
A Network-Based Intrusion Prevention Approach for Cloud Systems Using
XGBoost and LSTM Models

by

Siddharth Gianchandani

A Thesis Presented in Partial Fulfillment
of the Requirement for the Degree

Master of Science

Approved November 2023 by the
Graduate Supervisory Committee:

Stephen Yau, Chair
Ming Zhao

Kookjin Lee

ARIZONA STATE UNIVERSITY

December 2023

ABSTRACT

The advancement of cloud technology has impacted society positively in a number of

ways, but it has also led to an increase in threats that target private information avail-

able on cloud systems. Intrusion prevention systems play a crucial role in protecting

cloud systems from such threats. In this thesis, an intrusion prevention approach to

detect and prevent such threats in real-time is proposed. This approach is designed

for network-based intrusion prevention systems and leverages the power of supervised

machine learning with Extreme Gradient Boosting (XGBoost) and Long Short-Term

Memory (LSTM) algorithms, to analyze the flow of each packet that is sent to a

cloud system through the network. The innovations of this thesis include developing

a custom LSTM architecture, using this architecture to train a LSTM model to iden-

tify attacks and using TCP reset functionality to prevent attacks for cloud systems.

The aim of this thesis is to provide a framework for an Intrusion Prevention System.

Based on simulations and experimental results with the NF-UQ-NIDS-v2 dataset,

the proposed system is accurate, fast, scalable and has a low rate of false positives,

making it suitable for real world applications.

i

Dedication

This thesis is dedicated to my mother, who has been instrumental in supporting me

throughout my education.

ii

ACKNOWLEDGMENTS

I would like to acknowledge the very valuable guidance provided by my commit-

tee chair, Professor Stephen S. Yau, whose advice has helped me during my thesis

journey at Arizona State University. Professor Yau’s vision, wealth of life and aca-

demic experience have enhanced my research capabilities along with my academic and

personal growths. Furthermore, I extend my gratitude to my committee members,

Professors Ming Zhao and Kookjin Lee, for their time and valuable guidance, which

were essential in the successful completion of this thesis.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . v

LIST OF FIGURES . vi

1 INTRODUCTION . 1

2 BACKGROUND . 4

3 CURRENT STATE-OF-THE-ART . 10

4 PROPOSED APPROACH . 18

5 INNOVATION . 35

6 ILLUSTRATIVE EXAMPLE. 38

7 SIMULATION . 40

8 EVALUATION . 43

9 LIMITATIONS . 55

10 CONCLUSIONS AND FUTURE WORK . 56

REFERENCES . 58

iv

LIST OF TABLES

Table Page

2.1 Breakdown of Records in NF-UQ-NIDS-v2 Dataset 7

2.2 Original Input Features of NF-UQ-NIDS-v2 Dataset 9

5.1 LSTM with Different Layers . 36

8.1 Training and Testing Information of XGBoost and LSTM Models 47

8.2 Comparison of Models . 50

8.3 Results for Splitting Training and Testing Data . 51

8.4 Results for Feature Selection . 51

8.5 Results for Oversampling . 52

8.6 XGBoost with Different Learning Rates . 52

8.7 XGBoost with Different Maximum Bins . 52

8.8 XGBoost with Different Maximum Depth . 52

8.9 LSTM with Different Learning Rates . 53

8.10 LSTM with Different Hidden Units . 53

v

LIST OF FIGURES

Figure Page

4.1 Initial Configuration for Intrusion Prevention System 19

4.2 Features Normalized . 21

4.3 Feature Importance Scores of All 41 Attributes . 24

4.4 Feature Importance Scores of Top 22 Attributes . 25

4.5 The Proposed Overall Approach . 27

4.6 Architecture of LSTM model . 29

7.1 Report by XGBoost model . 41

7.2 Report by LSTM model . 42

7.3 Screenshot Demonstrating Use of TCP Reset Request 42

8.1 Structure of Confusion Matrix . 43

8.2 Screenshot of Results of XGBoost Model . 46

8.3 Screenshot of Single Analysis by XGBoost Model . 46

8.4 Screenshot of Results of LSTM Model . 48

8.5 Screenshot of Single Analysis by LSTM Model . 48

8.6 Observation in Training Models . 54

vi

Chapter 1

INTRODUCTION

Over the last few decades, an increased use of cloud computing for communica-

tions related to all aspects of life has been observed. These communications include

private communications like sending essential bank details for online money trans-

fers. Thus, there is a need to ensure that such communications remain private and

protected. Unfortunately, the advancements in computer systems and communica-

tions have led to an increase in the number of threats to the privacy and security of

our society. Attackers utilize the increased computation power of computers towards

performing cyberattacks on cloud systems to get confidential data and use it for their

own financial gain. This has led to an ever-increasing need for measures that need to

be taken to protect the cloud systems from these intrusions and ensure that privacy

of confidential data is maintained.

Currently, many novel attacks are being generated and this fact poses a challenge

for network security to accurately detect intrusions [1]. Several methods have been

developed to safeguard cloud systems like attack prediction, intrusion detection sys-

tems (IDS) and intrusion prevention systems (IPS). Approaches for attack prediction

are time-based and generate probabilistic predictions of system-wide and sub-system

security breaches with the respective time windows, in which breaches are most likely

to occur [2]. Network-based IPS and IDS intercept packets sent to cloud systems and

filter out suspicious packets. These systems are used as part of a layered approach to

secure cloud systems against cyberattacks like hacking attempts, malware and data

breaches. They work in conjunction with firewall and antivirus software to ensure

the security of cloud systems. The difference between an IPS and an IDS is that

1

an IPS can work without human interaction. Intrusion prevention systems are de-

signed to automatically prevent malicious attempts by attackers, making them more

powerful than intrusion detection systems, which notify trained personnel when they

detect these malicious attempts. Preventing a malicious attempt refers to detecting,

blocking, or mitigating potentially harmful activities like cyberattacks, before they

can cause damage or compromise the security of a cloud system. Due to the added

power of IPS, they have an added responsibility of ensuring that a non-attacker is

not classified as an attacker. Unfortunately, commercial intrusion detection systems

and intrusion prevention systems typically suffer from low detection rates and high

false positives which require substantial optimization and network specific fine tuning

[3]. Most of the current intrusion detection systems and intrusion prevention systems

rely on signature detection methods. Such methods are effective when dealing with

known attacks, but it does not allow them to adapt to new kinds of attacks. It is

also a challenge to expand such methods to cover more attacks. Though there have

been efforts to introduce intelligence to these systems through machine learning, both

supervised and unsupervised, there has been little real-world adaptation of these so-

lutions due to their own inherent challenges and bottlenecks [3]. The intrinsic issues

with supervised models include lack of training data for new attacks, and need of

resources to train a good model. The biggest advantage associated with supervised

models is that they are universal, and one model can be used to safeguard multiple

cloud systems. Supervised models are scalable, effective for real-time detection of

known attacks and applicable for new cloud systems and cloud systems expecting

traffic change. The inherent issue of using unsupervised models is that they are not

universal. An unsupervised model trained for one cloud system has a high chance of

being ineffective for another cloud system without appropriate training for the new

cloud system. Another disadvantage of using unsupervised learning can be observed

2

when the network traffic experiences a substantial change. One such example is when

Animoto integrated with Facebook in 2008, it attracted 750,000 new users in 3 days

[4]. The normal traffic for Animoto before this consisted of a few hundred users a

day. If this company was using an unsupervised model for safeguarding their cloud

systems, they would have either had many false positives or they would have had to

use some other way to safeguard their cloud systems for a certain period of time that

allowed their unsupervised model to get used to this change.

The aim of this thesis is to overcome issues associated with using traditional

supervised machine learning models in intrusion prevention systems. The proposed

intrusion prevention approach uses a hybrid supervised machine learning technique

utilizing a combination of XGBoost and LSTM models. TCP reset is an abrupt

closure of the session [5]. This hybrid technique, when used along with TCP reset

functionality of TCP protocol in an intrusion prevention system, shows significant

promise to address the limitations of traditional methods. The innovations of this

thesis include developing a custom LSTM architecture, using this architecture to

train a LSTM model to identify attacks and using TCP reset functionality to prevent

attacks for cloud systems. This method is applicable to new cloud systems or cloud

systems that anticipate network traffic change in addition to normal cloud systems

due to use of supervised models. This thesis is organized into 10 chapters. The first

chapter explains the motivation of this study. Background details of technologies

used, recent research, approach, innovation and illustrative example are discussed in

the second, third, fourth, fifth and sixth chapters respectively. The seventh chapter

gives details of simulation. The eighth chapter will show evaluation of the models.

The ninth chapter will discuss the limitations of this approach. The tenth chapter

will discuss the conclusion and future work.

3

Chapter 2

BACKGROUND

2.1 Machine Learning Models

XGBoost is an efficient and powerful algorithm which supports easy learning. The

XGBoost model runs more than ten times faster than popular solutions on a single

machine and scales to billions of examples in distributed or memory-limited settings

[6]. This makes it a very desirable solution for a real-time Intrusion Prevention

Systems. This model builds decision trees sequentially, where each tree is trained

to correct errors of previous trees. XGBoost also has a great inbuilt functionality of

ranking the features it is trained on. This functionality gives a feature importance

score for all the features it is trained on, which allows the selection of the most useful

features from a dataset to train machine learning models. This process results in

training higher performing models with reduced size of datasets. This helps in saving

resources that would be spent on complex computations and extensive training to get

the same result.

LSTM is a kind of Recurrent Neural Network (RNN). LSTM is one of the most

powerful and dynamic classifiers that is known to the public [7]. One of the main diffi-

culties encountered when training conventional RNNs is the issue of gradients dimin-

ishing, which hinders the network’s capacity to comprehend extended patterns within

sequential data. LSTMs were expressly devised to tackle this challenge. LSTMs un-

dergo training via a method known as backpropagation through time (BPTT), akin

to traditional RNNs. However, owing to their adeptness at capturing prolonged

dependencies, LSTMs frequently exhibit superior performance in the acquisition of

4

knowledge from sequential data. LSTMs find extensive utility across a spectrum of

applications involving sequential data and are used in diverse fields like natural lan-

guage processing (NLP), time series analysis and recognizing handwriting patterns.

Considering the ability of LSTMs to comprehend extended patterns within sequen-

tial data, and the fact that Denial of Service (DoS) and Distributed Denial of Service

(DDoS) attacks are carried out over a period of time, it can be inferred that a LSTM

model will be able to analyze the sequential data associated with packets coming in

from suspicious IP addresses and detect these attacks accurately. This is the main

reason why I have proposed using the LSTM model solely to detect DoS and DDOS

attacks. The XGBoost model will be used to detect DDoS, DoS, Brute Force, Infil-

tration, and Bot attacks.

2.2 Cloud Systems

Cloud systems leverage the power of distributed computing, allowing users to

access and utilize a wide range of computing resources over the internet. These re-

sources include virtualized servers, storage, databases, and networking components

which are hosted and managed by third-party cloud service providers. Transmis-

sion Control Protocol (TCP) is a communications standard that enables application

programs and computing devices like cloud systems to exchange messages over a net-

work. TCP provides a reliable, connection-oriented transmission service, ensuring all

packets arrive at their destination in order without loss or duplication [8]. The TCP

reset mechanism is a standard part of the TCP protocol. A TCP reset is identified by

the RESET flag in the TCP header set to 1 [5]. TCP reset is used to abruptly close

connections and prevents attackers from establishing and maintaining connections [9].

Tt causes the resources allocated to the connection to be immediately released and

5

all other information about the connection is erased. These resources can be used

immediately by the cloud system.

2.3 NF-UQ-NIDS-v2 Dataset

Most of the benchmark datasets like NSL-KDD and UNSW-NB15 are old and

limited. There are only 4 attacks in KDD99 and NSL-KDD datasets with 4.8 million

total records and 311 thousand records respectively [10, 11]. UNSW-NB15 dataset

only has 1,623,118 records with 1,550,712 (95.54 %) benign records 72,406 (4.46 %)

attack records for 9 types of attacks [12]. The newer dataset, CIC-IDS2017, is built

on a limited number of 25 users and thus, does not capture the real life scenario of

a typical network traffic [13]. CSE-CIC-IDS2018 dataset also has a highly skewed

distribution with only 12.14 % of the dataset being attack samples [12]. Due to these

issues with datasets, I have selected the NF-UQ-NIDS-v2 dataset for this study. This

dataset developed in [12] is the latest version of the NF-UQ-NIDS dataset. This

dataset combines four popular real world datasets, namely UNSW-NB15, NF-ToN-

IoT, NF-BoT-IoT and CSE-CIC-IDS2018. This dataset has 43 input features (45

with labels) and 75,987,976 records consisting of various kinds of attacks. Since this

thesis is only for cloud systems, I have considered 21,191,222 records from the total

to train the machine learning models, after filtering out the records corresponding

to the IoT datasets from the NF-UQ-NIDS-v2 dataset and certain attacks. I have

considered 5 attack classes from this dataset, namely DDoS, DoS, Infiltration, Brute

Force, and Bot attacks, based on the number of records available for those classes,

their popularity and techniques that can be used to mitigate the attacks. For exam-

ple, Fuzzers can be mitigated with input validation and using secure coding practices.

A breakdown of the 21,191,222 records is given below in the Table 2.1. The original

6

features of the NF-UQ-NIDS-v2 developed in [12] are shown in Table 2.2.

Label Records

Benign 18,930,789

DDoS 1,390,270

DoS 489,793

Infiltration 116,361

Brute Force 120,912

Bot 143,097

Total 21,191,222

Table 2.1: Breakdown of Records in NF-UQ-NIDS-v2 Dataset

Feature Description

IPV4 SRC ADDR IPv4 source address

IPV4 DST ADDR IPv4 destination address

L4 SRC PORT IPv4 source port number

L4 DST PORT IPv4 destination port number

PROTOCOL IP protocol identifier byte

L7 PROTO Layer 7 protocol (numeric)

IN BYTES Incoming number of bytes

OUT BYTES Outgoing number of bytes

IN PKTS Incoming number of packets

OUT PKTS Outgoing number of packets

7

Feature Description

FLOW DURATION MILLISECONDS Flow duration in milliseconds

TCP FLAGS Cumulative of all TCP flags

CLIENT TCP FLAGS Cumulative of all client TCP flags

SERVER TCP FLAGS Cumulative of all server TCP flags

DURATION IN Client to Server stream duration

(msec)

DURATION OUT Client to Server stream duration

(msec)

MIN TTL Min flow TTL

MAX TTL Max flow TTL

LONGEST FLOW PKT Longest packet (bytes) of the flow

SHORTEST FLOW PKT Shortest packet (bytes) of the flow

MIN IP PKT LEN Len of the smallest flow IP packet

observed

MAX IP PKT LEN Len of the largest flow IP packet

observed

SRC TO DST SECOND BYTES Src to dst Bytes/sec

DST TO SRC SECOND BYTES Dst to src Bytes/sec

RETRANSMITTED IN BYTES Number of retransmitted TCP flow

bytes (src->dst)

RETRANSMITTED IN PKTS Number of retransmitted TCP flow

packets (src->dst)

RETRANSMITTED OUT BYTES Number of retransmitted TCP flow

bytes (dst->src)

8

Feature Description

RETRANSMITTED OUT PKTS Number of retransmitted TCP flow

packets (dst->src)

SRC TO DST AVG THROUGHPUT Src to dst average thpt (bps)

DST TO SRC AVG THROUGHPUT Dst to src average thpt (bps)

NUM PKTS UP TO 128 BYTES Packets whose IP size ≤ 128

NUM PKTS 128 TO 256 BYTES Packets whose IP size > 128 and ≤

256

NUM PKTS 256 TO 512 BYTES Packets whose IP size > 256 and ≤

512

NUM PKTS 512 TO 1024 BYTES Packets whose IP size > 512 and ≤

1024

NUM PKTS 1024 TO 1514 BYTES Packets whose IP size > 1024 and ≤

1514

TCP WIN MAX IN Max TCP Window (src->dst)

TCP WIN MAX OUT Max TCP Window (dst->src)

ICMP TYPE ICMP Type * 256 + ICMP code

ICMP IPV4 TYPE ICMP Type

DNS QUERY ID DNS query transaction Id

DNS QUERY TYPE DNS query type (e.g., 1=A, 2=NS...)

DNS TTL ANSWER TTL of the first A record (if any)

FTP COMMAND RET CODE FTP client command return code

Table 2.2: Original Input Features of NF-UQ-NIDS-v2 Dataset

9

Chapter 3

CURRENT STATE-OF-THE-ART

Cybersecurity is an immensely broad topic, with different measures designed to

counter different attack vectors [14, 15]. The use of machine learning and honeypots

in intrusion prevention systems for such an endeavour has been researched for several

years by many researchers. Yudai et al. [16] discussed the Log4Shell vulnerability in

Apache Log4j and how this vulnerability allowed HTTP protocol attacks. They used

low-interaction and high-interaction honeypots to collect data for different HTTP

protocol attacks and their variants. This collected data was used to train machine

learning models based on URL strings and rules were generated based on the results

of the models for their Intrusion Prevention System. They worked with Naive Bayes,

Generalized Liner Model, Logistic Regression, Fast Large Margin, Deep Learning,

Decision Tree, Random Forest, Gradient Boosted Trees, and Support Vector Machine

models. The attacks related to Log4Shell have not been considered in this study as

this vulnerability was patched in later versions of Apache Log4j within two weeks of

being publicly announced on December 9, 2021 [17].

Wooseok et al. [18] have proposed a two-level classifier system designed to enhance

both real-time performance and detection accuracy in intrusion prevention systems.

This system employs level 1 and 2 classifiers internally. The level 1 classifier initially

performs real-time detection with moderate accuracy for incoming data traffic. If the

data cannot be classified with high probability by the classifier, the classification is

delayed until the traffic flow terminates. The level 2 classifier then collects the statisti-

cal features of the traffic flow for performing precise classification. They have trained

their models separately on UNSW-NB15 and CICIDS2017 datasets with promising

10

results. They have used a subset of these datasets to avoid class imbalance. They

have considered DoS, DDoS, Exploits, Reconnaissance, Generic, Fuzzers, Shell code,

Bot, PortScan, SSH-Patator and FTP-Patator attacks out of all the attacks present

in the two datasets. Exploit attacks take advantage of vulnerabilities or weaknesses

in software, hardware, or system configurations to gain unauthorized access to a com-

puter system or network. Thus, upgrading software to more secure versions that patch

known vulnerabilities and using secure libraries for coding purposes can reduce the

possibilities of exploit attacks. This solution is also applicable to Shell code attacks.

Reconnaissance and Portscan attacks can be mitigated by using access control and

network segmentation. The Generic attacks in the UNSW-NB15 dataset focus on

targeting cryptography and causing a collision with each block-cipher [12]. The chal-

lenge with executing such attacks is that finding a collision in a resilient block cipher

with a strong key is extremely difficult. Thus, attacks of this type can be easily miti-

gated by using a resilient block cipher with a strong key. Fuzzers can be avoided with

input validation and using secure coding practices. SSH-Patator and FTP-Patator

attacks can be mitigated by enforcing strong password policies and implementing ac-

count lockout mechanisms after a certain number of failed login attempts to prevent

attackers from repeatedly guessing passwords. Due to these reasons, these attacks

are not considered in this study.

Akhil et al. [19] proposed the use of Multi-Layer Perceptron (MLP) in an intru-

sion detection and prevention System with specific scripts designed for cyberattacks.

They have used the KDD99 dataset to train this model. The model was trained on

approximately 4.8 million records and achieved a reasonable accuracy of 91.4%. The

attacks considered were DOS, probe, U2R and R2L. Probe, U2R and R2L attacks

are not considered in this study because records for these attacks are not available in

the NF-UQ-NIDS-v2 dataset. However, since the NF-UQ-NIDS-v2 dataset focuses on

11

more popular attacks like DDoS, Bot, Infiltration and Brute Force, it is more desirable

than the KDD99 dataset. Another advantage of using the NF-UQ-NIDS-v2 dataset

is that there are more records available in this dataset, the number of records for

Benign class alone greatly exceed the total number of records in the KDD99 dataset.

Constantinides [3] proposed a novel network intrusion prevention system that

utilises a Self Organizing Incremental Neural Network along with a Support Vector

Machine. This model was trained on the NSL KDD dataset and achieved an accuracy

of 89.67%. As NSL KDD is the updated version of the KDD99 dataset, both the

datasets consider the same attacks, namely DoS, Probe, U2R and R2L attacks.

Research related to intrusion prevention systems have utilized techniques other

than machine learning for the purpose of detecting network intrusions. Vibha et al.

[20] discussed the use of signature-based pattern matching algorithms in an intrusion

detection and prevention System. They experimented with Brute-force, RabinKarp,

Boyer-Moore and Knuth-Morris-Pratt (KMP) algorithms for this purpose. Their

results show that KMP and Boyer-Moore algorithms performed the best. Yadav et

al. [21] have proposed an intrusion detection and prevention system for integrated

internet environments with wireless sensor networks (WSN). They have defined rules

for each level of communication and different attack. They have focused mainly on

Denial of Service (DoS) attacks. Using sensing devices and gateways, this system

effectively prevents threats to wireless communication, particularly when integrated

with CoAP.

This study also discusses some related advancements in the fields of intrusion

detection systems and intrusion detection since these fields are very closely related to

intrusion prevention systems. Sarumi et al. [22] compared two systems for detecting

intrusions: Apriori and Support Vector Machine(SVM). The NSL-KDD dataset and

UNSW-NB15 datasets were utilized to assess the effectiveness of the two systems.

12

They were able to achieve an accuracy of 77% on the NSL-KDD dataset and 90.41%

accuracy on the UNSW-NB15 dataset with the SVM model.

A Deep Belief Network (DBN) attack detection approach was proposed by Reddy

and Shyam [23] in which the activation function and weights are refined using the

Median Fitness focused Sea Lion Optimization method (MFSLnO). When DBN iden-

tifies a malicious point passed control to a bait technique that is lightweight and

consistently moderates the most prevalent malicious nodes while maintaining normal

relations.

A model based on a hierarchy of deep learning in the identification of anomaly and

summarized the study articles on the subject were presented by Gamage and Samara-

bandu [24]. They trained 4 models, Autoencoder, Deep Belief Network, Feed-forward

Neural Network, and LSTM network on KDD 99, NSL-KDD, CIC-IDS2017 and CIC-

IDS2018 datasets. They considered Probe, DoS, U2R, R2L, Bot, DDoS, FTP-Patator,

PortScan, SSH-Patator, Brute Force, XSS, FTP-BruteForce, Infilteration, SQL In-

jection, SSH - Bruteforce attacks. Similar to SSH-Patator and FTP-Patator attacks,

SSH - BruteFore and FTP-BruteForce attacks can be mitigated by enforcing strong

password policies and implementing account lockout mechanisms after a certain num-

ber of failed login attempts to prevent attackers from repeatedly guessing passwords.

XSS attacks can be easily mitigated by using input validation techniques and secure

cookies. SQL injection attacks can be easily mitigated by using stored procesures,

input validation techniques and error handling in code. Hence, these attacks are not

considered in this study.

The UNSW-NB15 intrusion detection dataset was used by Kasongo and Sun

[25] for training and testing Support Vector Machine, Artificial Neural Network, K-

Nearest-Neighbor, Decision Tree, and Logistic Regression models. They used the

XGBoost algorithm to provide a filter-based feature reduction strategy. Their results

13

demonstrated that the XGBoost-based feature selection method allows for methods

such as Decision Tree to increase its test accuracy from 88.13 to 90.85 % for a binary

classification scheme.

Kasango [26] used the NSL-KDD and UNSW-NB15 datasets along with XGBoost

feature selection to train RNN, GRU and LSTM models. They focused on both binary

classification and multiclass classification tasks for both datasets without addressing

the class imbalance problems. This study improves their approach by training XG-

Boost and LSTM models on the latest dataset for network intrusion, NF-UQ-NIDS-v2

dataset. This study addresses the class imbalance problems in the dataset and the

models are trained for multiclass classification. The XGBoost and LSTM models are

used together in this study to prevent attacks in real-time in an Intrusion Prevention

System. The LSTM model trained in this study outperforms their LSTM model for

UNSW-NB15 dataset in terms of accuracy, precision, recall, and F1 score, and it has

less number of layers, making it less complicated and more desirable for real world

scenarios. Only their LSTM model for UNSW-NB15 dataset is compared because

NF-UQ-NIDS-v2 dataset incorporates records from the UNSW-NB15 dataset. Addi-

tionally, this study proposes the use of TCP reset functionality to make the proposed

framework more suited to real world issues.

Farhat et al. [27] presented CADS-ML/DL, an efficient cloud-based multi-attack

detection system. They evaluated eight intrusion detection systems based on machine

learning and deep learning algorithms, including Decision Tree, Random Forest, Ex-

treme Gradient Boosting, Gated Recurrent Units, Long Short-Term Memory, Stacked

LSTM, and Bidirectional LSTM models. Their experimental results demonstrated

that the CADS-ML/DL system, specifically the XGBoost model, outperformed the

other models, exhibiting an accuracy of 97.70 % and a false error rate of 0.0230. They

tested the XGBoost model on the CSE-CICIDS2018 dataset, attaining an accuracy

14

score of 99.99 and a false error rate of 0.0001.

Yau et al. [2] presented a time-based approach to quantitatively predicting im-

minent security breaches on critical cloud infrastructures. It used Bayesian network

and Markhov Decision process to predict system-wide security breaches based on

the probabilistic inputs on subsystem level security breaches and generated proba-

bilistic predictions of system-wide and sub-system security breaches with respective

time windows in which breaches are most likely to occur. Yau et al. [28] used the

NSL-KDD and UNSW-NB15 datasets to train an Artificial Neural Network (ANN)

model with genetic feature selection. They achieved an accuracy of 91.98% on the

NSL-KDD dataset and an accuracy of 95.46% on the UNSW-NB15 dataset.

Poornima et al. [29] used the NSL-KDD dataset and XGBoost feature selection

to train a LSTM model for 2 different classes, ’benign’ or ’attack’, for network attack

classification. Their LSTM model had a learning rate of 0.01 and gave scores of 98.99%

accuracy, 0.91 precision, 0.87 recall, and 0.85 F1 score. This study improves their

approach with the use of an XGBoost and a LSTM model together to prevent attacks

in real-time in an Intrusion Prevention System. While the LSTM model trained in this

study gives a comparable accuracy score to their model, it outperforms their model

in terms of precision, recall, and F1 score. The models in this study are trained on

the latest dataset for network intrusion, NF-UQ-NIDS-v2 dataset. The models in this

study are also trained to identify particular attacks, giving results more suited to real

world scenarios, as compared to just identifying whether a network data is an attack

or not an attack. Additionally, this study proposes the use of TCP reset functionality

to make the proposed framework more suited to real world issues.

Patrik [9] used TCP reset cookies to mitigate TCP SYN flood attack in TCP

connections. Their study proves how TCP reset cookies can be used to block SYN

flooding attacks from spoofed IP addresses. They mention how their method needs

15

logic to switch between different SYN flood mitigation strategies. This study improves

their approach by applying the use of TCP reset with two supervised machine learning

models for 5 kinds of attacks in real time to protect cloud systems.

The XGBoost–DNN model was introduced by Devan and Khare [30], which uses

the XGBoost algorithm for feature selection and classifying the deep neural network

(DNN) network attacks. They used an Adam optimizer to train their model on

the NSL-KDD dataset. They performed binary classification task and compared

their results with logistic regression, SVM and Naive Bayes models to showcase its

performance.

A new NIDS architecture based on a deep convolutional neural network was pro-

posed by Khan et al. [31] which utilizes the network spectrogram images created with

the help of the short-time Fourier transform. They used the CIC-IDS2017 dataset to

assess the efficiency of the suggested solution. Attia et al. [32] have used the XGBoost

model for feature extraction and then trained ANN model on Kitsune dataset. This

dataset has 115 features and 21 million records. This dataset was divided into a 70-30

split for training and testing data. Hasan et al. [33] have developed a learning model

for fast learning network (FLN) based on particle swarm optimization (PSO) that

is named PSO-FLN. This model is trained on the KDD99 dataset. Pawlicki et al.

[15] used the NSL-KDD and CICIDS2017 datasets to train a variety of ANN models.

They have also done extensive work on hyperparameter tuning and showed changes

of more than 9% in accuracy due to changes in hyperparameters. Imrana et al. [34]

has used the NSL-KDD dataset to train a bidirectional Long-Short-Term-Memory

(BiDLSTM) model. The BiDLSTM model achieved a higher detection accuracy for

U2R and R2L attacks than conventional LSTM on this dataset.

Sarhan et al. [12] used their own dataset, NF-UQ-NIDS-vs dataset and its com-

ponents to train an ensemble tree classifier known as Extra Trees to test their dataset

16

against its benchmark components. This was done for both binary and multiclass

classification tasks. For binary classification, the combined dataset outperformed

the original feature sets in terms of attack detection performance. For multiclass

classification, the dataset substantially outperformed the original feature sets, with

more than a 6% increase in accuracy between CSE-CIC-IDS2018 and NF-CSE-CIC-

IDS2018-v2 datasets for the same model. The Extra Trees model achieved an accuracy

of 96.93% on the overall NF-UQ-NIDS-v2 dataset.

17

Chapter 4

PROPOSED APPROACH

In this chapter, section 4.1 describes initial configuration for Intrusion Prevention

System. Section 4.2 describes the details on preprocessing the dataset. Section 4.3

discusses feature selection process and model training in detail. The proposed IPS

framework uses two supervised machine learning models: XGBoost and LSTM, along

with an automated control unit and a list of malicious IP addresses. Section 4.4 dis-

cusses the overall approach of the proposed framework for IPS. Section 4.5 discusses

the use of XGBoost in the approach. Section 4.6 discusses the use of the LSTM in

the approach. Section 4.7 discusses the use of control unit and TCP reset request in

the approach.

Section 4.1 Initial Configuration for The Proposed Intrusion Prevention System

The following description describes the steps for the initial configuration for In-

trusion Prevention System. Figure 4.1 presents the following description in a block

diagram.

The initial configuration for the proposed Intrusion Prevention System starts with

preprocessing the NF-UQ-NIDS-v2 dataset. This dataset is not suitable for training

the XGBoost and LSTM models directly due to presence of string values and class

imbalance. So this dataset was preprocessed and made usable for training the models.

Section 4.2 discusses this process in detail.

After preprocessing the dataset, XGBoost model was trained and fine-tuned. The

best XGBoost model was used for feature selection. A training dataset was prepared

18

Figure 4.1: Initial Configuration for Intrusion Prevention System

for the LSTM model using these selected features with oversampling. Section 4.3

describes specific details of this step. The LSTM model was trained on the oversam-

pled training dataset and evaluated. Several different versions of the LSTM model

were trained and tested. Details on the architecture of the best LSTM model and its

hyperparameters have been described in section 4.6. Intermediate results for training

and fine-tuning both the models are shown in section 8.5.

After selecting the best XGBoost and LSTM models, they are combined with a

control unit and used in the Intrusion Prevention System. A simulation was done

using them, showing the reports generated by these models. The simulation has been

described in detail in chapter 7. The details on evaluation of both models are included

in chapter 8.

Section 4.2 Preprocessing the Dataset

As shown in Table 1, there is a huge class imbalance between the classes, with

18.9 million records belonging to ‘Benign’ class and 2.2 million records distributed

between 5 classes. To reduce this imbalance, we have downsampled the records in

19

‘Benign’ class by 50%, using 9,465,395 records. I have used all the records for the

other labels, which brings our total number of records to 11,725,828. I will also

convert the string labels into numerical categorical values. 0 will stand for ‘Benign’

class, 1 for ‘DDoS’ class, 2 for ‘DoS’ class, 3 for ‘Brute Force’ class, 4 for ‘Infiltration’

class and 5 for ‘Bot’ class. To create separate training and testing datasets for our

models, I employed an 80-20 split strategy. I separated each class into a separate

file, then randomly selects 80% of the data from each class and aggregated them into

one file for training purposes. Similar steps were taken to create a file for testing

purposes, to evaluate the effectives of the trained model. This approach maintains a

balanced representation of each distribution type in both training and testing files. It

also guarantees that the model learns effectively from diverse examples, thus enabling

it to make accurate predictions when confronted with unseen data. In addition, it

has the benefit of assuring us that we avoided cases of where one class or more could

be absent from either the training file or the testing file, no matter how small the

possibilty could be. In summary, this preprocessing phase is pivotal in constructing a

reliable and precise machine learning model for classification tasks, given the dataset’s

total size of 11,725,828 data points spanning all 6 classes.

In addition to the above steps, I also normalized some of the 43 attributes available

in the dataset and dropped two of them (‘IPV4 SRC ADDR’ and ‘IPV4 DST ADDR’) when

combining the training and testing files for the XGBoost model. The attributes

selected for normalization are shown in figure 4.2. I have used the min-max scaling

approach to normalize these features and put them in range [-1,1]. This normalized

value is calculated based on equation 4.1.

xscaled =
x− xmean

xmax − xmin

(4.1)

20

Figure 4.2: Features Normalized

For each column, the maximum value in that column is denoted by xmax. The min-

imum value in that column is represented by xmin. xmean represents the mean value

of that column and x is the value that is currently being scaled.

The reason for dropping ‘IPV4 SRC ADDR’ attribute was that this attribute is the

IPv4 source address, which is categorical value and it will differ for each entity sending

packets to the cloud system. The reason for dropping ‘IPV4 DST ADDR’ attribute was

that this attribute is the IPv4 destination address, which is a constant categorical

value for the address of a particular cloud system. Thus, they will make no positive

21

contribution to the analysis done by the XGBoost model. Instead, there is a possibil-

ity to create unnecessary bias against some IPv4 source addresses, which will lead to

an increase in the false positive results of the model, leading to a lower performance

of this model.

Section 4.3 Feature Selection and Training Models

XGBoost is a powerful machine learning model that possesses a feature importance

mechanism. This intrinsic capability enables XGBoost to discern the most influential

features within a dataset. This capability allows use to train machine learning models

on the important features in a dataset, which improves their performance. Instead

of relying solely on traditional statistical techniques, XGBoost employs an ensemble

approach that iteratively refines its understanding of feature importance during the

training process. By observing how features are utilized across multiple decision

trees, it assigns importance scores to each attribute, revealing their impact on model

predictions. These scores are then utilized to uncover valuable insights, facilitating

data-driven decision-making, model refinement, and feature selection for enhanced

predictive accuracy. In essence, XGBoost’s feature importance functionality serves

as a potent tool to uncover the hidden gems within a dataset. The XGBoost model

consists of a set of decision trees, as shown in [6] by Chen et al. This is represented

mathematically in equation 4.2.

yi =
n∑

n=1

f(xi) (4.2)

Here n represents the number of decision trees, f corresponds to an independent tree

structure, and xi is the ith data point feature vector. For the purposes of training

22

a good model, it is required to minize the loss as much as possible. The objective

function is represented mathematically by equation 4.3.

L =
∑
i

l(yi, yt) +
∑
n

Ω(f) (4.3)

Here yi is the predicted value, yt is the target value and l is a differentiable convex

loss function that measures the difference between these two. Ω(f) is mathematically

represented in Equation 4.4.

Ω(f) = rT +
1

2

T∑
j=1

w2
j (4.4)

Here T is the number of leaves and w2
j is the score of the jth leaf. Ω(f) is a regu-

larization term that penalizes the complexity of the model and helps to smooth final

learnt weights to avoid over-fitting. Intuitively, the regularized objective will tend to

select a model employing simple and predictive functions. Due to an inbuilt func-

tionality in the ‘xgboost’ library in python, I can get the feature importance scores of

all input features directly, which helps conserve resources that would otherwise have

been utilized towards performing complex mathematical calculations.

I have trained the XGBoost model on all 41 attributes in the training file and then

used it to get a feature importance score for each of the 41 attributes. This resulted

in a total of 22 features getting a feature importance score above 0.001. Similar to

the approach shown by Kasango in [26], I trained the LSTM model on only these 22

features. A bar graph depicting this result for all 41 attributes is shown in figure 4.3.

A table showing the top 22 attributes with feature importance score of more than

23

Figure 4.3: Feature Importance Scores of All 41 Attributes

24

Figure 4.4: Feature Importance Scores of Top 22 Attributes

25

0.001 is shown in figure 4.4.

Regarding the hyperparameters used to train the XGBoost model on the NF-UQ-

NIDS-v2 dataset, I set the objective to be ‘multi:softprob’ because I am dealing with

a multiclass classification problem. The number of classes is 6 as there are 6 classes in

the dataset for XGBoost model. The gradient descent tree type booster ‘gbtree’ was

used due to its ability to extrapolate non-linearity between input variables and target

label. Learning rate was set to 0.3 and maximum tree depth was set to 6. A fast

histogram optimized approximate greedy algorithm ‘hist’ was used as the tree method

with maximum number of bins set to 100. A separate training dataset was created for

LSTM after performing feature normalization and feature selection. This consisted

of records for 3 labels, namely ‘Benign’, ‘DDoS’ and ‘DoS’. Labels for ‘DDoS’ and

‘DoS’ were oversampled, increasing the number of records to 19,604,716.

Section 4.4 The Overall Approach for Intrusion Prevention System

Figure 4.5 describes the overall approach for the proposed framework. The fol-

lowing description describes the overall steps for the proposed IPS framework:

Step 1: Incoming packet is intercepted by the IPS server. (1.1) If IP address is

inside the list of known malicious IP addresses stored in the server, this packet is

dropped. (1.2) If IP address is not in that list, packet is stored in IPS server and

packet information is sent to XGBoost model for analysis.

Step 2: XGBoost model analyses the packet information (discussed in detail later

in section 4.5). (2.1) First possible output is low probability of attack: Intercepted

packet is sent to the cloud system. (2.2) Second possible output is high probability

of attack . In this case, the result of the analysis by XGBoost model is sent to the

control unit. (2.3) The third possible output is high probability of DDoS and DoS

26

Figure 4.5: The Proposed Overall Approach

attacks, the information of intercepted packet is shared with the LSTM model.

Step 3: The result of analysis by LSTM model (discussed in detail later in section

4.6) is shared with control unit.

Step 4: Control unit decides if intercepted packet is benign or malicious (discussed

in detail later in section 4.7). (4.1) If this packet is malicious, TCP reset request (dis-

cussed in detail later in section 4.7) is sent to cloud, intercepted packet is dropped,

and updated list of known malicious IP addresses is shared with IPS server. (4.2) If

this packet is benign, it is sent to cloud system.

Section 4.5 Use of XGBoost in the Approach

In step 2 of the approach intercepted packet’s NetFlow data is subjected to analysis

by the XGBoost model after normalization and storing the original values in a separate

27

variable. The actions taken in this step can be divided into the following three steps:

Step 2.1. If the result is benign with low probability of attacks: This result means

that the XGBoost model deems the packet to be benign, with probabilities of attack

labels being less than 30%. In this case, the XGBoost model sends a signal to the

IPS server, informing it of this result and as a consequence, this packet is redirected

to the cloud system.

Step 2.2. If the result has high probability of attacks: The result of the analysis by

XGBoost model is sent to the control unit. This includes details on original NetFlow

data of the packet, probabilities of labels and the opinion of the XGBoost model, as

shown later in chapter 7. After this, go to step 4.

Step 2.3. If the result has high probability of DoS and DDoS attacks: The nor-

malized NetFlow data is shared with the LSTM model for an analysis.

Section 4.6 Use of LSTM in the Approach

One significant innovation of this thesis is the introduction of a deep LSTM ar-

chitecture for identifying DoS and DDoS attacks to protect cloud systems. This

architecture includes one LSTM layer, one activation layer and two fully connected

layers. Figure 4.6 depicts the architecture for the LSTM. For the NF-UQ-NIDS-v2

dataset, the LSTM layer takes in the 22 attributes and gives 64 output variables. The

first fully connected layer takes in 64 input variables and gives them to 15 variables.

The second fully connected layer reduces these 15 variables to 3 variables, correspond-

ing to the number of classes. The LSTM model will generate probabilities for each

label. The numbers mentioned are specific to Benign, DDoS and DoS attack records

for network intrusion, and can be different depending on the attacks considered. The

LSTM model has a learning rate of 0.0001 with a cross entropy loss function and an

28

Figure 4.6: Architecture of LSTM model

Adam optimizer. PyTorch framework was used for constructing the custom LSTM

model.

An LSTM layer is an RNN layer that learns long-term dependencies between time

steps in time-series and sequence data [35]. As a sequential processing unit, the LSTM

layer manages the temporal dependencies among the 22 input attributes that make

up the LSTM model as a whole. It is appropriate for activities involving sequential

data because of its capacity to selectively update information over time, which is very

helpful when detecting DoS and DDoS type of attacks. The LSTM layer generates

64 output variables that provide a thorough depiction of the temporal elements taken

out of the input. The model gains the ability to learn non-linear features by adding an

activation layer between the LSTM layer and the first fully connected layer. The pur-

pose of an activation function is to add non-linearity to the neural network [36]. The

activation layer improves the model’s overall ability to recognize and learn from the

intricate patterns found in the data by allowing it to collect and utilize complicated,

non-linear relations present in the data. In situations when the correlations between

the input qualities are not strictly linear, the use of activation layer is very helpful.

I have increased the model’s ability to abstract and change features by employing

two fully connected layers. Fully connected Layer give neural networks the ability to

approximate any function — known as the Universal Approximation Theorem [37].

29

With 64 input variables and 15 output variables, the first fully connected layer serves

as a bottleneck, reducing the amount of data gathered from the LSTM layer into a

more succinct and abstract representation. This intermediary layer lowers the dimen-

sionality of the data while highlighting important aspects. This also facilitates the

information flow to the last layer. The second fully connected layer further refines

this representation by reducing 15 input variables to 3 output variables, corresponding

to the number of classes. By introducing a hierarchical feature selection procedure,

this design decision highlights key traits in the data for categorization, allowing the

LSTM model to learn intricate patterns, adjust to changing temporal dynamics, cap-

ture both short-term and long-term dependencies including non-linear dependencies

without overfitting on the dataset, and generalize well to various dataset sequences.

Results proving that the effectiveness of this architecture and showing that it does

not overfit on the dataset are shown in chapter 5. The model is further improved

with a training process using the Adam optimizer and cross-entropy loss, which guar-

antee convergence towards an ideal solution. These elements have been thoughtfully

integrated into the overall architecture, which enhances the model’s performance and

robustness for identifying DDoS and DoS attacks.

The following steps were taken to develop the architecture of the LSTM model:

Step A. Defining the task: In this step, the nature of the task at hand was decided.

Since the application is to identify DoS and DDoS attacks with the LSTM model, the

task is to perform a multiclass classification and the architecture of the LSTM model

was designed to reflect a classification model, not a regression model.

Step B. Understanding the data: In this step, I analyzed the characteristics of the

input data. Factors such as dimensionality, range of values, and relationships within

the data were considered. The results of the feature selection process specified in 4.3

30

were also considered in this step.

Step C. Identifying the input and output features: The input layer of the model

was designed to have neurons corresponding to the features, and the output layer was

designed to match the desired output format.

Step D. Selecting activation function: In this step, I chose the ReLU activation

for hidden layers as the LSTM model is going to perform a multiclass classification

task.

Step E. Deciding the number of hidden layers: This step consists of deciding the

number of hidden layer for a model. Since the task is to classify network attacks, a

deeper architecture was needed to achieve this task. I started from 3 layers: 1 LSTM

layer followed by an activation layer and a fully connected layer. I have proved with

results that an LSTM model with 4 layers (with 2 fully connected layers) work best

for this task.

Step F. Determining the number of neurons in each hidden layer: This is a critical

hyperparameter that can impact the capacity and performance of a model. It often

requires heavy experimentation and tuning. I selected an initial number of 10 neurons

in a fully connected layer.

Step G. Choosing the loss function: In this step, an appropriate loss function is

chosen for the model. I have selected the categorical cross entropy loss function as

the task is multiclass classification.

Step H. Selecting an optimizer: In this step, I selected the Adam optimizer for

this model as the task is multiclass classification.

Step I. Defining Metrics for Evaluation: I have considered accuracy, precision,

recall, and F1 score for considering the performance of the LSTM model.

Step J. Building an initial version of the model: In this step, I built an initial

version of the LSTM model and trained it on a the training data.

31

Step K. Testing on test data: Finally, the model built was evaluated on a separate

test set that it has never seen. This provides an unbiased assessment of the model’s

performance.

Step L. Adjusting the model: After evaluating the model’s performance on the

test data, I adjusted the model by fine-tuning hyperparameters and oversampling the

data.

In step 3 of the approach, the LSTM model will perform analysis on selected fea-

tures of this data. The result of this analysis by the LSTM model will be sent to the

control unit. This includes probabilities of labels and opinion of the LSTM model, as

shown later in chapter 7.

Section 4.7 Use of Control Unit and TCP Reset Request in the Approach

A significant innovation of this thesis is the proposed use of a special TCP packet,

named TCP reset request. Step 4 of the overall approach is taken after the reports

from XGBoost model and LSTM model (in case DDoS and DoS attacks are suspected)

are received by the control unit for a packet from one IP address. The control unit

will look at these reports and make the final decision. The final decision is only based

on opinion of XGBoost model when the intercepted packet shows high probability

of Brute Force, Infiltration and Bot attacks. The final decision is based on opinion

of both models and their probabilities for DDoS and DoS attacks. If the models

have different opinions, the opinion of the model showing higher probability for a

certain class is taken as the final decision. For example, if XGBoost model shows

high probability of intercepted packet being a DDoS attack but LSTM model shows

higher probability of the packet being benign, then the control unit will decide that

32

the packet is benign. If the two models have the same opinion, this opinion is taken

as the final decision. Actions taken in this step can be divided into two steps:

Step 4.1. Suspected packet is malicious: In this case, a TCP reset request is sent

to the cloud system to terminate the connection and mitigate potential damage, if

any, caused by the malicious activity. Details on generation of a TCP reset request

are shared later in this section and details on its innovative use in this study is shared

in chapter 5. The list of malicious IP addresses is updated to include IP address of

the intercepted packet. The packet in question is dropped. The packets from the

attacker in transit are automatically dropped as the connection is closed.

Step 4.2. Suspected packet is benign: In this case, control unit will signal IPS

server to redirect packet to the cloud system. This packet is encapsulated with TCP

protocol before it is redirected to the cloud system. The IP address will not be in-

cluded in the list of IP addresses and TCP reset request will not be sent to the cloud

system.

Steps taken to send a TCP reset request are:

Step a. Create a TCP Packet: In this step, a TCP packet is created specifically

to send the cloud system information about the attacker.

Step b. Identify the attacker information: In this step, the information from the

report by XGBoost model is used to fill information about the attacker in the TCP

packet.

Step c: Send the TCP reset request: Once the packet is constructed, the TCP

packet is sent to the cloud system. The cloud system will identify the attacker based

on information received from the IPS and will create a TCP reset for the attacker.

This TCP reset will have the reset (RST) flag sent to one, and it will include the

acknowledgement number and sequence number for the attacker along with informa-

33

tion like port number, IP address. This step shows the innovative use of TCP reset

request as the cloud system will now immediately terminate the connection with the

attacker, dropping the packets in-transit to the cloud system and thereby prevent the

attack.

34

Chapter 5

INNOVATION

In this chapter I present the innovations in my thesis. I have two innovations: (1)

The custom architecture of the LSTM model, and (2) The use of TCP reset request

for preventing 5 kinds of attacks in cloud systems.

One significant accomplishment of this thesis is the incorporation of an activation

layer and two fully connected layers in addition to the LSTM layer for the development

of the final LSTM model. These layers contribute to enhancing the model and make

it capable of learning sequential temporal dependencies and non-linear dependencies

in the data, as mentioned in section 4.6.

The results of experiments like oversampling and tuning are presented in section

8.5 of this thesis. The architecture of the final LSTM model does not overfit on the

model. This can be shown by results of training different LSTM models with different

numbers of fully connected layers in table 5.1. Best number of hidden units were found

for each model with different number of layers after extensive testing and their results

were compared. All these models had a learning rate of 0.0001, Adam optimizer and

cross entropy loss. This proves that my proposed architecture greatly outperforms the

other two LSTM models. The reason for the weak performance of 1 fully connected

layer of LSTM model is that this model does not have sufficient capacity to understand

the intricacies of DDoS and DoS attacks. This is shown by its F1 score of 0.6682.

The LSTM model with 3 fully connected layers has sufficient capacity to understand

the intricacies of DDoS and DoS attacks, as evident by comparing its performance

with the previous model, but this model is too complicated and tends to overfit on

the training dataset, which is why the F1 score for this is only 0.8743. The final

35

LSTM model with 2 fully connected layers has sufficient capacity for understanding

the intricacies of DDoS and DoS attacks. This model is not as complicated as the

LSTM model with 3 fully connected layers, so this model does not overfit on the

training data, as evident by its F1 score of 0.9476.

No. of Fully Connected Layers Accuracy Precision Recall F1 Score

1 92.83% 0.7599 0.6305 0.6682

2 98.05% 0.9191 0.9803 0.9476

3 92.03% 0.8233 0.9568 0.8743

Table 5.1: LSTM with Different Layers

Another innovation of this study is the proposed use of TCP reset functionality to

prevent attacks in real time for cloud systems that use TCP protocol in connections,

as mentioned in section 4.7. Since popular application layer protocols like HTTP

(Hypertext Transfer Protocol), HTTPS (HTTP Secure), FTP (File Transfer Proto-

col), SMTP (Simple Mail Transfer Protocol), DHCP (Dynamic Host Configuration

Protocol), POP3 (Post Office Protocol version 3), Telnet, SSH (Secure Shell), IRC

(Internet Relay Chat) and SFTP (SSH File Transfer Protocol) use TCP [38, 39], the

use of TCP reset functionality is applicable to many cloud systems. TCP reset allows

for an immediate response to identified security threats. As mentioned in section

4.7, when an attack is detected by the Intrusion Prevention System, a TCP reset

request is sent to the cloud system. The TCP reset request is a packet that contains

information about the attacker. The cloud system will then immediately send a TCP

reset to the attacker, interrupting the connection between the attacker and the cloud

system. This approach represents a proactive defense mechanism, and aims to disrupt

36

attacks as early as possible, instead of allowing malicious traffic to communicate with

cloud systems. Due to this disruption, the window of opportunity for exploitation

is reduced, preventing attacks and mitigating potential damage to cloud systems.

Finally, the use of TCP reset allows for a more streamlined and responsive security

architecture, and helps conserve resources as resources dedicated to communication

with the attacker can be used immediately by the cloud system after being freed.

37

Chapter 6

ILLUSTRATIVE EXAMPLE

In this section, I illustrate the actions taken by the proposed IPS to protect a

cloud system. For the purposes of presenting an illustration that covers more intri-

cate details, I have made two assumptions:(1) The proposed IPS has been deployed

to protect a cloud system, and (2) A new packet with attack type ‘DoS’ is sent to the

cloud system from a previously unseen IP address.

Step 1: The packet is intercepted by the IPS. The IP address of this packet is checked

to see if it is in the list of malicious IP addresses. Since this is a previously unseen

IP address, it will not be in those lists, so the packet is temporarily stored in the IPS

server, and NetFlow data of this packet is sent to the XGBoost model for analysis.

Step 2: The packet’s NetFlow data is subjected to analysis by the XGBoost model

after normalization. The result of this classification would be high probability of

‘DoS’ attack. Thus, the intercepted packet will not be sent to the cloud system.

Step 3: The result of the analysis by XGBoost model is sent to the control unit.

As this result has high probability of ‘DoS’ attack, normalized NetFlow data of this

packet is shared with the LSTM model for an analysis. In this case, the result of

analysis by LSTM will show high indication of ‘DoS’ attack. This report will also be

shared with the control unit.

Step 4: This step is taken as soon as the reports from XGBoost model and LSTM

38

model are received by the control unit. The control unit will generate a TCP reset

request for this IP address as all reports indicate that the intercepted packet is not

benign. The TCP reset request will be sent to the cloud system. The cloud system

will then terminate the connection between the cloud system and this IP address.

This IP address is included in the list of malicious IP addresses and shared with the

IPS server so that all future incoming packets from this IP address are dropped.

39

Chapter 7

SIMULATION

In this chapter, I present a simulation showing the reports generated by XGBoost

and LSTM models. For the purposes of this simulation, I make two assumptions:(1)

The proposed IPS has been deployed to protect a cloud system, and (2) A new

packet with attack type ‘DoS’ is sent to the cloud system from a previously unseen

IP address. This packet will be intercepted by the IPS. The IP address of this packet

will not be found in list of malicious IP addresses. NetFlow data of this packet will

be sent to the XGBoost model. It will analyze this data and generate probabilities

for all classes. This result will show a high probability of ‘DoS’ attack, a report about

this packet is sent to the control unit. This report contains the original NetFlow data

of the intercepted packet, results of the analysis by XGBoost model and the opinion

of XGBoost model, as shown in figure 7.1. Since the result of analysis by XGBoost

model shows high probability of ‘DoS’ attack, the normalized NetFlow data is sent to

the LSTM model. LSTM model will look at the top 22 attributes identified in Section

4.3, and give result of its analysis. A report for the same will be generated and sent to

control unit. This report will contain the probabilities for all classes and the opinion

of the LSTM model, as shown in figure 7.2. As both models have predicted the same

attack type correctly with strong confidence, this simulation shows reliability of the

proposed framework. The total time taken by both the XGBoost and LSTM models

to analyse this packet and generate reports came to approximately 0.004 seconds.

The control unit will send a TCP reset request to the cloud for the IP address of this

packet and this packet is dropped. The control unit will update the list of malicious

IP address to include IP address of this packet and share it with IPS server. The

40

Figure 7.1: Report by XGBoost model

41

Figure 7.2: Report by LSTM model

Figure 7.3: Screenshot Demonstrating Use of TCP Reset Request

cloud system will receive this TCP reset request and block the attacker as shown in

figure 7.3. In this figure, address ‘127.0.0.1’ with port ‘57505’ represents the IPS and

the packet identified to be malicious belongs to IP address ‘192.168.1.100’.

42

Chapter 8

EVALUATION

In this chapter, section 8.1 describes details on evaluation metrics for classification

models. Section 8.2 discusses results for the XGBoost model. Section 8.3 discusses

results for the LSTM model. Section 8.4 shows comparison of XGBoost and LSTM

models with other machine learning models. Section 8.5 discusses intermediate re-

sults obtained during training and fine-tuning the models.

Section 8.1 Details on Metrics

One of the most valuable tools for evaluating the performance of a classification

model is the confusion matrix [40]. It provides a summary of the model’s predictions

as compared to the actual ground truth. As shown in figure 8.1, it is a table with 4

different combinations of predicted and actual values [40].

Figure 8.1: Structure of Confusion Matrix

43

Consider a case where a model predicts positive or negative cases for a certain

input to help understand this matrix. TP stands for True Positive and it indicates

that the model predicted a positive result accurately. TN stands for True Negative.

This indicates that the model accurately predicted a negative result. FP stands for

False Positive. This indicates that the model predicted a positive case when the result

should have been negative. FN stands for False Negative. In this case, the model

inaccurately predicted a negative case. From the confusion matrix, the following

performance metrics can be calculated [40]:

1. Accuracy: Accuracy measures the overall correctness of the model’s predic-

tions. It is calculated as:

Accuracy =
TP + TN

TP + FP + FN + TN

2. Precision: Precision quantifies the model’s ability to correctly predict positive

instances. It is calculated as:

Precision =
TP

TP + FP

3. Recall: Recall is also known as Sensitivity or True Positive Rate. It measures

the model’s ability to capture all positive instances. It is calculated as:

Recall =
TP

TP + FN

4. F1 Score: F1 score is a widely used metric for evaluating the performance of

a classification model. It combines precision, and recall into a single value that

balances the trade-off between them.

44

F1 = 2 × Precision×Recall

Precision + Recall

These metrics provide insights into different aspects of model performance, which

helps to evaluate how useful a model is. Thanks to the ‘sklearn’ library in Python,

I can directly get this metrics from the code, without having to calculate each value

in the confusion matrix. Thus, I will showcase the outputs directly with screenshots.

Note that the precision, recall and F1 scores shown are weighted average values cal-

culated for all classes. This was done by setting the average type to ‘macro’ in the

code.

Section 8.2 Results for XGBoost Model

The number of training records, number of testing records, accuracy, precision,

recall and F1 score values for the XGBoost model are shown in table 8.1. Figure

8.2 shows a code snippet for generating the evaluation metrics. These values were

calculated for ‘Benign’, ‘DDoS’, ‘DoS’, ‘Infiltration’, ‘Brute Force’ and ‘Bot’ classes,

with 41 attributes as input data and one label as output. This figure also shows how

efficient this model is as it took about 2 seconds for it to finish processing over 2.3

million records. The resultant accuracy of 98.05% with high precision, recall and F1

score values proves the reliability of our model.

Figure 8.3 shows the result of simulation done for an individual record. It also

shows that the XGBoost model can analyse a single flow in a little over 0.001 seconds

with a 16GB CPU. Professional environments use processors several times better than

a 16GB CPU. This fact proves the capability of XGBoost model to take action in

real time. If the result of the classification is high probability of attack, the XGBoost

45

Figure 8.2: Screenshot of Results of XGBoost Model

Figure 8.3: Screenshot of Single Analysis by XGBoost Model

model allows our IPS to immediately redirect the suspicious packet to the honeypot

and begin the subsequent steps for dealing with it. Conversely, if the packet is deemed

to be benign with low probability of attack (less than 30%), the packet is redirected

to the cloud system in a matter of milliseconds on a 16 GB CPU, allowing the sender

to enjoy an almost seamless communication with the cloud system.

46

Category XGBoost LSTM

Training Records 9,380,660 19,604,716

Testing Records 2,345,168 2,269,092

Accuracy 99.33% 98.05%

Precision 0.9965 0.9191

Recall 0.8882 0.9803

F1 Score 0.9150 0.9476

Table 8.1: Training and Testing Information of XGBoost and LSTM Models

Section 8.3 Results for LSTM Model

The number of training records, number of testing records, accuracy, precision,

recall and F1 score values for the LSTM model are shown in Table 8.1. Figure

8.4 shows a code snippet for generating the evaluation metrics. These values were

calculated for ‘Benign’, ‘DDoS’ and ‘DoS’ classes, with 22 attributes as input data

and 3 attributes as output. The resultant accuracy of 98.05% with high precision,

recall and f1 score values proves the reliability of our model.

Figure 8.5 shows the result of simulation done for an individual record. It also

shows that the LSTM model can analyse a single flow in a little over 0.001 seconds.

The three values shown in 8.5 are sent to the control unit. The predicted result shown

in this figure will also be added in this report.

An interesting phenomenon was observed when training this LSTM model. When

47

Figure 8.4: Screenshot of Results of LSTM Model

Figure 8.5: Screenshot of Single Analysis by LSTM Model

48

there was only one fully connected layer that mapped 64 input variables to 3 output

variables, an accuracy of 92.83% was observed with 0.7599 precision, 0.6305 recall and

0.6683 F1 score for the same hyperparameters. Thus, I was able to achieve substan-

tially better results without overfitting the model just by adding one fully connected

layer.

Section 8.4 Comparison with Other Models

To compare the performance of our models with other models, I trained K Near-

est Neighbor (KNN), Support Vector Machine(SVM), Multi-Layer Perceptron (MLP),

Extra Trees, Decision Tree and Random Forest classifiers on the NF-UQ-NIDS dataset

for multi-class classification. Table 8.2 shows the evaluation metrics of these models

and our models, demonstrating how our models are superior when considering all 4

evaluation metrics. Comparing these results with the multiclass Extra Trees model

trained by Sarhan at al. in [12], it was observed that my models outperform the

multiclass Extra Trees model (96.93%) in terms of accuracy.

49

Model Accuracy Precision Recall F1 Score

KNN 46.67% 0.4195 0.4765 0.3711

SVM 54.38% 0.4455 0.5188 0.4167

Decision Tree 97.24% 0.7442 0.7436 0.7434

Random Forest 97.76% 0.8154 0.7478 0.7757

MLP 99.19 % 0.9902 0.8615 0.8905

Extra Trees 99.30 % 0.9689 0.8965 0.9192

LSTM 98.05% 0.9191 0.9803 0.9476

XGBoost 99.33% 0.9965 0.8882 0.9150

Table 8.2: Comparison of Models

Section 8.5 Intermediate Results of Training and Fine-Tuning

In this section, I have shared results obtained during the preprocessing, feature

selection, oversampling steps and hyperparameter tuning for the XGBoost and LSTM

models. Table 8.3 shows intermediate results for splitting the dataset into 3 different

ratios for training and testing data respectively, tested on the XGBoost model. Table

8.4 shows the results of selecting different number of features based on their score by

the XGBoost model. Table 8.5 shows the results of a LSTM model trained without

oversampling and the results of the final model.

Table 8.9 shows the results for different learning rates for the LSTM model. Re-

sults for XGBoost model with different learning rates are shown in table 8.6. Results

for XGBoost model with different maximum bins are shown in table 8.7. Table 8.8

50

shows results of training the XGBoost model with different maximum depths. Ta-

ble 8.10 shows the results of hyperparameter tuning for a LSTM model with 2 fully

connected layers.

Figure 8.6 shows the results for training different versions of LSTM, Random

Forest and SVM models. In this figure, fc layer stands for fully connected layer. Only

the hyperparameters mentioned in this figure are changed, other hyperparameters

were kept the same for different versions of the models trained. This figure shows

the importance of fine-tuning complexity and hyperparameters of machine learning

models when dealing with imbalanced datasets like the NF-UQ-NIDS-v2 dataset.

This figure also shows the superiority of the final LSTM model (with 2 fully connected

layers) over the other models shown in this figure.

Split Accuracy Precision Recall F1 Score

60-40 96.75% 0.4815 0.5000 0.4904

70-30 95.20 0.9545 0.8216 0.8778

80-20 99.33% 0.9965 0.8882 0.9150

Table 8.3: Results for Splitting Training and Testing Data

Model Features Accuracy Precision Recall F1 Score

LSTM 21 98.32% 0.9148 0.9815 0.9461

LSTM 22 98.05% 0.9191 0.9803 0.9476

LSTM 23 97.93% 0.9161 0.9789 0.9456

Table 8.4: Results for Feature Selection

51

Model Oversampled Accuracy Precision Recall F1 Score

LSTM No 90.72% 0.7433 0.6488 0.6807

LSTM Yes 98.05% 0.9191 0.9803 0.9476

Table 8.5: Results for Oversampling

Learning Rate Accuracy Precision Recall F1 Score

0.1 99.31% 0.9960 0.8859 0.9123

0.2 99.32% 0.9965 0.8872 0.9138

0.3 99.33% 0.9965 0.8882 0.9150

0.4 99.33% 0.9947 0.8892 0.9159

Table 8.6: XGBoost with Different Learning Rates

Maximum Bins Accuracy Precision Recall F1 Score

90 99.33% 0.9957 0.8879 0.9146

100 99.33% 0.9965 0.8882 0.9150

110 99.33% 0.9961 0.8879 0.9145

Table 8.7: XGBoost with Different Maximum Bins

Maximum Depth Accuracy Precision Recall F1 Score

5 99.32% 0.9966 0.8873 0.9140

6 99.33% 0.9965 0.8882 0.9150

7 99.32% 0.9964 0.8865 0.9131

Table 8.8: XGBoost with Different Maximum Depth

52

Learning Rate Accuracy Precision Recall F1 Score

0.001 82.49% 0.7080 0.9289 0.7686

0.0001 98.05% 0.9191 0.9803 0.9476

0.0002 85.65% 0.6719 0.8768 0.7383

Table 8.9: LSTM with Different Learning Rates

No. of Hidden Units Accuracy Precision Recall F1 Score

60 95.50% 0.8470 0.9720 0.9005

70 92.85% 0.8264 0.9015 0.8605

78 98.01% 0.9068 0.9810 0.9399

79 98.05% 0.9191 0.9803 0.9476

80 97.99% 0.9171 0.9806 0.9471

90 97.75% 0.9112 0.9780 0.9421

100 92.95% 0.8067 0.9645 0.8698

110 91.84% 0.7513 0.9490 0.8187

Table 8.10: LSTM with Different Hidden Units

53

Figure 8.6: Observation in Training Models

54

Chapter 9

LIMITATIONS

One drawback associated with using NF-UQ-NIDS-v2 dataset is the lack of times-

tamps, which affects the LSTM model. The reason is that LSTM models are specif-

ically designed to handle sequential data with time-dependent patterns. Without

timestamps, the model may lose critical information about the order and timing of

events. There is also a possibility that the model’s capacity to capture dependencies

might be underutilized. Finally, attacks like DoS and DDoS exhibit recurring pat-

terns. Having timestamps in the data would have allowed the LSTM model to better

capture such patterns. Fortunately, since all the records in the dataset are individual

flows captured over time from the network behaviour, I was able to sufficiently train

the LSTM model and obtain reasonable results. While this method works, I believe

that having a proper sequential dataset with timestamps will yield better results,

when used to train a time-series model. This approach exhibits limitations inherent

to use of supervised machine learning, it is a probabilistic approach. I ran a simula-

tion to check how many known attacks are being sent to cloud system. Out of 452089

known attacks, 15336 were sent to cloud system based on results of XGBoost model.

This shows that my approach prevents 96.61% known attacks with XGBoost model.

LSTM model failed to detect 727 out of 376013 known attacks, approximately 0.19%,

which is a remarkable result of preventing 99.81% known attacks, but it still allows

some attacks to go to the cloud system. Due to the use of supervised machine learn-

ing algorithms, this approach does not guarantee protection from zero day attacks or

new types of attacks, and expanding this approach to cover new attacks will require

retraining the models on data for new attacks.

55

Chapter 10

CONCLUSIONS AND FUTURE WORK

This thesis presented an intrusion prevention approach that analyses NetFlow data

of incoming packets and takes action in real time to safeguard cloud systems. Results

demonstrate that XGBoost and LSTM models show results comparable to the current

state-of-art models in terms of accuracy, precision, recall and F1 scores. These models

are very fast in terms of time taken for prediction of a single flow and reliable. With

the use of TCP reset functionality, the proposed approach shows promise for working

in real time. The proposed approach has considered the possibilities of false positives

and has incorporated effective measures to minimize the risk of false positives. This

work also emphasizes the importance of using specialized models for specific purposes

to ensure faster and more reliable results. This approach is applicable for cloud

systems using the TCP protocol. Choosing TCP in cloud systems is a good idea for

security because it makes sure data is kept intact, delivered reliably, and in the right

order. Using TCP aligns with the high standards of cloud systems, emphasizing the

need for a secure and trustworthy way of exchanging data.

In the future, I plan to work on collecting network intrusion data. This would be

achieved by simulating honeypots and cloud systems in a private server and inviting

people to attack them. Data collected will be analyzed by domain experts and com-

piled into a dataset. My intention here is to cover popular attack vectors for each

packet received by honeypot and/or cloud server in sufficient number. This will allow

me to have a dataset with timestamps and reasonably balanced number of records

across classes, making this dataset ideal for training good time series models. This

dataset will be used to train powerful time series models like Transformers, N-HiTS

56

and Prophet and using them in proposed framework, replacing LSTM model for bet-

ter results. Future work also includes using unsupervised machine learning in this

framework in combination with time series models.

Additionally, I plan to showcase use of a high-interaction honeypot along with ma-

chine learning models for real-time prevention of network attacks. High-interaction

honeypots are configured to mirror production systems, and designed to give an at-

tacker full reign of an operating system in the event that they are lured into com-

promising it [41]. A low-interaction honeypot can easily be noticed by a professional

hacker, whilst a high-level interactive one cannot be so easily noticed [42]. A medium-

interaction honeypot is also detected more easily than a high-interaction honeypot.

Adam Doupe et al. showed in [43] using user studies that none of the attackers re-

alized they were inside a honeypot until informed explicitly about the honeypot flag.

Thus, when high-interaction honeypot is utilized, the chances of an attacker realizing

they are being monitored are very low. This offers a very big tactical advantage as

now a network administrator can watch attacker exploit vulnerabilities of the system.

This will allow the network administrator to keep track of weaknesses that need to be

improved to prevent such attacks in the future. Adding a honeypot to this approach

will aid the use of more powerful machine learning models for real time applications.

It will also allow use of multiple lists to keep track of IP addresses who are suspicious

but not known to be malicious, allowing incoming packets from these IP addresses to

be stored in the honeypot and observing their behaviour without harming the cloud

system.

57

REFERENCES

[1] Zeeshan Ahmad, Adnan Shahid Khan, Cheah Shiang, and Farhan Ahmad. Net-
work intrusion detection system: A systematic study of machine learning and
deep learning approaches. Transactions on Emerging Telecommunications Tech-
nologies, 32, 01 2021.

[2] Stephen S. Yau, Arun Balaji Buduru, and Vinjith Nagaraja. Protecting critical
cloud infrastructures with predictive capability. In 2015 IEEE 8th International
Conference on Cloud Computing, pages 1119–1124, 2015.

[3] C. Constantinides, S. Shiaeles, B. Ghita, and N. Kolokotronis. A novel online
incremental learning intrusion prevention system. In 2019 10th IFIP Interna-
tional Conference on New Technologies, Mobility and Security (NTMS), pages
1–6, Canary Islands, Spain, 2019.

[4] Amazon Web Services. Aws case study: Animoto, 2014.
https://aws.amazon.com/solutions/case-studies/animoto/.

[5] Microsoft. Troubleshoot tcp/ip connectivity, 2023.
https://learn.microsoft.com/en-us/troubleshoot/windows-
client/networking/tcp-ip-connectivity-issues-troubleshooting.

[6] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’16, page 785–794, New York, NY, USA, 2016.
Association for Computing Machinery.

[7] Ralf C. Staudemeyer and Eric Rothstein Morris. Understanding lstm - a tutorial
into long short-term memory recurrent neural networks. ArXiv abs/1909.09586,
2019.

[8] Tutorials Point. Tcp/ip model: The key to seamless internet connectivity and
security, 11 Sept. 2023. https://www.tutorialspoint.com/tcp-ip-model-the-key-
to-seamless-internet-connectivity-and-security.

[9] Patrik Goldschmidt. Tcp reset cookies–a heuristic method for tcp syn flood
mitigation. Excel@ FIT 2019, 2019.

[10] M. Tavallaee, E. Bagheri, W. Lu, and A. Ghorbani. A detailed analysis of the
kdd cup 99 data set. Second IEEE Symposium on Computational Intelligence
for Security and Defense Applications (CISDA), 2009.

[11] University of New Brunswick Network Security Laboratory. Nsl-kdd dataset.
https://www.unb.ca/cic/datasets/nsl.html.

[12] Mohanad Sarhan, Siamak Layeghy, and Marius Portmann. Towards a standard
feature set for network intrusion detection system datasets. Mobile Networks and
Applications, 103:108379, 2022.

58

[13] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani. Toward gen-
erating a new intrusion detection dataset and intrusion traffic characterization.
In 4th International Conference on Information Systems Security and Privacy
(ICISSP), Portugal, January 2018.

[14] M. Choras and R. Kozik. Machine learning techniques applied to detect cyber
attacks on web applications. Logic J. IGPL, 23(1):45–56, 2015.

[15] Micha l Choraś and Marek Pawlicki. Intrusion detection approach based on op-
timised artificial neural network. Neurocomputing, 452:705–715, 2021.

[16] Yudai Yamamoto and Shingo Yamaguchi. A method to prevent known attacks
and their variants by combining honeypots and ips. In 2022 IEEE 11th Global
Conference on Consumer Electronics (GCCE), pages 302–305, 2022.

[17] Lily Hay Newman. A year later, that brutal log4j vulnerability is still lurking,
2022. https://www.wired.com/story/log4j-log4shell-one-year-later/.

[18] Wooseok Seo and Wooguil Pak. Real-time network intrusion prevention system
based on hybrid machine learning. IEEE Access, 9:46386–46397, 2021.

[19] Akhil Krishna, Ashik Lal M.A., Athul Joe Mathewkutty, Dhanya Sarah Jacob,
and M. Hari. Intrusion detection and prevention system using deep learning. In
2020 International Conference on Electronics and Sustainable Communication
Systems (ICESC), pages 273–278, 2020.

[20] Vibha Gupta, Maninder Singh, and Vinod K. Bhalla. Pattern matching algo-
rithms for intrusion detection and prevention system: A comparative analysis.
In 2014 International Conference on Advances in Computing, Communications
and Informatics (ICACCI), pages 50–54, 2014.

[21] Anurag Yadav, Himanshu Gupta, and Sunil Kumar Khatri. A security model
for intrusion detection and prevention over wireless network. In 2019 4th Inter-
national Conference on Information Systems and Computer Networks (ISCON),
pages 12–16, 2019.

[22] O.A. Sarumi, A.O. Adetunmbi, and F.A. Adetoye. Discovering computer net-
works intrusion using data analytics and machine intelligence. Scientific African,
9, 2020.

[23] S. Reddy and G.K. Shyam. A machine learning based attack detection and
mitigation using a secure saas framework. Journal of King Saud University -
Computer and Information Sciences, 2020.

[24] S. Gamage and J. Samarabandu. Deep learning methods in network intrusion
detection: A survey and an objective comparison. Journal of Network and Com-
puter Applications, page 102767, 2020.

[25] S.M. Kasongo and Y. Sun. Performance analysis of intrusion detection systems
using a feature selection method on the unsw-nb15 dataset. Journal of Big Data,
7, 2020.

59

[26] Sydney Mambwe Kasongo. A deep learning technique for intrusion detection
system using a recurrent neural networks based framework. Computer Commu-
nications, 199:113–125, 2023.

[27] S. Farhat, M. Abdelkader, and et al. A. Meddeb-Makhlouf. Cads-ml/dl: efficient
cloud-based multi-attack detection system. Int. J. Inf. Secur., 22:1989–2013,
2023.

[28] Sayantan Guha, Stephen S. Yau, and Arun Balaji Buduru. Attack detection
in cloud infrastructures using artificial neural network with genetic feature se-
lection. In 2016 IEEE 14th Intl Conf on Dependable, Autonomic and Secure
Computing, 14th Intl Conf on Pervasive Intelligence and Computing, 2nd Intl
Conf on Big Data Intelligence and Computing and Cyber Science and Technology
Congress(DASC/PiCom/DataCom/CyberSciTech), pages 414–419, 2016.

[29] R. Poornima, Mohanraj Elangovan, and G. Nagarajan. Network attack classi-
fication using lstm with xgboost feature selection. J. Intell. Fuzzy Syst., Jan
2022.

[30] P. Devan and N. Khare. An efficient xgboost–dnn-based classification model
for network intrusion detection system. Neural Computing and Applications,
32:12499–12514, 2020.

[31] A.S. Khan, Z. Ahmad, J. Abdullah, and F. Ahmad. A spectrogram image-
based network anomaly detection system using deep convolutional neural net-
work. IEEE Access, pages 87079–87093, 2021.

[32] Amr Attia, Miad Faezipour, and Abdelshakour Abuzneid. Network intrusion
detection with xgboost and deep learning algorithms: An evaluation study. In
2020 International Conference on Computational Science and Computational In-
telligence (CSCI), pages 138–143, 2020.

[33] Mohammed Hasan Ali, Bahaa Abbas Dawood Al Mohammed, Alyani Ismail,
and Mohamad Fadli Zolkipli. A new intrusion detection system based on fast
learning network and particle swarm optimization. IEEE Access, 6:20255–20261,
2018.

[34] Yakubu Imrana, Yanping Xiang, Liaqat Ali, and Zaharawu Abdul-Rauf. A bidi-
rectional lstm deep learning approach for intrusion detection. Expert Systems
with Applications, 185:115524, 2021.

[35] MathWorks. lstmlayer long short-term mem-
ory (lstm) layer for recurrent neural network (rnn).
www.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.lstmlayer.html.

[36] Pragati Baheti. Activation functions in neural networks, Nov 15, 2020.
https://www.v7labs.com/blog/neural-networks-activation-functions.

[37] Adam Green. A guide to deep learning layers, Nov 15, 2020.
https://towardsdatascience.com/a-guide-to-four-deep-learning-layers-
225c93646e61.

60

[38] geeksforgeeks. Protocols in application layer.
https://www.geeksforgeeks.org/protocols-application-layer/.

[39] geeksforgeeks. Application layer protocols in tcp/ip, 11 Sept. 2023.
https://www.geeksforgeeks.org/application-layer-protocols-in-tcp-ip/.

[40] Sarang Narkhede. Understanding confusion matrix, 2018.
https://towardsdatascience.com/understanding-confusion-matrix-
a9ad42dcfd62.

[41] Chris Sanders and Jason Smith. Chapter 12 - using canary honeypots for de-
tection. In Chris Sanders and Jason Smith, editors, Applied Network Security
Monitoring, pages 317–338. Syngress, Boston, 2014.

[42] S. Ravji and M. Ali. Integrated intrusion detection and prevention system with
honeypot in cloud computing. In 2018 International Conference on Computing,
Electronics & Communications Engineering (iCCECE), pages 95–100, Southend,
UK, 2018.

[43] Siddhant Bhambri, Purv Chauhan, Frederico Araujo, Adam Doupé, and Sub-
barao Kambhampati. Using deception in markov game to understand adversarial
behaviors through a capture-the-flag environment, Nov 09 2022.

61

