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ABSTRACT

Sequence alignment is an essential method in bioinformatics and the basis of

many analyses, including phylogenetic inference, ancestral sequence reconstruction,

and gene annotation. Sequence artifacts and errors made in alignment reconstruction

can impact downstream analyses, leading to erroneous conclusions in comparative and

functional genomic studies. While such errors are eventually fixed in the reference

genomes of model organisms, many genomes used by researchers contain these arti-

facts, often forcing researchers to discard large amounts of data to prevent artifacts

from impacting results.

I developed COATi, a statistical, codon-aware pairwise aligner designed to align

protein-coding sequences in the presence of artifacts commonly introduced by se-

quencing or annotation errors, such as early stop codons and abiological frameshifts.

Unlike common sequence aligners, which rely on amino acid translations, only model

insertion and deletions between codons, or lack a statistical model, COATi combines a

codon substitution model specifically designed for protein-coding regions, a complex

insertion-deletion model, and a sequencing base calling error step. The alignment

algorithm is based on finite state transducers (FSTs), computational machines well-

suited for modeling sequence evolution. I show that COATi outperforms available

methods using a simulated empirical pairwise alignment dataset as a benchmark.

The FST-based model and alignment algorithm in COATi is resource-intense for

sequences longer than a few kilobases. To address this constraint, I developed an

approximate model compatible with traditional dynamic programming alignment al-

gorithms. I describe how the original codon substitution model is transformed to

build an approximate model and how the alignment algorithm is implemented by

modifying the popular Gotoh algorithm. I simulated a benchmark of alignments and

measured how well the marginal models approximate the original method.
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Finally, I present a novel tool for analyzing sequence alignments. Available metrics

can measure the similarity between two alignments or the column uncertainty within

an alignment but cannot produce a site-specific comparison of two or more alignments.

AlnDotPlot is an R software package inspired by traditional dot plots that can provide

valuable insights when comparing pairwise alignments. I describe AlnDotPlot and

showcase its utility in displaying a single alignment, comparing different pairwise

alignments, and summarizing alignment space.
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Para Marise, José, Sebastián, y Samantha por su amor incondicional, por
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Chapter 1

INTRODUCTION

Deoxyribonucleic acid (DNA) is considered the fundamental blueprint of life, with

the primary purpose of storing and replicating the vital information required for

the structure, function, and regulation within living organisms. In essence, DNA

functions as the hard drive of nature, preserving the intricate details of the processes

of life against data corruption events known as mutations. While cellular mechanisms

exist to prevent and correct such errors, a fraction inevitably persists and eventually

fixates in the population, contributing to the diversity of life through evolution.

Biological sequences are a collection of DNA molecules that carry genetic instruc-

tions across generations. DNA replicates itself and, through RNA, codes for proteins,

which are responsible for virtually all chemical processes in organisms. The conserva-

tion of patterns in the three levels of biological information is paramount to enforce

correct function preservation. Sequence analysis is the area of research within biology

that studies the changes in DNA, RNA, and proteins.

Sequence alignment establishes a correspondence between the elements in a set

of sequences that share a common ancestor and is the standard method to compare

biological sequences. The alignment of DNA regions that code for proteins is typically

performed in amino-acid space, which discards information, underperforms compared

to alignment at the codon level, and can fail in the presence of artifacts. While some

aligners incorporate codon substitution models, they do not support frameshifts or

lack a statistical model. In addition, existing aligners typically force gaps to occur

between codons, whereas in natural sequences, only about 42% of indels occur between

codons (Taylor et al., 2004; Zhu, 2022).
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Throughout the following chapters, I describe the various intricacies and charac-

teristics of models of molecular evolution, insertion and deletion (indel) models, and

pairwise alignment algorithms. To do so, I must first set some definitions.

1.1 Notation

An alphabet, denoted by Σ, is a finite and unordered set of symbols. Let the

DNA alphabet be defined

ΣDNA = {A,C,G, T}

and the codon alphabet be all possible three-mers over the ΣDNA alphabet, defined

Σcodon = {AAA,AAC,AAG,AAT,ACA,ACC,ACG,ACT,

AGA,AGC,AGG,AGT,ATA,ATC,ATG,ATT,

CAA,CAC,CAG,CAT,CCA,CCC,CCG,CCT,

CGA,CGC,CGG,CGT,CTA,CTC,CTG,CTT,

GAA,GAC,GAG,GAT,GCA,GCC,GCG,GCT,

GGA,GGC,GGG,GGT,GTA,GTC,GTG,GTT,

TAA, TAC, TAG, TAT, TCA, TCC, TCG, TCT,

TGA, TGC, TGG, TGT, TTA, TTC, TTG, TTT}

where, given a codon X = {X1X2X3} ∈ Σcodon, Xp denotes the nucleotide in position

p of codon X. I often refer to symbols inΣDNA as nucleotides or residues and symbols

in Σcodon as codons for convenience. In addition, an alphabet can be extended to

2



include gaps Σ∪{−} or have symbols removed Σcodon−{TAA, TAG, TGA}, in this

case to indicate non-stop codons.

A sequence is a finite succession of the symbols in Σ. Given a sequence s of length

m, I use s1s2 · · · sm to denote the symbols in s. The special case when a sequence

contains no symbols is denoted ∅. In addition, let |s| denote the length of sequence

s. Furthermore, a subsequence of s is obtained by extracting zero or more symbols

from s.

An alignment of sequences s and v is a two-row matrix A with entries in Σ∪{−}

that meets three requirements: (i) the first and second row contain the symbols in s

and v in order, respectively; (ii) one or more gaps {−} are allowed between symbols

in s and v; and (iii) every column contains at least one symbol in s or v, therefore

a column comprised entirely of gaps is not allowed (Orlova, 2010). The alignment of

two sequences is referred to as a pairwise alignment, whereas a multiple alignment

contains three or more sequences.

Biologically, entries in an alignment can be seen as four events:

• No mutation: a residue remains unchanged.

• Substitutions: a residue is replaced by another.

• Insertions: a residue is added to a sequence in a specific position.

• Deletions: a residue is removed from a sequence.

1.2 Pairwise Sequence Alignment Algorithms

Needleman-Wunsch

Global pairwise alignment aims to find the optimal alignment of two sequences, pro-

viding a comprehensive view of their similarity. A classic global alignment algorithm is

3



the Needleman-Wunsch (NW) algorithm, which calculates the optimal alignment that

maximizes the similarity of two sequences using dynamic programming (Needleman

and Wunsch, 1970). Dynamic programming is used to build an optimal alignment

using previous solutions for optimal alignments of smaller subsequences.

Algorithm 1 Needleman-Wunsch algorithm. Sequences s and v are aligned with gap
penalty ϵ, and matching scoring function score().

1: function Needleman-Wunsch(s, v, ϵ)

2: n,m← |s|, |v|
3: M← zero(n+ 1,m+ 1) ▷ Initialize the matrix of size n+ 1 by m+ 1

4: for i← 1 to n do ▷ Gap deletion penalties

5: M[i, 0]← i · ϵ
6: end for

7: for j ← 1 to m do ▷ Gap insertion penalties

8: M[0, j]← j · ϵ
9: end for

10: for i← 1 to n do ▷ Fill in the matrices

11: for j ← 1 to m do

12: match←M [i− 1, j − 1] + score(si, vj)

13: deletion←M [i− 1, j] + ϵ

14: insertion←M [i, j − 1] + ϵ

15: M [i, j] = max(match, deletion, insertion) ▷ Save best score

16: end for

17: end for

18: Traceback

19: end function

Given two sequences s, v ∈ Σ with lengths m and n, respectively, the NW algo-

rithm sets a matrix M with dimensions m+1 by n+1. The algorithm fills the matrix

using a function score() that assigns values to matches and mismatches and gap

cost (ϵ). Starting from the top-left to the bottom-right corner, row by row the score

for each cell represents the optimal alignment score up to that position. The score for

each cell is calculated by maximizing values from adjacent cells in three directions:

diagonal for matches and mismatches, and up or down for indels. Algorithm 1 illus-

4



trates the NW algorithm. In addition, the algorithm performs a traceback operation

to retrieve the optimal path and construct the aligned sequences.

Gotoh Algorithm

The Gotoh algorithm (Gotoh, 1982) is an extension of the NW algorithm that adds

affine gap penalties. While the latter applies a constant penalty for each gap, the

former applies an affine gap penalty model with different opening and extension gap

penalties (i.e., a gap of length l, score = open+extend · (l−1) ). Affine gap penalties

provide a more biological model where longer gaps are less penalized per column. In

addition, the Gotoh algorithm can distinguish between insertions and deletions.

Algorithmically, this is translated into using three separate matrices to keep score

of matches (M), deletions (D), and insertions (I). The matrix is filled similarly to the

NW algorithm, row by row from the top-left to the bottom-right corner. Deletion and

insertion openings originate from the match matrix, while gap extensions originate

from their respective matrices (D and I). Algorithm 2 illustrates the Gotoh algorithm,

with α and β as gap opening and extension costs, and the function score() that scores

matches and mismatches. Note that the traceback algorithm is adapted to retrieve

the optimal alignment through the tree matrices instead of one.
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Algorithm 2 Gotoh pairwise alignment algorithm. Sequences s and v are aligned
with an affine gap penalty with parameters α and β. Matches and mismatches are
scored with the function score().

1: function alignpair(s, v, α, β)

2: n,m← |s|, |v|
3: M, D, I← zero(n+ 1,m+ 1) ▷ Initialize the matrices of size n+ 1 by m+ 1

4: for i← 1 to n do ▷ Gap deletion penalties

5: D[i, 0]← α + (i− 1) · β
6: end for

7: for j ← 1 to m do ▷ Gap insertion penalties

8: I[0, j]← α + (j − 1) · β
9: end for

10: for i← 1 to n do ▷ Fill in the matrices

11: for j ← 1 to m do

12: D[i, j] = max(M [i− 1, j] + α,D[i− 1, j] + β)

13: I[i, j] = max(M [i, j − 1] + α, I[i, j − 1] + β)

14: M [i, j] = max(M [i− 1, j − 1] + score(si, vj), D[i, j], I[i, j])

15: end for

16: end for

17: Add end weights

18: Traceback

19: end function
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Chapter 2

COATI: STATISTICAL PAIRWISE ALIGNMENT OF PROTEIN CODING

SEQUENCES

2.1 Introduction

Sequence alignment is a fundamental task in bioinformatics and a cornerstone step

in comparative and functional genomic analysis (Rosenberg, 2009). While sophisti-

cated advancements have been made, the challenge of alignment inference has not

been fully solved (Morrison, 2015). The alignment of protein-coding DNA sequences

is one such challenge, and a common approach to this problem is to perform alignment

inference in amino-acid space (e.g. Bininda-Emonds, Olaf 2005; Abascal et al. 2010).

While this approach is an improvement over DNA models, it discards information,

underperforms compared to alignment at the codon level, and fails in the presence of

artifacts such as frameshifts and early stop codons. Although some aligners incorpo-

rate codon substitution models, they do not support frameshifts or lack a statistical

model. In addition, existing aligners typically force gaps to occur between codons,

whereas in natural sequences, only about 42% of indels occur between codons (Taylor

et al., 2004; Zhu, 2022). This mismatch between aligner assumptions and biology can

produce sub-optimal alignments and inflated estimates of sequence divergence (Fig.

2.1).

Genome quality impacts conclusions drawn from comparative genomic studies,

and uncorrected errors in the alignment stage can lead to erroneous results in com-

parative and functional genomic studies (Schneider et al., 2009; Fletcher and Yang,

2010; Hubisz et al., 2011). Genomes for model organisms often get refined over
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a) Biology

Ser His Lys Gly Arg Asp Ala
A: TCC CAT AAG GGG CGG T-- -CG GAC GCC ---
D: TCC CA- --G GGG CGG TCC CAG GAC GCC ACG

Ser Gly Arg Ser Gln Asp Ala Thr

Ser

Gln

b) Prank (codon)

Ser His Lys Gly Arg Ser Asp Ala
A: TCC CAT AAG GGG CGG TCG --- GAC GCC ---
D: TCC CAG --- GGG CGG TCC CAG GAC GCC ACG

Ser Gln Gly Arg Ser Gln Asp Ala Thr

c) MAFFT, ClustalΩΩΩ, and MACSE

Ser His Lys Gly Arg Ser Asp Ala
A: TCC CAT AAG GGG CGG TCG GAC GCC ---
D: TCC CAG GGG CGG TCC CAG GAC GCC ACG

Ser Gln Gly Arg Ser Gln Asp Ala Thr

d) COATi

Ser His Lys Gly Arg Asp Ala
A: TCC CAT AAG GGG CGG T-- -CG GAC GCC ---
D: TCC CA- --G GGG CGG TCC CAG GAC GCC ACG

Ser Gly Arg Ser Gln Asp Ala Thr

Ser

Gln

Figure 2.1: Standard algorithms produce suboptimal alignments. (a) shows the true
alignment of an ancestor sequence (A) and a descendant sequence (D). (b), (c), and
(d) are the results of different aligners. Nucleotide mismatches are highlighted in
red. Phase 0, phase 1, and phase 2 indels are shown in gray, purple, and orange,
respectively. Additionally, the orange indel is type II (an amino-acid indel plus an
amino-acid change) while the purple indel is type I (an amino-acid indel only). COATi
is the only aligner able to retrieve the biological alignment in this example.

many iterations and achieve high quality with meticulously curated protein coding

sequences. In contrast, genomes for non-model organisms might only receive partial

curation and typically have lower-quality sequences and annotations. These genomes

often lack the amount of sequencing data needed to fix artifacts, including missing

exons, erroneous mutations, and indels (Jackman et al., 2018). When comparative

and functional genomics studies include data from non-model organisms, care must
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be taken to identify and manage such artifacts; however, current alignment methods

are ill-equipped to handle common artifacts in genomic data, requiring costly curation

practices that discard significant amounts of information. To address this problem, I

developed COATi, short for COdon-aware Alignment Transducer, a pairwise statis-

tical aligner that incorporates codon substitution models and is robust to artifacts

present in modern genomic data.

2.2 Materials

2.2.1 Finite State Transducers

Statistical alignment is typically performed using pairwise hidden Markov models

(pair-HMMs), which have the ability to rigorously model molecular sequence evo-

lution (Bradley and Holmes, 2007). Pair-HMMs are computational machines with

probabilities for emitting symbols from the states to two output tapes and probabili-

ties for the transitions between the states (arcs). Each tape represents a sequence and

a path through these computational machines is a possible pairwise alignment. Pair-

HMMs contain a finite number of states, typically labeled match (M), insert (I), and

delete (D). The emission probability distribution of M usually follows a substitution

model for emitting an aligned pair or symbols (si, vj) from sequences s and v. States

I and D have distributions for emitting symbols against a gap (-). In addition, arcs in

pair-HMMs have transition probabilities. Figure 2.2 illustrates a common pair-HMM

architecture, with affine gap scoring. Conceptually, these machines generate two se-

quences, s and v, from an unknown ancestor and can calculate the probability that

two sequences are related, represented by P (s, v) (Yoon, 2009).
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M
si, vj

I
−, vj

D
si,−

δ

1− ε

δ

1− ε

1− 2δ

ε

ε

Sequences
s, v : sequences

Parameters
δ : gap open weight
ε : gap extension weight

Figure 2.2: Example of a typical pair hidden Markov model (pair-HMM) used in
statistical pairwise sequence alignment. Sequences s and v are aligned using an affine
gap scoring model and a substitution model (unspecified). The arcs are weighted
with gap opening parameter δ and gap extension ε, therefore defining no gap opening
weight as 1− δ and gap closing as 1− ε.

A limitation of pair-HMMs is that they only model the evolution of two related

sequences from an unknown ancestor. Finite-state transducers (FSTs) have similar

benefits to pair-HMMs with the additional feature that they can model the generation

of a descendant sequence given an ancestral one. FSTs, similar to pair-HMMS, are

computational machines with a symbol alphabet, a set of states, and weighted arcs

defining the transition probabilities between states. However, FSTs consume symbols

from an input and emit symbols to an output tape (a : b), as opposed to having two

output tapes (a, b). Properly weighted, an FST can calculate the probability that a

descendant sequence, v, evolved from an ancestral sequence, s, represented by P (v|s).

Furthermore, well-established algorithms for combining FSTs in different ways,

including concatenation, composition, intersection, union, or reversal, allow the design

10



of complex models by combining simpler FSTs (Bradley and Holmes, 2007; Silvestre-

Ryan et al., 2021). Specifically, composition is a powerful and versatile algorithm for

comparative sequence analysis, consisting of sending the output of one FST into the

input of a second FST. Composition allows combining two or more FSTs to create a

new, more complex transducer. Figure 2.3 illustrates how DNA transcription for a

codon can be achieved by composing a complimenting FST with a transducer that

replaces thymines with uracil, where the three nucleotides are read and complimented

in 2.3-a, which are then used as the input of 2.3-b, resulting in the transcription of the

codon (Fig. 2.3-c). COATi uses composition to derive a statistical alignment model

from the combination of smaller FSTs, each representing a specific process.

a) DNA Complement

start end

A:T

C:G

G:C

T:A

A:T

C:G

G:C

T:A

A:T

C:G

G:C

T:A

b) Replacing thymine with uracil

start end

A:A C:C

G:GT:U

c) DNA Transcription

start end

A:U

C:G

G:C

T:A

A:U

C:G

G:C

T:A

A:U

C:G

G:C

T:A

Figure 2.3: DNA transcription via FST composition. The composition of (a) a codon
complimenting FST and (b) an FST that replaces T with U generates (c) an FST
that implements codon transcription (a ◦ b = c).

2.2.2 Evolution FST

COATi implements the pairwise alignment of a potentially lower-quality sequence

against a high-quality sequence as a path through the Evolution FST (Fig. 2.4) (c.f.

Holmes and Bruno, 2001). Here, COATi treats the high-quality (reference) sequence

as the “ancestor” and the potentially lower-quality sequence as the “descendant”. The
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assumption is that the reference sequence is in-phase, which is used to help preserve

the reading frame and safeguard against possible frameshifts in the “descendant”.

Therefore, the high-quality sequence must not contain incomplete codons (the num-

ber of nucleotides is multiple of three) and be free of any ambiguous nucleotides or

early stop codons. In contrast, the potentially lower-quality sequence has no such re-

strictions and can be of any length, contain early stop codons—treated as artifacts—,

and include ambiguous codons.

The Evolution FST is the result of composing a substitution FST that encodes

a codon model (Fig. 2.4-a), an indel FST that models insertions and deletions, in-

cluding frameshifts (Fig. 2.4-b), and a base calling error FST that models incorrectly

sequenced bases (Fig 2.4-b). A key innovation of this FST, with respect to others,

is the combination of a codon substitution model with a nucleotide-based geometric

indel model that allows gaps to occur at any position.

Composing both sequences with the Evolution FST results in the transducer of

all possible alignments. Any path through this FST represents a pairwise alignment,

while the shortest path (by weight) corresponds to the best alignment. All FST oper-

ations in COATi, including model development, composition, search for the shortest

path, and other optimization algorithms, are performed using the C++ openFST li-

brary (Allauzen et al., 2007). However, the Evolution FST has a large state space

to keep track of codon substitution rates when codons might be interspersed with

indel events. This additional state space increases the computational complexity of

the alignment algorithm.
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a) Substitution

start M S end

A:A/P (AAA|AAA)

A:A

A:A
A:A/P (AAC|AAA)

A:A
A:C

......
T:T/P (TTT |TTT )

T:T

T:T

b) Insertion-Deletion

start

M

U I

W

V D

S end

g

1− g

e
1− e

g

1− g

e

1− e

Ø:Z/πZ

Y:Ø

Y:Z

c) Base Calling Error

start M S end

Yi:Yj/ε

Yi:Yi/1− 3 · ε

Yi:N

Sequences
X : input nucleotides
Y : intermediate nucleotides
Z : output nucleotides
Ø : nothing/empty sequence

Parameters
g : gap open weight
e : gap extension weight
π : nucleotide stationary freq.
ε : base calling error weight

Figure 2.4: The Evolution FST is assembled by composing a substitution FST and
an indel FST. Each node represents a state in an FST while arcs display possible
transitions between states (and their weights). The arc label format is input symbol :
output symbol / weight. Unlabeled arcs have weights of 1, and partially labeled arcs
do not consume/emit symbols or have a weight of 1. (a) The substitution FST encodes
a 61× 61 codon substitution model with 3721 arcs from S to M. These arcs consume
three nucleotides from the input tape and emit three nucleotides to the output tape.
The weight of each arc is a conditional probability derived from a codon substitution
model. (b) The indel FST allows for insertions (U to I) and deletions (V to D).
Insertion arcs are weighted according to the codon model’s stationary distribution of
nucleotides, and deletion arcs have a weight of 1. Contiguous insertions and deletions
are always arranged for insertions to precede deletions to limit equivalent alignments.
The base calling error FST (c) is added on top of the indel FST to model sequencing
errors. Arcs from S to M generate matches; however, with (c) they can introduce
single-nucleotide errors, which allows modeling stop codon artifacts.
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2.2.3 Codon Substitution Models

Muse and Gaut

Codon substitution is particularly suitable for modeling protein-coding genes since it

accounts for both the likelihood of mutations occurring at the nucleotide level and

selective pressure on amino acid substitutions (Sullivan and Joyce, 2005). While

codon models are extensively applied to reconstruct phylogenies and study natural

selection (Delport et al., 2009), their use in alignment reconstruction is still scarce.

COATi is the only aligner that implements the mechanistic Muse and Gaut model

(MG94), a codon model designed for coding regions (Muse and Gaut, 1994). Modeled

as a continuous-time Markov process, the instantaneous substitution rate matrix Q

defines the rate that codon X changes to codon Y as

QXY =


0 if X and Y differ by more than one nucleotide change

µXpYp
if X and Y are synonymous

ω · µXpYp
if X and Y are nonsynonymous

(2.1)

QXX = −
∑

Y :Y ̸=X

QXY (2.2)

where X and Y are non-stop codons defined X, Y ∈ Σcodon−{TAA, TAG, TGA}, ω

is the strength of selection affecting amino-acid changes, and Xp and Yp refer to the

nucleotides in position p in codons X and Y respectively, defined Xp, Yp ∈ ΣDNA.

µXpYp
represents the mutation rate that nucleotide Xp is replaced by Yp defined

µXpYp
= πYp

σXpYp
,∀ Xp ̸= Yp, where πYp

is the equilibrium frequency of nucleotide

Yp, and σXpYp
corresponds to one of the instantaneous substitution parameters (Table

2.1) of the General Time Reversible nucleotide substitution model (Tavaré et al., 1986)
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(GTR). I use the nucleotide stationary frequencies and GTR parameters inferred from

primate data by Yang 1994 to construct MG94 in COATi.

The GTR model is a well-known and widely-used substitution model that allows

different instantaneous mutation rates between each of the six nucleotide pairs, with

equal forward and reverse rates for any given pair. This property is represented

πYp
µXpYp

= πXp
µYpXp

and transfers to the MG94 model, making both models time-

reversible.

A C G T

A ∗ πCσAC πGσAG πTσAT

C πAσCA ∗ πGσCG πTσCT

G πAσGA πCσGC ∗ πTσGT

T πAσTA πCσTC πGσTG ∗

Table 2.1: Instantaneous nucleotide substitution rates for the General Time Re-
versible model (GTR). On each row, the parameters represent the probability of
a given nucleotide being replaced by another. GTR is the most general and time-
reversible nucleotide substitution model, with a different mutation rate parameter for
each of the six possible nucleotide combinations. Note that sigma parameters for each
of the six possible nucleotide pairs are identical (i.e., σAC = σCA, σAG = σGA, etc.).

Empirical Codon Model

In addition to the MG94 codon model, COATi incorporates an empirical codon model

that can be used with the triplet and marginal alignment procedures. While mecha-

nistic models explicitly account for molecular evolution features and use a defined set

of parameters to specify them, empirical models, in contrast, attempt to summarize

the substitution patterns inferred from extensive datasets. Although codon substitu-

tion models are rare in sequence aligners, the Empirical Codon Model (ECM) is the

most common. This model is characterized by incorporating instantaneous doublet

and triplet changes and encoding the physicochemical properties of amino acids (Ko-

siol et al., 2007). The ECM model was estimated using 7,332 protein families from the
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Pandit database, a collection of protein-coding multiple sequence alignments (Whelan

et al., 2006).

Although purely empirical substitution models can be applied as is, the empirical

codon model offers a combined approach with mechanistic parameters. Similar to the

MG94 model definition, the instantaneous substitution rate matrix Q for the ECM

model defines the rate that codon X changes to codon Y as

QXY =


s∗XY · πY if X and Y are synonymous

s∗XY · πY · ω if X and Y are nonsynonymous

(2.3)

QXX = −
∑

Y :Y ̸=X

QXY (2.4)

where X and Y are non-stop codons defined X, Y ∈ Σcodon − {TAA, TAG, TGA},

s∗XY are the ECM exchangeabilities estimated from the Pandit database, and π is

the frequency of codon Y . Note that this model is also time-reversible.

For both MG94 and ECM, the probability that codon Y replaces codon X after

time t is calculated via matrix exponentiation: P (Y |X; Θ) = (eQt)XY , where Θ is

the set of models parameters ΘMG = {t, ω, π, σ} for MG94 and ΘECM = {t, ω, π, s∗}

for ECM (Holmes and Rubin, 2002). Note that as these models are applied in the

context of protein-coding sequences, stop codons are not considered, resulting in a

61x61 matrix. In addition, probabilities are log-transformed to prevent underflow.

Codon substitution models are uncommon in sequence aligners, despite their ex-

tensive use in phylogenetics. COATi implements the Muse and Gaut (1994) codon

model (codon-triplet-mg) and the Empirical Codon Model (Kosiol et al., 2007) (codon-

triplet-ecm). It also lets the user provide a codon substitution matrix. The default

FST model (codon-triplet-mg) does not allow early stop codons in the ancestor se-

quence; although, it does support mutations to (early) stop codons under the assump-
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tion that these are artifacts common in low-quality data.

Approximate Substitution Model

To reduce the runtime complexity of COATi, I have also developed an approximation

of the Evolution FST that can be implemented with standard dynamic programming

techniques. This approximation uses a marginal substitution model where the output

nucleotides are independent of one another and only depend on the input codon and

position. This produces a (61× 3)× 4 substitution model and eliminates the need to

track dependencies between output nucleotides.

If we let X = {X1X2X3} and Y = {Y1Y2Y3} be codons from Σcodon, composed by

nucleotides {X1, X2, X3} ∈ ΣDNA and {Y1, Y2, Y3} ∈ ΣDNA respectively, the proba-

bility that the descendant codon Y substitutes the ancestral codon X after time t ∈ Θ

by the triplet model is P (Y1Y2Y3|X1X2X3; Θ). Then, we define the marginal model

substitution probability that the nucleotide Xp changes to nucleotide y ∈ ΣDNA as

Pmar (Yp = y|X1X2X3; θ) =

∑
Y1Y2Y3

I(Yp = y)P (Y1Y2Y3|X1X2X3; Θ) (2.5)

where θ contains the marginal model parameters and is defined θ = Θ∪p, p represents

the position of the descendant nucleotide relative to the ancestral reading frame,

defined p ∈ {1, 2, 3}, and y ∈ ΣDNA is the descendant nucleotide. Additionally, I

is an indicator function that returns one if the left-hand side and right-hand side

nucleotides are equal I(e) = {1 if e is true and 0 otherwise}.

COATi contains marginal models for both MG94 and ECM, resulting in the

marginal models codon-marginal-mg and codon-marginal-ecm. These models em-

phasize the position in a codon where the substitution occurs, help restrict the effects

of low-quality data in the descendant sequence, and allow more than one substitution
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per codon. In combination with the indel model, alignment using the marginal model

is implemented using dynamic programming. Here, I provide a brief introduction

to the marginal model and later evaluate its accuracy alongside the triplet model.

However, a detailed description of the design and implementation of the approximate

model is provided in the following chapter 3.

2.3 Methods

2.3.1 Empirical Simulation Algorithm

Simulating sequence evolution plays an essential role in bioinformatics, as an indis-

pensable tool in validating novel methods, evaluating the performance of phylogenetic

methods, and testing hypotheses among others (Ly-Trong et al., 2022). In sequence

alignment, benchmark datasets are frequently used for testing alignment algorithms

and estimating model parameters under different evolutionary conditions. Sequence

simulation algorithms are typically used when knowing the true parameter values of

the underlying is required. There exists a wide array of DNA sequence alignment

simulators such as DAWG (Cartwright, 2005), INDELible (Fletcher and Yang, 2009),

and AliSim (Ly-Trong et al., 2022) that can mimic evolutionary phenomena using a

variety of parameter-rich models. However, when it is not required to know the true

parameters that govern the benchmark, empirical data can yield a more accurate

assessment.

While datasets of curated amino acid multiple sequence alignments available for

tool validation are limited (e.g., Thompson et al. (2005); Raghava et al. (2003)), they

are non-existing for DNA sequences, especially for pairwise alignments. Therefore, I

developed an empirical simulation algorithm to compare the performance of COATi

against commonly used sequence aligners. I downloaded 16000 human genes and
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their gorilla orthologs from the ENSEMBL database (Hubbard et al., 2002). After

downloading, I removed 2232 sequence-pairs longer than 6000 nucleotides and aligned

the remaining pairs with all five methods. At least one aligner added gaps to 6048

sequence pairs, and no aligner added gaps to 7719 sequence pairs. Then, I randomly

introduced gap patterns extracted from all five methods into the ungapped sequence

pairs to generate the benchmark alignments.

The simulation algorithm can introduce a pairwise alignment pattern to any two

nucleotide sequences of equal length. The alignment pattern is given as a CIGAR

string (Compact Idiosyncratic Gapped Alignment Report), a format commonly used

to summarize aligned reads to a reference genome. Assigning one of the sequences

as the reference, to distinguish between insertions and deletions, CIGAR strings can

also summarize pairwise alignments by grouping the number of contiguous matches

or mismatches ‘M’, deletions ‘D’, and insertions ‘I’. The resulting pattern combines

these letters preceded by the number of characters for each section as they appear

in the alignment. This pattern is introduced by replacing nucleotides with gaps as

indicated by deletions on one sequence and randomly introducing residues where the

CIGAR strings indicated insertions.

Several safety checks are in place to ensure the algorithm runs correctly and the

result is accurate. The assertions are divided into checking lengths and maintaining

the reading frame of each section. The simulation can fail if the length of the sequences

is different or if, without counting insertions, the length of the pattern to be inserted

is longer. In addition, maintaining the phases of each section in the CIGAR string is

important to avoid introducing errors such as frameshifts.

I created the benchmark of alignments by using an equal number of randomly

sampled gap patterns from each aligner. I used the dataset to evaluate the accuracy of

COATi and a suite of popular aligners spanning various alignment methods: ClustalΩ
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v1.2.4 (Sievers et al., 2011), MACSE v2.06 (Ranwez et al., 2011), MAFFT v7.505

(Katoh and Standley, 2013), and PRANK v.150803 (Löytynoja, 2014).

2.3.2 Metrics

To quantify the similarity between each alignment in the benchmark and the cor-

responding output obtained by the different tools, I used the alignment error metric

dseq (Blackburne and Whelan, 2011). This metric accounts for indels and is more

informative than conventional distance scores like sum-of-pairs or total columns. In-

tuitively, dseq ranges between zero and one and can be interpreted as the probability

that a randomly selected residue will be aligned to a different location against a

sequence that does not contain such residue.

In addition, I compared the number of perfectly and imperfectly retrieved align-

ments for each aligner. Perfect alignments are defined as those with a distance of

zero to the reference alignment (dseq = 0), indicating 100% similarity. Notably, a

set of sequences can have more than one optimal alignment under the same evolu-

tionary model (same score), despite algorithms typically producing a single result.

Consequently, to account for evolutionary equivalent alignments, I scored all align-

ments using the marginal model and considered perfect those with scores identical to

the benchmark. Furthermore, I counted the number of alignments with the lowest

distance dseq to the true alignment, including ties, reported as best alignments. More-

over, I computed the count of imperfect alignments, where an alignment is considered

imperfect when its distance to the reference alignment is greater than zero (dseq > 0)

and another method successfully produced an alignment with 100% similarity. This

analysis exposes instances where all aligners fall short of achieving a perfect result in

addition to a direct comparison.

To evaluate how well the aligners were able to identify positive and negative
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selection, I estimated ks and ka statistics. ks and ka are, respectively, the num-

ber of substitutions per synonymous site (no changes at the amino acid level) and

per non-synonymous site (introduces changes at the amino acid level) between two

protein-coding genes. They are also denoted as ds and dn in the literature. I used

the R package seqinr (Charif and Lobry, 2007) to estimate these metrics, which fol-

lows the popular method put forth by Li (Li, 1993). First, this method takes two

aligned homologous protein-coding sequences and classifies the nucleotide sites in a

sequence as nondegenerate, twofold degenerate, and fourfold degenerate. A site is

nondegenerate if all possible changes at that site are nonsynonymous, twofold degen-

erate if one of the three possible changes is synonymous, and fourfold degenerate if all

possible changes are synonymous. Second, the nucleotide changes between the two

sequences are counted and divided as transitional (A↔G, C↔T) and transversional

({A, G}↔{C, T}). Third, the Kimura two-parameter distance is used to estimate

the number of transitions and transversions per site type (nondegenerate, twofold

degenerate, and fourfold degenerate), which is used as a correction factor for multi-

ple hits. Finally, ks is the estimate of the average transitional rate at twofold and

fourfold degenerate sites, and ka is the estimate of the average transversional rate at

nondegenerate and twofold sites. In the results, these metrics are reported as the F1

score, which is the harmonic mean of precision (true positives over total positives)

and recall (true positives over true positives and false negatives). This score ranges

between 0 and 1, with a score of 1 representing a perfect result.

2.4 Results

COATi, using the codon-triplet-mg model, obtained better results compared to a

wide variety of alignment strategies. It was significantly more accurate (lower dseq)

at inferring the empirically simulated alignments compared to other methods; all p-
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values were less than 2.1 · 10−79 according to the one-tailed, paired Wilcoxon signed-

rank tests (Supplementary Materials Figure 1). In addition, COATi produced more

perfect alignments, less imperfect alignments, and more accurately inferred events of

positive and negative selection (Table 2.2).

COATi MAFFT PRANK* MACSE ClustalΩ
Method Trip-MG DNA Codon DNA+AA AA

Distance metric dseq 0.00221 0.01471 0.01828 0.01399 0.02929
Best alignments 5139 4692 4774 3737 2615

Perfect alignments 5793 5292 4725 2861 2893
Imperfect alignments 1048 1549 2116 3980 3948
F1 positive selection 98.1% 84.3% 86.7% 79.5% 68.7%
F1 negative selection 99.8% 98.4% 98.7% 98.2% 96.9%

*PRANK produced 50 empty alignments, calculations are based on 7669 alignments.

Table 2.2: COATi generates better alignments than other alignment algorithms. Re-
sults of COATi, PRANK, MAFFT, ClustalΩ, and MACSE aligning 7719 empirically
simulated sequence pairs. Best alignments have the lowest dseq (including ties), per-
fect alignments have the same score as the true alignment, and imperfect alignments
have a different score than the true alignment when at least one method found a
perfect alignment.

ClustalΩ generated alignments via amino acid translations and obtained the high-

est average alignment error while having difficulties retrieving positive selection.

MACSE used a DNA-AA hybrid model, allowing frameshifts, and obtained simi-

lar results to MAFFT using a DNA model. PRANK, using a codon model, had an

average alignment error between MACSE/MAFFT and ClustalΩ but was unable to

generate alignments for some sequence pairs.

In addition, I repeated the analysis with equal parameters to test the codon-triplet-

ecm model (Tab. A.2) and the marginal model (Tab. A.3, A.4). In all cases, COATi

outperformed all other methods in all metrics. Results are available in appendix A.
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2.4.1 Ancestor and Descendant Sequences

To test how well COATi performs when the roles of reference and low-quality

sequence are reverted, I aligned the 7761 simulated alignments using gorilla as the

reference. Notably, COATi was only able to align 4003 sequence pairs due to the

presence of early stop codons in the gorilla sequence on the remaning alignments.

While the simulation algorithm prevents disrupting the reading frame and introducing

frameshifts, it does not prevent early stop codons from being formed in the descendant

sequence. Despite this limitation, I analyzed the 4003 alignments and compared the

results with all methods, including COATi using the human sequence as the reference.

The results (Tab. A.5) show a decrease, albeit small, in accuracy across all metrics

when the low-quality sequence is used as the ancestor in comparison to the reverse.

However, these results continue to be a significant improvement over other aligners.

2.5 Discussion

Despite human and gorilla sequences having a relatively short evolutionary dis-

tance, COATi showed a biologically significant improvement over other methods, with

an average alignment error nine-fold smaller than the next best method. COATi is

an FST-based application that can calculate the optimal alignment between a pair

of sequences in the presence of artifacts using a statistical model. Using COATI will

allow researchers to analyze more data with higher accuracy and facilitate the study

of important biological processes that shape genomic data.

The models in COATi, as is inherent to all models in biology, aim to approximate

the evolutionary processes that take place in nature and, therefore, have limitations.

An assumption in the pairwise aligner is directionality in evolution. Specifically,

one sequence is treated as the ancestor, while the other assumes the role of the
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descendant. This assumption stems from the premise that the ancestor sequence is of

higher quality, which the model leverages to preserve the reading frame and eliminate

potential artifacts in the descendant sequence.

Although this characteristic of the model benefits the accuracy of the alignment,

as it filters out errors in sequencing and annotation, it introduces a bias. For the

case between human and gorilla, reversing the roles does not substantially impact

the results. However, I propose two potential solutions to mitigate the ancestor-

descendant bias. A straightforward approach that can be applied to large datasets,

where the goal is to compute summary statistics, is to assign the ancestor role to

either sequence. Alternatively, a more robust solution is to modify the alignment

algorithm to conduct two Viterbi runs, using a different sequence as the ancestor

each time and finding the path that maximizes both Viterbi tracebacks.

Future work also includes extending the indel FST to combine a 3-mer gap model

with a frameshift parameter and weighing each indel phase differently to reflect known

selection on indel phases (Zhu, 2022).

2.6 Availability

The source code for COATi, along with documentation, is freely available on

GitHub: https://github.com/CartwrightLab/coati and is implemented in C++.

Additional information, code, and workflows to replicate the analysis can be found

on GitHub: https://github.com/jgarciamesa/coati-testing.
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Chapter 3

A COMPARATIVE STUDY OF EVOLUTIONARY MODELS IN COATI

3.1 Introduction

Sequence alignment plays a pivotal role in most bioinformatic analyses by provid-

ing a fundamental framework for the analysis of evolution, the central driving force

in biology (Aniba et al., 2010). Computational biologists frequently address evolu-

tionary questions such as phylogenetic inference, ancestral sequence reconstruction,

identification of disease-associated mutations, and measurement of selection through

the analyses of genomic data, which require the use of alignment inference (Rosen-

berg, 2009). Alignments of sequences are not observed directly and must be inferred

from sequence data using algorithms. Specifically, a sequence alignment is a hypoth-

esis of which characters in two or more sequences are related by common descent

(Cartwright, 2006). Every stage within a genomics analysis pipeline is vulnerable to

errors, including those that precede sequence alignments, such as DNA contamination,

sequencing and assembly errors, or misannotations of genomes (Zhang et al., 2021).

Consequently, sequence aligners face the challenge of accounting for these artifacts

to prevent uncorrected errors from producing misleading results in comparative and

functional genomic studies (Schneider et al., 2009; Fletcher and Yang, 2010; Hubisz

et al., 2011).

In the previous chapter, I presented COATi, a statistical pairwise aligner that un-

derstands and corrects common genomic artifacts. Unlike other statistical aligners,

COATi is based on finite state transducers (FSTs) and harnesses the inherent prop-

erties of FSTs to model features of molecular evolution. COATi combines a reversible
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codon substitution model, an insertion-deletion (indel) model that understands gap

phases and handles frameshifts, and a step that models sequencing base calling errors

that can introduce early stop codons. Results show that COATi is more accurate

than current tools when aligning protein-coding sequences, especially in the presence

of artifacts such as early stop codons or frameshifts.

The design and implementation of novel algorithms are instrumental in advanc-

ing scientific understanding and enabling groundbreaking discoveries. In the field of

genomics, where the magnitude of data in modern analyses is staggering, accuracy

and speed are crucial prerequisites for developing innovative methods. This neces-

sity for efficiency is the motivation behind integrating an approximate evolutionary

model into COATi. While the triplet model in COATi, with an FST-based alignment

algorithm, outperforms other available tools in terms of accuracy, the computational

complexity of its implementation can become a bottleneck when processing lengthy

sequences. To address this challenge, I introduced a marginal approximation to the

evolutionary model in the previous chapter. This approximation harnesses traditional

dynamic programming techniques, enhancing the capabilities of COATi to meet the

demands of modern genomics.

In the upcoming sections of this chapter, I examine the relationship between

the approximate and triplet models. While results show both approaches perform

significantly better than other aligners (as detailed in Appendix A), here I provide

a comprehensive description of the approximate models and clarify how well they

estimate the triplet model through a detailed analysis of relevant metrics.
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3.2 Materials

3.2.1 Indel Model

The triplet model in COATi is created by composing three FSTs, each tailored

to represent a specific process of molecular evolution (substitutions and indels) or

designed for error correction (base calling error). Specifically, the indel FST models

insertions and deletions and assumes that the length of each deleted or inserted region

has a geometric distribution (Fig. 3.1). In addition, contiguous indels are exclusively

modeled by insertions preceding deletions, with a direct path from the insertion state

(I) to the deletion state (D) through the intermediate state (W), while the reverse

path (D to I) must go through the match state (M). This design choice effectively

limits the number of equivalent alignments and results in a more efficient alignment

for the triplet model. Notably, the order of contiguous indels (i.e., insertion followed

by deletion or deletion followed by insertion) does not affect the alignment score in

this model.

Given the inherent characteristics of the triplet codon substitution model, the

alignment can only be performed using FST-based algorithms, which can become

costly for long pairs of sequences. To enhance COATi’s data processing capacity

and broaden its usability, I developed an approximate model that facilitates a faster

alignment implementation. This is achieved by transforming the codon substitution

probability matrix, thus allowing the reduction of the triplet model to a three-state

FST (Fig. 3.2). This streamlined model preserves its original indel weights and is

compatible with established pairwise dynamic programming methods.

As described in the previous chapter, the triplet evolutionary FST model calcu-

lates the probability of a descendant sequence given an ancestral one, with parame-

ters branch length, coefficient of selective pressure, and residue stationary frequencies.
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Figure 3.1: Indel FST for the triplet model. Allows insertions (U to I) and deletions
(V to D). Insertion arcs are weighted by the corresponding nucleotide stationary
frequency (π). The path and weight to the end state are designed so that the start
and end gaps are symmetric. The arc weights are defined in linear space using gap
opening (g) and gap extension (e) parameters. Arcs indicate an input symbol :
output symbol / and weight. Missing symbols indicate no consumption or emission
of symbols and missing weights indicate a weight of 1.

This probability is conditional on starting and ending the alignment with a pseudo-

match to simplify the model and for start and end gaps to be symmetric, which results

in the alignment weight being affected by a scaling factor. While this does not affect

the ability of COATi to find the best alignment, this condition is inherited by the

approximate model.
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Figure 3.2: Approximate indel model, a three-state pairwise alignment architecture
based on the Evolution FST described in COATi. Arcs to the match state (M)
take and emit nucleotides based on a modified codon substitution model probability,
whereas arcs to indel states introduce insertions (I) or deletions (D). The transition
probabilities are defined in linear space and weighted using parameters gap opening
(g), gap extension (e), and substitution (s).

3.2.2 Alignment and Semirings

Pairwise statistical alignment defines a probabilistic framework for finding the

minimum cost or the most likely path through a state transition graph, where each

state represents a position in two biological sequences, and each transition represents

an evolutionary event (no substitution, substitution, insertion, or deletion). The opti-

mal path corresponds to the most biologically meaningful alignment of the sequences

under a specific model. Since the transition probabilities are generally less than one,

their product can result in small numbers, especially when dealing with long DNA
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sequences. Due to the limitations of standard floating-point arithmetic in modern

computers, this can lead to numerical underflow. When this occurs, the likelihood

can become virtually zero, thus leading to incorrect results. To address this issue,

calculations in statistical alignment algorithms are typically performed in logarithmic

space, thus preventing underflow (Durbin et al., 1998).

Semiring Set ⊕ ⊗ 0 1

Linear R+ + × 0 1
Log R ∪ {−∞,+∞} ⊕log + -∞ 0

Tropical R ∪ {−∞,+∞} max + -∞ 0

Table 3.1: Types of semirings implemented in COATi and their defined operations.

COATi includes two alignment procedures, one based on FST operations for

the triplet model and one based on Gotoh’s (1982) algorithm for the approximate

model (Appendix B). Despite having different implementations, both approaches

perform their computations in logarithmic space through the use of semirings, ei-

ther as included in the openFST library (Allauzen et al., 2007) for the former or

self-implemented for the latter. Mathematical semirings are algebraic structures that

define two binary operations, usually denoted by addition (⊕) and multiplication (⊗).

Addition behaves like a commutative monoid with identity element 0 (a⊕b = b⊕a and

a⊕0 = a), while multiplication is distributed over addition (a⊗(b⊕c) = (a⊗b)⊕(a⊗c))

and has an identity element 1 (a ⊗ 1 = a). In particular, the tropical semiring (Ta-

ble 3.1) is ideal for implementing the Viterbi algorithm with logarithmic transition

scores, which finds the best path through a sequence of states by calculating the score

of each possible transition for each state using the ⊗ operator (+) and selects the

optimal one with ⊕ (max). Both alignment procedures are implemented using the

tropical semiring.
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3.2.3 Marginal Substitution Model

I developed the approximate model to speed up the alignment in COATi. The

main restriction of the triplet model that prevents its implementation using a dynamic

programming approach is the nucleotide dependence in each pair of sequences, given

by the substitution model. The triplet model is a 61 by 61 time-reversible codon

substitution model described in the previous chapter 2. The approximation makes

the nucleotides in each codon in the descendant sequence individually independent

by calculating the probability that each ancestral codon produces specific descendant

nucleotides at each reading frame position.

If we let X = {X1X2X3} and Y = {Y1Y2Y3} be codons from Σcodon, composed by

nucleotides {X1, X2, X3} ∈ ΣDNA and {Y1, Y2, Y3} ∈ ΣDNA respectively, the prob-

ability that the descendant codon Y substitutes the ancestral codon X after time

t ∈ Θ by the triplet model is P (Y1Y2Y3|X1X2X3; Θ). Then, we define the approx-

imate model substitution probability that the nucleotide Xp changes to nucleotide

y ∈ ΣDNA using the plus semiring operation as

Papx (Yp = y|X1X2X3; θ) =
⊕

Y1Y2Y3

I(Yp = y)⊗ P (Y1Y2Y3|X1X2X3; Θ) (3.1)

where θ contains the model parameters and is defined θ = Θ ∪ p, p represents the

position of the descendant nucleotide relative to the ancestral reading frame, defined

p ∈ {1, 2, 3}, and y ∈ ΣDNA is the descendant nucleotide. Additionally, I is an

indicator function that returns one if the left-hand side and right-hand side nucleotides

are equal I(e) = {1 if e is true and 0 otherwise}. The resulting model iterates over

all non-stop 61 codons, for each of three reading frame positions in a codon and all

four nucleotides, thus ending with a matrix of dimensions 61×3×4 stored as a 183×4

two-dimensional matrix (collapsing codon and reading frame position).
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In the context of sequence alignment, the plus semiring operator (⊕) computes the

weight of a sequence and is the fitting operator to calculate the approximate probabil-

ities. The semirings implemented in openFST and COATi define two plus operators

sum (+) and max, which offer two different approaches to approximate substitution

probabilities and results in two distinct models. The marginal model uses the linear

semiring, with sum as its plus operator, and sums over all possible substitutions.

This model was introduced in the previous chapter (Equ. 2.5). Secondly, the modal

model is defined using the tropical semiring, with max as the plus operator. Concep-

tually, this model selects the best substitution over all possible codons. Note that the

substitution probabilities are log-transformed after the marginalization. Otherwise,

the marginal model would operate in log space using the log semiring (⊕log). In the

subsequent sections, I analyze the fidelity of the marginal and modal models to the

triplet model.

In statistical alignment, a common practice is to scale insertion probabilities ac-

cording to the specific residue being added. While insertions in the triplet model are

proportional to the nucleotide stationary frequencies, the modal and marginal mod-

els weigh insertions differently, subtracting the corresponding nucleotide stationary

frequency for every residue in the descendant sequence. Consequently, the insertion

probabilities become independent of the added residue, simplifying the alignment al-

gorithm. It’s important to note that while this scaling impacts the final alignment

weight, it does not affect the relative weights between alignments of the same pair of

sequences. This is because the subtracted probabilities only depend on the nucleotides

in the descendant sequence, which remain constant for all alignments involving the

same sequence pair, and thus the alignment procedure remains unaffected.

Mathematically, let s and v be an ancestral and a descendant sequence, respec-

tively, with symbols in ΣDNA. Consider A and B with entries in ΣDNA ∪ {−} as
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two distinct pairwise alignments of sequences s and v, Πv as the product of station-

ary nucleotide frequencies in v, and f() as the joint probability of the sequences and

the alignment. Adding the scaling factor Πv to the function f() results in function

g(). This function calculates the scaled joint probability of the sequences and the

alignment, with the benefit that the nucleotides in v identified as insertions by the

alignment are no longer dependent on their nucleotide frequency since this is canceled

out by Πv. While this changes the resulting weight of the alignments, the ratio of

the two alignment probabilities remains unchanged, therefore the search for the best

alignment is unaffected (as shown in Eq. 3.2).

g(s, v, A)

g(s, v, B)
=

f(s, v, A) · (Πv)
−1

f(s, v, B) · (Πv)−1
=

f(s, v, A)

f(s, v, B)
(3.2)

After correcting for nucleotide stationary frequencies, the updated marginal and

modal model definitions in linear space are

P ′
marg (Yp = y|X; θ) =

∑
Y

I(Yp = y) · P (Y |X; Θ) · (πy)
−1 (3.3)

P ′
modal (Yp = y|X; θ) = max

Y
I(Yp = y) · P (Y |X; Θ) · (πy)

−1 (3.4)

where X, Y ∈ Σcodon − {TAA, TAG, TGA}, Yp and y ∈ ΣDNA, p ∈ {1, 2, 3}. This

updates equation 3.1, following its notation. Note that codons X and Y in equations

3.3 and 3.4 use a simplified notation that omits their constituting nucleotides.

3.2.4 Marginal and Modal Alignment Algorithm

The alignment algorithm for the approximate models in COATi is an adaptation

to the Gotoh dynamic programming algorithm (Gotoh, 1982) described in the in-

troduction chapter 1. Although my version of this renowned algorithm retains the
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general structure and the three matrices match (M), deletion (D), and insertion (I),

it increments the number of transitions to consider. Let s, v with symbols in ΣDNA

be two sequences with m and n residues, for each cell in the match matrix the Gotoh

alignment considers:

D[i, j] = max


M [i− 1, j]⊗ α : deletion opening

D[i− 1, j]⊗ β : deletion extension

I[i, j] = max


M [i, j − 1]⊗ α : insertion opening

I[i, j − 1]⊗ β : insertion extension

M [i, j] = max


M [i− 1, j − 1]⊗ score(si, vj) : substitution

D[i, j] : deletion

I[i, j] : insertion

where α and β are the gap opening and gap extension parameters, and score() is

a function that scores the match or mismatch of two residues in ΣDNA. Thus, using

the tropical semiring and the model parameters defined in the previous subsection,

each cell in the dynamic programming alignment algorithm matrices satisfies one of

the following recursions:
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D[i, j] = ⊕


M [i− 1, j]⊗ log1m(g) : deletion opening after match

D[i− 1, j]⊗ e : deletion extension

I[i− 1, j]⊗ log1m(e)⊗ g : deletion opening after insertion

I[i, j] = ⊕


M [i, j − 1]⊗ g : insertion opening after match

I[i, j − 1]⊗ e : insertion extension

M [i, j] = ⊕


M [i− 1, j − 1]⊗ log1m(g)⊗ (1− g)⊗ P ′

mar[si, vj; θ] : substitution

D[i− 1, j − 1]⊗ log1m(e)⊗ P ′
mar[si, vj] : substitution

I[i− 1, j − 1]⊗ log1m(e)⊗ log1m(g)⊗ P ′
apx[si, vj] : substitution

where the function log1m(x) performs the operation log(1 − exp(−x)) and is used

to calculate the probability of not opening a gap log1m(g) or not extending a gap

log1m(e). This function is implemented following (Mächler, 2012).

While the Gotoh algorithm stores the best transition for each cell in the match

matrix, COATi does not. The backtracking algorithm finds the best end value across

the three matrices and sets it as the starting point to retrieve the optimal alignment.

Note that the insertion matrix I does not consider a transition from the deletion

matrix D, as designed in the indel approximate model (Fig 3.2). In addition, the last

cell on all matrices (Mm,n, Dm,n, Im,n) is updated with the end transition weights

(Eq. 3.5), albeit is not shown in algorithm 3 for simplicity.
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Dm,n = Dm,n ⊗ log1m(e)

Im,n = Im,n ⊗ log1m(e)⊗ log1m(g)

Mm,n = Mm,n ⊗ log1m(g)⊗ log1m(g)

(3.5)

Furthermore, a feature of the algorithm is the ability to restrict gap unit length.

This allows users to impose specific gap lengths, such as only allowing gaps to be in

three-mers, maintaining the reading frame. An example of this can be seen in the

evolutionary analyses of indel rates by Zhu (2022), where protein-coding sequences

were aligned with COATi restricting gaps to be lengths which are multiples of three

(i.e., no frameshifts). Fixing gap unit length is not shown in algorithm 3, which

assumes the general case where gaps can be of any length (unit of 1).

3.2.5 Sequence Processing and Encoding

COATi pre-processes the input sequences before alignment to ensure certain con-

ditions are met and to allow the use of speed-up techniques. One of the assumptions

is that the ancestor protein-coding sequence is of high quality and is used to help

preserve the reading frame and safeguard against frameshifts in the potentially low-

quality descendant sequence. Therefore, the ancestor sequence must be of length

multiple of three (no incomplete codons) and be free of any ambiguous nucleotides or

early stop codons. In contrast, the descendant sequence can be of any length, contain

nucleotide codes included in IUPAC (Cornish-Bowden, 1985), and include early stop

codons.

After the initial validations, COATi encodes the sequences as vectors of unsigned

char, an efficient C++ eight-bit character representation that can be used to access
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Algorithm 3 Marginal pairwise alignment algorithm. Intentionally different from
the Gotoh algorithm to implement the marginal evolutionary model in COATi.

1: function alignpair(s, v, g, e)

2: n,m← |s|, |v|
3: M, D, I← zero(n+ 1,m+ 1) ▷ Initialize the matrices of size n+ 1 by m+ 1

4: for i← 1 to n do ▷ Gap deletion penalties

5: D[i, 0]← g ⊕ ((i− 1)⊗ e)

6: end for

7: for j ← 1 to m do ▷ Gap insertion penalties

8: I[0, j]← g ⊕ ((j − 1)⊗ e)

9: end for

10: M [0, 0]← 1 ▷ Set starting value in match matrix

11: for i← 1 to n do ▷ Fill in the matrices

12: for j ← 1 to m do

13: mch2mch←M [i− 1, j − 1]⊗ log1m(g)⊗ log1m(g)⊗ Papx[si, vj]

14: del2mch← D[i− 1, j − 1]⊗ log1m(e)⊗ Papx[si, vj]

15: ins2mch← I[i− 1, j − 1]⊗ log1m(e)⊗ log1m(g)⊗ Papx[si, vj]

16: mch2del←M [i− 1, j]⊗ log1m(g)⊗ g

17: del2del← D[i− 1, j]⊗ e

18: ins2del← I[i− 1, j]⊗ log1m(e)⊗ g

19: mch2ins←M [i, j − 1]⊗ g

20: ins2ins← I[i, j − 1]⊗ e

21: M [i, j] = mch2mch⊕ del2mch⊕ ins2mch ▷ Save match scores

22: D[i, j] = mch2del⊕ del2del⊕ ins2del ▷ Save deletion scores

23: I[i, j] = mch2ins⊕ ins2ins ▷ Save insertion scores

24: end for

25: end for

26: Add end weights

27: Traceback

28: end function
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matrices. This procedure uses a lookup table called nt16_table that maps each

nucleotide (A/a, C/c, G/g, T/t/U/u) to a corresponding value (0, 1, 2, 3). This

enables an efficient conversion of codons from strings to unsigned char using bit-

wise operators where each nucleotide takes two of the eight bits (two left-most bits

are unused), and each codon is converted to a corresponding value from 0 (AAA) to

63 (TTT), using the following C++ algorithm:

int cod in t ( const std : : s t r i n g v i ew codon ) {

return ( n t 16 tab l e [ codon [ 0 ] ] << 4) |

( n t 16 tab l e [ codon [ 1 ] ] << 2) |

nt16 tab l e [ codon [ 2 ] ;

}

The marginal and modal substitution models are stored as a 183×4 matrix, where

each row represents an ancestral codon and a reading frame position (phase), and

each column represents a descendant nucleotide. Thus, the encoded sequences must

contain codon, nucleotide, and phase information to access a value in such a matrix.

The descendant sequence is converted to an encoded vector of nucleotides, while the

ancestor encoded sequence contains codons and phases. While creating the vector of

nucleotides is straightforward, the ancestor sequence combines codons and position

as shown in table 3.2. Note the codon table used here does not contain stop codons

(TAA/UAA, TAG/UAG, TGA/UGA).

Encoding the input sequences allows the core alignment algorithm to use the values

to access the substitution probabilities directly. Since matrix indexing is one of the

most used operations, this helps reduce runtime costs. In addition, the encoding

process can be conveniently reverted to retrieve a nucleotide from an encoded codon,

given its position. This operation is included as the function get_nuc(), which also
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Codon* Encoded Codon Position Encoded Codon + Position
string unsigned char int codon · 3 + position

AAA 0 0 0
AAA 0 1 1
AAA 0 2 2
AAC 1 0 3
AAC 1 1 4
AAC 1 2 5
...

...
...

...
TTT 60 0 180
TTT 60 1 181
TTT 60 2 182

Table 3.2: Encoding of codon and position. Each codon is converted to a correspond-
ing value [0, 60], multiplied by 3, and then added a position offset. This results in
assigning each codon and position a value [0, 182]. *Stop codons are not included.

takes advantage of bit operators (Table 3.3), and is used to calculate the marginal

and modal substitution probabilities (Alg. 4).

Codon uchar Position Mask uchar & mask ≫ shift = Nucleotide
ACG 00 00 01 10 0 00 11 00 00 00 00 00 00 ≫ 4 = 00 (A)
ACG 00 00 01 10 1 00 00 11 00 00 00 01 00 ≫ 2 = 01 (C)
ACG 00 00 01 10 2 00 00 00 11 00 00 00 10 ≫ 0 = 10 (G)

Table 3.3: Extraction of nucleotides from an encoded codon using bit-wise operators.
Each nucleotide takes two bits that are masked and shifted according to the position
specified.
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Algorithm 4 Marginal substitution algorithm. Substitution probabilities for the
triplet model are in Ptri, and π contains nucleotide frequencies.

1: function marginal-substitution(Ptri, π)

2: Create the substitution matrix of size 183x4

3: Papx ← zero(n+ 1,m+ 1)

4: for cod ← 1 to 61 do

5: for nuc ← 1 to 4 do

6: for pos ← 1 to 3 do

7: tmp ← 0

8: for i ← 1 to 61 do

9: if get nuc(i, pos) == nuc then

10: tmp ⊗ = Ptri[cod, i]

11: end if

12: end for

13: Papx[cod ·3+pos, nuc] = log
(

tmp
πnuc

)
14: end for

15: end for

16: end for

17: return Papx

18: end function

3.3 Methods

3.3.1 Benchmark Dataset Simulation

Simulating sequence evolution plays an essential role in bioinformatics as an in-

dispensable tool for validating novel methods, evaluating the performance of phylo-

genetic methods, and testing hypotheses, among other techniques (Ly-Trong et al.,

2022). In sequence alignment, benchmark datasets are frequently used to assess align-

ment algorithms and estimate model parameters under diverse evolutionary condi-

tions. When curated datasets are unavailable or unsuitable for specific validation

requirements, it is common practice to generate them using simulators. Several

DNA sequence alignment simulators, including DAWG (Cartwright, 2005), INDELi-

ble (Fletcher and Yang, 2009), and AliSim (Ly-Trong et al., 2022), have been devel-
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oped to replicate evolutionary processes in a range of parameter-rich models. Nev-

ertheless, empirical simulations often provide a more accurate assessment, as they

mimic natural evolution more accurately.

Therefore, I developed a testing pipeline that features an empirical evolution simu-

lation algorithm to evaluate how well the approximate models approximate the triplet

model. First, I downloaded 16,000 human protein-coding genes (CDS) from the EN-

SEMBL database (Hubbard et al., 2002). After downloading, I filtered out 2,226

sequences longer than 3,000 nucleotides to limit runtime and memory costs. I dis-

carded an additional 16 CDS that contained early stops or incomplete codons (i.e.,

their length was not multiple of three). Subsequently, I generated a set of five dis-

tinct datasets of pairwise sequence alignments, each dataset using each with a dif-

ferent branch length of 0.2, 0.4, 0.6, 0.8, or 1.0, to test the models under different

evolutionary distances. Every dataset was created using a simulation algorithm that

follows the triplet model. I used these datasets to evaluate the accuracy of the triplet,

marginal, and modal models. After removing the gaps, I aligned the sequences using

all three methods and measured their performance. I ran this pipeline twice, one

for each substitution model available in COATi (i.e., MG94 and ECM). Additional

information, code, and workflows to replicate the analysis can be found on GitHub:

https://github.com/jgarciamesa/coati-evo-sim.

The evolution simulation algorithm takes an input CDS, a strength of selection

coefficient ω, and a branch length t (number of expected substitutions per site) to gen-

erate two descendant sequences. Initially, I introduce substitutions using the triplet

substitution model with branch length t/2, default ω, gap open, and gap extension

parameters. Then, I simulate gaps along the sequence following the geometric indel

model. Notably, when working with CDS, gap lengths not multiple of three, known

as frameshifts, are considered artifacts that disrupt the open reading frame and are
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likely to be purged by purifying selection. As a result, the simulation algorithm does

not model the introduction of errors and only considers non-frameshift gaps. This is

duplicated to generate a second descendant sequence and form a pairwise alignment

with distance t. The process is then repeated for every one of the 13,758 filtered

sequences to create a benchmark dataset.

3.3.2 Alignment Metrics

Sequence alignment methods are often evaluated by their capacity to retrieve

alignments from a benchmark dataset (e.g., Sievers et al. (2011)). This assessment

involves the utilization of one or more distance metrics to gauge how closely the

output generated by the aligners matches the reference dataset. Commonly used

scoring methods include the sum-of-pairs score (SP), which quantifies the proportion

of correctly identified residue pairs, and the total column score (TC), which calculates

the fractions of reference columns found. However, SP and TC are not actual metrics

since symmetry is not guaranteed when calculating the alignment distance between

two alignments (i.e., SP(A → B) ̸= SP(B → A) for two given alignments A and B)

(Blackburne and Whelan, 2011).

To quantify the similarity between each alignment in the benchmark datasets and

the corresponding output obtained from the triplet and marginal models, I used the

alignment error metric dseq (Blackburne and Whelan, 2011). This metric accounts

for indels and is more informative than conventional distance measures like SP or

TC. Intuitively, dseq ranges between zero and one and can be interpreted as the

probability that a randomly selected residue will be aligned to a different location

against a sequence that does not contain such residue.

The computation of dseq involves characterizing the gaps present in the alignment.

Then, a site-wise homology set H(A)ij is calculated for each alignment A, sequence i,
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and character j. The distance between two alignments A and B is the average across

all characters of the symmetric difference (or Hamming distance), represented as ‘△’

between homology sets over the length of such sets:

d(A,B) =
1

c

∑
i

∑
j

|H(A)ij△H(B)ij|
|H(A)ij|+ |H(B)ij|

(3.6)

where c is the sum of the sequence lengths.

To quantify the results further, I compared the number of perfectly and imper-

fectly retrieved alignments for each model. Perfect alignments are defined as those

with a distance of zero to the reference alignment (dseq = 0), indicating 100% simi-

larity. Notably, a set of sequences can have more than one optimal alignment under

the same evolutionary model, despite algorithms typically producing a single result.

Consequently, to account for evolutionary equivalent alignments, I scored all align-

ments using the marginal-mg model and considered those with scores identical to

the benchmark alignments as perfect. Furthermore, I computed the count of imper-

fect alignments where an alignment is considered imperfect when its distance to the

reference alignment is greater than zero (dseq > 0) and another method successfully

produces an alignment with 100% similarity. This analysis exposes instances where all

models fall short of achieving a perfect result in addition to a direct model-to-model

comparison.

3.3.3 Kullback-Leibler Divergence

The substitution probabilities in the triplet model are stored in a 61 by 61 matrix.

Each cell within this matrix represents the probability of replacing a codon, given by

the column, with another, given by the row. In turn, the approximate models decom-

pose these 61 probabilities for each column into 12 segments, each representing the
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replacement of the codon with one of four possible nucleotides in one of three positions

within a codon. To compare how well their substitution probabilities approximate

the triplet model, I reconstructed the 61 by 61 codon-to-codon probabilities from the

approximate models. While this framework transforms the mutation rates, it allows a

direct comparison. If we let X, Y ∈ Σcodon and Papx be the substitution probabilities

using the marginal or modal model, the probability that codon Y substitutes codon

X after time t is calculated

Papx(Y1|X; θ) · Papx(Y2|X; θ) · Papx(Y3|X; θ)

where Yp ∈ ΣDNA represents the nucleotide in position p of codon Y , and the calcu-

lations are performed in linear space.

I used the Kullback-Leibler divergence (DKL) to assess how well the marginal

and modal models approximate the triplet model as a whole under different branch

lengths. The DKL measures how one probability distribution differs from a second

reference probability distribution, introduced by Kullback and Leibler in information

theory (1951). Namely, it quantifies the amount of information lost when one dis-

tribution is used to approximate another. Mathematically, if you have two discrete

probability distributions P (x) and Q(x) defined on the same sample space χ, the

Kullback-Leiber divergence from Q to P is defined

DKL(P |Q) =
∑
x∈χ

P (x) log

(
P (x)

Q(x)

)
(3.7)

where x represents individual events or values, P (x) is the probability of event x in the

distribution P , and Q(x) is the probability of event x in the distribution Q. Therefore,

I used DKL to measure how well the approximate models estimate the triplet model,
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where Q = Papx · π, P = Ptriplet · π, π are the codon stationary frequencies, and

Papx is the codon-to-codon substitutions obtain from the approximate models. The

calculations were done in the statistical programming language R using the function

KLD from the LaplacesDemon package (Statisticat and LLC., 2021).

3.3.4 Alignment Visualization

A common workflow in evaluating methods of alignment inference is to use a

distance score to quantify the accuracy of the results, such as SP, TC, or in my case,

dseq. While these statistics are informative, they often fail when trying to identify

subtle differences between models. To address this issue, I designed and developed

a program (AlnDotPlot) that detects variations between two alignments, described

in chapter 4. This tool can take two alignments from the same pair of sequences as

input, find the section where they diverge, and generate a visual representation of such

segment, as demonstrated in Figure 3.3. These visualizations, hereby alignment dot

plots or dot plots, are presented as two-dimensional grids, where each row corresponds

to nucleotides in the first sequence, and each column represents nucleotides in the

second sequence. I introduce padding columns and rows marked with ‘-’ to account

for indels as needed. Nodes within the grid correspond to matches, mismatches,

or gaps defined by the alignment, and edges connect them to form a path. Each

alignment is assigned a unique color, except when the paths merge, creating a unique

black line that indicates a shared alignment section. In addition, matching residues

in the alignment are marked with an ‘X’ in the corresponding matrix cell.
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Alignment 1
· · · GAGCCA · · ·
· · · GAACCA · · ·

Alignment 2
· · · GA---GCCA · · ·
· · · GAACCA--- · · ·

-
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- G - A - A - C - C - A -

×

×

×

×

×
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Alignment1

Alignment2

Figure 3.3: Example of a visual representation of the region where two pairwise
alignments differ. Both sequences are 180 nucleotides long, although only the section
where they differ is shown. The figure displays two preceding residues to show com-
plete codons. Alignment 1 is colored in brown and alignment 2 is colored in blue,
while matching portions of the alignment are in black. Nodes represent matches,
mismatches, and gaps, while edges connect them to form a path. Matches in the
alignment are marked with an ‘X’ at the corresponding node.
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3.4 Results

3.4.1 Alignment Accuracy

MG94

The triplet MG94 model consistently outperformed the marginal MG94 models across

all datasets (Fig. 3.4). At the lowest branch length of 0.2, the average alignment

error among all three models is similar. However, an evident order emerges, with

the triplet-mg model outperforming marginal-mg, which, in turn, achieved a smaller

dseq than modal-mg. As the number of expected substitutions increases, the ddseq

for the marginal-mg model consistently remains close to that of the triplet model,

although the latter outperforms the former across all branch lengths. In contrast,

the average alignment error for the modal-mg model diverges further from the other

models, spiking when, on average, we expect every site to have undergone a mutation

(branch length of 1), with a dseq more than twofold its previous value.

The number of perfect alignments between the marginal-mg and triplet-mg model

remains consistent across all branch lengths. In contrast, the marginal-mg starts

producing an equal number of perfect alignments for a branch length of 0.2, but

this number declines as branch lengths increase. A similar trend is observed in the

count of imperfect alignments, with the modal-mg model producing more imperfect

alignments, particularly spiking at branch lengths of 0.8 and 1.0. In this section, the

remaining models performed similarly, with the marginal-mg model outperforming

the triplet-mg model with branch lengths 0.6 and 0.8, with the reverse outcome

for branch lengths 0.2, 0.4, and 1.0. Note that the count of perfect and imperfect

alignments decreases along the x-axis, as alignments not perfectly retrieved by either

method are excluded from the results.
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Figure 3.4: The triplet-mg model generates better alignments across all branch
lengths. Results of triplet-mg, marginal-mg, and modal-mg COATi models in align-
ing 13,758 simulated sequence pairs. Best alignments have the lowest dseq, perfect
alignments have the same score as the true alignment or a zero dseq, and imperfect
alignments have a different score than true alignments when at least one model found
a perfect alignment.

ECM

As expected, the triplet-ecm model outperforms the marginal models across all branch

lengths in all metrics (Fig. 3.5). The trend observed in the MG94 results is intensified

in the ECM results. The dseq values for the triplet-ecm and marginal-ecm models

are comparable to their MG94 counterparts, albeit with a slightly larger difference

between them. This pattern is also evident in the number of perfect and imperfect

alignments, where the triplet-ecm model significantly outperforms the approximate

models. However, the marginal-ecm model provides a better approximation. In

contrast, the modal-ecm model underperforms with a dseq two orders of magnitude

larger than its MG94 counterpart for a branch length of 1. The model struggles
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with short branch lengths, and its performance declines as the number of expected

substitutions per site increases. I have truncated the dseq values at 0.05 to ensure a

proper display of the results for the triplet-ecm and marginal-ecm. A comprehensive

results table can be found in the appendix (Table B.1).
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Figure 3.5: The triplet-ecm model generates better alignments across all branch
lengths. Results of triplet-ecm, modal-ecm, and marginal-ecm COATi models in
aligning 13,758 simulated sequence pairs. Best alignments have the lowest dseq, per-
fect alignments have the same score as the true alignment or a zero dseq, and imperfect
alignments have a different score than true alignments when at least one model found
a perfect alignment.

3.4.2 Gap Statistics

Gap statistics can provide valuable insights when comparing alignment models

across varying evolutionary distances, as they reveal how the likelihood of substitution

relative to indel probabilities changes. Notably, for both the MG94 and ECM models,

the total number of gaps and their cumulative length remains constant for both the
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triplet and marginal models as branch lengths increase (Fig. 3.6). In concordance

with the previous metrics, the behavior of the modal model takes a divergent path,

especially for modal-ecm. While the modal-mg model shows similar values until

branch length reaches 0.6 and is slightly elevated thereafter, the total number and

length of gaps for the modal-ecm model are larger for all branch lengths.
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Figure 3.6: The number and total length of gaps for triplet-mg and marginal-mg
models stay constant as branch lengths increase. On the contrary, the modal-mg
model adds more and longer gaps as the evolutionary distance between sequences
becomes larger.
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Figure 3.7: The number and total length of gaps for triplet-ecm and marginal-ecm
models stay constant as branch lengths increase. On the contrary, the modal-ecm
model significantly adds more and longer gaps as the evolutionary distance between
sequences becomes larger.
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3.4.3 Marginal Model

The results from the previous section establish the marginal model as a close

approximation to the triplet model. To better understand how marginalization influ-

ences the substitution probabilities, I plotted the Kullback-Leibler divergence (DKL)

between the marginal and the triplet model. This score can be seen as the measure

of how one probability distribution, the marginal, differs from a reference probability

distribution, the triplet. Figure 3.8 is a plot of DKL for the MG94 marginal (top)

and ECM marginal (bottom) models with branch length values from 0.1 to 10. The

divergence for both marginal models follows a similar trend, with values rising until

they reach saturation to then tend towards zero. Marginal-mg is a better approx-

imation to its triplet counterpart than marginal-ecm with smaller values across all

branch lengths.

In addition to the overall measure of divergence, I plotted the DKL matrix be-

tween the triplet and marginal model at a branch length of 1 to understand what

substitutions drive this score. This 61 by 61 matrix plot represents individual diver-

gence values calculated using DKL (Eq. 3.7), where blue cells indicate substitution

probabilities that are underestimated by the marginal model, while red cells indicate

overestimation. Figure 3.9 shows the divergence scores for the marginal model. The

divergence is driven by a combination of an underestimation of transversions and

an overestimation of transitions on the first and third-position mutations. In this

case, the most underestimated amino acids are Leucine and Serine, while the most

overestimated are tryptophan and tyrosine.

The divergence matrix for the ECM model is plotted following the codon order

used in the original ECM publication (Kosiol et al., 2007), where the order of nu-

cleotides is {T, C, A, G}, and first position changes precede second position ones

52



0.000

0.005

0.010

0.015

0.0 2.5 5.0 7.5 10.0

branch length

K
L 

di
ve

rg
en

ce
 fr

om
 tr

ip
le

t

Model
marginal−mg

0.75

1.00

1.25

1.50

1.75

0.0 2.5 5.0 7.5 10.0

branch length

K
L 

di
ve

rg
en

ce
 fr

om
 tr

ip
le

t

Model
marginal−ecm

Figure 3.8: Kullback-Leibler divergence between MG94 (top) ECM (bottom) and
their marginal models with branch lengths between 0.2 and 10. Low values represent
a small divergence, indicating a better approximation to the triplet model. Marginal
MG94 performs best, while the divergence for both models decreases as they reach
saturation.

(Fig. 3.10). The DKL divergence for the marginal-ecm model is driven by a gen-

eral overestimation of substitution probabilities, especially along the main diagonal

(indicating no change). In addition, we observe an underestimation of the arginine

and serine amino acids (top left blue section). The most overestimated amino acids

include histidine, although the difference is small. Notably, the divergence values for
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the marginal ECM model are much higher than for the MG94 counterpart.
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Figure 3.9: Kullback-Leibler divergence matrix for the marginal MG94 model with a
branch length of 1.0. Values closer to zero indicate a smaller divergence, representing
a better approximation to the triplet model. Positive values, indicated by a blue
gradient, mark substitution probabilities where the marginal model underestimates
the triplet model. In turn, negative values, indicated by a red gradient, represent
substitution probabilities where marginal overestimates the triplet model.
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Figure 3.10: Kullback-Leibler divergence matrix for the marginal ECM model with a
branch length of 1.0. Values closer to zero indicate a smaller divergence, representing
a better approximation to the triplet model. Positive values, indicated by a blue
gradient, mark substitution probabilities where the marginal model underestimates
the triplet model. In turn, negative values, indicated by a red gradient, represent
substitution probabilities where marginal overestimates the triplet model.
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3.4.4 Visual Comparison of Triplet and Marginal Model

The previous metrics have demonstrated that the triplet and marginal models

exhibit a strong agreement in their results, thereby validating the latter as a suitable

approximation of the former. However, these metrics have fallen short in identifying

any subtle distinctions between the models, if they exist. Pursuing these differences, I

inspected the alignment sections where the two models diverge using dot plots. Upon

visual comparison of the most distinct triplet and marginal alignments across sequence

lengths spanning from a few hundred to a maximum of three thousand nucleotides and

encompassing all branch lengths (0.2, 0.4, 0.6, 0.8, and 1.0), one predominant pattern

emerges (examples in Fig. 3.11). The most notable distinction between the triplet and

marginal models lies in the former model displaying a preference for substitutions,

irrespective of the number of matches, whereas the latter model favors indels, often

with a higher number of matches (left column in Figure 3.11).
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Figure 3.11: Dot plots of the sections where the triplet, marked in orange, and
marginal, colored in green, model alignments differ. Matching nucleotides are marked
with an ‘X’. This selection of dot plots showcases the most common pattern in align-
ment diverging regions between the models, where the triplet model matches the
residues. Instead, the marginal model finds its optimal path through indels and fewer
substitutions. This trend is shared for the MG94 and the ECM codon substitution
models. Therefore, this selection of dot plots is a combination of results using triplet-
mg against marginal-mg and triplet-ecm against marginal-ecm.
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3.4.5 Runtime

The motivation behind developing the marginal and modal models is to speed up

sequence alignment in COATi. To showcase the improvement, I measured the speed

of the triplet and marginal models together with a suite of popular aligners spanning

various alignment methods: amino-acid based ClustalΩ v1.2.4 (Sievers et al., 2011),

amino-acid plus frameshifts MACSE v2.06 (Ranwez et al., 2011), DNA version of

MAFFT v7.505 (Katoh and Standley, 2013), and codon version of PRANK v.150803

(Löytynoja, 2014). A comprehensive comparison of the accuracy of these models

against COATi can be found in chapter 2.
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Figure 3.12: Execution time of benchmark in seconds of ClustalΩ, COATi triplet
and marginal model, MACSE, MAFFT, and PRANK aligning pairwise sequences
of different lengths. COATi triplet, implemented using FSTs, suffers from a costly
runtime compared to other aligners. In comparison, COATi marginal solves the
issue and can perform similarly to Clustal Ω, MAFFT, and PRANK and better than
MACSE. This was run on an 11th generation Intel chip with a single core.

The results (Fig. 3.12) show the execution time of the aligners with different

sequence lengths. The runtime for the triplet model (orange) rapidly grows and can

become a limitation when sequences exceed a thousand base pairs. Notably, the

COATi marginal (green) is comparable to popular tools and considerably faster than
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MACSE for longer sequence pairs. Both modal and marginal models are reported

under COATi marginal because, despite their different definitions, their alignment

algorithms are identical, therefore having matching execution times.

3.5 Discussion

While the statistical pairwise sequence aligner COATi can align protein-coding

regions in the presence of artifacts with higher accuracy than current methods, the

execution time required for sequences longer than a few thousand nucleotides can be

a limiting factor. To address this limitation, I developed an approximate model of the

core evolutionary model (triplet) that can be implemented using standard dynamic

programming techniques and speeds up the alignment operation to execution times

comparable with popular aligners. In this chapter, I have undertaken a comprehen-

sive exploration of the modal and marginal models, providing a detailed description

of their definitions and assessing their accuracy in approximating the evolutionary

processes of the triplet model.

The evaluation of results across various branch lengths highlights the remarkable

fidelity of the marginal model to the triplet model, with similar outcomes in average

alignment error and the number of perfect alignments. Conversely, the performance

of the modal model, while comparable for short branch lengths, gradually diminishes

as branch lengths increase. This decline in performance can be attributed to how the

substitution probabilities are handled over evolutionary time, as per the definition

of the model. Consequently, I recommend employing the triplet model for achieving

the highest accuracy, especially when sequence lengths and computational resources

permit. However, in cases where these factors pose a limitation, the marginal model,

accompanied by its dynamic programming alignment approach, is a robust alterna-

tive.
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The analysis described in this chapter can be further improved by adjusting gap

opening rates in the sequence evolution simulator according to changes in branch

length. The algorithm used in this chapter has a fixed gap opening parameter g

that does not scale with branch length. In addition, the simulation algorithm should

implement different rates for insertion and deletion events, aligning more closely with

the prevalent patterns often observed in biological data (Zhang and Gerstein, 2003;

de Jong and Rydén, 1981).

Future work includes developing an algorithm that can search alignment space to

improve the initial multiple-sequence alignment that COATi can currently produce.

This will allow COATi to improve the results on the accurate alignment inference

of protein-coding regions in the presence of artifacts, a pressing issue in modern

computational biology.
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Chapter 4

ALNDOTPLOT: VISUAL REPRESENTATION AND ANALYSIS OF PAIRWISE

ALIGNMENTS

4.1 Introduction

The analysis of biological sequences is the inference of unique and unobservable

evolutionary events at the DNA level (Morrison, 2018). Alignment inference is an

essential step required to address questions across multiple branches of biology, in-

cluding molecular biology, microbiology, and ecology. The field has seen substantial

progress since modern sequence alignment began with the computer-adaptable algo-

rithm of Needleman and Wunsch (1970), replacing the arduous manual arrangement

of residues as the default method for sequence alignment.

The development of sequence alignment methods has experienced a continuous

effort to improve both their accuracy and speed. The quality of sequence alignments

directly impacts the reliability of downstream analyses, and thus, alignment eval-

uation plays a pivotal role in quality control. Existing evaluation methods can be

divided into metrics and scores that summarize similarities between alignments and

tools that quantify the uncertainty associated with each column of an alignment. A

limitation of these methods is that they can compare a summary metric between two

alignments or provide site information about an alignment, but cannot combine both

approaches. While aligners typically report a single best result using an evolutionary

or scoring model, equally optimal (equivalent) alignments often exist and are rarely

reported. However, equivalent alignments and suboptimal alternatives are common

in sampling and multiple sequence refinement. Being able to perform a thorough
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comparison between such alignments can be very valuable for understanding how the

underlying biological models work. This can also lead to more detailed comparisons

of different methods in validating sequence aligners, improve the algorithms that

search for suboptimal alignments in multiple sequence refinement, and better assess

sampling results.

4.1.1 Alignment Accuracy

Popular alignment similarity scores include sum-of-pairs (SP) and total column

score (TC). SP is the percentage of correctly aligned residue pairs in an alignment,

which measures how well pairs of sequences are aligned, while TC is the percentage

of correctly aligned columns in an alignment, testing the ability to align all sequences

correctly (Thompson et al., 2005). In the case of pairwise alignment, both metrics are

identical. A more informative set of metrics that consider indels and the evolutionary

history of events in a phylogenetic tree was put forth by Blackburne and Whelan

(2011). These metrics range from zero to one and can be interpreted as the probability

that a randomly selected residue will be aligned to a different location against a

sequence that does not contain such residue. Notably, similarity and distance metrics

are easily scalable to compare results over large datasets. However, they struggle to

find specific portions where alignments diverge and what are their differences.

Tools and methods that quantify alignment uncertainty include Heat or Tails

(Landan and Graur, 2007), a method that considers the probability distribution of

possible placements for each sequence within a multiple sequence alignment; GUID-

ANCE (Penn et al., 2010), which uses bootstrap algorithms; GUIDANCE 2 (Sela

et al., 2015), which combines three sources of uncertainty: co-optimal solutions, guide

tree instability, and opening gap penalty; ZORRO (Wu et al., 2012), based on hidden

Markov models; and MUMSA (Lassmann and Sonnhammer, 2005), which calculates
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the portion of identically aligned regions; and posterior decoding, a popular method

used in the context of Markov models that calculates the probability of each state in

the alignment path and is particularly useful when many different paths have almost

the same probability as the most likely one. These methods provide information about

the reliability of each column in an alignment and identify uncertain sections, allow-

ing researchers to remove them to prevent errors that may bias downstream analysis.

While these metrics can help improve the quality of genomic pipeline results, they

are also limited to analyzing one alignment at a time.

4.1.2 Alignment Visualization

A common feature shared among the alignment uncertainty applications described

above is their display of confidence scores and the alignment in matrix form (Fig. 4.1).

This format of alignment visualization provides a representation of an alignment,

where residues are typically colored by type and are supported by numerous software

packages and web-based tools (e.g., Zhou et al., 2022; Yachdav et al., 2016). A matrix

representation of an alignment displays two or more aligned sequences as rows, with

each column representing a site. However, while this format is intuitive, it does not

allow comparing two or more alignments.

CAT AAG CGG TCG GAC ---

CAG CAG CGG TCG GAC ACG

CAT CAG CGG TC- --C ACA

CAT CAG CCG TCG GAC ACG

Figure 4.1: Example of a DNA multiple sequence alignment visualization in matrix
form. Every row corresponds to a sequence and every column is a position in the
alignment. Nucleotides are colored by type and gaps are shown in black.

Dot plots are an additional visual representation tool used to compare two se-

quences that facilitate the identification of similarities, differences, and underlying
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patterns, introduced by Gibbs and McIntyre (1970). They consist of a matrix where

one sequence is displayed on the x-axis, left to right, and the other on the y-axis, top

to bottom, and using dots indicate matching residues between the sequences. Con-

versely, mismatching nucleotides are left blank. Note that gap symbols are typically

not considered in dot plots as they evaluate unaligned sequences.

In biological sequence analysis, dot plots are suitable for identifying regions of

similarity between sequences, evidenced by diagonal lines of dots that run left to right

and top to bottom. The length and pattern of these contiguous dots provide insight

into the nature and extent of the similarity. In addition, dot plots are used to identify

specific biological events, including repeated regions, tandem repeats, palindromic

regions, and microsatellite patterns (Fig. 4.2). This illustrates that dot plots are a

simple and versatile tool for comparing pairs of unaligned sequences.

4.1.3 Comparison of Pairwise Alignments

The tools described above provide valuable and scalable algorithms for measuring

distance or scoring similarity between alignments and methods for identifying uncer-

tain regions within alignments. However, they cannot provide detailed information

about how and where alignments differ. To fill this gap, I have developed AlnDotPlot,

a visual tool inspired by traditional dot plots that can compare alternative pairwise

alignments and is available as an R package. AlnDotPlot can provide a detailed com-

parison between a handful of pairwise alignments, identify patterns in hundreds of

alignment sampling results, and find short base pair differences among alignments of

a few kilobases. This software combines the simple nature of dot plots with features

to analyze pairwise sequence alignments.
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a) b)

c) d)

Sequence T1

S
eq
u
en
ce

T
2

Figure 4.2: . Overview of characteristic patterns in dot plots. a) A continuous main
diagonal shows perfect similarity. b) Parallels to the main diagonal indicate repeated
regions on different parts of the sequences. c) When the diagonal is a discontinuous
line this indicates that the sequences T1 and T2 share a common ancestor. d) Partial
deletion in sequence T1 or insertion in sequence T2. Work modified from Schulz et al.,
2008

4.2 Implementation

AlnDotPlot can generate alignment dot plots that compare sets of pairwise align-

ments. This R package can read in alignments in FASTA format and produce re-

sults in PDF and TEX format. Internally, the alignment information is converted

into matrices, which are in turn, used to create the dot plots. I use the tikzDe-

vice R package to create the final results for its versatility and accuracy (Sharpsteen

et al., 2023). The following sections describe the different models and their im-

plementation and use cases. AlnDotPlot is available as an R software package at
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https://www.github.com/jgarciamesa/alndotplot.

4.2.1 From Alignment to Dot Matrix

AlnDotPlot generates different alignment dot plots given a set of pairwise align-

ments. To generate these figures, the first step is to read in the pairwise alignments.

Next, the alignment information must be transformed into a dot matrix, which stores

this information in a conventional two-dimensional matrix. Based on the different

model designs, I have implemented two types of dot matrices. For the simplest model,

a traditional dot plot, the dot matrix records only the positions within the alignments

involving substitutions (matches and mismatches). Given two sequences s and v, this

dot matrix has dimensions |s| by |v|, where each row corresponds to symbols in s

and every column to symbols in v. Every cell in the matrix represents a symbol from

s that matches (or mismatches) with a symbol in v. The value in every cell is the

count of substitutions between these symbols across all input alignments. Figure 4.3

showcases a sample alignment and its corresponding traditional dot matrix.

s: CAT --- AAG

v: C-G CGG ACG

(a)

C
A
T
A
A
G

C G C G G A C G
1

1
1

1
1

(b)

Figure 4.3: Converting a pairwise alignment to a traditional dot matrix. (a) is an
alignment of sequences s and v, with matches and mismatches (substitutions) colored
arbitrarily. (b) is a matrix with the characters in sequence s as rows and the characters
in sequence v as columns. The values indicate the count of substitutions between the
row and column nucleotides (i.e., the first ‘C’ in both sequences is matched once on
the alignment). Note empty cells have a count of zero, omitted here.

Expanded dot matrices extend traditional dot matrices, described above, by incor-
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porating indel information, and a similar construction procedure. Given a collection

of pairwise alignments between sequences s and v, this dot matrix has dimensions

(2 · |s| + 1) by (2 · |v| + 1), where even rows and columns correspond the symbols in

s and v respectively, and odd rows and columns represent gap symbols. Expanding

upon the previous dot matrix design, this configuration enables marking insertion

and deletion events with clarity. The values within the matrix represent the count of

the corresponding row and column symbol pairs found in the alignments. Figure 4.4

illustrates how an expanded dot matrix is constructed.

Aln1

s: CAT --- AAG

v: C-G CGG ACG

Aln2

s: CAT --A A-G

v: CG- CGG ACG

Aln3

s: CAT --A A-G

v: CGC GGA -CG

(a)

-

C
-

A
-

T
-

A
-

A
-

G
-

- C - G - C - G - G - A - C - G -

3
3

3
1 2
1 2

1 1 1
2 2 3 3 3 2 2

1 2
1 2

1 1 1
2 2 3

3
3

(b)

Figure 4.4: Converting three alternative alignments to an expanded dot matrix. (a) is
three alternative alignments of sequences s and v. (b) is a matrix with the characters
in sequence s as rows and the characters in sequence v as columns. In addition, gap
symbols have been added to represent indel information. The values indicate the
count of substitutions or indels between the row and column characters (i.e., the first
‘C’ in both sequences is matched in all three alignments). Note empty cells have a
count of zero, omitted here.
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4.2.2 Dot Plot Models

Traditional Model

The traditional dot plot model resembles the original dot plots most, adapting the

idea of identifying similarity between sequences to pairwise alignments. Consequently,

this model only considers substitutions by using the traditional dot matrix. After

calculating the counts for each cell, these are converted into frequencies. These values

represent the percentage of alignments where each pair of symbols is aligned together.

The final step is to draw squares on the tikz grid filled with a color corresponding to

their frequency.

Figure 4.5 illustrates a traditional dot plot with three different alignments. Di-

agonal rows of squares, running left to right and top to bottom, indicate regions of

contiguous substitutions. In addition, darker sections are most common among the

alignments, while lighter squares indicate less frequent pairings. This model retains

the simplicity of dot plots and is an efficient tool for highlighting common substitu-

tion patterns in pairwise alignments. Furthermore, the traditional model is scalable

to a large number of sequences.
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Aln 1

CAT AAG CGG TCG GAC ---

CAG CGG TCC CCG GAC ACG

Aln 2

CAT AAG CGG TC- --G GAC ---

CA- --G CGG TCC CCG GAC ACG

Aln 3

CAT AAG CGG TC- --G GAC

CAG CGG TCC CCG GAC ACG

(a)

C
A
T
A
A
G
C
G
G
T
C
G
G
A
C

C A G C G G T C C C C G G A C A C G 00-09%

10-19%

20-29%

30-29%

40-49%

50-59%

60-69%

70-79%

80-89%

90-100%

(b)

Figure 4.5: Example of a traditional alignment dot plot of three possible pairwise
alignments. Squares represent matching and mismatching nucleotides, while the color
gradient indicates their frequency in the alignments. The first two nucleotides ‘C’ and
‘A’ are matched in all three alignments (100%). The remaining squares on the main
diagonal are only shared in two alignments (66%), while the remaining squares are
only present in one alignment (33%).

Expanded Model

The expanded model includes information about indel events and therefore uses an

expanded dot matrix to store alignment counts. These plots are conceptually similar

to conventional visual aids to explain Needleman-Wunsch (Needleman and Wunsch,

1970) or Gotoh (Gotoh, 1982) algorithms where an alignment is illustrated as the path

through a matrix. In comparison to the previous model, these plots add gap symbols

between the characters of each sequence and are used to mark indel events. However,

the process of creating the tikz grid with squares is similar. Counts are converted to

frequencies and used to fill the squares in the matrix with the appropriate color. This

model can easily accommodate large amounts of alignments.

Figure 4.6 illustrates how an expanded dot plot is created from the same three

pairwise alignments as in the previous model. In addition to the diagonals of squares

that indicate substitutions, this plot provides information about how they are con-
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Aln 1

CAT AAG CGG TCG GAC ---

CAG CGG TCC CCG GAC ACG

Aln 2

CAT AAG CGG TC- --G GAC ---

CA- --G CGG TCC CCG GAC ACG

Aln 3

CAT AAG CGG TC- --G GAC

CAG CGG TCC CCG GAC ACG
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10-19%

20-29%

30-29%

40-49%

50-59%

60-69%
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80-89%

90-100%

(b)

Figure 4.6: Example of an expanded alignment dot plot for three possible pairwise
alignments. Squares indicate substitution, insertion, or deletion events between sym-
bols of the sequences. Diagonal rows of squares represent substitutions, while vertical
and horizontal contiguous squares represent deletions and insertions, respectively.
Colors indicate the frequency of events in the alignments.

nected. Furthermore, the expanded model uncovers a high-traffic section where paths

cross, a cell connecting two gap symbols with 100% frequency.

Line Model

The line model introduces a new concept of nodes connected with edges to form a path

or line. The nodes represent events in the alignment, while the edges connect pairs

of cells in an alignment matrix. This model is an evolution of the expanded model,

where the events are alignment events are marked and the edges clarify the transition

between them. The line in a plot can split into different branches, indicating sections

where the alignments are different. An expanded dot matrix is used to build a line

dot plot. Similarly to the previous models, counts are converted to frequencies and

used to fill the nodes with the corresponding color. However, the line model utilizes
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three matrices to store substitutions, insertions, and deletions separately, needed to

identify source and destination information to plot the edges. In addition, the edges

are colored with the frequency of the destination node. This model can be seen as

an extension of the expanded model that unveils information about high-traffic nodes

and introduces the concept of a path, which will be useful later. Furthermore, this

model is easily scalable to large amounts of data.

Figure 4.7 illustrates the line alignment dot plot resulting from three alignments.

In comparison to the expanded model, figure 4.7-b helps disentangle the alignment

path in congested areas such as the node where the three alignments, represented by

two different branches, cross.
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Aln 1

CAT AAG CGG TCG GAC ---

CAG CGG TCC CCG GAC ACG

Aln 2

CAT AAG CGG TC- --G GAC ---

CA- --G CGG TCC CCG GAC ACG

Aln 3

CAT AAG CGG TC- --G GAC

CAG CGG TCC CCG GAC ACG
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(b)

Figure 4.7: Example of a line alignment dot plot for three possible pairwise align-
ments. Nodes represent substitution, insertion, or deletion events between characters
in the sequences or gap symbols. Edges join nodes to indicate a path or line, and the
colors specify the frequency of events in the alignments.

Multiple Lines Model

The multiple lines model provides the most information about a set of pairwise align-

ments and extends the line model by encoding each alignment as a distinct path.

Events for every input alignment are stored into their own three matrices, one for

each of substitutions, deletions, and insertions, resulting in a collection of matrix

trios. This model converts the list of matrix counts into frequencies and either col-

ors each alignment with the frequency in the set of input alignments, or colors each

alignment differently. A novel feature of this model is that every alignment has a

designated position on each cell preventing different alignments from overlapping.

The multiple lines dot plot resulting from the three alignments used throughout

this section is finally able to fully distinguish the different alignments (Fig. 4.8). This

provides a detailed comparison of the alignments.
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Aln 1

CAT AAG CGG TCG GAC ---

CAG CGG TCC CCG GAC ACG

Aln 2

CAT AAG CGG TC- --G GAC ---

CA- --G CGG TCC CCG GAC ACG

Aln 3

CAT AAG CGG TC- --G GAC

CAG CGG TCC CCG GAC ACG
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Alignment 1

Alignment 2

Alignment 3

(b)

Figure 4.8: Example of a multiple lines dot plot for three possible pairwise alignments.
Nodes represent substitution, insertion, or deletion events and edges connect them.
In this model, all three alignments are different and therefore are displayed as unique
paths. This allows full distinction of each alignment, providing a detailed comparison.

4.2.3 Bubble Finding

The models described in the previous section are designed to handle large amounts

of sequences. However, given the nature of the implementation, properly plotting long
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sequences can be challenging; as illustrated by a multiple lines dot plot of two pairwise

alignments with 180 nucleotides long sequences (Fig. 4.9-a). To improve the abilities

of AlnDotPlot, I have developed a feature that, given two pairwise alignments, can

detect sections of dissimilarity and plot them using the line model (Fig. 4.9-b). In

addition, the resulting dot plots explicitly mark matches with an ‘X’ on the corre-

sponding nodes. The bubble finding function finds all sections where the alignments

diverge and creates a line dot plot for each one. This feature is specially designed for

alignments of long sequences with relatively small differences, allowing a more precise

evaluation.

The algorithm to find the divergent sections, also called bubbles, conceptually

classifies the relationship between nodes as parent and child. A parent node precedes

the current one, while the child node follows it, ordered from the top-left to the

bottom-right of the matrix. Note that nodes can have multiple children and parents in

the line model. The algorithm first creates a list of full nodes, which are those shared

by all alignments. Then, using this list, the function looks for the first node with a

full parent and without a full child, indicating the beginning of a bubble. Conversely,

the end of the bubble is marked by the next node with no full parents and a full child

node. This is repeated until the end of the line, carefully avoiding misclassifying the

start and end nodes of the alignment. In addition, the algorithm adjusts the start

and end nodes in the bubble to display entire codons. Figure 4.10 showcases line

dot plots found using the bubble-finding function of two pairwise alignments with 2.3

kilobases long sequences from the results of chapter 3.
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Figure 4.9: Example of a multiple lines dot plot of two pairwise alignments with
two sequences of approximately 180 nucleotides each (a) and the result of running
the bubble finding function over the same alignments (b). Rendering dot plots of
long sequences is limiting. However, the AlnDotPlot can find the difference in the
alignment and create a line plot only of that section.
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Figure 4.10: Line dot plots obtained using the bubble finding from two different
pairwise alignments of approximately 2.3 kilobases long sequences. This showcases
the bubble-finding algorithm. Green paths correspond to the COATi marginal-mg-
sum model and orange paths to the COATi triplet-mg model. Match nodes are
crossed in black or white.
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4.2.4 Codon Similarity

In addition to the nucleotide interactions in the alignment, I am interested in un-

derstanding how codon similarity can affect the alignment path. Therefore, AlnDotPlot

can color code grid sections in the dot plot to represent the affinity of the two inter-

secting codons (row and column codons). This is done by dividing the grid into 6 by

6 submatrices (3 nucleotides per codon plus gap symbols) and coloring their back-

ground. There are four different colors, indicating different similarity levels. First,

if the two codons are identical, meaning no changes at the DNA level, the section is

colored green. Second, if the codons code for the same amino acid, also known as

synonymous, their cross-section is colored yellow. The third and fourth categories

classify the non-synonymous codons interactions based on their evolutionary prop-

erties as defined by Kosiol et al. (2007). Using these categories if the amino acid

translation for both codons belongs to the same group, the section is filled in orange;

otherwise, the intersecting region is colored in red. This contextualizes the alignment

and can provide insight into why certain models avoid specific areas (e.g., Fig. 4.11).
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Figure 4.11: Line alignment dot plots with codon similarity information. Equal codon
interactions are colored in green and different codons that code for the same amino
acid are in yellow. Codons encoding for amino acids that are in the same similarity
group are in orange, otherwise in red.
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4.3 Discussion

The development of this tool responds to a need to understand better the dif-

ference between two alignment models with similar benchmark results. While the

simpler models might not fit many scenarios, the multiple lines model and the bubble-

finding feature are valuable tools in analyzing sequence alignments. AlnDotPlot can

compare pairwise alignments and provide detailed insights through an intuitive visual

representation. This R package can be included in alignment assessment pipelines in

addition to distance metrics and alignment accuracy tools.

Future work includes supporting other output formats, such as image files that

support rasterization to convert from plots back to alignment. In addition, developing

a method to display long pairwise alignments would address a clear limitation.
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Chapter 5

CONCLUSION

Sequence alignment is an essential method in bioinformatics, serving as the foun-

dation for many genomic analyses. Overlooking artifacts and errors during alignment

reconstruction can impact downstream analyses, potentially leading to inaccurate

findings in comparative and functional genomic studies. While such errors are even-

tually fixed in the reference genomes of model organisms through a laborious process,

large amounts of genomic data used by researchers still contain these artifacts, often

prompting the discarding of valuable data to prevent them from impacting results.

In this work, I designed, developed, and evaluated a novel statistical, codon-aware

pairwise sequence aligner tailored to address common artifacts found in protein-coding

genes. In chapter 2, I explained the aligner and its underlying evolutionary model,

along with a comparative evaluation against conventional pairwise aligners, using hu-

man and gorilla homologous protein-coding sequences. Remarkably, despite humans

and gorillas being two relatively close species, the results of my aligner demonstrated

significant improvement. However, it is worth noting that the model exhibited a limit-

ing computational runtime cost with sequences exceeding a few kilobases. Therefore,

in chapter 3, I presented and evaluated an approximate model that maintained simi-

lar accuracy while achieving competitive execution times. In the subsequent chapter

4, I described a software package used for analyzing the alignment results from the

previous chapter.

In the present era, the volume of genomic data generated is staggering, yet of-

ten remains unpolished due to the labor-intensive nature of genome curation. As a

result, bioinformatic tools must continually evolve to incorporate models capable of
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addressing common artifacts. The ongoing development of software and statistical

methodologies for biological sequence analysis will remain crucial, as they serve as

the bridge transforming raw data into meaningful insights.
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Benchmark Results

dseq Perfect Best Imperfect F1 pos selection F1 neg selection
tri-MG94 0.00221 5793 5139 1048 0.98073 0.99809
MAFFT 0.01471 5292 4692 1549 0.84314 0.98411
PRANK* 0.01828 4725 4774 2116 0.86749 0.98698
MACSE 0.01399 2861 3737 3980 0.79456 0.98199
ClustalΩ 0.02929 2893 2615 3948 0.68691 0.96938

* PRANK produced 42 empty alignments, calculations are based on 7719 alignments.

Table A.1: Accuracy of COATi codon-triplet-mg, PRANK, MAFFT, ClustalΩ, and
MACSE on 7761 simulated sequence pairs. Perfect alignments have the same score as
the true alignment, best alignments have lowest dseq, and imperfect alignments have
a different score than the true alignment when at least one method found a perfect
alignment.

dseq Perfect Best Imperfect F1 pos selection F1 neg selection
tri-ECM 0.00238 5689 5045 1118 0.97803 0.99779
MAFFT 0.01451 5338 4677 1469 0.86048 0.98549
PRANK* 0.01903 4803 4851 2004 0.89250 0.98912
MACSE 0.01352 2903 3787 3904 0.82181 0.98359
ClustalΩ 0.02801 2979 2624 3828 0.72337 0.97244

* PRANK produced 69 empty alignments, calculations are based on 7692 alignments.

Table A.2: Accuracy of COATi codon-triplet-ecm, PRANK, MAFFT, ClustalΩ, and
MACSE on 7761 simulated sequence pairs. Perfect alignments have the same score as
the true alignment, best alignments have lowest dseq, and imperfect alignments have
a different score than the true alignment when at least one method found a perfect
alignment.
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dseq Perfect Best Imperfect F1 pos selection F1 neg selection
mar-MG94 0.00222 5808 5220 1075 0.97671 0.99766
MAFFT 0.01505 5301 4782 1582 0.85147 0.98455
PRANK* 0.01974 4856 5015 2027 0.89928 0.99000
MACSE 0.01429 2855 3893 4028 0.81569 0.98349
ClustalΩ 0.02870 2901 2610 3982 0.72399 0.97171

* PRANK produced 60 empty alignments, calculations are based on 7695 alignments.

Table A.3: Accuracy of COATi codon-marginal-mg, PRANK, MAFFT, ClustalΩ, and
MACSE on 7755 simulated sequence pairs. Perfect alignments have the same score as
the true alignment, best alignments have lowest dseq, and imperfect alignments have
a different score than the true alignment when at least one method found a perfect
alignment.

dseq Perfect Best Imperfect F1 pos selection F1 neg selection
mar-ECM 0.00229 5781 5135 1081 0.97052 0.99710
MAFFT 0.01473 5379 4813 1483 0.85011 0.98491
PRANK* 0.01953 4830 4918 2032 0.87752 0.98790
MACSE 0.01400 2953 3893 3909 0.78977 0.98159
ClustalΩ 0.02918 2892 2611 3970 0.67847 0.96785

* PRANK produced 49 empty alignments, calculations are based on 7718 alignments.

Table A.4: Accuracy of COATi codon-marginal-ecm, PRANK, MAFFT, ClustalΩ,
and MACSE on 7767 simulated sequence pairs. Perfect alignments have the same
score as the true alignment, best alignments have lowest dseq, and imperfect align-
ments have a different score than the true alignment when at least one method found
a perfect alignment.
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dseq Perfect Best Imperfect F1 pos selection F1 neg selection
Trip-MG 0.00113 3501 2890 309 0.99278 0.99932
MAFFT 0.00586 3162 2704 648 0.91064 0.99137
PRANK 0.00358 2829 2673 981 0.90332 0.99084
MACSE 0.00448 2552 2434 1258 0.87234 0.98857
ClustalΩ 0.02099 1772 1554 2038 0.75960 0.97686
Trip-MG-gor 0.00118 3463 2816 347 0.98993 0.99904

Table A.5: Accuracy of COATi codon-triplet-mg, PRANK, MAFFT, ClustalΩ,
MACSE, and codon-triplet-mg with gorilla as the reference on 4003 of the 7761 sim-
ulated sequence pairs where the gorilla sequence was simulated without early stop
codons. Perfect alignments have the same score as the true alignment, best align-
ments have lowest dseq, and imperfect alignments have a different score than the true
alignment when at least one method found a perfect alignment.
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Figure A.1: Comparison of log10-transformed dseq data with pseudocounts between
COATi codon-triplet-mg and PRANK, MAFFT, ClustalΩ, and MACSE. COATi was
significantly more accurate than other aligners; all p-values were ≤ 1.25e− 76.
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Figure A.2: Comparison of log10-transformed dseq data with pseudocounts between
COATi codon-triplet-ecm and PRANK, MAFFT, ClustalΩ, and MACSE. COATi
was significantly more accurate than other aligners; all p-values were ≤ 3.23e− 48.

92



−4

−3

−2

−1

0

−4 −3 −2 −1 0
log10(COATi)

lo
g1

0(
P

R
A

N
K

)

−4

−3

−2

−1

0

−4 −3 −2 −1 0
log10(COATi)

lo
g1

0(
M

A
F

F
T

)

−4

−3

−2

−1

0

−4 −3 −2 −1 0
log10(COATi)

lo
g1

0(
C

lu
st

al
O

m
eg

a)

−4

−3

−2

−1

0

−4 −3 −2 −1 0
log10(COATi)

lo
g1

0(
M

A
C

S
E

)

100

200

300

400
count

Figure A.3: Comparison of log10-transformed dseq data with pseudocounts between
COATi codon-marginal-mg and PRANK, MAFFT, ClustalΩ, and MACSE. COATi
was significantly more accurate than other aligners; all p-values were ≤ 1.99e− 53.
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Figure A.4: Comparison of log10-transformed dseq data with pseudocounts between
COATi codon-marginal-ecm and PRANK, MAFFT, ClustalΩ, and MACSE. COATi
was significantly more accurate than other aligners; all p-values were ≤ 1.44e− 52.
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Alignment Accuracy of the Triplet and Marginal ECM Models

t Model dseq Perfect alns Imperfect alns

0.2 tri-ecm 4.075938e-04 11609 538
0.2 mar-ecm-sum 2.254086e-03 9568 2578
0.2 mar-ecm-max 1.153611e-02 3955 7941
0.4 tri-ecm 5.674235e-04 11146 439
0.4 mar-ecm-sum 2.782803e-03 9271 2333
0.4 mar-ecm-max 0.0330844 1751 9599
0.6 tri-ecm 7.325429e-04 10681 377
0.6 mar-ecm-sum 3.134104e-03 9007 2020
0.6 mar-ecm-max 7.975872e-02 669 10130
0.8 tri-ecm 9.450685e-04 10354 388
0.8 mar-ecm-sum 3.621644e-03 8862 1854
0.8 mar-ecm-max 1.771613e-01 197 10322
1.0 tri-ecm 1.202495e-03 9999 361
1.0 mar-ecm-sum 4.194538e-03 8646 1720
1.0 mar-ecm-max 3.459159e-01 55 10155

Table B.1: Table with complete results comparing results of triplet-ecm, marginal-
ecm-max, and marginal-ecm-sum COATi models in aligning 13,758 simulated se-
quence pairs. The triplet-ecm model generates better alignments across all branch
lengths. Best alignments have the lowest dseq, perfect alignments have the same score
as the true alignment or a zero dseq, and imperfect alignments have a different score
than true alignments when at least one model found a perfect alignment.

Benchmark Across Different CPUs
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Figure B.1: Runtime benchmark of COATi marginal and triplet on different CPUs.
Runtime is measured in seconds, while the benchmark consists of different length
alignments.
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