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ABSTRACT  
   

Scale scores play a significant role in research and practice in a wide range of 

areas such as education, psychology, and health sciences. Although the methods of scale 

scoring have advanced considerably over the last 100 years, researchers and 

practitioners have generally been slow to implement these advances. There are many 

topics that fall under this umbrella but the current study focuses on two. The first topic is 

that of subscores and total scores. Many of the scales in psychological and health 

research are designed to yield subscores, yet it is common to see total scores reported 

instead. Simplifying scores in this way, however, may have important implications for 

researchers and scale users in terms of interpretation and use. The second topic is 

subscore augmentation. That is, if there are subscores, how much value is there in using 

a subscore augmentation method? Most people using psychological assessments are 

unfamiliar with score augmentation techniques and the potential benefits they may have 

over the traditional sum score approach. The current study borrows methods from 

education to explore the magnitude of improvement of using augmented scores over 

observed scores. Data was simulated using the Graded Response Model. Factors 

controlled in the simulation were number of subscales, number of items per subscale, 

level of correlation between subscales, and sample size. Four estimates of the true 

subscore were considered (raw, subscore-adjusted, total score-adjusted, joint score-

adjusted). Results from the simulation suggest that the score adjusted with total score 

information may perform poorly when the level of inter-subscore correlation is 0.3. Joint 

scores perform well most of the time, and the subscore-adjusted scores and joint-

adjusted scores were always better performers than raw scores. Finally, general advice to 

applied users is provided.  
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CHAPTER 1 

INTRODUCTION 

Scale scores play a significant role in research and practice in a wide range of 

areas such as education, psychology, and health sciences.  Although the methods of scale 

scoring have advanced considerably over the last 100 years, researchers and 

practitioners have generally been slow to implement these advances.  There are many 

topics that fall under this umbrella, but we will focus on two in the current study.  

The first topic is that of subscores and total scores.  Many of the scales in 

psychological and health research are designed to yield subscores, yet we often see total 

scores reported instead.  Simplifying scores in this way, however, may have important 

implications for researchers and scale users in terms of interpretation and use.  That is, 

are there conditions where it is appropriate to use total scores instead of subscores and if 

so, how do those impact the subsequent interpretation and use of the scale score? 

Haberman (2008) and Sinharay (2010) have considered this from what amounts to the 

opposite perspective, i.e. under what conditions can subscores have value?  Their work in 

the educational sector revealed that, in general, subscores can be valuable when they are 

reliable (i.e., consist of at least 20 items) and the (disattenuated) correlation among 

subscores is low (i.e., r < 0.85).  We aim to replicate these findings, but also to extend the 

conditions studied by previous authors to those that more closely reflect what we see in 

psychology and health assessment.  

The second topic is subscore augmentation. That is, if there are subscores, how 

much value is there in using a subscore augmentation method?  Most people using 

psychological assessments are unfamiliar with score augmentation techniques and the 

potential benefits they may have over the traditional summed-score approach. 

Therefore, we will start with the simplest form of augmentation: Kelley’s regressed 
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estimate (Kelley, 1923) which shrinks scores to the sample mean proportional to their 

unreliability. The terms “raw” and “observed” will be used interchangeably throughout 

this paper to refer to the summed-score. The terms “augmented” and “adjusted” will be 

used interchangeably to refer to any score that has been changed from its observed form 

via Kelley’s formula or variants thereof. We are interested in exploring the magnitude of 

improvement using these types of augmented scores over observed scores, as well as 

whether the circumstances under which subscores add value are different for augmented 

versus observed scores.    

Our goals for the current study are to: 1) conduct a simulation that enables me to 

make general claims about where subscores are more (or less) likely to be valuable in 

psychology and health research, 2) provide researchers with a functional tool that helps 

them assess the cost of simplifying their scores (e.g., subscore vs. total score; augmented 

vs. non-augmented), and 3) spark a larger conversation about scoring practices and 

techniques. In the next section of this document, we provide a brief review of classical 

test theory (CTT, Lord & Novick, 1968) and discuss the existing literature pertaining to 

the added value of subscores. After this, we describe the simulation and analytic strategy, 

and provide results. We conclude with a discussion of the results and offer general advice 

to applied users.  

Review of Classical Test Theory & Reliability 

The foundation of CTT (Lord & Novick, 2008) rests on the true score model, 

which states that an observed score 𝑥𝑗 for individual j is the sum of two components: a 

true score 𝜏𝑗 and error 𝑒𝑗 . This can be written as 𝑥𝑗 = 𝜏𝑗 + 𝑒𝑗.  The true score 𝜏𝑗 is defined 

as the value we would expect to obtain if a person took parallel forms of an assessment 

infinitely many times and those scores were averaged (Lord & Novick, 2008; Wainer & 

Thissen, 2009, Chapter 2). It can also be thought of as an individual’s true level of the 
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construct of interest. Error is defined to be random and characterized as the difference 

between the observed score 𝑥𝑗 and the true score 𝜏𝑗 . The true score model assumes that:   

(1)  𝐸(𝑥𝑗) =  𝜏𝑗, the expected value (taken over hypothetical parallel replications) of an 

examinee’s observed score is equal to their true score (the observed score is an unbiased 

estimate of the true score) 

 (2) 𝐸(𝑒𝑗) = 0, the expected value of error scores is zero 

 (3) 𝜎𝜏𝑒 =  0, the covariance between the true score and error is zero.   

In general, reliability refers to how consistently an observed score on a particular 

measure captures the construct of interest (i.e., true score). The smaller the difference 

between observed score and true score (i.e., the smaller the error), the more reliable the 

observed score is. Formally, reliability is defined as the proportion of observed score 

variance that is true score variance, which is equal to the proportion that is not error 

variance, which is equal to the squared correlation between observed score and true 

score,  𝜌𝑥𝜏
2 =

𝜎𝑥𝜏
2

𝜎𝑥
2𝜎𝜏

2  (Wainer & Thissen, 2009, Chapter 2). However, because the true score 

is unobservable, it follows that reliability cannot be directly computed. Therefore, it must 

be estimated. The most widely used estimate of reliability is coefficient alpha (henceforth 

reliability, or α; Hoyt, 1941; Guttman, 1945; Cronbach, 1951), which assesses the internal 

consistency among observed item responses. For a k-item scale that has a unit-weighted 

sum score called x, coefficient α  for the observed responses is expressed as,  

𝛼 =
𝑘

𝑘 − 1
 (1 −

∑ 𝜎𝑘
2

𝜎𝑥
2 ) 

where ∑ 𝜎𝑘
2 is the sum of the item variances, 𝜎𝑥

2 is the variance of the scale scores (which 

is equal to the sum of all the item variances and covariances), and 
𝑘

𝑘−1
 restricts the 

estimate to be between 0 and 1. Thus, the formula for coefficient α is equal to the 

proportion of a scale’s total variance that is attributable to a common source, assumed to 



  4 

be the true score. The higher α is, the more reliable the score is, such that if 𝛼 = 1, then 

the observed score is driven entirely by the true score, and if 𝛼 = 0, then none of the true 

score is being reflected in the observed score. Α is considered an unbiased estimate of 

internal consistency if all the items comprising the scale are at least tau-equivalent. Tau 

equivalency requires that each item of a given scale measure the construct equally well 

(Novick & Lewis, 1967). If they are not all at least tau equivalent, then coefficient α has 

been shown to be a lower-bound estimate of reliability (Guttman, 1945; Miller, 1995). 

Additionally, coefficient α assumes that the scale is unidimensional (measures one 

construct), items are normally distributed, and the errors of the items do not covary (see 

McNeish, 2018).  

In addition to estimating the reliability for a set of scores, the true scores also 

must be estimated, and there are various ways of doing this.  The predominant approach 

in psychological and health research is to use the observed summed score, which is a 

sum of the scored item responses. It is also common to see researchers use an observed 

average as the scale score, which is the average over the observed item responses. We 

will focus on the summed score for this project, but as the average score is a monotonic 

transformation of the summed score, so the same conclusions should hold. It is worth 

acknowledging, however, that the monotonic transformation of the summed score to a 

mean score can break down with missing data. A total score (𝑥𝑇) can be computed by 

summing all the item responses. Subscores (𝑥𝑆) can be created by summing specific sets 

of item responses. For every assessment, there is one total score, 𝑥𝑇, and as many 

subscores, 𝑥𝑆, as there are subscales. Furthermore, any of the observed subscores can be 

subtracted from the observed total score to yield a difference that is referred to as the 
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observed remainder score1, 𝑥𝑅 =  𝑥𝑇 − 𝑥𝑆. There are as many observed remainder scores 

as there are subscores. In the CTT summed score approach, the observed total score 𝑥𝑇, 

observed subscores 𝑥𝑆, and observed remainder scores 𝑥𝑅 are used as estimates of the 

true total score 𝜏𝑇, true subscores 𝜏𝑆, and true remainder scores 𝜏𝑅, respectively.    

Haberman’s Method & Motivation 

Psychological and health research are not the only sectors affected by the issue of 

total score versus subscores.  A similar, yet distinct, issue has been observed and 

addressed in the educational context. Many standardized educational tests are designed 

to produce a single total score that is thought to represent a student’s ability in that 

domain. However, since the No Child Left Behind Act of 2001 and Every Student 

Succeeds Act of 2015, there has been pressure to report subscores in addition to the total 

score on standardized tests (e.g., Feinberg & Jurich, 2017; Haberman, 2008; Sinharay, 

2010). This pressure was driven by the notion that subscores may provide remedial and 

instructional benefits. To be of any diagnostic value however, subscores need to meet 

certain standards. Namely, Standards 1.13 and 1.14 of the Standards for Educational 

and Psychological Testing require that:  

When a test provides more than one score, the distinctiveness and reliability of 

the separate scores should be demonstrated, and the interrelationships of those 

scores should be shown to be consistent with the construct(s) being assessed.  

When interpretation of subscores, score differences, or profiles is suggested, the 

rationale and relevant evidence in support of such interpretation should be 

provided.  (AERA et al., 2014, p. 27)   

                                                        
1 While the remainder score may not be a particularly useful or familiar score to most researchers, 
it serves an important role when determining the cost of using a total score over subscores; this is 
discussed further in the Value-Added Ratio section.    
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To determine whether subscores should be reported, Haberman (2008) proposed a 

method that is grounded in CTT and is described next. 

From the CTT perspective, the observed subscore is treated as an estimate of the 

true subscore. When determining whether subscores are worth reporting, Haberman 

(2008) considered three estimates of the true subscore:  

1) 𝐴𝑆 = �̅�𝑆 + 𝛼𝑆(𝑥𝑆 − �̅�𝑆),  which is a Kelley regressed estimate that is based on 

the observed subscore (𝑥𝑆), the average subscore for the sample (�̅�𝑆), and the 

reliability of the subscore (𝛼𝑠).  

2) 𝐴𝑇 =  �̅�𝑆 + 𝑐(𝑥𝑇 − �̅�𝑇), which is based on the observed total score (𝑥𝑇), the 

average total score for the sample (�̅�𝑇) , and a constant (c) that is determined 

by the reliabilities and standard deviations of the subscore and total score and 

the correlations between the subscores.   

3) 𝐴𝑇𝑆 =  �̅�𝑆 + 𝛼𝑆(𝑥𝑆 − �̅�𝑆) + 𝑏(𝑥𝑇 − �̅�𝑇) , which is based on a weighted average 

of the observed subscore (𝑥𝑆), the observed total score (𝑥𝑇), the average 

subscore for the sample (�̅�𝑆),  the average total score for the sample (�̅�𝑇), and 

two constants (a) and (b) that depend on the reliabilities and standard 

deviations of the subscore and total score and the correlations between the 

subscores.   

Haberman (2008) used the mean-squared error (MSE) to evaluate the various 

scores. The MSE indicates the average squared distance between the estimated subscore 

and the true subscore. Because the true subscore is unknown, Haberman devised 

methods for calculating the quantities needed to estimate the necessary MSEs. The 

smaller the MSE, the more accurate the corresponding estimate is. In Haberman’s case, 

the estimate was any one of the three augmented scores listed above. The MSE of each 

estimate was compared to the MSE of a baseline model, which Haberman defined as the 



  7 

mean of the observed subscores.  This is equivalent to an intercept-only regression 

model. Rather than just relying on MSE, Haberman took additional steps to create a 

more interpretable summary of the performance of a given score; he did so by evaluating 

the proportional reduction in MSE (PRMSE) of the approximation of the true subscore 

by any one of the three augmented scores relative to the approximation by the sample 

mean.  Thus, the PRMSE is the relative decrease in MSE from using any one of the three 

augmented scores compared to using the sample mean for all individuals:  

𝑃𝑅𝑀𝑆𝐸𝐴 = 1 − 
𝑀𝑆𝐸𝐴

𝑀𝑆𝐸𝐸(�̅�𝑠)
=  

𝑀𝑆𝐸𝐸(�̅�𝑠) − 𝑀𝑆𝐸𝐴

𝑀𝑆𝐸𝐸(�̅�𝑠)
 

There is a PRMSE value associated with each of the three estimates mentioned above: 

𝑃𝑅𝑀𝑆𝐸𝐴𝑆
, 𝑃𝑅𝑀𝑆𝐸𝐴𝑇

, and 𝑃𝑅𝑀𝑆𝐸𝐴𝑇𝑆
, respectively. 𝑃𝑅𝑀𝑆𝐸𝐴𝑆

 has been shown to be equal to 

the estimated reliability of the subscore (Haberman, 2008).  The PRMSE values are 

bounded between 0 and 1, such that the larger the PRMSE value is, the more accurate 

the corresponding estimate is (Haberman, 2008; Sinharay, 2010; Sinharay et al., 2011b). 

For subscores to have value above and beyond that of the total score, Haberman 

determined that 𝑃𝑅𝑀𝑆𝐸𝐴𝑆
 needs to be greater than 𝑃𝑅𝑀𝑆𝐸𝐴𝑇

. Said differently, 𝐴𝑆 needs 

to be a more accurate estimate of the true subscore than 𝐴𝑇 . In sum, Haberman (2008) 

found that subscores are “most likely to have value if they have relatively high reliability 

by themselves and if the true subscore and true total score have only a moderate 

correlation. Both conditions are important” (p. 224).    

Sinharay’s Simulation 

To quantify the findings of Haberman (2008)—specifically, how reliable and distinct 

subscores must be—Sinharay (2010) looked at operational and simulated datasets.  

Here, we will focus only on the simulation study that Sinharay conducted rather than the 

operational analyses, because that is most relevant to the current study. Sinharay (2010) 

used the same three estimates of the true subscore that Haberman (2008) did: one that 
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is based on the observed subscore (𝐴𝑆), another that is based on the observed total score 

(𝐴𝑇), and a third based on a weighted average of the observed subscore and observed 

total score  (𝐴𝑇𝑆).  This weighted average “places the same weight on the subscores other 

than the one of interest” and is a special case of Wainer et al’s (2009) augmented 

subscore, which “places different weights on all the subscores” (Sinharay, 2010, p.152). 

Sinharay (2010) used the 2-parameter logistic multidimensional item response theory 

model (2-PL MIRT model; Reckase, 2007) to generate dichotomous item response data. 

Then he applied Haberman’s PRMSE method to evaluate the performance of the three 

augmented scores in estimating the true subscore. The factors and levels of each factor 

that Sinharay controlled in his simulation are as follows: 

 Number of subscales: 2, 3, and 4 

 Length of subscales: 10, 20, 30, and 50 

 Level of correlation among subscales:  .70, .75, .80, .85, .90, and .95 

 Sample size N: 100, 1,000, and 4,000 

Results from the simulation study suggested that the biggest factors impacting the 

value of subscores are, as expected, the average reliability and average disattenuated 

correlation among subscores. According to Sinharay’s (2010) results, subscores need to 

consist of at least 20 items to be considered reliable. For example, for 2, 3, and 4 

subscales with 10 items each, the average reliability was 0.58; the subscores were not of 

any added value even when they were sufficiently distinct from one another (i.e., 

disattenuated inter-subscore correlation of 0.7). But for subscores with 20 items each, 

the average reliability was 0.74; for 30 items each the average reliability was 0.81, and 

for subscores with 50 items each, the average reliability was 0.88. Furthermore, for 

subscores to be considered sufficiently distinct from each other, the disattenuated 

correlations among subscores should be less than 0.85.  Sinharay also pointed out that 
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“there is an interaction between the length of the subscores and the level of correlation” 

(p. 167). For example, the added value of subscales that consist of at least 20 items 

depends on the level of correlation among the subscores. These results reflect 

educational conditions, however, which is the motivation for the current study. That is, 

will the results be the same if the conditions are manipulated to reflect what we see in 

psychological and health research? 

The Value-Added Ratio  

Building on the work of Haberman (2008) and Sinharay (2010), Feinberg and 

Wainer (2014) proposed examining the ratio of 𝑃𝑅𝑀𝑆𝐸𝐴𝑆
 to  𝑃𝑅𝑀𝑆𝐸𝐴𝑇

 and called this the 

value-added ratio (VAR). Although VAR could be calculated as the ratio between 

estimates of the two necessary PRMSE values, Feinberg and Wainer also derived a 

simpler equation to estimate the VAR directly. The equation, shown below, was derived 

from the results of Feinberg (2012):  

𝑃𝑅𝑀𝑆𝐸𝐴𝑆

𝑃𝑅𝑀𝑆𝐸𝐴𝑇

= 𝑉𝐴𝑅 ≈ 1.15 + 0.5 × 𝑟1 − 0.67 × 𝑟2, 

where r1 is the reliability of the subscore and r2 is the disattenuated correlation of the 

subscore with the remainder score. In other words, r2 is the raw correlation between the 

subscore and the remainder of the test divided by the square root of the product of their 

reliabilities (Feinberg & Wainer, 2014; Feinberg & Jurich, 2017). If VAR is greater than 

one, then 𝐴𝑆 is more valuable than 𝐴𝑇 because it is explaining more variance in the true 

subscore relative to 𝐴𝑇. If VAR is less than one, then 𝐴𝑆 is less valuable than 𝐴𝑇 in 

predicting the true subscore (Feinberg & Jurich, 2017; Feinberg & Wainer, 2014). To 

evaluate and interpret the magnitude of VAR, Feinberg & Jurich (2017) tested its 

statistical and practical significance. A ratio test (Wilcox & Tian, 2008) was used to 

examine the statistical significance of VAR and after transforming PRMSE values to z-

scores, compared to Cohen’s q criteria for an effect size estimate. According to Feinberg 
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and Jurich (2017) a VAR value greater than one is typically necessary for a subscore to 

add value. Further, they go on to suggest that scores with a VAR <0.9 may be harmful. 

The VAR may not be a natural metric for researchers to understand the relative 

value of using (or not using) subscores. There is also concern that the equation used to 

estimate VAR might not be accurate (Sinharay et al., 2015). As part of this study, we 

intend to evaluate the performance of the VAR simplification as well as consider the 

utility of VAR in communicating with applied researchers.  

Validity & Dimensionality 

The degree to which scales are multidimensional has been a long-standing debate 

amongst applied researchers and psychometricians. Many scales—particularly in 

psychological and health research—are designed to yield subscores.  That is, the 

constructs are conceptualized as being comprised of multiple facets.  There is an entire 

literature on how to determine dimensionality and work has been done to support the 

use of subscores on multidimensional scales.  Therefore, the current study adopts the 

perspective that there is existing evidence of multidimensionality and the methods by 

which that is determined are not discussed here.  The current study is looking at 

multidimensional scales that use summed scoring and there has been debate (and/or 

stark inconsistencies across the studies using that scale) about whether to report 

subscores or a total score.    

Furthermore, the augmentation techniques to increase subscore precision have 

been criticized for lacking validity (e.g., Skorupski & Carvajal, 2010; Stone et al., 2010). 

There has been concern that once a subscore has been augmented, it no longer measures 

the construct of interest in a valid way. These concerns have been addressed by Sinharay 

et al. (2011a), who showed that subscores do not lose their meaning once adjusted, nor 

do they misrepresent the construct being measured. These are interesting and 
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worthwhile arguments to consider, and will be addressed briefly in the discussion 

section.  
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CHAPTER 2 

METHODS 

The Simulating Model 

We will use the Graded Response Model (GRM; Samejima, 1969) to generate 

item response data for items with five response categories. Polytomous items that 

employ an ordered response scale are pervasive in psychological research. The GRM is 

appropriate for items with ordered response options and expresses the probability of 

responding in a particular category. For an item with m response options, the probability 

of responding in the cth category is expressed as, 

𝑃(𝑥𝑖 = 𝑐| 𝜃) =
1

1 + 𝑒𝑥𝑝[−𝑎𝑖(𝜃 − 𝑏𝑖𝑐)]
−

1

1 + exp[−𝑎𝑖(𝜃 − 𝑏𝑖𝑐+1)]
  , 

where 𝑥𝑖 is the observed response to item i, 𝑎𝑖 is the slope parameter for item i, 𝑏𝑖 is the 

severity parameter (also known as difficulty in the education context) for item i, and 𝜃 is 

the construct being measured. The slope parameter, 𝑎𝑖, represents the degree to which 

the item is related to 𝜃; the severity parameter, 𝑏𝑖𝑐, is the level of 𝜃 required for an 

individual to have a 50% chance of endorsing response option c or higher for item i.  

Each item has one a-parameter and m-1 b-parameters associated with it. For this study, 

m is set to five, so there are four b-parameters for each polytomous item. 

Generating Parameters 

Theta values were generated from a multivariate Normal distribution with mean 

vector 𝛍 = 0 and covariance matrix 𝚺.We set the diagonals of 𝚺 to one and the off 

diagonals were the correlations between the dimensions of theta. The a-parameter was 

sampled from a Normal distribution with a mean of 1.7 and standard deviation of 0.3. 

This choice was based on the a-parameter distribution found by Hill’s (2004) review of 

15 published articles which applied the GRM to psychological scales. The four needed b-

parameters (m-1) were constructed according to the procedure outlined in Hill (2004). 
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That is, the first b-parameter was drawn from a Normal distribution with a mean of -1.5 

and a standard deviation of 0.5. Then, to obtain the remaining b-parameters, “shift” 

values (restricted to positive numbers) were drawn from a N(1.0, 0.2) distribution and 

added to the previous b-parameter value. For example, if the first b-parameter is drawn 

as -1.3 and the first shift value is 0.7, then the second b-parameter would be (-1.3 + 0.7 = 

-0.6). A second random-draw shift value of 0.2 would yield a third b-parameter of (-0.6 

+ 0.2 = -0.4), and a third random-draw shift value of 0.9 would yield a fourth b-

parameter equal to (-0.4 + 0.9 = 0.5). As a reminder, Sinharay (2010) did not need to 

use shift values because he generated data from the 2-PL model, which only requires one 

b-parameter per item.  

The true scores are calculated for each simulee based on the simulated items they 

interacted with. This is the same procedure used to generate what is often called an 

expected response function, which links the theta metric to the observed score metric. 

For each item, the expected observed response is the sum of the products of the 

probability of choosing a category and the category value itself. For each subscale, the 

item-level expectations are summed, which provides an expected subscore. This is the 

expected summed score given the item parameters and theta value for the simulee in 

question and this value is used as each simulee’s true score.  

Factors Controlled in the Simulation 

The factors varied in this simulation mimic those of Sinharay (2010). However, 

the levels of these factors are slightly different than those used by Sinharay (2010) 

because they are adjusted to mimic what is commonly seen in psychological and health 

outcome research, rather than in education. For example, Sinharay did not consider 

observed scores as estimates of the true subscore. Therefore, we expect to learn about the 
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performance of observed subscores compared to augmented subscores. We controlled 

the following factors in the simulation: 

 Number of subscales (i.e., dimensions): 2 and 5 

 Length of the subscores: 4 and 8 items per subscale 

 Level of latent correlations among subscores: 0.3, 0.7, and 0.9 

 Sample size N: 250 

 Type of score: augmented and non-augmented (i.e., raw/observed)  

The rationale for choosing these factors and levels was guided by a review of the 

literature. There was a total of 12 conditions simulated and 100 replications per cell 

(condition).  

Analytic Strategy 

When examining the data, we considered four estimates of the desired subscore. 

We used the three scores studied by Haberman (2008) and Sinharay (2010) as well as 

included the observed subscore (𝑥𝑆). The three scores examined in previous work were 

included on their own merits as well as to enable easy comparison to previous findings. 

The raw score was added to keep the simulation more faithful to what is commonly 

found in psychology and health outcomes. In these fields, it is incredibly rare to see any 

kind of weighted score along the lines of a Kelley regressed estimate. This could be due to 

general unfamiliarity with weighted scoring methods and the potential benefits they have 

over the summed-score approach. Or it could be that people are aware of weighted 

scores (and their benefits) but lack experience in calculating them and are therefore 

deterred away from adopting these methods.  

To examine the quality of subscore estimates, we split the analyses by number of 

items per subscale. Although splitting by number of items limits the ability to detect the 

specific effect of reliability on RMSE (because number of items is a proxy for reliability), 
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it does enable us to see how the number of dimensions, score type, and level of 

correlation among subscores affects the RMSE across shorter and longer subscales. That 

is, we are not considering the specific impact of reliability in the current study, but rather 

looking at two subscale lengths using item parameters with empirical support. For each 

analysis, we conducted a factorial ANOVA with the RMSE of subscore estimates as the 

outcome variable and factors corresponding to number of dimensions, level of 

correlation among subscores, and score type. All possible interactions were included in 

the ANOVA model. ANOVA model assumptions (independence of observations, normal 

distributions, and homogeneity of variance) were visually examined and no obvious 

violations were observed. To assess the variance accounted for by each factor, 

semipartial eta-squared (𝜂𝑝𝑎𝑟𝑡𝑖𝑎𝑙
2 ) was used as the measure of effect size, which is a 

relative measure of variance accounted for. That is, relative to the total amount of 

variance accounted for by the model, how much was due to each factor.  

In order to examine the conditions under which subscores have added value over 

the total score and to assess if that added value depends on whether the scores are 

augmented, we modified Haberman’s PRMSEs. The PRMSE, by its nature, provides an 

estimate of the relative improvement in MSE by considering the estimate in the 

numerator rather than the estimate in the denominator. We modified Haberman’s 

PRMSEs such that the subscore sample mean was no longer used as the 

baseline/reference to which the other MSEs are being compared. Instead, the MSE 

associated with the total score and the MSE associated with the observed subscore were 

used in the denominator for comparisons. Each MSE comparison (henceforth, MSEC) is 

described next.  

In order to make general claims about when subscores are more (or less) likely to 

have added value relative to the total score, we examined 𝑀𝑆𝐸𝐶𝑆
𝑇⁄ . The larger this value 
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is, the greater the reduction in MSE is from using the observed subscore, proportional to 

using the total score as an estimate of the true subscore. By using the MSE associated 

with the total score instead of the MSE associated with the subscore sample mean in the 

denominator, we can directly compare the raw subscore to the total score. 

𝑀𝑆𝐸𝐶𝐴𝑆
𝑆⁄ , 𝑀𝑆𝐸𝐶𝐴𝑇

𝑆⁄ , and 𝑀𝑆𝐸𝐶𝐴𝑇𝑆
𝑆⁄  enabled us to examine the added value of using 

adjusted subscores (of any sort) over observed subscores. As with the first modification, 

these modifications facilitate meaningful and relevant comparisons. Additionally, 

𝑀𝑆𝐸𝐶𝐴𝑆
𝑇⁄ , 𝑀𝑆𝐸𝐶𝐴𝑇

𝑇⁄ , and 𝑀𝑆𝐸𝐶𝐴𝑇𝑆
𝑇⁄  can help us understand how augmentation of 

various types impacts the value of the subscore relative to the total score.  

We hypothesized that the raw subscores will always be a more accurate estimate 

of the true subscore than the total score because the raw subscore is not obscured by the 

additional information that is contained within the total score. We expect that the 

adjusted subscores will always outperform the observed subscores in terms of MSE 

because they are incorporating relevant information, which should improve prediction. 

Furthermore, out of the three augmented scores, we expect the ATS score to always 

outperform the AS and AT scores because it is taking into account the most information. 

By making all of these comparisons, we hope to provide researchers with a functional 

tool that helps them assess the cost of simplifying their scores (e.g., subscore vs. total 

score, adjusted vs. observed) as well as spark a larger conversation about scoring 

practices and techniques.   

Lastly, the various adjusted scores depend in part on the estimates of reliability 

and inter-subscore correlations. We examined both RMSE and bias for the reliability and 

inter-subscore correlation estimates.  The RMSE of raw and disattenuated inter-

subscore correlation estimates were computed by subtracting the generating 

correlation (which was either 0.3, 0.7, or 0.9 depending on the condition) from 
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the corresponding estimated correlation. This value was then squared and then 

all the squared values were averaged, resulting in the MSE.  Finally, taking the 

square-root of the MSE yielded the RMSEs of the inter-subscore correlation 

estimates.  
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CHAPTER 3 

RESULTS 

RMSE of Subscore Estimates 

Tables 1 through 4 display the results for the RMSE of subscore estimates, bolded 

entries in all tables indicate that the F-test for that effect was significant at an α level of 

0.05. Based on Cohen (1988), eta-squared values of 0.01, 0.06, and 0.14 correspond to 

small, medium, and large effects, respectively. 

 For subscales with four items, the overall model accounted for 94% of variance in 

RMSE of subscore estimates, 𝜂2 = 0.94, 𝐶𝐼[(0.93, 0.94)]. Table 1 indicates that, of the 

total explained variance, 22% was due to level of inter-subscore correlation; 33% was due 

to score type; and 35% was due to the interaction between level of inter-subscore 

correlation and score type. The sum of these three larger effects is 0.90.  

Table 1         

ANOVA Results for Each Manipulated Factor when K=4     
Source df Semipartial η2 95% CI 

Lower  
Uppe

r 

D 1 0.00 0.00 0.00 

R 2 0.22 0.19 0.25 

Score Type 3 0.33 0.30 0.36 

D × R 2 0.01 0.00 0.02 

D × Score Type 3 0.01 0.00 0.02 

R × Score Type 6 0.35 0.32 0.37 

D × R × Score Type 6 0.02 0.01 0.03 

K = Items per Subscale, D = Dimension, R = Level of Inter-subscore 
Correlation   

 

For subscales with eight items, the overall model accounted for 98% of variance 

in RMSE of subscore estimates, 𝜂2 = 0.98, 𝐶𝐼[(0.98, 0.98)]. Table 2 indicates that, of the 

total explained variance, 19% was due to level of inter-subscore correlation; 39% was due 
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to score type; and 36% was due to the interaction between level of inter-subscore 

correlation and score type. The sum of these three effects is 0.94.  

Table 2         

ANOVA Results for Each Manipulated Factor when 
K=8 

    

Source df Semipartial η2 95% CI 

Lower  Upper 

D 1 0.00 0.00 0.01 

R 2 0.19 0.16 0.22 

Score Type 3 0.39 0.37 0.42 

D × R 2 0.01 0.00 0.01 

D × Score Type 3 0.01 0.01 0.02 

R × Score Type 6 0.36 0.33 0.39 

D × R × Score Type 6 0.01 0.00 0.02 

K = Items per Subscale, D = Dimension, R = Level of Inter-subscore Correlation 

 

In both cases (K=4 and K=8), the Dimension factor accounted for less than 0.5% 

of the total explained variance, indicating that, at least in this simulation, the number of 

dimensions has little impact on the RMSE of the subscore estimate. Therefore, the 

remainder of the results reported for subscore estimates will aggregate over the 

Dimension factor.  

Averaging over the Dimension factor for four-item subscales, Table 3 and Figure 

1 show the RMSE Least-Squares Mean (aka LS means, marginal means, estimated 

marginal means) for each score type by level of inter-subscore correlation effect (12 

effects total). 

Table 3       

Average RMSE LS Mean for Subscore Estimates when K=4 

Score Type Level of Correlation 

0.3 0.7 0.9 

AS 1.64 1.64 1.64 

AT 2.41 1.78 1.34 

ATS 1.61 1.48 1.29 
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Raw 1.9 1.89 1.9 

  

 

Figure 1. Average RMSE LS Mean for Subscore Estimates when K=4 
 

Averaging over the dimension factor for eight-item subscales, Table 4 and Figure 

2 display the RMSE LS Mean for each score type by level of inter-subscore correlation 

effect (12 effects total).  

Table 4       

Average RMSE LS Mean for Subscore Estimates when K=8 

Score Type Level of Correlation 

0.3 0.7 0.9 

AS 2.49 2.48 2.47 

AT 4.61 3.24 2.26 

ATS 2.46 2.31 2.02 

Raw 2.69 2.68 2.68 
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Figure 2. Average RMSE LS Mean for Subscore Estimates when K=8 
 

For both four- and eight-item subscales, there is an interaction between the inter-

subscore correlation and inclusion of the total score. That is, for AT and ATS scores, the 

RMSE LS Mean depends on the inter-subscore correlation. Additionally, for both four- 

and eight-item cases, the LS Mean is constant across inter-subscore correlations for AS 

scores. This is expected, given that the only weight in the AS score is coefficient α, which 

is unaffected by the inter-subscore correlation.  These results indicate that AT scores 

perform poorly with respect to estimating the true subscore when subscores are 

correlated 0.3. Additionally, when there are eight items per subscale, the AT scores 

perform poorly when the inter-subscore correlation is 0.7. 
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RMSE of Reliability Estimates 

The number of dimensions and level of correlation between subscores does not 

affect subscore reliability estimates and therefore those factors were averaged over 

within each number of items (K) condition. The average estimated reliability is 0.74 for 

four-item subscales and 0.85 for eight-item subscales. These values were very close to 

the generating values, with RMSEs of 0.006 and 0.002 for four-item subscales and 

eight-item subscales, respectively.   

The reliability of the total score was not a directly manipulated variable in this 

simulation. What we consider generating values for the total score reliability are the 

squared correlations between the sum of the observed subscores and the sum of true 

subscores. Descriptive statistics for these generating values are presented by relevant 

condition in Table 5.  

Table 5             

Descriptive Statistics for the Generating Total Score Reliability Values    

K D R Mean (SD) Median Minimum Maximum 

4 2 0.3 0.79 (.03) 0.79 0.68 0.86 

4 2 0.7 0.84 (.02) 0.84 0.77 0.89 

4 2 0.9 0.85 (.02) 0.85 0.77 0.89 

4 5 0.3 0.86 (.02) 0.87 0.79 0.89 

4 5 0.7 0.92 (.01) 0.92 0.88 0.95 

4 5 0.9 0.93 (.01) 0.93 0.90 0.95 

8 2 0.3 0.88 (.02) 0.88 0.84 0.92 

8 2 0.7 0.91 (.01) 0.91 0.88 0.93 

8 2 0.9 0.92 (.01) 0.92 0.89 0.94 

8 5 0.3 0.93 (.01) 0.93 0.90 0.95 

8 5 0.7 0.96 (.01) 0.96 0.94 0.97 

8 5 0.9 0.96 (.00) 0.96 0.95 0.97 

K = Items per Subscale, D = Dimension, R = Level of Inter-subscore Correlation 

 

Figure 3 depicts the average RMSE of total score reliability estimates for each of 

the 12 relevant design conditions. The best recovery occurs when there are five subscales 
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with eight items each, and the level of correlation between them is 0.9. The worst 

recovery occurs when there are two subscales with four items each and the level of 

correlation between them is 0.3.   

 

Figure 3. Average RMSE of Total Score Reliability Estimates 
 

Bias of Reliability Estimates 

The average bias for subscore reliability estimates when there are four items per 

subscales is -0.005; when there are eight items per subscale the average bias is -0.002. 

Across all conditions, subscore reliability estimates underestimated the true subscore 

reliability. The largest amount of downward bias occurs when there are two, four-item 

subscales that are correlated 0.3. The least amount of bias occurs when there are five, 

eight-item subscales that are correlated 0.9. Table 6 show the average bias for the total 

score reliability estimates. For convenience, the results for total score are also plotted in 

Figure 4.  
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Table 6       

Average Bias for the Total Score Reliability Estimates per Condition 

K D R Mean Bias 

4 2 0.3 -0.07 

4 2 0.7 -0.03 

4 2 0.9 -0.01 

4 5 0.3 -0.06 

4 5 0.7 -0.02 

4 5 0.9 -0.01 

8 2 0.3 -0.04 

8 2 0.7 -0.01 

8 2 0.9 0.00 

8 5 0.3 -0.03 

8 5 0.7 -0.01 

8 5 0.9 0.00 

K = Items per Subscale, D = Dimension, R = Level of Inter-subscore Correlation 

  

 

Figure 4. Average Bias of Total Score Reliability Estimates 
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Across all conditions, again we see that the total score reliability estimates are 

negatively biased. The conditions in which the level of inter-subscore correlation is 0.3 

display the greatest degree of underestimation, and an inter-subscore correlation level of 

0.9 displays the least amount of bias. 

RMSE of Inter-subscore Correlation Estimates 

Tables 7 and 8 display descriptive results for the RMSE of raw and disattenuated 

inter-subscore correlation estimates, respectively.  The best recovery of raw inter-

subscore correlations is when there are two subscales with eight items each and the level 

of correlation between them is 0.3. Conversely, the worst recovery occurs when there are 

two subscales with four items each and the subscores are correlated 0.9. In general, the 

higher the true correlation between subscores, the larger the RMSE. The best recovery of 

disattenuated inter-subscore correlations is when there are two subscales with eight 

items each and the level of inter-subscore correlation is 0.9. Conversely, the worst 

recovery occurs when there are five subscales with four items each and the subscores are 

correlated 0.3. In general, the higher the true correlation among subscores, the larger the 

RMSE. In all but one case (eight items, five subscales, 0.3 inter-subscore correlation), 

the disattenuated estimates have lower RMSE than the raw estimates. In the cases of the 

0.7 and 0.9 inter-subscore correlations, the disattenuated correlations have RMSEs that 

are 64% to 85% smaller than their raw counterparts.   

Table 7         

Average RMSE for Raw Inter-subscore Correlation Estimates 

K D Level of Correlation 

0.3 0.7 0.9 

4 2 0.09 0.18 0.24 

4 5 0.09 0.18 0.23 

8 2 0.05 0.1 0.13 

8 5 0.05 0.11 0.13 

K = Items per Subscale, D = Dimension     
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Figure 5. Average RMSE of Raw Inter-subscore Correlation Estimates  
 

Table 8         

Average RMSE of Disattenuated Inter-subscore Correlation Estimates 

K D Level of Correlation 

0.3 0.7 0.9 

4 2 0.06 0.05 0.04 

4 5 0.08 0.06 0.04 

8 2 0.03 0.03 0.02 

8 5 0.07 0.04 0.03 

K = Items per Subscale, D = Dimension     
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Figure 6. Average RMSE of Disattenuated Inter-subscore Correlation Estimates 
 

Bias of Inter-subscore Correlation Estimates 

Table 9 and Figure 7 display the average bias of raw inter-subscore correlation 

estimates, collapsing over the number of dimensions. Table 10 displays the average bias 

of disattenuated inter-subscore correlation estimates per condition.  

Table 9     

Average Bias of Raw Inter-subscore Correlation Estimates 

K R Average Bias 

4 0.3 -0.08 

4 0.7 -0.18 

4 0.9 -0.23 

8 0.3 -0.04 

8 0.7 -0.10 

8 0.9 -0.13 

K = Items per Subscale, R = Level of Correlation 
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Figure 7. Average Bias of Raw Inter-subscore Correlation Estimates 
 

Across all condition, the raw inter-subscore correlations are underestimated. The 

greatest degree of underestimation occurs when the true correlation among subscores is 

0.9 and there are four items per subscale.   
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Table 10       

Average Bias of Disattenuated Inter-subscore Correlation Estimates 

K D R Average Bias 

4 2 0.3 -0.008 

4 2 0.7 0.000 

4 2 0.9 0.006 

4 5 0.3 0.002 

4 5 0.7 0.007 

4 5 0.9 0.004 

8 2 0.3 0.001 

8 2 0.7 0.005 

8 2 0.9 0.003 

8 5 0.3 0.002 

8 5 0.7 0.002 

8 5 0.9 0.001 

K = Items per Subscale, D = Dimension, R = Level of Correlation 

 

In general, the disattenuated inter-subscore correlations are slightly 

overestimated. The exception is when there are two, four-item subscales and the 

correlation among them is 0.3, in this case, the disattenuated inter-subscore correlation 

is underestimated. However, when there are five, four-item subscales whose correlation 

is 0.3, the disattenuated inter-subscore correlation is overestimated.  

MSECs 

Average MSECs are presented by relevant condition in Table 11. With respect to 

estimating the true subscore, the observed subscore has the greatest reduction in MSE 

compared to the total score when the level of correlation between subscales is 0.3. 

Compared to both the observed subscore and the total score, the ATS score shows the 

greatest reduction in MSE. When there are eight-item subscales and the level of 

correlation between them is 0.3, the AT score performs worse than the raw (observed) 

subscore.  
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Table 11                 

Average Change (Reduction) in MSE Relative to the Denominator     

K D R MSECS/T  
MSECAS/

S  
MSECAT/S  MSECATS/S  MSECAS/T  MSECAT/T  

MSECATS/

T  

4 2 0.3 0.61 0.59 0.46 0.73 0.84 0.79 0.90 

4 2 0.7 0.56 0.58 0.54 0.66 0.82 0.80 0.85 

4 2 0.9 0.52 0.60 0.66 0.69 0.81 0.84 0.85 

4 5 0.3 0.86 0.59 0.49 0.80 0.94 0.93 0.97 

4 5 0.7 0.83 0.59 0.54 0.72 0.93 0.92 0.95 

4 5 0.9 0.81 0.59 0.73 0.77 0.92 0.95 0.96 

8 2 0.3 0.60 0.39 -0.18 0.60 0.76 0.54 0.84 

8 2 0.7 0.55 0.38 0.13 0.49 0.72 0.61 0.77 

8 2 0.9 0.52 0.38 0.44 0.53 0.70 0.73 0.77 

8 5 0.3 0.86 0.38 -0.20 0.71 0.91 0.83 0.96 

8 5 0.7 0.83 0.39 0.02 0.57 0.90 0.84 0.93 

8 5 0.9 0.81 0.38 0.50 0.64 0.88 0.91 0.93 

K = Items per Subscale, D = Dimension, R = Level of Inter-subscore 
Correlation   
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Figure 8. Average Change (Reduction) in MSE Relative to the Denominator. 
𝑀𝑆𝐸𝐶𝑆

𝑇⁄  (A); 𝑀𝑆𝐸𝐶𝐴𝑆
𝑆⁄  (B); 𝑀𝑆𝐸𝐶𝐴𝑇

𝑆⁄  (C); 𝑀𝑆𝐸𝐶𝐴𝑇𝑆
𝑆⁄  (D); 𝑀𝑆𝐸𝐶𝐴𝑆

𝑇⁄  (E); 𝑀𝑆𝐸𝐶𝐴𝑇
𝑇⁄  (F); 

𝑀𝑆𝐸𝐶𝐴𝑇𝑆
𝑇⁄  (G) 
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CHAPTER 4 

DISCUSSION 

In this section we first discuss results from the three specific hypotheses that we 

examined. Next, we compare our findings to Sinharay (2010).  Then we address the 

quality of the reliability and inter-subscore correlation estimates, and revisit validity and 

dimensionality. We conclude by offering several take-away messages regarding the use of 

subscores and subscore augmentation techniques in the psychological and health 

sciences.   

Revisiting the hypotheses 

It was hypothesized that observed subscores would always be a more accurate 

estimate, as judged by RMSE, of the true subscore than the total score, and it was indeed 

the case—at least for these simulation conditions—that the observed subscores were 

always more accurate than the total score. This suggests that even when the latent 

correlation among subscores is 0.9, the observed subscore is able to capture more of the 

true subscore than the total score. Thus, even if the estimated disattenuated inter-

subscore correlation is ~0.9, researchers ought to use subscores instead of total scores. 

However, comparing across the levels of inter-subscore correlation, the smallest gain in 

prediction (over the total score) occurs when the subscores are correlated 0.9.  

Additionally, it was hypothesized that the adjusted subscores would always be 

more accurate than the observed subscore. In the cases of the AS and ATS subscores, this 

was in fact true. This was not the case for the AT subscores, as evidenced by the negative 

𝑀𝑆𝐸𝐶𝐴𝑇
𝑆⁄  values in Table 11. In conditions with eight items per subscale when the 

subscales are correlated 0.3, the raw subscore is more accurate than the AT score. 

Extensive efforts were undertaken to verify that the simulation and analysis code were 

functioning as intended and no errors were discovered. For context, it is useful to note 
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that this simulation considered lower inter-subscore correlations (r=0.3) than had 

previously been studied. For example, the lowest value included in Sinharay (2010) was 

0.7. It was at this lowest level of correlation among subscores where the AT scores failed 

to outperform their non-augmented counterparts. To better understand why this result 

occurred, we looked at the weight on the total score in the ATS score calculations in 

comparison to the weight in the AT score calculation. These aren’t directly comparable, 

as the ATS weight is conditional on the subscore component, but examined how much 

the weight on the total score dropped in the AT and ATS cases as the inter-subscore 

correlations decreased. For example, the average weight on the total score for the ATS 

score calculation in the conditions with eight items and five dimensions were 0.12, 0.07, 

and 0.03 for inter-subscore correlations of 0.9, 0.7, and 0.3, respectively. The average 

weight on the total score for the AT score calculation in the same cells were 0.193, 0.191, 

and 0.185. It is suggestive that the weights decrease more quickly as the correlation 

among subscores decreases in the ATS case than in the AT case. It appears that, for 

reasons not yet understood, the AT weight does not adjust downward enough to account 

for a total score of limited predictive utility.  

In terms of change in MSE, it was hypothesized that the ATS scores would always 

be the most accurate estimate of the true subscore.  This was found to be true in all 

conditions. This is unsurprising given that the ATS score contains the most information. 

The largest change in MSE from using the ATS score compared to the raw score, 

(𝑀𝑆𝐸𝐶𝐴𝑇𝑆
𝑆⁄ ), occurs when there are five subscales, correlated 0.3, with four items each. 

The average estimated reliability was 0.74 for four-item subscales and 0.85 for eight-

item subscales. The pattern of results displayed in Table 11 show us that observed scores 

with reliability averaging 0.74 benefit the most from augmentation. Scores with 

reliability averaging 0.85 also benefit from augmentation, but not as much as the less 
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reliable scores. This makes sense as less reliable scores have more room for 

improvement.  

 Looking at Table 11, some informative patterns emerge. First, 𝑀𝑆𝐸𝐶𝐴𝑆
𝑆⁄   doesn't 

change across levels of correlation among subscores like  𝑀𝑆𝐸𝐶𝐴𝑇
𝑆⁄  and 𝑀𝑆𝐸𝐶𝐴𝑆

𝑆⁄  

because the AS score is unaffected by inter-subscore correlation. The weight in the AS 

score is coefficient α, which is affected by items per subscale, and this pattern is made 

evident in the table when moving from four to eight items per subscale. Within the four- 

and eight-item cases, the MSEC is uniform. However, comparing all of the four-item 

cases to all of the eight-item cases, there is greater improvement with four-item 

subscales. This is because there is more room for improvement when you start with 

scores that aren’t very reliable (i.e., shorter). There is more to be gained in terms of 

accuracy when you’re starting with shorter subscales and moving from a raw subscore to 

the AS score.  

 Another interesting pattern is that within 𝑀𝑆𝐸𝐶𝐴𝑇
𝑆⁄  and within 𝑀𝑆𝐸𝐶𝐴𝑇𝑆

𝑆⁄   the 

same repeating pattern emerges as you move down the rows (each row represents a 

simulation condition). Even though  𝑀𝑆𝐸𝐶𝐴𝑇
𝑆⁄  changes as a function of items per 

subscale, number of subscales, and level of inter-subscore correlation, the most 

noticeable pattern is that as the level of inter-subscore correlation increases, there is 

more improvement in using the AT score versus the raw subscore. This make sense 

because the subscores are conveying less and less unique information as they become 

more correlated with each other, and the AT score is weighted by a regression coefficient 

that accounts for the correlation between the true subscore and observed total score. The 

higher that correlation, the more weight that is placed on the total score in the AT 

calculation. Subsequently, the AT score shows more improvement (more change) over 

the raw subscore as the inter-subscore correlation increases. Additionally, there appears 
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to be an interaction between the number of items per subscale and level of correlation 

among subscores such that the 𝑀𝑆𝐸𝐶𝐴𝑇
𝑆⁄ depends on the level of those two things. When 

there are four items per subscale, there is always benefit in using the AT score compared 

to the raw subscore, regardless of level of correlation among subscores. But when there 

are eight items per subscale and the level of correlation among subscores is 0.3, the raw 

subscore is actually better than the AT score at predicting the true subscore. This finding 

has important implications. Given that subscale length and inter-subscore correlation 

are proxies for reliability and distinctiveness, respectively, then it can be concluded that 

raw subscores are more accurate than the AT score when the raw scores are distinct (r 

~0.3) and reliable (α ~ 0.85). Both conditions must be present. This finding corroborates 

with Haberman and Sinharay in that subscores must be distinct and reliable to have 

added value over the total score. However, they compared what is effectively the AT to 

the AS score, relative to the subscore sample mean, whereas we compared the AT score 

to the raw subscore directly.  

 𝑀𝑆𝐸𝐶𝐴𝑇𝑆
𝑆⁄  shows an interesting and informative pattern of results. Looking at how 

𝑀𝑆𝐸𝐶𝐴𝑇𝑆
𝑆⁄  changes as a function of inter-subscore correlation, we see that in every case 

the MSEC starts high when the inter-subscore correlation is 0.3, drops when inter-

subscore correlation is 0.7, but then increases when inter-subscore correlation is 0.9 

(although not as high a value as when inter-subscore correlation is 0.3). This likely 

reflects a tradeoff between distinctiveness and reliability. The lower the correlation 

between subscores, the more unique information there is in the total score as a second 

predictor. According to these results, though, it is also the case that the total score is less 

reliable when the inter-subscore correlations are low. As the inter-subscore correlations 

increase, so does the total score reliability, but because the subscores are more correlated 

there is less unique information the total score can bring to ATS prediction. However, 
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the 𝑀𝑆𝐸𝐶𝐴𝑇𝑆
𝑆⁄  when the subscores are correlated 0.9 is never greater than the 𝑀𝑆𝐸𝐶𝐴𝑇𝑆

𝑆⁄  

when they are correlated 0.3. This suggests two things: (1) according to these simulation 

conditions, distinctiveness has a greater impact on the value of the ATS score than does 

reliability and (2) the tradeoff between total score distinctiveness and reliability is 

slightly more complex than we might have been anticipated.  

 Lastly, from Table 11 we can see that 𝑀𝑆𝐸𝐶𝐴𝑇𝑆
𝑆⁄  values are uniformly 

larger/higher than 𝑀𝑆𝐸𝐶𝐴𝑇
𝑆⁄  values. Given the simulation design, we expected the ATS 

scores would be the most accurate. From a regression perspective, the two predictor 

variables in the ATS score are the single predictor variables from the AS and AT scores. If 

there is any unique covariance between the predictors and the outcome (in this case, the 

ATS score), then the joint prediction must account for more variance and subsequently 

have a lower MSE. A potentially more informative way to look at these results is to 

examine which design features lead AS or AT to be closer to ATS.  

How do these results compare to Sinharay (2010)? 

 The most substantial difference between the current study’s findings and 

Sinharay’s (2010) findings is that, compared to education, it will be more common to 

have subscores that have added value in psychology and health applications.  Sinharay 

(2010) posits that the added value of subscores depends on the interaction between the 

subscore reliability and the level of correlation among subscores. The conclusion that 

subscores need to be sufficiently distinct and reliable to have added value generalizes 

across the two studies, but it is easier to obtain sufficiently distinct and reliable subscores 

in scales that mimic what we commonly see in psychology and health. This result is 

important because it follows up on a recommendation from Sinharay (2010) that further 

research ought to consider polytomous items. The conditions of this study match 

Sinharay’s call for additional research and the results suggest that conditions commonly 
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found in behavioral and health assessment will lead to useful subscores on a regular 

basis.  

 Another difference between the current study’s results and Sinharay’s (2010) 

results was the number of items required to achieve adequate reliability. In Sinharay’s 

(2010) study, subscales with 20 items produced scores with reliability estimates ranging 

between 0.72 to 0.77. He recommends having a minimum of 20 items per subscale to 

have any hope of having subscores with added value. In contrast, results from the 

current study indicate that reliability of ~0.74 can be obtained with as few as four items 

per subscale. Given that polytomous items typically have higher slopes than 

dichotomous items, it is not surprising that fewer items were needed in the current study 

to achieve approximately the same level of reliability.  

For subscales to be considered sufficiently distinct from one another, Sinharay’s 

(2010) results suggest that the disattenuated correlation among subscores needs to be 

less than 0.85. Our results suggest that, for the conditions in this simulation, even when 

the true correlation among subscores is as high as 0.9, there is still benefit in using the 

raw subscore over the total score as an estimate of the true subscore. In practice though, 

people often ignore subscores altogether and therefore using the total score as an 

estimate of the true subscore is not common. Although these results are not directly 

comparable to Sinharay’s due to the use of different methods and dependent variables in 

our simulations, it is still interesting to note that in psychology and health contexts, the 

subscores can be highly correlated and still measuring distinct constructs.  

Quality of Reliability and Inter-subscore Correlation Estimates 

 It was important to assess the recovery of the reliability and inter-subscore 

correlation estimates as poor recovery of these quantities could have led to poor 

performance of the augmentation procedures. In terms of RMSE, both subscore and 
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total score reliability estimates showed excellent recovery. This is consistent with 

existing literature that suggests good recovery with sample sizes of 300 (Nunally & 

Bernstein, 1984). We used coefficient α as an estimate of reliability in this study, but 

there are arguments against using α with multidimensional scales (see Schmitt, 1996). 

Kamata, Turhan, and Darandari (2003) argued that stratified α may be a more accurate 

estimate of reliability on multidimensional scales. However, Sinharay (2010) computed 

stratified α for some of his operational data and found that the values were very close to 

coefficient α, leading him to report results using coefficient α. Given these findings, and 

the fact that α is still a very common estimate of reliability, we felt using α in this study 

was a defensible choice.  

Due to unreliability in the scores, the raw inter-subscore correlations were 

underestimated relative to the generating correlations between the dimensions across all 

conditions. The RMSE and average bias for the raw inter-subscore correlations were 

much larger for inter-subscore correlations of 0.7 and 0.9 than for 0.3. For example, 

four-item subscales that had a true correlation of 0.9 were underestimated by 0.23 on 

average. This amount of bias is expected according to Fan (2003). The disattenuated 

inter-subscore correlations performed much better, indicating that the correction for 

attenuation due to unreliability worked as expected. Sinharay (2010) pointed out that the 

average disattenuated correlation among subscores was always very close to the true 

level of correlation among subscores. In the current study, we also had excellent recovery 

of the disattenuated correlations among subscores.  

Revisiting Validity and Dimensionality 

From a statistical perspective, we found that the ATS scores are the most accurate 

estimate of the true subscore in terms of MSE. In addition, given modern software 

capabilities, they are easy to compute. Therefore, we broadly suggest the use of the ATS 
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score. However, the AS score should not be overlooked. It also shows improvement over 

the observed subscore and it has the benefit of being easier to compute. This is not to 

suggest that people settle for less accurate predictions by using the AS score instead of 

the ATS score. But from a practical perspective, the AS score may be easier for 

psychologists to implement and it will still be an improvement over the raw subscore. 

Furthermore, from a validity perspective one might consider the AS score a “more pure” 

estimate of the true subscore over the ATS score because the subscore is the only 

predictor variable in the AS score whereas the ATS score contains both the subscore and 

total score for predictor variables, potentially rendering the interpretation of the ATS 

score more difficult.  

However, there is one situation in which augmented scores should not be used 

and that is when the scores are being used for competitive purposes. Wainer et al (2001) 

and Edwards (2006) use the Olympic 100-m sprint to illustrate this point. The gold 

medal is awarded to the person who runs the fastest that day, regardless of how fast they 

ran on previous days and regardless of how fast they will run in future races. All that 

matters in the Olympics (and most competitive sports) is how well you perform that day. 

Therefore, it is the general consensus among Wainer et al (2001), Edwards (2006), and 

the current study that when scores are to be used for competitive purposes, augmented 

scores ought not to be used. However, even this delineation is complex because the 

competition could be based on the day-of performance (such as in all competitive sports) 

or it could be based on what the scores indicate/predict about future performance (such 

as competing for scholarships). Wainer et al (2001) argued that if it is the latter, then 

augmented scores (i.e., estimates that utilize all information available) should be used 

because they are the most accurate.  In general, if scores are being used for measurement 

purposes rather than contest purposes then we suggest the use of augmented scores, 
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either the AS or the ATS score. The potential concerns that arise with using these scores 

are discussed next.  

The procedure to calculate the AS score involves regressing observed scores 

towards the sample mean proportional to the unreliability of the scores. The potential 

ethical concern that arises in this procedure pertains to which sample mean the score is 

being regressed to. If everyone in the sample is assumed to be exchangeable then using 

one overall sample mean will avoid this problem. However, there may be substantive 

differences within the sample that the researcher/clinician wants to account for. The 

researcher could accomplish this by calculating separate means for each subgroup in the 

sample and then use those means to calculate the adjusted scores. One area where this 

may be applicable is in health and medical research, where one’s race, gender, or 

ethnicity may be correlated with the outcome measure (e.g., diagnosis, prognosis, 

disease propensity). For example, women have a higher rate of breast cancer diagnoses 

than men, so it seems apt to factor in gender as a grouping variable when trying to 

determine a patient’s propensity for a breast cancer diagnosis. In this case, considering 

group membership information is appropriate and does not raise ethical concerns (to 

our knowledge).  

However, there are also situations in which there may be substantive differences 

among the sample but to account for those differences with separate means would be 

considered inappropriate. For example, female examinees tend to score higher on the 

Verbal portion of the SAT compared to male examinees, such that a more accurate 

estimate of the examinee’s proficiency could be obtained if their gender were factored in 

when calculating their adjusted score. Although a more accurate estimate of an 

examinee’s proficiency could be obtained if we considered the examinee’s gender, it 
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would be unfair and unethical to change an individual’s score because of their gender, 

especially if the score is being used in a contest (e.g., to award a scholarship).  

As mentioned previously, augmented subscores have been criticized for lacking 

validity (e.g., Skorupski & Carvajal, 2010; Stone et al., 2010). Specifically, there has been 

concern that once a subscore has been augmented, it no longer measures the construct of 

interest in a valid way.  The ATS score contains the total score predictor variable, which 

contains information that is outside of the subscore. By pulling in external information 

from the total score we are changing the subscore, and in this way there is room for 

potential threats to validity. Part of this concern stems from the fact that the correlations 

among the adjusted subscores can be quite high, therefore obscuring the interpretation 

of the subscore (Skorupski & Carvajal, 2010; Stone et al., 2010). However, Sinharay et al 

(2011b) pointed out that the correlations among the adjusted subscores will always be 

higher than the unadjusted subscores because the adjusted subscores share a common 

component: the total score. Therefore, the concern that the meaning of the subscore is 

obscured due to the higher correlations among the adjusted subscores is partially taken 

care of by recognizing that the higher correlations among subscores are due to a 

mathematical fact. An additional concern is that part of what defines a construct is how 

it relates to other constructs. By changing how the constructs relate to one another (i.e., 

convergent and discriminant validity), we’ve changed the construct and introduced 

potential validity concerns.  

General Advice for Applied Users 

 Broadly speaking, if a scale is designed to yield subscores, use them. Outside of 

competitive contexts, to increase the accuracy of true score estimation and prediction, 

use adjusted scores. For conditions like the ones we simulated, we suggest the use of the 

ATS score or Wainer et al’s (2001) augmented subscore because they are the most 
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accurate in terms of MSE. However, if users are uncomfortable with using the ATS score 

for validity reasons, then we suggest the use of the AS score (i.e., Kelley’s regressed 

estimate, posterior mean in Bayesian analysis). These scores will always be an 

improvement over the observed subscore and are easy to compute. The AS score is only 

correcting for unreliability, while the ATS score is correcting for unreliability and pulling 

in external information from the total score. We anticipate some pushback to these 

suggestions. For one, users may argue that there is no meaningful payoff. While the 

adjusted scores are clearly preferable when considering RMSE, more work is needed to 

find practical effect sizes that translate these results for applied researchers. The second 

criticism of adjusted scores is that they have a weaker validity case. Sinharay et al 

(2011b) has shown that this is not the case, and even demonstrated the situation in 

which adjusted subscores do lack validity: adjusted subscores lack validity when they are 

highly correlated with the total score and have low reliability. 

Limitations and Future Directions 

 As with any simulation study, this one only generalizes to the conditions of the 

study. Our simulation did not incorporate any model error, which is not a condition we 

would expect to find in the real world. Another limitation is that we did not directly 

control/manipulate reliability, but rather focused on two scale lengths that we felt were 

realistic for the fields we were interested in focusing on. This led to a perfect confound 

between scale length and reliability. In future studies we would like to vary the 

generating slope distributions so that we can look at the impact of reliability separate 

from scale length on the added value of adjusted scores. As part of this study, we 

intended to evaluate the performance of the VAR simplification as well as consider the 

utility of VAR in communicating with applied researchers. After considering this 

question, we determined that VAR offered no conceptual advantages over the MSECs 
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considered here. Despite this, we are not satisfied that MSEC is the best metric to convey 

the impact of augmentation procedures to potential users.  

 One surprising finding of the current study was that when the correlations among 

the subscores were low (e.g., 0.3), the AT scores were often worse than the raw 

subscores. We had expected all the augmented subscores to outperform their raw 

counterparts for all simulated conditions. There is a large gap in studied inter-subscore 

correlations (0.3 to 0.7) and it would be worthwhile to fill in this gap to determine at 

what correlation among subscores the AT scores cease outperforming the raw subscores. 

It could also be that the current estimates of the weights being used are inaccurate or 

suboptimal in these low inter-subscore correlation cases. More work is needed to 

understand if the computation of the AT scores can be improved, or if we simply must 

avoid considering them at some inter-subscore correlation-based cutoff.  

Conclusions 

 The current study had two overall objectives: to assess when subscores should 

not be ignored in favor of the total score, and to examine how much value there is in 

using an augmented subscore over a non-augmented subscore in scales that mimic what 

we commonly see in psychological and health contexts. In general, when a scale is 

designed to yield subscales, we recommend using them (even if they are moderately to 

strongly correlated with one another). In terms of MSE and according to the results of 

the current study, we found that the AS and ATS scores reflect a more accurate estimate 

of the true subscore than the observed subscore.  
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