibson’s ecological psychology 

refuting both behaviorism and cognitivism and also its influence on neuroscience and 

robotics (Lobo et al., 2018).  

Table 5.  
 
List of Top 20 Most Cited Reference both from the Educational Psychology and AI 
Studies 

 
Rank Cited References Category Citation 

from EDU 
Citation 
from AI Multiplication 

1 Cohen, J. (1988). Statistical Power Analysis 
For The Behavioral Sciences. Academic 
press. 

Stat. 2,523 264 666,072 

2 Dempster, A. P., Laird, N. M., & Rubin, D. 
B. (1977). Maximum likelihood from 
incomplete data via the EM 
algorithm. Journal of the Royal Statistical 
Society:  Series B (Methodological), 39(1), 
1-22. 

Stat. 141 2,892 407,772 

3 Vygotsky, L. S. (1978). Mind in society: The 
development of higher psychological 
processes. Harvard university press. 

Psy. 1,310 185 242,350 

4 Nunnally, J. C. (1978). An overview of 
psychological measurement. Clinical 
diagnosis of mental disorders, 97-146. 

Stat. 611 300 183,300 
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5 Newell, A., & Simon, H. A. (1972). Human 
Problem Solving. Englewood Cliffs, NJ: 
Prentice-hall. 

Psy. 311 539 167,629 

6 Bandura, A. (1986). Social Foundations of 
Thought and Action: A Social Cognitive 
Theory. Englewood Cliffs, NJ: Prentice 
Hall. 

Psy. 1,084 151 163,684 

7 McClelland, J. L., Rumelhart, D. E., & PDP 
Research Group. (1986). Parallel distributed 
processing (Vol. 2). Cambridge, MA: MIT 
press. 

Psy. 61 2,175 132,675 

8 Bandura, A. (1997). Self-efficacy: The 
exercise of control. W H Freeman/Times 
Books/ Henry Holt & Co. 

Psy. 1,103 86 94,858 

9 Schank, R. C., & Abelson, R. P. (1977). 
Scripts, Plans, Goals, and Understanding. 
Hillsdale. U.: Laurence Erlbaum 

Psy. 243 331 80,433 

10 Hebb, D. O. (1949). The first stage of 
perception: Growth of the assembly. The 
Organization of Behavior, 4, 60-78. 

Psy. 68 1,054 71,672 

11 Glaser, B., & Strauss, A. (1967). The 
Discovery of Grounded Theory: Strategies 
for Qualitative Research 

 513 132 67,716 

12 Lave, J., & Wenger, E. (1991). Situated 
learning: Legitimate peripheral 
participation. Cambridge university press. 

Psy. 448 125 56,000 

13 Deci, E. L., & Ryan, R. M. (1985). Intrinsic 
Motivation and Self-Determination in 
Human Behavior. Berlin: Springer Science 
& Business Media. 

Psy. 710 77 54,670 

14 Cronbach, L. J. (1951). Coefficient alpha 
and the internal structure of tests. 
Psychometrika, 16, 297-334 

Stat. 470 113 53,110 

15 Gibson, J. J. (1979). The ecological 
approach to visual perception. Houghton, 
Mifflin and Company. 

Psy. 109 484 52,756 

16 Bollen, K.A. (1989). Structural Equations 
with Latent Variables. John Wiley and Sons, 
Inc., New York. 

Stat. 610 84 51,240 

17 Johnson-Laird, P. N. (1983). Mental models: 
Towards a cognitive science of language, 
inference, and consciousness (No. 6). 
Harvard University Press. 

Psy. 257 193 49,601 

18 Efron, B., & Tibshirani, R. J. (1994). An 
introduction to the bootstrap. CRC press. 

Stat. 96 487 46,752 

19 Anderson, J. R. (1996). The architecture of 
cognition (Vol. 5). Psychology Press. 

Psy. 208 212 44,096 

20 American Psychiatric Association, A. P. 
(1994). Diagnostic and statistical manual of 
mental disorders (DSM-IV). 

Psy. 752 55 41,360 

Note. EDU and AI stand for educational psychology and artificial intelligence studies 

respectively, and the papers whose authors also appear in the list of top 20 cited authors 

were highlighted. 
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Table 6.  
 
List of Top 20 Most Cited Authors both from the Educational Psychology and AI Studies 
 

Rank Authors EDU AI Multiplicatio
n 

1 Holland J 624 3,165 1,974,960 
2 Cohen J 4,345 451 1,959,595 
3 Piaget J 2,593 508 1,317,244 
4 Rumelhart D 545 2,349 1,280,205 
5 Bandura A 3,137 358 1,123,046 
6 Anderson J 821 1,035 849,735 
7 Vygotsky L 2,007 298 598,086 
8 Newell A 457 1,261 576,277 
9 Nunnally J 1,268 445 564,260 
10 Dempster A 144 3123 449,712 
11 Carroll J 930 284 264,120 
12 Hair J 432 595 257,040 
13 Bruner J 1,144 219 250,536 
14 Cronbach L 1,396 169 235,924 
15 Gibson J 228 1,031 235,068 
16 Chomsky N 415 510 211,650 
17 Csikszentmihalyi M 559 350 195,650 
18 Sternberg R 1,103 177 195,231 
19 Ekman P 200 927 185,400 
20 Minsky M 118 1,505 177,590 

Note. EDU and AI stand for educational psychology and artificial intelligence studies 

respectively, and the authors whose papers also appear in the list of top 20 cited 

references were highlighted. 

 

Analysis 

For the metaphor analysis, different analysis strategies were used  depending on 

the level of explicitness of the metaphorical expressions. First, I searched for key terms 

indicating human and machine per se in every paper to identify human-machine 
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metaphorical expressions at the sentence and paragraph level. Other than human and 

machine, I used man, intelligence, brain, cognition, psychology, mind, and mental to 

indicate human, while adopting computer, information processor, information processing 

machine to represent machine. This method was useful to identify straightforward 

human-machine metaphors. For instance, saying that human is a system constituted with 

a variety of functions or substructures belongs to this case. Second, I  also identified 

expressions describing humans as a battery of machine-like functionaries with a 

formalism although there is no direct statement of human-machine metaphors. For this, 

the study explored sentences and paragraphs including terms such as function, structure, 

system, operation, classification, probabilistic, and statistical to see how such mechanical 

expressions describe human, human mind, and human behavior. Lastly, the study also 

examined abstract concepts and models applicable across the human and machine 

boundary, thus ensuring comparability, compatibility, generalizability, and universality of 

the model. In particular, the statistical papers include mathematical expressions with their 

explanation, making it difficult to do the metaphor analysis in a straightforward way. 

Hence, this research interpreted abstract mathematics in the statistical papers with a focus 

on how the papers created cyborg space by claiming statistics and measurement as a 

universal theory.  

Table 7.  
 
Research Framework for the Metaphor Analysis  
 

Explicitness Primary-
Secondary Search Keyword 

1. Explicit metaphor 
 

Primary human, man, men, intelligence, brain, 
cognition, psychology, mind, mental 
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 Secondary machine, computer, information 
processor, information processing 
machine 

2. Implicit metaphor 
 

Primary human, man, men, intelligence, brain, 
cognition, psychology, mind, mental, 
machine, computer, information 
processor, information processing 
machine 

 Secondary system, function 
3. Abstract metaphor: 
Modeling and theorization 

Primary human, man, men, intelligence, brain, 
cognition, psychology, mind, mental, 
machine, computer, information 
processor, information processing 
machine 

 Secondary Statistical and probabilistic modeling of 
both human and machine process  

 
Findings 

This research examined the explicit metaphor, using direct expressions: a human 

is a machine, or a human is like a machine. Such metaphorical expressions created a 

cyborg space by alluding to either human as a mechanic being and vice versa. The 

associated common place created by the metaphor between humans and machines is a 

cyborg space where human and machine features are considered to be a continuum of 

each other, and one of the branches shares the same root. Such straightforward 

expressions were mostly present in the psychological study papers of Newell and 

Simon’s (1972) Human problem solving and Anderson’s (1996) The architecture of 

cognition.  

 

Human as an Information Processor 

Newell and Simon (1972) explicitly mentioned that the human could be framed as 

an information processor and such a metaphorical understanding well explains the real 

cognitive process: “This study is concerned with thinking-or that subspecies of it called 



 

 108 

problem solving- but it approaches the subject in a definite way. It asserts specifically 

that thinking can be explained by means of an information processing theory…The 

present theory views a human as a processor of information” (p. 5). They insisted that 

this metaphor provides an opportunity to understand human thinking in a more 

sophisticated way. They even claimed that this is not a metaphor anymore at all, but a 

“precise symbolic modeling” (p. 5), reflecting an exact mechanism of human’s thinking 

process. 

The metaphor describing humans as a continuum of machines has triggered 

thinking that humans and machines share the same problem space. The problem space is 

an inventory of tasks that the intelligent agent should navigate through problem-solving 

competence. One of the reasons why these authors could assert that human thinking 

resembles information processing was that they focused on the similarity between human 

and machine problem space, assuming that humans and machines recognize and solve the 

real-world problems using the same logic. Newell and Simon (1972) wrote: 

One enters a department store: “Where do I find men’s suits?” “Third floor, down 

the center aisle and to your right”; “Thank you”; and off one goes, following 

directions. Several phenomena here are closely allied to the interests of this book: 

language production and reception; deciding to ask for information to solve a 

problem; following directions, once assimilated; perhaps (if the directions were 

imperfect) solving some smallish subproblems along the way. Certainly this is the 

behavior of an information processing system. (p. 7) 

They assumed the problem space to be contingent and hierarchical, where the 

tasks are an assembly of smaller problem-solving tasks. Although there is a difference in 



 

 109 

intelligence level between human and machine or human and animal, they saw that the 

essence of the thinking process can be abstracted to the universal information processing 

theory. Thus, they insisted that the task environment of artificial intelligence provides a 

meaningful insight into understanding human thinking process, assuming compatibility 

between human and machine thinking process:  

As will become clear, a theory of the psychology of problem solving requires not 

only good task analyses but also an inventory of possible problem solving 

mechanisms from which one can surmise what actual mechanisms are being used 

by humans. Thus, one must work with task environment in which artificial 

intelligence has provided the requisite array of plausible mechanisms. (Newell & 

Simon, 1972, p. 6) 

Similar thinking appeared in Anderson’s work (1996). He insisted on the new 

unitary cognitive system theory model, arguing for universal law governing seemingly 

fractured cognitive subsystems. He tried to validate his model because the computer 

system runs on a single set of principles but has unlimited functionality. He considered 

the computer simulation of the human cognitive model as an essential step to validate the 

cognitive theory, and he performed several simulation studies to prove his mental theory 

for himself. He did not use the term information processing machine. However, he 

claimed that human cognition is for the computational function, saying: “More generally, 

I claim that the cognitive system has evolved many different representational types, each 

intended to facilitate a certain type of computation”(Anderson, 1996, p. 26). He also 

continued to state that the evolution process of computer and human cognition follows a 

similar trace because they both follow the same universal logic of computation: “Thus we 
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see that computers have developed distinctive data types in response to some of the same 

pressures to produce intelligent behavior that humans have felt during their evolution. 

This is evidence, or a sort, that humans would have evolved the capacity to process 

different data types” (Anderson, 1996, p.26). 

In this unitary problem space common for humans and machines, performing 

problem-solving tasks, a sign of having human-like intelligence, is not the privileged 

human ability anymore. Now, whether being called an information processor or computer 

can solve the problem, thus having an intelligence. It means a universal theory of 

intelligence under the frame of information processing and computation as Newell and 

Simon (1972) said: 

How can a problem be solved? What makes a problem difficult? The answers to 

these questions constitute a theory of problem solving, one that should be 

applicable to man, beast, and machine alike, insofar as they can be represented as 

information processing systems of the type posited in Chapter 2. (p.87) 

McClelland et al. (1986) also clearly explained  that their parallel distributed 

processing (PDP) model, which was supposed to challenge the Newell and Simon’s 

symbolic model, commonly works for human cognition and computer. Although the PDP 

model was devised to compete with the symbolic model, which insisted on a sequential 

process of information through logical symbol manipulation, both shared the information 

processing theory as a common paradigm. McClelland et al. (1986) said: 

They (PDP models) hold out the hope of offering computationally sufficient and 

psychologically accurate mechanistic accounts of the phenomena of human 

cognition which have eluded successful explication in conventional computational 
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formalisms; and they have radically altered the way we think about the time-

course of processing, the nature of representation, and the mechanisms of 

learning. (p. 11) 

However, unlike the other authors in the selected papers, Gibson (1979) opposed 

describing a human as a machine. He was explicitly against this idea, claiming that 

humans are structured differently compared to the machinic assemblage. He also opposed 

using the information processing theory in modeling the human perceptual system, 

insisting that Claude Shannon’s information processing theory failed to explain the 

human perceptual process. He argued that the information processing theory is only for 

machines but not for humans. Nevertheless, such an opposition to the information 

processing theory should not be interpreted as an opposition to the metaphor connecting 

humans and machines in general. In the following part, this research explained why 

Gibson was not an exception to the general paradigm describing humans as machines and 

vice versa. 

 

Human as a System 

Sometimes, the authors used the terms system, function, and structure to describe 

human and human features instead of the machine. These terms made the difference 

between the meaning of human and machine relatively unnoticed. These terms reduce 

friction between the two that can make the human-machine metaphor look unnatural and 

unfitted. For instance, behaviorism drew criticism for its direct analogy to a machine in 

explaining human features. The system was an alternative metaphor or modeling of 

human’s psychological process to avoid such confrontation. Gibson (1979) said: “Neither 



 

 112 

mentalism on the one hand nor conditioned response behaviorism on the other is good 

enough. What psychology needs is the kind of thinking that is beginning to be attempted 

in what is loosely called systems theory” (p. xv). It shows that he tried to introduce the 

term system, a loosely defined notion, to imply human mental process is neither a mystic 

mentalist’s nor a mechanistic behaviorist’s model, but somewhere between them.  

Similarly, the selected papers' authors posit that system, function, and structure 

are neutral, comprehensive, and ambivalent concepts, which represent overarching 

human and machine features under the more universal and scientific framework. The 

following quotation is a typical example of how these terms, system, and function were 

used to articulate a theory:  

An information processing theory is dynamic, not in the sense in which that term 

is used in depth psychology, but in the sense of describing the change in a system 

through time. Such a theory describes the time course of behavior, characterizing 

each new act as a function of the immediately preceding state of the organism and 

of its environment. (Newell & Simon, 1972, p. 11) 

The authors of the selected papers often described humans as a system to imply 

that humans are constituted by substructure and act as sub-functionaries like a system. 

Newell and Simon (1972) mentioned: “He (human) is a system consisting of parts 

sensory subsystems, memory, effectors, arousal subsystems, and so on” (p. 3). Also, they 

assumed the information processing system to be an assemblage of receptors, effectors, 

processors, and memory. Each subcomponent has a designated function such as accept 

input, produce output, and store information. Then, the information processing, the 

system-level function, combines these small components and their function. Anderson 



 

 113 

(1996) similarly posited the unitary cognitive system as a hierarchical composition 

consisting of lower-level declarative, production, and working memory systems. Each 

memory system performed a function of storage, retrieval, match, execution, application, 

encoding, and performances to work as a higher level unitary cognitive system. Even 

Vygotsky (1978) was not an exception to using a human-system metaphor. He framed 

child as a system consisting of the sub-functionaries, saying: 

The linkage between tool use and speech affects several psychological functions, 

in particular perception, sensory-motor operations, and attention, each of which is 

part of a dynamic system of behavior. Experimental-developmental research 

indicates that the connections and relations among functions constitute systems 

that change as radically in the course of a child’s development as do the 

individual functions themselves. (Vygotsky, 1978, p. 31) 

McClelland et al. (1986) also alluded to hierarchical structure of the cognitive 

system: “What PDP models do is describe the internal structure of the larger units, just as 

subatomic physics describes the internal structure of the atoms that form the constituents 

of larger units of chemical structure” (p. 12). Gibson (1979) also defined a perceptual 

system as “an organ and its adjustments at a given level of functioning, subordinate or 

superordinate” (p.234). He also mentioned: “(perceptual capacity of organism) lie in 

systems with nested functions” (Gibson, 1979, p. 195). He used the term system with a 

slightly different nuance to represent relational and combinatorial function of perceptual 

organs, rejecting a model that human perceptual capacity is located in “discrete 

anatomical parts of the body” (Gibson, 1979, p. 195). His view was truly system-oriented 

as he insisted that all human organs belong to a certain system, do not exist being 
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separated from the system. In this regard, Gibson (1979) often connected organ names 

with a hyphen such as “head-eye system” (p. 195), “eye-head-brain-body system” (p. 55), 

and “mustle-joint-skin system” (p. 177) to emphasize the relational character of the 

human perceptual system.  

The replacement of humans or machines with a more abstracted notion of systems 

had an immediate impact, generalizing uniquely human or machine features onto the 

other beings without much disturbance. The authors frequently used the term by creating 

many phrases such as artificial intelligence system, information processing system, 

recognition system, production system, linguistic system, problem-solving system, and 

adaptive system to indicate a blurring boundary between humans and machines alike and 

with the elusive hybrid entities. The following quotation is one of the examples showing 

how the boundary was crossed and finally erased.  

…the emerging system is remarkably content-free, and without the powers of 

integrated action shown by the normal adult. Many constraints on the nature of 

the fully developed system arise from the requirement of self-organization – help 

from the external environment can only be used after the system has developed 

itself to a point where it is capable of such assimilation. (p. 7)  

Newell and Simon (1972) described a certain system's feature, and we are soon to 

recognize that the system indicated humans. The emerging system means children or 

adolescents, while the fully developed system implies adults, and this is not the special 

case where the authors used the term system in the place for a human. Newell and Simon 

(1972) called human as an information processing system in the initial part of their book, 

but in the latter part, most of the information processing system appeared to mean a 
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computer. Similarly, Anderson (1996) declared that human cognition is a unitary mental 

system performing adaptive control of thought (ACT) and used this term throughout his 

book instead of human and human cognition. Gibson (1979) stated: “A system can orient, 

explore, investigate, adjust, optimize, resonate, extract, and come to an equilibrium, 

whereas a sense cannot” (p. 234). For Gibson, the system now became an agent of action, 

movement, and behavior, not an object affected by external stimuli. That is, the system 

began to be described as an animate being.  

In a similar vein, Newell and Simon (1972) espoused the thinking that learning is 

a general process applicable beyond the human, expanding this uniquely human process 

to the non-human beings saying: “Learning is a second-order effect. That is, it transforms 

a system capable of certain performances into a system capable of additional ones” (p. 7). 

Placing the term system in the slot initially assigned to humans could transform human 

learning as a universal feature applicable to whatever they define as a system. For 

instance, now there is not much difficulty understanding the following statement: it 

(learning) transforms an information processing system capable of certain performances 

into an information processing system capable of additional ones. McClelland, 

Rumelhart, Hinton, and the connectionist group also suggested a mechanistic definition 

of learning in their PDP model. They posited that the learning is a general phenomenon 

reduced to a micro-mechanism. For them, learning is a matter of connection, its strength, 

activation, and pattern. It seems more like tuning of information flow in the network 

system. They said:  

For if the knowledge is the strengths of the connections, learning must be a matter 

of finding the right connection strengths so that the right patterns of activation 
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will be produced under the right circumstances…it opens up the possibility that an 

information processing mechanism could learn, as a result of tuning its 

connections, to capture the interdependencies between activations that it is 

exposed to in the course of processing. (McClelland et al., 1986, p. 32) 

The authors could transfer the meaning and function of the primary system, in this 

case, human, to the secondary system, machines - or vice versa - by setting compatibility 

and equivalence between human and machine through the term system or its mechanistic 

depiction. Thus, in this hybrid space, humans and machines commonly represent systems 

only in a different kind. Now that they are derived from the same root, they are 

compatible with and applicable to each other.  

Vygotsky (1978) also described humans as a system. Unlike the other authors, 

Vygotsky (1978) described the human as a system that interacted with the other systems. 

Vygotsky (1978) saw that human is nested in the social and behavioral system: “From the 

very first days of the child’s development his activities acquire a meaning of their own in 

a system of social behavior and, being directed towards a definite purpose, are refracted 

through the prism of the child’s environment” (p. 30). Also, he insisted that humans can 

build up their own psychological and behavioral system through the interaction with the 

external environment: “…the child’s system of activity is determined at each specific 

stage both by the child’s degree of organic development and by his or her degree of 

master in the use of tools” (p. 21). 

 

Human as a Statistical and Probabilistic Being 
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The human-machine-system metaphor barely appeared in the statistical papers. 

The mechanistic metaphor of human and machine was hardly visible and deeply 

permeated into the general statistical and mathematical modeling. Nevertheless, the 

statistical and mathematical models are the most powerful metaphors opening up a 

cyborg space by setting equivalence between heterogeneous beings with quantification. 

As Haraway (2016) put it: “Human beings, like any other component or subsystem, must 

be localized in a system architecture whose basic modes of operation are probabilistic, 

statistical” (p. 32). She also accurately pointed out that under this probabilistic mode of 

operation, “any component can be interfaced with any other if the proper standard, the 

proper code, can be constructed for processing signals in a common language” (Haraway, 

2016, p. 32). Interestingly enough, there are similar statements by the authors of the 

selected papers. Some authors mentioned that statistical and mathematical modeling is 

generally applicable to various cases regardless of their internal and environmental 

features once they are set to be equivalent.  

Nunnally (1978) claimed that quantitative measurement is the universal 

representation of the phenomenon. He suggested “generality of measurement problems” 

(Nunnally, 1978, p. 97), arguing that psychometric modeling and measurement is 

applicable to the other fields of studies regardless of their specificity and particularity of 

topics and objects of analysis. Based on such generality, he also predicted that the 

psychometric measurement would be largely adaptable to the physiological studies 

studying the human brain and biological organs, and also clinical diagnostic studies of 

mental disorder: 
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I have found similar principles to apply in an extremely wide variety of scientific 

issues in psychology, psychiatry, numerous fields of medicine, and law, and in 

special issues in the physical sciences and engineering, particularly biomedical 

engineering. Indeed, I have been surprised at the commonality of issues regarding 

psychological measurement that runs through these various disciplines. 

(Nunnally, 1978, p. 98) 

Nunnally also insisted that whatever can be reduced into unit elements is 

quantifiable, thus being an object of quantitative measurement and analysis. Once such 

assumption is accepted as stylized fact, it can provide a basic condition to eliminate the 

boundary between the human and non-human object as Newell and Simon (1972) did in 

their model, converting human into mechanical information processing system: 

Measurement consists of rules for assigning numbers to objects in such a way as 

to represent quantities of attributes. No matter how one "cuts it," eventually 

measurement results in attaching a number to people (or material objects) in such 

a way as to describe the extent to which a particular characteristic is present. (p. 

101) 

Although this is just an assumption posited to create a model, this hypothetical 

thesis putting that psychological phenomenon is statistically measurable and analyzable 

can influence people’s belief in the real world. Nunally (1978) pointed out: “...(for 

mathematicians) the normal distribution of intelligence was an empirical fact and 

psychologists thought that it was a mathematical fact” (Nunnally, 1978, p. 103). It means 

that psychologists believe that the statistical representation of human intelligence is a 

mathematical validation of their psychological model, while statisticians believe it as an 
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empirically proven fact - cross-validating each other, but less grounded on hard fact. This 

cross-validation creates a kind of associated common space between two different 

models that Hasse and Black insisted in their metaphor theory. This space co-created by 

statistical and empirical psychology studies is a metaphorical space where the two 

different semantic elements interact with each other to create new meaning. 

The psychological papers posited that the information processing system is based 

on statistical and mathematical mechanisms, although they did not adopt a statistical 

model to build up their theory. Newell and Simon (1972) did not explicitly suggest 

statistical or mathematical models of the information processing theory while 

concentrating on symbolic logic. However, they mentioned that the human and machine 

functionaries are mathematical representations or mathematical calculation objects. For 

instance, Newell and Simon (1972) described human learning as a “formalized systems 

of mathematics” (p. 105), reducing the whole process to mathematical operations among 

axioms. They also emphasized that human learning and even organism itself can be 

translated into probabilistic event, saying:  

The mathematization of learning theory in the last decade shows this very well 

(Atkinson, Bower, and Crothers, 1965). In the prototype version of mathematical 

learning theories, the organism is represented by a set of probabilities of 

occurrence of a fixed set of responses: learning involves changes in these 

probabilities under the impact of experience. (Newell & Simon, 1972, p. 8) 

Anderson (1996) knew that information processing theory is about statistics and 

probabilities. He was between symbolists Newell and Simon (1972) and connectionist 

groups, embracing both symbolic and connectionist concepts. Anderson (1996) framed 



 

 120 

the information processing system probabilistically, and in particular, he posited the 

activation and decay of certain functions to depend on the probability equations. For 

instance, he described the mechanism of the memory system in his ACT system as 

follows: ”When a temporary link is created and there is not a permanent copy of it, there 

is probability p that a permanent copy will be created. If there is a permanent copy, its 

strength will be increased by one unit” (Anderson, 1996, p. 24). It means that creating a 

permanent copy of the temporary link in the memory system is a probabilistic event. 

Anderson (1996) also structured the production selection system of the ACT being 

regulated by the statistical and mathematical formula of 1-es/bn, which means the 

probability of completing given test in time is a function of s, “strength of the 

production” (p. 24), and n, “the number of productions simultaneously being tested” (p. 

24). He also posited that the machine's performance could be predicted probabilistically, 

and even the ACT system’s object of analysis depends on the statistical properties.  

The metaphorical understanding framing human psychology as a probabilistic 

process culminates in the connectionists’ idea. McClelland, Rumelhart, Hinton, and their 

connectionist group assumed human cognition, decision-making, and its micro-neural 

system largely follows the statistical mechanism (McClelland et al., 1986). This idea was 

well reflected in the following description of the language learning process: 

Each active input unit contributes to the net input of each output unit, by an 

amount and direction (positive or negative) determined by the weight on the 

connection between the input unit and the output unit . The output units are then 

turned on or off probabilistically, with the probability increasing with the 
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difference between the net input and the threshold, according to the logistic 

activation function. (p.239) 

They also saw that this statistical system, distributing decision-making to the 

multiple parallel units, produces a more consistent and reliable outcome than the single 

logic circuit model. They sometimes called their PDP model a competitive learning 

model because, in their learning model, multiple neurons compete against each other to 

be selected as an output signal by strengthening their connection weight. In such a 

system, the intervention should be a reconfiguration or finetuning of the connection 

weights, for instance, by changing input patterns and a threshold for activation.  
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CHAPTER 7. CONCLUSION 

Summary 

This research explored the cyborg space, where the educational psychology and 

AI studies overlap each other in two different ways. First, this research examined the 

journal-journal bibliographic coupling network to identify cross-referencing and 

interdisciplinary journals. It illustrated that the journal-journal bibliographic coupling 

strength between the two fields has increased over the last 60 years with the increased 

size of each field. The interdisciplinary coupling count, in other words number of shared 

cited references, increased from 16 in the 1960s to 7,857 in the 2010s. Along with it, the 

interdisciplinary coupling strength, an abstracted index indicating journal-journal 

connection strength, grew from 25 to 67,327 during the same period. Then, this study 

calculated the Jaccard similarity index, the normalized score from 0 to1 indicating 

relative size of interdisciplinary coupling strength against the total coupling strength of 

the given network. The Jaccard similarity index slightly increased from 0.015 (1.5%) to 

0.022 (2.2%), but the educational psychology and AI studies received differential impact. 

The inter-intra coupling strength index measures coupling strength with the other 

disciplinary journals relative to that with the same disciplinary journals. This inter-intra 

coupling strength of educational psychology and AI studies have evolved in opposite 

directions. The score increased from 0.015 (1.5%) to 0.264 (26.4%) for the educational 

psychology studies, while it decreased from 0.714 (71.4%) to 0.023 (2.3%) for the AI 

studies. This means that the references cited by educational psychology studies have been 

increasingly also cited by the AI studies growing the interdisciplinary space as much as 

the 26% of the total journal-journal coupling strength in the educational psychology field. 
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Then, this research explored this cyborg space using community detection 

methods. At first, this study detected the community at the entire network level to 

identify interdisciplinary journals belonging to the communities where the majority of 

journals are from the different fields. The journals in this heterogeneous community can 

be considered as interdisciplinary journals because they are part of a different group from 

their initial membership to a certain field assigned by the WoS platform. As a result of 

the community detection, this research identified a group of interdisciplinary journals 

consisting of journals specialized in human-computer interaction. It means that these 

human-computer interaction studies tend to be a hub in the network bridging educational 

psychology and AI studies. Semantically, the result of this analysis is acceptable in that 

the human-computer interaction studies may need knowledge both from human and AI 

science. Then, as a next step, this study broke down each field of studies into sub-

communities again using the community detection methods at each field level. The result 

showed that the educational psychology studies were comprised of educational 

psychology, educational measurement, child development, and learning science, while 

the AI studies were divided into symbolic AI, neural network, image processing, robotics, 

and soft-computing. The educational psychology and measurement studies took the 

largest proportion of the interdisciplinary coupling strength in the educational psychology 

field, and the symbolic AI and neural network were most dominant in the AI field across 

the time. 

Second, this study examined active metaphor with the cyborg space composed of 

the top 20 most commonly cited references both from educational psychology and AI 

studies. This study posited that the content summary of these common references 
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represented the characteristics of the cyborg space, where the boundary between studies 

of human and machine intelligence was blurred. Seven commonly cited publications were 

selected for the metaphor analysis. The metaphor analysis found that the selected papers 

described humans as an information processing machine, a system with substructure and 

probabilistic being. The papers demolished the boundary between human and machine 

process by depicting human and its psychological process on following a machine-like 

process composed of systemic and functional parts. Also, the papers built the universal 

theory applicable to both humans and machines, insisting to follow both the universal law 

of statistics and mathematics. The papers started redefining learning beyond humans. 

Newell and Simon (1972) said that the goal of learning is to transform a system doing 

one task to do another. McClelland et al. (1986) defined learning in terms of 

strengthening a connection in the neural network in a certain direction. In such 

mechanical definition, the learning became the universal information process that can 

happen in whatever the system believed to follow the information processing 

mechanism.  

In summary, this research proved the existence of a cyborg space where the 

human and machine boundary is ambiguous, with the AI study rapidly expanding its 

intellectual territory into the field of education science. It alludes to the fact that 

knowledge specific to human intelligence studies, including education science, has been 

provincialized and subsumed under a much broader interdisciplinary space of general and 

system intelligence. Besides, it implies that our educational psychology studies, the 

biggest field providing scientific rationality for the education studies, are not only the 

theoretical continuum of the machine studies but even susceptible to the influence from 
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the machine studies, because their knowledge base is not unique anymore. The machine 

science studies proved that the theories to explain, predict, control, and enhance human 

intelligence are also applicable to building human-like machine intelligence, becoming a 

source of cross-validation for the human intelligence theories. That is, machines reflect, 

explain, and even validate our understanding of humans. This also means that human 

intelligence, believed to be a privilege of human species differentiating it from the other 

beings, is provincialized - now it is one of the kinds among multiple intelligence models. 

There is more to expect in the near future in regard to the integration of human-machine 

intelligence and growing interdisciplinary space between human and machine studies, 

which this research findings could not yet identify, but which loom large as the future 

educational science discourse and paradigm. 

 Even now, the education field is transforming in the direction of 

mechanization. Amongst many visionary ideas enlightening education policy and 

practice, cognitive neuroscience seems to be the potential candidate for the new regime of 

education science. With the advancement of brain scanning technology such as MRI and 

fMRI, we can now look inside our brain and capture the image of a decimal point of a 

moment. It means that we can compare our behavioral patterns with those of electrical 

impulses in our brain almost synchronously. Also, due to the recent hype and success of 

the deep neural network in the AI studies, there is emergent scholarly movement to 

explain human cognitive process with the advanced AI mechanism, reverse-engineering 

of AI to develop human cognitive models (Griffiths et al., 2015; Lieder & Griffiths, 

2020;  Wu et al., 2013; Van Gerven, 2017; Zednik & Jakel, 2014). This approach is also 

called computational rationality, and Gershman et al. (2015) insisted parallelism between 
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the intellectual trajectory of AI and psychology studies, suggesting that Bayesian 

inferential modeling is the universal learning theory across computers and the brain.  

 There are already movements toward using brain scans as scientific evidence 

of educational science to evaluate children's cognitive states or the cognitive impact of 

education (see McCandliss, 2016; The World Bank, 2018). Martin-Loeches (2015) 

declared that the technological level already crossed the tipping point, which means that, 

regardless of whether the opposition might be posed against it, there is no doubt that 

neuroscience will guide the future educational practice. Ansari and Coch (2006) 

identified mind, brain, and education (MBE) as newly rising fields in education science. 

They set the analysis level for the future of education science as follows: test scores, 

behaviors, systems, networks, neurons, synapses, molecules, and genes. Schneider and 

Graham (1992) introduced the connectionist approach's pedagogic implication based on 

the neuronal network mechanism in the human brain. They designed the learning that 

could ultimately enhance neuronal connection inside the brain to sophisticatedly control 

the amount of input, repetition, level of difficulty, and enhancement. Therefore, we can 

expect a more mechanical turn for our future education lying ahead of us. 

In the AI field, the most recent boom of machine learning seems to be aloof from 

the intellectual history interrelating with human intelligence (Kao & Venkatachalam, 

2018). However, there some leaders of this field still emphasize cross-referencing and 

cross-modeling human intelligence. Reinforcement learning, one of the most up-to-date 

machine learning methods widely adopted, is the behaviorists’ machine. In the book 

Reinforcement Learning: An Introduction, Sutton and Barto (2018) addressed 

Thorndike's S-R theory and his animal experiments in a great detail. They stated that the 
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reinforcement learning algorithm has a clear connection to the behaviorists’ psychology 

(Sutton & Barto, 2018, p.342): 

The algorithms we describe in this book fall into two broad categories: algorithms 

for prediction and algorithms for control. These categories arise naturally in 

solution methods for the reinforcement learning problem presented in Chapter 3. 

In many ways these categories respectively correspond to categories of learning 

extensively studied by psychologists: classical, or Pavlovian, conditioning and 

instrumental, or operant, conditioning. These correspondences are not completely 

accidental because of psychology’s influence on reinforcement learning, but they 

are nevertheless striking because they connect ideas arising from different 

objectives. 

Also, there are growing body of literature advocating consistency and similarity in 

the human and machine intelligence process (see, Garnelo et al., 2016; Helmstaedter, 

2015; Kriegeskorte, 2015; Lake et al., 2016; Somers, 2013). The connectionists led by 

Demis Hassabis, the Google engineer who developed AlphaGo, published the article 

titled Neuroscience-inspired artificial intelligence (Hassabis et al., 2017). In this article, 

he said that the connectionism did not abandon the high hopes of exploring the actual 

human brain function mechanism. He mentioned that there is still immense opportunity 

to study human intelligence and brain function mainly in two aspects. Firstly, he saw that 

brain functioning is a source of inspiration to develop new software algorithms as the 

history of AI vindicated in the case of Turing and McCulloch and Pitts. He claimed that 

the AI algorithm would be a hybrid between statistical and biological inspiration in the 

future. Second, he recognized that neuroscientific knowledge is still essential as it can 
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validate the new design of machine learning as a general intelligence system. As Hassabis 

et al. (2017) predicted, if neuroscience-inspired AI in the future is a dominant 

architecture, its implication for our society will be non-trivial, reconfiguring our self-

knowledge and sustaining our basic assumption constituting various social activities, 

including education.   

 

Policy Implications 

Then, what are the policy implications of these research findings? That is, how 

should we educate our future generation in the world where human intelligence is 

provincialized, while human-machine intelligence arises? What can be the knowledge 

and paradigm designing our education while our scientific knowledge of the human mind 

is subsumed under the AI studies? What are the alternative educational pathways when 

human intelligence is not the sole choice for the employers and the AI presents its 

robustness and resilience surpassing that of human. This research will provide some 

possible answers to these questions. Because it is difficult to connect the findings of this 

study to new policy design, this research will broadly discuss multiple pathways that we 

can choose in the future depending on different perspectives. 

First, we may choose to compete against the machines, vying for the portion of 

the problem space. I would call it compete against the machine approach. Here, the 

problem space means the narrowly but neatly defined set of problems and tasks in a 

mechanical and logical way. Defining the problem space really sets the tone of 

educational objectives. Once we define specific problem space to entail clear tasks and 

logical sequence, it is easy to deliver knowledge to the students, but at the expense of 
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that, it also increases accessibility of machines to this problem. The OECD’s Program for 

International Student Assessment (PISA) is a representative case adhering to the 

competition paradigm, presuming the competitive relationship between humans and 

machines. The OECD PISA makes the most advanced AI machines take the PISA tests 

every year and announces the score. Their report warns that students scoring lower than 

the AI algorithm are at risk of peril in the future, urging educators to push them forward 

to the safe zone above. The OECD PISA did not change any rules of the game and 

problem space, but tried to generalize their mechanistic problem space to machine 

intelligence. We may compete and win against the machines in such circumstances, but 

the probability is getting low. There are numerous examples where the machines surpass 

human performance in the narrow problem spaces such as chess, Go, video games, sports 

games, DNA sequencing, and quiz games. Therefore, it is neither viable nor desirable to 

sustain education targeting to raise students to become the best performers in the 

narrowly defined problem space such as tests and artificial subtasks.  

Second, we may choose to dominate and govern machines by taking the meta-

problem space, where machines cannot enter. The meta-problem space is where we 

develop AI machines and other systems as a designer of machine intelligence. It is called 

build and control the machine approach. There are substantive policy moves related to 

this approach. Some governments announced investments in the AI industry to raise AI 

developers and maintain AI competitiveness. In such a policy paradigm, the governments 

want to retrain their workforce by directing them into the AI related industry and teach 

them to be able to design or manipulate machine intelligence. This policy approach is the 

easiest option to take and even be effective somehow in the short-term period, as many 
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economists predicted the digital transition just started and this boom would continue in 

the following decades. However, there is a hidden cost here. Firstly, there will be a great 

divide causing inequality in the job market between those who can and those who cannot 

manipulate the machines because education systems cannot guarantee all students to be 

AI scientists. It is probable that the majority of students will remain vulnerable to the 

automation triggered job crisis. That is, this policy option is not for education for all, 

although it is a realistic educational objective for some engineering and computation 

majors at the universities. Secondly, enhancing AI workforce may precipitate the 

automation of industry in general, reducing the labor portion reserved for humans in the 

longer perspective. Once the AI infrastructure is completed and ready for deployment at a 

massive scale, there will be even worse job crises.  

Third, we can choose to optimize and augment human intelligence by using AI 

technologies in the conventional problem space. The above two options presumed the 

competition and hierarchical human-machine relationship, while this approach 

emphasizes instrumental value of the machine and proactively tries human-machine 

integration. Thus, I would name it use the machine approach. It includes efforts to 

integrate machines in the individual human process, collective decision-making, and 

knowledge building process. Such human-machine integration in many different social 

and economic processes will bring innovation to the society in various dimensions 

improving productivity, efficiency, and human well-being. In the educational settings, the 

machine can be more seamlessly integrated into students’ learning process to augment 

students’ learning outcome or enhance students’ efficacy and agency. The machine will 

provide an opportunity for humans to maximize performance in the conventional and 
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mechanical problem space compared with the past. With this enhancement, we will be 

able to reduce students’ learning achievement gap, lower the educational operation cost, 

and promote lifelong learning with the customized personalized AI-mediated learning 

tools. The AI technologies will augment general efficiency and effectiveness of the 

educational system, and transform our educational setting dramatically. However, there 

will be unintended consequences related to this massive AI transition in education, and 

this new phenomenon will require explanation beyond the instrumental and technological 

dimensions of human-machine relationships. 

Fourth, the previous three approaches all maintained human-machine dichotomy 

as their basic tenet. Also, these approaches are based on the assumption that automation 

can be strictly separated from autonomy, thinking that we can exploit machine’s 

automation without yielding autonomy. In contrast, there is another way possible, 

embracing machines as part of human and societal processes over the dichotomy, 

coexisting in the conventional problem space. This is what I call become with the 

machine approach, and this approach recognizes that automation of machines inevitably 

accompanies the growing autonomy of machines. It also requires more humanized 

machines and more mechanized humans. In the society where this approach is adopted, 

every part of the social system is reconfigured and redefined to be ready for human-

machine integration in various aspects. For instance, there are many social debates in 

regard to new ethical and legal problems requiring revision to embrace machine 

intelligence in some decision-making processes. There are data privacy and ownership 

related issues, as machine learning services are based on big human data. Also, as 

machines approximate human-like behavior, there are many services launched to provide 
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mental wellness and emotional support through interactive machines. People may feel the 

mechanization is not only a technical matter, but a more comprehensive socio-ontological 

issue restructuring social fabric. Education policy heavily reliant on the build the 

machines and use the machines approach will not be enough to address this restructuring 

issue. Rather, there is a demand to teach our students how to live with these machines. As 

Sundar (2020) said, humans are situated to negotiate its agency with the machines:  

It may seem ironic that we are turning to machines for limiting machine agency and 

reclaiming human agency, but it signals an emergent collaboration between humans 

and machines in negotiating the type and degree of agency. This collaboration rests 

on a nuanced understanding of the various ways by which machine agency can 

enhance human agency and the ways by which it may threaten it. (Sundar, 2020) 

Such human-machine integration cannot happen with simple pre-defined 

knowledge or meta-knowledge manipulating machines. The schools will be the places 

where the students can practice human-machine interaction before entering into the job 

market or machine-heavy society. The machine subject needs to be addressed not only as 

machine science, delivering math heavy knowledge, but also as machine literacy with 

common sense knowledge and more exposure to hands-on user experience.  

Lastly, we can redefine the conventional problem space with machines by using 

this new technological development. It means that we need to consider the machine not 

just as an instrument, but also as an ontology itself, shifting our worldview through the 

technology. Such a move may include liberating our worldview from the fixed and single 

paradigm, while opening up toward pluversality. Thus, it can be named as beyond the 

machines approach. The reason for redefining problem space with machines is that, as 

Haraway once put it, the machine is our non-optional condition framing our mode of life 
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and knowledge production. Totally ignoring machines in redefining a problem space or 

even redefining the space against the machines is not viable in the state when machines 

are seamlessly integrated into our mode of existence. Rather, we can use this mechanic 

transformation as a source of new inspiration. In academic perspective, this approach can 

create innovative educational theories and ideas because interdisciplinarity with the 

machine studies can be a source of new ideas and an emergent paradigm. For individuals, 

outperforming machines as lively as humans lets us reconsider the purpose, meaning, and 

value of life and intelligence at the foundational level. For the society, the machines give 

us a chance to reconsider our social, cultural, economic, and political fabric from a 

different angle. It is another window of opportunity to shift our worldview, although it 

comes with a crisis and chaos. The machines will not just decenter humans; rather, they 

will challenge  people to cross their comfort zone and conventional boundaries,  sparking 

new ideas and perspectives. Humans can expand their functions into the uncharted 

problem space where new logic, paradigm, and relationality is required.  

In such a scenario, we may need to rebuild or radically restructure our educational 

taxonomy, operational definition, system, and formalism to educate our children to 

realize our relationality and dependency upon other beings. Our modern education was 

built upon human exceptionalism, positing that intelligence is a uniquely human 

possession so that educational purpose should be to achieve high performance in the 

well-defined intellectual domains. Such an educational paradigm is not tenable anymore 

as a global model, and does not guarantee job and life satisfaction in our future life. The 

former World Go champion and the first Go player who played against the machine, Lee 

Sae Dol, provides an important example that holds implications for us. He retired in 
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2019, three years after the surprising defeat by the AI machine. He at least tried many 

different things since his defeat, exploring various alternative options in the post-

AlphaGo world. He participated in the Go contest as usual, and even tried to start 

studying AI technology to make a breakthrough, but to no avail. Nothing could stop him 

from retirement, which saved him from deep dismay and disappointment. He stayed at 

the same conventional problem space of Go, while trying to compete against the 

machine, thus always arriving at the same conclusion: AI is unbeatable. It tells us that it 

is our educational mandate to raise our children to find new meaning of life and learning 

in the world where humans are provincialized. For this, we may need to teach our 

children to recognize that the world cannot be defined by the single order, nor do 

we  need to excel in a single problem space. We need to understand and embrace the 

reality that machines are not separate from us, and we may need to learn to be with them 

forever. 
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