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ABSTRACT

Vision Transformers (ViT) achieve state-of-the-art performance on image classifica-

tion tasks. However, their massive size makes them unsuitable for edge devices.

Unlike CNNs, limited research has been conducted on the compression of ViTs. This

thesis work proposes the ”adjoined training technique” to compress any transformer-

based architecture. The architecture, Adjoined Vision Transformer (AN-ViT), achieves

state-of-the-art performance on the ImageNet classification task. With the base net-

work as Swin Transformer, AN-ViT with 4.1× fewer parameters and 5.5× fewer

floating point operations (FLOPs) achieves similar accuracy (within 0.15%). This

work further proposes Differentiable Adjoined ViT (DAN-ViT), which uses neural

architecture search to find hyper-parameters of our model. DAN-ViT outperforms

the current state-of-the-art methods including Swin-Transformers by about ∼ 0.07%

and achieves 85.27% top-1 accuracy on the ImageNet dataset while using 2.2× fewer

parameters and with 2.2× fewer FLOPs.
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Chapter 1

INTRODUCTION

In computer vision, convolutional neural networks (CNNs) have been the dominant ar-

chitecture for a long time. Since AlexNet’s (Krizhevsky et al., 2017) ground-breaking

performance on the ImageNet challenge, CNN architectures have become more potent

through increased scale, more connections, and more sophisticated forms of convolu-

tion. These developments have resulted in enhanced performance across a vast array

of visual tasks.

In contrast, the Transformer architecture has become popular in natural language

processing (NLP). Designed for sequence modeling and transduction tasks, transform-

ers use attention to model long-range dependencies in data. Their success in natural

language processing (NLP) has led to efforts to use them in computer vision.

Vision transformers (ViTs) achieve state-of-the-art performance for a variety of

computer vision tasks such as classification (Dosovitskiy et al., 2021; Liu et al., 2021;

Touvron et al., 2021; Yuan et al., 2021), object detection (Li et al., 2022; Liu et al.,

2021), and segmentation (Strudel et al., 2021; Xie et al., 2021). In (Dosovitskiy et al.,

2021), the researchers introduced transformers for classification tasks, where input

image is fed to the transformer as a sequence of small patches for high classification

performance on ImageNet. However, it required pre-training on large-scale datasets

such as JFT-300M and suffered from huge model sizes. To alleviate these issues,

T2T-ViT (Yuan et al., 2021) designed a token-to-token module that transforms the

input patches such that the local structure is maintained. DeiT (Touvron et al., 2021)

used knowledge distillation to train ViTs from scratch without extensive pre-training.

Apart from them, several modified ViTs outperform CNN models and achieve SOTA
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performance on the ImageNet dataset (Wang et al., 2021; Chu et al., 2021; Wu et al.,

2021; Han et al., 2021).

1.1 Motivation

Despite achieving tremendous success, vision transformers demand much more re-

source than CNNs, making them difficult to be deployed on edge devices such as mo-

bile phones and embedded devices. The majority of works on building efficient models

is based on CNNs (Wu et al., 2019; Liu et al., 2019; Lin et al., 2020b,a). However,

compressing ViTs while maintaining state-of-the-art performance is of paramount im-

portance. Standard techniques for compression of vision transformers include prun-

ing, designing efficient transformers, and using neural architecture search.

In this thesis work, we propose Adjoined Vision Transformers (AN-ViT), a training

paradigm that can compress arbitrary transformer-based neural architecture. ViTs

compressed by AN-ViT achieve SOTA performance on the ImageNet dataset with

significantly smaller parameter number and FLOPs. Using Swin-transformers as the

base network, AN-ViT achieves up to 85.05% accuracy on the ImageNet dataset with

4.1× fewer parameters and 5.5× fewer FLOPs. AN-ViT outperforms similar sized

model by approximately 2.5% − 3.5% (see Figure 4.1) top-1 ImageNet accuracy. We

further propose Differentiable Adjoined ViT, or DAN-ViT, that uses neural archi-

tecture search to find hyper-parameters of AN-ViT. DAN-ViT further increases the

accuracy of ViTs compressed by AN-ViT, and ViT model compressed by DAN-ViT

exceeds the accuracy of base ViT by 0.07%. In Figure 4.1, we compare top-1 Im-

ageNet accuracy of compressed models to the current SOTA and efficient ViTs in

terms of model size and FLOPs. It can be observed that models compressed by ad-

joined training always enjoy higher accuracy and less parameter number and FLOPs

compared to base models.
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The AN-ViT training paradigm trains the base and the compressed model to-

gether. It works as follows. The input image, X, is passed through both the base

(or large) model and the compressed (or small) model. AN-ViT produces two prob-

ability vectors p and q corresponding to the large and small models, respectively.

While training AN-ViT, we force the output of the smaller model (q) to approximate

the output of the larger model (p) so as to preserve the prediction accuracy of the

compressed model. This setting is similar to Knowledge Distillation (Hinton et al.,

2015), where the student model uses the output of a pre-trained teacher model as soft

labels to train itself. However, there are two crucial distinctions. First, the weight

of the compressed (small) model is a subset of the base (large) model, that is, in

AN-ViT, all parameters of the smaller model are shared between the small and the

large model. Second, in AN-ViT, we train both the small and large models together,

whereas in the teacher-student setting, the parameters of the teacher are fixed, and

the student learns from the output of a fixed teacher model.

AN-ViT uses compression factor α to determine the number of heads in each

transformer block for the smaller model. In AN-ViT, α is not a learnable parameter

and is chosen manually prior to training and a common α is shared by all transformer

blocks. However, different blocks capture different features, therefore, they should

be compressed using different compression ratios. To this end, we propose DAN-ViT

which employs Neural Architecture Search (NAS) to search for the optimal compres-

sion factor for each transformer block. Due to the adaptive compression ratio for

different transformer blocks, DAN-ViT further improves the model’s performance.

As illustrated in Figure 4.1, the compressed model by DAN-ViT achieves 85.27 %

top-1 accuracy on ImageNet, exceeding the base model by 0.07 % while being 2.27×

smaller and 2.2× faster.
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1.2 Contributions

Below are the main contributions of this work.

1. We propose Adjoined Vision Transformers (AN-ViT), a training paradigm that

can compress arbitrary tranformer based neural architecture. We further pro-

pose Differentiable Adjoined ViT, or DAN-ViT, that uses neural architecture

search to find hyper-parameters of AN-ViT. DAN-ViT further increases the

accuracy of ViTs compressed by AN-ViT.

2. AN-ViT and DAN-ViT achieve state-of-art performance on the ImageNet dataset.

We compare our models compressed by with current SOTA efficient ViTs (Huang

et al., 2022; Graham et al., 2021; Liao et al., 2021; Chen et al., 2021a; Zhang

et al., 2022; Yang et al., 2021; Yu et al., 2022; Zhu et al., 2021; Chen et al.,

2021b). Compared to these similar sized model, AN-ViT achieve ∼ (2.5% −

3.5%) higher ImageNet accuracy.
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Chapter 2

LITERATURE REVIEW

This chapter discusses the history of model compression and the current state of the

discipline. I will briefly describe knowledge distillation, pruning, neural architecture

search, and efficient architectures. In addition, I will discuss how these methods differ

from our own Adjoined Network training method.

2.1 Knowledge Distillation

Knowledge Distillation (KD) refers to the transfer of knowledge from a large model

to a small one. (Hinton et al., 2015) proposes a teacher-student model in which the

student model is trained using soft targets from the teacher. KD forces the student to

generalize, similar to the teacher model. Since (Hinton et al., 2015), various knowledge

transfer methods have been proposed. (Romero et al., 2015) used intermediate layer’s

information from the teacher model to train a thinner and deeper student model.

(Peng et al., 2019) proposes to use instance level correlation congruence instead of

just using instance congruence between the teacher and student. (Ahn et al., 2019)

tried to maximize the mutual information between teacher and student models using

variational information maximization. The goal of (Park et al., 2019) is to transfer

structural knowledge from teacher to student. (Kim et al., 2018) argues that directly

transferring a teacher’s knowledge to a student is difficult due to inherent differences in

structure, layers, channels, etc., therefore, they paraphrase the output of the teacher

in an unsupervised manner, making it easier for the student to understand. (Zhang

et al., 2017) used an ensemble of students to learn collaboratively and teach each other

throughout the training process, rather than using a teacher to train a student. (Yim
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et al., 2017) involves distilling knowledge from a pre-trained Deep Neural Network

(DNN) and transferring it to another DNN by computing the inner product between

features from two layers. In (Zagoruyko and Komodakis, 2017) student network is

forced to mimic the attention maps of a teacher model. (Li et al., 2019) combines

an asymmetric dual-model learning framework with an intermediate layer selection

scheme to identify the corresponding intermediate layers of source and target models.

(Tian et al., 2020b) proposes a method for transferring representational knowledge

from one neural network to another by distilling a large network into a smaller one,

transferring knowledge from one sensory modality to another, or combining multiple

models into a single estimator. Most of these methods use a trained teacher model

to train a student model. In contrast, in this work, we train both the teacher and the

student together.

2.2 Compression of VIT

In this section, we discuss various techniques for compression of VITs such as

pruning, neural architecture search, and efficient architectures, and how they differ

from our methodology.

2.2.1 Pruning

Pruning techniques aim to reduce the size of a network while maintaining accuracy

by removing parameters or weights based on some heuristic. These techniques can

be classified into two categories: unstructured pruning and structured pruning. Un-

like structured pruning techniques, unstructured pruning approaches are agnostic to

the underlying network topology. These methods induce sparsity according to some

predefined criteria and frequently achieve a state-of-the-art reduction in the number

of parameters. Due to the unstructured nature of these methods, they are frequently
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incapable of providing inference speedups on commodity hardware. Unstructured

sparsity has been extensively studied in (Evci et al., 2019; Kusupati et al., 2020; Gale

et al., 2019; Zhu and Gupta, 2017; Han et al., 2015). Structured pruning address the

slow inference times by taking network architecture into consideration. Some recent

works, such as (Zhu et al., 2021), promote dimension-wise sparsity in order to reduce

the number of heads or MLP hidden dimensions. (Chen et al., 2021b) prunes the

network using Taylor importance score. (Yang et al., 2021) improves the compressed

models’ accuracy by designing a latency-aware structured pruning method that con-

siders all parameters of the VIT. (Yu et al., 2022) moves a step further and unifies

pruning, knowledge distillation, and blocking/layer skipping. The AN compression

technique proposed in this paper can also be thought of as a structured pruning

method where the pruned architecture at each block is fixed at the beginning of the

training.

2.2.2 Neural Architecture Search

Neural Architecture Search(NAS) is a technique that automatically designs neu-

ral architecture without human intervention. Earlier studies in NAS were based on

RL (Zoph and Le, 2017; Tan et al., 2019) and EA (Real et al., 2017); however,

they required lots of computation resources. Most recent studies (Liu et al., 2019;

Cai et al., 2019; Wu et al., 2019) encoded architectures as a weight-sharing super-

network. (Chen et al., 2021a; Liao et al., 2021) propose a NAS technique that searches

for various changeable dimensions of the transformer, such as embedding dimension,

number of heads, query/key/value dimension, MLP ratio, and network depth. Apart

from searching (Liao et al., 2021) also propose a residual spatial reduction module

to decrease the sequence length and increase embedding dimension for deeper trans-

former blocks. Most of these techniques focus on designing compact architecture from
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scratch. In this work, we use Adjoined training to compress existing architectures.

We use architecture search to help us select the compression ratio at each block, i.e.,

the fraction of heads that should be shared between AN-Large and AN-Small at each

block.

2.2.3 Efficient Architectures

Another research direction is to build efficient vision transformers. (Graham et al.,

2021) replace the uniform structure of transformers with a pyramid of pooling layers

to build models efficient in terms of inference speed. (Mehta and Rastegari, 2021;

Maaz et al., 2022; Yang et al., 2022) combine the strength of CNNs and VITs to

build efficient models. (Mehta and Rastegari, 2021) combines transformers with Mo-

bileNetV2 (Sandler et al., 2018) to obtain global representations. (Maaz et al., 2022)

splits the input into multiple channels and performs depth-wise convolution and self-

attention across channels to increase the receptive field. (Yang et al., 2022) introduce

local self-attention into the convolution within the kernel to capture low-level features.

Different from these methods (Huang et al., 2022), proposed convolution-free trans-

formers. They introduced learnable tokens to capture global dependencies. (Zhang

et al., 2022) perform weight multiplexing across consecutive transformer blocks, i.e.,

they share weights across layers while imposing a transformation on the weights to

increase diversity. In this work, similar to (Zhang et al., 2022), we share weights.

However, in AN-ViT, weights are shared between AN-Large and AN-Small for each

block. Furthermore, we train both the large and small models together.
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Chapter 3

ADJOINED VIT

We use Adjoined training paradigm to compress vision transformers (ViTs). Before

understanding Adjoined ViT (AN-ViT), let us have a re-look at ViT. ViT model

first divides the input image into patches that are further tokenized to embedding

dimension E. A class token is added to the image token to form an input x ∈ RN×E,

where N represents the total number of tokens. The input tokens are passed through

a series of transformer blocks. Each transformer block consists of a multi-head self

attention (MSA) and a multi-layer perceptron (MLP) module. We use the class token

from the last block to make the final classification.

The MSA module linearly transforms the input tokens x into queries(Q), keys(K),

and values(V). Now, instead of performing single self-attention (Vaswani et al., 2017),

the MSA module linearly projects the queries, keys, and values H number of times

with different learned linear projections. Each group of Q, K, and V is referred to as

a head. Next, each head performs a self-attention operation. The output from each

head is concatenated and projected back to E dimension (3.1). The output from the

MSA module is further passed through the MLP module. We calculate self-attention

using the following equations.

MSA(Q,K, V ) = Concat(head1, head2, ...headH)WO,

where headi = Attention(QWQ
i , KWK

i , V W V
i ),

WQ
i ∈ RE×dQ ,WK

i ∈ RE×dK ,W V
i ∈ RE×dV ,WO ∈ RHdV ×E

(3.1)

In adjoined training paradigm, each MSA module receives two inputs xlarge ∈ RN×E

and xsmall ∈ RN×E
α . The vector xlarge represents an input to the original (large)

9



network, while the vector xsmall is the input to the smaller (compressed network).

Consequently, the MSA block produces two outputs MSAlarge and MSAsmall, corre-

sponding to the large and small models. Each transformer block in the AN paradigm

is associated with compression factor (α). The compression factor decides the number

of heads in the smaller model. We calculate self-attention for both models using the

following equations.

MSAlarge(Qlarge, Klarge, Vlarge) = Concat(head1, head2, ...headH)WOlarge ,

where headi = Attention(QlargeW
Qlarge

i , KlargeW
Klarge

i , VlargeW
Vlarge

i ),

W
Qlarge

i ∈ RE×dQ ,W
Klarge

i ∈ RE×dK ,W
Vlarge

i ∈ RE×dV ,WOlarge ∈ RHdV ×E

(3.2)

MSAsmall(Qsmall, Ksmall, Vsmall) = Concat(head1, head2, ...headH
α

)WOsmall ,

where headi = Attention(QsmallW
Qsmall
i , KsmallW

Ksmall
i , VsmallW

Vsmall
i ),

WQsmall
i ∈ R

E
α
×dQ ,WKsmall

i ∈ R
E
α
×dK ,W Vsmall

i ∈ R
E
α
×dV ,WOsmall ∈ R

H
α
dV ×E

α

(3.3)

As shown in Figure 3.1, all parameters of MSAsmall are shared with MSAlarge.

MSAlarge is similar to the MSA module in standard ViTs. However, there are two

important distinctions in MSAsmall that leads to network compression. First, each

group of Q, K, and V is linearly projected H/α number of times instead of H times.

Second, the concatenation of all heads is projected to the E/α dimension. Thus the

output dimensions of MSAlarge and MSAsmall modules are RN×E, RN×E
α respectively.

For the first transformer block xlarge = xsmall, but the two vectors are not necessarily

equal for the deeper transformer blocks (Figure 3.1). The output from the MSAlarge

and MSAsmall modules are further passed to MLPlarge and MLPsmall respectively.

MLPlarge is the same as in standard ViT. However, we decrease the input and output

channels of all linear layers within MLPsmall by a factor of α.

Putting all this together, we can compress any transformer-based model using the

Adjoined training paradigm. Since the first block receives a single input (Figure 3.1),
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X

Figure 3.1: Training Paradigm Based on Adjoined Vision Transformer (AN-ViT).
The Original and the Compressed Version of the Network are Trained Together with
the Parameters of the Smaller Network Shared Across Both. The Network Outputs
Two Probability Vectors p (Original Network) and q (Smaller Network).

we create two copies that are passed to the AN-ViT. The network finally gives two

output probabilities p, q corresponding to the large and small (compressed) networks.

We train the network using adjoined loss function (3.4), which forces p and q to be

close to one another.

3.1 Adjoined Loss

Let y be the ground-truth one-hot encoded vector and p and q be output proba-

bilities by the AN-ViT. Then

L(y, p, q) = −y log p + λ(t)KL(p, q) (3.4)

where KL(p, q) =
∑

i pi log pi
qi

is the measure of difference between two probability

measures (Kullback and Leibler, 1951). The regularization term λ : [0, 1] → R is a

function which changes with the number of epochs during training.

Here t = current epoch
Total number of epochs

equals zero at the start of training and equals one at

the end.
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The first term in the loss function is the cross-entropy loss that trains the larger

network. The second term forces the output of the smaller model to be similar to the

larger model. We slowly increase the value of the regularization term λ as we want

the smaller model to slowly start learning from the pre-trained larger model instead

of learning everything in one go. In our experiments, we used λ(t) = min{4t2, 1}.

Thus, the KL term is initially zero and steadily grows to one at 50% training.

3.2 Differentiable Adjoined ViT

In AN-ViT, we choose a fixed compression factor (α) for all blocks. However,

different blocks capture different features and thus may be compressed to different

compression ratios. Choosing α independently for each block would add more flex-

ibility and possibly improve the performance of the current framework. Thus, we

propose Differentiable Adjoined-ViT(DAN-ViT).

In the DAN architecture, now we are using α ∈ A = {α1, ..., αn} , where αx is a

factor of the number of heads in the MSA of the encoder block. To find the optimal

network structure, we had to solve arg maxα∈A L(q), where q is the output probability

vector and L is the loss function. This problem can be solved for one encoder block

by computing L(q) first and then the maximum. But the complexity of this problem

increases with the increase in encoder blocks. So, for a L-layer architecture, the search

space is nL, where n is the number of α’s.

To solve this issue, we are using Gumbel-softmax, a re-parametrization trick that

can be viewed as a differentiable approximation to the argmax function. Now, the

problem can be formulated as
∑

α∈AgαL(qα), where gα are the gumbel weights corre-

sponding to the particular α. It is now differentiable and can easily be solved using

back-propagation.

Now, we will replace the standard encoder blocks with the DAN encoder blocks.
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The input and output dimensions, and the output z1 remain the same as described

in the AN architecture. The output z2 of the DAN encoder block is defined below:

z
′

i = MSADAN(LN(z02)) + z02

z
′

=
m∑
i=1

g(η)iz
′

i

zi = MLPDAN(LN(z
′
)) + z

′

z2 =
m∑
i=1

g(η)izi (3.5)

where η = [η1, ..., ηm] denotes the mixing weights, and z
′
i and zi are the outputs for

MSA and MLP respectively, corresponding to the different α’s and g is the gumbel-

softmax function.

Given a vector v = [v1, ...., vn] and a constant τ , the gumbel-softmax (Wan et al.,

2020) function is defined as g(v) = [g1, ...., gn], where:

gi =
exp[(vi + ϵi)/τ ]∑
i exp[(vi + ϵi)/τ ]

(3.6)

and ϵi ∈ N (0, 1) is uniform random noise, or ”gumbel noise.”

3.3 Differentiable Adjoined Loss

Let the search space be A = {α1, ..., αm} Let y be the one-hot-encoded vector of

gold labels, and p and q be the output probabilities of the Differentiable Adjoined

Network. Then

L(y, p, q) = −ylog p + λ(t)(KL(p, q) + γnf (H)) (3.7)

where KL(p, q), λ(t) are the same as used in Adjoined loss, and H = [η1, ..., ηl], where

ηi is the mixing weight vector for the ith encoder block. nf represents the gumbel
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weighted floating point operations for the given network. That is,

nf (H) =
∑
ηi∈H

m∑
j=1

g(ηi)jFLOPs(i, αj) (3.8)

where FLOPs(i, αj) measures the number of floating point operations at the ith

encoder block corresponding to the hyper-parameter αj; γ is a constant which nor-

malizes the nf term as the number of FLOPs corresponding to any setting of the

mixing weights can be very large.

The major distinction between Differentiable Adjoined Loss and Adjoined Loss

is the nf term. As large networks tend to have more accuracy, DAN will favor

networks with low α or large networks. So, nf term serves as a regularization penalty

against DAN’s preference for large networks. After training DAN-ViT, we choose

the compression factor corresponding to the maximum Gumbel weight in each block.

The searched architecture is then trained in Adjoined fashion using the adjoined loss

function (3.4).

3.4 Chapter Summary

Adjoined Network(AN) training forces the compressed network to generate output

probabilities that are comparable to those of the original or large network. This

allows us to prune sparse tensors, which are computationally expensive and necessitate

specialized operations to handle matrix sparsity. DAN-ViT works similarly to AN-

ViT, with the exception that instead of keeping the compression factor α constant

across all blocks, we can choose independent compression factor values. This increases

network flexibility and improves network performance. With fewer computations and

parameters, inference times are drastically reduced. Additionally, we can achieve

comparable levels of precision in the compressed network as well the large network.
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Chapter 4

EXPERIMENTS

In this section, we conduct experiments on the ImageNet (Russakovsky et al.,

2015) dataset to show the effectiveness of Adjoined training paradigm for the com-

pression of vision transformers. We conduct our experiments with two ViT variants

(1) T2T-ViT (Yuan et al., 2021) and (2) Swin-Transformers (Liu et al., 2021). For

both models, we replace their transformer block with Adjoined transformer block (as

discussed in Chapter 3). AN-ViTs are then trained in adjoined fashion using the

Adjoined loss function (3.4). In the AN paradigm, we obtain two networks. In this

section, we refer to them by X-AN-Large-α and X-AN-Small-α, where X represents

the model type, and α represents the compression factor as defined in Chapter 3.

For example, Swin-AN-Small-2 represents the compressed Swin Transformer trained

via the AN paradigm with α = 2, and Swin-AN-Large-2 represents the original (full)

Swin Transformer trained via the AN paradigm with α = 2. Furthermore, we conduct

experiments with DAN-ViT. DAN-ViT searches for the optimal α value within each

transformer block. Similar to AN, we refer to them as X-DAN-Large and X-DAN-

Small. The search space for α values is set to (1, 2, 3) and (1, 2, 4, 8) for T2T-DAN

and Swin-DAN respectively.

We ran our experiments on GPU enabled machine using Pytorch. For both models

(T2T-ViT and Swin Transformer), we use the same data augmentations and hyper-

parameters used by the original authors. We train both ImageNet pre-trained models

in Adjoined fashion for 50 epochs with a constant learning rate. The learning rate

and batch size is set to 10−3, 128 for T2T-ViT-AN and 10−5, 64 for Swin-AN.

For DAN-ViT, we conduct the searching stage on the ImageNet-100 dataset (Tian
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Figure 4.1: The Comparison Between AN-ViT/DAN-ViT and Transformer Based
Models Such as Swin Transformers (Liu et al., 2021) and Mini-Swin (Zhang et al.,
2022) on the ImageNet Dataset Against (a) Number of Parameters, and (b) FLOPs.
Our Models Significantly Outperform All Other ViTs in Terms of Top-1 Accuracy on
the ImageNet Dataset While Being Smaller and Faster.

et al., 2020a). ImageNet-100 is a subset of the ImageNet-1k dataset with 100 classes

and about 130k images. We train both DAN-ViT models for 100 epochs with the

same hyper-parameters as in their corresponding AN-ViT models. The γ in (??) is

set to 10−12 for both models. The model searched using DAN-ViT is then trained in

adjoined fashion using AN-ViT.

4.1 Comparison against SOTA efficient ViTs

In this section, we compare ViTs compressed by Adjoined Network against other

current SOTA-efficient ViTs. In Table 4.1, we observe that models compressed by

AN/DAN achieve significantly higher accuracy than other similar-sized models on

the ImageNet dataset. Swin-B-AN achieves approximately ∼ (3.5% − 1.5%) higher

accuracy than similar sized model such as LeViT (Huang et al., 2022), AutoFormer-

small (Chen et al., 2021a) and Mini-Swin-S (Zhang et al., 2022). Compared to other

efficient models, Swin-B-AN exhibits one of the lowest FLOPs. Swin-B-AN surpasses

the model with next highest accuracy (Mini-Swin-B) by 0.75% while being 5.7×
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Model Accuracy # Params (M) GFLOPs

LightViT-B (Huang et al., 2022) 82.1 35.2 3.9

LeViT-256 (Graham et al., 2021) 81.6 18.9 1.12

LeViT-384 (Graham et al., 2021) 82.6 39.1 2.353

ViT-ResNAS-Small (Liao et al., 2021) 81.7 65 2.8

ViT-ResNAS-Medium (Liao et al., 2021) 82.4 97 4.5

AutoFormer-small (Chen et al., 2021a) 81.7 22.9 5.1

AutoFormer-base (Chen et al., 2021a) 82.4 54 11

Mini-Swin-S (Zhang et al., 2022) 83.6 26 8.9

Mini-Swin-B (Zhang et al., 2022) 84.3 46 15.7

NVP-S (Yang et al., 2021) 82.2 21 4.2

T2T-UVC (Yu et al., 2022) 79.6 - 2.47

VTP (20% pruned) (Zhu et al., 2021) 81.3 67.3 13.8

VTP (40% pruned) (Zhu et al., 2021) 80.7 48.0 10.0

S2ViTE-Small (Chen et al., 2021b) 79.22 14.6 3.15

S2ViTE-Base (Chen et al., 2021b) 82.22 56.8 11.74

Swin-B-AN-Small-4 (Our) 85.05 21.32 2.76

Swin-B-DAN (Our) 85.27 38.66 6.96

Table 4.1: The Table Compares the Performance of AN-ViT and DAN-ViT Against
SOTA Efficient ViTs on ImageNet Dataset. Accuracy Represents the Top-1 Accuracy
on ImageNet Dataset. # Params(M), GFLOPs Represents the Number of Parameters
(in Millions) and GFLOPs of the Model Respectively.

faster and 2.1× smaller. DAN-ViT further increases the accuracy. Amongst the

compared models, Swin-B-DAN achieves the highest top-1 accuracy of 85.27% on the

ImageNet dataset. We observe similar results in Figure 4.1. Models compressed with

our training paradigm are explicitly on the top left of the graph, while other methods

are clustered on the lower half.
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Model Accuracy # Params (M) GFLOPs Params ↓ GFLOPs ↓

Swin-B (Liu et al., 2021) 85.2 88 15.4 1X 1X

Swin-B-AN-Small-4 (Our) 85.05 21.32 2.76 4.13X 5.58X

Swin-B-DAN (Our) 85.27 38.66 6.96 2.28X 2.21X

T2T-ViT (Yuan et al., 2021) 81.5 21.5 4.8 1X 1X

T2T-ViT-AN-Small-2 (Our) 80.4 10.2 2.16 2.11X 2.22X

T2T-ViT-DAN (Our) 81.3 16.5 3.36 1.31X 1.33X

Table 4.2: The Table Evaluates the Performance of AN-ViT and DAN-ViT Against
the Base/Standard Model on ImageNet Dataset. Accuracy, # Params and GFLOPs
Are Same as in Table 4.1. Param ↓, GFLOPs ↓ Represents the Ratio of Parameters
and GFLOPs Compared to the Base Model.

4.2 Compression

In this section, we evaluate the performance of ViTs compressed by AN and DAN.

Table 4.2, compares the performance of ViTs compressed using AN and DAN against

the standard model. AN-ViT successfully compresses both transformer models (Swin

Transformers and T2T-ViT) without any significant loss in top-1 accuracy on the

ImageNet dataset. Swin-B-AN-Small-4 while being 4.1× smaller and 5.58× faster

suffers only 0.15% drop in accuracy. Furthermore, ViTs trained via DAN searches for

the optimal compression factor for each block and thus may even surpass the base

model’s performance. Swin-B-DAN exceeds the base model by 0.07% while achieving

a 2.2× reduction in model size and 2.1× reduction in FLOPs. We observe similar

results for the T2T-ViT model. We also observe that Swin-B is the larger model,

thus, can be compressed more without any significant loss in accuracy.
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Chapter 5

CONCLUSIONS

This chapter presents a summary of this thesis work and future research scopes in

the field of compression of any tranformer-based architectures.

5.1 Summary

In this thesis work, we proposed Adjoined Training paradigm for the compression

of any transformer-based architecture. AN-ViT trains the compressed and the base

model together, wherein all the weights of the compressed model are shared with the

base model. AN-ViT compresses Swin-Transformers by 4.1× and 5.5× in the num-

ber of parameters and FLOPs, respectively, while achieving 85.05% top-1 ImageNet

accuracy (i.e., 0.15% loss in accuracy). We further propose Differentiable Adjoined

Vision Transformer (DAN-ViT) that searches for the optimal compresses factor for

each block of AN-ViT. Augmenting AN-ViT with DAN-ViT enhances flexibility and

improves the performance of the compressed model. Swin-Transformer compressed

by DAN-ViT exceeds base network in term top-1 accuracy by 0.07% and achieves

85.27% ImageNet accuracy while exhibiting 2.2× fewer parameters and FLOPs.

5.2 Future Research

In this work, we focus on the image classification task. In the future, we plan to

experiment with AN-ViT for other computer vision tasks, such as object detection

and segmentation. It would also be interesting to see the performance of adjoined

training paradigm for the compression of transformers used in NLP tasks.
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