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ABSTRACT

Fault detection is an integral part for power systems as without its proper study,

analysis and mitigation, people will not be able to power the various appliances and

equipment required in all aspects of life. One such type of fault which is very critical

in an electrical cable but very difficult to spot is incipient fault. These momentary

faults are observed for very short periods however, if it persists, this would lead to

consequences like insulation wear-off and even, power outages. With the advent of

machine learning in the power systems fraternity, this paper also uses a new and

updated Active Learning algorithm to detect incipient fault data from a simulated

test case. The objective of the paper is to detect the fault data accurately using this

new and precise method. For purposes of data collection and training of the model,

MATLAB Simulink and Python programming has been used respectively.
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Chapter 1

INTRODUCTION

The recent advancements in technology has engulfed all aspects of human life. Power

systems and its various applications has also progressed massively. Some common

examples that one can observe in their daily life which they might not have observed

20 years back are renewable usage for electricity generation, electric vehicles and

smart meters. There have been advancements in every field possible but the one

thing common to every equipment is electricity usage. Consumption of electricity

is mostly required for any device to operate. Hence, the power industry has one of

the most important role of supplying electricity to people continuously. Although,

there are various factors which could harm the power engineers to not meet their

expectations and responsibilities.

One of the important thing that power engineers around the world always put

effort into is the study of electric faults and its effect on the grid. There are various

types of faults that affect the system like short circuit and open circuit faults. Miti-

gation of all types of faults are very critical to the power network. However, incipient

fault is one such example which is really difficult to detect and hence, protection

against it too becomes cumbersome. Incipient faults are momentary faults in the

electric cables and initially, these look harmless for the grid. However, if such fault

persists in the network, it will have detrimental effects to the grid. It could lead to

insulation damage and the worst case being massive outages. Currently, there are

some numerical approaches for incipient fault detection like Canonical Variate Dis-

similarity Analysis (CVDA) method described in Pilario et al. (2019) and studying

of fault trip events as in Kasztenny et al. (2008). Escobet et al. (2014) also proposes
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incipient fault detection methodology like residual generation methods and Xu et al.

(2018) describes the impact of incipient faults on various power equipment. Kulkarni

et al. (2014) proposes an algorithm for incipient fault detection in underground cables

and research has been carried out in medium voltage level in Zhang et al. (2016a).

These methods are effective in their own way but this is not the ideal solution for

power engineers. It is not robust and formulated mainly for conventional systems.

This is where Machine Learning comes into action. A type of a semi-supervised learn-

ing called Active Learning has been one of the recent algorithms that has started gain-

ing popularity in the field of Machine Learning and Artificial Intelligence. The main

applications for which Active Learning was deemed to be useful when the database is

small, only considering specific instances to be more useful than others and calculat-

ing the importance of every data point and then, labeling accordingly. This ability

to reduce human effort and error has been mostly tested in the computer science

related databases like in Wang et al. (2015). However, some recent research has been

performed using Active Learning in power systems as in Zhang et al. (2022).

As is the case with every popular and trending methods, researchers try to find

some error cases in it. Some examples where active learning is not much useful is

pointed in Kottke et al. (2019). Following up on such drawbacks, this paper used tech-

niques like modular active learning (Danka and Horvath (????)) and active learning

using decision trees. These methods overcome the major drawbacks as well as the

main formula could be optimized for a power system test case. When compared to

the older methods (Bachman et al. (2017)), the methods used in this thesis provides

better accuracy and faster computation time which means that the power system

protection is ensured at the minimum time possible. Due to the tweaking in classi-

fication techniques and ensuring that various active learning methodologies work for

the fault detection case, the paper presents a creative way to detect incipient fault
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in the grid. As it is known that incipient fault data is very small in a power systems

data, by applying such an updated algorithm, most challenges are overcome when

the hyper parameters are tuned well or the learning formula is adjusted according to

the particular test system.

Some changes had to be carried out to ensure that the simulated power data

with test fault cases could be executed efficiently using the active learning algorithm.

Papers like Peng et al. (2022) and Jian et al. (2021) has worked on usage of active

learning for general fault detection. However, this project focuses on incipient fault

detection. The first important change was to modify the feedback loop such that

the important data points be identified correctly. Then, designing the function which

would label these important points. Hence, a repeated loop is run until a satisfied

accuracy level of the model is reached. Therefore, the active learning query strategy

is important and modified likewise. Apart from solving a real time problem with

precision and accuracy, this method also has some added benefits.

One future work in this project which would further elevate the usefulness of this

algorithm would be making this work on a real-time level. There has been advance-

ments on the real-time fault detection in power networks using generic machine learn-

ing methods as described in Leite et al. (2022) and Malkoff (1987). However, incipient

fault detection being a difficult and tedious task, using real-time active learning would

be very efficient. The current project with minute tweaks for the input of real-time

data could easily be deployed. Another benefit to this model is by improving the

formula further or by fine-tuning the hyper-parameters, the accuracy from modular

active learning could be increased more. Hence, it is evident that the objective of

trying to use active learning for incipient fault detection is indeed justified.

As it has been already mentioned, the usefulness of any algorithm is usually judged

on the accuracy of whatever task it is required to perform. In this case, it is checked
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how accurately the algorithm is able to detect incipient fault data amongst a large

power database. The data is collected from different simulation cases as described

in later sections. This data is then split into train and test data systems. The train

data is used to build the initial model and based on the model’s accuracy, further

data is labelled. After the model is trained completely, the test data is executed and

compared with the already labeled data to get the accuracy of the model. By testing

the various pools of data previously simulated, the novelty and accuracy of the model

could be verified.

The rest of the report is organized as follows: Chapter 2 describes the steps in-

volved in Active Learning algorithm and gives a detailed explanation on how Active

Learning is deployed for incipient fault detection. Chapter 3 studies the way to model

an incipient fault for simulation purposes on MATLAB Simulink. It also includes the

simulation procedure for data collection. Chapter 4 reports all the numerical calcu-

lations involved in the modeling along with captured instances of the simulated fault

data. Additionally, it contains the algorithm results along with proof of superiority

of the method. Chapter 5 concludes the report and then References are noted.
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Chapter 2

PROPOSED METHOD

2.1 Active Learning Background

The technique of prioritising the data that has to be labeled in order to have the

most influence on training a supervised model is known as active learning. When

there is too much data to label and smart labelling needs to be prioritised because

there is too much data to label, active learning can be employed.

To apply active learning to an unlabeled data collection, the following steps are

followed:

• The very first thing that must be done is the manual labeling of a very tiny

subset of the input data.

• The model needs to be trained using a limited amount of labelled data. The

model will not be perfect but will provide some insight into which regions of

the parameter space should be tagged first to make it better.

• The model is used to forecast the class of each subsequent unlabeled data item

after it had been trained.

• Each unlabeled data point is assigned a score depending on the model’s predic-

tion.

• This process can be repeated after the optimal method for prioritising the la-

belling has been selected: a new model can be trained on a new labelled data set

that has been tagged using the priority score. The unlabeled data points can be
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run through the model to update the prioritisation scores and continue labelling

after the new model has been trained on the subset of data. In this approach,

as the models improve, the labeling strategy may be continually improved.

2.2 Active Learning for Incipient Faults

Using machine learning algorithms to find flaws or anomalies in a system is known

as fault detection using active learning algorithm. By choosing the most insightful

data points for labeling, active learning aims to reduce the amount of labeled data

needed to train the machine learning model. The measures to take when employing

the active learning algorithm for defect detection are as follows:

1. Gather and prepare data: Gathering and preparing data is the initial step in

active learning fault detection. In order to do this, a test model had been

simulated for data collection, cleaned and normalized, and relevant features

must be chosen in order to train the machine learning model. This is described

in detail in Chapter 3.2.

2. Train the initial model: After the data has been cleaned up, the next step

is to use a tiny labeled data set to train an initial machine learning model. A

representative sample of the fault and non-fault data points should be contained

in this labeled data set.

3. Choose useful data points: The active learning algorithm chooses useful data

points for labeling. These should be the most ambiguous or challenging data

pieces for the model to classify.

4. Label the chosen data points: A subject-matter expert or domain specialist

labels the chosen data points.
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5. Retrain the model: With the extended data set, the model is retrained using

the newly labeled data points that were added to the training set.

6. Repeat steps 3-5: The model is repeated in stages 3-5 until it reaches an ac-

ceptable degree of accuracy.

7. Test the model: After it has been trained, the model can be used to identify

faults in the system. It’s crucial to test the model on a held-out data set to

make sure it applies well to fresh data.

The above points when described numerically, the active learning model is built

with a set, S ≡ {(x, y)} where x number of data points can request labels y. A

similarly defined evaluation set E ≡ {(x̂, ŷ)}. Also Su
t ≡ {(x, ·)} denotes data set

which are still unlabeled after t label queries. Its complementary set, Sk
t ≡ {(x, y)},

denotes the data points whose labels are determined. Also, St denotes the joint set

of labeled and unlabeled data after t label queries. A real valued vector ht is the

control state of the model and R(E, St, ht) defines the accuracy of the model while

predicting labels after t queries. Considering the model parameters, θ, the prediction

reward formula is as follows:

R (E, St, ht) ≡
∑

(x̂,ŷ)∈E

log p (ŷ | x̂, ht, St) (2.1)

This gives the log-likelihood of the predictions log p (ŷ | x̂, ht, St) on the sample

set. At each step t of active learning, the model requests label for a data point x from

the set Su
t−1. Meanwhile, the control state is updated from ht−1 to ht. Consequently,

ht and St helps the model to determine which data point’s label is to be requested

next. The objective function for training is defined as follows:
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maximize
θ

E
(S,E)∼D

[
E

π(S,T )

[
T∑
t=1

R (E, St, ht)

]]
(2.2)

where T is the maximum number of label queries to take place, (S,E) indicates one

query sample from the distribution, D and π(S, T ) indicates model’s active learning

method π for T steps on set S. By using the above steps, the objective function is

optimized and ensures maximum accuracy of predictions.

Active learning techniques like query by committee, uncertainty sampling, and

density-based sampling can all be used to detect faults in power systems. Each

approach has advantages and disadvantages, and the best algorithm will be chosen

depending on the application and data set.

Figure 2.1: Active Learning Algorithm

As observed from 2.1 and described previously, the first step is to collect data.

In this case, a test IEEE 13-node system has been simulated with an introduction
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1: f ← initialize classifier

2: al← initialize AL strategy

3: for all n ∈ {1, . . .} do

4: (txn, xn, t
y
n)← retrieve from data stream S

5: Ln ← training data set at time tn for acquisitions A

6: un ← ( al, (txn, xn, t
y
n) , f, Ln)

7: an ← Active Learning QUERY (un)

8: ifan = 1 then

9: askforlabelofxn (label yn will be provided at tyn)

10: end if

11: end for

9

of fault. Various data sets has been collected with varying phase-to-ground faults. 

The next step in the procedure is to build the initial active learning model with only 

limited labels. Once the model is trained, the code checks the accuracy of the model. 

If the accuracy is not satisfactory, the code tries to determine the uncertainty of the 

prediction in the testing data set. This is done in order to label some more data. 

The process then repeats, that is, builds the model and checks the accuracy. Once a 

satisfactory accuracy level is reached, the model is deployed to carry out the objective. 

The entire algorithm can be described using a pseudo code.



Chapter 3

INCIPIENT FAULT SIMULATION

3.1 Establishment of Incipient Fault Model

In power systems, an arc is typically evident when the fault occurs. The fault

arc poses a threat to both human life and electrical equipment. Therefore, arc fault

current calculation is crucial for minimizing loss.

The arc fault current must be calculated using an arc model. There are three

categories into which arc models can be divided: physical models, black box models,

and models based on drawings and diagrams. Black box models simply explain how

input and output signals are related. Black box models describe how the arc and the

electrical circuit interact when there is a fault. One or more differential equations

linking the arc conductance, which represents the energy balance of the arc column,

are used in black box models to describe arcs Weng et al. (2022).

In 1939, Cassie presented the Cassie Arc Model. According to Cassie, the arc’s

temperature is fixed and is lowered by forced convection. This suggests that the

voltage over the arc is constant and that the cross-sectional area of the arc is pro-

portionate to the current. For arcs with strong currents, the Cassie arc model is

appropriate. The Cassie Arc Model can be represented by the following differential

equation:

1

gc

dgc
dt

=
1

τc

(
u2
arc

u2
c

− 1

)
(3.1)

where,
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gc is the arc conductance,

ro is the arc time constant and,

uac is the arc voltage across the breaker.

In 1943, the Mayr Arc Model was introduced. Mayr made the assumption that

thermal conduction is what causes power losses and that temperature affects arc con-

ductance. The arc’s cross-sectional area is taken to be constant. Currents close to

zero are fit by the Mayr arc model. In 1992, a modified Mayr arc model was intro-

duced. Current influences how effective the cooling is in the model. The differential

equation for the Mayr model is as follows:

1

gm

dgm
dt

=
1

τm

(
uarciarc

Po

− 1

)
(3.2)

where,

gm is the arc conductance,

rm is the arc time constant,

Po is the cooling power constant,

uaac is the arc voltage across the breaker and,

iar is the arc current.

Li and Li (2018) mentions that incipient faults and their intrinsic characteristics

can be modeled using Cassie and Mayr models. These models can be treated as

black box model which internally consist of that particular differential equation but

the application remains the same. In regards to the paper’s design, the fault arc is

being simulated using the above mentioned models. The results of the simulations are

discussed in the subsequent sections but it can be noted that the correctness of the

output plots can be verified from the references. Xiong et al. (2020) is treated as the

base paper for the understanding and working of incipient faults and arc models being
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exposed to different t esting s y stems. T he t esting s ystem i s s imilar t o t his p aper, the 

difference b eing t he p riority o f t his t hesis i s d ata c ollection f rom t he a rc f ault model. 

Hence, the fault was introduced only at one node. Wang et al. (2008) explicitly uses 

Cassie and Mayr models for simulating the incipient faults and so, the relevance of use 

of these models are proved. There are more evidence in support of usage of Cassie 

and Mayr Arc Models like Samet et al. (2021b) mentions that incipient faults are 

dangerous to the power systems and should be taken care of before it turns into a 

permanent fault. To have a visual understanding of such faults, these can be modeled 

using Cassie, Mayr and other universal models. Samet et al. (2021a) and Bretas et al.

(2017) also mentions that Cassie and Mayr models are indeed the correct way to model 

incipient fault arcs. The papers Kizilcay and La Seta (2005) and Kizilcay and Pniok 

(1991) also dwells on the fact that fault simulation can be done using the arc models 

in discussion. However, the application areas of the references are different than what 

this thesis provides insight on. Yuan et al. (2013) acts as an important validation of 

our obtained output plots. Hence, it can be observed that the simulation methods 

adopted in this paper is indeed the correct procedure (Li and Li (2018)).

3.2 Construction of the Fault Database

As discussed in the previous section, the test system was the IEEE 13-node system. 

This is modeled in MATLAB Simulink as the diagrams attached below. The main 

objective here is to model and predict the fault that can be present in a network. 

Hence, the fault is introduced at the 633-node of the official IE EE  13 -n ode system. 

This fault is modeled by two methods: Cassie and Mayr Arc Models.

In Simulink, this arc model is created using the Masked Block model. The main 

block inside this masked model is the Differential E quation E ditor ( DEE). T his con-

sists of the basic differential e quations o f i ndividual a rc m o dels. Hence, t his way, the
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simulation makes it easier to replicate any arc model according to any requirement. 

In this case, Cassie and Mayr differential e q uations a s  d e scribed i n  e q uations (3.1) 

and (3.2) are given as arguments.

This process was repeated for every phase. this means a fault was first introduced 

at phase A and data collection was done. Then, a fault was introduced only at phase 

B and the voltage and current data for the entire simulation time period was noted. 

Finally, a fault was solely introduced at phase C and similar data was stored. This 

provides a larger data set for further processing and learning. Also, to get a more 

practical and realistic data, noise was added to these data. A white Gaussian noise 

was used in this case. This is a basic noise model which mimics the randomness 

observed in practical scenarios. This was done using MATLAB code. Hence, for both 

current and voltage waveform, this white, Gaussian noise of Signal-to-Noise Ratio of 

20dB, 33dB and 44dB was added. This was done for the above described three cases 

of testing too, that is, fault being individually introduced at each phase. Hence, for 

every faulty phase, we get three sets of voltage and current, noise added data. All 

these are stored in MS Excel again for ease of use.

Another type of black box arc model that could have been utilized is the Kizilcay 

Arc Fault model like in Zhang et al. (2016b). recently, various advanced methods has 

also been tried to model the incipient fault arcs in power grids like performed in Li 

et al. (2021) and Izadi and Mohsenian-Rad (2021).
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Figure 3.1: Modified IEEE-13 Node System for testing purposes
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Chapter 4

NUMERICAL RESULTS

4.1 Parameters of Incipient Fault Arc Models

There are some calculations also involved to get to know the values of passive

components. The typical values of inductive and capacitive reactive values were

extensively checked and then the particular passive components were computed for

our design parameters.

For a Voltage range of 460 V− 33kV, the capacitive reactive power (XC) is 300−

3000kVAR So, 25kV gives a reactive power of 2272.73kVAR

I2

2πfC
= 2272.73

C =
2.62

2π × 60× 2272.73× 103

C = 7.938nF

Similarly, for a voltage range of 25kV, the inductive reactive power (XL) is 100 −

500kVAR Hence, 25kV gives a reactive power of 500kVAR

2πfL× I2 = 500

L =
500

2π × 60× 2.62

L = 0.196H

Hence, these are the values that have been used in the simulation. For the single

phase model, it can be noticed that a resistive component has been connected directly

to the voltage source. This is a very small resistor connected to the voltage source

to ensure that there is no direct connection between inductor and the source. The
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Figure 4.1: Voltage Waveform obtained from Cassie Arc Model in the IEEE-13

Node System

16

single phase models were run for a simulation period of 0.0004s and the fault was 

introduced at 0.0002s. The three phase Cassie model was run for 0.06s and the fault 

was introduced at 0.02s. These time periods were chosen to get the optimal output 

plots and best data set. This way the output plots are obtained from the Scope 

block. After the model is run, the data points at the fault location are extracted and 

collected in MS Excel. Similarly, the three phase Mayr model was run for 0.1s and 

the fault was triggered at 0.05s.

All the output plots were collected in this section. As discussed in the previous 

section, the Cassie and Mayr fault models were triggered at the 0.0002s mark. Hence, 

that particular time range of the entire output plot is displayed. With regards to 

the three phase models, we can observe that the phase consisting of the fault has 

a crooked behaviour when compared to non-fault phases which have an expected 

sine-wave structure.



Figure 4.2: Current Waveform obtained from Cassie Arc Model in the IEEE-13

Node System

Figure 4.3: Voltage Waveform obtained from Mayr Arc Model in the IEEE-13 Node

System
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Figure 4.4: Current Waveform obtained from Mayr Arc Model in the IEEE-13 Node

System

Figure 4.5: Voltage Waveform obtained from Cassie Arc Model when fault applied

at phase-A in the 3-Phase IEEE-13 Node System, Current Waveform obtained from

Cassie Arc Model when fault applied at phase-A in the 3-Phase IEEE-13 Node

System, Voltage Waveform (measurement device placed right before the fault

location) of the System, Current Waveform (measurement device placed right before

the fault location) of the System,
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Figure 4.6: Voltage Waveform obtained from Cassie Arc Model when fault applied

at phase-B in the 3-Phase IEEE-13 Node System, Current Waveform obtained from

Cassie Arc Model when fault applied at phase-B in the 3-Phase IEEE-13 Node

System, Voltage Waveform (measurement device placed right before the fault

location) of the System, Current Waveform (measurement device placed right before

the fault location) of the System,

4.2 Method Superiority Proof

The primary reasons to use Active Learning algorithm in our incipient fault de-

tection case are as follows:

• Data labeling takes less time and cost- As mentioned earlier, the incipient faults

are momentary faults and their existence in a data set is very small. Hence, if

engineers try to label all data manually, it is a serious waste of time. On the

other hand, if it is tried to learn the model without labeling them, the model

will learn it wrong. Hence, by using Active Learning algorithm, humans are able

to know which are the important data points and label them only. Therefore,

this algorithm saves both time and cost.

• Quick determination of model accuracy and feedback- Usually, data is labeled
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Figure 4.7: Voltage Waveform obtained from Cassie Arc Model when fault applied

at phase-C in the 3-Phase IEEE-13 Node System, Current Waveform obtained from

Cassie Arc Model when fault applied at phase-C in the 3-Phase IEEE-13 Node

System, Voltage Waveform (measurement device placed right before the fault

location) of the System, Current Waveform (measurement device placed right before

the fault location) of the System,

prior to model training or receiving feedback. Frequently, it takes days or weeks

of re-labeling and iterating on annotation criteria before it is understood that

the model’s performance is grossly deficient or that fresh labels for the data are

required. Active Learning makes it possible to train models often, allowing for

feedback and error correction that would otherwise need to happen much later.

• Active learning models can train more quickly with less input of data and con-

verge to superior final models. With the widespread belief that more data is

better, it is easy to overlook the fact that data quality matters just as much

as quantity. If the data set includes examples that are challenging to accu-

rately categorize, the performance of the final model may actually deteriorate.

As observed in the testing cases too, this Active Learning algorithm produces

better accuracy when compared to general Machine Learning algorithms. Addi-
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Figure 4.8: Voltage Waveform obtained from Mayr Arc Model when fault applied at

phase-A in the 3-Phase IEEE-13 Node System, Current Waveform obtained from

Mayr Arc Model when fault applied at phase-A in the 3-Phase IEEE-13 Node

System, Voltage Waveform (measurement device placed right before the fault

location) of the System, Current Waveform (measurement device placed right before

the fault location) of the System,

tionally, for an application like fault detection, we can never underestimate the

value of accuracy as any wrong diagnosis of the system would lead to massive

outage or blackouts even.

Hence, it is evident that using Active Learning is ideal for an application like

incipient fault detection. However, then, the question arises that why this method

was not widely used previously. The primary reasons for this are as follows:

• Active Learning or a type of semi-supervised learning was not considered to

be a part of generic machine learning and its related algorithms. Hence, not

much research was carried out in this direction. Additionally, not knowing the

benefits of Active Learning for the most time, power engineers also did not try

to use this algorithm in their applications.
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Figure 4.9: Voltage Waveform obtained from Mayr Arc Model when fault applied at

phase-B in the 3-Phase IEEE-13 Node System, Current Waveform obtained from

Mayr Arc Model when fault applied at phase-B in the 3-Phase IEEE-13 Node

System, Voltage Waveform (measurement device placed right before the fault

location) of the System, Current Waveform (measurement device placed right before

the fault location) of the System,

Figure 4.10: Voltage Waveform obtained from Mayr Arc Model when fault applied

at phase-C in the 3-Phase IEEE-13 Node System, Current Waveform obtained from

Mayr Arc Model when fault applied at phase-C in the 3-Phase IEEE-13 Node

System, Voltage Waveform (measurement device placed right before the fault

location) of the System, Current Waveform (measurement device placed right before

the fault location) of the System,
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• Active learning is frequently said to have only one method. However, this is

not true. The dynamic sampling of a training data set is the core of active

learning, where it is required to ”identify” the data set to gradually select the

most promising data points. Hence, Active Learning is not just a ’plug data

and get result’ type algorithm but requires fine tuning for different applications.

• The idea that substantial uncertainty implies importance on the training pro-

cess is one of the fundamental presumptions of the majority of popular querying

algorithms. Adding the record to the training set must help if the model gen-

erates a forecast with a high level of uncertainty. Power data generally consists

of redundant data and incipient fault data is very hard to find in this large

data pool. Earlier, researchers were unable to find a way to identify the high

uncertainty cases only.

• Academics frequently forget that at the core of the active learning process lies a

fundamental trade-off between the number of labels and the amount of computa-

tion. Researchers typically measure their success with active learning by looking

at the reduction in the amount of data that required labeling. This is due to

the fact that active learning necessitates the model being retrained repeatedly

with progressively larger data sets, which frequently results in a quadratic re-

lationship between computation and the number of loops used. With advanced

tools and computation power available at hand, active learning is an affordable

method for power engineers.

• The concept of labeling the required data points was vague and considered,

inefficient earlier. However, understanding the benefits with time has influenced

the promotion of Active Learning algorithm.
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• There was a fear of building an inaccurate model by identify the wrong data

points by this algorithm. However, with more successful test cases been imple-

mented, the accuracy of Active Learning has been identified.

The above points give an overview on why Active Learning is getting more popular

in the field of power and energy. Applications like fault detection, in particular,

incipient fault where the fault data available is very small, this algorithm turned out

to be very helpful and precise. The testing results of different methods with different

testing data sets are noted in the following tables. A comparison bar graph is also

presented for easy understanding of the obtained results. A line chart showing the

times (in seconds and logarithmic scale) for different active learning methods is also

visualised.

Table 4.1: Accuracy of Different Active Learning algorithms with Noiseless (Ideal)

Data set

Active Learning Method Accuracy Percentage

Modular 71.01

Decision Trees 99.13

Naive Bayes 97.34

Support Vector Machines 98.27

Modular active learning has been described in previous sections. The next method,

which is, decision trees where both the classification and regression issues can be

solved. The term itself implies that it displays the predictions that come from a

sequence of feature-based splits using a flowchart that resembles a tree structure.

The decision is made by the leaves at the end, which follows the root node. Decision
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Table 4.2: Accuracy of Different Active Learning algorithms with 20dB Data set

Active Learning Method Accuracy Percentage

Modular 68.31

Decision Trees 98.39

Naive Bayes 97.02

Support Vector Machines 97.82

Table 4.3: Accuracy of Different Active Learning algorithms with 33dB Data set

Active Learning Method Accuracy Percentage

Modular 65.37

Decision Trees 98.4

Naive Bayes 96.42

Support Vector Machines 96.92

Table 4.4: Accuracy of Different Active Learning algorithms with 44dB Data set

Active Learning Method Accuracy Percentage

Modular 62.19

Decision Trees 97.54

Naive Bayes 95.77

Support Vector Machines 96.12

trees basically use a quantity called Entropy which is the measure of impurity at a

data node. Its formula is as follows:
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Figure 4.11: Comparison of Accuracy Levels of Different Active Learning Methods

with Different Testing Data Sets

E(S) = −p(+) log p(+) − p(−) log p(−) (4.1)

where, p(+) is the probability of positive class,

p(−) is the probability of negative class,

S is the training set.

Naive Bayes is a classification method built on the Bayes Theorem with the as-

sumption of predictor independence. A Naive Bayes classifier, to put it simply, be-

lieves that the presence of one feature in a class has nothing to do with the presence

of any other feature. The Bayes Theorem for a classification computational problem

is as follows:
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Figure 4.12: Comparison of Computation Time of Different Active Learning

Methods

P (yi | x1, x2, . . . , xn) = P (x1, x2, . . . , xn | yi)∗P (yi)/P (x1, x2, . . . , xn) (4.2)

where, P (yi)/P (x1, x2, . . . , xn) is the conditional probability for a class label with

a given set of input values, (x1, x2, . . . , xn) and labels y.

Support Vector Machine (SVM) can be applied to classification or regression prob-

lems. Each data point is represented as a point in n-dimensional space (where n is the

number of features) and each feature’s value is represented by the value of a certain

coordinate in the SVM method. Then, classification is carried out by locating the

ideal hyper-plane that effectively distinguishes the two classes. This hyper-plane is

defined as follows:
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w⊤x− b = 0 (4.3)

where, there is a n training data set of (x1, y1) , . . . , (xn, yn) and x data points

with y class labels,

w is the normal vector to the hyper-plane,

Parameter b
∥w∥ determines the offset of hyperplane from the origin along the nor-

mal vector, w.

All these are generic machine learning algorithms and extensive research has been

done individually on these topics. However, this paper use these methods to clas-

sify/identify the data points which needs further labelling. The model is actually

built using Active Learning only but the classification of important data points has

been carried out by the methods mentioned in Table 4.1. It should be noted that by

doing further research work on the modular active learning, the accuracy of detection

could further be improved.

Further, to find out the algorithm’s effectiveness in different test cases. One of

the validation technique was to introduce fault at all the nodes individually in the

test circuit discussed earlier. It can be observed that more or less every node fault

accuracy is in the same range. Hence, it can be inferred that active learning is very

useful for incipient fault detection.

Another validation step that was carried out was comparison with generic machine

learning algorithms. The following machine learning algorithms were executed to get

a fair comparison of the effectiveness of active learning:

• Linear Regression

• Logistic Regression
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Figure 4.13: Comparison of Accuracy Percentage when Fault is Introduced at the

Different Nodes of the Test System

• Decision Trees

• Random Forest

• Support Vector Machine

• Naive Bayes

• K-Nearest Neighbor

• Principal Component Analysis

• Neural Network

• Gradient Boosting
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Figure 4.14: Comparison of Accuracy Percentage when Active Learning Algorithm

(in orange) with respect to Generic Machine Learning Algorithms (in blue)

It can be noticed that active learning algorithm performs the best amongst all the

popular methods that have been already tried out. It should be noted that for a fair

comparison, all the algorithms have been executed using the same train and test data

set. Similarly, sensitivity analysis was also conducted on the algorithm. The data set

was varied such that different ratios of fault data points to non-fault data points in

the test data set are obtained. The objective was to find out the usefulness of the

algorithm based on the data being fed. It was observed that the default setup gave

the best accuracy levels taking into consideration all the constraints and variables.

As the number of fault data points keep decreasing, the accuracy level of the model

falls. It should be noted that the ’Default Case’ is the data set which was used for

most testing purposes. Additionally it was observed that from the 15:85 fault data

ratio levels, the model was training very poorly and often not giving the best possible
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output. Finally, some sensitivity analysis was conducted when operating conditions 

are differing. T h e t e st c a se c o nducted h e re w a s i n troduction o f  a  s o lar P V . I t  was 

modeled in Simulink using a DC Voltage Source and an inverter to convert from DC 

to AC. This renewable penetration was introduced at varying nodes to get better 

validation results. In general, the algorithm had an accuracy level of 98.3996% which 

is very similar to what was obtained without any renewable penetration. Hence, 

active learning algorithm is a very effective m e thod i n  t o day’s d a te a nd t ime a s  we 

observe more-and-more renewable penetration into the electric grid.

Figure 4.15: Comparison of Accuracy Percentage when the Ratio of Fault Data

Points to Non-Fault Data Points is Varied

Finally, another popular method was tried for the application of incipient fault de-

tection. Bayesian Additive Regression Trees or BART is a machine learning approach

that models the correlation between a group of predictor factors and a response vari-
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able using decision trees. Decision tree modeling’s Bayesian approach, or BART, is 

founded on the ideas of Bayesian statistics. BART operates by fitting a  g r oup of 

regression trees, each of which is a nonlinear function of the input features, to the 

data. The final prediction i s then created by combining the ensemble o f t r ees. BART 

is superior to other tree-based techniques because it can handle continuous and cat-

egorical data and capture intricate relationships between the input attributes. As a 

typical issue in many real-world data sets, missing data handling is another strength 

of BART. The posterior distribution of the model parameters, which is acquired by 

Bayesian inference, can be used to impute missing data. BART is a potent machine 

learning method that, in general, may be used to solve a variety of prediction issues, 

particularly when the data contains intricate and nonlinear correlations between the 

input features and the response variable.

In this paper, BART was tried to implement in Python using the bartpy module. 

Currently, the best accuracy level obtained for the incipient fault detection case is 

61.7886%. However, upon conducting further research, this method can also be fine 

tuned to get better results.
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Chapter 5

CONCLUSION

This paper attempts to solve the problem of incipient fault detection in power cables

and the electric grid. Active Learning algorithm is being used to tackle this prob-

lem. As discussed in previous sections, incipient fault being momentary faults, the

availability of such type of fault data is very small over a large pool of data. This

is where Active Learning becomes advantageous as only the important data points

are being labeled by the field expert. Once the final model is trained, it is observed

that the accuracy of detection using this model is very high. There were some case

which did not give favorable results like the Modular Active Learning. Although,

several validation cases prove that usage of active learning is indeed beneficial. To

be specific, it was observed that no matter the fault node or any varying operating

conditions, the accuracy level of the model is very high. Similarly, after executing

the many popular machine learning algorithms using the incipient fault data set, it

was noticed that active learning gives the most precise model. Hence, we are able to

mitigate the bad consequences of incipient faults from the power grid in any condi-

tion. A test circuit system was build in MATLAB Simulink for data collection and

then Python programming (using Spyder) was used to deploy the Active Learning

algorithm. Hence, it can be concluded that using Active Learning model is a very

effective method for incipient fault detection.
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