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ABSTRACT 

Functional materials can be characterized as materials that have tunable properties 

and are attractive solutions to the improvement and optimization of processes that require 

specific physiochemical characteristics. Through tailoring and altering these materials, 

their characteristics can be fine-tuned for specific applications. Computational modeling 

proves to be a crucial methodology in the design and optimization of such materials. This 

dissertation encompasses the utilization of molecular dynamics simulations and quantum 

calculations in two fields of functional materials: electrolytes and semiconductors.  

Molecular dynamics (MD) simulations were performed on ionic liquid-based 

electrolyte systems to identify molecular interactions, structural changes, and transport 

properties that are often reflected in experimental results. The simulations aid in the 

development process of the electrolyte systems in terms of concentrations of the 

constituents and can be invoked as a complementary or predictive tool to laboratory 

experiments. The theme of this study stretches further to include computational studies of 

the reactivity of atomic layer deposition (ALD) precursors. Selected aminosilane-based 

precursors were chosen to undergo density functional theory (DFT) calculations to 

determine surface reactivity and viability in an industrial setting. The calculations were 

expanded to include the testing of a semi-empirical tight binding program to predict 

growth per cycle and precursor reactivity with a high surface coverage model. Overall, 

the implementation of computational methodologies and techniques within these 

applications improves materials design and process efficiency while streamlining the 

development of new functional materials. 
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CHAPTER 

1. INTRODUCTION 

Functional materials are a specific class of materials that respond to a form of 

stimuli and encompass attractive properties for purposes within a variety of fields including 

semiconductors, ceramics, polymers, and energy storage.1,2,11–13,3–10 Through experimental 

and computational methodologies, functional materials can be altered such that their 

physiochemical characteristics become highly desirable for their specific applications. The 

challenges associated with such modifications can make it difficult for researchers and 

scientists to successfully create working materials, however advancements from the past 

decades have furthered our knowledge and abilities to create cutting-edge functional 

materials.  

Due to the complexity and tunability of functional materials, computational 

techniques are commonly employed to further understand the quantum, atomistic, and 

molecular characteristics of such materials. By combining experimental and computational 

approaches, functional materials are optimized and modified to fit their designated 

operations.14–20 Innovation within these fields continues today as computational methods 

and programs are improved upon.21–25 

In this dissertation prospectus, we explore the fundamental properties of functional 

materials including ionic liquids and their mixtures for applications in extreme 

environments and the reactivity of aminosilane precursors with an SiO2 surface in the 

context of atomic layer deposition. While these topics are not inherently related, the 

encompassing theme is the use of computational chemistry to model the systems to gain a 

better understanding and optimize them for scale up engineering and design. 



2 

 

The first project investigates properties of electrolyte mixtures and method 

development of glass transition temperature predictions in neat ionic liquids. Our interest 

in ionic liquids and electrolyte mixtures stems from the need for customizable electrolyte 

mixtures in devices for energy storage and even planetary exploration.26–33 The second 

project explores a variety of aminosilane precursor candidates for ALD on an SiO2 (1 0 0) 

surface. This project lies in the interest of EMD Electronics, where ALD precursors are 

developed and screened for various ALD applications within the semiconductor industry. 

The following describes each chapter of the dissertation prospectus: Chapter 1 

details the importance of computational methods in materials development, briefly outlines 

multiscale modeling, and goes into the physical theory behind computational techniques 

utilized in this prospectus. Chapter 2 introduces the ionic liquids and electrolyte mixtures 

that are further explored in later chapters. Atomic layer deposition is also introduced and 

expanded on. Chapter 2 encompasses the motivations behind studying these selected 

functional materials. Chapter 3 outlines the methods used to carry out various simulations 

and calculations of ionic liquids and ALD reactions. Chapter 4 reports all the results from 

the projects and discusses their significance. Chapter 5 summarizes the work that has been 

done thus far and lastly, chapter 6 proposes work to further projects, or even branch off 

them.  
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1.1 Role of Computational Chemistry Techniques in Materials Development 

The design of functional materials encompasses the multiscale methodologies 

involved with creating and improving chemical and physical processes that enhance 

industries such as semiconductors, pharmaceuticals, etc. It is without question that 

computational techniques have greatly enhanced the progress of research and development 

when it comes to materials design.34,35,44–50,36–43 Moreover, these techniques continue to 

improve in capability, accuracy, and computing time. Specifically, computational 

chemistry in the context of materials design is crucial to the timeliness of the development 

and to our capability to gain direct insight into the properties and behavior of such materials 

to contribute to their advancement. For example, density functional theory (DFT) 

calculations can predict reaction energies and activation energies of reaction pathways 

involved in reactions e.g during thin film deposition as seen in the semiconductor industry 

, or in batteries used for energy storage, and in uncountable industrial processes.51,52 One 

of the all-encompassing themes of these calculations, further explored in this dissertation, 

is the capability of describing quantum, atomistic, and molecular level events and utilize 

them to understand how the larger scale behavior and material properties are changed. 

  When it comes to innovation in materials design, it is greatly dependent on the 

intertwining and harmony of experimental and computational work. To validate theoretical 

Figure 1.1.1 Materials Design Flow Chart Cycle  
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calculations, pertinent experimental studies are required. Figure 1.2.153 shows a schematic 

view of how these two methods rely on each other for the improvement of materials design 

processes. The computational approaches are always based on simplified and idealized 

models. They usually focus on property calculations which comes from computational 

methodology and computer codes that have been optimized specifically for those property 

calculations. In order to improve the models or encompass the ability to calculate other 

necessary properties, there is a reliance on experimental work both in the model 

development and the validation of the computational results. Ultimately, an iterative cycle 

is created when computational and experimental techniques work in harmony which ideally 

results in better materials, improved manufacturing processes, optimized devices and 

improved overall performances.  

 Recent developments in the high-performance computing, machine learning, and 

artificial intelligence communities have aided to further computational chemistry 

capabilities. Calculations that have been traditionally computationally expensive are now 

less taxing through increased computation time and methods to circumvent traditional 

roadblock. For example, quantum chemistry codes are being optimized to run more 

efficiently and thus more quickly. Furthermore, machine learning-based codes are working 

to make calculations increasingly accurate and even more reliable. As these technologies 

are advancing further, it becomes our responsibility to find ways to stay up to date and 

continue to innovate.  
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1.2 Multiscale Modeling  

Computational techniques can range from nanoscale quantum mechanics-based 

calculations to large scale process simulations. The process starts with identifying a desired 

property to be computed and from there, the computational technique can be chosen. For 

functional materials design, where the overall goal is to tune material properties or 

processes, the computational capabilities lie all scales of modeling. Figure1.2.1 (a)54 shows 

different levels of computation. Quantum scale calculations are limited to a few hundred 

atoms, while atomistic (force field) calculations often have tens of thousands of atoms. 

Micro-scale and macro-scale calculations are utilized to simulate large systems such as 

distillation columns, reactors, and processing systems. Figure 1.3.1 (b)55 demonstrates how 

increasing the level of theory or system complexity of quantum scale computing will also 

affect the time scale of the calculations. As the system gets more complex, accuracy is 

increased, and time scale is increased, thus the time to complete the calculations will also 

increase. When approaching problems, computational resources such as complexity and 

time are often considered to design a method to solve the problem.  

Figure 1.2.1 MultiScale Modeling (a) Quantum calculation considerations. (b) Multiscale Modeling 

Levels 

a b 
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  The computational methods utilized in this study are quantum and atomistic. Each 

method is different in terms of its capabilities to treat system sizes, yield calculable 

properties, and inherent accuracy. For example, molecular dynamics can be used to identify 

molecular interactions within ionic liquid mixture systems that may contribute to bulk 

properties observed in experimental results while DFT calculations would focus on a single 

ionic liquid ion pair. However, some parameters or results from each method can be 

propagated between different levels of modeling. Force field parameters used in molecular 

dynamics simulations are often derived from ab-initio or DFT calculations to simulate 

accurate intra and intermolecular interactions.  

Determining appropriate computational modeling resources depends on availability 

and desired results. Having multiple approaches with different levels of computation 

allows for multiple pathways to solve a problem. In the context of functional materials, 

multiscale modeling provides “building blocks” for large scale computations that is crucial 

to materials design.  

In this dissertation, there are three scales of modeling utilized for two types of 

functional materials. The smallest scale, quantum-based calculations, were performed on 

organosilane molecules to evaluate the reaction mechanisms and thermodynamics for 

atomic layer deposition within semiconductor manufacturing. Semi-empirical tight binding 

calculations were performed on the reaction surfaces containing ~1000 atoms, putting this 

scale more towards the atomistic side. Larger scale calculations containing tens of 

thousands of atoms were utilized for ionic liquids systems to derive structure-property 

relationships through identifying molecular mechanisms and validating through 

experiments. Semi-empirical tight binding calculations were also performed on smaller 
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ionic liquid systems to explore the expansion of computational method capabilities within 

the ionic liquid community.  

1.3 Physical Theory Behind Computational Methods 

Quantum mechanics can be defined, in general, as the starting point of microscale 

calculations that describe atomistic systems. The qualitative property paramount to 

quantum mechanics is the description of electrons and nuclei as particles with wave-like 

motion. In the world of computational chemistry, this relationship is better known as the 

Schrodinger’s equation. This section of the dissertation will go into brief details of the 

expansion of the Schrodinger equation and how it progressed into well-known methods 

used today such as ab-initio, DFT, Semi-Empirical, and, indirectly, Molecular Mechanics 

methods. The following equations and concepts are explained in more details in the 

references.56–65 

Schrodinger Equation 

The time independent Schrodinger equation, 

states that for the Hamiltonian (an operator which is the sum of the kinetic and potential 

energies in the system) there is an eigenfunction, Ψ, (the wave function) that is equal to the 

eigenvalue, E, times the wave function. By knowing the Hamiltonian and having a method 

of solving for the eigenfunction and eigenvalue, we can then calculate and predict the 

system behavior.  

 𝐻𝛹 = 𝐸𝛹 Eqn. 1.3.1 
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For a system of electrons and nuclei, the Hamiltonian operator, H, breaks up the 

total energy into parts. 

Eqn. 1.3.2 is the molecular Hamiltonian where the first term is the nucleus kinetic energy, 

the second term is the electronic kinetic energy, the third term is the electron-nucleus 

attraction, the fourth term is the nucleus-nucleus repulsion and the last term is the electron-

electron repulsion. 

 While the Schrodinger equation can be explicitly solved for systems with one 

electron, it can be applied to systems with more electrons, however it will need to be 

approximated. Ultimately, solving the electronic Schrodinger equation gives a structure 

than can then be used to create a potential energy surface. From the potential energy 

surface, equilibrium geometries, vibrational frequencies, reaction mechanisms, transition 

states, and more can be calculated. Dipole moments and such can be calculated from the 

electronic wave function. In order to set up the Schrodinger equation, the Hamiltonian is 

rewritten from a molecular based equation to an electronic based equation, shown in Eqn. 

1.3.3. While Eqn. 1.3.4 is the simplified version of the terms.  

 

𝐻̂ =  − ∑
ħ2

2𝑀𝐴
∇𝐴

2

𝑛𝑢𝑐

𝐴

 − ∑
ħ2

2𝑚
∇𝑖

2

𝑒𝑙𝑒𝑐

𝑖

− ∑ ∑
𝑒2𝑍𝐴

4𝜋𝜖0𝑟𝐴𝑖

𝑒𝑙𝑒𝑐

𝑖

𝑛𝑢𝑐

𝐴

+ ∑
𝑍𝐴𝑍𝐵𝑒2

4𝜋𝜖0𝑅𝐴𝐵
 

𝑛𝑢𝑐

𝐴>𝐵

+ ∑
𝑒2

4𝜋𝜖0𝑟𝑖𝑗

𝑒𝑙𝑒𝑐

𝑖>𝑗

  

    Eqn. 1.3.2 

 𝐻̂ =  − ∑
1

2𝑀𝐴
∇𝐴

2

𝑛𝑢𝑐

𝐴

 −
1

2
∑ ∇𝑖

2

𝑒𝑙𝑒𝑐

𝑖

− ∑ ∑
𝑍𝐴

𝑟𝐴𝑖

𝑒𝑙𝑒𝑐

𝑖

𝑛𝑢𝑐

𝐴

+ ∑
𝑍𝐴𝑍𝐵

𝑅𝐴𝐵
 

𝑛𝑢𝑐

𝐴>𝐵

+ ∑
1

𝑟𝑖𝑗

𝑒𝑙𝑒𝑐

𝑖>𝑗

 Eqn. 1.3.3 

 𝐻̂ = 𝑇̂𝑁(𝑅) + 𝑇̂𝑒(𝑟) + 𝑉𝑒𝑁(𝑟, 𝑅) + 𝑉𝑁𝑁(𝑅) + 𝑉𝑒𝑒(𝑟) Eqn. 1.3.4 
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 To approximate the electronic Hamiltonian, the Born-Oppenheimer approximation 

is applied to the equation. It assumes that atomic nuclei are very heavy compared to 

electrons, thus electrons are moving in the field of fixed nuclei and other electrons. This 

assumption allows for the Schrodinger equation to be separately solved for the electrons. 

Eqn. 1.3.5 is the resulting Hamiltonian after the Born-Oppenheimer approximation is 

applied. 

Now, we have the electronic Schrodinger equation, shown in Eqn. 1.3.6., and 

expanded in Eqn. 1.3.7. Eqn. 1.3.7 will need to be solved to generate the calculable 

properties mentioned above. 

 

The Hartree-Fock method is typically used to solve the electronic Schrodinger equation. 

This starts by invoking the Hartree product, Eqn. 1.3.8. If we assume that we are solving a 

system of 2 electrons, then the simplest approach would be to multiply the wavefunctions 

to describe the motion. However, since that is not the case for most systems, we can assume 

the product of the wavefunctions will describe the electron motion for larger systems. This 

is known as the Hartree product. 

 

 𝐻̂ =  𝑇̂𝑒(𝑟) + 𝑉𝑒𝑁(𝑟; 𝑅) + 𝑉𝑁𝑁(𝑅) + 𝑉𝑒𝑒(𝑟) Eqn. 1.3.5 

 𝐻̂𝑒𝑙(𝑟; 𝑅)𝛹(𝑟; 𝑅) =  𝐸̂𝑒𝑙(𝑅)𝛹(𝑟; 𝑅) Eqn. 1.3.6 

 𝐸̂𝑒𝑙𝛹(𝑟; 𝑅) =  [𝑇̂𝑒(𝑟) + 𝑉̂𝑒𝑁(𝑟; 𝑅) + 𝑉̂𝑁𝑁(𝑅) + 𝑉̂𝑒𝑒(𝑟)]𝛹(𝑟; 𝑅) Eqn. 1.3.7 

 𝛹𝐻𝑃(𝑥1, 𝑥2, … . 𝑥𝑁) =  𝜒1(𝑥1)𝜒2(𝑥2) … . 𝜒𝑁(𝑥𝑁)         Eqn. 1.3.8 

 𝛹 =
1

√𝑁!
|
𝜒1(𝑥1) 𝜒2(𝑥1) …

… … …
𝜒1(𝑥𝑁) 𝜒2(𝑥𝑁) …

    
𝜒𝑁(𝑥1)

…
𝜒𝑁(𝑥𝑁)

|    Eqn. 1.3.9 
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 To approximate the Hartree-product, slater determinants are used so that the antisymmetry 

principle is satisfied and the molecular orbitals can be assumed as a linear combination of 

atomic orbitals.  

 Now that we have established a pathway to model the orbitals, the Hamiltonian is 

re-evaluated. One electron and two electron operators are introduced to further simplify the 

electronic Hamiltonian. 

Eqn. 1.3.11 and Eqn. 1.3.12 are the one electron and two electron operators, respectively.  

 

The operators are applied to the electronic Hamiltonian equation and the result is shown in 

Eqn. 1.3.13. 

Now the electronic energy can be written as 

 

Where the wave function is normalized. The electronic energy, or Hartree-Fock energy, 

can be written by substituting the simplified Hamiltonian into eqn. 1.3.15 

 |𝜒𝑖𝜒𝑗 ⋅⋅⋅ 𝜒𝑘〉  Eqn. 1.3.10 

 ℎ(𝑖) =  −
1

2
∇𝑖

2 − ∑
𝑍𝐴

𝑟𝑖𝐴
𝐴

   Eqn. 1.3.11 

 𝑣(𝑖, 𝑗) =
1

𝑟𝑖𝑗
   Eqn. 1.3.12 

 𝐻̂𝑒𝑙 =  ∑ ℎ(𝑖) +  ∑ 𝑣(𝑖, 𝑗) + 𝑉𝑁𝑁

𝑖<𝑗 𝑖

       Eqn. 1.3.13 

 𝐸𝑒𝑙 =  〈𝛹|𝐻̂𝑒𝑙|𝛹〉       Eqn. 1.3.14 
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Next, the Hartree-Fock equations are solved for the orbitals, this is better known as 

the self-consistent field method, which iterates through the HF equations until there is little 

variation in the resulting orbitals. Eqn. 1.3.16 is the expanded Hartree-Fock equation. 

 

The above equation can be simplified in terms of operators that describe the coulombic 

interactions, Coulomb term Eqn. 1.3.17, and spin orbital exchange interactions, exchange 

term Eqn. 1.3.18.  

 

 

Inserting the operators into Eqn. 1.3.16 gives 

Eqn. 1.3.19 is further simplified in equations 1.3.20 and 1.3.21  

 𝐸𝐻𝐹 =  ∑〈𝑖|ℎ|𝑖〉 +
1

2
∑[𝑖𝑖|𝑗𝑗] − [𝑖𝑗|𝑗𝑖]

𝑖𝑗𝑖

       Eqn. 1.3.15 

 

ℎ(𝑥1)𝜒𝑖(𝑥1) +  ∑[∫ 𝑑𝑥2|𝜒𝑗(𝑥2)|
2

𝑟12
−1] 𝜒𝑖(𝑥1)

𝑗≠𝑖

− ∑[∫ 𝑑𝑥2𝜒𝑗
∗(𝑥2)𝜒𝑖(𝑥2)𝑟12

−1] 𝜒𝑖(𝑥1) =  𝜖𝑖𝜒𝑖(𝑥1)

𝑗≠𝑖

  

      Eqn. 1.3.16 

 𝐽𝑖(𝑥1) =  ∫ 𝑑𝑥2|𝜒𝑗(𝑥2)|
2

𝑟12
−1       Eqn. 1.3.17 

 𝐾𝑗(𝑥1)𝜒𝑖(𝑥1) = [∫ 𝑑𝑥2𝜒𝑗
∗(𝑥2)𝜒𝑖(𝑥2)𝑟12

−1] 𝜒𝑖(𝑥1)       Eqn. 1.3.18 

 [ℎ(𝑥1) +  ∑ 𝐽𝑖(𝑥1) −  ∑ 𝐾𝑗(𝑥1)

𝑗≠𝑖

  

𝑗≠𝑖

] 𝜒𝑖(𝑥1) =  𝜖𝑖𝜒𝑖(𝑥1)        Eqn. 1.3.19 



12 

 

 

 

To solve for orbitals, basis sets are introduced (discussed later). To incorporate the basis 

sets, the Hartree-Fock equation is transformed into a Roothaan equation, Eqn. 1.3.22. 

Substituting Eqn. 1.3.22 into Eqn. 1.3.21 and expanding gives,  

 

This introduces the matrix equation, to simplify further the left and right integrals are 

notated as Sμv and Fμv, giving  

 

 [𝐽𝑖(𝑥1) − 𝐾𝑖(𝑥1)]𝜒𝑖(𝑥1) = 0       Eqn. 1.3.20 

 𝑓(𝑥1)𝜒𝑖(𝑥1) =  𝜖𝑖𝜒𝑖(𝑥1)       Eqn. 1.3.21 

 𝜒𝑖 =  ∑ 𝐶𝜇𝑖𝜒𝜇̃

𝐾

𝜇=1

       Eqn. 1.3.22 

 

∑ 𝐶𝑣𝑖  ∫ 𝑑𝑥1

𝑣

𝜒𝜇
∗ (𝑥1)𝑓(𝑥1)𝜒̃𝑣

∗(𝑥1)

=  𝜖𝑖 ∑ 𝐶𝑣𝑖

𝑣

∫ 𝑑𝑥1𝜒̃𝜇
∗ (𝑥1)𝜒̃𝑣

∗(𝑥1)  

      Eqn. 1.3.23 

 ∑ 𝐹𝜇𝑣𝐶𝑣𝑖 =  𝜖𝑖 ∑ 𝑆𝜇𝑣𝐶𝑣𝑖

𝑣𝑣

  Eqn. 1.3.24 
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Finally, the fock matrix is created, FC=SCϵ. 

Figure 1.3.166 demonstrates how a Hartree-Fock calculation is carried out. First the 

initial geometry is required for 3D coordinates. An initial guess of the molecular orbitals 

is made and input into the Fock Matrix. The Fock Matrix goes through diagnalization to 

solve for molecular orbitals. The self-consistency is evaluated for convergence and if it has 

not converged then the matrix is created again with another guess, but if it is converged 

then self-consistency has been achieved and properties can be calculated. 

Basis Sets 

The guess wavefunctions are often expanded over basis sets where functions are 

designed to represent the atomic orbitals. As an example, consider a methane molecule and 

a diiodosilane molecule. The diiodosilane molecule requires more “allowed” atomic 

orbitals than the methane because of their relative occupied electron orbitals. Implementing 

 𝐵𝐹 = 𝑁 × 𝑒−𝛼𝑟 Eqn. 1.3.25 

Figure 1.3.1: Flow chart of a Hartree-Fock calculation  
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basis sets customizes the calculation based on allowed atomic orbitals, polarization 

functions and diffuse functions. Slater type orbitals (STOs) are expressed as a linear 

combination gaussian orbitals to make them easier to integrate, where the form is eqn. 

1.3.25. 

And the STO is 

The STO is in spherical coordinates (r,θ,φ) where n, l and m are quantum numbers, and 

Ylm is the angular momentum. STO basis sets are considered minimal basis sets, denoted 

as STO-nG. For example, a STO-3G* basis set includes 3 gaussian functions to make 

approximations for the slater type orbitals and one polarizable function. If more functions 

are included in the calculation to approximate orbitals, then the calculation will be more 

accurate and/or precise. Over the years other types of basis functions have been developed 

to improve the way orbitals are mathematically modeled. Table 1.3.1 lists common types 

of basis sets including minimal, Pople, correlation-consistent, and D,T,Q, zeta sets.  

Density Functional Theory 

While the Hartree-Fock method and other traditional ab-initio methods created new 

fast and efficient ways to carry out quantum calculations, these methods are still 

approximations and make assumptions that can lead to inaccurate results in some cases. 

Some cons of the Hartree-Fock approach include high variability in results with relation to 

 𝜑1(𝛼, 𝑛, 𝑙, 𝑚; 𝑟, 𝜃, 𝜑) = 𝑁 𝑟𝑛−1𝑒𝛼𝑟𝑌𝑙,𝑚(𝜃, 𝜑)          Eqn. 1.3.26 

Table 1.3.1: Common bases sets utilized in ab-initio and DFT calculations  

 

Minimal Pople Correlation 

Consistent 

D,T,Q zeta 

STO-nG 

(n=1,2…6) 

STO-3G* 

3-21g, 3-21g*, 3-

21+g, 6-31g, 6-

31g*, 6-311g* 

cc-pVDZ, 

cc-pVTZ, 

cc-pV5Z, 

aug-cc-

pVDZ 

SVP, DZV, TZV, 

TZVPP 
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basis functions and treatment of electron exchange correlation which assumes each electron 

interacts with an average charge density. All these aspects can be systematically improved 

upon and there are many highly accurate computational approaches to do just that but there 

is a heavy computational cost to be paid in scaling. Some highly accurate traditional ab 

initio methods scale as high as 27 with the number of basis functions which severely limits 

the system size which can be treated at those levels. To overcome these limitations, density 

functional methods were introduced to reduce the scaling without too much loss of 

accuracy.  

A functional is a function of a function, here the density functional is shown as 

 Where p(r) is the electron density. The energy can be expressed as 

The energy is at a minimum if the density corresponds to the exact density of a ground 

state. To explicitly solve for the energy of the ground state, Kohn and Sham introduced a 

combined wavefunction and density equation. 

The Kohn-Sham Hamiltonian is expressed as 

 

Where vs(r) is the Kohn-Sham potential. The resulting Kohn-Sham one-electron equation 

is  

 𝑝(𝑟) = 𝑁 ∫ … ∫ |𝛹(𝑥1, 𝑥2, … , … , 𝑥𝑁|2 𝑑𝑠1𝑑𝑥2 … , … , 𝑑𝑥𝑁          Eqn. 1.3.27 

 𝐸[𝑝] = 𝑇𝑒[𝜌] + 𝑈𝑒𝑒[𝜌] + 𝑉𝑒𝑥𝑡[𝜌]             Eqn. 1.3.28 

 𝐸[𝜌] = 𝑇0[𝜌] + ∫[𝑉̂𝑒𝑥𝑡(𝑟) +  𝑈̂𝑒𝑙(𝑟)] 𝜌(𝑟)𝑑𝑟 + 𝐸𝑥𝑐[𝜌]  Eqn. 1.3.29 

 𝐻̂𝑠 =  ∑ −
1

2
∇2 + 𝑣𝑠(𝑟𝑖)

𝑁

𝑖=1

  Eqn. 1.3.30 
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The final ground-state density is  

Solving equations 1.3.29-1.3.31 with a set of atomic coordinates and basis set will give a 

predicted energy. Once those steps are repeated until self-consistency is achieved, then 

other properties can be calculated. 

The major advantage of this approach is that significantly larger systems can be 

treated (a few hundred atoms are routine due to the N3 scaling) while still taking into 

account electron exchange and correlation. A number of density functionals have been 

developed, treating the exchange and correlation parts by using different functional forms. 

The disadvantage of using the density functional approximation is that the accuracy of the 

calculations can be highly dependent on the choice of the functional so benchmarking 

against high level traditional ab initio results for related systems and properties is 

recommended.  

Semi-Empirical Methods 

Semi-Empirical calculations simplify the Hartree-Fock method by utilizing some 

empirical parameters.  These methods often eliminate core electrons from the calculation, 

use minimum basis sets, and reduce the number of integrals calculated. Parameter 

development is based on fitting to experimental measurements or high-level quantum 

calculations.  

 ℎ̂𝑠𝛹𝑖 = [−
1

2
∇2 + 𝑣𝑠(𝑟)] 𝛹𝑖 = 𝜖𝑖𝛹𝑖  Eqn. 1.3.31 

 𝑛(𝑟) =  ∑|𝛹𝑖|2

𝑁

𝑖=1

  Eqn. 1.3.32 
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The Hamiltonian is written as  

 

Where n(val) is the number of valence electrons and V(i) is the potential energy of a 

valence electron. The orbital equation, only considering valence electrons is 

 And the electronic energy is  

From the last term, we can see the similarities with the Fock Matrix. While semi-empirical 

methods simplify the Hatree-Fock method, it can still be quite accurate and even employed 

in larger molecule systems, up to a thousand atoms. 

Molecular Mechanics  

Using Hartree-Fock, DFT, or semi-empitical methods for systems with tens of 

thousands of atoms is still not computationally feasible. Moreover, that level of calculation 

is not required for some results to be reasonably accurate or precise. For large molecular 

systems, typically methods such as Monte Carlo simulations or molecular dynamics 

simulations are carried out. This dissertation prospectus will focus on the theory of 

molecular dynamics (MD) simulations. MD simulations are based on the calculation of 

 𝐻̂𝑣𝑎𝑙 =  ∑ [−
1

2
∇𝑖

2 + 𝑉(𝑖)] + ∑ ∑
1

𝑟𝑖𝑗
𝑗>1

𝑛(𝑣𝑎𝑙)

𝑖=1

𝑛(𝑣𝑎𝑙)

𝑖=1

  Eqn. 1.3.33 

 𝜑𝑖 = ∑ 𝐶𝑟𝑖𝑓𝑟

𝑏

𝑟=1

  Eqn. 1.3.34 

 𝐸 = 2 ∑ 𝐻𝑣𝑎𝑙,𝑖𝑖
𝑐𝑜𝑟𝑒

𝑛(𝑣𝑎𝑙)/2

𝑖=1

+ ∑ ∑ (2𝐽𝑖𝑗 − 𝐾𝑖𝑗) + 𝑉𝑐𝑐

𝑛(𝑣𝑎𝑙)/2

𝑗=1

𝑛(𝑣𝑎𝑙)/2

𝑖=1

     Eqn. 1.3.35 
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energies from atomistic positions, forcefields, and velocities. Naturally, Newton’s 

equations of motion are implemented to compute forces and velocities.  

Forcefield parameters are created to iterate through Newton’s equations of motion. 

Forcefields consist of parameters that describe molecular intramolecular and 

intermolecular forces, often derived from ab-initio or DFT methods. In a particular 

implementation using an all-atom force field, Eqn. 1.3.37 is the total energy of the system 

consisting of energy contributions from molecular bonds between 2 atoms, angles between 

3 atoms, torsion between 4 atoms, and interactions between non-bonded atoms. 

Intramolecular energies, Ebond, Eangle, Etorsion are modeled as harmonic oscillators and all 

stem from Hooke’s Law. Non-bonded interactions, or intermolecular interactions, are 

modeled using Lennard-Jones potentials and coulombic interactions. Equation 1.3.42 

shows the Lennard-Jones potential energy equation. 

 

 𝐹𝑖 = 𝑚𝑖𝑎𝑖  Eqn. 1.3.36 

 

𝐸 = 𝐸𝑏𝑜𝑛𝑑 + 𝐸𝑎𝑛𝑔𝑙𝑒 + 𝐸𝑡𝑜𝑟𝑠𝑖𝑜𝑛 + 𝐸𝑛𝑜𝑛𝑏𝑜𝑛𝑑 

𝐸𝑏𝑜𝑛𝑑 =  ∑
1

2
𝑘(𝑟𝑖𝑗 − 𝑟0)

2

𝑗

 

𝐸𝑎𝑛𝑔𝑙𝑒 =  ∑ 𝐻𝜃(𝜃 − 𝜃0)2 

𝜃

 

𝐸𝑡𝑜𝑟𝑠𝑖𝑜𝑛 = 𝑉1(1 + cos(∅)) + 𝑉2(1 + cos(2∅)) + 𝑉3(1 + cos(3∅)) 

𝐸𝑛𝑜𝑛𝑏𝑜𝑛𝑑 = 𝐸𝑣𝑑𝑊 + 𝐸𝐶𝑜𝑢𝑙𝑜𝑚𝑏 + 𝐸ℎ𝑏𝑜𝑛𝑑 

 

 Eqn. 1.3.37 

 Eqn. 1.3.38 

 Eqn. 1.3.39 

 Eqn. 1.3.40 

 Eqn. 1.3.41 
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To carry out a molecular dynamics simulation, first molecular coordinates, 

forcefield parameters, and initial velocities are required. Initial velocities are generated 

based on the Maxwell-Boltzmann distribution at the given temperature. Next, Newton’s 

equation of motion is solved and iterated for a desired number of steps, then final energies,  

 velocities, and trajectories are calculated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 𝑉(𝑟)𝐿𝐽 = 4 ∈ [(
𝜎

𝑟
)

12

− (
𝜎

𝑟
)

6

]  Eqn. 1.3.42 
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CHAPTER 

2. BACKGROUND AND MOTIVATION 

2.1 Background 

2.1.1 Ionic Liquids and Electrolyte Mixtures  

Recently, ionic liquids (ILs) have been employed in devices such as dye-sensitized 

solar cells, lithium-ion batteries, fuel cells, and sensor cells.67–76 Their attractive properties 

including low volatility, low vapor pressure, high conductivity, and tunability through 

cation-anion selections make them prime candidates for such applications. To fully 

understand the complex interactions between the cation-anion pairs systematic research, 

including experimental and computational techniques, have been carried out. 

Ionic liquids are salts that consist of cation and anion pairs, have unique molecular 

coordination from their charge distributions, and as a result have melting points below 

100°C. Figure 2.1.1.2 demonstrates the difference between ionic solids and ionic liquids77. 

On the left is a schematic of cation and anion pairs that form a solid lattice where NaCl is 

used as an example. The right is an ionic liquid with a non-crystalline lattice due to the 

difference in symmetry and charge between the ions. The size of the ions and functional 

groups incorporated into the molecular structure of the individual cations and anions 

inherently change the properties of ILs.  

Figure 2.1.1.2: Demonstration of the difference between an ionic solid 

and ionic liquid with respect to anion-cation symmetry. 
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Classes of ILs have been established such that the types of ILs can be distinguished. 

Figure 2.1.1.3 contains common classes of ionic liquid cations and anions. These common 

cations have a variety of structures including rings and alkyl chains. For example, 

imidazolium-based ionic liquids contain an imidazolium ring structure with varying alkyl 

chain lengths in the cation, as shown in figure 2.1.1.3, which contributes to the change in 

inherent properties in imidazolium-based ionic liquids.  

Imidazolium-based ILs show promise in many applications due to the functionality 

of the imidazolium ring and cation-anion interactions. Experimental studies of 

imidazolium-based ionic liquids have characterized trends in physical properties such as 

transport and thermodynamic properties.78,79,88–92,80–87 Results from these studies have 

demonstrated not only the complexity of these ionic liquids, but how variables such as 

alkyl chain lengths on the imidazolium cation and anion selection play huge roles in the 

properties. For example, in some imidazolium-based ionic liquids the density will increase 

with increasing alkyl chain lengths.82,93–95 Moreover, the viscosity profiles also change 

when alkyl chain lengths are increased or decreased.   

Figure 2.1.1.3: Classes of ionic liquids based on functional groups within cations and 

common anions. 
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To fundamentally understand the molecular interactions of imidazolium-based 

ionic liquids, molecular dynamics simulations have been employed to explore the 

characteristics of such systems on an atomistic level. Molecular dynamics (MD) 

simulations utilize force fields with parameters often derived from density functional 

theory calculations applied to Newton’s equations of motion to simulate systems of 

molecules containing tens of thousands of atoms.  

While there are an assortment of force fields to choose from, increasingly accurate 

custom force fields have been published by a number of research groups including those 

conducted by Drs. Orlando Acevedo96–99, Sundaram Balasubramanian100, Jose Lopes101,102, 

Agilio Padua101, and Jorge Kohanoff103 who have used first principles-based calculations 

to parameterize force fields specifically for ionic liquids. The customization of ionic liquid 

forcefields is necessary due to the unique cation-anion molecular interactions. One force 

field may be sufficient for a certain type of ionic liquid but not for another especially when 

considering the unique cation-anion pairs that can be created.  

Figure 2.1.1.4: Example of a MD simulation 

box containing 1-butyl-3-methylimidazolium 

bis(trifluoromethanesulfonyl)imide 
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 After the force field has been chosen, the simulation setup can continue through 

gathering necessary starting materials. To run an MD simulation, a coordinate file 

containing atom coordinates, topology file with force field parameters for inter and 

intramolecular forces and partial atomic charges, and a run file containing environmental 

parameters for the simulation are required. To contain the atoms and molecules, molecular 

structures are constrained to a box defined as an infinite system through periodic boundary 

conditions. This provides a small “snapshot” of the systems but allows for the results to be 

interpreted as a continuous system and makes structure-property relationships realistic. 

Figure 2.1.1.4104 demonstrates a MD simulation box containing 1-butyl-3-

methylimidazolium (red) and bis(trifluoromethanesulfonyl)imide (blue)  and exemplifies 

how ionic liquid systems are studied through MD simulations. The box edges are meant to 

contain the molecules; however, the box dimensions can change based on the simulation 

ensemble chosen.  

Environmental variables are set through ensembles which describe the conditions 

of the simulation and are used based on the desired outputs. Common ensembles are 

isothermal-isobaric (NPT), where the number of particles (N), pressure (P), and 

temperature (T) are held constant, and canonical (NVT) which is similar to the NPT 

ensemble except the volume is held constant instead of pressure. Typically, NPT ensembles 

are used to mimic experimental results and NVT ensembles are used to equilibrate the 

simulation boxes, but there are other ways to use the ensembles that are not explored in 

this prospectus. To monitor the temperature and pressure of the simulation boxes, specific 

thermostats and barostats are chosen. Furthermore, the simulations are also carried out at 

varying time lengths to capture the desired molecular interactions and motions. An 
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equilibration with an NVT ensemble may only require 1 ns, but an NPT simulation that 

will be used to explore the characteristics of the simulation may require more time.   

 The results of MD simulations can vary widely and are chosen based on the purpose 

of a study. Typically, density measurements are used to validate the simulations. Densities 

are directly correlated to intermolecular spacing and molecular charges that are used as 

simulation parameters. Once validation on the simulations has been done, the results can 

be used and analyzed. For example, MD simulations of ILs provide insight into transport 

properties through self-diffusion coefficients80,94,105, and subsequently viscosity and 

conductivity. Molecular interactions between cations and anions are often characterized 

through radial distribution functions80,106, or probability functions that describe the 

likelihood of bonding and coulombic interactions. Thermodynamic properties such as heat 

capacities and heats of vaporization can also be calculated through reported energies from 

the simulations.78,107  Clearly, MD simulations are a powerful tool and have enhanced our 

understanding of ionic liquids through serving as a predictor tool of their properties and 

providing explanations of phenomena observed in experiments.  

 Recently, our group has used MD simulations as a pathway to further understand 

ionic liquid electrolyte mixtures. Ionic liquids are often mixed with solvents such as water 

or other organic solutions to create electrolyte mixtures. Electrolyte mixtures tend to lower 

viscosity and increase conductivity when compared to neat ILs. The concentration of each 

component in the electrolyte can heavily affect the properties of the mixture, hence MD 

simulation studies have been expanded from pure ionic liquid focuses to include electrolyte 

mixtures in order to accomplish a better understanding of such mixtures. Past group 

members have reported characteristics of ionic liquid mixtures and electrolyte mixtures 
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from MD simulations.108,109 One study of particular interest explores the effects of water 

on 1-butyl-3-methylimidazolium iodide [BMIM][I].  

 [BMIM][I] is not a commonly studied ionic liquid, but it is a prime candidate for 

devices that utilize tri-iodide reactions for operations, and it is miscible in solvents such as 

water. Nickerson et. al. systematically studied [BMIM][I]/water mixtures using MD 

simulations and showed how the concentration of water changes transport properties such 

as conductivity and viscosity, and explored the underlying molecular interactions between 

the ionic liquid and water.108 Figure 2.1.1.5108 is a plot of conductivity (black) and viscosity 

(blue) of [BMIM][I]/water mixtures as a function of the concentration of water. As the 

mole percent of water is increased, the viscosity decreases and the conductivity increases. 

Notably, the viscosity and conductivity change dramatically when water concentration is 

greater than 50%. The simulation results consisting of simulation box snapshots, radial 

distribution functions, and self-diffusion coefficients, revealed a change in ionic liquid 

ordering at high concentrations of water where eventually, a water network dominates the 

Figure 2.1.1.5: Conductivity and viscosity measurements of 

[BMIM][I]/water mixtures 
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mixture with pockets of ionic liquid dissolved within. These results have been a starting 

point for new developments of ionic liquid mixtures and continue to contribute to our 

current research to design more complex electrolyte mixtures.  

 2.1.2 Atomic Layer Deposition in Semiconductors 

 

Atomic Layer deposition (ALD) is a method that utilizes surface reactions of gas 

phase reagents to build thin film surfaces or layers.110–115 ALD is a branch of chemical 

vapor deposition (CVD) but is designed for conformality and control of layer thickness. 

Common applications of ALD, outlined in Figure 2.1.2.1116, include generating thin films 

for nanostructures, nanotubes, nanowires, protective shells, coatings for polymer 

membranes, as well as thin films for transistors and memory in semiconductors.  

 Chemical vapor deposition is an umbrella term for processes that grow material on 

various surfaces through chemical reactions. CVD processes, such as APCVD, LPCVD, 

PECVD, PCVD, and ALD are chosen for a specific application.117–121 For example, 

atmospheric pressure chemical vapor deposition (APCVD) is mostly used in large scale 

Figure 2.1.2.1: Application of atomic layer deposition (ALD) 
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applications such as glass coatings to create a uniform field, while plasma enhanced 

chemical vapor deposition (PECVD) is commonly used in the fabrication of electronic 

devices.122,123 In the context of semiconductor fabrication, ALD is commonly employed to 

create thin and uniform films in a controlled manner. This is achieved through introducing 

precursors to reactive surfaces sequentially and repeating with different reactants, or the 

same, a predetermined number of cycles. By encouraging the slow growth of films, ALD 

films easily conform to surfaces, are smooth, and often are carried out at relatively low 

temperatures (200°C - 400°C).112,116,124–126 

Figure 2.1.2.2127 shows an example reaction mechanism of an ALD process. In the 

first sub-cycle, the gaseous precursor is exposed to the substrate. Once enough time is given 

for the reaction to reach almost full monolayer coverage, the remaining precursor is 

removed from the system often by using a purge gas, such as N2. In the next sub-cycle, 

another precursor or reactant is introduced and then purged. By the last step, the film has 

grown in thickness and the initial surface is re-established, ready for the next cycle. The 

sub cycles of ALD are self-limiting, meaning that once the precursors have reacted with 

Figure 2.1.2.2: Reaction mechanism for an ALD process 
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the active sites on the surface the half-reaction is complete. The self-limiting nature of ALD 

is the reason why uniform monolayers on a variety of surface topographies are achievable 

through this process. 

ALD can be difficult to achieve when testing surface-precursor combinations and 

reactions. The ALD process only occurs within a defined temperature window where the 

growth per cycle becomes independent of temperature and therefore reaches a plateau. 

Figure 2.1.2.3128 demonstrates how an ideal ALD temperature window is determined. The 

plot on the left shoes how the growth per cycle (GPC) is affected by the precursor gas 

pulses. Once the growth reaches a plateau, the ALD temperature window is determined. At 

temperatures lower than the window, the GPC increases and precursor condensation can 

occur, while above the window the precursors could decompose or desorb from the 

surface.106 The ALD temperature window is different for every reaction and is heavily 

dependent not only on the chosen surface, but selected precursor.  

Precursors need to meet certain criteria in order to be effective, this includes high 

reactivity and thermal stability.129–133 To endure ALD environments and ensure the 

Figure 2.1.2.3: Plots determining the ALD window of a reaction. (A) demonstrates the precursor 

pulse length needed to achieve saturated growth. (B) shows the temperature window based on the 

growth per cycle and deposition temperature 
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precursors will not decompose, they need to have a suitable thermal stability. Reactivity of 

the precursor is key, as this will be crucial in carrying out the reactions and forming a film. 

There are many pathways and methods for precursor screening, however, a common and 

effective method is the utilization of ab-initio and DFT calculations. 

Computational chemistry techniques aid in precursor screening through providing 

reaction mechanisms, relative energies to calculate reaction and activation energies, and 

thermodynamic properties to determine thermal stability. Often these calculations are 

carried out using ab-initio or DFT based software on systems containing > 100 atoms. 

Common approaches to simulate the precursor-surface reactions include the use of small 

cluster or slab models that represent an extremely small portion of the reactive surface. 

Figure 2.1.2.4 is an example of how an SiO2 surface slab model has been used to determine 

the transition state (middle), which lies between the reactants and products (left and right 

respectively), between the surface and di(sec-butylamino)silane. In this particular 

mechanism, the nitrogen (blue) hydrogen bonds to the surface hydrogen (green) and the 

silane bonds to the surface oxygen. The transition state tends to create an activation energy 

barrier and effects the efficiency of the reaction. Reactions with high activation energy 

barriers may require alternate methods to intervene and carryout the reaction. Small scale 

Figure 2.1.2.4: DFT results depicting the reactants, transition state complex, and products between 

an SiO2 surface slab model and di(sec-butyl)silane 
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calculations, such as those demonstrated in figure 2.1.2.4, can be used to calculate reaction 

energy barriers between precursors and ALD surfaces to determine precursor reactivity and 

the likelihood that the reaction will occur under ALD conditions. While transition states 

can be roadblocks in precursor screening and development, there are other energy barriers 

to consider in reaction pathways. For example, a crucial step in ALD is the adsorption 

between the transition state and product. If the energy required for desorption is high, then 

this creates another energy barrier to overcome for successful ALD.  

Precursor selection depends on the resulting film characteristics, resources 

available to carry out the process, and ALD environment. In the context of SiO2 film 

growth, a necessity in the semiconductor industry, aminosilane-based precursors have 

grown in popularity for such purposes.134–137  Aminosilane precursors tend to contain a 

silane with varying amine groups and alkyl chain ligands. By changing the number of 

amines and alkyl chains, this group of precursors can be fine-tuned to fit applications and 

ALD environments.  

2.2 Motivation  

2.2.1 Utilization of Molecular Dynamics to Optimize Electrolyte Mixtures Employed in     

Applications for Extreme Environments 

 When it comes to designing electrolyte solutions for devices, there are multiple 

properties to consider including density, viscosity, conductivity, and a temperature window 

of operation. All of these characteristics can be attained by formulating and fine tuning an 

electrolyte mixture. There are countless ways to approach the design of such solutions, 

however, MD simulations are a common tool, especially when studying complex 

electrolyte solutions.  
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Recently, our group members have reported multiple formulations of a rare 4 

component electrolyte solution that has potential to be used in energy storage devices, and 

more specifically, sensor devices that utilize a tri-iodide reaction for operation. The system, 

comprising of 1-butyl 3-methylimidazolium iodide, ethylammonium nitrate, water, and 

lithium iodide, displayed traits of good conductivity and an impressive temperature 

window of operation.  

Figure 2.2.1.1 are differential scanning calorimetry (DSC) results of 

[BMIM][I]/[EA][NO3]/Water/LiI mixtures. DSC results show changes in the thermal 

behavior of the IL mixtures including phase changes and glass transition temperatures, or 

Tg. Glass transition temperatures are the point where the material undergoes a transition 

from a glassy state to a rubbery state and is common in amorphous structures and ionic 

liquids.138–141 The Tg is also an indicator of the low temperature bound of the temperature 

Figure 2.2.1.1: Differential scanning calorimetry (DSC) curves and reported glass 

transition temperatures (Tg) for ionic liquid electrolyte mixtures contatining 

[BMIM][I]/[EA][N]/Water/LiI 
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window. Here, the glass transition temperatures of the IL mixtures show the development 

of eutectic mixtures capable of retaining liquid properties at extremely low temperature, 

down to -109.7 °C. 

While we hypothesized the reasons for the low temperature behavior, including the 

introduction of new molecular interactions, more studies needed to be carried out to gain a 

complete understanding. In order to continue the work, we studied a ternary system of 1-

butyl-3-methylimidazolium iodide, ethylammonium nitrate, and water using MD 

simulations. Furthermore, we hypothesize that the addition of water to the ionic liquid 

mixture will eventually cause water to dominate the systems where a water network is 

created. MD simulations of imidazolium-based ILs and water show a disruption in the ionic 

liquid ordering at high water concentrations often caused by water hydrogen bonding with 

itself and the anion of the ILs.142–144 Even in an mixture with two ionic liquid cosolvents, 

we expected to see similar trends in the results.  

The implementation of MD in this study allows us to understand molecular 

interactions between the ILs, ILs and water, and compare them to neat ILs as well as 

transport properties from a molecular level. This knowledge and understanding can further 

the development of other ionic liquid electrolyte solutions and improve upon those that 

have already been created. In this dissertation prospectus we present the MD simulation 

results of five electrolyte mixtures containing [BMIM][I]/water/[EA][NO3] as a 

complimentary study to the experimental results already reported. In order to focus on the 

effects of water on the ionic liquid mixture, the concentration of water was slowly increased 

starting from a 50/50 IL mixture until 80 mol% water was reached. Included in the results 

are densities, simulation box snapshots, radial distribution functions, and self-diffusion 
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coefficients. Results indicate a significant change in properties and molecular interactions 

with high concentrations of water. Moreover, these results give insights into how these 

molecular interactions effect the bulk properties observed in experiments.  

While on the topic of glass transition temperatures, we also explored the possibility 

of using MD simulations as a predictor for Tgs. The utilization of molecular dynamics to 

predict the glass transition temperature of imidazolium-based ionic liquids has been 

reported145,146, however, the methodology has not been applied to [BMIM][I]. Moreover, 

the studies do not use an OPLS-AA forcefield. Forero-Martinez et.al reported the glass 

transition temperature of [BMIM][PF6] from an MD simulation using an empirical force 

field and the DL_POLY program.146 Figure 2.2.1.2 demonstrates their methodology in 

predicting the Tg where the average potential energy per ion pair is plotted vs temperature. 

Figure 2.2.1.2:  Glass transition temperature prediction of [BMIM][PF6]. The 

average potential energy of ion pairs vs temperature plot shows two linear regions 

fitted with the blue and red lines. Where they intersect is the predicted Tg. 



34 

 

There is a difference in the slopes of the high temperature and low temperature regions, 

therefore, they estimate the Tg to be the point where the linear fittings intersect to be the 

Tg.  

To further improve our efforts to predict glass transition temperatures of ionic 

liquids, we also report a refined method to use MD simulations to predict the Tgs of neat 

ionic liquid [BMIM][I]. In the reports mentioned above parameters such as simulation 

annealing rate and box lengths have not been comprehensively tested. We report a method 

to predict Tgs of imidazolium-based ionic liquid [BMIM][I] through molecular dynamics 

simulations by monitoring the slope of the ΔEpot/ion pair vs temperature plot and 

identifying a discontinuity. Two annealing rates and simulation box lengths were tested to 

conclude if such parameters effect the glass transition temperature.  

2.2.2 Combined DFT and Semi-Empirical Computational Techniques to Simulate ALD 

Precursor Reactivity and Stability  

 

ALD is commonly utilized in the fabrication of semiconductors. Figure 2.2.2.1 

shows the layers of a transistor that, when combined with other transistors, ultimately make 

up a larger integrated circuit. Typically, layers of materials are deposited onto a silicon 

wafer that has an etched pattern to make up the circuits and fine tune the behavior of the 

Figure 2.2.2.1  Schematic of transistor layers within an 

integrated circuit  
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circuit. In the figure, there is a dielectric layer (yellow) that is often deposited through ALD 

or another CVD process. At Versum Materials, we develop high-k and low-k dielectric 

precursors for such purposes.  

 A specific group of precursors developed at Versum Materials are aminosilane-

based where amino group or groups are attached to the silane with varying alkyl chains. 

Such precursors show encouraging results for ALD applications for the growth of thin films 

such as SiO2. SiO2 films play a major role in the development of transistors and their 

conformations through deposition to create thin films can be difficult to achieve. Precursor 

screening for aminosilane candidates that have potential to create uniform SiO2 films is 

commonly carried out with DFT calculations where the reaction mechanisms and ALD 

temperature windows are predicted. Figure 2.2.2.2 shows the predicted ALD temperature 

Figure 2.2.2.2: Estimated ALD temperature windows for mono-

aminosilane precursors and a SiO2 surface slab from DFT results 
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window of a group of mono-aminosilane precursors. Based on these results, all six of the 

precursors studied would be good ALD candidates.  

To expand the comprehensive study of mono-aminosilane precursors by Huang et. 

al. we present a study of 10 aminosilane precursors to determine their viability for SiO2 

thin film growth through ALD. The precursors, consisting of mono and bis amino ligands, 

provide a comparison between the two types of aminosilane ligands. Similar to Huang et. 

al., DFT is used to complete the precursor screening, however, in this dissertation 

prospectus, we use a small cluster model consisting of a hydrogen terminated SiO2 active 

site instead of a slab model. This cuts computation time and allows for more precursors to 

be included in the study while maintaining trends from slab models. A proposed reaction 

pathway as well as reaction coordinates are provided for a select group of precursors. The 

reaction energies and activation energies between the precursors and cluster model are also 

reported to explore trends between the amino group ligands.   

Furthermore we also report the thermodynamic properties of the ten precursors, 

enthalpy of formation (ΔHf) and gibbs free energy of formation (ΔGf), which are used in 

scale up engineering and design. The intent of reporting the values is to compare two 

thermochemical recipes that are commonly employed in atomistic thermodynamic 

calculations. The first is a thermochemical recipe implemented in the Gaussian09 program 

named G3MP2 where four separate calculations are carried out to attain extreme accuracy. 

The next is a simpler calculation from the Spartan v’18 program named T1 where two 

calculations are carried out, however, initial comparisons report that the two recipes are 

comparable for some compounds.147 The driving force for this comparison is the extreme 

difference in computation time and resources between the two methods. The G3MP2 
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method can take orders of magnitude longer than the T1 method to finish a calculation. 

The results from our calculations show good agreement between the two methods. 

Currently, our capabilities include calculations for precursor reactions with small 

clusters and small area periodic surface slabs, however, expanding to a larger surface would 

allow for more property measurements such as growth per cycle and monitoring of active 

sites on the surfaces. In the literature, Atomic Layer Deposition has been simulated using 

reactive molecular dynamics, however, the forcefields associated with these chemistries 

are incredibly complex and require extensive parameterization for specific 

applications148,149. Thus, in this dissertation prospectus we propose utilizing methods such 

as semi-empirical tight binding approaches to simulate ALD reactive surfaces large enough 

to adsorb multiple reactant molecules and thus, simulate behavior at conditions 

approaching the full monolayer coverage. 
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CHAPTER 

3. METHODS 

 

3.1 Computational Methods 

A Molecular Dynamics Insight on the Role of Water Molecules in Ionic Liquid Mixtures of 

1-butyl-3-methylimidazolium Iodide and Ethylammonium Nitrate 

The molecular dynamics simulations were carried out using the GROMACS 5.1.4 

package.150–152 For each formulation, the initial configurations were constructed by 

randomly inserting [BMIM][I], [EA][NO3], and water into a 5x5x5 nm3 box. [BMIM][I] 

and [EA][NO3] were inserted pairwise. Table 3.1.1 shows the number of each ion pair and 

water molecule that constitutes the five simulation boxes.   

 

The ionic liquids [BMIM][I] and [EA][NO3] was described by an OPLS-AA force 

field. Parameters for the [BMIM] and [EA]+ cations were implemented from works by 

Lopes153 and Bhargava and Balasubramanian100 while parameters for [NO3]
- was modeled 

using OPLS parameters from Doherty et.al96 where they revisited forcefield parameters 

originally reported by Acevedo et al.99  

 

Formulation (mol%) 
[EA][N]/Water]/[BMIM][I] 

# of 

[EA][NO
3
] 

Pairs 

# Water 

Molecules 

#  of 

[BMIM][I] 

Pairs 

10-80-10 80 640 80 

20-60-20 160 480 160 

30-40-30 240 320 240 

40-20-40 320 160 320 

50-0-50 300 0 300 

Table 3.1.1 Formulations and respective box constituents of  

[EA][N]/Water/[BMIM][I] mixtures reported 
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The initial configuration boxes underwent a 1000 step energy minimization using 

the steepest descent method. An NVT equilibration was then performed for 0.5ns followed 

by a 20 ns NPT simulation. Each simulation used the leapfrog algorithm to integrate 

Newton’s equations of motion with a time step of 0.002ps and hydrogen bonds were 

constrained with the LINCS algorithm154,155. Long range electrostatic interactions were 

treated using the particle-mesh Ewald (PME) while Lennard-Jones forces were treated with 

a cut off of 1.2 nm.  The velocity-rescale thermostat156 was used in the NVT equilibrations. 

For the NPT simulations, the berendsen thermostat157 and parinello-rahman barostat158 

were used in the with a reference temperature and pressure of 295K and 1 bar. Simulation 

results including densities, radial distribution functions, and self-diffusion coefficients 

were computed with the GROMACS package between 5 and 10 ns. The Visual Molecular 

Dynamics package (VMD)159 aided to visualize the simulation boxes and create simulation 

box snapshots from the last nanosecond of each simulation. 

Glass Transition Temperature Predictions of Imidazolium-based Ionic Liquids 

 The forcefield utilized for the ionic liquids was first reported by Sambasivarao and 

Avcevedo in 200999, however, their group recently improved the forcefield, which showed 

improved predictions of thermodynamic properties. The latest forcefield by their group, 

published in 201796, was used for the glass transition temperature predictions. 

The MD simulation details for the glass transition temperature predictions 

including energy minimizations, equilibration parameters, thermostats, and barostats, are 

the same as those above. The GROMACS package was used to carry out annealing 

simulations with varying cooling rates. The ionic liquid ion pairs were inserted randomly 

into boxes with length of 5nm and 6nm. To test variability in the simulation results, 
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multiple trials were carried out with the same starting configurations. Results from the trials 

concluded that three trials need to be done to predict the glass transition temperature in 

order to account for the stochastic nature of the simulations. Data for the self-diffusion 

coefficients and radial distribution functions was averaged over 20K segments in order to 

maintain accuracy in the MSD and RDF calculations.  

Computational Studies of the Stability and Reactivity of Atomic Layer Deposition 

Precursors 

The building and modifications of ALD precursors, clusters, and surfaces were 

done with the Materials Studio R2017 package visualizer.160 Reaction mechanism 

complexes, transition state searches, and reaction energies were calculated with the 

DMol3161–163 package using the BLYP164–167 density functional and DNP basis set. 

Reaction energies were benchmarked using the MP2/6-31G*168–171 ab-initio method in the 

Spartan V’18 package.172 Thermodynamic properties including ΔHf and ΔGf were 

calculated using the Gaussian09173 program G3MP2 thermochemical recipe and Spartan 

V’18 T1 thermochemical recipe. Semi-empirical tight binding calculations were carried 

out using the GFN2-XTB174–179 package. The starting configurations were created in 

Materials Studio R2017.  

3.2 Experimental Methods 

The ionic liquids 1-butyl-3-methylimidazolium iodide ([BMIM][I]) and 

ethylammonium nitrate, ([EA][NO3])  were purchased from Ionic Liquids Technologies 

Inc., and HPLC grade water was purchased from Fischer Scientific. Ionic liquid solutions 

were combined and mixed manually and by a Sonics VibraCell at 500W until the solution 

was visibly homogeneous. 
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Density measurements were done at room temperature using a 2mL specific gravity bottle 

that was calibrated using HPLC grade water.  
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CHAPTER 

4. RESULTS AND DISCUSSION 

4.1. A Molecular Dynamics Insight on the Role of Water Molecules in Ionic Liquid 

Mixtures of 1-butyl-3-methylimidazolium Iodide and Ethylammonium Nitrate 

4.1.1 Validation of Forcefields for Ionic Liquids and Their Mixtures 

 The five formulations were selected to include varying molar percentage of water 

from 20 mol% up to 80 mol% with increments of 20 mol% to validate MD simulation 

accuracy over a wide concentration range. The concentrations of the ionic liquids were 

split equally between [BMIM][I] and [EA][NO3], for example, for a formulation of 20 

mol% water, there was 40 mol% [EA][NO3] and 40 mol% [BMIM][I]. The number of 

molecules per simulation box were chosen to adequately fill the box. Density is often used 

to validate simulation results because forcefields represent intramolecular and 

intermolecular distances, as well as system volumes, that reflect experimental 

Figure 4.1.1.1: Plotted experimental and simulated densities for all 

formulations. Red dots indicate experimental values while the grey 

indicate simulation values. 
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densities.101,180–183 Comparison between the experimental and simulated density values are 

plotted in Figure 1. The difference between the experimental and simulation values all fall 

under a three percent difference, which is a generally accepted threshold for density 

differences. As expected, the incorporation of water to the [BMIM][I]/[EA][NO3] mixture 

decreases the density as water is much less dense than the ionic liquids. The good 

agreement validates the OPLS-AA forcefield and allows for an in depth look at the results 

from the simulations.  

4.1.2 Qualitative Analysis of Simulation Boxes via Snapshots 

To visualize the molecular ordering of respective mixtures, snapshots of each 

simulation box at 20ns were created and displayed side by side in Figure 2 to monitor the 

qualitative changes between mixtures. Snapshots aid in showing how the mixtures change 

from their initial to final equilibrated configurations; however, for the purpose of this study, 

we use them to identify changes in the equilibrated molecular structures between 

formulations. Through interpreting the visualizations, we can make initial guesses at 

possible molecular interactions and gain understanding of structural changes.  

Figure 4.1.2.1: Visualizations of the simulation boxes at 20 ns for all formulations. Blue lines 

indicate the box edges, where periodic boundary conditions apply.  
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The blue boxes within the snapshots are the simulation box edges and each ion or 

molecule has been colored according to the legend. Within box “a”, which shows a 50/50 

mixture of ionic liquids [BMIM][I] and [EA][NO3], the ionic liquids are mixed 

homogeneously where no definite large pockets of ionic liquids are separated. The orange 

[BMIM]+ cation and iodide anion are well dispersed with the ethylammonium cations and 

nitrate anions. With increasing molar percent of water, the ionic liquid structures no longer 

resemble homogeneous systems. A noticeable transition occurred when water 

concentration increased from 40-60 mol%, where pockets of water and ionic liquid are 

forming.  At 80 mol% water, the orange [BMIM]+ ions cluster with the green nitrates while 

the iodide anions cluster with water, and the purple ethylammonium cations are dispersed 

between both clusters. Eventually what seems to be a water network, or large aggregates, 

starts to form and is most prominent in simulation box “e” with 10 mol%[BMIM][I], 10 

mol% [EA][NO3], and 80 mol% water. Water aggregates and networks are known to occur 

at higher water concentrations in electrolytes and cause phase separations,184–186 which also 

seems to be the case in the studied systems. At high water concentrations there is clearly a 

segregation between two groups, one comprising of water and iodide and the other 

[BMIM]+ and [NO3]
-. Ethylammonium seems to be interacting with both groups, but to get 

a clear picture of the molecular interactions, further investigation is done through radial 

distribution functions. 

4.1.3 Exploration of Molecular Interactions Through Radial Distribution Functions 

Radial distribution functions, which represent the probability, g(r), of a molecule 

or atom residing a distance (r) from another molecule or atom, were computed to 

characterize the molecular interactions within the mixtures. Radial distribution functions 
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between iodide-ethylammonium and iodide-water are plotted in Figure 4.1.3.1. Figure 

4.1.3.1a represents a radial distribution function between iodide and the NH3 group on the 

ethylammonium. In the 50-0-50 formulation (gold), there is a high probability that two 

ethylammonium molecules are ordering themselves around iodide. In mixtures with water, 

the two distinctive peaks and their relative positions indicate two [EA]+ molecules 

surrounding iodide. As the molar percent of water decreases, the two peaks also start to 

decrease, suggesting that this particular interaction is highly dependent on the 

concentration of water in the mixture because the ionic liquid concentrations are equal.  

Figure 4.1.3.1b are radial distribution functions between iodide and water. The 

probability functions have a similar trend to that of iodide and ethylammonium with two 

distinct peaks at similar distances, suggesting water is also ordering itself around iodide as 

two water molecules around one iodide via hydrogen bonding. Hydrogen bonding between 

water and iodide has been reported previously.108,187 Chandra and Karmakar reported a first 

principles study of iodide and water where water is found to diffuse within the solvation 
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shell of iodide.187 Furthermore, their results indicated water molecules hydrogen bonding 

with iodide within the first solvation shell and others remaining in the shell but not 

hydrogen bonding. Figure 3b is in agreement with the findings of Chandra and Karmakar187 

where water ordering has a similar trend.  

Both interactions displayed in Figure 4.1.3.1 are dependent on the concentration 

and possibly the self-diffusion of water, indicated by the increasing probabilities with 

decreasing water concentration. The iodide-water RDFs decrease in magnitude with 

increasing water concentration is most likely due to water molecules interacting with each 

other at higher concentrations and less with iodide. The same trend found between iodide-

[EA]+ RDFs could be a result of the water aggregates forming that were identified in the 

simulation box snapshots. The change in the homogeneity of the system and transport 

properties decreases the probability of the iodide-[EA]+ bonding, but the structure of the 

mechanism remains the same which is confirmed by the continued peak trends in the RDF. 

Furthermore, the iodide sites are likely competitive for both water and the [EA]+ cations 

and would explain the clustering observed in the simulation box snapshots. 

To explore the molecular interaction changes between the neat ionic liquids and in 

the various mixtures, RDFs were calculated between [BMIM]-[I] and [EA]-[NO3]. Figures 

4.1.3.2a and c are probability functions representing the cation-anion interactions in the 

neat ionic liquids (red lines) and in a 50/50 mixture of [BMIM][I] and [EA][NO3] (gold 

lines). The [BMIM][I] cation-anion probability functions in panel “a” have a distinct shape 

and one defined peak but decrease in probability when forming mixtures with 50 mol% 

[EA][NO3]. On the other hand, the ethylammonium nitrate cation-anion interaction shows 

a higher probability when in neat IL compared to in mixture, with a more distinctive and 
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taller peak at a closer distance. The function for the 50/50 mixture also forms another peak, 

suggesting another nitrate anion is ~ 0.9 nm away from the center of the ethylammonium 

cation. The trends observed in panels “a” and “c” can be attributed to different molecular 

interactions occurring with the isolated ions. The decrease in probability of [BMIM]-[I] 

interaction from neat [BMIM][I] to 50/50 mixture is somewhat likely due to the interaction 

between ethylammonium and iodide as discussed earlier. This could segregate iodide ions 

from interacting with [BMIM] +. However, the increase in probability for the [EA]-[NO3] 

interaction demonstrated a shift where the ions are closer together possibly due to the 

change in density of the mixtures and an inherent change in the fundamental interactions 

between the ions where the [EA]+ cation is now interacting with iodide. In neat [EA][NO3] 

Figure 4.1.3.2: Radial distribution functions between the ions of the ionic liquids. (a) compares 

RDFs between neat [BMIM][I] and a 50/50 mixture of the ILs of the imidazolium ring and iodide. 

(b) compares RDFs between the imidazolium ring and iodide in formulations containing water. (c) 

compares RDFs of neat [EA][NO3] and a 50/50 mixture of ILs of the [NH3] cation and [NO3]- anion 

(d) compared RDFs between the [NH3] cation and [NO3]- anion in formulations containing water 
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the ethylammonium cations have three oxygen sites on the nitrate to interact with, however 

in this mixure that may not be the case. The shift of interaction sites could also contribute 

to the change in the probability function. In panels “b” and “d”, water is introduced to the 

50/50 IL mixture and the RDFs maintain the same overall shape and distance. For both 

neat IL cation-anion interactions, the RDFs decrease in probability with the increase of 

water concentration. Considering that the previous RDFs showed hydrogen bonding 

between iodide-water and iodide-[EA]+, the trends in Figure 4b are to be expected since 

iodide is interacting with other molecules besides [BMIM]+. The trends in Figure 4d show 

slight variation and decrease with respect to water concentration, however the interaction 

remains consistent within each mixture formulation suggesting that water concentration 

has little effect on the interaction, but the concentration of neat IL may have more 

influence.  

The last interactions studied are between the [BMIM]+ cation and [NO3]
- anion.  

The snapshots in Figure 4.1.2.1 show possible interaction between the ions, hence RDFs 

between the imidazolium ring and nitrate anion were calculated and plotted in Figure 

4.1.3.3. Each of the formulations, including the 50/50 ionic liquid mixture, show an 

interaction between the [BMIM]+ ring and the nitrate anion at ~ 0.4 nm. The probability 

grows with increasing concentration of water in the formulations; however, there is a 

significant increase in the formulation containing 80 mol% water which suggests a change 

in the overall system at high water concentrations. The interaction also supports the RDFs 

from Figure 4.1.3.3c and 4.1.3.3d where the [EA]-[NO3] probability function shifts in 

formulations with [BMIM][I] and water. The [BMIM]-[NO3] interaction inhibits [EA]+ 
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from hydrogen bonding with the three possible oxygens on the nitrate, therefore changing 

the interaction when compared to neat [EA][NO3].  

 The presence of this interaction suggests an anion exchange between the ionic 

liquid occurs in mixtures with and without water. Anion exchanges can be difficult to prove 

experimentally188, therefore having the support of MD simulation results can further 

validate the occurrence. In this case, the anion exchange is likely a result of the attraction 

between iodide-water and iodide-ethylammonium, where iodide and ethylammonium are 

introduced to other competing interactions and [BMIM]+ and [NO3]
- are left to form weak 

interactions. It may also contribute to the homogeneity of the 50/50 IL formulation.  

4.1.4 Effects of Water Concentration and Molecular Interactions on Transport 

Figure 4.1.3.3: Radial distribution functions between the [BMIM]+ imidazolium ring 

and nitrate anion. 
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 Self-diffusion coefficients (SDCs) were calculated for each ion in all formulations 

and presented in Figure 4.1.4.1. To further explore the diffusion trends at higher water 

concentrations, SDCs of previous formulations and additional compositions with 70 and 

90 mol% were included. In the 50/50 IL mixture with no water, the self-diffusion 

coefficients of constituent ions are all close together, except for iodide. This fits the 

homogeneity observed in the simulation snapshots where the ILs seem to be well mixed 

and the anion exchange characterized in Figure 4.1.3.3. With the introduction of water at 

20 mol%, the iodide SDC is increased as it is most likely to form hydrogen bonding with 

water, which was further supported through the radial distribution functions. At 40 mol% 

water the iodide and water SDCs continue to increase while the [BMIM]+ and [NO3]
- SDCs 

do not vary much. In this formulation the [EA]+ cation SDC starts to break away from the 

lower SDCs and increase towards the middle of the set. At higher water concentrations the 

SDC increases but remains in between the two sets of ions. RDFs suggested that the [EA]+ 

Figure 4.1.4.1: Self-Diffusion Coefficients for [BMIM]+ (red), [I]- (gold), 

[EA]+(purple), [NO3]- (green), and water (blue) for each formulation studied 

from 0 to 80 mole percent water.  
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cation interacts with nitrate and iodide and is now reflected in the self-diffusion 

coefficients. 

 In almost all sets of SDCs the iodide anion and water molecules are diffusing 

together. This is supported through the radial distribution functions where the trends 

showed hydrogen bonding. Furthermore, it also supports the development of a 

water/iodide/ethylammonium network observed in the simulation snapshots suggesting 

that the ions are diffusing within their clusters formed with the increase of water 

concentration. 

4.1.5 Structure-Property Establishment through Differential Scanning Calorimetry 

Differential scanning calorimetry experiments were carried out to characterize the 

phase behavior of the mixtures in a temperature window of -140°C to 40°C in order to 

connect the simulations with experimental work. Specifically, the emphasis lies in 

explanation of first-order phase transitions observed in the mixtures which was previously 

hypothesized to attributed to formation of water aggregates or networks. Figure 4.1.5.1 

shows the DSC results and corresponding simulation boxes highlighting only the water 

molecules within the mixtures. Formulations containing 0, 40, 60, and 70 mol% water were 

chosen to adequately display a range of phase behavior. By comparing the simulation 

snapshots and DSC curves directly, we can assess how the structure of the water aggregates 

may affect occurrence of crystallization and melting behavior.  
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Figure 4.1.5.1: Differential Scanning Calorimetry (DSC) curves (left) of formulations containing 

0, 40, 60, and 70 mol% water with the corresponding simulation boxes (right) displaying only 

water molecules. 



53 

 

The left panel of Figure 4.1.5.1 are the DSC curves of 4 formulations with 

increasing concentrations of water. The 50/50 mixture of ionic liquids (gold curve) displays 

a typical thermal behavior of IL mixtures, where a clear glass transition was identified at 

around 80 °C without other events at higher temperatures. Several ILs are known as glass-

forming liquids and only exhibit glass transition due to bulky and asymmetric ions that 

inhibit crystallization.138,140,189 Even at 40 mol% water (green curve), only the glass 

transition has been observed but at a much lower temperature ~ -100 ˚C. Such an effect has 

been discussed in our previous work, attributed to solvation effect of water around iodide 

that effectively decrease the cohesive energy of the mixture. The corresponding simulation 

box displays well dispersed water molecules due to intermolecular interactions, supporting 

absence of first-order phase transitions from the thermogram. At 60 mol% water (purple 

curve), recrystallization and melting peaks started to emerge at temperatures higher than 

Tg despite weak. In the corresponding simulation box, small water aggregates have formed, 

resulting in heterogeneity of the mixture with phase transitions of several regimes 

identified at different temperatures.. Finally, at 70 mol% water, in addition to the glass 

transition, several heat flows were captured with a distinct recrystallization peak at -75 ˚C, 

followed by the melting peak at -38 ˚C. Compared to the 60 mol% simulation box, 

significant evolution in molecule configurations was observed even with just an additional 

10 mol% of water, as evident by the prominent water cluster. At this formulation, there 

were not enough iodide for water to interact with, and hence an abundance of water 

molecules started to form aggregates or networks that resulted in prominent phase 

transition over the broad temperature range. Furthermore, there seemed to be a progression 

of the water network formation, which was reflected in the DSC curves where more phase 
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transitions occurred with higher corresponding heat flow only when passing a certain 

composition threshold. This implies the high complexity of intermolecular interactions in 

the ternary mixtures and the significance of achieving a balanced molecular dynamic of all 

constituent species for electrolyte optimizations.  

The direct comparison of the DSC curves and simulation boxes demonstrates the 

structure-property relationship of IL-based mixtures. Specifically, in ternary systems of 

[EA][NO3]/water/[BMIM][I], the first-order phase transition behaviors were governed by 

configuration of water, which determine the operating temperature window of respective 

mixtures.  While we have established a connection and validated the hypothesis of 

correlation between water and 1st order phase transitions from our previous experimental 

study190, the MD simulations can be even more impactful for future electrolyte 

development. From MD simulations, we can easily identify the composition transition 

point where water aggregates start to be prominent enough to affect thermal properties of 

the mixtures. Such an insight can direct electrolyte optimization and even be extended to 

other physicochemical properties, for instance, SDCs for transport behaviors.   Moreover, 

the computational results support the experimental observations over a broad temperature 

range effectively despite simulations at room-temperature with simple SPC/E for water 

model. Further studies with more complex models can be built upon these findings with 

consideration of relevant environmental parameters such as temperature and pressure to 

draw stronger correlations and strengthen these types of MD simulations as predictive 

tools.  
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4.2 Glass Transition Temperature Predictions of Imidazolium-based Ionic Liquids 

4.2.1 Identification of Glass Transition Region 

 MD simulations have been employed to predict glass transition temperatures in the 

past, however, the effects of parameters such as simulation box size and annealing rate 

have not been systematically studied and have not been extended to include [BMIM][I]. 

The initial prediction method utilized in this study is the monitoring of potential energy per 

ion pair vs temperature. Theoretically, the slope of the potential energy plot vs temperature 

should be linear. In the case of a phase change, the linearity breaks indicating a change in 

energy and possible phase change. This method was chosen to allow for in depth analysis 

and to maintain precision in predictions. An OPLS-AA forcefield was chosen as parameters 

for imidazolium-based ionic liquids have been improved and are specific to this class of 

ionic liquids.   

Figure 4.2.1.1: ΔEPot/Ion Pair (kJ/mol) vs Temperature (K) plot from an annealing 

simulation of neat [BMIM][I] with linear fits of 50K segments. 
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A defining question we wanted to answer in this investigation was “what 

determines a break in linearity when monitoring the potential energy slope?”. In order to 

answer this question, potential energy vs time data from a simulated annealing of neat 

[BMIM][I] from 500K to 100K at an annealing rate of 20K/ns was plotted. Slopes and R2 

values were taken from parts of the graph to determine if there are significant changes 

between segments of the plot. Figure 4.2.1.1 depicts the annealing data with the R2 values 

and slopes from linear fittings are shown for 50K segments. R2 values for all segments 

show that each segment is linear, and the fitting is acceptable. From 500K to ~250K the 

slope changes are very gradual and small, however, there is a noticeable change between 

the orange segment and dark blue segment, highlighted with the red circle. At this point, 

the slope changes from 0.363 to 0.317, a more drastic change than the other segments. This 

Figure 4.2.2.1: ΔEPot/Ion Pair (kJ/mol) vs Temperature (K) plot from an annealing 

simulation of neat [BMIM][I] focused on 150K to 250K temperature range. Red linear 

fits are segments before and after the transition region, demonstrating a significant 

change in slope. Blue and pink dashed lines are the extrapolated fits from the red lines. 

Pink is from the low temperature fit while blue is from the higher temperature fit.  
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is most likely where the glass transition is occurring, but to more accurately predict the Tg, 

smaller linear segments need to be applied. 

4.2.2 Method for a Robust Glass Transition Temperature Prediction in [BMIM][I]  

  Figure 4.2.2.1 is a “zoomed in” version of the previous figure where a 100K 

portion, 150K to 250K, of the plot has been chosen to fit smaller linear sections. The green 

line is a 20K segments that is before the glass transition. The two red lines are 20K 

segments before and after the glass transition, and the blue and pink lines represent the 

“transition region”. The “transition region” is here defined as a 20K temperature window 

where the glass transition temperature lies. The prediction is done by extrapolating linear 

fits of the red segments and identifying where they intersect. Here, they intersect at 191K, 

therefore the Tg prediction of neat [BMIM][I] is 191K, or -82.15 °C. The Tg of [BMIM][I] 

provided through experimental techniques is -67.4 °C, which shows that the model predicts 

the Tg at a lower temperature than the experimental value. The over prediction is most 

likely die to the difference in cooling between the experimental technique and simulation. 

Simulated annealing is a controlled cooling, while experimentally it is difficult to achieve 

the same. Overall, the model does predict an accurate transition region of 180K-200K. 

4.2.3 Effects of Simulation Box Size and Cooling Rate on Glass Transition Temperature 

Predictions 

 

Table 4.2.3.1: Predicted glass transition temperatures for neat [BMIM][I] with varying box 

lengths and annealing rates compared to experimental Tg. 
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Simulations with varying box sizes and annealing rates were also carried out to 

evaluate the effects of simulation parameters. Again, using neat [BMIM][I], annealing 

simulations were carried out with a constant annealing rate of 20K/ns and in boxes with 

box lengths of 5nm and 6nm. Unfortunately, box lengths of 4nm and 7nm were not suitable 

for the simulations. Annealing simulations with rates of 30K/ns, 20K/ns and 10K/ns were 

done with constant box sizes of lengths of 5nm. The predicted Tgs from the simulations 

are reported in table 4.2.3.1. The Tgs were predicted with the same methodology 

demonstrated in figure 4.2.2.1 There is ~5K difference in the predictions when box lengths 

and annealing rates are changed between the two lowest annealing rates, indicating that the 

parameters may not contribute largely to the prediction of glass transition temperatures. 

The difference may also be due to slight differences in the designation of the glass 

transition regions. There is a large change in the prediction at the 30K/ns annealing rate. 

At this rate, the system may not be well equilibrated at the annealing points and therefore 

the prediction is not as accurate. While the simulations over-predict the glass transition 

temperatures, the results indicated that they do in fact predict accurate glass transition 

regions at lower annealing rates. For [BMIM][I] the predicted glass transition region is 

between 180K-200K. Moreover, validation of these methods gives way to investigate 

trends of transport properties and molecular interactions throughout the simulations.  

4.2.4 Investigation of Temperature Effects on Transport Properties and Molecular 

Interactions of Neat Ionic Liquid [BMIM][I] 

 Figure 4.2.4.1 are plots of self-diffusion coefficients (left) of [BMIM] [I] ions and 

radial distribution functions of the ions as a function of temperature. The self-diffusion 

coefficients (SDCs) show a stead decreasing trend from 500K to 100K. At a point, the 
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SDCs stop decreasing and reach a plateau most likely after the glass transition temperature 

as been reached. Tg predictions using SDCs have been done, however, our SDCs are 

averaged over a set time in the simulation, which can give variability in the Tg prediction.  

 The radial distribution functions between the cation and antion slowly increase with 

decreasing temperature. Considering the trend of the SDCs, this interaction is probably 

affected by the diffusion of the ions, hence an increase in probability when the SDCs are 

very low. The molecules diffusion is limited, making their interactions more probable. 

Notable, the second peak shifts slightly closer to the center of mass of the other ion. In this 

case the peak shift is most likely due to the change in density of the system at lower 

temperatures, however it seems to not change the interactions until very low temperatures.  

 

4.3 Computational Studies of the Stability and Reactivity of Atomic Layer Deposition 

Precursors 

4.3.1 Reaction Mechanism via Cluster Model 

Figure 4.2.4.1: Plotted self-diffusion coefficients (left) and radial distribution functions (right) for 

[BMIM]+ and [I]-  averaged over 20K segments from 500K to 100K.  
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To understand if possible ALD precursors are good candidates for deposition and 

to optimize existing precursors, reaction and activation energies were calculated through 

DFT. For quick and accurate results, precursors are modeled to react with a hydroxyl 

terminated SiO2 cluster. The SiO2 cluster represents a reaction on an isolated active site of 

a Si(1 0 0) surface without needing to model the reaction with high surface coverage. This 

practice allows for the investigation of reaction mechanisms without influence from 

surrounding atoms.191–193 Figure 4.3.1.1 is an example of the SiO2 cluster and SiH3(NMe2) 

precursor used in the calculations. The white box shows how a small part of the Si(1 0 0) 

surface is transformed into the cluster model. Here, the cluster containing Si4O7H4 is 

considered small, yet still large enough to use for the purpose of this study and is 

comparable to other investigations that implement small surface clusters.191,194,195 

 

The cluster model is utilized to calculate a reaction mechanism for the reaction 

between the cluster and the selected aminosilane precursors. Figure 4.3.1.2 is an example 

of the reaction mechanism between a H3Si(NH2) precursor and SiO2 hydroxyl terminated 

cluster where the isolated reactants, products, transition state, and pre and post van der 

Figure 4.3.1.1: Demonstration of how cluster models represent small sections of reactive surfaces 

(white box) and the cluster model used in this work with labeled atoms. 

Si1 

N1 
O1 

H1 
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waals complexes are shown. Initially, the isolated precursor has a N1-Si1 bond length of 

1.742Å, however in the pre reaction van der waals complex, complex II, the bond distance 

increases slightly to 1.778Å and the precursor is positioned for N1 to hydrogen bond with 

H1, while Si1 is in position almost on top of O1 at a distance of 3.839Å. At the transition 

state, N1 has bonded to H1 and is simultaneously bonded to Si1. The bond distance 

between Si1 and N1 increases to 1.911Å and the distance between Si1 and O1 decreases 

significantly to 2.367Å. Once the post reaction van der waals complex is reached on the 

pathway, the Si1-N1 bond has broken and Si1-O2 has formed, with a bond distance of 

1.691Å. In the isolated products that bond distance decreases slightly to 1.677Å.  

 

 

4.3.2 Reactivity of Mono and Bis Precursors 

To directly compare the reactivity of the mono and bis precursors, a reaction 

coordinate graph was generated in figure 4.3.2.1. Each energy state of the SiO2 cluster and 

selected precursor is denoted by a roman numeral that matches the states in figure 4.3.1.2. 

A major area of interest when screening ALD precursors is the activation energy barrier 

required for the reaction to carry out successfully. In figure 4.2.1.2 the activation energy 

(EA) is shown as the difference in energy between the pre-reaction van der waals complex 

Figure 4.3.1.2: Reaction mechanism between H3Si(NH2) and SiO2 cluster. Complexes included are the 

isolated reactants (I), pre reaction van der waals complex (II), transition state (III), post reaction van der 

waals complex (IV), and the isolated products (IV) 
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and transition state (complexes II & III). The blue line denotes the reaction coordinates of 

the H3SiNH2 precursor and the SiO2 cluster where the EA is 27.1 kcal/mol. This is a 

significant reaction barrier to overcome, especially without a catalyst and under normal 

ALD conditions. Adding an alkyl chain to the amine group of the precursor has been proven 

to lower the reaction barrier on an Si (1 0 0) surface to an extent.137,196,197 The same 

phenomenon is observed in our results when comparing the activation energy barriers 

between mono-aminosilane and bis-aminosilane ligands. Starting with substituting the 

hydrogens on the amine to methyl groups (DMAS), the activation energy barrier is lowered 

by ~7 kcal/mol, shown in orange. Substituting two of the hydrogens on the Si for amines, 

shown as H2Si(NH2)2 in a green line, significantly lowers the barrier to ~14 kcal/mol and 

is further lowered by the use of H2Si(NMe2)2 (BDMAS), shown in the yellow line.  

Another area of focus is the desorption between complexes IV and V where the 

post-reaction van der waals complex separates into an isolated product. This is a crucial 

step in ALD as the byproduct will have to be removed from the system.  

Figure 4.3.2.1: Reaction coordinates, activation energies (Ea) and desorption energies (EDE) of 

reactions between the SiO2 cluster and selected aminosilane precursors 
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Similar to the trend of the activation energies, the substitution of hydrogens on the 

silane of the precursor to more amines or methyl groups lowers the desorption reaction 

barrier. However, this is only to an extent as the lowest post-reaction energy barrier is that 

with the H2Si(NH2)2 precursor with a value of 5.5 kcal/mol and is raised slightly to 7.0 

kcal/mol when H2Si(NMe2)2 is used.  

The viability of related aminosilane precursors with varying ligands was further 

investigated through reaction energies and activation energies with respect to reactant 

energies. These calculations reflect three states of the reaction: the isolated reactants, 

transition state, and isolated products. The reported activation energies, shown in table 

4.3.2.1 reflect the 3 chosen states and do not include adsorption and desorption energies in 

order to quickly and easily screen the effects of amine ligands on the silane precursor 

reactions with the SiO2 cluster. 

  The H3Si(NX2)2 group of precursors, highlighted in the green section of the table 

where X=H,Me,Et,iPr, show a decrease in reaction energy and reaction barriers with the 

SiO2 cluster. With the substitution of a hydrogen on the silane to an amine group, the 

Table 4.3.2.1: Reaction and activation energies, with respect to 

isolated reactants, of reactions between the SiO2 cluster and 

aminosilane precursor families. 
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SiH2(NX2)2 group highlighted in blue where X=Me,Et,iPr, the reaction energy continues 

to decrease steadily, although the reaction energy barriers seem to have reached a plateau 

suggesting that the addition of an amine and increasing the alkyl chain on the amines may 

decrease reaction energies but not have a large effect on the reaction energy barrier. Now 

substituting a hydrogen in for an alkyl chain on the amino groups, the H2Si(NH2)2 group 

in orange, has a small effect on reaction and activation barrier energies compared to the 

Figure 4.3.2.2: Population analysis on mono and bis aminosilane isolated precursors. 

Top panel is partial charges of the silicon atom while the bottom panel are partial 

charges of the nitrogen atom. All charges shown are Mulliken charges. 
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blue and green groups. The reaction energies drop ~4 kcal/mol and the activation energies 

remain constant around 5 kcal/mol.  

To investigate the drop in activation energy with respect to the mono and bis 

substituted precursors, a population analysis was performed on the isolated precursors and 

the results are plotted in figure 4.3.2.2. All partial charges are Mulliken charges, however 

Hirshfield charges were also calculated and displayed the same trends. The top panel shows 

the partial charges on the silicon atoms for selected precursors. The mono aminosilane 

precursors (yellow markers) show a consistent trend with the increased alkyl chain length 

of the ligand. When a second ligand is added to create the bis aminosilane precursors, the 

silicon partial charge (orange markers) increases and become more positive when 

compared to the monoaminosilanes. The increase makes the silicons more electrophilic and 

thus stabilizing the transition state and lowering the activation energy barrier further. The 

partial charges of the nitrogen atoms (bottom panel) do not show the same trend. In fact, 

there is little variation between the partial charges of the nitrogen atom of the mono and 

bis aminosilanes. Thus, the stabilization of the transition state is most likely due to the 

electrophilic nature of silicon in the bis substituted aminosilanes. 

It is important to note that although the bis-aminosilane precursors significantly 

lower the reaction energy barrier, the product of the reaction will have a mono-aminosilane 

bonded to the reactive surface instead of a silane. This requires a second amine elimination 

that can be difficult to carry out or may need intervention of other methods.196 

4.3.3 DFT calculations determining Precursor Thermal Stability for Scale Up Engineering 

 

Precursor thermal stability is considered during the ALD process to ensure that the 

precursor will not decompose in the ALD environment leading to parasitic CVD. 
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Moreover, the parameters derived from the thermal stability calculations are used for scale-

up simulations conducted in the Aspen program. 

Thermal properties were investigated through the computation of the heat of 

formation (ΔHf) and Gibbs free energy of formation (ΔGf). Reported are the ΔHf  and 

ΔGf values of the selected precursors calculated from 2 computational program’s 

thermochemical recipes: G3MP2 (Gaussian09) and T1 (Spartan’18). The Gaussian09 

G3MP2 thermochemical recipe utilizes multiple calculations to get extremely accurate 

energies that are required for the thermodynamic property calculations but it may not 

feasible for larger molecules due to its extreme need for computational resources (disk 

space, memory and CPU time). The calculation steps of the G3MP2 thermochemical recipe 

are as follows: 1. HF/6-31G(d) geometry optimization, 2. HF/6-31G(d) frequency 

calculation, 3. MP2/6-31G(d) geometry optimization, 4. QCISD(T)/6-31G(d) energy 

calculation, and 5. MP2/6-311+G(3df,2p) energy calculation. After calculating the total 

Figure 4.3.3.1: Parity plot of ΔHf  (kcal/mol) and ΔGf (kcal/mol) values comparing 

G3MP2 and T1 thermochemical recipes 
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energy, energies for the gas phase atoms in the molecule are also evaluated and the 

atomization enthalpies and Gibbs free energies are calculated. Finally, the enthalpy of 

formation and Gibbs free energy of formation is evaluated by completing the Hess cycle 

by including the experimentally available atomization enthalpies and entropies of the 

constituent elements. The T1 recipe follows a similar process to calculate the enthalpy of 

formation; however, it is significantly less computationally intensive and has proven to be 

comparable in terms of accuracy with G3MP2 ΔHf values.147 The T1 thermochemical 

recipe is a shorter calculation series consisting of 1. HF/6-31G* geometry optimization, 2. 

RI-MP2/6-311+G(2d,p)[6-311G*] energy, and 3. Empirical correction.  The T1 recipe has 

been empirically parametrized so it is important to benchmark it for specific classes of 

compounds, such as aminosilanes as our compounds of interest. In order to also obtain the 

Gibbs free energies of formation at this level, thermal contributions were calculated using 

density functional theory (specifically, BLYP/DNP as implemented in Dmol3 in Materials 

Studio). 

 Figure 4.3.3.1 is a parity plot of the ΔHf and ΔGf values in kcal/mol from both the 

G3MP2 and T1 thermochemical recipes. The values are in good agreement with the linear 

y=x line, proving that the T1 method is reliable to predict the thermodynamic properties 

for this set of aminosilane precursors. When screening ALD precursor candidates, the 

thermodynamic values are used in scale up calculations to determine viability in the ALD 

environment. From a quantum chemistry perspective, we can make general comments on 

the values. Positive ΔGf values indicate a non-spontaneous reaction to form the molecules 

from its constituent elements. There is one ΔGf point that is negative, indicating that the 

precursor may prove to be difficult in handling for testing experimentally, as it will not be 
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stable for transportation. Furthermore, the ΔHf values demonstrate exothermic behavior 

with the exception of one point that is close to zero and, again, indicates that particular 

precursor may be difficult to work with. Therefore, the stability studies aid to ensure proper 

safety measures are taken during experiments. 

Figure 4.3.4.1: Initial structure of SiO2 surface model with mono aminosilane 

precursors positioned similarly to the pre-reaction Van Der Waals complexes. 

Displayed are two side views and one top view. 

High Surface Coverage Model 
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4.3.4 Investigation of ALD surface reactivity with selected precursors through semi-

empirical calculations  

 

While cluster models and slab models give incredible insight to the reactivity of 

ALD precursors and are crucial to the optimization and development of such precursors, 

there is an opportunity to expand the surface coverage of the models through semi-

empirical tight binding calculations. Semi-empirical tight binding methods approximate 

the Hartree-Fock integrals implemented in ab-initio and DFT calculations and as a result 

the calculation time is significantly decreased, and more atoms can be added to a system 

without sacrificing accuracy in the ideal implementation.  

Here, we present an initial test to utilize the XTB-GNF2 tight binding program as 

a means for ALD surface expansion calculations. The model, shown in figure 4.3.4.1, is a 

1000 atom SiO2 hydroxyl terminated surface with 10 H3Si(NMe2) (DMAS) precursors 

dispersed above the surface. The top panel of figure 4.3.4.1 shows how the precursors are 

positioned such that they are most likely to react. In order to give the highest chance of 

capturing a reactive trajectory, the precursors were placed in a van der Waals pre-reaction 

complex type position. Below the precursors are the O-H active sites that will be the focus 

for the reactive trajectories. Below the active sites is a continuation of the film to represent 

the “bulk” phase. The size of this model exceeds that of larger slabs typically employed in 

ALD surface calculations, moreover the inclusion of multiple precursors and active sites 

gives insight into the number of reactive trajectories in a simulation and possibly growth 

per cycle of the film while undergoing the ALD cycles. The results from this model capture 

the 1st cycle in the ALD process, which is the formation of Si-H species on the surface of 

the film after amine elimination.  
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 As the next step in the testing process, a geometry optimization was carried out on 

the initial structure to see if the optimization will converge and what the program will 

dictate is a minima on the potential energy surface (PES). To maintain the conformality of 

the film, all oxygens were constrained, and the temperature was set to 300K. Figure 4.3.4.2 

displays the final optimized structure with highlighted active surface sites and precursors. 

There are multiple complexes identified within the structure including healthy precursor-

surface adsorption and unexpected Si-O bonding creating a penta-coordinated silicon. To 

further investigate the different structures, the complexes were isolated and displayed in 

figure 4.3.4.3.   

In figure 4.3.4.3 there are three highlighted structures from the geometry 

optimization results. Panel “a” shows a likely adsorption between the precursor and surface 

where the nitrogen of the precursor is hydrogen bonded to a hydrogen on an active site. 

This is further supported through the Si-N bond length of ~1.8 Å and N-H bond length of 

~1.6 Å. The structure in panel “a” is probable as a minimum on the PES. However, the 

Figure 4.3.4.2: Structure of model after geometry optimization in xTB-GFN2 at an electronic 

temperature of 300K. Within structure are multiple precursor-surface complexes identified to be 

adsorbed to the surface or bonded to the surface. 
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structures in panels “b” and “c” are less likely to occur on the PES due to the coordination 

structure around silicon. In panel “b” the amine has been protonated with a hydrogen from 

the surface and the silicon from the same precursor has bonded with the oxygen. The Si-O 

bond length is ~1.8 Å demonstrating a clear bond between the two atoms. The Si-N bond 

length is ~1.9 Å which is strained compared to the Si-N bond length of ~1.7 Å of the isolated 

precursor. The structure in panel “c” shows a similar trend to that in panel “b” with the 

exception that the oxygen active site is still protonated and the Si-O bond length is 

increased. To validate the existence of the structures in panels “b” and “c” a minima on the 

PES, DFT calculations were performed using the BLYP functional and DNP basis set. The 

structures were taken directly from the xTB-GFN2 optimized structures and scaled down 

to only include the precursor and small cluster for the active site. The DFT geometry 

optimizations displayed dissociation of the amine from the silicon and therefore the 

structures from the xTB-GFN2 program are likely not real minima. This could mean that 

Figure 4.3.4.3: Isolated structures with related bond lengths (pink) from geometry optimization result. 

Panel “a” displays an adsorbed DMAS precursor to the SiO2 surface, panel “b” shows a penta-

coordinated silicon bonded to the surface oxygen with a protonated amine group, and panel “c” shows 

another penta-coordinated silicon bonded to an O-H surface site with a protonated amine group. 
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the version of the program is not correctly parameterized for the system that we are testing. 

Nonetheless, further testing of the program was done through DFT-MD simulations.  

DFT-MD simulations will ultimately determine the properties of interest such as 

the precursor-surface interactions at high surface coverage. The final optimized geometry 

from figure 4.3.4.3 was used as the initial structure for the MD-DFT simulation. It was 

carried out at 600K for 5 ps. Typically, 10 ps or higher is more adequate time for DFT-MD 

simulation, however, the program took a considerable amount of time to run the DFT-MD. 

The final structure from the DFT-MD run is displayed in figure 4.3.4.4 where the various 

species are labeled. Overall, there were four reactive trajectories that resulted in the 

creation of the Si-H fragments at the SiO2 surface which is the desired product of the first 

half reaction in the ALD process of interest. In other words, 40% of the precursors reacted 

favorably. The other 60% either stayed physisorbed at the film surface or repelled from it 

Figure 4.3.4.4: Result from 5 ps MD-DFT simulation in xTB-GFN2 using the optimized structure 

from Figure 4.3.1.3. Final structure indicates formation of Si-H species, amine by-produce and 

unreacted precursors.  
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and remained unreacted. Also, the amine by-products tended to move away from the 

surface after reaction. These results from the DFT-MD simulation are encouraging for 

implementation of the program and give realistic situations where some precursors react 

with the precursors and others do not.  

The simplicity and performance of xTB-GFN2 initially attracted us to the 

implementation for further investigation of precursor-surface interactions via a high 

surface coverage model. The initial testing of the model including geometry optimizations 

and DFT-MD simulations reveal high potential for the use of xTB-GFN2 in an industry 

setting, however more testing needs to be done. The geometry optimizations displayed 

artifacts that may not realistically exist as a minima on the PES. The DFT-MD simulations 

displayed encouraging results but are computationally expensive. With more testing of the 

xTB versions and some improvement in the parametrization by the developers, it may be 

enough for industrial implementation. More testing will be required to fully adopt the 

method as a screening tool for ALD precursors. 
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CHAPTER 

5. SUMMARY 

In this dissertation, we have reported the results from investigations of functional 

materials through computational methods focused on atomistic and quantum calculations. 

The studies represent the capabilities and potential of emerging computational programs 

and methods to continue to contribute to the field of functional material development with 

respect to ionic liquid electrolytes and atomic layer deposition precursors.  

In Chapter 4.1 we explored the properties of a [BMIM][I]/water/[EA]NO3] system 

with increasing water concentration through molecular dynamics simulations. The 

experimental and simulation densities are in good agreement and validate the chosen 

OPLS-AA forcefield, which allows for an in-depth investigation of the systems. Simulation 

box snapshots show a homogeneous mixture in a 50/50 IL mixture, however, as the 

concentration of water is increased the snapshots show the development of heterogeneous 

mixtures where water starts to dominate. Radial distribution functions between iodide and 

water, and iodide and ethylammonium demonstrate hydrogen bonding in both interactions. 

Furthermore, the radial distribution functions between the IL constituents in their neat state 

and in mixture show consistent trends, except for high concentrations of water where the 

molecular interactions start to shift. The radial distribution functions between the [BMIM]+ 

cation and [NO3]
- anion display evidence of an anion exchange between the ionic liquids 

that is evident in the 50/50 IL mixture and increases in probability as the concentration of 

water is increased within the formulations. Self-diffusion coefficients display a shift in the 

transport of the ions that are consistent with the simulation box snapshots and radial 

distribution functions, therefore further proving a change in molecular interaction in 
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formulations containing > 60 mole percent water. Differential scanning calorimetry (DSC) 

experiments supplemented these results by showing the thermal behaviors of the mixtures 

above the glass transition where thermal crystallization and melting phase changes can 

occur. Selected simulation boxes highlighting the water molecules in the mixtures were 

compared to the DSC results and displayed a development of a water network that matched 

the DSC trends of increased thermal behaviors with increasing concentrations of water. 

While the electrolytes are commonly studied at room temperature, in Chapter 4.2 

we presented a MD annealing simulation method to predict the glass transition temperature 

of neat [BMIM][I]. The annealing simulations were carried out over a temperature range 

of 500K to 100K in order to properly capture the glass transition. The average potential 

energy of the ion pairs was plotted vs temperature to identify a discontinuous point. 

Segments of the plot were linearly fitted to reveal a glass transition region where the slope 

of the fittings suddenly changes in trend. Extrapolations of the linear fits before and after 

the glass transition region helped to predict a glass transition temperature of -87.5 ͦ C. 

Simulation parameters box length and annealing rate were also tested and revealed no 

significant changes between the parameters in the glass transition prediction results. We 

determined that the simulations were accurate in predicting a glass transition window and 

therefore calculated self-diffusion coefficients and radial distribution functions between 

the [BMIM][I] ions as a function of temperature. Self-diffusion coefficients show a 

decreasing trend as the temperature decreases and the radial distribution functions reveal a 

dependency on the temperature. The results of this investigation are encouraging and will 

be a starting point for glass transition temperature predictions in [BMIM][I]/water 

mixtures, further discussed in Chapter 6.1.  
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Finally, density function theory (DFT) methods were used to screen aminosilane 

ALD precursors in Chapter 4.3. The 10 precursors consisting of mono and bis amino 

ligands, display potential to be used in the creation of SiO2 thin films. Using a small cluster 

model, we presented a reaction pathway and coordinates for selected precursor-cluster 

reactions. The results demonstrate a favorability for the bis-aminosilanes, however, more 

studies need to be carried out to confirm their viability. Reaction energies and activation 

energies between the cluster and precursors reveal a trend in decreasing energies with the 

addition of alkyl chains to the mono-aminosilanes and little change between the bis-

aminosilanes. To explore the thermal stability for scale up engineering, enthalpy of 

formation and Gibbs free energy of formation were calculated using two thermochemical 

recipes, T1 and G3MP2. The results between the methods are in good agreement and 

suggest the T1 method can be used for the aminosilane precursors to save computation 

time and resources. Lastly, to expand the size of the simulations, a SiO2 surface and mono-

methylamino silane precursors system were used to test a semi-empirical tight binding 

XTB-GFN2 program. The geometry, containing 1,000 atoms, was optimized using the 

XTB-GFN2 program and revealed different structures than the cluster models. The 

structures were scaled down and subjected to DFT calculations to test the validity of the 

complexes, but unfortunately they most likely do not exist as a minima on the PES. The 

MD-DFT simulation was encouraging as it showed reactive trajectories for the creation of 

Si-H species on the surface, however, it was computationally expensive. Overall, the XTB-

GFN2 program has much potential for similar systems but may not be ready for use in 

industry.  
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CHAPTER 

6.     PROPOSED WORK 

6.1 Expansion of Ionic Liquid Glass Transition Temperature Predictions to Ionic Liquid 

Mixtures 

Following the encouraging results of the glass transition predictions of neat 

imidazolium-based ionic liquids, the predictions can now be expanded to IL mixtures. IL 

mixtures have been extensively studied through molecular dynamics, however, to our 

knowledge their glass transition temperatures have not been predicted through MD 

approaches. Having the toolset to predict Tg of ionic liquid mixtures would allow our group 

to test IL mixtures without using expensive ILs extensively in Tg measurements.  

 

To fully investigate the effects of solvents on the glass transition temperature of 

IL/solvent mixtures, systematic studies are carried out.189,190,198 Figure 6.1.1 reports the 

Figure 6.1.1: Experimentally determined Tgs of [BMIM][I]/Water/LiI 

mixtures and through DSC curves 
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glass transition temperatures and DSC curves of [BMIM][I]/Water/LiI mixtures with 

increasing water concentration.190 The purpose of the electrolyte mixtures is to be used in 

devices that require wide temperature windows of operation. The royal blue, red, and green 

DSC curves show smooth thermal behavior below 0°C and would be prime candidates for 

such devices. However, with increasing water concentration, the curves display changes in 

thermal behavior as shown in the black and dark blue curves. Again there is a shift in 

behavior at higher water concentrations, likely due to a development of water aggregates, 

however, MD simulations can be carried out to better understand the phenomena.   

To further the MD glass transition temperature predictions, we will expand the 

systems from neat ILs to binary IL mixtures of [BMIM][I]/water. At high water 

concentrations, it has been experimentally determined that the mixtures tend to show 

crystallization before the glass transition temperature. In order to fully capture the phase 

behavior and determine the capabilities of the MD Tg prediction method, systematic 

studies of the binary IL/water mixtures will be carried out through simulation of multiple 

formulations. Water will be added to the neat ILs in increments of 20 mole percent. If upon 

further analysis, the results show inconsistencies, then the increments can be decreased to 

10 mole percent. 
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If the results of the IL/water mixtures show good Tg predictions, then the studies 

will be expanded to include organic solvents such as gamma-butylrolactone or 

butyronitrile, which have shown encouraging experimental results in lowering the glass 

transition temperature of [BMIM][I] based electrolyte mixtures in our lab. 

 The simulation parameters tested in this study, annealing rate and box length, have 

shown that they may be negligible when it comes to neat IL predictions, however, 

experimental results show that cooling rate can have an effect on the Tg Prediction of IL 

mixtures. Figure 6.1.1199 shows the experimentally determined glass transition 

temperatures of a [DEME][BF4]/water mixture with varying cooling rates. The cooling 

rates have a significant influence on the Tg, and as a result, the annealing rate dependence 

may need to be revisited in the annealing simulations of the IL/water mixtures.  

 Once the annealing simulation parameters have been revisited for mixtures, the 

simulations will be carried out for multiple [BMIM][I]/water formulations and possibly 

include binary mixtures with organic solvents. While we are investigating the thermal 

behavior of the mixtures, it would be helpful to also predict the viscosities over the same 

Figure 6.1.2: Tg predictions of IL/water mixture with 

various cooling rates 
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temperature ranges, ie. 500K to 100K. To predict the viscosities, the Einstein-Stoked 

relation will be used to calculate the viscosities based on the self-diffusion coefficients. 

The Einstein-Stokes relation states the following:  

𝐷 =
𝑘𝐵𝑇

6𝜋𝜂𝑅
 

Where kB is the Boltzmann constant, T is the temperature, η is the viscosity, and R is the 

radius of the molecule. The annealing simulations provide almost everything needed to 

carry out the calculation except the molecular radius. To acquire the radius, DFT 

calculations will be done.  

 

6.2 Expansion of semi-empirical methods to imidazolium-based ionic liquids and their 

mixtures 

Figure 6.2.1: Interaction energies of a 

ethylammonium nitrate cluster studied through 

multiple computational approaches 
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To connect the ionic liquids focused projects with the atomic layer deposition 

project, we propose utilizing the same tight binding code, GFN2-XTB to simulate the 

imidazolium ionic liquids and mixtures. This offers another scale of simulations to examine 

between ab-initio, DFT, and MD results. There have been few reports on the use of XTB-

GFN on ionic liquids, however, one study from Perlt et. al. gives encouraging results that 

the code works well for ILs. Figure 6.2.1200 shows the interaction energy of an 

ethylammonium cluster model through various computational method approaches. GFN-

xTB is represented by the solid green line and proves comparable to the reference in red 

xs.  

 Implementation of the XTB-GFN2 code will start with geometry optimizations of 

individual molecules and ion pairs. From there, short simulations of 30ps can be carried 

out where the results will be compared against reported ab-initio and DFT results. Once 

the method is validated, more ionic liquid pairs can be added to the systems and other 

solvent molecular such as water or organic solvents. The addition of solvents offers an in-

depth investigation of the mixtures where the results can be compared to the MD 

simulations and give further insight.  
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