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ABSTRACT

The rapid growth of emerging technologies is placing enormous demand on the

seamless access to the extensive amount of data, which drives an unprecedented need

for substantially higher data-transfer rates. As 1.6 Terabit Ethernet (TbE) specifi-

cations are being developed, high speed interconnects along with advanced materials

and processes play a crucial role in technology enabling. However, validation of in-

terconnect performance becomes increasingly challenging at these higher speeds.

High-speed interconnect behavior can be reliably predicted if interconnect models

are successfully validated against measurements. In industry, it is still not common

practice to perform validation at actual use conditions. Therefore, there is an urge

for a restructured design methodology and metrology based on temperature and hu-

midity, to set realistic specs for high speed interconnects and reduce probability of

failure under variations.

Uncertainty quantification and propagation for interconnect validation is criti-

cal to assess the correlation quality more objectively, as well as to determine the

bottleneck to improve the accuracy, repeatability and reproducibility of all the mea-

surements involved in validation.

The purpose of this work is to create a methodology that is both academically

rigorous and has a significant impact on industry. This methodology provides an

accurate characterization of the electrical performance of interconnects under realistic

use-conditions, accompanied by an uncertainty analysis to improve the assessment of

correlation quality. Part of this work contributed to the Packaging Benchmark Suite

developed by IEEE EPS technical committee on electrical design, modeling, and

simulation.
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Chapter 1

INTRODUCTION

“There are two kinds of designers, those with signal–integrity problems

and those that will have them.”

on a white board at a large systems company, as cited in [3]

The rapid growth of emerging technology superpowers such as artificial intelligence,

ubiquitous computing, pervasive connectivity, and cloud-to-edge infrastructure has

created a pressing need for seamless access to vast amounts of data. This demand is

leading to an increased requirement for data rates that can accommodate the massive

influx of data. To address this, IEEE and Optical Internetworking Forum (OIF) have

already developed the electrical interface specifications for 400 GbE [4, 5] as illustrated

in Figure 1.1, and are exploring possibilities 1.6 TbE and beyond [1].

Figure 1.1: Ethernet Roadmap Showing the Evolution of Ethernet Speed over Time.
Courtesy of Ethernet Alliance [1].
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In the 1980s, for a system with 10 Mb/s data rate, the interconnect–the pathway

transmitting the signals from the transceiver to the receiver, was not critical since

it was essentially “transparent to the signal” and not affecting the system perfor-

mance [3]. However, supporting a seamless connectivity at 400 GbE in the 2020s re-

quires scalable, reliable, and high–performance interconnects between semiconductor

chips. Figure 1.2 shows an example of an end-to-end channel topology which consists

of a bi-directional package, a high density board, a cable with two connectors [2].

The link budget is breakdown among the system components, and these components

are designed within their respective performance budgets. Basically, designers need

to optimize i) signal quality of each net including attenuation, reflections and distor-

tions from impedance discontinues in the signal and return path; ii) crosstalk between

multiple nets including mutual capacitance and inductance coupling with non-ideal

return paths [3]. Higher speeds bring numerous new challenges that have not yet

been encountered, and existing problems will be more difficult to solve.

Figure 1.2: An Example of a Channel Topology for High–speed Interface Including
Die, Package, Board, Connector and Cable. (After Figure 1 In [2]).

1.1 The Urge for a Restructured Design Methodology

At higher speeds, interconnects become major bottlenecks owing to significant

increase in dielectric and conductor losses. One approach to reduce the loss is to

utilize alternative package/system architectures, e.g., top-of-the package connection

to flex circuits [6] or optical interconnects as in co-packaged optics [7]. The more

direct approach, however, is the introduction of new materials and processes. Material
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suppliers have been continuously improving their processes and chemistries to reduce

the dielectric constant (Dk), dissipation factor (Df) and surface roughness while

providing strong adhesion to the dielectrics [8].

Even when specifications are met in design with new low loss materials and bet-

ter adhesion promoters, performance variation of the actual manufactured units is a

major concern [9, 10]. Also the ever increasing demand for higher data rates with

tighter design margins makes the systems more susceptible to variations. Without

the means to evaluate signal behavior in a systematic manner as the physical and

electrical characteristics of the system components vary, uncertainty may cause sig-

nificant performance degradation and yield reduction There are two types of sources

that lead to high-speed interconnect performance variation:

1. Use-conditions: Environmental conditions, e.g., temperature (T ) and rela-

tive humidity (RH) can impact both the dielectric material [11] and conductor

material properties [12]. This is not limited to the ambient temperatures and

RH the system is being used in, but also include the temperature changes due

to active components in package. For instance, active die could cause temper-

ature increases in package substrate up to 90 - 110◦C [13]. Such conditions

can account for profound adverse effects on loss and diminishing returns for

the new materials and processes unless they are temperature and RH insensi-

tive. Since most systems are required to reliably operate over a wide range of

use-conditions across the entire product lifespan, not accounting for this varia-

tion in link budget results in optimistic designs and can cause product failures.

This places demands on accurate and reliable temperature and RH dependent

methodologies in order to optimize high speed input/output (HSIO) designs for

realistic use-conditions, which is covered in Chapter 2.
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2. Manufacturing processes: There are many factors in a high-speed intercon-

nect manufacturing process that can introduce variation. These factors can

be split into 3 main segments: (i) raw materials, i.e., dielectric and conduc-

tor material properties, (ii) dimensions, i.e., stack-up and corresponding design

rules, and (iii) surface roughness. These factors substantially impact the elec-

trical performance of high-speed interconnects [14]. The challenge for designers

is to ensure robust system performance under all operating conditions given

the manufacturing process variations. Consequently, accurate quantification of

the performance impact of uncertainty is necessary [15], which is covered in

Chapter 3.

1.2 The Validation and Uncertainty Quantification

As data centers scale, interconnects along with advanced materials and processes

play a crucial role in enabling faster data transfer rates. However, predictability of in-

terconnect performance also becomes increasingly challenging at these higher speeds.

High-speed interconnect behavior can be reliably predicted if interconnect models are

successfully validated against measurements of manufactured test structures. A good

measurement-to-modeling correlation is a key step to ensure a successful product de-

sign optimization for any new technology, material, or process. However, achieving

good correlation for multiple metrics is not a simple task considering the large number

of factors in the correlation flow, which influence the final performance.

Validation requires an understanding of the robustness of the measurement meth-

ods as well as the manufacturing process variations present in an imperfectly fabri-

cated test structure. A measurement result is incomplete unless accompanied with an

estimate of the uncertainty associated with the measurement [16]. There are many

possible sources of measurement uncertainty, including the impact of environmental
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conditions, bias in reading instruments, finite instrument resolution, or discrimina-

tion threshold, approximations, and assumptions incorporated in the measurement

method [17]. Considering all the challenges in high-speed interconnect validation, it is

not surprising that poor correlation occurs more often than is desirable. To ascertain

whether a correlation is good or poor, one needs to understand how the uncertainty

propagates to the outcome, and not just focus on the outcome itself. This places

demand on a methodology for the uncertainty quantification of each measurement

involved in high-speed interconnect validation, and their propagation to the final

electrical performance metrics [15, 18, 19], which is covered in Chapter 4. It is worth

noting that this is not the uncertainty coming from the manufacturing process vari-

ations in high volume manufacturing scenario, but the uncertainty coming from the

measurement technique, and procedure utilized for the characterization in a single

unit modeling-to-measurement correlation.

1.3 The Modeling and Measurement of Surface Roughness

Surface roughness is a physical quantity that is introduced intentionally in typical

copper foil manufacturing processes to improve the adhesion of conductor to dielectric

and avoid delamination. Although this increases the reliability of the substrate, it

deteriorates the electrical performance by manifesting itself as higher loss and delay.

Surface roughness characterization remains as one of the challenging tasks in high–

speed interconnect validation. Many different approaches have been proposed to pre-

dict this impact of surface roughness [20–26]. Models rely on parameters extracted

from the copper surface; however, it is worth noting that the accuracy and reliability

of the roughness parameters depend on the quality and quantity of the measured

data, the complexity of the model, and the chosen method for finding the roughness

parameters. This creates a nonideal situation where roughness models are treated as
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purely mathematical functions. Therefore, instead of using actual extracted param-

eters, model inputs are determined by using an inverse modeling approach, where

the roughness parameters are varied until the simulated results match the measured

data. Chapter 5 explores new approaches to address these challenges.

1.4 The Key Contributions

The purpose of this work is to create a methodology that is both academically

rigorous and has a significant impact on industry. This methodology will provide an

accurate characterization of the electrical performance of interconnects under realistic

use-conditions, accompanied by an uncertainty analysis to improve the assessment of

correlation quality. The key contributions of this work include:

� Examining the impact of the use-conditions and manufacturing process varia-

tions on signal integrity performance,

� Quantifying measurement uncertainty for improved correlation quality,

� Investigating the effects of various adhesion promotion and copper surface rough-

ness and developing a rigorous method for predicting loss.

In late 2018, the Technical Committee on Electrical Design, Modeling, and Simu-

lation (TC-EDMS) of the Electrical Packaging Society (EPS) collaborated with indus-

try and academic experts to develop a series of contemporary benchmarks. Majority

of this work contributed to one of the benchmarks the Packaging Benchmark Com-

mittee [27] elevated into the Suite [28].

6



Chapter 2

IMPACT OF USE CONDITIONS ON DIELECTRIC AND CONDUCTOR

MATERIAL MODELS

Use conditions based on temperature and humidity can have a significant impact on

the package material properties and loss, which is required to be included in modeling

assumptions to be able to set realistic specifications. Dielectric loss is affected by both

temperature and humidity through material properties. Conductor loss, however, is

affected by only temperature explicitly through conductivity and implicitly through

skin depth and surface roughness modeling. This chapter presents a systematic use

condition dependent methodology for package high speed interconnects including a

robust dielectric material characterization metrology. Correlation to high fidelity

insertion loss measurements at different temperatures indicates that the roughness

correction factor extracted at one temperature does not fit all and leads to underesti-

mating the loss at higher temperatures. Without loss of generality due to unified form

of correction factors of existing common roughness models, a modified version of Hu-

ray’s snowball model with an explicit temperature dependence is proposed to achieve

high quality on-package interconnect loss correlation at different temperatures.

Prior research has investigated temperature and RH impact on the performance

of high speed interconnects pertaining to material properties, insertion loss, and chan-

nel metrics [29–40], but falls short of addressing the temperature impact on surface

roughness modeling adequately. High temperature can account for both an increase in

dielectric loss and a decrease in bulk conductivity. The latter has a larger loss impact

at low frequencies while the high frequency conductor loss is influenced significantly

by the surface roughness. Most of the existing surface roughness models [20–24, 26]
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utilize a correction factor (K) as a function of skin depth (δ) to obtain effective

conductivity (σeff) from bulk conductivity (σbulk)

σeff = σbulk/K(δ)2 where δ = 1/
√

πfµrµ0σbulk (2.1)

where f is the frequency, µr and µ0 are the relative permeability of conductor and

permeability of free space, respectively. For the roughness models not relying on a

correction factor [25], σeff could still be derived. Temperature impact on σbulk inher-

ently makes roughness models temperature dependent. Besides, K being a function

of σbulk through δ makes σeff dependent on σbulk explicitly and implicitly, which leads

to a nonlinear relationship with temperature.

This chapter investigates the impact of use conditions in a deterministic manner on

package material characterization and presents a systematic correlation methodology

to highlight the temperature impact on surface roughness modeling. The proposed

methodology precisely defines the loss contribution of each factor, and measurements

are substantiated by rigorous measurement capability analysis.

The rest of the chapter is organized as follows: Section 2.1 describes the use

condition dependent methodology and correlation flow, followed by the review of

measurement results and the measurement capability analysis for dielectric material

characterization to determine the measurement uncertainty. Section 2.2 presents a

method to predict material properties at any use condition. Section 2.3 examines the

temperature impact on surface roughness modeling and loss correlation.

2.1 Use Condition Dependent Methodology

It is common practice to characterize the materials and measure the S-parameters

in typical uncontrolled laboratory conditions, i.e., temperature ranges from 20◦C to

25◦C and RH ranges from 20% to 70%. However, often times realistic use conditions
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are at high temperatures determined by the active die. This heat generated by the die

along with the airflow by the cooler in actual systems may allow mitigating RH [10].

The gap between validation and actual use conditions, as shown in Figure 2.1, cannot

be ignored owing to profound adverse effects on performance. It is imperative to

include the effects of the active environment in which the system will be used in the

modeling assumptions.

Figure 2.1: Typical Validation Conditions Illustrated Against Realistic Use Condi-
tions.

Besides uncontrolled use conditions at the time of measurements, preexisting

amount of moisture absorbed in materials and substrates can cause further devia-

tion from the true values in both dielectric material characterization and S-parameter

measurements. Considering any fluctuations occurred in the measurement as charac-

terization tolerance or measurement uncertainty can lead overestimating the actual

variation. This can result in expensive overdesigns. Prebaking the materials and sub-

strates ensures all moisture absorbed are removed. Then, preconditioning guarantees

the measurements are performed at the desired use conditions.
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This section presents a systematic use condition dependent methodology for measurement-

to-modeling correlation, as shown in Figure 2.2. In this flow, temperature dependence

comes from both dielectric and conductor materials, whereas humidity dependence

comes only from dielectric, since conductivity is insensitive to RH [30].

Figure 2.2: Use Condition Dependent Modeling and Correlation Flow. Red Boxes
Indicate Temperature and/or RH Dependent Measurements.

Correlation flow has two main parts:

� Measurement: Performance network analyzer (PNA) measurements are per-

formed in a temperature and humidity controlled environment. Prebaking and

preconditioning of parts are critical to ensure repeatable and reproducible mea-

surements at the desired use conditions. Measurement of S-parameters at vary-

ing use conditions are then followed by de-embedding to remove the unwanted

artifacts of the system and fixtures to reveal the true characteristics of the

transmission lines, e.g., loss and delay. Two-line de-embedding methodology

is utilized [14] to post-process the S-parameter measurements of two transmis-

sion lines with different lengths, but having identical cross-sections and transi-

tions to probes and connectors. De-embedding flow is depicted in Figure 2.3.

Similar and alternative 2x-thru based de-embedding techniques exist in liter-
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ature including Generalized S-parameters (GMS) [41], Automatic Fixture Re-

moval (AFR) [42], Smart Fixture De-embedding (SFD) [43], and In-Situ De-

embedding (ISD) [44].

Figure 2.3: Illustration of De-embedding Process.

� Modeling: There are three steps to achieve accurate modeling of package elec-

trical behavior: (i) Characterization of broadband frequency dependent effective

conductor properties, (ii) characterization of broadband frequency dependent

dielectric properties, and (iii) high fidelity representation of physical structures.

Material characterizations are performed in a temperature and humidity con-

trolled environment. Similar to PNA measurements, dielectric characterization

requires prebaking and preconditioning, whereas bulk conductivity characteri-

zation does not. Frequency dependent broadband complex permittivity can be

calculated utilizing wideband Debye models [45] by using the measured values

ofDk andDf at a single frequency. On the other hand, frequency dependent ef-

fective conductivity is obtained by incorporating the surface roughness impact.

The final high fidelity representation can be achieved by taking dimensional

variations into account. Cross section pictures at multiple cut locations of any

transmission line disclose dimensional variations. Especially, impedance and

low energy metrics such as return loss are very sensitive to these dimensional

variations.

The precision and robustness of the temperature and RH dependent metrology

proposed in this paper is proven via a rigorous measurement capability analysis
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(MCA) [46] to ensure high measurement repeatability and reproducibility. This is

critical since it provides the necessary basis for separation of dielectric and conductor

losses, and accurate surface roughness characterization at different use conditions.

2.1.1 S-parameter Measurements

Humidity impact of soak and bake out processes is investigated first for the device

under test (DUT). Single-ended (SSL) and differential stripline (DSL) package traces

routed on the layer below the surface with lengths of 10 and 20 mm are designed

and manufactured. Figure 2.4 shows the routing and ground reference layers of SSL

and DSL along with probe pads, transition regions and ground stitching vias. Using

a precise analytical balance with readability of 0.1 mg, an experiment was set up to

determine the rate of weight change over time, which depends on package substrate

stack up, form factor and material set. DUT consisted of sixteen buildup layers and

one core layer for a total of 18 metal layers, with a form factor of 37.5 x 42.5 mm and

overall thickness of 1.5 mm.

Figure 2.4: Differential and Single-ended Stripline Pictures on DUT.

The weight change of the packages normalized to its initial dry state while being

soaked 90% RH at 25◦C is shown in Figure 2.5. The initial high moisture absorption

rate gradually saturates at 0.09% after 333 hours (∼2 weeks). It is worth to emphasize
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that ∼70% of this moisture was absorbed within the first 24 hours. Succeeding baking

process at 125◦C after saturation leads to a rapid moisture removal rate, down to

0.01% within the first 24 hours. Weight gain returns to zero after ∼60 hours. Since

the rate of weight change ceases in time, at least 3 days of baking process is selected

as a requirement to ensure a dry state for this package.

Figure 2.5: Weight Change of Two Parts of the Same Package During Soak and
Bake Processes. Measurements Performed by ECC Lab.

PNA measurements are performed at several use conditions. To emulate one a

typical use condition, 90◦C and 0% RH is selected. In addition, 25◦C and 60◦C both

at 0% RH are included to make a comparison and identify any trends. Humidity

is excluded in PNA measurements and roughness extraction since the presence of

moisture changes (accentuates) the temperature dependence of permittivity [29], but

a more comprehensive study including humidity is performed for dielectric material

characterization in Section 2.1.3. DUT is prebaked at 125◦C for 3 days to remove

moisture, cooled down in a nitrogen cabinet (0% RH) and measured on a temperature

13



chuck. Loss and delay increase with temperature for de-embedded SSL and DSL

package traces with a length of 10 mm are shown in Figs. 2.6 and 2.7, respectively.

Figure 2.6: Temperature Impact on Single-ended IL (Solid Lines, Left Axis) and
Delay (Dashed Lines, Right Axis) of SSL Package Trace. Measurements Performed
by ECC Lab.

As temperature increases, both loss and delay increase, but the impact to former

is more significant. Loss increase depends on multiple factors: σbulk reduction as

detailed in Section 2.1.2, and Df increase as detailed in Section 2.1.3. It is also

critical to see how surface roughness models changes with bulk conductivity, which is

critical for correlation, as examined in Section 2.3.

Measured single-ended and differential loss as a function of temperature are shown

in Figure 2.8 at multiple frequency points. It is clear that loss variation across tem-

perature expands at higher frequencies. In other words, higher data rates suffer more

from temperature dependent adverse effects. Loss increase at 90◦C relative to 25◦C

rises from ∼0.1 dB/10 mm (1%) at 8 GHz to ∼0.6 dB/10 mm (7%) at 56 GHz.

Measured single-ended and differential delays as a function of temperature are

shown in Figure 2.9 at multiple frequency points. Unlike loss variation across tem-
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Figure 2.7: Temperature Impact on Differential IL (Solid Lines, Left Axis) and
Delay (Dashed Lines, Right Axis) of DSL Package Trace. Measurements Performed
by ECC Lab.

perature, delay variation across temperature shrinks at higher frequencies. Delay in-

crease at 90◦C relative to 25◦C is ∼0.2 ps/10 mm (0.4%) for SSL and ∼0.3 ps/10 mm

(0.5%) for DSL both at 56 GHz. DSL shows more sensitivity to temperature than SSL

across frequency. Although this variation increases at lower frequencies, it remains

less than 1 ps/10 mm.

2.1.2 Bulk Conductivity Measurements

DC resistivity (ρDC) of conductors depends on temperature and its purity level,

but is insensitive to RH [30]. Pure copper characteristics are known as a function of

temperature. However, since package conductors are not constructed of pure copper,

low resistance (R) 4-wire measurements are performed on a temperature chuck at

previously mentioned temperatures to determine the corresponding ρDC values.

After measuring R, DC resistivity of package conductor can be calculated as

ρDC = R · A/l (2.2)

15



Figure 2.8: Loss of SSL (Solid Lines, Triangle) and DSL (Dashed Lines, Circle) as
a Function of Temperature at Multiple Frequency Points. Measurements Performed
by ECC Lab.

Figure 2.9: Delay of SSL (Solid Lines, Triangle) and DSL (Dashed Lines, Circle) as
a Function of Temperature at Multiple Frequency Points. Measurements Performed
by ECC Lab.
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where l is the length and A is the cross section area of the trace. Both l and A

are precisely measured for better accuracy. σbulk is simply the inverse of ρDC. Con-

ductivity and resistivity normalized to room temperature are shown in Figure 2.10.

Resistivity has a linear relationship with temperature and increases 27.4% at 90◦C

relative to 25◦C. This corresponds to 21.5% conductivity decrease. Package conduc-

tor temperature coefficient of resistance at Tref = 25◦C is found to be α = 0.0043/◦C

given the relationship

R = Rref[1 + α(T − Tref)] (2.3)

Figure 2.10: Temperature Impact on Normalized σBulk (Triangle, Left Axis) and
ρDc (Circle, Right Axis) of Package Conductor. Measurements Performed by ECC
Lab.

2.1.3 Dielectric Dk and Df Measurements

The proposed temperature and humidity dependent material measurement metrol-

ogy follows that in [11] closely. Measurement setup as shown in Figure 2.11, is based

on a split post dielectric resonator (SPDR) which provides accurate and repeatable

measurement of Dk and Df at discrete frequencies [47]. SPDR is placed inside an en-
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vironmental chamber to accurately control temperature and humidity, and connected

to a PNA which is remotely controlled by a software tool to measure and collect

characterization data.

Figure 2.11: Dielectric Characterization Measurement Setup Based on SPDR.

Similar to Section 2.1.1, humidity impact of soak and bake processes is investigated

for dielectric material samples. Each sample is prepared with the required thin film

form factor. The weight change of package buildup and core samples normalized to

their initial dry state while being soaked 90% RH at 25◦C is shown in Figure 2.12.

It is worth mentioning that the thickness (and weight) of buildup material sample

is much smaller than of core material (∼5 - 10%). Buildup material absorbs 0.27%

moisture of its weight within the first hour after dry state, which is ∼65% of all the

moisture that it can possibly absorb. Core material has relatively slower moisture

absorption rate, which saturates at 0.42% after 240 hours (10 days). Succeeding

baking process at 125◦C after saturation, leads to a rapid moisture removal rate for

both, down to zero within a few hours. For buildup materials, at least 6 hours of

baking process is selected as a requirement to ensure dry state for this package, which

is significantly less than package substrate prebaking times.

In the procedure to characterize dielectric materials at varying use conditions,
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Figure 2.12: Weight Change of Package Buildup and Core Materials During Soak
and Bake Processes. Measurements Performed by ECC Lab.

samples are prebaked for 6 hours at 125◦C to remove any moisture, and then stored

in a nitrogen cabinet to prevent absorption of moisture. Before measurement, sam-

ples are retained inside the environmental chamber at a specific temperature and RH

level for a period of time that guarantees the samples reach the desired use condi-

tion. Depending on the sample thickness, this is typically achieved within 24 hours.

Unloaded SPDR is measured at each condition to ensure the use condition effects

are calibrated out during the sample measurement. Next, SPDR is loaded with the

sample and measurement proceeds at 10 GHz for each condition.

A rigorous MCA with multiple packaging materials that are commonly used in

industry has been performed to determine the tolerance limits ofDk andDf measure-

ments at different use conditions. MCA consists of repeatability and reproducibility

tests. In this paper, we discuss the reproducibility portion which examines the mea-

surement variability introduced by all of the dynamic effects at a given use condition.
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This includes repeated calibration performed by different operators over several days

to capture operator-to-operator and day-to-day variations at different controlled use

conditions.

In this MCA, four different kinds of materials were chosen including Teflon and

package buildup, core and prepreg materials with varying thicknesses from 80 to

∼800 µm. Teflon was included in the MCA since package materials are not stable

enough to make good accuracy standards. Samples are measured at three different

conditions: (i) 25◦C and 0% RH, (ii) 25◦C and 90% RH, and (iii) 90◦C and 0% RH.

Several days of data collection from three operators gives reproducibility results as

summarized in Table 2.1.

MCA results indicate highly reproducible measurements for this metrology. Rel-

ative standard deviation over multiple days and multiple operators is 3σ/µ ≤ 2.7%

for Dk and 3σ ≤ 0.001 for Df , where µ is the mean. It is important to note that, in

addition to the variations due to multiple operators and several days of measurement,

there is quantifiable inherent uncertainties in SPDR especially for the low loss mate-

rial measurements [48]. When this is considered, precision of the proposed metrology

reflects the state-of-the-art for both Dk and Df characterization at different use

conditions.

The impact of nine discrete use conditions on package buildup Dk and Df are

shown in Figs. 2.13 and 2.14, respectively. Conditions are selected within the safe

measurement range defined in Section 2.2. Dk is the less sensitive material property

to use conditions. Although it appears that there is a slight increase in Dk with

temperature and RH, it is not possible to conclude this is an actual trend since the

measurement uncertainty (2.7%) determined by the MCA is larger than the relative

standard variation 3σ/µ = 1.7%. Similarly, any impact on electrical impedance which

directly depends on Dk is also expected to be very small. Df is the more sensitive
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Table 2.1: Dielectric Dk and Df Measurement Reproducibility Results. Measure-
ments Performed by ECC Lab.

Dk Df

Sample T ◦C RH% Mean(µ) 3σ/µ % Mean(µ) 3σ

Teflon 25 0 1.96 1.13 0.0003 0.0002

25 90 1.96 0.68 0.0006 0.0012

90 0 1.93 1.95 0.0003 0.0002

Buildup 25 0 3.28 1.32 0.0067 0.0005

25 90 3.34 2.03 0.0107 0.0011

90 0 3.30 1.63 0.0085 0.0001

Prepreg 25 0 3.11 1.57 0.0023 0.0005

25 90 3.15 2.62 0.0048 0.0012

90 0 3.11 1.39 0.0025 0.0001

Core 25 0 4.14 0.61 0.0090 0.0007

25 90 4.17 0.39 0.0100 0.0004

90 0 4.20 0.72 0.0101 0.0005

material property to use conditions. Relative to 25◦C and 0 % RH, Df increases

∼31% at 90◦C and 0% RH (exclusively due to temperature), and ∼56.4% at 25◦C

and 90% RH (exclusively due to humidity). A method to predict Dk and Df at any

condition is presented next in Section 2.2.

2.2 Method for Dielectric Dk and Df Prediction

Complete measurement of all use conditions for each dielectric material is very

time consuming. For design optimization at a desired use condition, one can use

interpolated material properties generated from measured data at a discrete set of use

conditions. In this section, a surface linear interpolation scheme based on measured
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Figure 2.13: Use Condition Impact on Package Buildup Dk. Measurements Per-
formed by ECC Lab.

Figure 2.14: Use Condition Impact on Package Buildup Df . Measurements Per-
formed by ECC Lab.
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material properties at different temperature and humidity levels is applied to get Dk

and Df of package materials at any use condition.

Dielectric material properties can be expressed as a function of temperature and

RH using the method of linear least squares

Dk(T,RH) = p00 + p10T + p01RH

Df(T,RH) = q00 + q10T + q01RH

(2.4)

where p and q are constant coefficients of Dk and Df , respectively.

In order to validate the interpolation scheme, the materials from the MCA are

measured at nine different use conditions, as shown in Figure 2.15. Data collected

at three use conditions indicated by marker ⋆ is used to generate a linear surface fit

for temperature range from 25◦C to 90◦C and from 0% RH to 90% RH. Next, the

interpolated data from the fit model and actual measurement at that use condition

depicted by marker △ is compared to determine the accuracy of the linear fitting. As

an example, Dk and Df interpolation error is shown in Figure 2.15, which is smaller

than MCA tolerance limits that demonstrate the goodness of the linear fitting.

Table 2.2 show the linear surface fit polynomial coefficients for each material used

in MCA. By comparing the magnitudes of coefficients relative to Dk and Df , the

sensitivity of the materials to temperature and humidity can be inferred. For all

materials, p01 and p10 are smaller than Dk by four orders of magnitude (a factor of

about 104). Considering the temperature and RH ranges from 0 to 100, this implies

little impact to Dk, e.g., second significant digit after the decimal point. This is

also observed in Figure 2.13. Df coefficients q01 and q10 are actually smaller than

those of Dk, but their relative magnitudes (normalized to Df values) are higher.

Teflon shows almost no dependency on temperature and humidity. Package buildup

and core materials show both temperature and RH dependence, whereas prepreg

material shows less sensitivity to temperature but more to RH.
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Figure 2.15: Dk and Df Interpolation Errors at Different Use Conditions. Mea-
surements Performed by ECC Lab.

Table 2.2: Coefficients Used for Interpolation.

Sample Dk Df

p00 p10 p01 q00 q10 q01

Teflon 1.95 -1.05e-4 1.90e-4 0.0004 -2.54e-7 8.29e-7

Buildup 3.28 3.79e-4 4.69e-4 0.0065 2.03e-5 3.11e-5

Prepreg 3.09 1.84e-4 5.30e-4 0.0082 -9.11e-7 2.30e-5

Core 4.10 1.12e-4 3.45e-4 0.0086 2.53e-5 1.08e-5
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Measured Dk and Df data points for selected use conditions and interpolated

surface plots over 25 - 90◦C and 0 - 90% RH are presented next. Note that this

interpolation range includes outside of the safe measurement range, at which the

accuracy is not verified. Dk and Df of package buildup material as a function of

temperature and RH are depicted in Figs. 2.16 and 2.17, respectively. Dk is relatively

smooth, whereas Df shows strong dependence to both, though the rate of change per

RH% is larger than per ◦C, i.e., q01 > q10. Dk and Df of package prepreg material as

a function of temperature and RH are depicted in Figs. 2.18 and 2.19, respectively.

Dk is again relatively smooth. Df shows higher RH dependence compared to package

buildup. Df increases ∼85% as RH is changed from 0% to 90% at 25◦C.

Figure 2.16: Package Buildup Measured (Circle, Black) and Curve Fitted (Surface,
Color Coded) Dk as a Function of Temperature and RH.

2.3 Surface Roughness Modeling and Temperature Impact

The skin effect in rough conductor surfaces causes higher resistance and internal

inductance, and manifests itself in not only higher loss but increased phase delay
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Figure 2.17: Package Buildup Measured (Circle, Black) and Curve Fitted (Surface,
Color Coded) Df as a Function of Temperature and RH.

Figure 2.18: Package Prepreg Measured (Circle, Black) and Curve Fitted (Surface,
Color Coded) Dk as a Function of Temperature and RH.
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Figure 2.19: Package Prepreg Measured (Circle, Black) and Curve Fitted (Surface,
Color Coded) Df as a Function of Temperature and RH.

to maintain causality [23, 25, 49]. This implies the correction factor K should be

complex to correct both loss and phase due to skin effect, and causal versions of

existing roughness models can be derived [50].

2.3.1 Correction Factor Temperature Profile

Surface roughness effect can be incorporated using either frequency dependent

effective material properties or a surface impedance boundary condition. The former

is convenient since (i) it can be readily applicable to any field solver without an

increase in simulation time, (ii) increases fidelity of results by allowing solution of

currents inside of conductors, and also (iii) the libraries for conductors with different

adhesion promoters can be generated for third parties, which helps to reduce potential

inconsistencies and errors during communication of this information.

Despite dissimilarity in surface roughness modeling, correction factors of existing
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common approaches can be written in a unified form [51] as

KU = 1 + (ζ − 1)f(ξ, δ) (2.5)

where ζ > 1 is the scalar factor that determines the maximum value of KU (if f

approaches to 1 at high frequencies), f is the roughness transition function and ξ is

an input representing surface characteristics, e.g., surface basic element ball radius.

It is worth mentioning that correction factors are typically a function of skin depth

(δ). This gives the inherent temperature dependence to surface roughness models.

In this section, temperature impact on surface roughness modeling is shown utilizing

Huray’s snowball model without loss of generality due to (2.5). Similar impact can

be observed in other roughness models.

Correction factor for Huray’s snowball model can be expressed as follows:

KH(δ, sr, a) = 1 +
3

2
sr

(
1 +

δ

a
+

δ2

2a2

)−1

(2.6)

where sr and a are the surface ratio and effective radius of spheres, respectively. The

implicit δ dependence of σeff as in (4.10) makes σeff dependent on temperature non-

linearly. At higher temperatures, δ increases due to σbulk reduction (see Section 2.1.2

for more details). This leads to lower KH at higher temperatures, for the same sr

and a, as shown in Figure 2.20. This causes the absolute difference in σeff at different

temperatures to become smaller, especially at higher frequencies. With this effect, it

is not possible to achieve good correlation at all temperatures using the same rough-

ness parameters, since variations in sr and a exert more influence on total loss than

variations in σbulk or Df .

2.3.2 Measurement-to-Modeling Correlation

Following the methodology described in Section 2.1, sr and a can be synthesized

at different temperatures accurately using the model dimensions obtained from the
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Figure 2.20: Temperature Impact on σeff (Solid Lines, Left Axis) and KH (Dashed
Lines, Right Axis) for the Same sr and a.

cross sectioning of the package trace. Intuition suggests that the same roughness

parameters should be used at any temperature, since actual physical surface (and

surface roughness) is assumed to remain unaffected. However, by careful investiga-

tion of the measurement-to-modeling correlation at different temperatures, we have

concluded that the sr and a obtained at lower temperatures leads to underestimating

the loss at higher temperatures. Figure 2.21 illustrates this with multiple modeling

data showing the individual impact of each factor to total loss on top of measurements

at 25◦C and 90◦C in dry state.

Roughness parameters are synthesized first for a good correlation at 25◦C and

0% RH. Next, each temperature dependent factor (i.e., Dk, Df and σbulk) is re-

placed one at a time with their properties at 90◦C and 0% RH, without changing the

roughness parameters sr and a. This confirms that the total loss measured at 90◦C

cannot be predicted accurately until the roughness parameters are re-synthesized at

90◦C. The loss delta between the measurement at 90◦C and the model with mate-

rial properties at 90◦C but roughness parameters extracted at 25◦C (depicted by a
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Figure 2.21: Measurement-to-modeling Correlation Using KH Showing the Indi-
vidual Loss Contributions of Each Temperature Dependent Factor. Measurements
Performed by ECC Lab.

marker △ in Figure 2.21) is growing exponential and consistent in log-scale.

2.3.3 Proposed Approach With Modified KH

An explicit temperature dependence can be incorporated into KH to account for

the growing exponential loss delta which can be expressed as

Kmod
H (δ, sr, a, T ) = KH(δ, sr, a) + c1(T − T0)e

−c2δ (2.7)

where c1, c2 are constant coefficients, and T0 is the reference temperature. Kmod
H

reduces to KH at T = T0. The correction factor in (2.7) can be used for modeling

surface roughness at any temperature. For the package technology investigated, c1

and c2 are determined to be 0.0032 and 106, respectively. Temperature profiles of

Kmod
H and σeff are shown in Figure 2.22.

Kmod
H in (2.7) with optimized parameters results in excellent measurement-to-

modeling correlation in frequency domain at different temperatures, as illustrated in
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Figure 2.22: Temperature Impact on σeff (Solid Lines, Left Axis) and Kod
H (Dashed

Lines, Right Axis) for the Same sr and a.

Figures 2.23 and 2.24 for single-ended and differential package traces, respectively.

Also, these models can be seamlessly used in time domain such as SPICE-based

transient analysis.

2.4 Summary

This chapter presents a novel systematic methodology that accurately captures

the impact of use conditions on the dielectric and conductor models for package

high-speed interconnects. First, a robust metrology is introduced to accurately char-

acterize dielectric materials under various use conditions. Sample preconditioning

requirements are detailed followed by an MCA study that demonstrates the precision

of the metrology for different use conditions. A method for predicting the dielectric

properties over continuous ranges of temperature and RH is proposed along with

the results for typical types of package materials. Then, a comprehensive analysis is

presented to show the inherent temperature dependence of correction factors of the

existing surface roughness models. Correlation to high-fidelity insertion loss mea-
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Figure 2.23: SSL Measurement-to-modeling Correlation Using Kmod
H . Measure-

ments Performed by ECC Lab.

Figure 2.24: DSL Measurement-to-modeling Correlation Using Kmod
H . Measure-

ments Performed by ECC Lab.
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surements at different temperatures indicates that the correction factor synthesized

at lower temperatures underestimates the loss at higher temperatures, necessitating

an explicit temperature dependence for surface roughness models.

The proposed methodology ensures that the package design process can accurately

account for the impact of product use conditions for emerging and future high-speed

interfaces. The proposed methodology is considered to be general enough for the

applications to other types of interconnects and use conditions. Such potential ap-

plications include but are not limited to board interconnects and characterization

at manufacturing, assembly, or test environmental conditions. The validation of the

method for these additional applications and more novel interconnect structures, such

as tabbed transmission lines, is an important area for the future work.
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Chapter 3

IMPACT OF MANUFACTURING PROCESS VARIATIONS

Variation in a high-volume manufacturing (HVM) process is a major concern in the

design of high-speed interconnects [10, 52, 53]. The ever-increasing demand for higher

bandwidth and lower loss with shrinking design margins makes system performance

even more susceptible to uncertainty. Without the means to evaluate signal behavior

in a systematic manner as the physical and electrical characteristics of the system

components vary, variation may cause significant performance degradation and yield

reduction or result in an overly designed system with increased design cycles and

cost [10].

There are many factors in a high-speed interconnect manufacturing process that

can introduce variation. These factors can be split into 3 main segments: (i) raw mate-

rials, i.e., dielectric and conductor material properties, (ii) dimensions, i.e., stack-up

and corresponding design rules, and (iii) surface roughness, as illustrated in Fig-

ure 3.1. These factors substantially impact the electrical performance of high-speed

interconnects [14]. Environmental conditions, e.g., temperature and humidity, are

another source of variation, as explained in Chapter 2. Even if they do not directly

affect the manufacturing process, environmental changes could trigger variations in

performance of raw materials [13] and surface roughness [12]. The challenge for de-

signers is to ensure robust system performance under all operating conditions given

the manufacturing process tolerances and environmental changes.

Historically, statistical approaches have been primarily utilized for understanding

the behavior of a complicated system so that the design can be adjusted to find a

working solution. This process entails recognizing the key elements that exert the
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Figure 3.1: The Three Primary Areas Are Illustrated in Which Variations Can
Occur Within the Manufacturing Process: Raw Materials, Dimensions, and Surface
Roughness.

most significant impact on system performance, and modifying them to enhance the

design’s resilience, while adhering to the manufacturing constraints [10]. Response

surface modeling is a technique widely used to find a predictive model by fitting poly-

nomials to the data, and machine learning (ML) has recently gained a lot of attention

in signal and power integrity optimization of nonlinear complex system [54–56]. This

problem usually takes the form of a regression analysis using supervised learning

and addresses the accurate quantification of the performance impact of uncertainty

[15, 18, 57].

The rest of the chapter is organized as follows: Section 3.1 presents a machine

learning based modeling methodology to analyze the impact of HVM process varia-

tions on electrical performance of high-speed interconnects, and compares with tra-

ditional approaches. Section 3.2 presents a novel methodology to determine corner

case selection process based on maximum joint probability, which increases the ac-

curacy of defect rate prediction which leads to cost saving through better designs or

eliminating screening tests in vendors.
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3.1 Machine Learning for Uncertainty Quantification

Monte Carlo analysis, being one of the traditional methods, relies on calculating

the result over and over, each time using a different set of random values for any factor

that has inherent uncertainty. As a result, Monte Carlo produces the distributions of

possible outcome values. By the law of large numbers (LLN), observed expectation

and variation of a certain outcome converge to the actual ones as more trials are

performed. This large number of repetitions, e.g., 1 million or more, however, leads

to a computationally expensive process, and a greater number of uncertain parameters

exacerbates this cost. To reduce this overhead, a common approach is to derive a

predictive model within a range per input, known as surrogate model, using design

of experiments (DOE) [58]. Monte Carlo can then be performed using the predictive

model, which will reduce the total number of actual simulations substantially and lead

to huge reduction in computational resources and simulation time at the expense of

accuracy.

Response surface modeling (RSM) is a commonly used method for predictive

capability by fitting polynomials to the data. Conventionally, the least squares fitting

using second-order combination of input variables is a good enough approximation for

many disparate tasks including high speed signaling system performance [10]. Such

a model is easy to estimate and apply, even when little is known about the actual

relationships. However, it is presumed that the range of input parameters are small

enough so that a quadratic (or low-order polynomial) model can fit the response.

Therefore, each predictive model has an implicit tolerance limit on each uncertain

variable. If the manufacturing process leads to a larger variation than this limit, the

accuracy of the model is compromised. Another assumption is that the unknown

nonlinear relationships can be reasonably approximated by polynomials, which may
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not always be true.

To improve the accuracy and broaden the range inputs of surrogate models, ML

provides promising techniques. This section focuses on the component level modeling

of nonlinear relationship between uncertain parameters and electrical performance

metrics in high-speed interconnects. The accuracy of more advanced ML algorithms

is compared to RSM. Results show the proposed ML based methodology outperforms

RSM and has the capability to model highly nonlinear structures.

3.1.1 Methodology

The impact of manufacturing variations on electrical performance metrics can be

determined using the process flow shown in Figure 3.2. This detailed process flow

comprises 3 major steps which can be interleaved iteratively: (i) sample selection, (ii)

optimal surrogate model construction, and (iii) Monte Carlo analysis.

The accuracy of the methodology is highly correlated with the number and loca-

tion of the samples in the design space. The significance of the number of samples

is apparent owing to the data-driven nature of statistical modeling. Typically, if

bias-variance trade-off is balanced, the more the samples are, the higher the accuracy

is. The location of samples in the design space is also crucial to determine which

variables affect the response and to identify the individual impacts of each variable.

Often, better data is more useful than simply more data, i.e., quality over quantity.

Consequently, random selection is unreliable, especially if the number of samples is

small to reduce the computational costs. DOE addresses this problem by providing

a means to collect the best data at minimal cost. DOE is a systematic process which

improves the quality of information and eliminates redundant data. The method gives

theoretical credence for choosing a set of points given a specific set of assumptions and

objectives. The most used design is D-optimal (determinant) design which minimizes
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Figure 3.2: Uncertainty Quantification Process Flow.

the log determinant of error covariance matrix of the parameter estimates.

The traditional approach for predictive modeling is RSM. Its main virtues are sim-

plicity of implementation and interpretability, whereas its main drawback is limited

adaptability. If the relationship between input and output is not well approximated

by a linear function, the model gives poor predictions.

Predictive model generation can also be defined as a regression problem via su-

pervised learning. Support vector regression (SVR) and Gaussian process regression

(GPR) are among the state-of-the-art ML algorithms for performing nonlinear regres-

sion [59]. SVR and GPR are based on the same probabilistic regressive model, but

optimize different objective functions. SVR minimizes reconstruction error through

convex optimization, and allows kernel trick to transform the data into a higher di-
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mensional feature space with a nonlinear function to perform linear regression in the

feature space. GPR provides a non-parametric kernel based Bayesian framework.

Here, the goal is not only to predict the outcome of a simulation for a particular set

of control parameters, but also to predict the distribution of the output, enabling the

generation of confidence bounds around the predictions to assess the model quality.

The prior beliefs, or domain knowledge, about the underlying function can be cap-

tured by choosing a descriptive kernel function. SVR and GPR both depend on the

hyper parameters that need to be determined beforehand while training.

3.1.2 Benchmark Problem

A specific high-speed interconnect structure is selected as a benchmark problem:

Differential stripline (DSL) package trace of a high-speed input/output (HSIO) in-

terconnect. Electrical performance of HSIO interconnects is primarily determined by

physical dimensions and dielectric and conductor material properties. A cross section

picture of a DSL is shown in Figure 3.3.

Figure 3.3: Cross-section Picture of a DSL along with Design Parameters.

Dielectric material properties, i.e., dielectric constant (Dk), dissipation factor

(Df) are frequency, temperature, and humidity dependent; additionally, conductor

material properties, i.e., conductivity, surface roughness are frequency and tempera-

ture dependent [13]. In this chapter, we focus on the variations in physical dimen-

sions and dielectric material properties, excluding the variations in conductor material

properties. Table 3.1 lists the input design parameters and the assumptions on their
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nominal values and variations. It is worth noting that the variation assumptions of

some parameters are excessively exaggerated in order to assess the capability of the

methods at extreme conditions.

Table 3.1: Design Parameters with Nominal Values and Variation Assumptions.
Variations of Some Parameters Are Exaggerated to Assess the Limits of Various
Approaches.

Parameter Symbol Nominal Variation

Dielectric Thickness DT1/DT2 30 um 5 um

Trace Thickness TT 15 um 5 um

Trace Width TW 30 um 20 um

Trace Spacing TS 60 um 40 um

Dielectric Constant Dk1/Dk2 3.5 0.5

Dissipation Factor Df1/Df2 0.02 0.01

Performance metrics are chosen to be the real and imaginary parts of the single-

ended S-parameters. Differential lines have 2 signal traces which leads to a 4x4

S-parameter matrix with 32 real numbers (16 complex numbers) per frequency. As-

suming that the network is passive, reciprocal, and symmetrical, reduces the number

of performance metrics to 8 (4 complex numbers) per frequency as shown in Table 3.2.

Table 3.2: Electrical Performance Metrics.

Performance Metrics Real Part Imaginary Part

Return Loss Sr
11 Si

11

Insertion Loss Sr
12 Si

12

Near End Cross Talk Sr
13 Si

13

Far End Cross Talk Sr
14 Si

14
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3.1.3 Numerical Results

The DSL described in Section 3.1.2 is used for the accuracy assessment of the

algorithms including optimization and comparison. Linear regression is included as

a baseline and ML based algorithms (SVR and GPR) are compared to RSM.

The objective of this section is to evaluate the capability of algorithms to explore

the wide design space efficiently and accurately for the DSL. This is the reason behind

selecting much wider ranges than typical for some design parameters (TW, TS, Dk,

Df ) as shown in Table 3.1. The training set consists of 200 cases with uniformly dis-

tributed input variables within their corresponding ranges, and the test set includes

1000 cases obtained by the same approach. A commercial 2D electromagnetic simu-

lation tool is used to generate the performance metrics, for which a mapping function

relating to design parameters is found.

Kernel Selection

GPR has 5 different kernel functions available with a separate length scale per pre-

dictor: exponential, squared exponential, matern with parameters 3/2 and 5/2, and

rational quadratic. Each of these kernels are investigated in terms of training and

test mean squared error (MSE) as shown in Figure 3.4. Hyper parameters are op-

timized per kernel using cross-validation. For a fair comparison, test MSE is better

figure of merit for accuracy since test set is not seen by the optimized algorithms.

Kernel ardexponential has the smallest training MSE but the largest test MSE, indi-

cating an overfitting to training set despite the cross-validation step. Kernel ardra-

tionalquadratic has the best accuracy for each performance metric, slightly better

than ardmatern52 and ardsquaredexponential.

SVR has 3 different kernel options: linear, radial basis function (rbf) and poly-
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Figure 3.4: GPR Training (Circle, Dash) and Test (Triangle, Solid) MSE per Metric
for Different Kernels.

nomial. The performance of SVR in terms of training and test MSE is shown in

Figure 3.5. Similarly, hyperparameters are optimized using cross-validation per ker-

nel. Linear kernel is the same as linear regression and has the worst performance

overall. The accuracy of polynomial kernel with 2nd and 3rd order depends on the

performance metric. 3rd order is better than 2nd order for S11 and S13, on par for S14

and worse for S12. It is also observed that polynomial can give a larger test MSE than

linear regression for some metrics such as S12, and S13. The overall best accuracy is

achieved with rbf kernel.

RSM we utilized in this paper relies on the least squares approach with quadratic

combination of design parameters, as opposed to GPR and SVR which use the design

parameters as they are shown in Table 3.1. The performance of RSM in terms of

training and test MSE is shown in Figure 3.6. Here, we also included linear features

to see the accuracy improvement by higher order terms. Quadratic features indicate

linear, interaction and pure quadratic terms from design parameters. It increases the

number of inputs but captures the covariance in between parameters. RSM provides
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Figure 3.5: SVR Training (Circle, Dash) and Test (Triangle, Solid) MSE per Metric
for Different Kernels.

accuracy improvement relative to linear regression by 1 order of magnitude (a factor

of about 10).

Cross Comparison

After each regression method is optimized, their most accurate versions are compared

across as shown in Figure 3.7. RSM has significant improvement over linear regression

but is outperformed by ML based algorithms on each performance metric. GPR

achieves the smallest error, hence provides the best performance.

One of the other advantages of GPR over other methods is that it provides con-

fidence intervals for its prediction. Figure 3.8 illustrates an example of confidence

intervals for one of the low energy metrics, S11 for 100 different cases. The small

delta between 95% confidence intervals (CI) indicates high accuracy of predictions.
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Figure 3.6: RSM Training (Circle, Dash) and Test (Triangle, Solid) MSE per Metric
for Different Feature Sets.

Figure 3.7: Across Method Test MSE Comparison Indicating GPR Outperforms on
Each Metric.
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Figure 3.8: Actual Data and GPR Predictions with 95% Confidence Intervals (CI)
for Sr

11.

3.2 Novel Corner Case Selection for More Accurate Defect Rate Prediction

As detailed in Section 3.1, statistical approaches are utilized along with design of

experiments (DOE) to predict the electrical performance of channels, e.g., eye mar-

gin, as the physical and electrical characteristics of the system components vary. If

this variation is not comprehended accurately in design and simulation, the platform

DOEmay not represent the accurate prediction of the performance, and leads to either

over-design and cost adder or under-design and performance failure. The ultimate

objective is to identify a working solution that comprehends the expected manufac-

turing variation through representative corner cases of components, and meets the

expected defect rate with accuracy and cost efficiency.

Defect rate is a primary measure of quality and reliability of a process and there-

fore of critical importance in terms of cost. Its accuracy depends on corner case

selection. Characteristic impedance of transmission lines rather than cross-sectional

dimensions is used conventionally as a parameter in DOEs; however, this level of ab-
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straction creates an ambiguity since there are many different transmission line model

possibilities per impedance corner. This section proposes an novel corner case se-

lection process based on maximum joint probability for more realistic high-speed IO

channel performance and defect rate predictions.

3.2.1 Most Probable Corner (MPC)

Conventionally, corner models selection process involves user/algorithm-dependency

that certain search directions are hard-coded. One approach is to skew design param-

eters from their nominal values towards the range limits observed in manufacturing

by small amounts to move the impedance to the desired corner. A corner model is

found as the impedance reaches its desired corner. Since mapping between the design

parameters and impedance is not one-to-one, package and PCB models of the same

impedance but with different loss and crosstalk performances will have distinct eye

margin impact. This randomness involved in the corner model selection could have

significant impact on defect rate predictions if a less probable model is selected. Also

this leads to the lack of consistency in the process.

The proposed idea eliminates the possibility of having a pessimistic corner model

which results in higher than actual defect rate. Furthermore, it provides consis-

tency in model selection using maximum joint probability and the consistent process

for multiple corner generation process (e.g. joint corner of loss, impedance, and

crosstalk). This increases the accuracy of defect rate prediction which leads to cost

saving through better designs or eliminating screening tests in vendors.

Consider designing a differential stripline similar to the one depicted in Figure 3.3,

with 80 Ω target impedance for a typical organic package. After identifying nominal

design parameters and corresponding substrate manufacturing tolerances for each

parameter as described in Table 3.1, following the methodology detailed in Section 3.1,
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electrical performance metric distributions can be estimated. Figure 3.9 illustrates the

impedance variations caused by the uncertainty of design parameters and associated

3σ corner values. Each parameter is assumed to have a normal distribution around

their nominal values.

Figure 3.9: Impedance Variation of Package Differential Trace Based on Manufac-
turing Tolerance. Vertical Lines Show Mean and 3σ Variations (Corners).

Our objective is to find the most probable design parameters yielding the desired

impedance corner. Since the same impedance can be achieved with different design

rules within manufacturing tolerance, a set of design rules needs to be selected per

impedance corner among many possible cases. In this example, there are more than

30,000 cases at low impedance corner (LZ) within 1% window size. Each case can

be represented by one point in N-dimensional design space, where N is the number

of design parameters. If the origin is defined at the nominal value for each design

parameter, the closest point to the origin will have the maximum joint probability

(or minimum Euclidean distance). Figure 3.10 shows sorted Euclidean distances

to the origin for all cases at LZ. The case with min distance is referred to as the

most probable corner (MPC), and two more cases are highlighted as least probable

corner (LPC) and less probable corner (SPC) to see the impact on channel margin.

Associated normalized design rules for MPC, LPC and SPC are shown in Figure 3.11.

It is worth to note that SPC and LPC push some design parameters to their extreme

values, whereas MPC keeps a balanced profile overall.
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Figure 3.10: Sorted Euclidean Distance of Each Case at Low Impedance Corner.

Figure 3.11: Normalized Design Rules Yielding MPC, LPC and SPC at Low
Impedance Corner.
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3.2.2 Channel Margin Sensitivity

Impact of corner model selection on channel margin is studied using 32 GT/s

ultra path interconnect (UPI) topology with monolithic packages, as illustrated in

Figure 3.12. MPC, SPC and LPC are utilized as the models selected for the impedance

corners in the channel simulation. The Monte-Carlo simulation is performed assuming

only impedance variation by package and PCB transmission lines. Table 3.3 shows

the resulting eye margin summary over 1 million cases. It can be seen that eye margin

is sensitive to joint probability of the corner case. The eye margin gap among the

possible corner model selection cases can go up to 12% for eye height and 8% for

eye width, which is significant. This as a result provides a reliable and accurate

methodology for predicting and optimizing the electrical performance of high speed

interconnects.

Figure 3.12: Ultra path interconnect (UPI) with a Transfer Speed of 32 GT/s.

Table 3.3: Eye Margin Summary Comparing Transmission Lines Based MPC, LPC
and SPC Design Criteria. Channel Simulations Performed by Enterprise Platform SI
Team.

Eye Height (mV) Eye Width (ps)

MPC 17.40 10.50

SPC 16.01 10.06

LPC 15.46 9.66
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3.3 Summary

This chapter first presents an efficient and accurate modeling methodology to

analyze the impact of manufacturing process variations on IO performance metrics.

The proposed methodology outperforms conventional approaches such as RSM by

incorporating ML based algorithms (SVR and GPR) and overcomes limitations such

as the constraints on tolerance margins and the number of uncertain parameters. It

is also capable of modeling highly nonlinear structures. This resulting methodology

proves to be promising and can be applied to a broad range of applications involving

HSIO interconnects. Second, a novel corner model selection methodology is presented.

It is shown that eye margins are sensitive to the corner model selection, and it is

proposed to select most probable corner via maximum joint probability for more

accurate and realistic high speed IO channel performance and defect rate predictions.
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Chapter 4

IMPACT OF MEASUREMENT UNCERTAINTY ON CORRELATION QUALITY

“A theory is something nobody believes, except the person who made it.

An experiment is something everybody believes, except the person who

made it.”
Albert Einstein

Physical reality can be understood by the handshake of measurement and model-

ing, as illustrated in Figure 4.1. Comparison of measurement and modeling in high-

speed interconnect validation is often the beginning (of a troubleshooting) rather

than an end, since poor correlation occurs more often than is desirable considering

all the challenges. Moreover this raises questions over what considered to be a good

correlation. The ever-increasing demands for higher bandwidth and lower loss have

only exacerbated the predictability issues of high-speed interconnect performance.

Validating models against measurements of manufactured test structures requires

not only accurate methodology but also understanding of the uncertainty impact.

S-parameter measurements, characterization of materials, manufacturing processes,

and models constructed based on measured inputs all cause uncertainty in the per-

formance metrics of interest. Therefore, it is critical to anticipate the results with the

associated uncertainty to assess the correlation quality more objectively.

This chapter investigates the reproducibility of measurements required for high-

speed package interconnect validation through rigorous analysis and presents a method-

ology to quantify the impact of measurement uncertainty on commonly used perfor-

mance metrics. In [15], among the factors affecting correlation quality; S-parameters,

impact of dielectric constant (Dk), and bias in cross-section dimensional measure-
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Figure 4.1: Validation Requires a Thorough Understanding of Measurement and
Modeling, and the Uncertainties Around Each.

ments were prioritized and summarized. This chapter adds multiple new contribu-

tions to expand on the previous work: First, additional sources of uncertainties in the

correlation flow are addressed including characterizations of bulk conductivity (σbulk),

dissipation factor (Df) and dimensional variations along the routing. Second, exist-

ing S-parameter uncertainty analysis is illustrated with corresponding detailed figures

of merit, and uncertainty of the dielectric constant characterization technique is in-

vestigated in detail and correlated to the dielectric sample thickness measurement

uncertainty. Third, the sensitivity of dielectric and conductor models constructed

based on these uncertain measured inputs are examined. Finally, new results are in-

cluded for detailed analysis of measurement-to-modeling correlation. The evaluations

in this chapter demonstrate that the proposed methodology is critical to decide on

the goodness of the correlation quality in an objective technical fashion as opposed

to using only one’s empirical judgment. The methodology also helps to identify the

uncertainty reduction opportunities. It is worth noting that even though the stud-

ies in this chapter are focused specifically on high-speed package interconnects, the

proposed methodology can be applied to other types of interconnects as well.

The rest of this chapter is organized as follows: In Section 4.1, a statistical method
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is described to quantify the measurement uncertainty for the correlation flow. Sec-

tion 4.2 investigates the sensitivity of dielectric and conductor models based on the

material characterization uncertainty. Section 4.3 presents test vehicle design and

measurement results, and discusses the uncertainty propagation and analysis using

the measurement-to-modeling correlation data. Section 4.4 investigates the impact

of de-embedding on correlation quality.

4.1 Metrology Capability Analysis

All measurements are subject to uncertainty. Providing a quantitative estimate of

measurement uncertainty is required to decide if the result is adequate for its intended

purpose. Usefulness of any measurement is bounded by its accuracy, repeatability,

and reproducibility, all of which can be assessed by metrology capability analysis

(MCA) [47] as shown in Figure 4.2.

Figure 4.2: Illustrating Accuracy, Repeatability, and Reproducibility Sections of
MCA. D, O, P, and M Stand for Day, Operator, Part and Measurement, Respectively.

An accuracy analysis is usually performed by repeatedly measuring National Insti-

tute of Standards and Technology (NIST) traceable standards using only one operator

on one day, while minimizing the dynamics of the measurement including insertion

of the device under test (DUT) and instrument calibration. This analysis provides

information on how close the average value produced by an instrument comes to an

accepted accuracy standard. The second part of the MCA examines the ability of a

single operator to make repeated measurements on one day including the dynamics
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of a measurement method such as DUT insertion and removal. Finally, the repro-

ducibility portion of the MCA examines the closeness of the agreement between the

results of measurements of the same measurand carried out under changed condi-

tions of measurement [60]. The changed conditions include repeated DUT insertion

and measurement instrument calibrations by multiple test equipment operators at

different times. This process provides information on the measurement variability

introduced by all temporal and spatial variations of any influence quantity.

In all cases, the assumption is made that the electrical properties of the test

samples remain constant throughout the experiment. It has been shown that the en-

vironmental conditions, e.g., temperature (T) and relative humidity (RH), can have a

profound adverse impact on the material properties, and loss [11, 13]. Therefore, these

factors must be controlled in the MCA and considered when DUTs are characterized

for model correlation.

Sources of uncertainty are often categorized as statistical or systematic. Any

systematic error or bias can be sufficiently minimized by the accuracy part of the MCA

through instrument calibration and consistency checks. The remaining uncertainty

determined through repeatability or reproducibility are generally assumed to follow

a normal distribution:

f(x) =
1

σ
√
2π

e−(x−µ)2/2σ2

(4.1)

where x is measurement quantity, µ and σ are expected value and standard devi-

ation, respectively. The interval µ ± 3σ encompasses approximately 99.73% of the

distribution and is often referred to as the control limits.

4.1.1 S-parameter Measurements

A state-of-the-art four-port performance network analyzer (PNA) was utilized to

measure the S-parameters of a differential stripline (DSL) package test structure up
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to 67 GHz. DSL is frequently used in high speed systems since in many cases it

provides better signal integrity performance compared to single-ended signaling, and

other types of transmission lines [3, 10]. Details of the test structure are provided

in Section 4.3. To assess reproducibility, three different operators collected data on

three different days, calibrating the PNA before each measurement. This procedure

yielded nine measurements of the DUT as shown in Figure 4.3 for differential reflection

(SDD11) and transmission (SDD21) in dB scale. For these metrics, µ and σ are

calculated in linear scale and then the upper and lower control limits µ ± 3σ are

converted back into dB scale. Although there are other choices that can be made,

this method of quantification provides a clear and easy way to interpret the results.

Figure 4.3: Reproducibility and Control Limits on Differential Metrics SDD11 and
SDD21 in dB Scale. Measurements Performed by ECC Lab.

Reproducibility and control limits of SDD11 and SDD21 are shown in Figure 4.4

along with other linear metrics, time domain reflectometry (TDR) and phase delay

(PD). Frequency domain metrics are referenced to 85 Ω and time domain metric uses

20−80% rise time of 16 ps. It should be noted that the reflections are quite small (low

SDD11) due to well-matched characteristic impedance of the DUT to the reference.

As a result, SDD11 is observed to be a sensitive metric, since any small deviation

from an already small reflection leads to high relative uncertainty. Other performance
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metrics show excellent reproducibility.

Figure 4.4: Reproducibility and Control Limits on Differential Metrics SDD11,
SDD21, TDR and Phase Delay All in Linear Scale. Measurements Performed by
ECC Lab.

Magnitude of µ and σ for each metric as shown in Figure 4.5 demonstrate the

uncertainty of SDD11 and SDD21 increases with frequency. 3σ of SDD11 becomes

comparable with its mean, whereas variation of SDD21 remains not significant com-

pared to its mean. TDR has a small and practically constant variation over time

except at the launches of the DUT. 3σ of TDR at the beginning and end of the DUT

depends also on the rise time of the TDR pulse. Phase delay also has small and

practically constant variation over frequency.

Relative standard variation (3σ/µ) can be calculated for these metrics in addition

to the absolute variation as shown in Figure 4.6. However, this quantity may not be

useful for some performance metrics. For instance, SDD11 seems to yield higher than
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Figure 4.5: Magnitude of µ and 3σ for Each Differential Metric in Log Scale. Mea-
surements Performed by ECC Lab.

100% relative standard variation for some frequencies, but the reason behind this

is the phase shift occurring between SDD11 dips of reproducibility measurements.

Absolute variation (3σ) would be a better figure of merit for SDD11. Variation in

SDD21 remains under 3% up to 56 GHz and under 4% overall. Variations of TDR

and PD are extremely low, i.e., less than ∼ 0.2%.

4.1.2 Bulk Conductivity Measurements

Copper conductivity is a key parameter for the electrical performance of electronic

packages. Consequently, there have been extensive studies characterizing the bulk

conductivity of the copper traces fabricated on package substrates. Although copper

characteristics are well-known in literature, package conductors are not constructed
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Figure 4.6: Relative Standard Variation (3σ/µ) for Each Differential Metric. Mea-
surements Performed by ECC Lab.

of pure copper, and hence need to be characterized empirically using low resistance 4-

wire measurements. Typically, test coupons containing traces with Kelvin connections

are used to provide a measured resistance value for a well-defined, wide, and long

trace. A typical test structure for resistance measurements is shown in Figure 4.7.

By measuring resistance (R) and knowing the cross-sectional conductor area (A) and

length (l), the bulk material resistivity ρDC can be calculated as:

ρDC = RA/l (4.2)

One challenge in characterizing the bulk conductivity from this resistance mea-

surement is minimizing the impact of the variation in cross-sectional area due to

fabricated trace thickness on the bulk material conductivity. For traditional bulk

material measurements, a test sample is created that is dimensionally large in both
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Figure 4.7: A Typical 4-wire Resistance Test Structure. Resistance Is Measured on
Each Segment, e.g., R12.

cross-sectional dimensions such that the errors in conductor cross-sectional area due

to surface roughness or dimensional equipment capability is a small fraction of the to-

tal area. For package traces, this approach is not generally possible as the thickness of

the package metal is limited, and hence, the surface roughness is often not negligible

compared to the trace thickness. To circumvent this issue, resistance measurements

are collected on many structures across manufacturing lots and vendors, and those

structures are then cross-sectioned at many locations to estimate the overall geomet-

rical variation. This approach allows separation of the thickness variation from the

bulk conductivity data.

Through these studies, the bulk conductivity of the copper used in the fabrication

process of the structures in this chapter is known to be within ±5% for a given cross

sectional thickness as shown in Figure 4.8 and has a measured temperature coefficient

of α = 0.0043/oC given the relationship

R = Rref [1 + α(T − Tref)] (4.3)

where Rref is the resistance at reference temperature Tref .

4.1.3 Dielectric Permittivity Measurements

Dielectric properties of package materials can be characterized using resonators at

a single frequency as a function of temperature and relative humidity. The split-post
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Figure 4.8: Reproducibility on Normalized Conductivity of Package Substrates.
Error Bars Indicate ±3σ Control Limits. Measurements Performed by ECC Lab.

dielectric resonator (SPDR) is a well-established technique for accurate measure-

ments of the complex permittivity with quantifiable uncertainties [48]. An MCA is

performed in [11] on the dielectric measurement metrology utilizing an SPDR. Repro-

ducibility results indicate the relative standard deviation is 3σ/µ ≤ 2.1% for Dk and

3σ ≤ 0.001 for Df for typical package materials. It should be emphasized that these

uncertainties increase with decreasing values of dielectric loss and permittivity [48].

It is also found in the same study that the operator variation in the measurement

of sample thickness (required to extract Dk from SPDR) is a key limiter to repro-

ducibility. This is due to the direct correlation of errors in Dk to the relative errors

in thickness measurements. Df uncertainty is predominantly limited by the Q-factor

uncertainties of the resonator [48] and relatively insensitive to the sample thickness

measurement uncertainty.

In [15], a separate MCA is performed on both typical package dielectric samples

and a NIST traceable thickness gauge block using a high-performance micrometer. A
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typical package dielectric sample is shown in Figure 4.9(a). Three different operators

measured two samples with different thicknesses on three different days. The vari-

ations from mean value are shown in Figure 4.9(b). The thickness variations show

small dependence on the mean considering one sample is more than twice as thick.

As a result, reproducibility is expressed in absolute terms, i.e., 3σ ≈ 4 um. This

result also indicates that the thicker samples would yield smaller relative variation in

thickness, and hence smaller relative variation in extracted Dk. Gauge block mea-

surements from this study demonstrate that the micrometer accuracy, i.e., average

value of operator results compared to the traceable value, was significantly better than

4 um. Hence, it is only necessary to consider this value when computing thickness

reproducibility effects.

Figure 4.9: (a) A Typical Dielectric Sample Received from Vendors, and (b) Thick-
ness Measurement Reproducibility Results. Error Bars Indicate ±3σ Control Limits.
Measurements Performed by ECC Lab.

Measurement dynamics and sample thickness variation lead to a combined un-

certainty of 3σ/µ ≈ 3% in Dk. This result implies that any simulation should be

performed at both the upper and lower bounds from the dielectric characterization
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to bound the expected impact of the measurement variability. In addition to uncer-

tainty introduced by the sample thickness measurement uncertainty, the dielectric

resonator hardware also introduces additional uncertainty into the dielectric material

characterization because of imperfections in its construction. To address this issue,

the SPDR used for characterizing the package buildup materials is used to measure

a NIST traceable material sample [61]. This sample is approximately 750 um thick

which allowed the error introduced by thickness uncertainty of the reference material

to be minimized. This measurement was performed by three operators on three days

and the average result compared to the NIST specified value. The result fell withing

the ±0.16% uncertainty specified by NIST for the test material. Because this uncer-

tainty is significantly lower than that introduced by the sample thickness assessment

(∼ 3%), the error introduced by SPDR is determined to be negligible compared to

the error introduced by the thickness uncertainty.

4.1.4 Cross-section Dimensional Measurements

High fidelity geometrical representation of a transmission line can be achieved

by cross-sectioning and is essential for a good correlation. Cross-section dimensional

features become more critical because today’s on-package high-speed interconnect loss

is largely dominated by conductors due to thinner substrate and low loss dielectric

materials [12]. Cross-section picture of a typical package trace along with dimensional

features are shown in Figure 4.10(a).

An MCA was performed on a cross-section dimensional measurement utilizing a

visualization software. Three different operators measured four separate dimensional

features from the same cross-section picture on three different days to investigate

reproducibility. The features are not measured at a single point, but averaged over

many points. This is achieved by selecting an area around the feature of interest.
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Then, the boundary between dielectric and conductor is auto-traced by the visual-

ization software within that area, and the average dimension is provided.

The variation of each dimensional feature from its mean value is shown in Fig-

ure 4.10(b). The main source for uncertainty is the lack of clarity on where the features

start and end due to manufacturing process variations and surface roughness. For

larger design rules, this ambiguity might cause a relatively small uncertainty; how-

ever, for today’s high-density package design rules, the resulting uncertainty is not

negligible. Reproducibility results show that 3σ control limits for each dimensional

feature can be as large as 0.7 um.

Figure 4.10: (a) Cross-section Picture of a Typical Package Trace with Dimensional
Features Illustrated, and (b) Cross-section Dimensional Measurement Reproducibility
Results. Error Bars Indicate ±3σ Control Limits. Measurements Performed by ECC
Lab.

It is worth noting that dimensional variations between differential traces and vari-

ations along the routing are independent from the MCA and investigated in Sec-

tion 4.3.2 during measurement-to-modeling correlation. For the MCA, we select a

representative case to quantify the metrology uncertainty. This manifests the inher-
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ent uncertainty while determining the dimensions from a cross-section picture due to

the sources of uncertainty highlighted in the introduction.

4.2 Dielectric and Conductor Models

The accuracy in the modeling of high-speed interconnect performance depends

upon the accurate characterization of broadband dielectric materials and conductors

with surface roughness. Proper modeling of physical structures requires broadband

causal models satisfying Kramers-Kronig relationship. This section delves into the

sensitivity of dielectric and conductor models to the parameter uncertainty of inputs.

4.2.1 Wideband Debye Model

Despite several existing causal broadband dielectric models, the Djordjevic-Sarkar

(DS) model [45] is the one commonly used for materials in printed circuit boards and

packages. DS model can only handle dielectric materials with lower Df than a spe-

cific threshold. Considering the model was initially developed for FR-4, the majority

of today’s package materials will meet this criterion. DS model uses an infinite dis-

tribution of poles to model the frequency response based on a single measurement:

ϵ(f) = ϵ∞ +
∆ϵ

ln(fB/fA)
ln
fB + jf

fA + jf
(4.4)

where ϵ∞ is the permittivity at very high frequency, ∆ϵ is the magnitude of dispersion

∆ϵ = ϵ∞ − ϵDC , if the DC permittivity is known, and fA and fB are the lower and

upper frequency poles respectively. With the real permittivity ϵ1, and loss tangent

tanδ1 at the measurement frequency f1, the lower pole can be expressed as:

fA =
fB

e∆ϵ/K
where K =

∆ϵ

ln(fB/fA)
=

ϵ1tanδ1
arctan(fB/fA)

(4.5)

The accuracy of the model at high frequencies depends on the upper pole fB, which

could be selected based on high frequency dielectric material characterization as sug-
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gested by prior research [46].

To better understand the dependence of DS model to the measured ϵ1 and tanδ1

at f1, we can calculate the asymptotes on log-linear portions:

ϵ(f) = ϵ1(1 + 2/πtanδ1ln(f1/f)) (4.6)

tanδ(f) = tanδ1(1 + 2/πtanδ1ln(f1/f)) (4.7)

This indicates that any variation on tanδ1 affects the asymptote of relative permit-

tivity, whereas any variation on ϵ1 does not affect the asymptote of loss tangent.

For a typical package build up material, pairs of ϵ1 and tanδ1 are generated based

on reproducibility through a Monte Carlo analysis as shown in Figure 4.11. Each pair

in this set are used to calculate a DS model. Resulting Dk and Df as a function of

frequency are illustrated in 4.12.

Figure 4.11: ϵ1 and tanδ1 Pairs Obtained by a Monte Carlo Analysis Based on 3σ
Control Limits from Reproducibility for a Typical Package Material.
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Figure 4.12: DS Model Illustrating the Variation in Broadband Response Based on
Measurement Uncertainty.
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4.2.2 Effective Conductivity Model

Surface roughness characterization and representation has been one of the chal-

lenging aspects of high-speed interconnect modeling. Many different approaches for

roughness modeling exist in literature [20–26], and most of them utilize a correction

factor (K) as a function of skin depth (δ). Despite dissimilarity, correction factors of

existing common approaches can be written in a unified form [51].

Surface roughness effect can be incorporated using either frequency dependent

effective material properties or a surface impedance boundary condition. The former

is convenient due to being readily applicable to any field solver without an increase

in simulation time. Moreover, it allows to generate material libraries for conductors

with different roughening processes for ease of use. The skin effect in rough conductor

surfaces causes higher resistance as well as internal inductance, and manifests itself in

not only higher loss but increased phase delay to maintain causality [49, 50]. Causal

versions of many existing roughness models have been derived [50], which can be

critical for transient analysis. Roughness impact can be expressed with one frequency-

dependent complex or two real effective material properties [25].

In this section, we present sensitivity analysis performed utilizing Huray’s snowball

model. Correction factor for causal Huray-Bracken model can be expressed as follows:

KHB(δ, sr, a) = 1 +
3

2
sr

(
1 + (1− j)

δ

2a

)−1

(4.8)

where sr and a are the surface ratio and effective radius of spheres, respectively.

Roughness impact on conductor loss can be calculated with the real part of KHB and

real effective conductivity as follows:

KH(δ, sr, a) = 1 +
3

2
sr

(
1 +

δ

a
+

δ2

2a2

)−1

(4.9)

σeff = σbulk/K
2
H where δ = 1/

√
πfµrµ0σbulk (4.10)
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As shown in Section 4.1.2, bulk conductivity measurement uncertainty is within ±5%.

The impact of this uncertainty on correction factor and effective conductivity is shown

in Figure 4.13. Correction factor uses the same sr and a, yet its frequency response is

affected due to its dependence to bulk conductivity through skin depth. Propagated

uncertainty to KH remains under 1%. It should be noted that KH converges to

1+ 3/2sr as δ ≪ a at high enough frequencies, which reduces KH uncertainty due to

bulk conductivity measurement. Effective conductivity uncertainty is proportional to

bulk conductivity uncertainty whenever KH is constant, which happens either at low

frequencies (KH ∼ 1) or high frequencies (KH ∼ 1 + 3/2sr). In mid-frequency range

σeff uncertainty remains under 5%.

Figure 4.13: The Impact of ±5% Bulk Conductivity Variation on Correction Fac-
tor and Effective Conductivity. Solid and Dash Curves Indicate Nominal and ±3σ
Control Limits, Respectively.

It is obvious that KH is more sensitive to sr and a compared to σbulk. Although

Huray model input parameters have physical definitions, practically, effective param-

eters are used in modeling since it is very challenging to reliably extract these pa-

rameters from an actual package copper surface. Some of the challenges of parameter
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extraction from the images of copper surface include but are not limited to the robust-

ness of roughness measurement tools (either contact or non-contact based), process

variations, limitations of commonly used roughness parameters to represent different

roughening processes. For Huray model, surface ratio indicates how much surface

area is increased after roughening process, which is relatively easy to calculate; how-

ever, sphere radius is not straightforward to extract since certain assumptions have

to be made on the sphere arrangements to represent the copper surface. This chal-

lenge is exacerbated by the complex features formed on the actual surface after the

roughening process. As a result, making many assumptions just to extract the sphere

radius from the actual surface makes the process non-ideal and more alike to model

synthesis.

Effective parameters are obtained through model synthesis, which is accomplished

by fitting parameters so that a good measurement-to-modeling correlation is achieved.

We assume that the best fit is achieved when the geometric distances from the S-

parameter measurements to the fitting curve are minimized in the least squares sense.

Even though uniqueness cannot be guaranteed, since sr and a values impact differ-

ent frequency regions in the S-parameter data, practically, we expect the impact of

non-uniqueness to be small. To illustrate the model sensitivity, it is assumed that

parameters (sr and a) have 30% uncertainty, and the individual impacts on KH and

σeff are shown in Figure 4.14.

If the impact of combined uncertainty is considered as shown in Figure 4.15, KH

uncertainty remains under 18% and σeff uncertainty remains under 40%. Since the

uncertainty in the surface roughness could not be reliably measured, Figs. 4.14 and

4.15 are provided merely as examples to show the sensitivity to surface roughness

modeling parameters. Consequently, the impact of the uncertainty caused by surface

roughness is not currently included in the results in Section 4.3.
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Figure 4.14: The Impact of 30% Assumed Variation of (a) sr Only, and (b) a Only,
on Correction Factor and Effective Conductivity. Solid and Dash Curves Indicate
Nominal and ±3σ Control Limits, Respectively.
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Figure 4.15: The Impact of Combined Uncertainty (σBulk, sr, and a) on Correction
Factor and Effective Conductivity.
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4.3 Results

A package test vehicle was designed and manufactured including a DSL routed

on the layer below the surface with a length of 20 mm as shown in Figure 4.16. The

length was chosen based on certain physical constraints and the amount of real estate

available in a typical package. The purpose is to have it practically long enough

to clearly observe various characteristics of a transmission line. Even though the

methodology should be generic enough to apply to other lengths as well, confirmation

of this is a part of future work associated with de-embedding.

The measurement is performed with probes landing on the surface pads of the

test structure. Pads are connected to the main routing on the layer below the surface

through micro-vias and transition traces. Dielectric and conductor material charac-

terization is completed for the material and surface roughness process bundle used in

this test vehicle as described in Section 4.1. For the manufactured test vehicles, PNA

and cross-section dimensional measurements are performed.

4.3.1 S-parameter Measurements

PNA measurements were performed after prebaking to ensure no moisture re-

mained, and on a temperature chuck to achieve the controlled temperature condi-

tion to represent the typical package use condition [13]. The quality of measured S-

parameters is evaluated with IEEE standardized metrics of passivity and reciprocity

as shown in Table 4.1.

4.3.2 Cross-section Dimensional Measurements

Measured parts were then cross-sectioned to get the accurate dimensional char-

acteristics. Multiple cut locations were selected to quantify dimensional variations
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Figure 4.16: Differential Stripline Test Structure Illustrated by Layer with Main
Routing, Transition, and Probe Landing Pads. Zoomed-in Picture Illustrates Probe
Landing on Surface Pads from a Top-down Perspective.

Table 4.1: Quality of Measured S-parameters.

Design Passivity Reciprocity

A 100% 98.7%

B 100% 98.8%
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along the routing. Figure 4.17 shows model cross-section, cut locations and cross-

section pictures of DSL per location. It should be stressed that advanced processes

used in high-density packages to enable fine line/spacing lead to considerably less

etching factor than other processes used for coarser design rules. In a separate study

performed to investigate the impact of etching factor in high density packages, results

have demonstrated that rectangular traces as shown in the model cross-section, i.e.,

zero etching factor, yield very similar electrical performance compared to the models

with expected etching factor for the packaging technology used here.

Dimensional measurements were taken on each picture in Figure 4.17. Mean

values are listed in Table 4.2 and their variations from mean are summarized in Fig-

ure 4.18. It is observed that the 3σ variation remains less than 1.5 um for each design

parameter. This uncertainty (σz) must be combined with the metrology uncertainty

(σxy) presented in Section 4.1.4. By assuming these two uncertainty components

are independent, combined uncertainty (σc) can be calculated with summation in

quadrature [17]:

σc =
√

σ2
xy + σ2

z (4.11)

Table 4.2: Dimensional Mean Values Measured for Each Design Rule. All Units Are
in um. Measurements Performed by ECC Lab.

Design DT1 DT2 TT TW TS

A 25.73 25.60 16.99 15.37 34.91

B 25.82 26.56 14.24 14.69 36.50

For each design rule, combined uncertainty is used in modeling next, to account

for cross-section dimensional uncertainty.
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4.3.3 Measurement-to-Modeling Correlation

Modeling results were generated using dielectric and conductor material proper-

ties and surface roughness characterized at the same use condition along with cross-

section dimensions. A commercial 3D simulation tool was utilized with the mean

values of all measured inputs. Each component of uncertainty was propagated and

overall uncertainty in standard deviation for each performance metric was quantified

Figure 4.17: Model Cross-section, Cut Locations and Cross-section Pictures of DSL
Are Shown. Cross-section Measurements Performed by ECC Lab.
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Figure 4.18: Dimensional 3σ Variations from Mean for Each Design Rule. Mea-
surements Performed by ECC Lab.

using response surface methodology and statistical design of experiments [57]. Sub-

sequently, a Monte Carlo analysis was performed to understand the impact of the

variabilities on the modeling results.

Measurement-to-modeling correlation results of design A and B are shown at

typical use condition for packages in Figs. 4.19 and 4.20, respectively. Simple visual

assessment of measurement and modeling for design A (illustrated by blue and orange

solid lines, respectively) indicate good correlation between measurement and modeling

for all performance metrics except for the phase delay. However, a comparison of

measured and modeled results without any sensitivity analysis is insufficient to assess

the goodness of the correlation quality.

Propagation of the measurement uncertainty is required for an objective evalua-

tion. Measurement uncertainty from Section 4.1.1 was incorporated into measured

S-parameter data as a shaded area, i.e., measurement range. Measurement uncer-
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Figure 4.19: Measurement-to-modeling Correlation at Typical Package Use Condi-
tion for Design A. Uncertainty Incorporated into Measurement (Shaded) and Propa-
gated to Modeling Outcome (Dash). Measurements Performed by ECC Lab.
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tainty of bulk conductivity from Section 4.1.2, measurement uncertainty of Dk and

Df from Section 4.1.3, and combined measurement uncertainty of cross-section di-

mensions from Sections 4.1.4 and 4.3.2 were incorporated into modeling data as

model control limits. As can be seen, most of the correlation gap in the phase delay

is accounted for. This result implies that the phase delay can also be considered to

have a good correlation for f > 30 GHz.

Design B shows more dimensional variation along the routing than design A,

as presented in Section 4.3.2. This manifests itself as a measured TDR deviation

from modeled TDR but is enveloped by model control limits. Furthermore, design

B measured SDD21 is enveloped by model control limits only for f < 45 GHz. The

discrepancy for f > 45 GHz is expected to be caused by surface roughness varia-

tions, indicating the need for a reliable and accurate surface roughness measurement

metrology.

As can be seen from Figs. 4.19 and 4.20, for certain frequency ranges and time

instances, model control limits do not fully encompass the measurements. Before

addressing possible reasons behind this, it is worth noting that adding uncertainties

to the measurement-to-modeling correlations is a significant improvement to the con-

ventional approach of comparing only two curves, i.e., one from measurement and one

from model [14]. In this chapter, we are able to provide a systematic methodology

to clearly state how much of the gap in performance metrics can be accounted for

by the quantified measurement uncertainties. Having said that, we still cannot claim

that all possible sources of uncertainties are included. As a result, we still cannot

encompass all the measurement data across all frequency and time points using the

calculated model control limits.

Regarding the phase delay measurement-to-modeling correlation limitations, there

are several aspects we would like to highlight: i) Phase delay is very sensitive to
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Figure 4.20: Measurement-to-modeling Correlation at Typical Package Use Condi-
tion for Design B. Uncertainty Incorporated into Measurement (Shaded) and Propa-
gated to Modeling Outcome (Dash). Measurements Performed by ECC Lab.
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the Dk value, and since dielectric material characterization is performed using a

limited number of samples, this may result in under-estimating the actual existing

variation. There is also the possibility of the material property shift between the

material sheets that are characterized and those used in test vehicles. This impact

could be further exacerbated due to part-to-part variations or various processes that

packages experience during manufacturing, assembly or test. ii) Probe landing on the

surface pads located on each end of the test structure can also affect the phase delay

by changing the distance that signal has to travel. It should be noted that probes

skate a certain distance after landing on the surface pads to ensure a good electrical

contact. iii) Finally, causality of the roughness models could also have an impact.

As indicated, the skin effect in rough conductor surfaces manifests itself in not only

higher loss but also increased phase delay to maintain causality. This will influence

relatively low frequencies more, where model control limits do not encompass the

measurement data.

Regarding the insertion loss measurement-to-modeling correlations, as explained

in Section III-B, the impact of the roughness variation has not been included in

model control limits yet. It is expected that any discrepancy between insertion loss

model control limits and measurement data will be further reduced by inclusion of

this additional source of variation.

4.4 2x-Thru De-embedding

De-embedding plays a key role in removing the undesired impact of fixtures from

S–parameters to achieve the actual device under test (DUT) performance. Fixtures

are necessary for measurements of high speed transmission lines on a test vehicle and

may include probe pads, microvias, and any sort of transition region before the DUT.

Namely, the measurement reference plane already brought to the end of probes by
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performance network analyzer (PNA) calibration, is moved to the end of transition

region by de-embedding algorithms.

Any de-embedding process requiring identical designs with different lengths, e.g.,

2x-Thru based [62], is inherently exposed to uncertainties due to manufacturing pro-

cess variations and measurement reproducibility. Although the former has been stud-

ied in detail [63–67], prior research falls short of addressing the latter. Consider-

ing uncertainty quantification is critical to ascertain the quality of measurement-to-

modeling correlation results [15, 18], the implications of de-embedding uncertainty

deserve further exploring.

This section relies on the use condition dependent methodology which was in-

troduced in [12] and thoroughly presented in [13]. The impact of measurement un-

certainty without de-embedding was investigated in [15, 18]. Figure 4.21 illustrates

the correlation flow highlighting the focus of this section with dash red lines. The

major contributions of this section are as follows: (i) experimental evaluations of

S-parameter measurement uncertainty with varying lengths for multiple metrics, (ii)

a measurement-to-modeling correlation including de-embedding uncertainty using a

2x-Thru algorithm.

4.4.1 Reproducibility of S-parameter Measurements

Reproducibility examines the closeness of the agreement between the results of

measurements of the same measurand carried out under changed conditions of mea-

surement [60]. The changed conditions include repeated DUT insertion and measure-

ment instrument calibrations by multiple test equipment operators at different times.

This process provides information on the measurement variability introduced by all

temporal and spatial variations of any influence quantity.

The impact of DUT length on S-parameter measurement reproducibility is eval-
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Figure 4.21: Correlation Flow. T , RH and f Indicate Dependence to Temperature,
Relative Humidity and Frequency, Whereas σbulk, σeff, Dk, and Df Refer to Bulk
and Effective Conductivity, Dielectric Constant and Dissipation Factor, Respectively.
Dash Red Lines Highlights the Focus of This Section.

uated. A package test vehicle was designed and manufactured including four dif-

ferential striplines (DSL) having the same design rules but varying routing lengths.

Figure 4.22 illustrates all DUTs, and highlights the details like pads for probing,

stitching microvias, ground plane and spacing on each layer.

To assess reproducibility, three different operators collected data on three different

days, calibrating the four-port PNA before each measurement. Test vehicle was

prebaked to ensure all the absorbed moisture was removed from the substrate and

was kept in a nitrogen cabinet all the time except for active measurement [13].

Measurements were performed at 90◦C up to 67 GHz on four different lengths, i.e.,

5 mm, 10 mm, 15 mm, and 20 mm. This procedure yielded nine DUT measurements

per length. Assuming the metrics are Gaussian variables, differential insertion loss

(SDD21), phase delay (PD), and time domain reflectometry (TDR) are utilized to

show relative standard deviation (RSD) 3σ/µ, where µ and σ are expected value and

standard deviation, respectively.

As can be seen from Figure 4.23, SDD21 RSD increases with frequency, but there
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Figure 4.22: (a) Four DSL Structures on a Section of a Test Vehicle with Different
Lengths Are Highlighted, (b) Features of One Structure Including Traces, Planes,
Microvias, Probe Pads Are Illustrated per Layer.

is no clear trend observed with respect to length. In other words, similar RSD can

be expected for any length or insertion loss of structure. Furthermore, overall RSD

remains under 3% up to 67 GHz. The PD RSD shows little dependence on frequency—

practically constant after a few GHz, but a clear trend on the length. RSD gets smaller

for longer lines primarily due to higher delay. Probe landing on the surface pads

located on each end of the test structure is the major factor affecting PD. It should be

noted that probes skate a certain distance after landing on the surface pads to ensure

a good electrical contact, which could unsurprisingly vary by operator and time. PD

is also sensitive to Dk, but considering DUTs are closely located, Dk variation that

DUTs see is expected to be minimal. TDR RSD has a small and practically constant

variation over time. Except the shortest line, TDR RSD decreases with length, but

all values are less than 0.4%. It is noteworthy that TDR plots only show the region
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of interest for each length excluding initial delay and transition regions. Table 4.3

summarizes the key observations on the RSD impact of length and frequency/time

over multiple performance metrics.

Table 4.3: RSD Impact of Multiple Factors Over SDD21, PD and TDR.

SDD21 PD TDR

Length No clear trend Decreasing Mostly decreasing

Freq/Time Increasing Practically constant Practically constant

2x-Thru de-embedding algorithms require two structures: i) DUT embedded be-

tween two fixtures (total), ii) two fixtures cascaded back-to-back without DUT (2x-

Thru). Consider the 10 mm DSL as 2x-Thru, and 20 mm DSL as total from the

set of structures shown in Figure 4.16. Nine distinct S-parameter measurements ob-

tained from reproducibility in Section 4.4.1 for each 2x-Thru and total structures are

de-embedded using all possible combinations. Therefore, the post de-embedding data

include 81 distinct S-parameters for uncertainty quantification.

Figure 4.24 compares the uncertainty before and after de-embedding for multiple

metrics. The frequency range (f > 60 GHz) where the IEEE P370 [68] fixture

electrical requirements not conformed to are shaded, since de-embedding accuracy is

not guaranteed. It is worth noting that Figure 4.24 does not compare the accuracy

but the precision–how much data is spread with respect to its own mean µ, before

and after de-embedding. Post de-embedding RSD for SDD21 and TDR indicates the

uncertainty is pretty much comparable to the reproducibility before de-embedding

despite the large amounts of data in de-embedded set. RSD of PD shows a bigger

impact with de-embedding but overall RSD still remains below 1%.
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Figure 4.23: Relative Standard Deviation (RSD) (3σ/µ) of Differential Metrics (a)
SDD21, (b) PD, and (c) TDR. Lengths Are Color-coded. Measurements Performed
by ECC Lab.
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Figure 4.24: Before and after De-embedding RSD Comparison for Differential Met-
rics (a) SDD21, (b) PD, and (c) TDR. The Frequency Range Where the IEEE P370
Fixture Electrical Requirements Not Conformed to Are Shaded. Measurements Per-
formed by ECC Lab.
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4.4.2 Measurement-to-Modeling Correlation

This section follows [18] closely for uncertainty propagation methodology. Mod-

eling results were generated using dielectric and conductor material properties and

surface roughness characterized at the same use condition along with cross-section

dimensions. A commercial 3D simulation tool was utilized with the mean values

of all measured inputs. Each component of uncertainty was propagated and overall

uncertainty in standard deviation for each performance metric was quantified using re-

sponse surface methodology and statistical design of experiments [57]. Subsequently,

a Monte Carlo analysis was performed to understand the impact of the variabilities

on the modeling results.

Measurement-to-modeling correlation results are shown at 90◦C in Figure 4.25.

Measurement uncertainty was incorporated into de-embedded S-parameter data as

a shaded area. Measurement uncertainty of bulk conductivity, Dk and Df , and

cross-section dimensions were incorporated into modeling data as dashed lines. The

impact of the uncertainty caused by surface roughness is not currently included in the

results and will be addressed in future awaiting for a reliable roughness measurement

metrology. This result implies that the most of the correlation gap in PD and TDR

can be accounted for by the measurement uncertainties. It is also important to stress

that de-embedding does not significantly increase measurement uncertainty.

4.5 Summary

This chapter presents a systematic methodology for measurement uncertainty

quantification and propagation in high-speed package interconnect validation. Mea-

surement uncertainty in S-parameters, dielectric permittivity, and cross-section di-

mensional measurements is examined. Variability in each measurement step of the
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Figure 4.25: Correlation after De-embedding for Differential Metrics (a) SDD21, Pd,
and (b) TDR. Uncertainty Incorporated into Measurement (Shaded) and Propagated
to Modeling Outcome (Dash). Measurements Performed by ECC Lab.
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use condition-dependent correlation flow is quantitatively determined through rigor-

ous MCAs. Combined uncertainty propagated to the performance metrics increases

the confidence in correlations by identifying control limits, and helps to more objec-

tively interpret the correlation quality.

As de-embedding becomes increasingly central to high-speed interconnect valida-

tion, next the impact of de-embedding into measurement uncertainty was illustrated.

Also, the experimental evaluations of S-parameter measurement uncertainty with

varying lengths was presented for multiple metrics. By assessing the uncertainty im-

pact of de-embedding, this study established that the de-embedding does not add

significant uncertainty to the validation process.
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Chapter 5

SURFACE ROUGHNESS CHARACTERIZATION

Surface roughness refers to the irregularities or deviations on the surface of a

material from the ideal flat or smooth surface, as shown in Figure 5.1 In its pure

form, copper has a relatively smooth surface; however, during manufacturing copper

surface is intentionally roughened. This is desirable to promote adhesion between

dielectric and conductor materials and avoid delamination in interconnects, but it

dramatically increases insertion loss especially at high frequencies. This sensitive

trade-off between electrical and mechanical demands makes it harder to optimize

in a way that benefits both. Although some novel approaches proposed such as

bypassing roughening process and introducing a thin layer of adhesion promoter [69],

high volume manufacturing to-date commonly relies on copper etching. Therefore,

surface roughness characterization is still critical to predict high-speed interconnect

performance.

Figure 5.1: Surface Roughness Profile a Copper Foil.
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5.1 Surface Roughness Metrology

There are various measurement instruments available for analyzing and evaluating

surface roughness, which can be grouped under two methods:

� Contact profilometry: This measurement technique involves scanning a surface

with a stylus or probe to obtain a three-dimensional profile of the surface. The

stylus is typically a small, sharp tip that is mounted on a sensitive probe that

can detect small vertical movements. As the stylus is moved along the surface,

it traces the surface topography, and the vertical movements are recorded by

the probe. One common instrument is Atomic force microscopy (AFM).

� Non-contact profilometry: This measurement technique does not require physi-

cal contact with the surface being measured. Instead of using a stylus or probe

to scan the surface, non-contact profilometry typically uses light, laser, or other

forms of electromagnetic radiation to measure the surface topography, such as

white light interferometer and confocal microscopy.

Despite their differences, both of these methods provide information about the

surface from top-down perspective. Therefore, one common shortcoming is that any

surface feature invisible from top-down view cannot be captured, e.g., undercuts as

shown in Figure 5.2. Alternative is the cross sectioning which is a powerful technique

for roughness characterization that allows for a detailed examination of surface topog-

raphy in a direction perpendicular to the surface. This method can provide valuable

insights about any undercuts, but disclose features only over a line rather than an

area.
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Figure 5.2: Surface Roughness Profiles from (a) Top-down View by AFM, and (b)
Side-view by Cross-sectioning. Arrows Highlighting Undercuts Which Are Not Visible
from Top-down View. Measurements Performed by LYA Lab.

5.1.1 Roughness Parameters

Once raw profile is measured, it is high-pass filtered to separate roughness (R)

from waviness (W) as defined in surface metrology standards. 2-D roughness param-

eter names are preceded by a letter indicating the source profile, and 3-D roughness

parameter names are preceded by letters ’S’ or ’V’ indicating surface and volume, re-

spectively. The roughness profile is commonly described by the statistical distribution

of height values, as some of them suumarized in Table 5.1.

Table 5.1: Commonly Used Statistical Roughness Parameters.

Rq Root mean square height

Ra Arithmetical mean height

Rsk Skewness of height distribution

Rku Kurtosis of height distribution

Rz Maximum height
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5.2 Surface Roughness Modeling Methodology

Copper surface roughness modeling is the process of mathematically describing the

variations in the surface of a copper material. This can include factors such as the

height of the surface’s peaks and valleys, the distribution of those peaks and valleys,

and the roughness of the surface at different scales. There are various methods for

modeling copper surface roughness, as illustrated in Figure 5.3.

Figure 5.3: Existing Roughness Models.

There are several ways to find the roughness parameters for electrical roughness

models:

� Experimentally: The roughness parameters can be determined experimentally

by measuring the surface roughness using one of the aforementioned methods,

and then fitting the measured data to an electrical roughness model.

� Inverse modeling: The roughness parameters can be determined by using an

inverse modeling approach, where the roughness parameters are varied until

the simulated results match the measured data.

It’s worth noting that the accuracy and reliability of the roughness parameters

depend on the quality and quantity of the measured data, the complexity of the

model, and the chosen method for finding the roughness parameters.
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5.2.1 Length Ratio

Today’s on-package high speed interconnect loss is largely dominated by con-

ductors due to thinner substrate, and high frequency conductor loss is considerably

influenced by surface roughness. Currently roughness impact to loss is quantified by

inverse modeling. Because there is no practical and reliable parameter(s) to extract

from copper surface for estimating insertion loss. Commonly used parameters, e.g.,

Ra, Rq fails to differentiate surfaces especially when the roughness change is rela-

tively small. Furthermore, contact or non-contact based surface profilometers used

to calculate these roughness parameters suffer from the features not visible to detect

from top-down view, e.g., undercuts. In this section, we propose an alternative to

use a parameter extracted from cross-section images of the transmission line used for

loss measurements.

This idea proposes to use the ratio of the length of rough trace perimeter to its

smooth perimeter, indicating how much trace perimeter is increased after roughness

process, as described in Equation 5.1.

Lr =
Rough counter length

Smooth projected length
(5.1)

The proof of concept on this parameter is shown in Figure 5.4. Extracted Lr from

the same test vehicle can predict slight loss increase that other parameters fall short

of addressing.

The method provides a tool for suppliers to monitor roughness process stability

quickly without the need for insertion loss measurements, which is very complex and

error prone. This will ensure their process is stable and products will meet the loss

targets committed.

94



Figure 5.4: Length Ratio Proof of Concept. Loss and Cross-section Measurements
Performed by ECC and LYA Labs, Respectively.
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Chapter 6

CONCLUSION AND FUTURE WORK

The purpose of this work is to create a methodology that is both academically

rigorous and has a significant impact on industry: A methodology providing an ac-

curate characterization of the electrical performance of interconnects under realistic

use-conditions, accompanied by an uncertainty analysis to improve the assessment of

correlation quality. Majority of this work has already become a part of the Packaging

Benchmark Suite developed by IEEE EPS TC-EDMS to provide information about

the electromagnetic, electrical, and circuit modeling and simulation problems encoun-

tered, and the state-of-the-art solution methods used when analyzing and designing

electronic packages [28]. Chapter 1 describes the motivation and summarizes the key

contributions of this work as:

� Examining the impact of the use-conditions and manufacturing process varia-

tions on signal integrity performance,

� Quantifying measurement uncertainty for improved correlation quality,

� Investigating the effects of various adhesion promotion and copper surface rough-

ness and developing a rigorous method for predicting loss.

Chapter 2 presents a novel systematic methodology that accurately captures the

impact of use conditions on dielectric and conductor models for package high speed

interconnects. First, a robust metrology is introduced to accurately characterize di-

electric materials under various use conditions. Sample pre-conditioning requirements

are detailed followed by an MCA study that demonstrates the precision of the metrol-

ogy for different use conditions. A method for predicting the dielectric properties over
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continuous ranges of temperature and RH is proposed along with results for typical

types of package materials. Then, a comprehensive analysis is presented to show

the inherent temperature dependence of correction factors of existing surface rough-

ness models. Correlation to high-fidelity insertion loss measurements at different

temperatures indicate that the correction factor synthesized at lower temperatures

underestimates the loss at higher temperatures, necessitating an explicit temperature

dependence for surface roughness models.

The proposed methodology ensures that the package design process can accurately

account for the impact of product use conditions for emerging and future high speed

interfaces. We consider the proposed methodology to be general enough for applica-

tion to other types of interconnects and use conditions. Such potential applications

include but are not limited to board interconnects and characterization at manu-

facturing, assembly, or test environmental conditions. Validation of the method for

these additional applications and more novel interconnect structures such as tabbed

transmission lines is an important area for the future work.

Chapter 3 first presents an efficient and accurate modeling methodology to ana-

lyze the impact of manufacturing process variations on IO performance metrics. The

proposed methodology outperforms conventional approaches such as RSM by incor-

porating ML based algorithms (SVR and GPR) and overcomes limitations such as the

constraints on tolerance margins and the number of uncertain parameters. It is also

capable of modeling highly nonlinear structures. This resulting methodology proves

to be promising and can be applied to a broad range of applications involving HSIO

interconnects. Second, a novel corner model selection methodology is presented. It is

shown that eye margins are sensitive to the corner model selection, and it is proposed

to select most probable corner via maximum joint probability for more accurate and

realistic high speed IO channel performance and defect rate predictions.
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Chapter 4 presents a systematic methodology for measurement uncertainty quan-

tification and propagation in high-speed package interconnect validation. Measure-

ment uncertainty in S-parameters, dielectric permittivity, and cross-section dimen-

sional measurements is examined. Variability in each measurement step of the use

condition-dependent correlation flow is quantitatively determined through rigorous

MCAs. Combined uncertainty propagated to the performance metrics increases the

confidence in correlations by identifying control limits, and helps to more objectively

interpret the correlation quality. Furthermore, although the work presented in this

chapter covers frequencies up to 67 GHz, the methodology for achieving substrate

measurement-to-modeling correlation has also been applied successfully to advanced

substrate technologies spanning to 110 GHz.

Chapter 5 presents an overview of surface roughness characterization challenges

including modeling, measurement and parameter extraction. Then, a new approach

is introduced which can be used as an indicator to predict loss drifts. Although it

is challenging to represent actual surface roughness with a single parameter, pro-

posed method is able to capture loss variations in a small roughness window. For

a wider window, or roughness processes leading to fundamentally different surface

morphology, there might still be a need for more than a single parameter, which is

an important area for future work.
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