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ABSTRACT

Behavior-driven obesity has become one of the most challenging global epidemics since

the 1990s, and is presently associated with the leading causes of death in the U.S. and

worldwide, including diabetes, cardiovascular disease, strokes, and some forms of can-

cer. The use of system identification and control engineering principles in the design of

novel and perpetually adaptive behavioral health interventions for promoting physical

activity and healthy eating has been the central theme in many recent contributions.

However, the absence of experimental studies specifically designed with the purpose

of developing control-oriented behavioral models has restricted prior efforts in this

domain to the use of hypothetical simulations to demonstrate the potential viability

of these interventions. In this dissertation, the use of first-of-a-kind, real-life experi-

mental results to develop dynamic, participant-validated behavioral models essential

for the design and evaluation of optimized and adaptive behavioral interventions is

examined.

Following an intergenerational approach, the first part of this work aims to de-

velop a dynamical systems model of intrauterine fetal growth with the prime goal

of predicting infant birth weight, which has been associated with subsequent child-

hood and adult-onset obesity. The use of longitudinal input-output data from the

“Healthy Mom Zone” intervention study has enabled the estimation and validation of

this fetoplacental model. The second part establishes a set of data-driven behavioral

models founded on Social Cognitive Theory (SCT). The “Just Walk” intervention

experiment, developed at Arizona State University using system identification prin-

ciples, has lent a unique opportunity to estimate and validate both black-box and

semiphysical SCT models for predicting physical activity behavior. Further, this

dissertation addresses some of the model estimation challenges arising from the lim-

itations of “Just Walk”, including the need for developing nontraditional modeling
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approaches for short datasets, as well as delivers a new theoretical and algorithmic

framework for structured state-space model estimation that can be used in a broader

set of application domains. Finally, adaptive closed-loop intervention simulations of

participant-validated SCT models from “Just Walk” are presented using a Hybrid

Model Predictive Control (HMPC) control law. A simple HMPC controller recon-

figuration strategy for designing both single- and multi-phase intervention designs is

proposed.
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Chapter 1

INTRODUCTION

1.1 Motivation

System identification and control are among the most mature fields in engineer-

ing that offer rigorous mathematical framework for the characterization of complex

dynamical behaviors of causal systems, and ultimately utilize predictive models to

establish optimized real-time solutions in a wide array of applications. Beyond pro-

cess design and other traditional industrial settings, system identification and control

research have been expanding and now include novel applications in new areas such

as behavioral health and medicine. Despite the ever-growing body of scientific liter-

ature and subsequent efforts devoted to public awareness, some of the most pressing

challenges in behavioral health remain unresolved. In the United States, according to

current reports from Centers for Disease Control and Prevention (CDC), among the

top ten public health problems are obesity, HIV, drug abuse, and tobacco use, with

obesity strongly tied to other problems in this category such as heart disease and

stroke. Over the recent decades, following smoking, the obesity pandemic was the

second leading cause of preventable deaths estimated at 300,000 mortalities per year

in the United States alone (Flegal et al., 2004). Moreover, being associated with type

2 diabetes, hypertension, heart disease, asthma, depression, and even cancer among

other conditions, the United States national direct costs of obesity were estimated at

$147 billion in 2008 (Finkelstein et al., 2009; Cawley and Meyerhoefer, 2012). Indi-

rect costs including obesity-related absenteeism have ranged between $3.38 and $6.38

billion (Trogdon et al., 2008).
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While it is more difficult to prevent some of the risk factors such as age, fam-

ily history and genetic factors, regulation of one’s habits and behavior concerning

physical activity, diet, and tobacco use is indeed more approachable, and can remark-

ably increase life expectancy. For example, substantial evidence shows that physical

activity reduces chronic disease risk (Bauer et al., 2014; Owen et al., 2008; Haskell

et al., 2009). With national guidelines suggesting 30-60 minutes of moderate phys-

ical activity per day, often in the form of walking (U.S. Department of Health and

Human Services, 2008); research furthermore demonstrates a 20-30% reduced risk of

breast cancer when guidelines are met (Thune et al., 1997). Despite the well-known

benefits of physical activity, a large segment of the U.S. population does not meet

these guidelines (Troiano et al., 2008).

In addition to sedentary behavior, Gestational Weight Gain (GWG) and high

birth weight have also been independently associated with subsequent childhood and

adult-onset obesity, cardiovascular disease, and some forms of cancer (Rich-Edwards

et al., 1997; Hillier et al., 2007; Spracklen et al., 2014; Savage et al., 2014; Qiao

et al., 2015; O’Neill et al., 2015). While it is known that these associations can impact

both women and their offspring, adherence of pregnant women in the United States to

guidelines from the Institute of Medicine for appropriate GWG is only at 30%, with

over 50% exceeding guidelines toward overweight and morbid obesity (Dudenhausen

et al., 2015). These low levels of adherence to recommended guidelines indeed call

for alternative interdisciplinary strategies that can invite a broader set of tools and

research methods.

Only over the past decade, following the successful use of fluid analogy descrip-

tions in production-inventory systems (Schwartz et al., 2006), the Rivera et al., 2007

article introduced the system identification and control engineering framework as a

viable and promising approach for the design of novel adaptive interventions in the
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context of behavioral health. In the article, it was pointed out that tools acquired

from dynamical systems modeling and control have “the potential to significantly

inform the analysis, design, and implementation of adaptive interventions, leading

to improved adherence, better management of limited resources, a reduction of neg-

ative effects, and overall more effective interventions.” Admittedly, over the last

decade, this proposition has gained a sizable attraction from the behavioral science

and medicine society, and has led to the development of new dynamical models of

behavior change, which in turn inspired a family of adaptive intervention designs

using control systems engineering ideas, each targeting a specific behavioral health

challenge.

Toward addressing obesity and meeting a balanced dietary and physical activity

lifestyle, similar to Schwartz et al., Navarro-Barrientos et al., 2011 proposed fluid

analogy as a suitable tool for mechanistic modeling of complex dynamical systems,

leading to the proposal of a dynamic behavior change model based on the Theory of

Planned Behavior (TPB) (Ajzen, 1991). This TPB model was then integrated with a

three-compartment, energy balance model developed in Hall and Jordan, 2008; Chow

and Hall, 2008; Hall, 2009, 2010 and validated by the Minnesota Semi-Starvation

Experiment (Keys et al., 1950) to establish predictions of human weight gain/loss

that are simultaneously driven by human psychology and physiology. Using the in-

tegrated behavioral-energy balance model, a classical feedback control system design

was used to produce simulations illustrating optimized assignments of various in-

tervention dosages over time. Moreover, the work of Dong et al., 2012, 2013, 2014;

Savage et al., 2014 presented a receding horizon control strategy and a more elaborate

intervention modeling that includes self-regulation and intervention delivery dynam-

ics for designing improved GWG interventions and regulating infant birth weight; the

potential in the proposed intervention strategies were illustrated by evaluating sim-
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ulations of hypothetical human subjects. More recently, these efforts were followed

by Guo et al., 2016, 2017, 2018; Freigoun et al., 2018; Pauley et al., 2018; Symons

Downs et al., 2018 in which models of real human participants are estimated and val-

idated from experimental data; these works have contributed in both modeling and

improved intervention design for managing GWG and regulating infant birth weight.

Furthermore, alternative to traditional static (i.e., steady-state) modeling meth-

ods and “one-size-fits-all” strategies for smoking cessation, contributions from Timms

et al., 2013, 2014d,a,c,b presented an alternative dynamic modeling and control

engineering-based intervention design using a mediational understanding of smok-

ing cessation dynamics. An additional novel application of system identification and

control was in the domain of fibromyalgia pain management (Deshpande et al., 2011,

2012, 2014b,a). Indeed, the use of behavioral (or integrated behavioral-energy bal-

ance) models in cited literature has delivered an entirely novel conceptual paradigm

for the design of personalized and perpetually adaptive behavioral health interven-

tions. Without a doubt, this was realized by inviting system identification and control

engineering principles to the design of behavioral health interventions that seek to

improve and sustain adherence to recommended dietary and physical activity guide-

lines. This appeal to such a design is further magnified by the explosion of advanced

mobile health (mHealth) sensor technologies (Nilsen et al., 2017) that not only offer

a cost-effective deployment of adaptive interventions at the largest of scales, but also

facilitate the evaluation and improvement of existing behavioral theory models by

leveraging intensive longitudinal data (Riley et al., 2011).

In light of the discussed challenges, this dissertation is primarily motivated by

the need to use real-life experimental studies to advance the system identification,

control, and behavioral science research, including the development of new practi-

cal approaches and algorithms in these domains. To achieve this, two recent novel

4



Outcome 

Expectancy  (    )              

Behavior

   Behavioral 

Outcomes        

γ64ξ4(t − θ11)

Cue to

action (    )                

γ57ξ7(t − θ15)

ξ4(t)

ξ7(t)

ζ2(t)

ζ4(t)

ζ5(t)

β42η2(t − θ6)

β54η4(t − θ12)

β25η5(t − θ14)

(1 − β54 − β34)η4

(1 − β42)η2

(1 − β25 − β45)η5

η2

(η4)

(η5)

ξ8(t)

γ68ξ8(t − θ18)ζ6(t)

(1 − β46)η6

β46η6(t − θ17)

η6

F
γ510ξ10(t − θ20)

β45η5(t − θ19)

γ29ξ9(t − θ21)

LT

Expected 

points

Granted 

points

ξ9(t)

ξ10(t)

Self - Efficacy

ζ3(t)

β34η4(t − θ13)

β43η3(t − θ8)

(1 − β43)η3

(η3)

γ311ξ11(t − θ22)
ξ11(t)

Goal 

attainment

Environmental 

context

Internal

cues
External

cues

Figure 1.1: A Simplified Dynamical Systems Model of Social Cognitive Theory
(Freigoun et al., 2017; Hekler et al., 2018).

open-loop intervention studies, Healthy Mom Zone (Symons Downs et al., 2018), and

Just Walk (Hekler et al., 2018), are utilized in developing, estimating, and validating

behavioral and energy balance models; an established participant-validated model

will serve as basis for closed-loop intervention design. More specifically, this disserta-

tion aims to answer calls from two 2014 papers: Savage et al. and Mart́ın et al.. In

the former, authors called for the need to utilize experimental data from a real-life

intervention (such as Healthy Mom Zone) to improve, estimate, and validate their

proposed maternal-fetal intervention model. As a result, chapter 2 is entirely de-

voted for the development of a dynamical systems model of intrauterine fetal growth,

validated by data from Healthy Mom Zone.

The rest of this dissertation efforts are motivated by calls from Mart́ın et al., 2014,

2016a for estimating and validating the semiphysical model of Social Cognitive The-

ory (Bandura, 1986) in Figure 1.1 using data from real human subjects, and ultimately
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utilize these models to further support their hypothetical simulations of closed-loop

physical activity interventions. In this work, these objectives are approached in the

context of Just Walk, a more detailed description of which is provided in Chapter 3.

1.2 Modeling Behavioral Interventions

In the design of adaptive behavioral health interventions, depending on the tar-

get outcome (e.g., adherence to a prescribed level of daily physical activity, healthy

eating, weight gain/loss, healthy infant birth weight), a model-based approach must

utilize a priori knowledge of the underlying psychological and/or physiological mech-

anisms driving the particular outcomes of interest. For example, an intervention that

aims to use a human psychology approach in order to achieve and maintain a pre-

scribed level of physical activity will ultimately need to rely on a particular cognitive

basis for predicting individual responses to various external cues and other contextual

factors that influence behavior. A behavioral theory such as Social Cognitive Theory

(SCT) can indeed lend a strong theoretical basis for establishing dynamical systems

models that suit this purpose. Furthermore, if the intervention simultaneously tar-

gets weight gain/loss and promoting consistent physical activity, then it is natural to

include an understanding for metabolic and other physiological mechanisms alongside

the behavioral model on some level; this is also feasible by using an energy balance ap-
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proach. A block-diagram depiction of an integrated behavioral-energy balance model

(open-loop) is presented in Figure 1.2.

Typically, energy balance models can be developed by applying the laws of ther-

modynamics, as well as the incorporation of empirical functions for some of the es-

tablished variables. This will be visited with more depth in the context of develop-

ing a dynamical systems model of intrauterine fetal growth in Chapter 2. On the

other hand, the modeling of behavioral theories such as SCT (Mart́ın, 2016) or TPB

(Guo, 2018) has proven to be a more challenging involved task in many respects. Fig-

ure 1.3 features a pathway from using behavioral theories to obtain control-oriented,

dynamical models useful for adaptive intervention design. First, a behavioral theory

in its abstract form is adopted, followed by harnessing all constructs (e.g., self-efficacy,

subjective norm) originating from that theory. In the case of modeling and TPB, re-

cent efforts (Navarro-Barrientos et al., 2011; Dong, 2014; Mart́ın, 2016; Guo, 2018)

have collaborated in multidisciplinary research teams that included experts from the

fields of psychology and behavioral medicine. Second, the considered behavioral the-

ory is used to construct a path diagram characterizing the causal relations among the
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listed constructs (e.g., mediation, moderation, feedback) with the ultimate goal of

describing a pathway from each measurable predictor (system input) to a measurable

outcome (system output).

Next, the established path diagram can be used to construct a fluid analogy model

(similar to Figure 1.1), which is most valuable for introducing the dynamical nature of

all causalities framed by the obtained path diagram. For example, Figure 1.1 presents

a fifth-order SCT model comprised of five interacting subsystems, each characterizing

first-order dynamics. Using this fluid analogy model, a system of ordinary linear

differential equations (ODEs) can be derived using the conservation of mass principle

(i.e., the First Law of Thermodynamics) and, subsequently, a state-space model. Note

that, conceptually, the assumed first law of thermodynamics need not be observed

following the determination of a behavioral state-space representation.

Finally, with a state-space representation at hand, a “patient-friendly” experiment
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design based on system identification principles may be in order. In Just Walk, as will

be further described in Chapter 3, the input signal design used sinusoidal excitations

for the two input-output channels (goals and expected points) of the SCT model in

Figure 1.1. The designed multisine perturbations feature a “zippered” spectra design

for the purposes of generating time-domain signals that are orthogonal in frequency

(Freigoun et al., 2017). A time-domain visualization of the goals and expected points

input signals using a “zippered” spectra multisine design for a representative Just

Walk participant is shown in Figure 1.4. Finally, with a produced set of measured

input-output data obtained from the identification experiment, parameter estimation

and model validation follow; this is the necessary, final step that will be explored in

depth for the SCT model in Figure 1.1 in the context of Just Walk. Some of the key

contributions of this work is concerned with SCT model estimation and validation.

To further clarify the scope of this work, Figure 1.5 highlights areas of specific con-

tributions in this application domain with respect to selected recently-produced body

of work. The modeling of intrauterine fetal growth presented in Chapter 2 follows

a white-box identification strategy, while the identification of participant-validated
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SCT models using Just Walk relies on both, black- and grey-box estimation tech-

niques. Since this terminology will be intensively used in the description of this work,

the following introduction for the various types of dynamical systems models is bor-

rowed from mainstream system identification (Ljung, 1994; Lindskog and Ljung, 1995;

Lindskog, 1996; Ljung, 1999):

• White-box (physically parameterized) models. These are typically models of

physical or biological systems that are derived from first-principles modeling

(i.e., using laws of thermodynamics, motion, etc.), and incorporate all insights

and knowns about the system behavior, usually in state-space form. They

often contain known and unknown parameters; parameters have a physical sig-

nificance of their own (i.e., meaning, units, etc.), such as unknown physical

constants that are estimated from experimental data. While it is certainly pos-

sible to utilize these models in control system design (in fact are preferred if

available), these are typically general-purpose, theoretical formulations that re-

sult from laborious modeling aimed at developing a better understanding and

intuition for certain “truths” about the system in question.

• Black-box models. This type of models are data-driven, usually in the form

of linear differential or difference equations. Neither the structure nor the pa-

rameters of a black-box model necessarily have physical significance. With the

objective of fitting observed data to reproduce the past behavior of the system

as accurate as possible, black-box models are typically easy to produce and

used for prediction/simulation and/or control purposes. These types of models

may also be estimated and studied in a preliminary step preceding structured

modeling (Ljung, 1994).

• Gray-box (semiphysical) models. As the name implies, these models fall between
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white- and black-box models, where prior knowledge about the concerned sys-

tem is used in building a parsimonious model structure that is (i) intuitively de-

scriptive of the system’s components, and (ii) predictive of the system’s dynam-

ical behavior. However, building this structure is not carried out to the extent

that a formal physically parametrized model is constructed since parameters

may not have a direct physical interpretation. Gray-box system identification is

particularly attractive in modeling and understanding causality in nonphysical

systems and between abstract constructs. Indeed, in lieu of white-box mod-

els, gray-box models are also often employed in practice as “pragmatic” models

(Ljung, 1999) when it is necessary or more practical to simplify the modeling of

complex physical systems. Semiphysical models typically have the potential for

serving all modeling purposes: theoretical, control, and simulation/prediction.

Upon the conclusion of all identification efforts, the established dynamical models

can be used for control system design. Ultimately, a model-based intervention de-

sign that uses control systems engineering offer the ability to optimize intervention

dosages according to individual characteristics (e.g., goal-driven, weekend warrior)

and the ever-changing contextual factors (e.g., busyness, weather), while simultane-

ously respect economical and a host of other constraints.

1.3 Research Goals

At the highest level, the goal of this dissertation is to utilize experimental data

drawn from recent novel behavioral interventions to provide a data-driven basis for

supporting a number of recent works in this application domain. Almost at the same

level, a main objective is to develop practical methods and glean insights that can

prove useful for the future researcher or user interested in translating behavioral the-

ories into dynamical models amenable to system identification and control system
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design. More specifically, the goals of this dissertation include developing and vali-

dating a fetal model using Healthy Mom Zone, estimating and validating semiphysical

Social Cognitive Theory models using Just Walk, and the evaluation of closed-loop

simulations of participant-validated models using Hybrid Model Predictive Control.

1.3.1 Developing and Validating a Fetal Model Using Healthy Mom Zone

The underlying mechanisms for how maternal perinatal obesity and intrauterine

environment influence fetal development are not well understood and thus require

further understanding. In this dissertation, the goal is to use first principles modeling

(i.e., energy balance and entropy concepts) for developing a comprehensive dynamical

systems model for fetal growth that illustrates how maternal factors (energy intake

and physical activity) influence fetal weight and related components (fat mass, fat-

free mass, and placental volume) over time. Using Healthy Mom Zone (HMZ), a novel

intervention for managing gestational weight gain in obese/overweight women, a more

specific goal is to estimate and validate the developed fetoplacental model given in-

tensive measurements of fetal weight and placental volume obtained from sonographic

imaging technology. Ultimately, we aim to deliver a parsimonious system of equa-

tions that can reliably predict fetal weight gain and birth weight based on a sensible

number of assessments, with a proven ability to inform clinical care recommendations

and show how adaptive, HMZ-like interventions can influence fetal growth and birth

outcomes.

1.3.2 Estimating and Validating Social Cognitive Theory Models Using Just Walk

Following the delivery of a more detailed description of Just Walk, an intensively

adaptive physical activity intervention that has been designed on the basis of system

identification and control engineering principles, a second major goal of this disserta-
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tion is to further establish the viability of dynamical systems framework in capturing

the key factors that influence and predict behavior change over time. To accomplish

this, we aim to develop an unconventional ARX estimation-validation procedure that

better suits Just Walk and seeks to balance predictive ability over validation data

segments with overall goodness of fit. Black-box models (i.e., ARX models) come

with the value of providing important clues to individual participant characteristics

that influence physical activity; these insights will prove to be critical in building

semiphysical models lending their theoretical basis from Social Cognitive Theory.

Further, while the semiphysical SCT model in Figure 1.1 can rise with favorable

statistical properties compared to its fully-parametrized black-box counterpart, solver

initialization of classical methods and structural identifiability often pose a challenge

to the user seeking satisfactory results. Thus, a crucial step in this work is to apply a

judicious model reduction thinking to propose a lower-complexity version of the SCT

model in Figure 1.1; one goal is to show that this could be approached from both a

conceptual and data-driven perspectives. Moreover, By assuming distinct poles and

zero-order hold intersample behavior of the underlying system (similar to Just Walk),

an important technical goal of this dissertation is show that the typical grey-box

constrained optimization problem can be formulated into an easier one by solving

linearly-constrained eigenvalue problems. Here, the proposed strategy is to follow

the trend of existing literature and develop a formulation that relies on a consistent

discrete-time black-box model (e.g., N4SID) to solve for a structured, continuous-time

one in the absence of prior knowledge. Following the development of this grey-box

identification algorithm, the goal is to establish semiphysical, participant-validated

models of Social Cognitive Theory.
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1.3.3 Closed-loop Simulations of Participant-Validated Models Using Hybrid Model

Predictive Control

A final goal of this work is to produce and evaluate closed-loop intervention simu-

lations of a participant-validated semiphysical SCT model from the previous section

using published data from Just Walk. Consistent with real-world requirements, in-

cluding the need for hybrid decision rules policies that factor in logical, physical,

and financial constraints, it is only natural that considered closed-loop intervention

designs in this dissertation would follow a Hybrid Model Predictive Control formu-

lation. Since it is conceivable that clinical or psychological considerations may relax

or require the gradual change of behavior, it is desired to examine simulations that

feature single-phase as well as multi-phase interventions.

1.4 Contributions of the Dissertation

As highlighted earlier, the contributions from this work can be viewed under two

major themes: First, harnessing experimental data to deliver an intrauterine fetal

growth model relying on first principles. Second, the proven advancements in the

domain of designing adaptive physical activity behavioral health interventions using

Social Cognitive Theory models. In terms of the former part, the contributions of

this dissertation are summarized as follows:

1. A single-output energy balance model. Building from the model in (Thomas

et al., 2008), the proposed energy balance model in this work features a sin-

gle, easy-to-measure output (total fetal weight). In addition to grounding a

better theoretical understanding of external factors and pre-existing conditions

directly influence intrauterine fetal weight growth, this reformulation highlights

less expensive and invasive requirements for estimating individualized model
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parameters; measurements of total fetal weight can be far more reliable than

measurements of body composition (more so in the first trimester; Bernstein

and Catalano, 1991).

2. Application of the Second Law of Thermodynamics. The fetal energy balance

model in this work provides a succinct, well-established accounting for the im-

pact of entropy on fetal growth. Despite that the idea of entropy of new tissue

formation has originated in Christiansen et al., 2005, the work in Christiansen

et al., 2005 features an obesity model and the formulation cannot be directly

re-purposed for quantifying fetal growth dynamics. Part of the contribution in

this work is to merge efforts from Christiansen et al. and Thomas et al.: to

produce a more rigorous and complete reformulation of fetal growth.

3. Use of HMZ study data. Utilizing data from the HMZ study (Symons Downs

et al., 2018), the developed fetal model presents a method for quantifying the

impact of daily changes of physical activity on fetal growth. Moreover, using

intensive, longitudinal participant data from HMZ, it is possible to estimate and

validate the general first-principles fetal model structure developed in this work,

as well as estimate a logistic profile of fetal fat mass accretion whose structure

is supported by the literature.

4. An improved placental volume model formulation. As is discussed in Section 2.2.5,

in this work, the curvature of the proposed placental volume model is more in-

dependently parameterized, which gives a more intuitive and easier model to

estimate. This model also implicitly enforces the initial condition at concep-

tion; hence, for model estimation and simulation, the proposed model does not

require a placental volume measurement for establishing an initial condition.
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In terms of advancing intervention design using Social Cognitive Theory, the con-

tributions of this work are:

1. Black-box modeling of Just Walk. Using input-output participant data, a li-

brary of ARX models were estimated and validated following a nontraditional,

exhaustive modeling strategy. This contributions has proven useful as the same

conceptual approach was applied in estimating and validating a host of MoliZoft

models in dos Santos et al., 2017, 2018, as well as in harnessing models that help

improve a cocoa biofertilization process in Gallino et al., 2018. Results and in-

sights from this work has been cited in a relevant application setting that explore

“modeling human-in-the-loop behavior and interactions with HVAC systems”

(Kane, 2018).

2. Semiphysical modeling of Just Walk.. In a necessary step mandated by the lim-

itations of Just Walk, this work has introduced a further simplified, third-order

semiphysical model of Social Cognitive Theory that is supported by experimen-

tal data. This further simplified model structure aims to capture behavior-

change dynamics resulting from operant conditioning and self-efficacy. Above

all, this dissertation claims to deliver the first estimated semiphysical models

of Social Cognitive Theory using real input-output data drawn from an single-

subject experiment that was designed based on system identification principles.

The estimated models were validated using classical cross-validation tools from

system identification and other disciplines.

3. Identification framework for structured (grey-box) state-space models.. Inspired

by challenges arising from Just Walk, a spectral decomposition identification

algorithm was developed, along with its theoretical framework, and was in-

tended to relieve the user from the burden of judicious solver initialization in
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the absence of sufficient prior knowledge. Conditions relevant to the existence,

uniqueness, and identifiability of linear grey-box structures under the proposed

framework were provided. A numerical example illustrating the effectiveness of

this formulation is provided. An extension to the main formulation that aims

to accommodate quadratic structures was presented.

4. Closed-loop simulations of participant-validated models. Using HMPC control

law together with a participant-validated SCT model from published Just Walk

data, it is also claimed that the work of this dissertation is first to deliver

closed-loop simulations of a data-driven participant model. By applying a sim-

ple controller reconfiguration, evaluated simulations in this work feature both

single- and multi-phase intervention designs to provide more flexibility to the

user.

1.5 Dissertation Outline

Following this introduction, the dissertation continues with Chapter 2 which in-

troduces the Healthy Mom Zone study and utilizes it in the process of estimating

and validating a quasi-linear parameter-varying fetoplacental model. The First and

Second Laws of Thermodynamics are used to develop a dynamical systems, energy

balance model of intrauterine fetal growth. Details of the estimation and validation

steps are discussed, with simulations of multiple Healthy Mom Zone participants over

the second and third trimesters presented.

Next, this dissertation moves to introduce the modeling and identification efforts

using Just Walk in Chapter 3. Further details about the Just Walk intervention is

provided, including the experimental design methodology. Further, results obtained

from black-box modeling and estimation are presented, underscoring the amenability

of the dynamical systems framework to capturing and predicting human behavior
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change over time. Results from human subject models highlighting the idiosyncratic

nature of human behavior are outlined.

In Chapter 4, a spectral decomposition identification formulation for structured

state-space models is delivered along with its theoretical foundation. This general-

purpose formulation is intended to address one of the long-existing grey-box identifi-

cation challenges that presented a barrier to achieving some of the goals of this work.

The developed algorithm is utilized in the process of estimating data-driven semi-

physical models of Social Cognitive Theory. Results establishing a basis for model

validation are also included.

Using a semiphysical model of Social Cognitive Theory developed in Chapter 4,

Chapter 5 features an evaluation for the time-domain responses of a Just Walk par-

ticipant. A brief overview on the general and application-specific HMPC formulations

is presented. Further, the participant-validated SCT model is used to produce and

evaluate HMPC-governed closed-loop simulations of a physical activity intervention.

Both single- and multi-phase intervention designs are proposed and simulated.

Finally, the dissertation concludes with Chapter 6, providing a summary and

some of the key conclusions stemming from this work. The chapter includes a brief

discussion of some of the potential extensions to this work.

1.6 Publications
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ler, R. A. Romano and T. P. Perdicoúlis, “System Identification of Just Walk :

Using Matchable-Observable Linear Parametrizations”, IEEE Transactions on

Control Systems and Technology (2018).

20



Chapter 2

A DYNAMICAL SYSTEMS MODEL OF INTRAUTERINE FETAL GROWTH

2.1 Background

Prior work has described a conceptual framework for managing GWG among

overweight/obese women (Symons Downs et al., 2018) and for regulating infant birth

weight (Savage et al., 2014); this framework relies on methods from control systems

engineering to develop decision policies that optimize the adaptation for participant

response. The implementation of such a framework calls for developing advanced

control systems which rely on dynamical models that are able to predict individualized

responses to different intervention components and subsequently predict GWG, the

intrauterine growth profile, and infant birth weight (Savage et al., 2014; Thomas

et al., 2012; Guo et al., 2016). In particular, one important end use of a dynamical

systems model of intrauterine fetal growth is as the internal model in a model-based

controller that accomplishes an optimized, adaptive intervention (Rivera et al., 2007,

2017, 2018).

Energy balance for modeling weight and body composition change has been exam-

ined extensively, including among pregnant women (Hall, 2014; Thomas et al., 2012).

Modeling intrauterine growth has received some prior examination Thomas et al., 2008;

however, further modeling efforts are needed to better understand how prenatal sta-

tus ‘programs’ fetal growth (Chandler-Laney and Bush, 2011; Catalano and Ehren-

berg, 2006). To address this gap, we use intensive longitudinal data from Healthy Mom

Zone (HMZ) (Symons Downs et al., 2018), an ongoing trial, which is an individually-

tailored, adaptive intervention to manage weight gain in overweight and obese preg-
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nant women. While the model developed in this work extends from prior work (Thomas

et al., 2008; Christiansen et al., 2005), it grounds a more complete theoretical under-

standing for how external maternal factors (e.g., daily energy intake and physical

activity) influence fetal growth profiles.

In this chapter, we present parameter estimation and model validation results

drawn from four representative HMZ participants. The final fetal energy balance

model parameters are estimated by solving a nonlinear least squares optimization

problem; the set of estimated model parameters is then used to generate simulations

for model validation.

This chapter is organized as follows: Section 2.2 presents the underlying modeling

assumptions and describes the derivation of the proposed fetal energy balance model.

Section 2.3 features the optimization problem that accomplishes model parameter

estimation from ultrasound measurements, followed by a presentation of the metrics

and criteria used for model validation. Section 2.4 summarizes conclusions and future

work.

2.2 Fetal Energy Balance Model

We begin by outlining important assumptions and simplifications leading to the

final proposed fetal energy balance model. Next, building on insights from prior

researchers (Christiansen et al., 2005; Thomas et al., 2008), we establish a first-

principles energy balance model of fetal growth. Following the first law of thermody-

namics, this fetal energy balance model applies the conservation of energy principle.

Further, the presented derivation explicitly accounts for the energy loss due to new

fetal tissue formation, as dictated by the second law of thermodynamics from which it

follows that the conversion of energy requires energy. Finally, explicitly defined logis-

tic growth functions are established to estimate the rate of fetal fat mass deposition
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and the placental volume.

2.2.1 Initial Assumptions

The following initial assumptions and simplifications lead to the proposed fetal

model (equation (2.21)):

1. Fetal body mass is divided into two main components: fat and fat-free tissues.

2. Fetal energy expenditure due to diet-induced thermogenesis is negligible.

3. Fetal physical activity in the womb is negligible.

4. The rate of fetal fat mass deposition is only regulated by the total fetal body

mass (Christiansen et al., 2005).

5. The contribution of daily maternal diet to fetal nutrition substantially exceeds

additional nutrient supply originating from maternal body components.

6. Fetal energy imbalances are always positive and follow from the diet of a healthy,

well-nourished mother.

7. The proportion of fetal body fat that contributes to expenditure is equal to that

of fetal fat-free tissues.

Following the derivation of the fetal model in Sections 2.2.2 and 2.2.3, a discussion of

the rationale for assumptions 6. and 7. is provided.

2.2.2 Energy Balance Equation

The basis for determining fetal growth is a daily energy balance based on the First

Law of Thermodynamics that takes into account the metabolizable energy intake If

(provided by the mother) and fetal energy expenditure Eef (t) to define a rate of
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Table 2.1: Glossary of the Fetal Model Constants, Parameters, and Variables

Constants

λFMf
Energy stored per unit fetal fat mass [kcal/kg]

λFFMf
Energy stored per unit fetal fat-free mass [kcal/kg]

µ Daily energy expenditure per unit fetal body mass [kcal/kg/d]

Parameters

eFMf
, eFFMf

Efficiencies of conversion of excess energy to new fat

and fat-free tissues, respectively [1]

α Proportionality constant [d/kcal/ml]

γ Conversion coefficient [ml−1]

Variables

t Gestational age [days]

Cf (t) Daily energy accumulation in the fetus [kcal]

If (t) Daily fetal energy intake resulting from maternal energy intake [kcal/d]

Eef (t) Total fetal energy expenditure [kcal/d]

EMf (t) Energy required to maintain the fetus life [kcal/d]

Ecf (t) Energy required for the conversion of excess energy into new fetal tissue [kcal/d]

FMf (t) Fetal fat mass [kg]

FFMf (t) Fetal fat-free mass [kg]

Wf (t) Total fetal weight [kg]

fr(Wf ) Rate of fetal fat mass deposition [1=kg∆FMf
/kg∆Wf

]

Wm(t) Total maternal weight [kg]

Ef (t) Total energy to build the fetal tissue up to day t [kcal]

EFMf
(t) Total energy to build the fetal fat tissue up to day t [kcal]

EFFMf
(t) Total energy to build the fetal fat-free tissue up to day t [kcal]

m(t) Maternal energy intake [kcal/d]

PA(t) Maternal physical activity [kcal/d]

P (t) Placental volume [ml]

g(t) Glycemic impact of intake [1]

Kf (t) Fetal gain coefficient from intake [kg·d/kcal/ml]

τf (Wf ) Time constant of fetal weight growth [d]

ef (Wf ) Overall efficiency of energy conversion [1]
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accumulation of the total fetal energy Cf (t). Considering the fetus as the system of

interest, we have

Rate of Energy

Accumulation
=

Energy

Intake Per Day
−

Energy

Expenditure Per Day

dCf (t)

dt
= If (t) − Eef (t) (2.1)

with

Eef (t) = Eef = EMf
(t) + Ecf (t) (2.2)

accounting for fetal energy expenditure towards maintaining and sustaining life (EMf )

and the energy required for the conversion of excess energy into new tissue (Ecf ). A

full glossary of model components is presented in Table 2.1.

Considering a two-compartment energy balance model (i.e., total body mass di-

vided into fat and fat-free mass components), the positive rate of change of the total

combustible fetal energy content, dCf/dt, can also be calculated by accounting for

changes of fetal body components Thomas et al., 2008, giving

dCf (t)

dt
= λFMf

dFMf (t)

dt
+ λFFMf

dFFMf (t)

dt
(2.3)

which, in turn, when combined with (2.1), yields

λFMf

dFMf (t)

dt
+ λFFMf

dFFMf (t)

dt
= If (t)− Eef (t) (2.4)

with FMf (t) and FFMf (t) denoting the total fetal fat and fat-free masses, re-

spectively; λFMf
and λFFMf

are the energy densities of the fetal fat and fat-free com-

ponents, respectively (i.e., energy content per unit fat/fat-free mass). As depicted

in equation (2.4), both λFMf
and λFFMf

are assumed time-invariant.

Equation (2.4) presents the basic fetal energy balance result following directly from

the first law of thermodynamics, as similarly highlighted in the Thomas et al., 2008
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model. However, equation (2.4) involves terms that need to be further defined, are

difficult to measure experimentally, or expensive to track in an intervention setting.

More specifically, in this work, profiles describing the evolution of the fetal body

composition (FM and FFM), portion of maternal energy intake contributing to fe-

tal nutrition, and the influence of maternal physical activity are all terms that are

explored and expanded further from (2.4). Moreover, the expenditure term, Eef (t),

requires estimates for the efficiency of energy conversion into new fetal fat and fat-free

tissues (energy loss due to entropy); these efficiencies are difficult and expensive to

measure experimentally. Furthermore, given current imaging technologies that build

from well-studied sonographic methods to estimate total fetal weight, it is advanta-

geous to reformulate the basic fetal energy balance equation shown as (2.4) in terms

of the total fetal body mass (also referred to as total fetal weight, Wf (t)). In the

following section, the primary aim is to establish a parsimonious fetal energy balance

model that proves to overcome these challenges.

2.2.3 Efficiency of Energy Conversion & Energy Balance Reformulation

The goal of this section is to formulate equation (2.4) in terms of total fetal

weight. To achieve this outcome, we built from concepts used to develop human

obesity models by Christiansen et al., 2005. The time-varying rate of fetal fat mass

deposition (with respect to total fetal weight) is defined as follows:

fr(Wf )
def
= lim

∆Wf→0

∆FMf

∆Wf

=
dFMf

dWf

(2.5)
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which leads to the following expressions for the rate of change of FMf and FFMf in

terms of total fetal weight Wf ,

dFMf

dt
=
dFMf

dWf

dWf

dt
∆
= fr(Wf )

dWf

dt
(2.6a)

dFFMf

dt
∆
=

d

dt
(Wf − FMf ) = [1− fr(Wf )]

dWf

dt
(2.6b)

With an explicitly defined fr(Wf ), the components FMf (t) and FFMf (t) become

explicit functions of the total fetal weight, Wf (t). Using equations (2.3) and (2.6),

we now have

dCf
dt

=
(
λFMf

fr(Wf ) + λFFMf
[1− fr(Wf )]

) dWf

dt
(2.7)

Second, we also define the efficiencies of new fetal tissue formation arising from the

second law of thermodynamics as follows (Çengel and Boles, 2005):

efficiency of fat mass deposition = eFMf

def
= λFMf

dFMf

dEFMf

(2.8a)

efficiency of fat-free mass deposition = eFFMf

def
= λFFMf

dFFMf

dEFFMf

(2.8b)

where dEf
∆
= dEFMf + dEFFMf captures the total energy required to increase the

total fetal body energy content by dCf . The efficiencies in (2.8) provide a useful

parametric representation for the energy loss due to new fetal fat and fat-free tissue

formation, respectively. Thus, from equations (2.6) and (2.8) we have

dEf
dt

∆
=
dEFMf

dt
+
dEFFMf

dt
=
λFMf

eFMf

dFMf

dt
+
λFFMf

eFFMf

dFFMf

dt

=

(
λFMf

fr(Wf )

eFMf

+
λFFMf

[1− fr(Wf )]

eFFMf

)
dWf

dt
(2.9)

As first realized by Christiansen et al., 2005, the dynamic rate of change of Ef can

be calculated by establishing the available energy for new fetal tissue deposition; i.e.,

the difference between the fetal energy intake and the energy expenditure required
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for sustaining and maintaining life of existing fetal tissues, thus

dEf
dt

∆
= If − EMf (2.10)

Combining (2.9) and (2.10) gives

dWf

dt
=
dWf

dEf

dEf
dt

=
If − EMf

λFMf
fr(Wf )/eFMf

+ λFFMf
[1− fr(Wf )] /eFFMf

(2.11)

which, when substituted into (2.7), gives

dCf
dt

=

(
λFMf

fr(Wf ) + λFFMf
[1− fr(Wf )]

λFMf
fr(Wf )/eFMf

+ λFFMf
[1− fr(Wf )] /eFFMf

)
︸ ︷︷ ︸

ef (Wf )

(
If − EMf

)
(2.12)

where now the ratio between dCf/dt and
(
If − EMf

)
represents the overall time-

varying thermodynamic efficiency of energy conversion into new fetal tissue, 0 ≤

ef (Wf ) ≤ 1; this was first similarly established by Christiansen et al., 2005, however,

with a constant fr assumed. Inserting equation (2.2) into equation (2.1) and con-

trasting with (2.12) provides an accounting method for the energy loss due to new

tissue formation

Ecf (t) = (1− ef (Wf ))
(
If (t)− EMf

(t)
)

(2.13)

with ef (Wf ) per equation (2.12).

To establish the If (t) term in (2.12), it is known that the fetal energy intake

through the placenta (whose volume is denoted by P (t)) originates mainly from two

nutritional sources: maternal diet, m(t), and maternal body components (e.g., mus-

cles, fats, bones, etc.) Barker, 2008, hence giving

Îf (t) = γ(t) [g(t)m(t) + αW (t)Wm(t)]P (t) (2.14)

where Wm(t) is daily total maternal weight; αW (t) is a function that captures the

daily fraction of maternal body mass directly contributing to fetal nutrition ([=]
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kcal/kg/d). g(t) denotes the daily glycemic impact of intake (ranges from 0 to 1);

γ(t) is a conversion coefficient that is associated with maternal physical activity,

as postulated in equation (2.22) (and discussed later in the chapter). However, for

the case of a healthy, non-fasting and well-nourished mother, it may be accepted to

assume that the basic nutritional needs for fetal growth can be met by daily maternal

diet alone (Langhoff-Roos et al., 1987; Cetin et al., 2009). Hence, it is assumed that

g(t)m(t)� αW (t)Wm(t) ∀t, giving (identical to Thomas et al., 2008)

If (t) = γ(t)m(t)g(t)P (t) (2.15)

The fetal energy expenditure term in (2.12) (EMf
(t)) can be considered, for simplicity,

as a direct proportion of total fetal body mass Thomas et al., 2008:

EMf (t) = µ [FMf (t) + FFMf (t)]
∆
= µWf (t) (2.16)

where µ is the daily energy expenditure per unit fetal body mass. Hence, from (2.7)

and (2.12) we have(
λFMf

fr(Wf )/eFMf
+ λFFMf

[1− fr(Wf )] /eFFMf

)dWf (t)

dt
= If (t)− EMf (t) (2.17)

Applying equations (2.15) and (2.16) gives(
λFMf

fr(Wf )/eFMf
+ λFFMf

[1− fr(Wf )] /eFFMf

)dWf (t)

dt
= γ(t)m(t)g(t)P (t)− µWf (t)

(2.18)

Furthermore, dividing equation (2.18) by µ and defining

Kf (t) =
γ(t)g(t)

µ
(2.19)

τf (Wf ) =
λFMf

fr(Wf )/eFMf
+ λFFMf

[1− fr(Wf )] /eFFMf

µ
(2.20)

yields a final fetal energy balance equation in terms of the total fetal weight:

τf (Wf )
dWf (t)

dt
+Wf (t) = Kf (t)m(t)P (t) (2.21)
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Equation (2.21) features an intrauterine fetal weight growth model that conforms

with the description of a first-order quasi Linear Parameter-Varying (quasi-LPV)

system whose scheduling variable is the output, i.e., the total fetal weight, Wf (t).

In equation (2.21), the growth parameter τf is the time constant (Ogunnaike and

Ray, 1994) which characterizes the speed of response. The parameters γ(t) and g(t)

appearing in equation (2.19) are discussed in the explanation of equations (2.22)

and (2.30), respectively.

In addition to achieving the goal of reformulating equation (2.4) in terms of a sin-

gle, measurable output variable (i.e., the total fetal weight), equation (2.21) features

an intuitive, well-understood first-order dynamical systems model structure that is

more amenable to system identification and control. A further outcome following from

the development of (2.21) is that estimates for eFMf
and eFFMf

can be determined

directly from ultrasound measurements.

Following the development of the model in equation (2.21) we make the following

remarks:

• Given that the exact mechanism governing the influence of maternal physical ac-

tivity on fetal weight is yet to become sufficiently understood, we follow Thomas

et al., 2008 in assuming that maternal physical activity influences the placenta

function, and thereby influences the fetus’ nutrition. This is further established

in Clapp, 2003 from which it is known that the effect of maternal exercise on

fetal growth depends on numerous factors such as type, frequency, intensity, and

the time point in pregnancy when the exercise is performed. Hence, for simplic-

ity, we assume that, over a baseline, maternal physical activity is proportional

to placental function, which is captured via the γ(t) parameter in (2.21); i.e.,

γ(t) = αPA(t) + β (2.22)
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where PA(t) denotes the daily maternal physical activity, α is the propor-

tionality constant, and β is the established baseline. Following the literature

review presented by Thomas et al., 2008, we further assume that α ≤ 0 and

β ≥ γ > 0 ∀ t ≥ 0.

• It follows from assumption 6. that dWf/dt ≥ 0 during gestation; thus, from equa-

tion (2.21) we have

Kf (t) =
γ(t)g(t)

µ
≥ Wf (t)

m(t)P (t)
∀t during gestation (2.23)

providing one important criterion for model validation. Additionally, the in-

equality in (2.23) can serve as an approximate (yet useful) diagnostic tool indi-

cating rate of fetal growth (as will be discussed later in Figure 2.11).

• Kennaugh and Hay Jr, 1987 reported estimates where µFMf
and µFFMf

need not

be averaged into a single proportion of energy expenditure (energy requirement);

in which case, contrary to assumption 7., if µFMf
6= µFFMf

, it can be shown

that equation (2.21) becomes

τ ′f (Wf )
dWf (t)

dt
+Wf (t) = K ′f (t)m(t)P (t) +

(
µFFMf

− µFMf

µFFMf

)∫ Wf (t)

0

fr(Wf )dWf

(2.24)

with

K ′f (t) =
γ(t)g(t)

µFFMf

, τ ′f (Wf ) =
λFMf

fr(Wf )/eFMf
+ λFFMf

[1− fr(Wf )] /eFFMf

µFFMf

where µFMf
and µFFMf

are the proportions of energy expenditure corresponding

to maintaining and sustaining life of fetal fat and fat-free tissues, respectively.

Nonetheless, given the desire for a parsimonious model, we continue to assume

that µFMf
= µFFMf

= µ, where equation (2.21) applies.
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• The model parameters γ(t), eFMf
, and eFFMf

are assumed to vary on an in-

dividual level. According to the formulation of (2.21), these parameters may

capture between- and/or within-group differences (e.g., genetic variations (No-

blet et al., 1999), exercising vs. non-exercising).

2.2.4 Rate of Fetal Fat Mass Deposition

From the previous discussion, the importance of understanding the rate of fetal

fat deposition, fr(Wf ), as a key variable to attaining a predictive fetal energy balance

model is now clear. From data presented and analyzed in a fetal body composition

study by Demerath et al., 2016, good a priori knowledge is now available to establish

the dependence of fr on Wf (t). Literature also strongly suggests that the accretion of

fetal fat starts accumulating after 26-30 weeks gestation (Schwartz and Galan, 2003;

Thomas et al., 2008); to this effect, the following piecewise modified logistic equation

can be considered

FMf (t) = FMf (Wf (t)) =


cfr

1 + e−afr [Wf (t)−bfr ]
+ C t ≥ t0

0 t < t0

(2.25)

with identifiable parameters afr , bfr , cfr , and initial time, t0, estimated as described

in Section 2.3; C is a constant. When FMf (Wf0) = 0 at t0, we get

C = − cfr

1 + e−afr(Wf0
−bfr)

where Wf0 is the initial weight at the initial time t0. From equations (2.5) and (2.25),

fr is now an explicitly defined function; namely,

fr(Wf ) =


afrcfr

e−afr(Wf (t)−bfr)[
1 + e−afr(Wf (t)−bfr)

]2 t ≥ t0

0 t < t0

(2.26)
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For simplicity, in this work we will assume that t0 = 0 (or Wf0 = 0). Finally,

given a well-defined fr (equal to (2.26) or otherwise), estimations of the fetal body

components readily follow from equation (2.6); namely,

FMf (t) =

∫ Wf (t)

0

fr(Wf )dWf (2.27)

FFMf (t) = Wf (t)−
∫ Wf (t)

0

fr(Wf )dWf (2.28)

2.2.5 Placental Volume Growth Model

Following Thomas et al. (2008) Thomas et al., 2008; Azpurua et al., 2010, we con-

sider the placental volume P (t) as the most suitable variable to characterize placental

growth. There is a substantial literature where placental development and growth pro-

files are presented and characterized throughout gestation for humans (Pitkin, 1976;

Thompson et al., 2007; Wallace et al., 2013) and animals (Mu et al., 2008). The pla-

centa grows in three phases: first, a ‘lag’ phase in which cells begin to form; second,

an exponential growth phase where cells continue to form and rapidly divide; and

finally, due to space restrictions, a deceleration in the growth rate is expected in the

final weeks towards birth. These three growth phases are adequately captured with a

logistic growth function. Figure 2.1 features a standard logistic growth profile where

these three phases are depicted.

Similar to equation (2.25), the ‘modified’ logistic function is considered

P (t) = cP

[
1

1 + e−aP (t−bP )
− 1

1 + eaP bP

]
∀ t ≥ 0 (2.29)

with P (0) = 0 and lim
aP bP→∞

lim
t→∞

P (t) = cP lim
aP bP→∞

(
eaP bP

1+eaP bP

)
= cP , where aP , bP , and

cP (cP is the ‘ultimate’ carrying capacity) are identifiable model parameters from

the estimation procedure described in Section 2.3.7; it follows from Figure 2.1 that
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0 Time

0

1

Figure 2.1: Representative Placental Volume Growth Profile.

aP , bP , cP ≥ 0. The algebraic model in equation (2.29) differs from the placental

volume in Thomas et al., 2008 in that its curvature features are more independently

parameterized: the parameter aP assigns the rate of growth, bP assigns the inflec-

tion point, and cP assigns the ultimate carrying capacity or the scale of the profile

(note cP = 1 in Figure 2.1 for illustration). In Thomas et al., 2008, the proposed

model does not apply when the initial condition is P (0) = 0, and hence, requires an

additional estimated ultrasound measurement of EPV. Moreover, the parameters (in-

cluding the initial condition) of the model in Thomas et al., 2008 play simultaneous

role in determining its final curvature features, which makes it less intuitive.

It has been reported that the size and growth rates of the placenta are associ-

ated with physical activity (Thomas et al., 2008; Clapp, 2003) and additional genetic

factors (Regnault et al., 2001). In the presence of more intensive ultrasound mea-

surements, the carrying capacity parameter cP can be further investigated such that

moderations of placenta size over time by physical activity or genetic differences are

more understood; this also applies to the growth rate aP and mid-point bP param-

eters. In our parameter estimation, we assume constant parameters aP , bP , and cP
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such that averaged, fixed-effects are captured.

2.3 Parameter Estimation and Model Validation

The Healthy Mom Zone (HMZ) study (Symons Downs et al., 2018) is an individually-

tailored, adaptive behavioral intervention for managing weight in pregnant women

with overweight and obesity. The target sample is 30 pregnant women who are ran-

domized to either the intervention or control group from approximately 8 to 36 weeks

gestation. Study measures including weight, physical activity, and energy intake. are

obtained at baseline, throughout the course of the intervention (e.g., daily, weekly,

or monthly), and at follow-up. The detailed intervention protocols that includes el-

igibility, recruitment, intervention description, dosages, and measurement schedule

have been published elsewhere (Symons Downs et al., 2018). In addition, an ancil-

lary project provides six ultrasound measures used to estimate fetal weight, placental

volume, and fetal body composition. In this section, further discussion of each esti-

mated measurement is presented; four representative completed participants (n = 4;

three overweight, one obese; mean age=30.3 years, two intervention, two control) are

considered.

2.3.1 Estimated Fetal Weight

An estimated fetal weight (EFW) can be drawn from ultrasounds when specific

biomarkers are measured as displayed in the example Figure 2.2. Using these biomark-

ers, one of the best known and well-established correlations that can be applied is

the Hadlock estimation. For our model estimation, we use a set of six EFW mea-

surements in addition to birth weight, as is described in more detail in Section 2.3.7.

The first EFW is used to establish the upper and lower bounds for the initial con-

dition (t̃0, W̃f0) used for solving equation (2.21). In this study, on average, the first
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Figure 2.2: Example of an Ultrasound Report for Establishing Estimated Measure-
ments of Estimated Fetal Weight (EFW), Estimated Placental Volume (EPV), and
Fetal Body Composition of a Representative HMZ Participant.

ultrasound measurement was taken at 14 weeks gestation, followed by five additional

measurements each every four weeks through 34 weeks gestation. Infant’s birth weight

was measured immediately after delivery.

2.3.2 Estimated Placental Volume

As the case with EFW, up to six ultrasound measurements are used to obtain the

estimated placental volume (EPV) measurements using the Azpurua et al., 2010 ap-

proximation method, for which a number of simplifying assumptions have been made.

As detailed in Section 2.3.8, EPV measurements are incorporated in the estimation

cost function with lower emphasis than EFW measurements. This is justified given

the following:

1) Absence of EPV measurements at or near birth. The bias that can result from

equally emphasizing EPV measurements with EFW in (2.32) given the missing

value at birth is crucial since fitting to earlier measurements only will tend to

produce an exponential growth profile that can be, misleadingly, well-captured

with the modified logistic equation in (2.29).

2) The Azpurua et al., 2010 EPV estimation method using 2D ultrasound mea-
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surements (similar to Figure 2.2) provides a rather simplified approximation

(assumes spherical topology) that is mainly targeted for establishing EPV in

the first and second trimesters of pregnancy for patients with normal BMI index

(in this study, participants are either overweight or obese); this approximation

can become exceedingly inaccurate at advanced gestational ages due to remain-

ing technical difficulties associated with existing ultrasound technology.

3) The EPV approximation method in Azpurua et al. does not estimate standard

errors; only 10th, 50th, and 90th percentile trajectories are given.

2.3.3 Fetal Body Composition

Studying ultrasound reports similar to Figure 2.2 (namely, anterior abdominal

wall thickness and abdominal circumference) also produced at least two acceptable

estimates per participant for the fetal % body fat using the correlation presented

by Bernstein and Catalano, 1991. While the number of estimates can be as many

as available ultrasounds, it is known that this estimate becomes more reliable at

advanced gestational ages, and therefore we only consider a subset of the ultrasound

measurements for the estimation of fetal % body fat.

2.3.4 Glycemic Index

Glycemic index (GI) was estimated using food items and portion sizes reported in

a smart phone application. For each food, carbohydrate content (g) of the reported

portion size was determined using the USDA Food and Nutrient Database for Dietary

Studies (FNDDS) 2013-2014 data set. Next, a GI value for each food was determined

by matching foods to the database generated by Flood et al., 2006. For foods without

an exact match, the GI value of the closest matching item was used. Estimated GI
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of each day was then calculated as the average GI of all foods consumed in a day,

weighted by their contribution to total carbohydrate intake for that day, i.e.

g(t) =

n∑
i=1

food i GI × food i carbohydrate [g]

n∑
i=1

food i carbohydrate [g]

∣∣∣∣∣∣∣∣
t

(2.30)

In equation (2.21), the glycemic index, g(t), is understood as a key variable for

estimating fetal energy intake. One can generally presume a time-varying profile

of g(t) on a daily scale; however, given that the collected g(t) time series shows to

be stationary with a low variance, one can assume a constant g value drawn from

the average of all available average daily estimates, g. Table 2.2 lists the fractional

average and standard deviation of estimated daily glycemic index values for the four

participants presented in this study.

Table 2.2: Mean and Standard Deviation Values of Daily Glycemic Index Estima-
tions for Four Representative HMZ Participants

Participant g σg
A 0.5478 0.0461
B 0.5441 0.0653
C 0.5806 0.0644
D 0.5763 0.0835

2.3.5 Maternal Physical Activity

As noted in section 2.2.3, equation (2.22) characterizes the assumed simple, linear

dependence of the fetal energy balance model in (2.21) on maternal physical activ-

ity. It is assumed that physical activity moderates the energy intake to the fetus

by regulating the placental function (e.g., through blood flow; Ferraro et al., 2012).

In the HMZ study, intensive objective assessment of physical activity is carried out

using wrist-worn activity tracker. Missing and implausible physical activity measure-

ments are imputed with mean replacement. These data are also used to establish the

estimated daily maternal energy intake in equation (2.31).
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2.3.6 Maternal Energy Intake

The daily maternal energy intake variable, m(t), can be reliably estimated with the

availability of daily maternal weights and estimated energy expenditure data; the lat-

ter are estimated by correlating with daily physical activity and estimated/measured

resting metabolic rates. As presented in Guo et al., 2016, back-calculated maternal

energy intake from measured daily maternal weights and physical activity measures

is considered:

m(t) =
−Wm(t+ 2) + 8Wm(t+ 1)− 8Wm(t− 1) +Wm(t− 2)

12TK1

− K2

K1

[PA(t) +RMR(t)]

(2.31)

where K1 and K2 are gains (coefficients) that map changes of daily energy intake and

physical activity, respectively, into maternal weight gain/loss; T is the sampling time;

PA(t) and RMR(t) are the maternal daily physical activity and resting metabolic

rate, respectively. To reduce the significant variability in equation (2.31), it is nec-

essary to smooth the weight measurement Wm(t). A 9-day moving average filter

is considered for all participants, except for participant D where a 13-day moving

average filter is considered.

2.3.7 Model Estimation Problem Formulation

In this section, we establish a problem formulation for the least squares objective

from which, with the presence of sufficient estimation and validation data, model

parameters can be estimated and validated using nonlinear regression. Next, we

describe in more detail how emphasis is split between different measured variables,

and how the nonlinear optimization solver is initialized. Finally, in the results section,

we present simulations of the estimated individual models and list the mean value

and standard deviation associated with all model parameters.
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The parameter estimation problem statement is formulated as a constrained op-

timization problem. The prediction error is minimized over estimation data using a

non-linear least squares objective. For model estimation, using a total of N EFW

measurements inferred from ultrasound reports (similar to the example sonographic

images shown in Figure 2.2, including birth weight), M EPV measurements, and L

estimated body composition data points, the approach considered is to solve

min
θ

εTQε

s.t. θlb < θ < θub
(2.32)

where

ε = [∆Wf (1) · · · ∆Wf (N) ∆P (1) · · · ∆P (M) ∆FMf (1) · · · ∆FMf (L)]
T

Q =

λ1

. . .
λN+M+L


θ =

[
α eFMf

eFFMf
aP bP cP afr bfr cfr W̃f0

]T
∆Wf (t) = EFW (t)−Wf (t), ∆P (t) = EPV (t)− P (t), and ∆FMf (t) = ˆFM f (t)−

FMf (t) with EFW (t), EPV (t), and ˆFM f (t) denoting the estimated ultrasound

measurements of the fetal weight, placental volume, and fetal fat mass at day t,

respectively; Q is a positive semi-definite weighting matrix used to establish the

desired emphasis for model estimation. Wf (t) is obtained from the numerical solution

of the following fetal model

τf (Wf )
dWf (t)

dt
+Wf (t) = Kf (t)m(t)P (t), Wf (t̃0) = W̃f0 (2.33a)

τf (Wf ) =
λFMf

fr(Wf )/eFMf
+ λFFMf

[1− fr(Wf )] /eFFMf

µ
(2.33b)

Kf (t) =
γ(t)g

µ
, γ(t) = αPA(t) + β, α ≤ 0, β ≥ γ > 0 ∀ t ≥ 0 (2.33c)

P (t) = cP

[
1

1 + e−aP (t−bP )
− 1

1 + eaP bP

]
(2.33d)

fr(Wf ) = afrcfr
e−afr(Wf (t)−bfr)[

1 + e−afr(Wf (t)−bfr)
]2 ∀ t ≥ 0 (2.33e)
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with t̃0 > 0 (initial time of simulation) and m(t) per equation (2.31). Lower and

upper parameter bounds, θlb and θub, are known a priori. The physical activity

parameter α is constrained as shown in equation (2.33c). In this work, for purposes

of simplicity, the value of the β parameter is fixed at 0.000234 ml−1, which is equal to

the estimated nominal value of γ in Thomas et al., 2008. Thermodynamic efficiencies

eFMf
and eFFMf

, by definition, range from 0 to 1. Also, given the strict growth of

both P (t) and FMf (t) profiles, the parameters aP , bP , cP , afr , bfr , and cfr are bounded

below at 0, and are unbounded above.

The optimization is initialized using nominal parameter values/ranges drawn from

literature. For example, Christiansen et al. Christiansen et al., 2005; Noblet et al., 1999

reports values for thermodynamic efficiencies drawn from animal studies; Thomas

et al., 2008 gives an estimate for the conversion parameter, γ(t); Demerath et al., 2016

provides fat and fat-free mass profiles from preterm infants that are used for initial-

izing afr , bfr and cfr using standard regression; finally, also by similar means, EPV

measurements calculated from our ultrasound data are used for initializing aP , bP ,

and cP . In the following section, we report in additional detail on the final set of

parameter values used for solver initialization.

2.3.8 Relative Weights & Initialization

In this section, the specific relative weights (λi in the diagonal Q matrix in equa-

tion (2.32)) are presented for each participant. In addition, the specific initializa-

tion points (initial guesses) are also established in this section. It must be noted

that given the limited amount of estimation data and the non-convexity of the opti-

mization problem, the non-linear least squares solver becomes increasingly sensitive

to relative weights and proper initialization as multiple local minima are expected.

To avoid undesired solutions, solver features such as multistart can be used (Ugray
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et al., 2007).

Judicious selection of λi values is important for establishing an effective estima-

tion cost function for each of the HMZ participants evaluated with this method. In

the selection of λi values, output emphasis, scaling, number of measurements, and

measurement standard errors are all taken into consideration. While each data point

can have its specific assigned λi weight, we group measurements per model state (i.e.,

EFW, EPV, fetal FM) with one relative weight as λEFW : λEPV : λFMf
. For partic-

ipant A, the established ratios are 1 : 0.5 : 1, whereas for participants B, C, and D

the ratios are 1 : 0.3 : 1.

Table 2.3 lists established initialization points for the studied HMZ participants.

In the selection of these initializations, approximations from the literature, actual

measurement values, and multiple iterations are all influencing factors. More specif-

ically, initial guesses for eFMf
and eFFMf

were drawn from Christiansen et al., 2005

followed by multiple iterations (multiple solutions); aP was drawn from Thomas

et al., 2008; bP , cP , afr , bfr , and cfr were initialized from examining the actual

measurements followed by multiple iterations; finally, the initialization of α was es-

tablished after multiple iterations.

Table 2.3: Initialization Points for Four Representative HMZ Participants
α× 108 eFMf

eFFMf
aP bP cP afr bfr cfr

A −0.5 0.77 0.11 0.03 175 1281 0.47 9.56 9.47
B −0.5 0.77 0.11 0.03 175 864 0.47 9.56 12.30
C −0.5 0.44 0.15 0.03 175 774 0.47 9.56 8.99
D −0.5 0.77 0.11 0.03 175 760 0.47 9.56 10.98

2.3.9 Estimation Results

In this section, for each of the examined HMZ participants, qualitative and quan-

titative model fit to data are presented from simulations when actual measured inputs
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are applied to the model. In addition to the intrauterine fetal weight (primary model

state), other model states (i.e., placental volume, body composition) and the evolu-

tion of intermediate constructs over time (e.g., ef (t), τf (t), and Kf (t)) are also shown.

Finally, estimated model parameters tabulated in Table 2.4 are discussed.

Figures 2.3-2.7 feature simulations of the estimated models for one intervention

participant (participant A) and one control participant (participant B). Overall, the

goodness of fit does not appear to differ across intervention and control participants.

In Figures 2.3-2.7, the simulation start time is selected to match the day of the first

ultrasound measurement; the simulation is carried out through the reported actual

day of birth. In these simulations, measurements of the two model inputs, i.e., ma-

ternal energy intake (back-calculated EI) and maternal PA (direct measurements),

are displayed. In addition, the model states, i.e., fetal weight, placental volume, and

body composition, are plotted and contrasted against estimated ultrasound measure-

ments to qualitatively demonstrate the goodness of fit. Moreover, in Figure 2.9 and

Figure 2.11 featuring the time-varying profiles of τf , ef , and Kf ; it can be seen that,

across all individuals, both τf and ef appear to exponentially increase over time as the

fetus continues to grow. It is noted that Thomas et al., 2008 provides a significantly

higher estimate for the overall efficiency (ef = 0.799) than the estimated ranges from

our data (approximately, in the 0.1-0.4 range). Finally, Table 2.4 summarizes the es-

timated model parameters with mean and standard deviation values for the examined

participants.
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Figure 2.3: Time-domain Response (Fetal Weight, Placental Volume, and Fetal %
Body Fat) with Energy Intake and Physical Activity for a Representative HMZ Inter-
vention Participant (Participant A). Simulation Starts at the Day of First Ultrasound
Measurement and Ends at Birth.
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Figure 2.4: Time-domain Response (Fetal Weight, Placental Volume, and Fetal
% Body Fat) with Energy Intake and Physical Activity for a Representative HMZ
Control Participant (Participant B). Simulation Starts at the Day of First Ultrasound
Measurement and Ends at Birth.
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Figure 2.5: Time-domain Response (Fetal Weight, Placental Volume, and Fetal %
Body Fat) with Energy Intake and Physical Activity for a Representative HMZ Inter-
vention Participant (Participant C). Simulation Starts at the Day of First Ultrasound
Measurement and Ends at Birth.
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Figure 2.6: Time-domain Response (Fetal Weight, Placental Volume, and Fetal
% Body Fat) with Energy Intake and Physical Activity for a Representative HMZ
Control Participant (Participant D). Simulation Starts at the Day of First Ultrasound
Measurement and Ends at Birth.
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Figure 2.7: Fetal Fat Mass and Fat-free Mass Growth Profiles over Time for Rep-
resentative HMZ Participants (Participants A and B).
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Figure 2.8: Fetal Fat Mass and Fat-free Mass Growth Profiles over Time for Rep-
resentative HMZ Participants (Participants C and D).
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Figure 2.9: Time-varying τf and ef for Representative HMZ Participants (Partici-
pants A and B).
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Figure 2.10: Time-varying τf and ef for Representative HMZ Participants (Partic-
ipants C and D).
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Figure 2.11: Time-varying Gain and the Establishment of Positive Fetal Energy
Balance for Representative HMZ Participants (See equation (2.23)).
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Figure 2.12: Predicted Time-domain Profile of Fetal Energy Intake If (t) for Rep-
resentative Hmz Participants (See equation (2.15)).
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Table 2.4: Estimated Model Parameter Values for Four Representative Hmz Partic-
ipants with Mean and Standard Deviation (SD)

α× 108 eFMf
eFFMf

aP bP cP afr bfr cfr
A −13.70 0.44 0.24 0.027 206.2 1519.1 0.655 7.86 11.33
B −2.82 0.60 0.07 0.039 154.3 1026.8 0.441 9.71 12.30
C −0.31 0.82 0.12 0.028 182.3 1031.0 0.267 12.10 6.84
D −0.06 0.42 0.06 0.024 174.8 1101.7 0.577 8.22 11.27

Mean −4.22 0.57 0.12 0.030 179.4 1169.7 0.485 9.47 10.44
SD 6.44 0.18 0.08 0.007 21.4 235.5 0.170 1.93 2.44

2.3.10 Model Validation

The work of Thomas et al., 2008 established their model performance using com-

piled data from various sources in the literature as summarized in Table 2.5; plots

evaluating their placental volume model performance against three data points for

both exercising and non-exercising groups were also provided in the paper. However,

with longitudinal data from Healthy Mom Zone, the performance and validation of

the improved model in this work are determined by goodness-of-fit metrics as well

as contrasting diverse estimated model features such as structure, parameter ranges,

and output profiles against prior knowledge from existing literature.

Table 2.5: Performance Summary of the Model Developed in Thomas et al., 2008
Prediction (Birth Weight) Prediction (Fat Mass)

Low Glycemic Diet 96.40% 86.84%
Runner Group 98.55% 97.37%
Non-exercising Group 100% 73.81%

First, all simulated fetal weight and placental volume growth profiles in Fig-

ures 2.3, 2.4, 2.5, and 2.6 are plausible and consistent with expected growth pro-

files from literature (Hadlock et al., 1984, 1985, 1991; Arleo et al., 2014). Comparing

model predictions against the experimentally observed data (ultrasounds), a summary

of individualized model outputs fit against available data is presented in Table 2.6.

The Normalized Root-Mean-Square Error (NRMSE) is defined as
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Table 2.6: Summary of the Goodness-of-fit from Various Metrics for Four Represen-
tative HMZ Participants

NRMSEEFW R2
EFW R2

EPV R2
FMf

Participant A 0.9619 0.9986 0.8953 1.0000
Participant B 0.9763 0.9994 0.9008 0.9925
Participant C 0.9608 0.9985 0.8969 0.9997
Participant D 0.9763 0.9994 0.9174 1.0000

NRMSEEFW = 1− ‖EFW (t)−Wf (t)‖2

‖EFW (t)− EFW‖2

(2.34)

is considered as the primary metric for establishing the model goodness of fit against

the HMZ data. Wf (t) is the simulated output, EFW (t) is the measured output,

EFW is the mean of all measured EFW (t) values, and ‖ · ‖2 denotes the l2-norm.

R2
EFW , R2

EPV , and R2
FMf

denote the coefficients of determination for fitting to esti-

mated fetal weights, placental volumes, and fetal fat mass in utero, respectively. For

a qualitative evaluation of model fit, the reader may refer to Figures 2.3-2.7.

Further giving validity to our model is that the estimated eFMf
values are con-

sistently larger than eFFMf
, in agreement with reported patterns only available from

animal studies (Christiansen et al., 2005). Moreover, the mean estimated value of

the placental volume growth rate parameter aP (with a narrow standard deviation

of 0.003) matches the reported and validated value in Thomas et al., 2008; Orze-

chowski et al., 2014: r = 0.03. Furthermore, from Figures 2.3, 2.4, 2.5, and 2.6,

predicted % body fat at birth approximately ranges from 10 to 18%, which fall into

the typical ranges reported in literature (Widdowson and Spray, 1951; Schwartz and

Galan, 2003; Demerath and Fields, 2014; Bernstein and Catalano, 1991). In agree-

ment with Demerath et al. (2016) Demerath et al., 2016, Figures 2.7 and 2.8 show

that predicted FFMf (t) profiles can be described as linear, while the FMf (t) are

curvilinear (linear-exponential).

Finally, Figure 2.11 confirms that, except for only two brief instances in Partic-

ipant A’s simulations, all estimated models satisfy the constraint in equation (2.23)
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and hence validates the positive energy balance assumption throughout gestation.

From Figure 2.12, one can observe the estimated rate of fetal energy intake If (t)

(note the negative If (t) values in the two instances where Participant A’s positivity

constraint is violated); comparing this to the maternal energy intake m(t) (‘Esti-

mated EI’ in Figures 2.3, 2.4, 2.5, and 2.6) provides support for the assumption of a

well-nourished mother.

2.4 Chapter Summary

In conclusion, a dynamical systems model of intrauterine growth has been devel-

oped from first-principles, relying on the first and second laws of thermodynamics.

This proposed model provides a rigorous yet more simple formulation than the fe-

tal energy balance model of current literature. In the parameter estimation of this

model, a non-linear least squares, constrained multi-objective optimization problem

was formulated and guided by a priori knowledge of ranges of model parameters. For

the first time (to the authors’ knowledge), estimates (and an estimation method) for

the thermodynamic efficiencies governing the formation of new tissues of human fe-

tuses are established. This developed model has been estimated and validated against

ultrasound measurements provided from the Healthy Mom Zone study; despite the

explained challenges with the estimation measurements, predictions follow from this

model show good agreement with the data.

The availability of more intensive estimation and validation datasets (i.e., datasets

with more frequent measurements) in a future study should create opportunities for

parameter refinement and increased model understanding. More intensive measure-

ments will allow for further investigation of the contribution of maternal body compo-

nents in fetal nutrition (see equation (2.14)). Moreover, additional ultrasound mea-

surements (particularly closer to delivery) may allow estimation of a less biased fetal
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model described in equation (2.24). A better theoretical understanding of mechanisms

behind the evolution of placental volume and the rate of fetal fat mass deposition is

needed. This work considered a linear dependence of placental function on maternal

physical activity; in future work, a more developed characterization of the influence

of maternal physical activity may generate more resilient models: models with good

predictions when input levels are far from those used in model estimation. Further-

more, a broader future goal is to use a combination of more experimental data and

increased physiological understanding to reduce the modeling assumptions (outlined

in Section 2.2) as much as possible.

Finally, the aim of this work (achieved using a limited number of HMZ interven-

tion and control participants) was to develop a more comprehensive energy balance

model for fetal weight gain derived from first-principles modeling that can be validated

through data. These aims were facilitated by the availability of intensive, longitudinal

participant data from the HMZ intervention. Model estimation and validation efforts

for the additional HMZ participants (N = 32) could enable making conclusions re-

garding participant differences and intervention versus control outcomes, which was

not the scope of this work. However, studying group differences (intervention vs.

control) is a subject of current and future research.
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Chapter 3

BLACK-BOX IDENTIFICATION OF JUST WALK : TOWARD ESTIMATING

DYNAMICAL SYSTEMS MODELS OF SOCIAL COGNITIVE THEORY

3.1 Background

One recent emerging application of system identification and control theory is the

design of optimized interventions in health behavior. In designing adaptive interven-

tions (Rivera et al., 2007), a key consideration is the ability to estimate personalized

behavior models that identify both individual-invariant and individual-variant dy-

namics. Parsimonious modeling, guided by a priori knowledge, is therefore crucial

to accomplishing this. Using control systems engineering principles, behavior change

theory can be utilized to develop models and decision frameworks for interventions

that promote physical activity (PA) among sedentary individuals. One example is

Social Cognitive Theory (SCT), proposed by Bandura (Bandura, 1986), which is

among the leading theories of behavior change. The work of Mart́ın et al. (Mart́ın

et al., 2014) established a dynamical systems fluid analogy model that captures key

SCT concepts. Figure 1.1 represents a simplified fluid analogy dynamical system

model of Social Cognitive Theory. SCT includes an extended list of potential con-

structs associated with predicting complex behavior dynamics, and whose effect needs

to be accounted for during modeling. Consider, for example, the Environmental Con-

text construct in Figure 1.1; this can include weather, busyness, stress, weekday,

mood, and several other known and unknown variables.

Following an experimental design methodology based on system identification

principles (Mart́ın et al., 2015), a unique single-subject intervention study, Just Walk,
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Figure 3.1: Screenshots of the Just Walk Mobile Application (Phatak et al., 2018).

was performed. Section 3.2 introduces the Just Walk intervention and experiment

execution, followed by a brief description on the input signal design approach using

orthogonal multisine excitations in Section 3.3.

Section 3.4 discusses the use of an unconventional black-box approach that pro-

vides key insights into the dynamics of the intervention participants, and will ulti-

mately be instrumental in accomplishing semi-physical identification of SCT models

(Figure 1.1). Section 3.5 outlines a number of important conclusions and future

directions on input signal design, modeling, identification, and intervention design.

3.2 Description of the Just Walk Intervention

Just Walk was developed as an adaptive walking intervention app for sedentary,

overweight adults. It was designed primarily as a tool to generate individualized

computational models for understanding PA behavior via system identification. The

intervention system included a front-end Android app, Just Walk (Figure 3.1), a

backend server, and an activity tracker (Fitbit Zip) to objectively measure PA and
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automatically sync with the smartphone application. Participants were recruited

nationally to partake in a walking intervention and receive daily step goals via the Just

Walk app, and daily announced points were granted if the goals were achieved that

day; granted points were converted into Amazon gift cards after a certain threshold

was reached. Participants were also required to complete a series of daily morning

and evening ecological momentary assessment (EMA; Shiffman et al., 2008) measures

(e.g. confidence in achieving goal, predicted business for that day, previous night’s

sleep quality, etc.) for the entire duration of the study.

The study duration was 14 weeks, including an initial two-week baseline period

in which no step goals were delivered. Each participant’s step goals were then based

on their median daily step value as calculated from the 14-day baseline period. The

step goals were designed to establish a mechanism for individualizing the definition

of an “ambitious, but doable” step range. All PA data were collected from the Fitbit

Zip (provided to participants as a part of the study) and stored both locally and

in Fitabase (Small Steps Labs, San Diego, CA, USA). Participants were generally

healthy, inactive, 40-65 years old, with a body mass index (BMI) of 25-45 kg/m2,

who currently owned an Android phone capable of connecting to a Fitbit Zip via

Bluetooth 4.0, and were willing to engage with the mHealth intervention for 14 weeks.

3.3 Input Signal Design of Just Walk

The input signal design procedure utilized in the Just Walk study was designed

using deterministic yet “pseudo-random” signals that are orthogonal in the frequency

domain. The procedure is described in detail in Mart́ın et al., 2015. In Just Walk,

Goals establish the desired behavior in a quantitative form, while Expected Points

are the daily available points announced each morning that are granted upon goal

achievement. Goals and Expected Points are two manipulated input signals un gen-
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Design Inputs, and ns = 6 Harmonic Frequencies (Freigoun et al., 2017).

erated from a multisine signal,

un(k) = λn

Ns/2∑
j=1

√
2α[n,j] cos(ωjkTs + φ[n,j])

ωj = 2πj
NsTs

, k = 1, . . . , Ns

(3.1)

where λn is the scaling factor, Ns is the number of samples per period, Ts is the

sampling time. For the jth harmonic of the signal each variable has the following

meaning: α[n,j] is a factor used to specify the relative power of the harmonic, ωj is

the frequency, and φ[n,j] is the phase. To obtain independent transfer function and

uncertainty estimates, factors α[n,j] are chosen to excite input signals orthogonally in

frequency. Two signals are orthogonal if a nonzero Fourier coefficient at a specific

frequency in one signal implies a zero-valued Fourier coefficient at the same frequency

for the other; this is called a “zippered” spectra design, an idea introduced in Rivera

et al., 2009. A conceptual representation of the “zippered” design is presented in

Figure 3.2. For nu design inputs and ns independently excited sinusoids the Fourier
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coefficients are specified as

α[n,j] =


1 if j = nu(i− 1) + (n− 7)

for i = 1, 2, . . . , ns

0 otherwise

(3.2)

Using the ωj frequencies defined in (3.1) and the Nyquist–Shannon sampling the-

orem, the following bound for Ns is defined:

Ns ≥ 2ns (3.3)

If ns = 6 excited sinusoids are selected for the nu = 2 design inputs, then from ap-

plying (3.3), Ns = 16 days (selected) is a feasible option. Phases φ[n,j] are selected

to minimize the crest factor of the signal using the approach proposed by Guillaume

et al., 1991.

In applying this design methodology for Just Walk, amplitudes for input signals

(u8 and u9 in Figure 3.3) were chosen relying on experiences from previous studies

(King et al., 2013; Adams et al., 2013) designed to obtain an expected profile of PA.

The maximum number of step goals was selected as a factor of the initial baseline

level of PA. For most cases in this experimental design, this factor was equal to 2;

however, it was varied if the actual baseline step level of individuals was too high or

low. Specifically, if participant’s baseline median steps were below 3,000, then the

range for the goals was between 1 and 2.5 of their baseline median steps, to increase the

likelihood of “ambitious” goals. If baseline median steps were greater than 7,500 steps,

then the range was set between 1 and 1.75 (to reduce the likelihood of overly ambitious

goals, such as 15,000 steps in one day). In addition to the two manipulated input

channels, a large set of disturbances were also measured using mHealth technologies.
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Overall experimental duration beyond the baseline varied between five to six cycles

for each participant. A time series plot for a representative participant that depicts

the behavior and seven inputs is shown in Figure 3.3.

3.4 ARX Model Estimation & Validation

In this section, black-box modeling strategies used for Just Walk are outlined, and

results from fitting Auto Regressive with eXogenous input (ARX) parametric mod-

els (Ljung, 1999) are presented. As noted, identifying optimal ARX models (decisions

on model inputs and model order) will play a pivotal role in ultimately identifying

personalized semi-physical (grey-box) models that are informed by well-established

behavior theories (Mart́ın et al., 2014). Prior to ARX estimation, standard nonpara-

metric modeling tasks such as correlation analysis have been informative. Because

the Just Walk study included a wide array of input/output measurements, results

from input-output and input-input correlation analyses have been useful (Phatak

et al., 2016; Hekler, 2015; Korinek et al., 2018); for brevity, these are not included in

this work. Incorporating all measured disturbances for estimating an SCT behavior

model (particularly the Environmental Context construct in Figure 1.1) can be com-

putationally demanding, may pose identifiability challenges, and will require large

informative datasets that are typically difficult to gather from a practical standpoint

in research involving human subjects.

Preprocessed data are fitted to an ARX model structure ARX-[na,nb1 ,. . . ,nbnu ,

nk1 ,. . . ,nknu ], which can be expressed in the following concise form:

y (k) +
na∑
l=1

aly (k − l) =
nu∑
j=1

nbj∑
i=1

bijuj
(
k − nkj − i

)
+ e (k) (3.4)

where y(k) is the measured output (e.g., steps/day), uj(k) is the measured input

j, e(k) is the prediction error, all measured/estimated at day k. The ARX model
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in (3.4) is estimated by using regression. ARX parameter estimation constitutes a

linear least-squares regression problem (Ljung, 1999) and has attractive statistical

properties such as consistency. Figure 3.3 illustrates an example contrasting the

difference between actual output measurements and the prediction from a 7-input

ARX model with the structure in (3.4); a detailed discussion of black-box modeling

strategies used in this work follows. To quantify model fits, the normalized root mean

square error (NRMSE) fit index is used

model fit (%) = 100×
(

1− ‖y(k)− ŷ(k)‖2

‖y(k)− ȳ‖2

)
(3.5)

y(k) is the measured output, ŷ(k) is the simulated output, ȳ is the mean of all

measured y(k) values, and || · ||2 indicates a vector l2-norm.

3.4.1 Data Pre-Processing and Model Structure Considerations

Data pre-processing tasks include interpolation (to account for missing data),

mean subtraction, and shifting Actual Steps and Granted Points by one sample to re-

flect temporal precedence. Model structure selection decisions consist of determining,

for each participant, the input signals to be included, and corresponding ARX model

orders for the output and each input, in accordance with (3.4). Taking advantage of

the computational simplicity associated with ARX modeling, the approach taken here

is to exhaustively examine a range of model orders, and use model validation proce-

dures to determine the most suitable structure. For this case study, ARX model order

ranges for na and nb from 1 to 3 (i.e., max(na) = 3, and max(nbj) = 3 ∀j = 1, . . . , nu)

seemed reasonable. A priori knowledge of the SCT fluid analogy model developed in

Mart́ın et al., 2014 implies that very high order models should not be necessary to

characterize these behavior-change dynamics. From inspecting the intervention data,

it was reasonable to assume a basic unit input delay (i.e., nkj = 1 ∀j).
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The absence of drifts and trends in the data leads to assume stationary (though

potentially time-varying) noise characteristics over the course of the intervention pe-

riod. In determining the inputs to be considered, the approach is to start with

a basic 3-input model consisting of Goals (u8), Expected Points (u9), and Granted

Points (u10) and then add 4 additional measured inputs (Predicted Busyness, Pre-

dicted Stress, Predicted Typical, and Weekday-Weekend) to this basic model. All

possible combinations of these inputs are estimated. Model validation following esti-

mation ultimately determines which of these inputs are most important in describing

individual behavior. Nonetheless, in the pre-processing stage, correlation analysis

can be used to determine inputs that may be significantly crosscorrelated with each

other or to identify inputs that appear to have no significant effect on the output. In

both scenarios, the number of inputs that needs to be considered in the parameter

estimation procedure can be reduced, ultimately leading to parsimonious models that

can be generated with less effort.

3.4.2 Model Parameter Estimation and Validation

Model estimation and concomitant validation with the Just Walk intervention

data is now considered. As mentioned earlier, first, a basic 3-input model was es-

timated and evaluated, followed by the addition and combination of 4 more inputs,

leading to estimation of all possible combinations of these additional inputs. At an

individual level, the full dataset was segmented into informative 16-day cycles for

model estimation/validation. The cycle length was defined by the multisine input

signal described in Section 3.3.

Cross-validation (the process of evaluating model fit over data not used for estima-

tion) represents one of the most valuable aspects of system identification Ljung, 1994.

The conventional approach in system identification is to assign a certain percentage
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of data for estimation, followed by validation (e.g., 50% estimation, 50% validation).

Such an approach assumes that the noise characteristics of the problem remain un-

changed during the course of the intervention. However, it is reasonable to expect

that noise and disturbance characteristics will vary over long-duration interventions

such as Just Walk. In the analysis, each data cycle was assigned to either estima-

tion or validation; all combinations of data cycles involving at least two cycles for

validation were generated and evaluated.

Table 3.1 summarizes results of this procedure for a 4-input model (Goals, Expected

Points, Granted Points and Predicted Busyness) of a selected participant. The fit

index from Equation (3.5) was calculated for each cycle and averaged for estimation

and validation data, respectively. All data cycle combinations that feature at least two

cycles for validation or estimation (twenty candidate ARX models) were evaluated.

For each of these combinations of estimation and validation cycles (corresponding

to a specific row in Table 3.1), ARX orders were determined from an exhaustive

search routine that selects a stable ARX model with highest predictive ability (based

on the maximum average validation fit). This step provides a safeguard against

overparametrization. The final chosen model should reflect, in addition to a good

fit to validation data, a good fit for the entire data set (consisting of both estimation

and validation cycles). This suggests that the final model choice should correspond

to the model that yields highest overall fit (the “Overall NRMSE Fit” column in

Table 3.1). Incorporating the overall fit criterion with the fit to cross-validation data

balances good prediction with model accuracy over the entire data set. Note that

using this analysis, the best results for the specific participant occur in the model

resulting from row 18 (cycles 1, 2, and 5 for estimation; 3 and 4 for validation) with

an overall NRMSE index at 46.03% for a model with structure na = 2, nb1 = 3,

nb2 = 1, nb3 = 2, and nb4 = 3. This model performs close to the model with best fit
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Table 3.1: Intermediate Results for a 4-input ARX Model of a Selected Participant
from Just Walk

E* V* 
NRMSE Fit (%) Average Estimation 

NRMSE Fit (%) 
Average NRMSE 
Validation Fit (%) 

Overall 
NRMSE Fit (%) 

ARX Order (4-input) 
[na1,nb1,nb2,nb3,nb4] Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 

[1,2] [3,4,5] 77.40% 85.44% 79.27% 27.68% 13.70% 81.42% 40.22% 40.11% [1,1,1,1,3] 

[1,3] [2,4,5] 77.39% 82.25% 81.30% 26.88% 15.36% 79.35% 41.50% 40.60% [1,2,1,1,3] 

[1,4] [2,3,5] 64.82% 71.25% 67.27% 45.89% 21.04% 55.36% 53.19% 42.29% [1,3,1,1,1] 

[1,5] [2,3,4] 61.36% 59.51% 60.96% 40.14% 24.47% 42.92% 53.54% 37.40% [1,1,1,3,1] 

[2,3] [1,4,5] 70.46% 90.25% 84.15% 25.00% 11.19% 87.20% 35.55% 37.70% [3,3,1,2,3] 

[2,4] [1,3,5] 49.06% 71.94% 67.25% 52.39% 22.98% 62.17% 46.43% 40.56% [3,1,2,1,3] 

[2,5] [1,3,4] 54.89% 61.75% 60.36% 47.35% 23.68% 42.72% 54.20% 39.33% [3,1,1,1,1] 

[3,4] [1,2,5] 45.97% 61.27% 69.24% 51.46% 24.02% 60.35% 43.75% 41.15% [1,3,3,1,3] 

[3,5] [1,2,4] 63.11% 66.96% 52.29% 41.52% 19.47% 35.88% 57.20% 41.12% [1,1,1,1,1] 

[4,5] [1,2,3] 36.37% 52.47% 50.06% 49.24% 25.88% 37.56% 46.30% 32.75% [1,1,1,3,2] 

[3,4,5] [1,2] 53.63% 64.61% 49.26% 46.59% 19.93% 38.59% 59.12% 40.12% [1,1,1,1,1] 

[2,4,5] [1,3] 50.12% 59.76% 59.36% 49.92% 23.64% 44.44% 54.74% 38.71% [3,1,1,1,1] 

[2,3,5] [1,4] 58.63% 66.76% 64.91% 49.62% 27.28% 52.98% 54.13% 40.59% [3,1,3,2,1] 

[2,3,4] [1,5] 59.43% 76.99% 70.11% 41.51% 22.32% 62.87% 40.88% 41.61% [2,3,3,2,3] 

[1,4,5] [2,3] 57.91% 61.11% 60.18% 45.69% 24.92% 42.84% 60.65% 38.81% [1,1,1,3,1] 

[1,3,5] [2,4] 66.34% 66.02% 67.24% 42.13% 22.57% 52.05% 54.08% 41.31% [1,3,1,1,1] 

[1,3,4] [2,5] 68.39% 77.75% 73.46% 41.86% 18.78% 61.24% 48.27% 42.26% [1,3,2,1,1] 

[1,2,5] [3,4] 61.85% 56.05% 68.43% 44.82% 35.02% 50.97% 56.63% 46.03% [2,3,1,2,3] 

[1,2,4] [3,5] 71.99% 73.18% 72.36% 43.28% 20.40% 62.82% 46.38% 43.61% [1,2,1,1,3] 

[1,2,3] [4,5] 75.95% 87.02% 80.67% 26.39% 13.36% 81.21% 19.88% 39.87% [1,1,1,1,3] 

 *E≡Estimation Cycles (magenta), V≡Validation Cycles (cyan)

over the validation data (average validation fit of 56.63% for row 18 vs 60.65% in row

15); however, the model with the best fit to validation data does not exhibit the best

fit to data overall (38.81% in lieu of 46.03%).

3.4.3 Overall Fit Analysis and Assessment of Individual Participant Characteristics

Similar analyses to those presented in Table 3.1 can be performed with additional

inputs, for all possible combinations. For example, for a total of 7 inputs, 16 different

input models can be generated for each participant (since Goals (u8), Expected Points

(u9), and Granted Points (u10) are always grouped). Evaluating these 16 input com-

binations allows us to draw conclusions on participant characteristics that resulted

from the intervention.

Figure 3.4 depicts model validation % fit results from three different participants

from Just Walk. The Y-axis indicates the % fit of the 3, 4, 5, 6, and 7-input models,
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Figure 3.4: Average Validation % Fits of Individualized ARX Models from Black-
box System Identification for Three Individuals: Goals-Expected Points-Granted
Points Model (Base Inputs); B: Predicted Busyness; S: Predicted Stress; T: Pre-
dicted Typical; W: Weekday-Weekend.

and the X-axis corresponds to the psychosocial measures (busyness, stress, weekday,

typical) measured daily. Here, it is seen that Participant A’s walking behavior is

largely driven by stress (highest % fit seen for the stress bar in the 4-input model),

Participant B’s behavior is driven by whether it is a weekday or weekend, while Par-

ticipant C has the highest % fit for the 3-input model, indicating that the daily step

goal had the greatest impact on walking behavior. Step responses from the individual

ARX models can be used to reveal more precise directionality and magnitude infor-

mation; for example, from Figure 3.5, one can predict that the selected participant

will typically reach 80% of the desired daily step goals within the first day of goal

announcement. Responsiveness to other inputs and disturbances can be determined

similarly. This strategy has significant implications for personalized and adaptive be-

havior change interventions; if one can determine the inputs that are most meaningful

for a given individual in a given context, it is possible then to optimize the target

behavior over a specified time (hours, days, weeks, months).
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Figure 3.5: Step Responses of a 4-input Model (Including Predicted Busyness) for
a Selected Participant.

3.5 Chapter Summary

This chapter presented a system identification modeling strategy for a physical

activity (e.g., walking) intervention delivered via a smartphone application. The

results from this dataset represent an important accomplishment in understanding

behavior-change from a data-driven perspective. Predictive and consistent black-box

models are crucial for validating behavioral theory (such as the SCT model). It is

shown that segmenting and evaluating the data at a per-cycle level gives the most valid

results to date. These types of models are necessary to effectively model behavior,

which is highly complex, idiosyncratic, and dynamic in nature. In addition, drawn

from the analysis of the estimated models, it is important in experimental design to

consider capturing more low-frequency dynamics (e.g., using pseudo-random binary

sequences), to draw more decisive conclusions on participant long-term (steady-state)

responses. Finally, the enhanced identification testing monitoring procedure in Mart́ın

et al., 2016b can be considered in future experiment design.
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Chapter 4

A SPECTRAL DECOMPOSITION IDENTIFICATION FORMULATION FOR

STRUCTURED STATE-SPACE MODELS: ESTIMATING SEMIPHYSICAL

MODELS OF SOCIAL COGNITIVE THEORY

4.1 Background

The grey-box identification problem, i.e., the estimation of physical/semiphysical

state-space models with an imposed structure, is a topic of increasing interest and a

growing number of applications. For physical, semiphysical, and compartmental/net-

work models, the resulting state-space realizations often emerge in continuous-time

with some sort of a structure. Furthermore, in the vast majority of structured state-

space models, an imposed or emerged model structure is often linear in the sense that

some entries of the system matrices are determined a priori, and can be expressed

as a set of linear equations (e.g., aij = 0, aij + c1b11 = c2, bij = c3 for some indices i

and j; c1,2,3 ∈ R are some constants). We refer to such models as linearly-structured.

A subset of this class of structures has been presented as affinely parametrized struc-

tures (Yu et al., 2019). As expressed in Ljung, 2019, considering linear structures is

not very restrictive; most of structured models belong either readily or after a refor-

mulation. Motivated by the real-life behavioral experiment Just Walk, and the need

for data-driven semiphysical models of Social Cognitive Theory (SCT), we present a

spectral decomposition (SD) identification algorithm for estimating this specific class

of models, i.e., linearly-structured models.

While it is recognized that the general prediction-error method (PEM), which es-

timates the constrained model directly from Input/Output (I/O) data, has the best
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possible asymptotic properties Yu et al., 2018, it is also known that due to the non-

convexity of the problem, “the domain of attraction of the global minimum is not very

forgiving” (Ljung, 2019), and the method is thus crucially dependent on good initial

estimates for its practical success in problems of realistic sizes. This particular diffi-

culty has been illustrated by the numerical experiment presented in Ljung, 2019 from

Parrilo and Ljung, 2003 and will be further illustrated with an additional numerical

example in this chapter (see Section 4.3.2). Indeed, this solver initialization challenge

is amplified when the structure in question is inherently unidentifiable, leading to the

fact that even if a global minimum is found, it need not be unique. In fact, in this

case, an infinity of global minima solutions may be on offer, and hence the physical

significance of model parameters need not be preserved. Note that, here, model iden-

tifiability is defined per, Ljung, 1999, Definition 4.6. Nevertheless, in this chapter, we

present a formulation that aims at eliminating or at least significantly reducing the

burden on the user with the challenge of judicious solver initialization, particularly

in the absence of sufficient prior knowledge. This may be possible at the expense of

increased computational load while solving multiple random initializations/restarts

that may be needed in harder problems.

The notion of initializing PEM for grey-box model estimation from black-box

models that are fully-parameterized (i.e., “total models” in Ljung, 2019) has been

suggested and standardized in numerous settings before; the reader is referred to Yu

et al., 2019; Yu et al., 2018; Parrilo and Ljung, 2003; Mercère et al., 2014 and references

therein for elaboration. In particular, subspace identification methods (e.g., N4SID,

MOESP) seemed favorable given their asymptotic consistency (Yu et al., 2018; Parrilo

and Ljung, 2003). Similarly, building from an identified black-box model, the main

premise of the proposed SD formulation is to exploit the known linear structure and

formulate an easier similarity transformations search, restricting the search space to
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only of that which is fundamentally unknowable a priori.

The rest of this chapter is organized as follows: Section 4.2 presents the SD

formulation for estimating linearly-structured, continuous-time state-space models.

Sufficient conditions for the existence and uniqueness of SD models is presented with

additional conclusions on identifiability. Next, Section 4.3 provides two numerical

examples and introduces a further simplified SCT model, followed by a brief report

on results from Just Walk in Section 4.4. Finally, conclusions and potential future

directions are summarized in Section 4.5.

4.2 Spectral Decomposition Formulation

Using measured input-output sequences {Uk, Yk}Nk=1, consider a minimal, fully-

parametrized discrete-time model Ŝd(Âd, B̂d, Ĉd, D̂d, K̂d) estimated using a classical

subspace method (i.e., N4SID, Van Overschee and De Moor, 2012), satisfying the

following set of linear equations

[
X̂k+1

Yk

]
=

[
Âd B̂d

Ĉd D̂d

] [
X̂k

Uk

]
+

[
K̂d

I

]
Ek (4.1)

where X̂k ∈ Rn×N , Yk ∈ Rp×N , and Ek ∈ Rp×N is a column-wise sequence of noise

in innovations form (i.e., E ∼ N (0, σi) ∀i ∈ {1, . . . , p}). With respect to I/O data

{Uk, Yk}, the identified states from the subspace method are modulo a similarity

transformation Tf (i.e., X̂k = TfXk) with Ŝd(TfAdT−1
f , TfBd, CdT

−1
f , Dd, TfKd). For

the identified system Ŝd of McMillan degree n, m inputs, and p measured outputs,

the minimal realization system matrices are Ad ∈ Rn×n, Bd ∈ Rn×m, Cd ∈ Rp×n,

Dd ∈ Rp×m, Kd ∈ Rn×p, and Tf ∈ Rn×n. For simplicity, and without loss of generality,

we proceed in the various parts of this chapter with a strictly proper, disturbance-free

model of Ŝd(TfAdT−1
f , TfBd, CdT

−1
f ).
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4.2.1 Main Formulation

Through the remainder of this chapter, two main assumptions follow: First, we

assume that Âd is of n distinct eigenvalues. Second, we assume Zero-Order Hold

(ZOH) intersample behavior. The ZOH assumption becomes more practical in exper-

iments with smaller sampling times (i.e., Ts → 0). Benefiting from assuming ZOH,

we recall that the continuous-time image of Ŝd, Ŝ(A,B,C), can be obtained from the

well-known exact discretization equations from linear systems theory

Ad = eATs (4.2a)

Bd =

∫ Ts

0

eAτBu(τ)dτ
ZOH
= A−1 (Ad − In)B (4.2b)

Cd = C (4.2c)

where Ts is the sampling time. By assuming n distinct poles of the identified Ŝd, we

allow for the following spectral decomposition

Ad = TΛdT
−1 ⇒ A = TΛT−1, Λ = log(Λd)/Ts (4.3)

Thus, an estimate for the state-transition matrix subject to a linear structure imposed

by the pair (PA, dA) := {(PA, dA) : PAθA = dA, θA = vec{A}} is obtained by solving

the linearly-constrained eigenvalue problem

T−1AT = Λ (4.4)

subject to the structure pair (PA, dA), from which the following quadratic program

(QP) follows

min
θA

1

2
θTAHAθA + fTAθA

s.t. PAθA = dA

(4.5)
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where

HA = 2(T T ⊗ T−1)T (T T ⊗ T−1)

fA =
[
−2ϕTA(T T ⊗ T−1)

]T
ϕA = vec{Λ}

and⊗ denoting the Kronecker product. Similarly, by assuming ZOH, one can use (4.2b)

and (4.3) to establish

T−1B = (Λd − In)−1 ΛT−1Bd (4.7)

for estimating the input gain matrix B subject to the structure (PB, dB), from which

it also follows

min
θB

1

2
θTBHBθB + fTBθB

s.t. PBθB = dB

(4.8)

with

HB = 2
(
Im ⊗ T−1

)T (
Im ⊗ T−1

)
fB = −2

[
ϕTB
(
Im ⊗ T−1

)]T
ϕB = vec{Γ−1T−1

0 B0
d}

Γ = Λ−1 (Λd − In)

Note that the characteristic matrix Γ is system-invariant (i.e., Γ is unique and does

not depend on the applied similarity transformation); this extends the invariance to

ϕB (similar to ϕA) once Ŝ0
d of A0

d (thereby T0) and B0
d is initially established. By

defining the Kronecker eigenvector matrix

T def
=

[
T ⊗ T−T 0n2×nm
0nm×n2 Im ⊗ T−T

]
(4.10)
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and using the Kronecker product properties, it can be shown that in a more compact

form, (4.5) and (4.8) can be solved simultaneously by the following augmentation

min
θ

1

2
θTHθ + fT θ

s.t. Pθ = d
(4.11)

with

H = 2

[
TT T ⊗

(
TT T

)−1
0n2×nm

0nm×n2 Im ⊗
(
TT T

)−1

]
= 2T T T

f = −2

[
T ⊗ T−T 0n2×nm
0nm×n2 Im ⊗ T−T

]
ϕ = −2T ϕ

ϕ =
[
ϕTA ϕTB

]T
θ =

[
θTA θTB

]T
P =

[
PA 0pa×nm

0pb×n2 PB

]
d =

[
dTA dTB

]T
where ◦−T =

(
◦T
)−1

= (◦−1)
T

. Note that in cases where some linear relations exist

between parameters of the structured A and B, the augmented QP in (4.11) is used.

However, the pairs (PA, dA) and (PB, dB) would no longer separable, but constructed

as a single (P, d) instead; P will no longer be block-diagonal.

4.2.2 Existence, Uniqueness, and Identifiability

With the main formulation delivered in (4.11), we now proceed to establish the

existence and uniqueness of an SD-identified model, as well as present a corollary on

identifiability.

Theorem 4.2.1 (Existence). For the minimal discrete-time model Sd in (4.1) with

n distinct eigenvalues of Ad and ZOH intersample behavior on all inputs, a sufficient

condition for the existence of S[P,d] with a linearly-structured θ∗SD subject to (P, d)

in (4.11) is |PH−1P T | 6= 0.
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Proof. The explicit solution of (4.11) is known (Boyd and Vandenberghe, 2004)[
θ∗SD
λ∗

]
=

[
H P T

P 0

]−1 [−f
d

]
(4.13)

and exists for some Lagrange multipliers λ∗ if the Karush-Kuhn-Tucker (KKT) matrix

is nonsingular. Using block matrix inversion, i.e.,

[
H P T

P 0

]−1

=

[
H−1 −H−1P T (PH−1P T )−1PH−1 H−1P T (PH−1P T )−1

(PH−1P T )−1PH−1 −(PH−1P T )−1

]
(4.14)

yields

θ∗SD = H−1P TΨ−1d+
(
H−1P TΨ−1P − I

)
H−1f (4.15)

where Ψ = PH−1P T . Ad of n distinct eigenvalues implies T is nonsingular, which

establishes the existence of H−1. Hence, a sufficient condition for the existence of θ∗SD

(thereby Ψ−1) is |PH−1P T | 6= 0, i.e., the imposed structure P is feasible.

Note that H = 2T T T in (4.11) implies that this QP is convex. Further, by

extension, if the quadratic structural constraints in (6.1) are convex, the resulting

QCQP remains convex.

Theorem 4.2.2 (Uniqueness). For the minimal discrete-time model Sd in (4.1) of

order n and p outputs, the linearly-structured, SD-identified continuous-time model

S[P,d] subject to (P, d) in (4.11) such that |PH−1P T | 6= 0 is unique when p = n, |C| 6=

0.

Proof. Given |PH−1P T | 6= 0 establishes the nonsingularity of the KKT matrix in (4.14)

and implies that [HT P T ]T has linearly independent columns. It follows that θ∗SD

of (4.11) is unique; full proof in Boyd and Vandenberghe, 2004. Hence, a sufficient

condition for the uniqueness of the SD model follows from the uniqueness of the range

space of T in Rn, R(T ), which is achieved when p = n, |C| 6= 0; see, Bellman and

Åström, 1970, Sec. 6 and, Delforge, 1982, Sec. 3.
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Corollary 4.2.2.1 (Identifiability). For a minimal discrete-time model Sd of order

n and p outputs, assume ZOH intersampling behavior on all inputs, and define the

set of similarity transformations Tf

Tf :=

{
Tf : Tf =

[
Ip 0n−p
− Hf −

]
, Hf ∈ R(n−p)×n, |Tf | 6= 0

}
The identifiability of the continuous-time S is as follows:

• p = n, |C| 6= 0, and |PH−1P T | 6= 0: the continuous-time S[P,d] subject to

(P, d) is globally identifiable; the estimator (4.15) yields a unique estimate for

all system matrices.

• p < n, C = ( Ip 0n−p ): at least the first p rows of B and K are uniquely identi-

fiable, modulo Ek, in the fully-parametrized S (i.e., (P, d) = {∅}) ∀ Tf ∈ Tf .

Proof. When p = n, the SD-identified model is unique, and the proof follows imme-

diately from Theorem 4.2.2. When p < n, recall that from (4.1) we have

X̂k+1 = TfAdT
−1
f X̂k + TfBdUk + TfKdEk

Yk = CT−1
f X̂k +DdUk + Ek

which by substitution gives

Yk = CAdT
−1
f X̂k−1 + CBdUk−1 + CKdEk−1 +DdUk + Ek (4.16)

With C = ( Ip 0n−p ), (4.16) shows that entries of the first p rows of Bd and Kd must

be unique ∀ Tf ∈ Tf ; noting that B = TfTΓ−1T−1Bd, Tf ∈ Tf =⇒ T−1
f ∈ Tf by

block inversion, and the augmentation B′d = [Bd Kd] and U ′k = [UT
k ETk ]T extends the

result to B and K.
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4.2.3 Model Realization: An LMI Approach

In the identification of structured state-space models of physical and other types

of systems, the model order is often determined a priori and the model must be phys-

ically realizable. Hence, when opting in for SD-identified models, we know from (4.3)

that Λd must at least be positive semidefinite. However, in many cases when estimat-

ing discrete-time models, the presence of process/measurement noise or unmodeled

dynamics may suffice to explain the emergence of negative eigenvalues, i.e., physi-

cally unrealizable models of ZOH inversion. To circumvent this potential obstacle

for the SD user, we include a brief review on the work of Miller et al., 2012; Miller

and De Callafon, 2013 that ensures Λd � 0 by applying Linear Matrix Inequalities

(LMI) constraints in the earlier step of estimating fully-parametrized subspace models

in (4.1).

Per Miller and De Callafon, 2013, the main theorem in Chilali and Gahinet, 1996

establishes that the eigenvalues of a matrix Ad lie within an LMI region defined by

the characteristic function

fD(z) = α + βz + βT z̄

with
D = {z ∈ C : fD(z) ≥ 0}

if and only if ∃ Pd ∈ Rn×n such that

Pd = P T
d � 0, MD(Qd, Pd) � 0

where
MD(Qd, Pd) = α⊗ Pd + β ⊗Qd + βT ⊗QT

d

with α (symmetric) and β (square) are generally not unique matrices establishing

the feasible LMI region D in the z-plane. Given matrices R1, R2, and W , depending

on the underlying subspace method, the new eigenvalue-constrained A∗d can then be
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found by solving the following convex, semidefinite program

min
Qd,Pd

‖R1Qd −WR†2Pd‖F

s.t. MD(Qd, Pd) � 0

Pd = P T
d � 0

tr(Pd) = l

(4.17)

where Qd
∆
= AdPd, l > 0 is a positive scalar (l = 1 in Miller et al., 2012) that ensures

Pd does not become arbitrarily small during the minimization procedure; † and ‖ · ‖F

denoting the Moore-Penrose pseudoinverse and the Frobenius norm, respectively. The

eigenvalue-constrained A∗d is then found as A∗d = Q∗dP
∗−1
d . When the used subspace

method is the deterministic N4SID, R1, R2, and W are defined below:

R1 = In, R2 = X̂k, W = X̂k+1 −BdUk (4.18)

For additional subspace methods, including the stochastic N4SID, corresponding val-

ues for R1, R2, and W are tabulated in Miller et al., 2012.

4.2.4 Standard SD Loss Function

As noted in Section 4.2, if Ĉd in (4.1) is full-rank, the SD model is unique and ob-

tained analytically by evaluating (4.15). Otherwise, a search for a suitable similarity

transformation may be in order. Consider

J0 =
(
Y − Φ0θ

0
d

)T (Y − Φ0θ
0
d

)
(4.19)

where Φ0 =
[
XT

0,k−1 U
T
k−1

]
⊗ C0; Y and θ0

d denote the vectorized measured outputs

and the initial discrete-time parameter vector, respectively (note the typological error

in Freigoun et al., 2021b). C0 is structurally feasible and is estimated in discrete-time

(e.g., using PEM) if unknown a priori. When applying a similarity transform Tf ,
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mapping from S0
d to S1

d (both belonging to the set of structurally feasible models), it

can be shown that

Φ1 = Φ0T Tf , θ1
d = T −Tf θ0

d
ZOH
= TfΓT

−1
f θ1

SD

where

Tf =

[
(TfT0)−T ⊗ In 0n2×nm

0nm×n2 Im ⊗ TfT0

]
, Γ =

[
ΛdΛ

−1 ⊗ In 0n2×nm
0nm×n2 Im ⊗ Γ

]
(4.20)

and T0 is a well-conditioned initial eigenvector matrix in (4.3). By using (4.15), θSD

is obtained in terms of Tf as follows

θSD = T −Tf H−1
0 T −1

f P T
(
PT −Tf H−1

0 T −1
f P T

)−1
d

− T −Tf H−1
0 T −1

f P T
(
PT −Tf H−1

0 T −1
f P T

)−1
PT −Tf T

−T
0 ϕ

+ T −Tf T
−T

0 ϕ (4.21)

where H−1
0 = 0.5T −T0 T −1

0 . Finally, with Φ̂(Tf )
def
= Φ0T Tf TfΓT

−1
f , the standard SD loss

function JSD is minimized with respect to Tf , i.e.,

min
Tf

(
Y − Φ̂θSD

)T (
Y − Φ̂θSD

)
s.t. C0Tf = C0

(4.22)

When Y is replaced with Ysim = Φ0θ
0
d, minimizing (4.22) translates into a more

direct model-matching problem. It is recognized that the objective function in (4.22)

describes an approximate estimate of the actual simulation error; the appeal is in

its quasi-linear form (hence referred to as “standard”). The SD formulation can,

however, be applied to the standard PEM formulation for an exact description of

the simulation error during the minimization procedure. Furthermore, while also

nonlinear, in more practical settings it may be interesting to also consider applying a

direct NRMSE objective in 3.5 jointly with (4.21) in lieu of (4.22) and classical PEM

to arrive at an SD model for PEM initialization.
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Figure 4.1: Simulation of the SD-identified DC Motor Model (Continuous-Time)
From (4.15) Contrasted Against the Deterministic N4SID Model.

4.3 Numerical Examples

4.3.1 DC Servo Motor (p = n, |C| 6= 0)

In this illustration, we borrow the classical DC servo motor example presented

in Ljung, 1999 by loading the demo iddemo7 of the ident toolbox in MATLABr

Online R2021a. While this is a very basic example with near ideal conditions, it

serves as a suitable illustration for using (4.15) since, here, a full-rank C is given and

both assumptions of Theorem 4.2.1 are satisfied. The simulation of the deterministic

N4SID model (with Λd � 0) is shown in Figure 4.1 (blue: 31.79% & 83.81% NRMSE

fits). Given the physical model
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ẋ(t) =

[
0 1
0 θ1

]
x(t) +

[
0
θ2

]
u(t) (4.23a)

y(t) =

[
1 0
0 1

]
x(t) + e(t) (4.23b)

one can observe a slight dislocation of one eigenvalue from the origin to −0.1578. To

calculate the structured SD model, the pair (P, d) is constructed from (4.23a)

P =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

 , d =

0
0
1
0

 (4.24)

and the solution is obtained analytically from (4.15) in a single step; simulations are

in Figure 4.1 (red: 98.3% & 84.47%). This improvement can only be explained by

the use of the structural information known a priori to correct for fitting to noise.

It is also noted that the estimated SD model from the stochastic N4SID (using the

n4sid command in MATLABr) gives slightly improved results (98.32% & 84.47%)

that level with the reported PEM solution (98.35% & 84.43%).

4.3.2 OCSE Fluid Analogy Model of Social Cognitive Theory

The purpose of this example is to present a numerical experiment on a newly

introduced, further simplified fluid analogy model of Social Cognitive Theory Mart́ın

et al., 2014; Freigoun et al., 2017; the Operant Conditioning-Self-Efficacy (OCSE)

loops model in Figure 4.2. A visualization of the results is provided to illustrate

the partial identifiability case of Corollary 4.2.2.1. In Section 4.4, we use the OCSE

structure in this example to estimate individual semiphysical SCT models using input-

output participant data retrieved from the Just Walk study (see Appendix A). Using

the conservation of mass principle, the OCSE model in Figure 4.2 can be represented

by the following state-space model
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Figure 4.2: Further Simplified Fluid Analogy of Social Cognitive Theory (OCSE
Model).

ẋ(t) = A(θp)x(t) +B(θp)u(t) (4.25a)

y(t) = Cx(t) + e(t) (4.25b)

where x(t) = [η4(t) η3(t) η5(t)]
T ∈ R3,

u(t) =
[
ξ8(t) ξ9(t) ξ10(t) ξ71(t) . . . ξ7nd

(t)
]T ∈ R3+nd , y(t) = η4(t) ∈ R. With

ξ11(t)
∆
= η4(t)− ξ8(t), we have

A(θp) =

[ −1/τ4 β43/τ4 β45/τ4

(γ311 + β34)/τ3 −1/τ3 0
β54/τ5 0 −1/τ5

]

B(θp) =

[
γ48/τ4 γ49/τ4 0 0 . . . 0
−γ311/τ3 0 0 0 . . . 0

0 0 γ510/τ5 γ71/τ5 . . . γ75/τ5

]
C = [1 0 0]

with nd = 5, the parameter vector θp ∈ R16 is defined below

θp = [τ4, τ3, τ5, β43, β45, β34, β54, γ48, γ49, γ311, γ510, γ71 , γ72 , γ73 , γ74 , γ75 ]T

In this example, 83 output sequences from the model in (4.25) with the hypothetical

parameters
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θp = [0.2, 4, 0.5, 0.25, 0.25, 0.25, 0.25, 0.75, 0.5, 3, −5, 350, 400, 300, −50, −250]T

were generated by applying a subset of input-output data from a Just Walk Par-

ticipant (published data were digitized according to the procedure detailed in Ap-

pendix A); see Freigoun et al., 2017; Mercere, 2017; Phatak et al., 2018. Next, similar

to the actual implementation of Just Walk study, where only η4(t) is measured, the

hypothetically generated outputs sequences η3(t) and η5(t) were discarded. An addi-

tional input was constructed (similar to Weekday/Weekend) for the purposes of this

example. Following Corollary 4.2.2.1 and assuming no model mismatch (here, we

know this is the case), one expects to recover the true first row of B(θp), including

γ48/τ4 = 3.75 and γ49/τ4 = 2.5, as e(t) → 0. This notion of partial identifiability is

best visualized in Figure 4.3, where the poor initialization (intentional)

A(θp0) =

[
1 1 1
1 1 0
1 0 1

]
, B(θp0) =

[
1 1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1

]

was used to obtain the classical PEM models (ssest in MATLAB) in the first column.

For each SNR scenario, 1000 different zero mean Gaussian noise realizations were

made to corrupt the ‘true’ output; a random Tf ∈ Tf is the applied to the full

N4SID model with every noise realization. The first column shows results from PEM

when poorly initialized; the second column shows estimates from the N4SID method;

the third column shows PEM estimates when initialized by the N4SID model in the

second column. The first two rows feature two identifiable parameters in B(θp) per

Corollary 4.2.2.1; the third row features an unidentifiable parameter in B(θp). Results

of this experiment and Corollary 4.2.2.1 are in agreement with conclusions drawn from

the classic identifiability analysis technique of matching the transfer function of the

model with an estimated one (see Section 4.4.2).
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Figure 4.3: Visualization of the Partial Identifiability in B(θp) of the OCSE Model
in (4.25) under Three Different Signal-to-noise Ratio (SNR) Scenarios Per Corol-
lary 4.2.2.1. Solver Settings and Random Elements (Tf and output noise) Retained
in the Estimated Hypothetical Models for Verified Reproducibility.

4.4 Just Walk : OCSE-SCT Semiphysical Identification Results

This section reports new results extending from the prior work in Freigoun et al.

and dos Santos et al.. Input-output data are used to estimate individual OCSE-SCT

models. Simulation response comparisons against used participants data (data re-

trieved from Freigoun et al., 2017; Mercere, 2017 with high accuracy; see Appendix

A) are presented in Figure 4.4. For each participant, three models are estimated

to generate and compare predictions of individual behaviors [steps/day] across dif-
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ferent datasets: First, the standard N4SID model is estimated. Second, using the

YALMIP toolbox J. Löfberg, 2004, this first model is applied to (4.17) for estimating

an eigenvalue-constrained model over the three common LMI regions in Miller and

De Callafon, 2013 with α and β ensuring stability, damped response, and physical

realization, i.e.,

α =

[
(1− δs)I2 0 0

0 2δrI2 0
0 0 2δpI2

]
, β =


0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1

 (4.26)

Finally, with the absence of prior knowledge on parameter ranges, the constrained

model and the featured SD formulation in Section 4.2 are used to initialize the stan-

dard PEM estimator to enforce the OCSE structure in Example 4.3.2. The NRMSE

standard defined in (3.5) is used to quantify the goodness of fit.

4.4.1 Model Validation

Once a certain model is developed and estimated (particularly black- and grey-

box models), a central step in system identification is model validation. Ideally,

the experimental data are split into two segments (or concatenated into two larger

segments) for model estimation and validation.

Typically, the ultimate deliverable in model validation is to show that, at some

level, the model in question has not been falsified by experimental data (Ljung, 1999).

When comparing models and their predictions against measured input-output data,

from an agreement point of view, one may be curious to run a simple Bland-Altman

(BA) analysis. In areas such as analytical chemistry, the BA plot is often used to

examine the agreement between measures of the same construct using two distinct

methods/devices (note the use of the term agreement and not correlation; see Jinyuan
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et al., 2016). As a word of caution, we cite O’Connor et al., 2011 in that “the

Bland-Altman method should not be used in regression cross-validation studies.”

Nonetheless, since the BA plot is ultimately a difference plot (i.e., a scatter plot of

model error in this context), the BA plot can give a crude assessment for the bias

and variance across different models as they are compared against measured data.

Figure 4.5 presents the BA plots for each of the established models in Figure 4.4

(participant B). It is noted that the main ensuing observations from BA agreement

plots are reproducible from participant A.

In Figure 4.5, the four models of Participant B are considered (four columns):

the Optimal ARX model, initial N4SID subspace model, the eigenvalue-constrained

derivative of the first N4SID subspace model, and structured SCT-OCSE model. In

the two rows, the corresponding difference and agreement BA plots are provided

with a summary of numerical values. It is clearly shown that the initial subspace

model is drastically improved following model reduction and the incorporation of

structural modeling insights imported from Social Cognitive Theory using the SD-

PEM algorithm. It is also evident the structured OCSE delivers the best bias-variance

trade-off, and the highest agreement with measured data (i.e., steps/day).

In terms of using statistical correlation in control-oriented model validation, the

conventional approach in system identification includes the use the cross-validation

dataset for residual analysis. With an established degree of confidence, it can be de-

termined if the concerned model is falsified by the data via examining auto-correlation

of the residuals and their cross-correlation with measured input signals. In Figure 4.6,

we rely on 99% confidence intervals (i.e., 2.576σ) for a residual analysis on the vali-

dation data to conclude that the identified OCSE models are not falsified by the data

(as opposed to ARX and unconstrained N4SID models for participant B). In other

words, we cannot say that the OCSE models “have not picked up all dynamics” from
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u(t) on η4(t) (note the double negation as pointed in Ljung, 1999).

Overall, using simulation plots, BA plots, and residual analysis in Figures 4.4,

4.5, and 4.6 (respectively) we note the sensible improvements when prior knowledge

is incorporated into the model (e.g., when LMI constraints in (4.17) are applied to the

N4SID subspace model) and, ultimately, best improvements when models are reduced

to conform with the OCSE structure in Figure 4.2, estimated via SD-PEM.
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“zoom” Functionality to Enlarge This Page and View Values in the Electronic Version of This Dissertation.
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Figure 4.6: Residual Analysis Plots for Model Validation. Auto-correlation of Residuals and Cross-Correlations with
Input Signals are Plotted Against 99% Confidence Intervals for the Four Estimated Behavioral Models of Participant
B from Just Walk (Figures 4.4 and 4.5): Optimal ARX, Unconstrained N4SID, Eigenvalue-constrained N4SID, and the
Semiphysical OCSE Model of Social Cognitive Theory. Frames in Red (Color) Emphasize Model ‘Falsification’ by Data.
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4.4.2 OCSE Structure: Identifiability Analysis

In this section, an identifiability analysis on the OCSE model in Figure 4.2 is

performed. First, we reduce the unknown state-space variables in (5.2b) as follows:

A =

[
a1 a2 a3

a4 a5 0
a6 0 a7

]
, B =

[
b1 b2 0 0 0 0 0 0
b3 0 0 0 0 0 0 0
0 0 b4 b5 b6 b7 b8 b9

]
, C = [1 0 0] (4.27)

with the aim of establishing the degree(s) of freedom in the model. A classical tech-

nique is to obtain the transfer function matrix (input-output unique) in terms of the

variables {ai}i=1:7 & {bj}j=1:9, and then verify if these can be retrieved uniquely from

input-output data. Using

H(s) = C(sI − A)−1B +D

determines the following transfer function matrix H(s)

H(s) =



−b1s
2 + (a5b1 + a7b1 − a2b3) s+ (a2a7b3 − a5a7b1)

s3 − (a1 + a5 + a7) s2 + (a1a5 + a1a7 + a5a7 − a2a4 − a3a6) s+ (a2a4a7 + a3a5a6 − a1a5a7)
−b2s

2 + b2 (a5 + a7) s− (a5a7b2)

s3 − (a1 + a5 + a7) s2 + (a1a5 + a1a7 + a5a7 − a2a4 − a3a6) s+ (a2a4a7 + a3a5a6 − a1a5a7)
−a3b4s+ (a3a5b4)

s3 − (a1 + a5 + a7) s2 + (a1a5 + a1a7 + a5a7 − a2a4 − a3a6) s+ (a2a4a7 + a3a5a6 − a1a5a7)
−a3b5s+ (a3a5b5)

s3 − (a1 + a5 + a7) s2 + (a1a5 + a1a7 + a5a7 − a2a4 − a3a6) s+ (a2a4a7 + a3a5a6 − a1a5a7)
−a3b6s+ (a3a5b6)

s3 − (a1 + a5 + a7) s2 + (a1a5 + a1a7 + a5a7 − a2a4 − a3a6) s+ (a2a4a7 + a3a5a6 − a1a5a7)
−a3b7s+ (a3a5b7)

s3 − (a1 + a5 + a7) s2 + (a1a5 + a1a7 + a5a7 − a2a4 − a3a6) s+ (a2a4a7 + a3a5a6 − a1a5a7)
−a3b8s+ (a3a5b8)

s3 − (a1 + a5 + a7) s2 + (a1a5 + a1a7 + a5a7 − a2a4 − a3a6) s+ (a2a4a7 + a3a5a6 − a1a5a7)
−a3b9s+ (a3a5b9)

s3 − (a1 + a5 + a7) s2 + (a1a5 + a1a7 + a5a7 − a2a4 − a3a6) s+ (a2a4a7 + a3a5a6 − a1a5a7)



T

and, consequently, the following set of equations follow:

b1 = −α1 (4.28)

(a5 + a7)b1 − a2b3 = α2 (4.29)

a2a7b3 − a5a7b1 = α3 (4.30)

b2 = −α4 (4.31)

(a5 + a7)b2 = α5 (4.32)

a5a7b2 = −α6 (4.33)
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a3b4 = −α7 (4.34)

a3a5b4 = α8 (4.35)

a3b5 = −α9 (4.36)

a3a5b5 = α10 (4.37)

a3b6 = −α11 (4.38)

a3a5b6 = α12 (4.39)

a3b7 = −α13 (4.40)

a3a5b7 = α14 (4.41)

a3b8 = −α15 (4.42)

a3a5b8 = α16 (4.43)

a3b9 = −α17 (4.44)

a3a5b9 = α18 (4.45)

a1 + a5 + a7 = −α19 (4.46)

a1a5 + a1a7 + a5a7 − a2a4 − a3a6 = α20 (4.47)

a2a4a7 + a3a5a6 − a1a5a7 = α21 (4.48)

where αi are the identified numerical coefficients of the estimated H(s). It is high-

lighted that, in alignment with Corollary 4.2.2.1, b1 = B11 = γ48

τ4
and b2 = B12 = γ49

τ4

are indeed uniquely identifiable from input-output data per (4.28) and (4.31) (also

see Figure 4.3). In addition, a moment’s glance at equations (4.34)-(4.45) renders

a5 known, which when plugged into (4.32) given (4.31) also determines a7. Further,

with known a5 and a7, a1 is immediately obtained from (4.46).

Given known a(1,5,7) and b(1,2), and unknowns a(2,3,4,6) and b(3−9), it can be noted

that the pairs {a2, b3}, {a3, b(4−9)}, {a2, a4}, and {a3, a6} are coupled in equations

(4.29), (4.30), (4.34)-(4.45), (4.47), and (4.48). Hence, for a unique determination of

the structured model which yields global identifiability, at least two model parameters

must be known a priori : at least one parameter must belong in the set {a2, a4, b3},

and at least one another must belong in the set {a3, a6, b(4−9)}. The following are a

few examples:

i. Given a2 and a3: given a2, b3 is obtained from (4.29). Also, given a3, b(4−9) are

obtained from (4.34)-(4.45). Finally, with a2 and a3, equations (4.47) and (4.48)
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yield a4 and a6. Hence, the system becomes identifiable given (a2, a3).

ii. Given a4 and a6: Plugging known a4 and a6 into equations (4.47) and (4.48)

determines a2 and a3; the rest follows similar to (i.).

iii. Given b3 and any of b(4−9): Equation (4.29) is used to determine a2, and any

of (4.34)-(4.45) can be used to determine a3; the rest follows similarly from (i.).

This analysis makes quite clear that there are two degrees of freedom in the OCSE

model, hence the model structure is unidentifiable, which entails an infinite number of

models with identical and different structures that may be observationally equivalent.

It is also clear that (iii.) corroborates Corollary 4.2.2.1 in that when all model states

are directly observed (measured), the semiphysical OCSE model structure is indeed

globally identifiable.

4.5 Chapter Summary

In this chapter, it was shown how a spectral decomposition of identified black-

box models enables the formulation of constrained eigenvalue problems for estimating

grey-box identification problems of a linear structure. The partial identifiability of a

specific class of structures was discussed and a visualization from a numerical exper-

iment was provided. Moreover, a further simplified OCSE model of Social Cognitive

Theory was introduced as an extension from prior work in Chapter 3. This OCSE

model was estimated and validated using input-output data. As is the case with

existing literature, it may follow good practice if an explicit constraint is considered

in (4.22) for managing the condition number of Tf during the search. While the pro-

posed JSD is still non-convex, local solutions with well-conditioned Tf matrices still
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provide sub-optimal matches for the underlying system characteristics and thus can

produce good candidate models for initializing PEM. With randomly-initialized JSD,

it is crucial to evaluate results from multiple runs, or use the multistart functional-

ity of existing global optimization software. Finally, it is noted that the presented

method can be extended to include and handle quadratic structures; the reader is

referred to Section 6.3.4 for more insights.
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Chapter 5

HYBRID MODEL PREDICTIVE CONTROL FOR CLOSED-LOOP

INTERVENTION SIMULATIONS OF PARTICIPANT-VALIDATED SOCIAL

COGNITIVE THEORY MODELS

5.1 Background

There is strong evidence highlighting the association between sedentary lifestyle

and the increased risk for type 2 diabetes, cardiovascular disease, and cardiovascu-

lar and all-cause mortality (Wilmot et al., 2012). Furthermore, McTiernan, 2008

not only attributed %25 of cancer cases worldwide to obesity and sedentarism, but

also pointed out findings in several types of cancer indicating improved prognoses

among individuals diagnosed with cancer and remained physically active. Motivated

by the increasing access to affordable high-precision pedometers (i.e., motion sen-

sors), the goal of maintaining 10, 000 steps/day has gained more popularity and was

recommended for “apparently” healthy adults (Tudor-Locke and Bassett, 2004). A

sedentary lifestyle index is suggested as < 5, 000 steps/day, whereas activity in the

range of 5, 000-7, 499 steps/day is considered low-active, 7, 500-9, 999 is classified as

somewhat active, and 10, 000-12, 499 steps/day is active. The aforementioned seri-

ous health ramifications of the sedentary way of life, together with the abundance

of advanced mHealth technologies, have created an impetus to the development of

improved interventions that are individually-tailored, adaptive, scalable, and cost-

effective.

Just Walk, an innovative single-subject intervention experiment (open-loop) de-

signed based on system identification principles, provided a unique opportunity for the
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estimation and validation of individual dynamical systems (grey-box) models of So-

cial Cognitive Theory (SCT) using input-output participant data (Hekler et al., 2018;

Freigoun et al., 2017); see Chapters 3 and 4 for more elaboration on Just Walk.

Further, featured closed-loop physical activity intervention simulations in this

work rely on a Hybrid Model Predictive Control (HMPC) controller design strategy.

The general HMPC formulation in Bemporad and Morari, 1999; Bemporad, 2004 and

hybrid decision rules in Mart́ın et al., 2016a are considered in the scope of this work.

Similar to behavior “initiation” and “maintenance” phases in Mart́ın et al., 2016a, a

controller reconfiguration strategy is proposed for the design of multi-phase interven-

tions that optimally drive positive behavior change gradually over time. Generated

closed-loop performance simulations in this work provide a proof of concept for the

amenability of established methods in system identification and control to behavior-

change problems.

The rest of this chapter is organized as follows: Section 5.2 features a reduced

dynamical systems model of Social Cognitive Theory and reviews relevant prior sys-

tem identification work. Section 5.3 reviews an existing HMPC formulation used

for closed-loop intervention design. Finally, closed-loop performance simulations of

a participant-validated model under different scenarios and controller configurations

are provided in Section 5.4.

5.2 Grey-box Identification of Just Walk

In this section, a brief background of prior control-relevant identification work

leading to participant-validated behavioral models is presented. With the develop-

ment of a dynamic process model being an inherent requirement for MPC design, a

reduced behavioral model lending its theoretical basis from Social Cognitive Theory

is considered. The estimation and validation of this model from retrieved previously
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published Just Walk input-output data is featured (see Appendix A).

5.2.1 Behavioral Process Model

In an attempt to translate a narrated presentation of SCT into a simple state-

space realization amenable to theory-testing and capable of predicting behavior to a

practically useful extent, Mart́ın et al., 2014 developed a sixth-order grey-box (i.e.,

semiphysical) SCT model using fluid analogy to capture reciprocal determinism and

other key elements of the theory. A simplified version of this model (fourth-order) was

published in Mart́ın et al., 2015; another fifth-order variant was featured in Freigoun

et al., 2017 and dos Santos et al., 2018. Later, in Freigoun et al., 2021b, a number of

practical challenges with data and other factors imposed by the design and subsequent

analyses of the pilot Just Walk study propelled the need for a more ‘pragmatic’ and

parsimonious model by applying further simplifications leading to the ‘core,’ Operant

Conditioning–Self-efficacy (OCSE) model of Social Cognitive Theory illustrated in

Fig. 4.2. To name a few, these challenges and considerations stem from measurement

design, data length, frequency content of relevant signals, estimated model order by

inspection of singular values of a projection matrix computed intermediately in sub-

space analysis (suggesting third-order dynamics), optimal black-box model structures

(also favoring third-order models; see Freigoun et al., 2017 & dos Santos et al., 2018),

and the lack of sufficient prior knowledge with respect to parameter values in the orig-

inal model. While most of these challenges can be alleviated through improved future

Just Walk -like experiments, we meanwhile consider the third-order OCSE model in

the scope of this chapter for the purpose of HMPC-based closed-loop intervention

design. Model order determination using subspace analysis (e.g., N4SID) can be

found in Theorems 2 and 8 of Van Overschee and De Moor, 2012. Further, fea-

tured closed-loop physical activity intervention simulations in this work rely on a
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Figure 5.1: Conceptual Application of the Receding Horizon Control Strategy to
the Physical Activity Behavioral Problem (Hekler et al., 2018).

Hybrid Model Predictive Control (HMPC) controller design. A conceptualization of

the HMPC, receding horizon strategy applied to physical activity interventions is il-

lustrated in Figure 5.1. Similar to behavior “initiation” and “maintenance” phases in

Mart́ın et al., 2016a, a controller reconfiguration strategy is proposed for the design of

multi-phase interventions that optimally drive positive behavior change gradually over

time. Generated closed-loop performance simulations in this work provide a proof of

concept for the amenability of behavior-change problems to established methods in

system identification and control.

OCSE Model

The semiphysical OCSE model in Figure 4.2 features a two-loop model consisting

of operant conditioning (i.e., positive reinforcement/“negative punishment” learn-

ing) and self-efficacy loops. The reader is referred to Mart́ın et al., 2014 and Riley
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et al., 2015 for more elaborate definitions of SCT constructs and signals relevant to

this model. Applying the conservation of mass principle to the fluid flow model in

Figure 4.2 yields the following set of first-order differential equations:

τ4
dη4(t)

dt
= γ48ξ8(t) + γ49ξ9(t) + β43η3(t) + β45η5(t)− η4(t) (5.1a)

τ3
dη3(t)

dt
= γ311ξ11(t) + β34η4(t)− η3(t) (5.1b)

τ5
dη5(t)

dt
= γ510ξ10(t) +

nd∑
j=1

γ7jξ7j(t) + β54η4(t)− η5(t) (5.1c)

which can be represented by the following state-space equations

ẋ(t) = Ax(t) +Bu(t) (5.2a)

y(t) = Cx(t) (5.2b)

with system matrices defined as in (4.25).

5.2.2 Just Walk: Input Signal Design

As a part of the Just Walk open-loop intervention design, orthogonal-in-frequency

multisine excitations of independent intervention dosages (i.e., un(t) = ξn(t); n =

{8, 9}) were generated for each individual subject based on their baseline physical

activity. For more details on this “zippered” spectra design, the reader may review

Section 3.3 for further elaboration, as well as Mart́ın et al., 2015 in which an input

signal design procedure motivated by “patient-friendly” constraints is provided. The

input signal granted points, u10(t) = ξ10(t), is constructed by using an “If-Then” rule

defined by the function

u10(k)
∆
=

{
u9(k − 1) y(k) ≥ u8(k − 1)

0 y(k) < u8(k − 1)
(5.3)

where k ∈ N is the discrete-time sampling instance.
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5.2.3 Model Estimation and Validation

Just Walk Identifiability Limitations

In experimental settings where the structure of the model itself is of a particular

significance, or when unknown model parameters carry some physical significance or

certain implications about the underlying phenomenon, one potential requirement is

the acquisition of informative measurements of all states of the minimal model rep-

resentation. This requirement enables the estimation of a globally-optimal, unique

model as a result of the guaranteed global identifiability. Freigoun et al., 2021b pre-

sented a subspace-based spectral decomposition algorithm for estimating structured

continuous-time state-space models conforming with (5.2). Maintaining two com-

mon practical assumptions, the proposed method can be of a particular value for

data-driven theory testing experiments since the convexity of the estimation prob-

lem is extended from obtaining a fully-parameterized subspace model to a structured

continuous-time one such as the OCSE model in Figure 4.2. Thus, in the absence

of prior knowledge concerning relevant parameter values, an important experiment

design requirement in future Just Walk -like experiments is to reliably measure re-

sponses of all SCT states in the considered SCT model. Hence, for a more complete

validation of the OCSE model structure itself, measurements capturing self-efficacy

η3(t) and behavioral outcomes η5(t) are as essential as the measurable behavior η4(t),

i.e., C = I.

Selected Participant Results

Despite being unidentifiable in the context of Just Walk, individual OCSE models

are estimated and validated using an SD-PEM method in Freigoun et al., 2021b and

digitized published Just Walk participant data in Freigoun et al., 2017 (see Appendix
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Figure 5.2: Time Series Plot Illustrating Input Signals, Measured Changes in Behav-
ior (Output) [Steps/Day], and the Predicted Behavior from the OCSE Model Using
Retrieved Input-Output Participant Data in Freigoun et al., 2017 (see Appendix A)
with nd = 4. NRMSE Fits: Estimation (34.2%, Green Region); Validation (73.65%,
Cyan Region); Overall Data (41.5%).
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Figure 5.3: Step Responses of the Semiphysical OCSE Model for a Just Walk Par-
ticipant over a 7-day (Week) Prediction Horizon.

A for accuracy). A simulation of a selected Just Walk participant model (OCSE

structure) is depicted in Figure 5.2. As indicated in Figure 5.2, this participant’s

behavior is best predicted with the following disturbance signals: predicted busyness,

predicted stress, predicted typical, and weekday-weekend. The first 27 input-output

samples were reserved for model validation, and the following 61 samples were used

for model estimation. An overall model NRMSE fit of 41.5% is reported in Freigoun

et al., 2021b, which highlights that the identified OCSE models using SD-PEM out-

performed classical subspace models (i.e., standard and eigenvalue-constrained N4SID

models).

Step Responses

While goodness of fit over validation data and residual analysis provide important

criteria for model validation, step responses that are in keeping with common intu-

ition are desirable. For the identified, participant-validated OCSE model featured
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in Figures 4.2 and 5.2, step responses for manipulated inputs are shown in the top

row of Figure 5.3, followed by responses to unit step changes in disturbance signals

in the bottom row. Understandably, the Just Walk experiment length and input

signals power and resolution, constrained by “patient-friendly” design considerations,

can negatively impact confidence intervals. As a result, Section 5.4 is restricted to

considering lower prediction and move horizons in the HMPC loop design; this is con-

sistent with the short horizon controller tuning in Mart́ın et al., 2016a. Furthermore,

as an additional value drawn from inspecting step responses, the likely directions and

initial amplitudes depicted in Fig. 5.3 can guide the design of disturbance signals for

the purposes of closed-loop performance evaluation (not in this chapter).

5.3 HMPC Framework

In this section, the main HMPC controller formulation adopted in this work is re-

viewed and relevance to the particular physical activity application setting is empha-

sized. With an HMPC design strategy with an embedded OCSE behavioral model,

setpoint tracking (i.e., reaching and maintaining desired physical activity levels) is

achieved by directly manipulating issued goals u8(t), expected points u9(t) for posi-

tive reinforcement, and indirectly via granted points per (5.3). Measured disturbance

rejection is similarly designed for mitigating the effects from measured environmental

context signals such as measured disturbances ξ7i(t) featured in Figs. 5.2 and 5.3;

correction for unmeasured disturbances and/or unmodeled dynamics is accomplished

through state feedback. For the latter, Mart́ın et al., 2016a gives the example of

“sickness of a family member” for a potentially immeasurable isolated (i.e., discrete)

event. An additional real-life example from the Just Walk experiment is that one

participant had reported migraine, accounting for one of the two sharpest drops in

steps towards the end of the open-loop intervention as depicted in Fig. 5.2.
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5.3.1 Main HMPC formulation.

In this section, we present a brief recapitulation of the optimal control problem

formulation for hybrid systems in Bemporad and Morari, 1999 that describes the

mechanism for the used hybcon controller object of the Hybrid Toolbox (Bempo-

rad, 2004) in MATLAB® is presented. Moreover, operational constraints developed

in Mart́ın et al., 2016a are also incorporated in the implementation of this particular

application setting.

A hybrid linear system with nu inputs (discrete and continuous), real and integer

states, and ny outputs subject to logical/discrete decisions can be described with

the following Mixed Logical and Dynamical (MLD) representation (Bemporad and

Morari, 1999):

xk+1 = Axk +B1uk +B2δk +B3zk +Bddk (5.4a)

yk = Cxk +D1uk +D2δk +D3zk + d′k (5.4b)

E2δk + E3zk ≤ E1uk + E4xk + E5 (5.4c)

where x = [xTc xT` ]T is the hybrid system state vector, xc ∈ Rncx and x` ∈ {0, 1}n
`
x ;

u = [uTc uT` ]T is the system input with continuous and discrete/logical elements

uc ∈ Rncu and u` ∈ {0, 1}n
`
u ; y ∈ Rny is the system output; d and d′ are mea-

sured and unmeasured disturbances, respectively, in R∗. δ ∈ {0, 1}nδ and z ∈ Rnz

are discrete/logical and continuous auxiliary variables that establishes the character

of the concerned hybrid system.

With a hybrid system expressed in MLD structure, similar to classical MPC, the

used hybrid optimal control problem in Bemporad, 2004 is formulated to optimize

the sequence of control actions {u, δ, z}N0 over an interval N . The given control law
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minimizes the p-norm cost function J , i.e.,

min
{u,δ,z}N0

J
(
{u, δ, z}N0 , x(t)

)
(5.5)

where

J
∆
= ‖QxN (x(N |t)− xr) ‖p +

N∑
k=1

‖Qx (x(k)− xr) ‖p +
N∑
k=1

‖Qu (u(k)− ur) ‖p

+ ‖Qz (z(k|t)− zr) ‖p + ‖Qy (y(k|t)− yr) ‖p

subject to the mixed integer constraints established in (5.4c) and the following hard

bounds:

xmin ≤ xk+i|k ≤ xmax, i ∈ [1, N ] ⊂ N (5.6a)

umin ≤ uk+i ≤ umax, i ∈ [0, N − 1] ⊂ I (5.6b)

ymin ≤ yk+i ≤ ymax, i ∈ [0, N − 1] ⊂ I (5.6c)

In (5.5), ∗r denote the reference signals/levels for states, inputs, continuous auxil-

iary variables, and outputs, respectively; Q∗
∆
= QT

∗ � 0 are penalty weight matrices on

the feedback error, energy/control signal, auxiliary continuous variables, and outputs,

respectively. The reader is referred to Bemporad and Morari, 1999; Bemporad, 2004

for more elaboration and detailed notation of the HMPC problem in (5.5).

Similar to Nandola and Rivera, 2013, for setpoint tracking and measured distur-

bance rejection, the implemented formulation utilizes an adjustable Type-I discrete-

time filter structure from Morari and Zafiriou, 1989, i.e.,

f(q, α[r,d]) =
(1− α[r,d])q

q − α[r,d]

(5.7)

where q is the forward-shift operator and α[r,d] ∈ [0, 1) are adjustable tuning param-

eters governing the speed of response; a lower α[r,d] drives a faster response and vice

versa. While some measured disturbances of the OCSE model may be forecasted
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(e.g., weekday-weekend signal ξ74(t)), we assume for simplicity that all dk signals are

not forecasted in featured closed-loop performance simulations of Section 5.4.

Finally, it is noted that in the absence of a move suppression term in (5.5) that

penalizes move sizes (useful in avoiding rapid change of intervention dosages), it is

possible to mimic that effect in the Hybrid Toolbox via online programmatic controller

reconfiguration at each time step. This may be achieved with an adjustment of hard

constraints in (5.6b) or by considering soft constraints (i.e., ρ parameter of the Hybrid

Toolbox, Q.rho).

5.3.2 HMPC-OCSE design considerations.

Particular to the design of the hybrid closed-loop system at hand, i.e., assignment

of ‘optimal’ dosages of daily step goals and reward points, Mart́ın et al., 2016a estab-

lished a set of operational constraints for predefined finite sets that include available

intervention dosages; constraints for the realization of granted points per (5.3) were

also given. To review, for the featured performance simulations in Section 5.4, the

following sets of possible/feasible intervention dosages are defined

u8(k) ∈ U8
def
=
{
c8ν1, . . . , c8νnu8

}
, (5.8a)

u9(k) ∈ U9
def
=
{
c9νnu8+1, . . . , c9νnu8+nu9

}
(5.8b)

where c8 and c9 are some established constants (e.g., c8 is baseline behavior in (5.8a),

c9 is 100 points in (5.8b)) that are scaled up (or down) by value options νi. These

constraints can be incorporated into the HMPC formulation in (5.4c) by introducing

the logical and continuous auxiliary variables δj(k) and zj(k), respectively, such that

zj(k) = c[8,9]νjδj(k) (5.9)
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and
nu8∑
j=1

δj(k) = 1, u8(k) =

nu8∑
j=1

zj(k) (5.10)

nu8+nu9∑
j=nu8+1

δj(k) = 1, u9(k) =

nu8+nu9∑
j=nu8+1

zj(k) (5.11)

Furthermore, in Mart́ın et al., 2016a, additional logical and continuous auxiliary

variables δ10(k) and z10(k) = u10(k) are introduced to enforce the “If-Then” definition

of the granted points input u10(k) per (5.3). ‘Big-M’ formulations in Bemporad and

Morari, 1999 are used, i.e., the high-level descriptions

[f1(x)
def
= y(k)− u8(k − 1) ≤ 0]→ [δ̂10 = 1], δ̂10(k)

def
= 1− δ10(k),

{[δ10(k) = 1]→ [z10(k) = u9(k − 1)]} ∧ {[δ10(k) = 0]→ [z10(k) = 0]}

establish the following set of constraints:

y(k)− u8(k − 1) ≤ δ10(k)[ymax − umin
8 ] (5.12)

y(k)− u8(k − 1) ≥ [1− δ10(k)][ymin − umax
8 ] (5.13)

u9(k − 1)− z10(k) ≤ [1− δ10(k)][umax
9 − umin

10 ] (5.14)

u9(k − 1)− z10(k) ≥ [1− δ10(k)][umin
9 − umax

10 ] (5.15)

and

z10(k) ≤ δ10(k)umax
10 , z10(k) ≥ δ10(k)umin

10 (5.16)

Consistent with the notation in Bemporad and Morari, 1999, constraints (5.14) and

(5.15) are produced with f2(x)
def
= u9(k − 1) − u10(k), M2 = umax

9 − umin
10 , and m2 =

umin
9 − umax

10 ; i.e., [δ10(k) = 1] → [y2
def
= δ10(k)f2(x)

∆
= 0]. Constraints (5.16) are

directly constructed to reflect the logic in [δ10(k) = 0]→ [z10(k) = 0]. For simulations

presented in Section 5.4, the HYSDEL software tool (Torrisi and Bemporad, 2004)

was used to conveniently build (5.4c) via the construction of (5.9)-(5.16) from the

established high level descriptions of the hybrid OCSE closed-loop system.
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5.4 Closed-loop HMPC Simulations

In this section we present HMPC closed-loop performance simulations for single-

and multi-phase intervention strategies using the participant-validated OCSE model

from Just Walk (featured in Fig. 5.2). Results following different HMPC configu-

rations and tuning are illustrated and discussed. For simulations performed in this

section, the response of the ‘true’ plant (human subject) is set to match that of the

model’s noise-corrupted output. In both cases (i.e., single- and multi-phase), unmea-

sured disturbances are Gaussian processes with d′k ∼ N (0, 400). Tuning parameters

in setpoint and disturbance rejection (measured and unmeasured) are αr = 0.95,

αd = [0.1]nd . In all presented simulations, measured disturbance signals (i.e., envi-

ronmental context signals in Fig. 4.2) are set to equal the values from the identified

Just Walk participant featured in Fig. 5.2 in both intervention scenarios. These

signals are extended (with mirroring) to proceed beyond the Just Walk experiment

duration with as much resemblance to reality as possible.

5.4.1 Single-phase intervention.

Fig. 5.4 features a single-phase, 90-day simulation in which the intervention path

is direct from sedentary to active with no intermediate transitions. Responses of three

wu9 tunings of Qu are shown; the higher wu9 , the more suppression on issued expected

points (and, consequently, total granted points) is applied throughout the interven-

tion. When the system of points-to-money conversion in Just Walk is used (i.e., 500

points ≡ $1; Hekler et al., 2018), Fig. 5.4 shows estimates for the granted/expected

dollar amounts corresponding to each suppression setting of wu9 . For example, when

wu9 = 0.25, the potential expected reward of the corresponding intervention is $18,

of which the individual is actually granted $2.2 by ‘cashing’ the monetary equivalent
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Figure 5.4: HMPC Closed-loop Performance Simulations (Single-phase Interven-
tion) of a Participant-validated OCSE-SCT Model. HMPC Settings: Sampling Time

Ts = 1 day, N = 3, umin = [4000 0 0]
T

, umax = [10000 500 500]
T

, ymin = 0, Qy =
1, Qu = diag{0, [0.005, 0.25, 2], 0}, c8 = 4000, νj|U8 = {1, 11/8, 13/16, 11/4, 13/8, 11/2},
c9 = 100, νj|U9 = {0, 1, 2, 3, 4, 5}.
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of accumulated granted points. With a fixed value of umax
8 , it is intuitive to conclude

from Fig. 5.4 that when incentive is reduced (via the suppression of expected points)

the intervention’s outcome quality can be impacted.

5.4.2 Multi-phase intervention.

Contrary to a single-phase intervention design, a gradual increase of interven-

tion intensity/dosages over time may be desired in many application settings. In

the physical activity behavioral problem, Fig. 5.5 illustrates a multi-step interven-

tion simulation that gradually drives an individual from a sedentary baseline state

to an active state. In this case, the HMPC controller is reconfigured through an

online adjustment of umin
8 and umax

8 at predefined stages or instances so that all phase

requirements are met.

5.5 Chapter Summary

In this chapter, a more elaborate discussion on the semiphysical identification of

a lower-complexity SCT model (OCSE model) was provided, followed by an outline

summarizing some of the challenges and limitations arising in the context of Just

Walk. Next, a participant-validated, semiphysical SCT model identified using tech-

niques from the previous chapters was featured. More specifically, a time series plot

and step responses of the OCSE model, highlighting some of the most important

individual (i.e., participant) behavioral characteristics, were presented.

Further, the receding horizon strategy used in the the design of closed-loop in-

tervention simulations was introduced; an outline for the main HMPC formulation

followed. Application-specific design considerations relevant to the physical activity

behavioral problem were provided and analytically expressed using the MLD frame-

work. HMPC-governed closed-loop simulations of the identified SCT-OCSE model
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were evaluated with simultaneous setpoint tracking and disturbance rejection; a sim-

ple online controller reconfiguration approach was proposed to allow for both single-

and multi-phase intervention designs.
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Figure 5.5: HMPC Closed-loop Performance Simulations (Multi-phase Intervention) of a Participant-validated OCSE
Model. HMPC Settings Indicated in the Caption of Figure 5.4 Apply with the Following Exceptions: Only the Response
Of Qu = diag{0, 0.1, 0} is simulated; umax

8 = 6000 ∀t ∈ [0, 80]; umax
8 = 8000 ∀t ∈ [81, 160]; umax
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Chapter 6

SUMMARY, CONCLUSIONS AND FUTURE DIRECTIONS

6.1 Dissertation Summary

This dissertation has continued to demonstrate the viability of using system iden-

tification and control systems engineering frameworks in the design of optimized,

perpetually adaptive behavioral health interventions. In particular, the work of this

dissertation featured the use of real-life, single-subject experimental data in the esti-

mation and validation of both behavioral and energy balance models. While appli-

cable in other domains, the scope of presented work has remained in the domain of

designing behavioral health interventions that help prevent or treat behavior-driven

and “intergenerational” obesity, conceptually tracing back to intrauterine growth.

More specifically, this work was thematically split into two main parts: First, an

intergenerational approach included the utilization of the Healthy Mom Zone (HMZ)

study (providing longitudinal experimental data) in the development, estimation, and

validation of a dynamical systems model for regulating infant birth weight was pre-

sented in Chapter 2. The second part (Chapters 3-5) followed from calls in recent

literature for the estimation and validation of dynamic, control-oriented Social Cog-

nitive Theory (SCT) models using longitudinal data from experiments such as Just

Walk to facilitate the promotion of physical activity among sedentary populations.

Of course, the journey of fulfilling these goals has illuminated a number of technical

challenges that highlighted and approached in multiple parts of this contribution.

The rest of this chapter provides an executive summary of this dissertation, as

well as some conclusions and potential future directions in this research domain.
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6.1.1 Intrauterine Fetal Growth Model

Using first principles modeling, particularly the laws of thermodynamics, a first-

order, parameter-varying differential equation was developed and estimated in Chap-

ter 2. Following assumptions outlined in Section 2.2.1 and fundamental concepts

such as conservation of energy and entropy, this quasi-LPV model delivers an energy

balance weight growth profile as a dynamic function of daily energy intake and expen-

diture in the forms of maternal dietary intake and physical activity, respectively. A

positivity constraint was presented to establish the continuous fetal growth in utero,

providing not only a model validation criterion, but also a potential diagnostic simu-

lation tool for the early detection and prevention of small-for-gestational Age (SGA)

and large-for-gestational age (LGA) growth rates. Drawing from existing literature,

the presented model includes a modified, intuitive algebraic placental volume equation

that can easily be estimated from experimental data guided by prior knowledge.

As opposed to classical cross-sectional studies, the featured HMZ study in this

work (Chapter 2) provided a unique opportunity for estimating individual fetopla-

cental models using longitudinal, single-subject experimental data. Measures and

estimates during the second and third trimesters (and birth weight) included daily

maternal dietary intake and physical activity, estimated fetal weight and placental

volume (from ultrasound measures), fetal body composition (i.e., % body fat), daily

glycemic impact of food, and other measures outlined in Symons Downs et al., 2018.

The estimated models were validated using a number of validation arguments, in-

cluding the goodness of fit, contrasting against knowledge from existing literature,

and the developed positivity constraint validation criterion. The developed model

has been published and cited in recent works (Baller et al., 2019).
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6.1.2 System Identification of Just Walk: Social Cognitive Theory Models

As outlined in the introductory chapter, the design of optimized behavioral health

interventions using the control system engineering framework typically requires the

development of a plant (‘human’) model; see Figure 1.2. Intuitively, it is clear that

a more complete human model must incorporate an energy balance component that

account for physiological outcomes (e.g., weight gain/loss), as well as a behavioral

component that enable the prediction (and correction) of the ever-changing psycho-

logical states (e.g., self-efficacy). Similar to HMZ, the Just Walk pilot study also

presented a first-of-a-kind experimental design methodology that was founded on a

strong theoretical basis (i.e., Social Cognitive Theory) while simultaneously guided

by system identification principles. The Just Walk study utilized in this work has

also generated longitudinal individual datasets that include input-output measures

of behavior and environmental context signals over the course of approximately 14

weeks, posing a unique opportunity for this contribution to estimate and validate

pragmatic, control-oriented SCT models. Further, some of the challenges emerging

from this pilot Just Walk experiment has inspired the development of a new system

identification framework for initializing state-of-the-art grey-box solvers in difficult

problems.

Using previously published Just Walk input-output data, the modeling effort was

first segmented into two main consecutive parts: black-box model identification,

and grey-box model estimation. With an ultimate goal of estimating and validat-

ing control-oriented SCT models, a natural first step is to identify good black-box

models using participant data. Thus, individual participant datasets were utilized in

establishing input-output causality, as well as in detecting potential input-input cor-

relations (or co-linearity). With an individually identified (i.e., personalized) input-
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output dataset for each participant, Auto-Regressive with eXogenous inputs (ARX)

structure was considered. The choice of this structure originates from its attrac-

tive theoretical properties as further explained in Chapter 3. Next, an exhaustive

search approach for the optimal ARX model was the carried out across all possible

configurations that include different model orders, input combinations, and estima-

tion/validation data segmentation. A simple penalty weight approach was proposed

to underscore models with most favorable statistical properties.

Further, gleaned insights from black-box identification efforts were used to pave

the way to semiphysical identification of Just Walk. First, a pragmatic, further sim-

plified SCT structure stemming from the semiphysical model in Mart́ın et al., 2016a

was introduced and featured as an Operant Conditioning–Self-Efficacy (OCSE) model

in Chapter 4. With the absence of prior knowledge of parameter values, combined

with the unidentifiable OCSE structure in the context of Just Walk, a new method for

judicious grey-box solver initialization was proposed as part of this contribution. This

Spectral Decomposition (SD) formulation relies on identifying fully-parametrized,

physically realizable subspace (black-box) models. Theoretical results include the

proposal of a sufficient condition for the existence of a given structure under the pro-

posed formulation; a discussion highlighting sufficient conditions for uniqueness and

identifiability followed.

Eigenvalue-constrained subspace models were established and used for the esti-

mation of semiphysical (grey-box) OCSE-SCT models. The estimated OCSE models

were validated using the NRMSE goodness of fit criterion over cross-validation data

segments, in addition to observations drawn from the classic Bland-Altman (agree-

ment) and residual analysis (correlation) plots. Results from model validation clearly

marked the statistical improvements (i.e., bias and variance) as structural, SCT-

driven insights are incorporated into the initial crude black-box model.
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6.1.3 HMPC Loop Evaluation Using Participant-Validated Models

Following the delivery of participant-validated SCT models, it was possible to

accomplish the central goal of this dissertation, which is to demonstrate (using data-

driven SCT models) the viability of the dynamical systems and control approach

for designing optimized and perpetually adaptive behavioral health interventions.

In keeping with the trend of recent works in this domain, Chapter 5 adopted the

Hybrid Model Predictive Control (HMPC) framework for adaptive intervention de-

sign. A brief overview of the Bemporad HMPC formulation followed by a review

of application-specific controller configuration requirements were presented, Finally,

a real-life participant-validated model was used to produce and evaluate HMPC-

governed closed-loop simulations of single-phase and multi-phase intervention designs.

Closed-loop performances, including simultaneous setpoint tracking and (un)measured

disturbance rejection, were evaluated under different HMPC tuning settings.

6.2 Conclusions

A number of main conclusions, including conceptual, experimental, and modeling

conclusions are outlined below for the interested future researcher. Furthermore, in a

following subsection, a brief address to the concerned behavioral science and medicine

societies is provided.

• In lieu of using hypothetical models and simulations, the work of this disserta-

tion relied on experimental data drawn from real-life human participants and

well-established system identification approaches to demonstrate the efficacy

and amenability of the dynamical systems framework in importing and cap-

turing some of the key concepts of the most popular behavioral theories in

Psychology.
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• Even at the very basic level of correlation analysis and black-box modeling,

results from the Just Walk did in fact underscore the idiosyncratic nature of

human behavior, and that a conceivably effective behavioral health interven-

tion must consider the individual environmental context as well as adapt to

the changing human needs. For example, using the ARX estimator, it was

demonstrated that some individuals may be goal-driven, while a “busy” day

may predict higher or lower levels of physical activity.

• In a collaboration with the authors of dos Santos et al., 2018, a clear limita-

tion from the pilot Just Walk experiment was shown to be that low-frequency

characteristics (i.e., steady-state information) were not effectively captured due

to insufficient low-frequency excitation, which in turn would require longer and

thus more expensive studies of the same sample size. Step and frequency re-

sponses of multiple identified MoliZoft models in dos Santos et al., 2018 were

plotted to demonstrate this fact; agreement was only found in high frequency

(transient responses), with little to no agreement in low frequency (steady-state)

responses. While this may be acceptable (to an extent) for a closed-loop inter-

vention design operating on a daily scale, it may be unacceptable for drawing

conclusions or issuing predictions at steady-state, which has a value of its own.

In retrospect, the designer of a Just Walk -like experiment may consider the

incorporation of Pseudo Random Binary Sequence (PRBS) excitations (with

longer pulses) in combination with the used multisine inputs used in Equa-

tion 3.1, resulting in a longer experiment at the expense of a lower sample size,

or even resorting to a close-loop identification design that can typically lend

more tolerance for longer studies. Moreover, longer experiments may be needed
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to incorporate more variability in environmental context signals, some of which

only produce sufficient variability over longer periods of time. The designer

may also want to consider the feasibility of adapting a higher resolution (i.e.,

a finer time scale) for measuring inputs (intervention dosages), disturbances

(environmental context), and output (behavior); it has been analytically shown

in Chapter 4 that lower sampling time will naturally result into more accurate

estimates of SCT models.

• The process of estimating and validating semiphysical models of Social Cogni-

tive Theory in the context of Just Walk has revealed the importance of measur-

ing all possible states, whether directly or via a strong proxy. Unfortunately, in

the case of validating the OCSE model of Social Cognitive Theory in the con-

text of Just Walk, daily measurements of self-efficacy and behavioral outcomes

were absent. This has resulted in the structure being unidentifiable, which in-

vited a host of limitations both in model estimation and validation as outlined

in Chapters 4 and 5. The interested future researcher may want to consider

as many model states as possible to reduce the dimensionality of the estima-

tion problem, or be able to glean more a priori knowledge about pivotal model

parameter values (as illustrated in Section 4.4.2).

• The HMPC framework remains to provide the most suitable strategy for closed-

loop design of optimized, adaptive behavioral health interventions for promoting

healthy levels of physical activity. Equipped with the ability to issue optimal

hybrid decisions, HMPC control can be configured to incorporate logical, phys-

ical, environmental, and financial constraints that define the character of the

needed intervention.
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6.2.1 Remarks for the Behavioral Science and Medicine Communities

As mentioned in previous chapters, this dissertation work has been motivated by

prior efforts in this application domain. The full-blown SCT model was proposed

in Mart́ın et al., 2014 noting that “testing these models with actual data is critical”

and “[t]he model structure must be more deeply validated, via data that [come] from

experiments”. In their final remarks, Riley et al., 2015 noted that “[o]nly by testing

various components of the model with actual data will we be able to determine if this

complexity is necessary or if the model can be further simplified and streamlined”,

concluding that rigorous computational approaches are “needed for health behavior

theory testing and intervention development.”

The work of Chapters 3 and 4 attempted to explore the quoted remarks in the

context of the pilot Just Walk study that was designed using a number of principles

from system identification. In Chapter 3, some of the most important conclusions

drawn from exploring simple, black-box ARX models on “actual data” (i.e., Just

Walk) pointed that the SCT model can potentially be reduced and further simplified.

For example, in addition to reduction by established idiosyncrasy (i.e., personalization

of inputs/predictors; Figure 3.4), Table 3.1 and similar efforts with the MoliZoft

modeling methods in dos Santos et al., 2018 all point out to the potential viability of

a reduction to a third-order SCT model. Based on these insights, the OCSE model

“structure” in Figure 4.2 was proposed and studied in Chapters 4 and 5.

Now that a further simplified, third-order OCSE model of Social Cognitive Theory

is established, it is only natural to estimate and validate such a model in the context of

Just Walk experimental data. However, there are two types of challenges associated

with that: First, as discussed in Chapter 4, the prediction-error method (PEM)

typically used for estimating grey-box models such as OCSE from input-output data
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(used in Mart́ın et al., 2014) is nonconvex and thus principally depends on good initial

guesses for parameter values for its success in reaching a global optimum solution or

at least a “good enough” local one (see first column “PEM (Poor Initialization)” in

Figure 4.3). Second, it was shown in Chapter 4 that in the absence of reliable and

informative measurements for both self-efficacy and behavioral outcomes and prior

knowledge concerning model parameter values (at least the ‘pivotal’ ones discussed in

Section 4.4.2), the OCSE model becomes fundamentally unidentifiable and cannot be

formally validated (or invalidated) using input and behavior data. This was also the

case with the proposed SCT model in Mart́ın et al., 2014 in the context of the used

MILES data. Nonetheless, the effort in Chapter 4 was concerned with proposing this

reduced OCSE structure with preliminary model validation using data in Appendix

A.

In future Just Walk -like experiments, once actual informative and reliable data are

available for all model states such as behavior, self-efficacy, and behavioral outcomes

for the OCSE model in Figure 4.2 (also the Cue to Action and Outcome Expectancy

states for the model in Figure 1.1), the SCT model in question becomes identifiable

from data. The contribution in Chapter 4 distilled in Equation (4.15) delivered a

convexification of the grey-box estimation problem (see Example 4.3.1), providing a

valuable formal model validation (or invalidation) and “theory testing” tool that is

‘immune’ to potential “local minima” challenges provided that both assumptions in

Theorem 4.2.1 are held. When and if a formal OCSE model validation is established

in future Just Walk -like studies (with all model states reliably measured), strategies

informed by the various constructs (i.e., self-efficacy, etc.) can be developed and

utilized in an HMPC-based closed-loop intervention design scheme.
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6.3 Potential Future Directions

As the scope of work in this dissertation explored a library of dynamical systems

models useful for designing optimized and adaptive behavioral health interventions,

an initial effort constrained by experimental limitations; the following are a few in-

teresting directions of potential future work relevant to this research.

6.3.1 Further developments in the fetal growth model

In the work of Chapter 2, we postulated an empirical, ‘modified’ logistic function

characterizing the phases of placental volume growth from conception through birth.

Unfortunately, this function (Equation (2.29)) does not incorporate nor produce any

further physiological insights other than the general growth profile shaped by the

known cell multiplication and spacial constraints. In future developments, it may

prove to be useful having a model that characterizes all significant influences on pla-

cental growth, other than just time. This model can stem either from first principles

modeling or by coupling known physiological factors with experimental results. Fur-

ther, following observations from Thomas et al., 2008, the impact of maternal physical

activity on fetal growth was assumed to be mediated by the placental volume, i.e.,

γ(t) = αPA(t) + β (2.22)

This needs to be further established using future studies and/or new analyses of

potentially existing data; see Baller et al., 2019 for a more elaborate reference of

existing studies.

Finally, while it might have been clear to justify the assumed positivity (or non-

negativity) of fetal growth rate throughout gestation, it is however, not clear in a

mathematical sense how to capture events such as starvation or malnutrition. The

potential for developing a more complete model in that respect may lie in revealing
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the functional form of the αW (t) in

Îf (t) = γ(t) [g(t)m(t) + αW (t)Wm(t)]P (t) (2.14)

6.3.2 LPV Modeling of Social Cognitive Theory

While identification results from earlier chapters show real promise for the po-

tency of Linear Time-Invariant (LTI) dynamical systems in predicting and explaining

human behavior, it is not only conceivable but in fact known that underlying dy-

namics driving behavior change can indeed be time-varying and nonlinear (Hayes

et al., 2007; Korinek et al., 2018). Given the well-understood theory and properties

of linear systems in both identification and control, one may be interested in exploring

nonlinearities and time-varying characteristics driving human behavior-change using

the LTI framework, which is on offer by LPV identification. Similar to the provided

reasoning that resulted in choice of ARX modeling in Chapter 3, and following the

general advice from Ljung, 1999 on “try simple things first!”, an LPV-ARX model

structure is thus the recommended choice of initial structure for identification, fol-

lowed by introducing and exploring practical LPV extensions to the semiphysical

OCSE-SCT model. The attractive properties of the LPV-ARX model structure such

as consistency (Cox, 2018, Theorem 6.1) and convexity (existence of a unique ana-

lytical solution) continue to extend from LTI-ARX.

6.3.3 Application of HMPC Design in ‘Real-life’ Intervention Settings

Despite that all models produced in this contribution represent real-life partici-

pants from Just Walk, one is indeed welcome to question the efficacy of the estimated

behavioral models or proposed intervention designs over an extended periods of time

not only in the scale of months, but several years. Guo has written a similar section

in a recent dissertation relevant to this application domain, stating that “it would
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be useful to examine how models could be obtained for the intervention in practice,”

and that, similar to the case with this dissertation, “HMPC-based control was not

performed online.” As such, in agreement with Guo, 2018, an adaptive, closed-loop

identification strategy is proposed to approach the ‘longevity’ argument. One may

consider such a design in future Just Walk -like experiments by starting with an ini-

tial model estimated from a short baseline, open-loop dataset or from an “averaged”

participant response data from prior analyses as in Chapters 3 and 4.

6.3.4 Toward the ‘Convexification’ of Semiphysical Identification & Extensions to

the SD Method

The proposed Spectral Decomposition (SD) identification algorithm in this work

benefited two main assumptions outlined in Section 4.2. Namely, it was assumed

that the initially obtained black-box model possesses a number of distinct eigenvalues

(i.e., poles) that is equal to the order of the minimal state-space representation of

that system. The second assumption is that input excitations in the data-generating

experiment follow a zero-order hold intersampling behavior. A powerful extension

may consider to deliver further derivations and/or explicit conditions that enable the

elimination of one (or both) of these assumptions.

Additionally, the SD algorithm introduced a loss function that is nonlinear and is

thus nonconvex with respect to the similarity transformation Tf . In order to become

amenable to the larger family of optimization methods and solvers, one may be in-

terested in deriving exact or at least good gradient and Hessian approximations for

solving (4.22).

Further, on a theoretical level, the delivered SD formulation has only considered

linear grey-box structures. It is noted that one may also consider the extension

of delivered theoretical results in Chapter 4 for quadratic structures which may be

121



needed for further model specification. A more general quadratic structure quintu-

ple (P, d,Qi, qi, ri) can result into the following quadratically constrained quadratic

program (QCQP)

min
θ

1

2
θTHθ + fT θ

s.t.
1

2
θTQiθ + qTi θ + ri ≤ 0 ∀i = 1, . . . , l

Pθ = d

(6.1)

with variables defined in (4.11) and Qi, qi and ri enforcing the quadratic structural

constraints; l is the number of established quintuplets. Note the amenability of this

formulation to the incorporation of integer and/or binary constraints. Finally, it is

known from Chapter 4 that for an estimation problem with H and Qi being positive

semidefinite (i.e., H � 0 and Qi � 0 ∀i = 1, . . . , l), the resulting QCQP in (6.1)

remains convex.
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APPENDIX A

PUBLISHED JUST WALK DATA DIGITIZATION
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A.1 Overview

In Chapters 2 and 3, this dissertation had access to the original datasets from the

Healthy Mom Zone and Just Walk studies, respectively. However, for unrestricted

publication purposes, the rest of this dissertation strictly resorted to recovering the

Just Walk data used in the completion of Chapters 4 and 5 from published graphical

sources. The purpose of this appendix is to describe the data digitization process in

support of results in Chapters 4 and 5 and provide the necessary information and

arguments that underline the estimated accuracy and confidence in the obtained final

sets.

The primary concern in Chapter 4 was to deliver an identification formulation for

estimating structured state-space (grey-box) models such as the Operant Conditioning–

Self-Efficacy (OCSE) model introduced in Figure 4.2. In order to preliminarily val-

idate the OCSE model using experimental data of real human participants as well

as test the efficacy of the developed spectral decomposition formulation relative to

“off-the-shelf” software and methods, input-output data for Participants A and B

published in Mercere, 2017 and Freigoun et al., 2017 (respectively) were digitized and

recovered with high ‘accuracy’ (and full confidence in 13 out of 14 total signals; see

Table A.7). To promote further inquiry in this area, the final recovered sets from the

cited sources are given in Tables A.2-A.6 for the interested researcher.

135



A.2 Known Facts & Graphical Sets

To support statements of confidence given in Table A.7, the following Just Walk

information must be highlighted:

1. Recovery of data points from the published electronic versions of Mercere, 2017;

Freigoun et al., 2017 was carried out using the Adobe Illustrator vector graphics

editor, producing descaled data with a precision of 7 decimal points (see Graph-

ical Sets 1-15). Fortunately, both cited sources provided the concerned plots

with high accuracy information in the form of line, polyline, and polygon

graphical objects that maintain the relative distance between all data points

established by the published plot.

Both line and polyline graphical objects contain ‘unique’ descaled data points

with precision of 7 decimal places. The one and only case containing a polygon

object was treated by ‘cutting’ the polygon to create two polyline sets (see

Graphical Sets 6 and 7). It is known from these objects that the ‘true’ value

must lie within the maximum possible gap between the two polyline sets orig-

inating from the original polygon object.

2. In both signals, Goals and Expected Points, it is known from Freigoun et al., 2017;

Phatak et al., 2018; Korinek et al., 2018 that orthogonal-in-frequency, 16-day

repeating cycles were used in the design of these signals (see Table 1 in Korinek

et al., 2018 for a real representative sample). Using the known “IF-THEN” rule,

the Granted Points signal value at day k must be either zero or identical to the

Expected Points value at day k − 1 (see Equation 5.3).

3. It is also known from Korinek et al., 2018; Phatak et al., 2018 (which was also

visually and numerically verified) that Expected Points are issued on a 100-500
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point scale, restricted to multiples of 25 only (see Table 1 in Korinek et al., 2018

for a real representative sample).

4. By definition, all other signal values are strictly whole numbers (i.e., 0 or positive

integers) on predefined scales in Freigoun et al., 2017; Korinek et al., 2018;

Phatak et al., 2018 as follows. Behavior : whole number; Goals : whole number;

Predicted Busyness : 1-4; Predicted Stress : 1-5; Predicted Typical : 1-4; Weekday

- Weekend : 0 for weekday, 1 for weekend.

5. The total number of available data points in both sources are 88 (for 88 days),

starting from a time index of 0. This is verified visually as well as can be inferred

from the retrieved Graphical Sets 1-15.

The following Graphical Sets 1-15 include retrieved data points to arbitrary scales

from Mercere, 2017; Freigoun et al., 2017 using a high-precision software.

Graphical Set 1: Participant A (Goals)
<line id=" XMLID_7_" class="st0" x1 ="3.7169952" y1 ="10.2731934" x2="0" y2 ="10.2731934"/ >
<line id=" XMLID_5_" class="st0" x1 ="3.7169952" y1 ="2.6628113" x2="0" y2 ="2.6628113"/ >
<polyline id=" XMLID_2_" class="st0" points ="318.2929688 ,2.5610352 318.2929688 ,16.6767578 314.6357422 ,16.6767578

314.6357422 ,10.9780273 310.9819336 ,10.9780273 310.9819336 ,0.3500977 307.3261719 ,0.3500977
307.3261719 ,2.4350586 303.6699219 ,2.4350586 303.6699219 ,0.8598633 300.0131836 ,0.8598633
300.0131836 ,14.7709961 296.3579102 ,14.7709961 296.3579102 ,13.34375 292.7041016 ,13.34375
292.7041016 ,2.8608398 289.0478516 ,2.8608398 289.0478516 ,16.59375 285.3920898 ,16.59375
285.3920898 ,11.0761719 281.7358398 ,11.0761719 281.7358398 ,0.25 278.0810547 ,0.25 278.0810547 ,2.5180664
274.4248047 ,2.5180664 274.4248047 ,0.7910156 270.7680664 ,0.7910156 270.7680664 ,14.7900391
267.1118164 ,14.7900391 267.1118164 ,13.3588867 263.4570313 ,13.3588867 263.4570313 ,2.8110352
259.8017578 ,2.8110352 259.8017578 ,16.6767578 256.1469727 ,16.6767578 256.1469727 ,10.9780273
252.4912109 ,10.9780273 252.4912109 ,0.3500977 248.8349609 ,0.3500977 248.8349609 ,2.4350586
245.1791992 ,2.4350586 245.1791992 ,0.8598633 241.5239258 ,0.8598633 241.5239258 ,14.7709961
237.8691406 ,14.7709961 237.8691406 ,13.34375 234.2138672 ,13.34375 234.2138672 ,2.8608398
230.5571289 ,2.8608398 230.5571289 ,16.59375 226.9018555 ,16.59375 226.9018555 ,11.0761719
223.2470703 ,11.0761719 223.2470703 ,0.25 219.5917969 ,0.25 219.5917969 ,2.5180664 215.934082 ,2.5180664
215.934082 ,0.7910156 212.277832 ,0.7910156 212.277832 ,14.7900391 208.6240234 ,14.7900391
208.6240234 ,13.3588867 204.9677734 ,13.3588867 204.9677734 ,2.8110352 201.3110352 ,2.8110352
201.3110352 ,16.6767578 197.6547852 ,16.6767578 197.6547852 ,10.9780273 194 ,10.9780273 194 ,0.3500977
190.34375 ,0.3500977 190.34375 ,2.4350586 186.6879883 ,2.4350586 186.6879883 ,0.8598633 183.0341797 ,0.8598633
183.0341797 ,14.7709961 179.3779297 ,14.7709961 179.3779297 ,13.34375 175.7211914 ,13.34375
175.7211914 ,2.8608398 172.065918 ,2.8608398 172.065918 ,16.59375 168.4101563 ,16.59375 168.4101563 ,11.0761719
164.7539063 ,11.0761719 164.7539063 ,0.25 161.0981445 ,0.25 161.0981445 ,2.5180664 157.4418945 ,2.5180664
157.4418945 ,0.7910156 153.7890625 ,0.7910156 153.7890625 ,14.7900391 150.1318359 ,14.7900391
150.1318359 ,13.3588867 146.4760742 ,13.3588867 146.4760742 ,2.8110352 142.8208008 ,2.8110352
142.8208008 ,16.6767578 139.1640625 ,16.6767578 139.1640625 ,10.9780273 135.5087891 ,10.9780273
135.5087891 ,0.3500977 131.8540039 ,0.3500977 131.8540039 ,2.4350586 128.1992188 ,2.4350586
128.1992188 ,0.8598633 124.5429688 ,0.8598633 124.5429688 ,14.7709961 120.8857422 ,14.7709961
120.8857422 ,13.34375 117.230957 ,13.34375 117.230957 ,2.8608398 113.5761719 ,2.8608398 113.5761719 ,16.59375
109.9199219 ,16.59375 109.9199219 ,11.0761719 106.2651367 ,11.0761719 106.2651367 ,0.25 102.6079102 ,0.25
102.6079102 ,2.5180664 98.953125 ,2.5180664 98.953125 ,0.7910156 95.296875 ,0.7910156 95.296875 ,14.7900391
91.6401367 ,14.7900391 91.6401367 ,13.3588867 87.9848633 ,13.3588867 87.9848633 ,2.8110352 84.3310547 ,2.8110352
84.3310547 ,16.6767578 80.6757813 ,16.6767578 80.6757813 ,10.9780273 77.019043 ,10.9780273 77.019043 ,0.3500977
73.362793 ,0.3500977 73.362793 ,2.4350586 69.7080078 ,2.4350586 69.7080078 ,0.8598633 66.0507813 ,0.8598633

66.0507813 ,14.7709961 62.3959961 ,14.7709961 62.3959961 ,13.34375 58.7412109 ,13.34375 58.7412109 ,2.8608398
55.0849609 ,2.8608398 55.0849609 ,16.59375 51.4291992 ,16.59375 51.4291992 ,11.0761719 47.7739258 ,11.0761719
47.7739258 ,0.25 44.1181641 ,0.25 44.1181641 ,2.5180664 40.4628906 ,2.5180664 40.4628906 ,0.7910156
36.8071289 ,0.7910156 36.8071289 ,14.7900391 33.1518555 ,14.7900391 33.1518555 ,13.3588867
29.4960938 ,13.3588867 29.4960938 ,2.8110352 25.8398438 ,2.8110352 25.8398438 ,16.6767578 22.1850586 ,16.6767578
22.1850586 ,10.9780273 18.5288086 ,10.9780273 18.5288086 ,0.3500977 14.8720703 ,0.3500977 14.8720703 ,2.4350586
11.2158203 ,2.4350586 11.2158203 ,0.8598633 7.5610352 ,0.8598633 7.5610352 ,14.7709961 3.9057617 ,14.7709961

3.9057617 ,13.34375 0 ,13.34375"/ >
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Graphical Set 2: Participant A (Expected Points)
<line id=" XMLID_3_" class="st0" x1 ="3.7169952" y1 ="9.677887" x2="0" y2 ="9.677887"/ >
<line id=" XMLID_2_" class="st0" x1 ="3.7169952" y1 ="3.3927002" x2="0" y2 ="3.3927002"/ >
<polyline id=" XMLID_4_" class="st0" points ="318.2929688 ,2.8569336 318.2929688 ,1.0351563 314.637207 ,1.0351563

314.637207 ,1.8208008 310.9819336 ,1.8208008 310.9819336 ,11.25 307.3261719 ,11.25 307.3261719 ,9.6782227
303.6699219 ,9.6782227 303.6699219 ,1.8208008 300.0131836 ,1.8208008 300.0131836 ,6.5361328
296.3579102 ,6.5361328 296.3579102 ,12.8208008 292.7041016 ,12.8208008 292.7041016 ,10.4628906
289.0478516 ,10.4628906 289.0478516 ,12.0341797 285.3920898 ,12.0341797 285.3920898 ,11.25 281.7358398 ,11.25
281.7358398 ,1.8208008 278.0810547 ,1.8208008 278.0810547 ,3.3930664 274.4248047 ,3.3930664 274.4248047 ,11.25
270.7680664 ,11.25 270.7680664 ,6.5361328 267.1118164 ,6.5361328 267.1118164 ,0.25 263.4570313 ,0.25
263.4570313 ,2.6069336 259.8007813 ,2.6069336 259.8017578 ,1.0351563 256.1469727 ,1.0351563
256.1469727 ,1.8208008 252.4912109 ,1.8208008 252.4912109 ,11.25 248.8349609 ,11.25 248.8349609 ,9.6782227
245.1791992 ,9.6782227 245.1791992 ,1.8208008 241.5239258 ,1.8208008 241.5239258 ,6.5361328
237.8691406 ,6.5361328 237.8691406 ,12.8208008 234.2138672 ,12.8208008 234.2138672 ,10.4628906
230.5571289 ,10.4628906 230.5571289 ,12.0341797 226.9018555 ,12.0341797 226.9018555 ,11.25 223.2470703 ,11.25
223.2470703 ,1.8208008 219.5917969 ,1.8208008 219.5917969 ,3.3930664 215.934082 ,3.3930664 215.934082 ,11.25
212.277832 ,11.25 212.277832 ,6.5361328 208.6240234 ,6.5361328 208.6240234 ,0.25 204.9677734 ,0.25
204.9677734 ,2.6069336 201.3110352 ,2.6069336 201.3110352 ,1.0351563 197.6547852 ,1.0351563
197.6547852 ,1.8208008 194 ,1.8208008 194 ,11.25 190.34375 ,11.25 190.34375 ,9.6782227 186.6879883 ,9.6782227
186.6879883 ,1.8208008 183.0341797 ,1.8208008 183.0341797 ,6.5361328 179.3779297 ,6.5361328
179.3779297 ,12.8208008 175.7211914 ,12.8208008 175.7211914 ,10.4628906 172.065918 ,10.4628906
172.065918 ,12.0341797 168.4101563 ,12.0341797 168.4101563 ,11.25 164.7539063 ,11.25 164.7539063 ,1.8208008
161.0981445 ,1.8208008 161.0981445 ,3.3930664 157.4418945 ,3.3930664 157.4418945 ,11.25 153.7890625 ,11.25
153.7890625 ,6.5361328 150.1318359 ,6.5361328 150.1318359 ,0.25 146.4760742 ,0.25 146.4760742 ,2.6069336
142.8208008 ,2.6069336 142.8208008 ,1.0351563 139.1640625 ,1.0351563 139.1640625 ,1.8208008
135.5087891 ,1.8208008 135.5087891 ,11.25 131.8540039 ,11.25 131.8540039 ,9.6782227 128.1992188 ,9.6782227
128.1992188 ,1.8208008 124.5429688 ,1.8208008 124.5429688 ,6.5361328 120.887207 ,6.5361328
120.887207 ,12.8208008 117.230957 ,12.8208008 117.230957 ,10.4628906 113.5761719 ,10.4628906
113.5761719 ,12.0341797 109.9199219 ,12.0341797 109.9199219 ,11.25 106.2651367 ,11.25 106.2651367 ,1.8208008
102.6079102 ,1.8208008 102.6079102 ,3.3930664 98.953125 ,3.3930664 98.953125 ,11.25 95.296875 ,11.25
95.296875 ,6.5361328 91.6401367 ,6.5361328 91.6401367 ,0.25 87.9848633 ,0.25 87.9848633 ,2.6069336
84.3310547 ,2.6069336 84.3310547 ,1.0351563 80.6757813 ,1.0351563 80.6757813 ,1.8208008 77.019043 ,1.8208008
77.019043 ,11.25 73.362793 ,11.25 73.362793 ,9.6782227 69.7080078 ,9.6782227 69.7080078 ,1.8208008
66.0507813 ,1.8208008 66.0507813 ,6.5361328 62.3959961 ,6.5361328 62.3959961 ,12.8208008 58.7412109 ,12.8208008
58.7412109 ,10.4628906 55.0849609 ,10.4628906 55.0849609 ,12.0341797 51.4291992 ,12.0341797 51.4291992 ,11.25
47.7739258 ,11.25 47.7739258 ,1.8208008 44.1181641 ,1.8208008 44.1181641 ,3.3930664 40.4628906 ,3.3930664
40.4628906 ,11.25 36.8071289 ,11.25 36.8071289 ,6.5361328 33.1518555 ,6.5361328 33.1518555 ,0.25 29.4960938 ,0.25
29.4960938 ,2.6069336 25.8398438 ,2.6069336 25.8398438 ,1.0351563 22.1850586 ,1.0351563 22.1850586 ,1.8208008

18.5288086 ,1.8208008 18.5288086 ,11.25 14.8720703 ,11.25 14.8720703 ,9.6782227 11.2158203 ,9.6782227
11.2158203 ,1.8208008 7.5610352 ,1.8208008 7.5610352 ,6.5361328 3.9057617 ,6.5361328 3.9057617 ,12.8208008
0 ,12.8208008"/ >

Graphical Set 3: Participant A (Granted Points)
<line id=" XMLID_6_" class="st0" x1 ="3.7169952" y1 ="9.7649841" x2="0" y2 ="9.7649841"/ >
<line id=" XMLID_5_" class="st0" x1 ="3.7169952" y1 ="3.4229736" x2="0" y2 ="3.4229736"/ >
<polyline id=" XMLID_4_" class="st0" points ="318.5429688 ,16.1069336 300.0131836 ,16.1069336 300.0131836 ,12.9350586

296.3579102 ,12.9350586 296.3579102 ,16.1069336 292.7041016 ,16.1069336 292.7041016 ,12.1411133
289.0478516 ,12.1411133 289.0478516 ,11.3510742 285.3920898 ,11.3510742 285.3920898 ,1.8369141
281.7358398 ,1.8369141 281.7358398 ,3.4228516 278.0810547 ,3.4228516 278.0810547 ,16.1069336
274.4248047 ,16.1069336 274.4248047 ,6.5917969 270.7680664 ,6.5917969 270.7680664 ,0.25 267.1118164 ,0.25
267.1118164 ,2.6279297 263.4570313 ,2.6279297 263.4570313 ,1.0429688 259.8017578 ,1.0429688
259.8017578 ,1.8369141 256.1469727 ,1.8369141 256.1469727 ,16.1069336 252.4912109 ,16.1069336
252.4912109 ,9.7651367 248.8349609 ,9.7651367 248.8349609 ,1.8369141 245.1791992 ,1.8369141
245.1791992 ,6.5917969 241.5239258 ,6.5917969 241.5239258 ,12.9350586 237.8691406 ,12.9350586
237.8691406 ,10.5571289 234.2138672 ,10.5571289 234.2138672 ,12.1411133 230.5571289 ,12.1411133
230.5571289 ,11.3510742 226.9018555 ,11.3510742 226.9018555 ,16.1069336 223.2470703 ,16.1069336
223.2470703 ,3.4228516 219.5917969 ,3.4228516 219.5917969 ,11.3510742 215.934082 ,11.3510742
215.934082 ,6.5917969 212.277832 ,6.5917969 212.277832 ,0.25 208.6240234 ,0.25 208.6240234 ,2.6279297
204.9677734 ,2.6279297 204.9677734 ,1.0429688 201.3110352 ,1.0429688 201.3110352 ,1.8369141
197.6547852 ,1.8369141 197.6547852 ,11.3510742 194 ,11.3510742 194 ,9.7651367 190.34375 ,9.7651367
190.34375 ,1.8369141 186.6879883 ,1.8369141 186.6879883 ,6.5917969 183.0341797 ,6.5917969
183.0341797 ,12.9350586 179.3779297 ,12.9350586 179.3779297 ,10.5571289 175.7211914 ,10.5571289
175.7211914 ,12.1411133 172.065918 ,12.1411133 172.065918 ,11.3510742 168.4101563 ,11.3510742
168.4101563 ,1.8369141 164.7539063 ,1.8369141 164.7539063 ,16.1069336 161.0981445 ,16.1069336
161.0981445 ,11.3510742 157.4418945 ,11.3510742 157.4418945 ,6.5917969 153.7890625 ,6.5917969 153.7890625 ,0.25
150.1318359 ,0.25 150.1318359 ,2.6279297 146.4760742 ,2.6279297 146.4760742 ,1.0429688 142.8208008 ,1.0429688
142.8208008 ,1.8369141 139.1640625 ,1.8369141 139.1640625 ,16.1069336 117.230957 ,16.1069336
117.230957 ,12.1411133 113.5761719 ,12.1411133 113.5761719 ,11.3510742 109.9199219 ,11.3510742
109.9199219 ,1.8369141 106.2651367 ,1.8369141 106.2651367 ,3.4228516 102.6079102 ,3.4228516
102.6079102 ,11.3510742 98.953125 ,11.3510742 98.953125 ,6.5917969 95.296875 ,6.5917969 95.296875 ,0.25
91.6401367 ,0.25 91.6401367 ,2.6279297 87.9848633 ,2.6279297 87.9848633 ,1.0429688 84.3310547 ,1.0429688
84.3310547 ,1.8369141 80.6757813 ,1.8369141 80.6757813 ,11.3510742 77.019043 ,11.3510742 77.019043 ,9.7651367
73.362793 ,9.7651367 73.362793 ,1.8369141 69.7080078 ,1.8369141 69.7080078 ,6.5917969 66.0507813 ,6.5917969
66.0507813 ,12.9350586 62.3959961 ,12.9350586 62.3959961 ,10.5571289 58.7412109 ,10.5571289
58.7412109 ,12.1411133 55.0849609 ,12.1411133 55.0849609 ,11.3510742 51.4291992 ,11.3510742
51.4291992 ,1.8369141 47.7739258 ,1.8369141 47.7739258 ,3.4228516 44.1181641 ,3.4228516 44.1181641 ,11.3510742
40.4628906 ,11.3510742 40.4628906 ,6.5917969 36.8071289 ,6.5917969 36.8071289 ,0.25 33.1518555 ,0.25
33.1518555 ,2.6279297 29.4960938 ,2.6279297 29.4960938 ,1.0429688 25.8398438 ,1.0429688 25.8398438 ,1.8369141
22.1850586 ,1.8369141 22.1850586 ,11.3510742 18.5288086 ,11.3510742 18.5288086 ,9.7651367 14.8720703 ,9.7651367
14.8720703 ,1.8369141 11.2158203 ,1.8369141 11.2158203 ,6.5917969 7.5610352 ,6.5917969 7.5610352 ,12.9350586
3.9057617 ,12.9350586 3.9057617 ,10.5571289 0 ,10.5571289"/ >

Graphical Set 4: Participant A (Predicted Busyness)
<line id=" XMLID_2_" class="st0" x1 ="3.7169952" y1 ="14.9170227" x2="0" y2 ="14.9170227"/ >
<line id=" XMLID_5_" class="st0" x1 ="3.7169952" y1 ="0.25" x2="0" y2="0.25"/ >
<polyline id=" XMLID_6_" class="st0" points ="318.5429688 ,3.184082 289.0478516 ,3.184082 289.0478516 ,6.1171875

274.4248047 ,6.1171875 274.4248047 ,9.0507813 256.1469727 ,9.0507813 256.1469727 ,3.184082 237.8691406 ,3.184082
237.8691406 ,6.1171875 234.2138672 ,6.1171875 234.2138672 ,9.0507813 230.5571289 ,9.0507813

230.5571289 ,6.1171875 226.9018555 ,6.1171875 226.9018555 ,9.0507813 223.2470703 ,9.0507813
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223.2470703 ,6.1171875 208.6240234 ,6.1171875 208.6240234 ,9.0507813 194 ,9.0507813 194 ,6.1171875
183.0341797 ,6.1171875 183.0341797 ,9.0507813 179.3779297 ,9.0507813 179.3779297 ,6.1171875
175.7211914 ,6.1171875 175.7211914 ,3.184082 172.065918 ,3.184082 172.065918 ,6.1171875 161.0981445 ,6.1171875
161.0981445 ,9.0507813 150.1318359 ,9.0507813 150.1318359 ,6.1171875 146.4760742 ,6.1171875
146.4760742 ,3.184082 139.1640625 ,3.184082 139.1640625 ,9.0507813 135.5087891 ,9.0507813 135.5087891 ,6.1171875
131.8540039 ,6.1171875 131.8540039 ,9.0507813 128.1992188 ,9.0507813 128.1992188 ,3.184082

109.9199219 ,3.184082 109.9199219 ,6.1171875 106.2651367 ,6.1171875 106.2651367 ,9.0507813
102.6079102 ,9.0507813 102.6079102 ,3.184082 95.296875 ,3.184082 95.296875 ,6.1171875 87.9848633 ,6.1171875
87.9848633 ,3.184082 84.3310547 ,3.184082 84.3310547 ,6.1171875 80.6757813 ,6.1171875 80.6757813 ,11.9829102
77.019043 ,11.9829102 77.019043 ,6.1171875 73.362793 ,6.1171875 73.362793 ,3.184082 66.0507813 ,3.184082
66.0507813 ,6.1171875 55.0849609 ,6.1171875 55.0849609 ,9.0507813 51.4291992 ,9.0507813 51.4291992 ,11.9829102
47.7739258 ,11.9829102 47.7739258 ,9.0507813 44.1181641 ,9.0507813 44.1181641 ,6.1171875 29.4960938 ,6.1171875
29.4960938 ,9.0507813 25.8398438 ,9.0507813 25.8398438 ,6.1171875 22.1850586 ,6.1171875 22.1850586 ,9.0507813
18.5288086 ,9.0507813 18.5288086 ,3.184082 14.8720703 ,3.184082 14.8720703 ,6.1171875 11.2158203 ,6.1171875
11.2158203 ,3.184082 7.5610352 ,3.184082 7.5610352 ,9.0507813 3.9057617 ,9.0507813 3.9057617 ,6.1171875
0 ,6.1171875"/ >

Graphical Set 5: Participant A (Predicted Stress)
<line id=" XMLID_2_" class="st0" x1 ="3.7169952" y1 ="15.0470276" x2="0" y2 ="15.0470276"/ >
<line id=" XMLID_5_" class="st0" x1 ="3.7169952" y1 ="0.25" x2="0" y2="0.25"/ >
<polyline id=" XMLID_6_" class="st0" points ="318.5429688 ,6.1689453 310.9819336 ,6.1689453 310.9819336 ,3.2089844

300.0131836 ,3.2089844 300.0131836 ,0.25 292.7041016 ,0.25 292.7041016 ,3.2089844 289.0478516 ,3.2089844
289.0478516 ,6.1689453 274.4248047 ,6.1689453 274.4248047 ,9.1269531 256.1469727 ,9.1269531
256.1469727 ,3.2089844 237.8691406 ,3.2089844 237.8691406 ,6.1689453 234.2138672 ,6.1689453
234.2138672 ,9.1269531 230.5571289 ,9.1269531 230.5571289 ,6.1689453 219.5917969 ,6.1689453
219.5917969 ,3.2089844 212.277832 ,3.2089844 212.277832 ,6.1689453 208.6240234 ,6.1689453 208.6240234 ,9.1269531
204.9677734 ,9.1269531 204.9677734 ,6.1689453 183.0341797 ,6.1689453 183.0341797 ,9.1269531

179.3779297 ,9.1269531 179.3779297 ,3.2089844 172.065918 ,3.2089844 172.065918 ,6.1689453 157.4418945 ,6.1689453
157.4418945 ,9.1269531 153.7890625 ,9.1269531 153.7890625 ,6.1689453 135.5087891 ,6.1689453

135.5087891 ,9.1269531 131.8540039 ,9.1269531 131.8540039 ,12.0878906 128.1992188 ,12.0878906
128.1992188 ,3.2089844 124.5429688 ,3.2089844 124.5429688 ,6.1689453 120.887207 ,6.1689453 120.887207 ,3.2089844
109.9199219 ,3.2089844 109.9199219 ,6.1689453 106.2651367 ,6.1689453 106.2651367 ,9.1269531

102.6079102 ,9.1269531 102.6079102 ,3.2089844 98.953125 ,3.2089844 98.953125 ,6.1689453 91.6401367 ,6.1689453
91.6401367 ,9.1269531 87.9848633 ,9.1269531 87.9848633 ,3.2089844 84.3310547 ,3.2089844 84.3310547 ,9.1269531
77.019043 ,9.1269531 77.019043 ,3.2089844 66.0507813 ,3.2089844 66.0507813 ,6.1689453 62.3959961 ,6.1689453
62.3959961 ,9.1269531 55.0849609 ,9.1269531 55.0849609 ,6.1689453 51.4291992 ,6.1689453 51.4291992 ,9.1269531
47.7739258 ,9.1269531 47.7739258 ,6.1689453 36.8071289 ,6.1689453 36.8071289 ,9.1269531 25.8398438 ,9.1269531
25.8398438 ,6.1689453 22.1850586 ,6.1689453 22.1850586 ,9.1269531 18.5288086 ,9.1269531 18.5288086 ,6.1689453
7.5610352 ,6.1689453 7.5610352 ,9.1269531 0 ,9.1269531"/ >

Graphical Set 6: Participant A (Actual Steps: Top Curve)
<line id=" XMLID_6_" class="st0" x1 ="3.717701" y1 ="34.5572166" x2 ="0.0007058" y2 ="34.5572166"/ >
<line id=" XMLID_5_" class="st0" x1 ="3.717701" y1 ="24.3072186" x2 ="0.0007058" y2 ="24.3072186"/ >
<polyline id=" XMLID_2_" class="st0" points ="318.293457 ,44.3364258 314.6376953 ,48.7729492 310.9819336 ,31.9199219

310.9624023 ,31.9350586 307.3271484 ,46.5717773 303.6767578 ,38.6401367 303.652832 ,38.6616211
300.0136719 ,55.34375 296.3481445 ,36.4580078 296.3134766 ,36.4697266 292.7045898 ,40.8886719
289.0488281 ,42.2119141 285.3862305 ,34.9516602 281.7275391 ,17.9467773 281.6943359 ,17.9604492
278.0673828 ,23.2587891 274.425293 ,43.4731445 270.7602539 ,33.2670898 270.7211914 ,33.2685547
267.1123047 ,35.003418 263.4594727 ,22.5576172 263.4394531 ,22.5742188 259.8022461 ,39.0668945
256.1445313 ,27.5117188 256.1157227 ,27.5288086 252.4921875 ,35.3989258 248.8505859 ,21.6533203
248.777832 ,21.5732422 245.2314453 ,20.2900391 245.1694336 ,20.3256836 241.5244141 ,39.1035156
237.8691406 ,37.8076172 234.2133789 ,21.6879883 234.1933594 ,21.7036133 230.5576172 ,36.3886719
226.9233398 ,33.0810547 223.2358398 ,27.8334961 219.5854492 ,15.4287109 219.5527344 ,15.4433594
215.9213867 ,21.0004883 212.2788086 ,37.5668945 208.6162109 ,31.4941406 204.9702148 ,12.0214844
204.9560547 ,12.0341797 201.3115234 ,39.1445313 197.6455078 ,34.0844727 193.9873047 ,13.0297852
193.9501953 ,13.0366211 190.3447266 ,16.2075195 186.6704102 ,20.6538086 183.034668 ,39.8637695
179.3779297 ,37.4643555 179.3554688 ,37.3657227 175.7236328 ,21.2519531 175.7055664 ,21.2666016
172.0668945 ,40.5908203 168.4023438 ,33.9316406 164.7597656 ,19.625 164.7446289 ,19.6391602
161.0986328 ,53.3349609 157.4399414 ,18.296875 157.4257813 ,18.3081055 153.7890625 ,38.3051758
150.1152344 ,34.1572266 146.4819336 ,23.7568359 146.4619141 ,23.7749023 142.8222656 ,43.0913086
139.1567383 ,31.0385742 139.1220703 ,31.0522461 135.4931641 ,35.9443359 131.8549805 ,48.940918
128.2080078 ,43.8911133 128.1806641 ,43.9165039 124.5429688 ,57.6962891 120.8964844 ,54.925293
117.2324219 ,51.6069336 117.2124023 ,51.5390625 113.5766602 ,38.9926758 109.9130859 ,32.3974609
106.2543945 ,13.4458008 106.2182617 ,13.456543 102.6088867 ,17.3959961 98.9609375 ,8.3535156
98.940918 ,8.3730469 95.296875 ,33.6875 91.6162109 ,30.800293 87.9833984 ,24.137207 87.9487305 ,24.1542969
84.3310547 ,29.421875 80.6640625 ,11.8652344 80.6254883 ,11.8725586 76.9931641 ,14.9858398
73.3637695 ,21.7265625 69.722168 ,18.7758789 69.6972656 ,18.8051758 66.0512695 ,39.0683594
62.3969727 ,37.2294922 58.7426758 ,21.1123047 58.7236328 ,21.1274414 55.0859375 ,38.2695313
51.4291992 ,26.6894531 47.7680664 ,18.7158203 47.7294922 ,18.7255859 44.1186523 ,21.815918
40.4775391 ,18.7963867 40.453125 ,18.8261719 36.8081055 ,40.3496094 33.152832 ,38.3310547 29.46875 ,23.3842773
25.8505859 ,20.1723633 25.8217773 ,20.2001953 22.1855469 ,31.7182617 18.5258789 ,0.3286133 18.5112305 ,0.340332
14.8730469 ,18.1191406 11.2626953 ,19.8710938 11.2011719 ,19.9418945 7.5688477 ,30.9521484 3.9067383 ,37.4384766
0.2504883 ,23.9228516"/ >

Graphical Set 7: Participant A (Actual Steps: Bottom Curve)
<line id=" XMLID_6_" class="st0" x1 ="3.717701" y1 ="34.5572166" x2 ="0.0007058" y2 ="34.5572166"/ >
<line id=" XMLID_5_" class="st0" x1 ="3.717701" y1 ="24.3072186" x2 ="0.0007058" y2 ="24.3072186"/ >
<polyline class="st0" points ="0.25 ,23.921875 3.9121094 ,37.3881836 3.9433594 ,37.3725586 7.5610352 ,30.9760742

11.2167969 ,19.8935547 14.8203125 ,18.1450195 14.8842773 ,18.0620117 18.5288086 ,0.25 22.1928711 ,31.6474609
22.2119141 ,31.6347656 25.8413086 ,20.1386719 29.4960938 ,23.409668 29.5141602 ,23.4848633
33.1401367 ,38.2807617 33.1982422 ,38.3569336 36.7939453 ,40.3217773 36.8183594 ,40.2895508
40.4638672 ,18.7602539 44.0483398 ,21.7568359 44.1879883 ,21.7558594 47.7739258 ,18.6875 51.4233398 ,26.675293
55.0830078 ,38.2041016 55.1040039 ,38.1865234 58.7421875 ,21.0400391 62.3842773 ,37.1757813
62.4462891 ,37.2548828 66.0380859 ,39.0410156 66.0625 ,39.0092773 69.7089844 ,18.7397461 73.3583984 ,21.7011719
73.3896484 ,21.6777344 77.0556641 ,14.9160156 80.6767578 ,11.8305664 84.3417969 ,29.3730469
84.3740234 ,29.3598633 87.9863281 ,24.1010742 91.6787109 ,30.8823242 95.2827148 ,33.6523438
95.3071289 ,33.6210938 98.9541016 ,8.2885742 102.6152344 ,17.3613281 102.6533203 ,17.3486328
106.2666016 ,13.4038086 109.9370117 ,32.4736328 113.5629883 ,38.9677734 117.2573242 ,51.6303711
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120.8876953 ,54.9174805 124.5322266 ,57.6645508 124.559082 ,57.6362305 128.1992188 ,43.8466797
131.847168 ,48.8959961 131.8745117 ,48.871582 135.5371094 ,35.8637695 139.1645508 ,30.9951172
142.8178711 ,43.0244141 142.8383789 ,43.0068359 146.4770508 ,23.6918945 150.1611328 ,34.2436523
153.777832 ,38.2617188 153.8022461 ,38.2348633 157.4428711 ,18.2158203 161.0991211 ,53.2480469
161.109375 ,53.2387695 164.7543945 ,19.5493164 168.4248047 ,33.9916992 172.0576172 ,40.5366211
172.081543 ,40.5136719 175.722168 ,21.1791992 179.3681641 ,37.4179688 179.4194336 ,37.4921875
183.0219727 ,39.8330078 183.046875 ,39.8022461 186.6894531 ,20.5947266 190.3330078 ,16.2231445 194 ,12.9921875
197.684082 ,34.1933594 201.2993164 ,39.0947266 201.3217773 ,39.0693359 204.96875 ,11.9428711
208.6445313 ,31.5805664 212.2700195 ,37.5151367 212.2949219 ,37.4916992 215.9609375 ,20.9199219
219.5927734 ,15.3823242 223.2685547 ,27.9106445 226.9033203 ,33.0620117 230.5473633 ,36.3525391
230.5742188 ,36.3242188 234.2138672 ,21.6196289 237.8549805 ,37.7451172 237.9296875 ,37.8286133
241.4741211 ,39.0854492 241.5356445 ,39.050293 245.1796875 ,20.2719727 248.8359375 ,21.59375
252.4960938 ,35.34375 252.5249023 ,35.3271484 256.1474609 ,27.4580078 259.7993164 ,39.0029297
259.8208008 ,38.984375 263.4580078 ,22.4916992 267.1225586 ,34.9804688 267.1616211 ,34.9799805
270.769043 ,33.2456055 274.4199219 ,43.4082031 274.440918 ,43.3891602 278.1118164 ,23.1645508
281.7368164 ,17.8984375 285.40625 ,35.0146484 289.0058594 ,42.1269531 289.1376953 ,42.1791992
292.7270508 ,40.8623047 296.3588867 ,36.4135742 300.0151367 ,55.2714844 300.0336914 ,55.2568359
303.6704102 ,38.5825195 307.3217773 ,46.5151367 307.3466797 ,46.4941406 310.9829102 ,31.8500977
314.6479492 ,48.7290039 314.6826172 ,48.7172852 318.3095703 ,44.3061523"/ >

Graphical Set 8: Participant B (Goals)
<line id=" XMLID_6_" class="st0" x1="0" y1 ="5.9415894" x2 ="4.5059662" y2 ="5.9415894"/ >
<line id=" XMLID_5_" class="st0" x1="0" y1 ="2.1107788" x2 ="4.5059662" y2 ="2.1107788"/ >
<polyline id=" XMLID_4_" class="st1" points ="0 ,1.2641602 5.1204071 ,1.2641602 5.1204071 ,0 10.2408218 ,0

10.2408218 ,6.2595825 15.3612289 ,6.2595825 15.3612289 ,8.7170105 20.4816437 ,8.7170105 20.4816437 ,1.298645
25.6020508 ,1.298645 25.6020508 ,7.5830994 30.7224655 ,7.5830994 30.7224655 ,7.6271667 35.8428802 ,7.6271667
35.8428802 ,0.2528381 40.9632797 ,0.2528381 40.9632797 ,1.2297058 46.0836906 ,1.2297058 46.0836906 ,0.0095825
51.204113 ,0.0095825 51.204113 ,6.2767944 56.3245201 ,6.2767944 56.3245201 ,8.6825562 61.4449272 ,8.6825562
61.4449272 ,1.3503723 66.5653381 ,1.3503723 66.5653381 ,7.5314026 71.6857605 ,7.5314026 71.6857605 ,7.678894
76.8061676 ,7.678894 76.8061676 ,0.2088013 81.9265747 ,0.2088013 81.9265747 ,1.2641602 87.0469818 ,1.2641602
87.0469818 ,0 92.1674042 ,0 92.1674042 ,6.2595825 97.2878113 ,6.2595825 97.2878113 ,8.7170105
102.4082184 ,8.7170105 102.4082184 ,1.298645 107.5286255 ,1.298645 107.5286255 ,7.5830994 112.6490479 ,7.5830994
112.6490479 ,7.6271667 117.769455 ,7.6271667 117.769455 ,0.2528381 122.8898621 ,0.2528381

122.8898621 ,1.2297058 128.0102844 ,1.2297058 128.0102844 ,0.0095825 133.1306763 ,0.0095825
133.1306763 ,6.2767944 138.2510834 ,6.2767944 138.2510834 ,8.6825562 143.3715057 ,8.6825562
143.3715057 ,1.3503723 148.4919128 ,1.3503723 148.4919128 ,7.5314026 153.6123199 ,7.5314026
153.6123199 ,7.678894 158.7327423 ,7.678894 158.7327423 ,0.2088013 163.8531342 ,0.2088013 163.8531342 ,1.2641602
168.9735718 ,1.2641602 168.9735718 ,0 174.0939789 ,0 174.0939789 ,6.2595825 179.2143707 ,6.2595825

179.2143707 ,8.7170105 184.3348083 ,8.7170105 184.3348083 ,1.298645 189.4552002 ,1.298645 189.4552002 ,7.5830994
194.575592 ,7.5830994 194.575592 ,7.6271667 199.6960144 ,7.6271667 199.6960144 ,0.2528381

204.8164368 ,0.2528381 204.8164368 ,1.2297058 209.9368591 ,1.2297058 209.9368591 ,0.0095825
215.057251 ,0.0095825 215.057251 ,6.2767944 220.1776428 ,6.2767944 220.1776428 ,8.6825562 225.2980957 ,8.6825562
225.2980957 ,1.3503723 230.4184875 ,1.3503723 230.4184875 ,7.5314026 235.5388947 ,7.5314026

235.5388947 ,7.678894 240.659317 ,7.678894 240.659317 ,0.2088013 245.7797089 ,0.2088013 245.7797089 ,1.2641602
250.9001007 ,1.2641602 250.9001007 ,0 256.0205383 ,0 256.0205383 ,6.2595825 261.1409302 ,6.2595825
261.1409302 ,8.7170105 266.261322 ,8.7170105 266.261322 ,1.298645 271.3817139 ,1.298645 271.3817139 ,7.5830994
276.5021667 ,7.5830994 276.5021667 ,7.6271667 281.6225586 ,7.6271667 281.6225586 ,0.2528381
286.7429504 ,0.2528381 286.7429504 ,1.2297058 291.8634033 ,1.2297058 291.8634033 ,0.0095825
296.9837952 ,0.0095825 296.9837952 ,6.2767944 302.104187 ,6.2767944 302.104187 ,8.6825562 307.2246094 ,8.6825562
307.2246094 ,1.3503723 312.3450623 ,1.3503723 312.3450623 ,7.5314026 317.4654236 ,7.5314026

317.4654236 ,7.678894 322.5858459 ,7.678894 322.5858459 ,0.2088013 327.7062378 ,0.2088013 327.7062378 ,1.2641602
332.8266907 ,1.2641602 332.8266907 ,0 337.9470825 ,0 337.9470825 ,6.2595825 343.0674744 ,6.2595825

343.0674744 ,8.7170105 348.1879272 ,8.7170105 348.1879272 ,1.298645 353.3082886 ,1.298645 353.3082886 ,7.5830994
358.4286804 ,7.5830994 358.4286804 ,7.6271667 363.5491333 ,7.6271667 363.5491333 ,0.2528381

368.6695557 ,0.2528381 368.6695557 ,1.2297058 373.7899475 ,1.2297058 373.7899475 ,0.0095825
378.9103394 ,0.0095825 378.9103394 ,6.2767944 384.0307312 ,6.2767944 384.0307312 ,8.6825562
389.1511841 ,8.6825562 389.1511841 ,1.3503723 394.2716064 ,1.3503723 394.2716064 ,7.5314026
399.3919983 ,7.5314026 399.3919983 ,7.678894 404.5124207 ,7.678894 404.5124207 ,0.2088013 409.6328125 ,0.2088013
409.6328125 ,1.2641602 414.7532043 ,1.2641602 414.7532043 ,0 419.8736572 ,0 419.8736572 ,6.2595825

424.9940796 ,6.2595825 424.9940796 ,8.7170105 430.1144714 ,8.7170105 430.1144714 ,1.298645 435.2348633 ,1.298645
435.2348633 ,7.5830994 440.3552246 ,7.5830994 440.3552246 ,7.6271667 445.475708 ,7.6271667

445.475708 ,0.2528381"/ >

Graphical Set 9: Participant B (Expected Points)
<line id=" XMLID_5_" class="st0" x1="0" y1 ="8.3816223" x2 ="4.5059662" y2 ="8.3816223"/ >
<line id=" XMLID_3_" class="st0" x1="0" y1 ="1.6763306" x2 ="4.5059662" y2 ="1.6763306"/ >
<polyline id=" XMLID_2_" class="st1" points ="0 ,5.4480591 5.1204071 ,5.4480591 5.1204071 ,0.8381653

10.2408218 ,0.8381653 10.2408218 ,2.9335632 15.3612289 ,2.9335632 15.3612289 ,6.7052917 20.4816437 ,6.7052917
20.4816437 ,5.4480591 25.6020508 ,5.4480591 25.6020508 ,5.867157 30.7224655 ,5.867157 30.7224655 ,6.2862244
35.8428802 ,6.2862244 35.8428802 ,1.6763306 40.9632797 ,1.6763306 40.9632797 ,1.2572327 46.0836906 ,1.2572327
46.0836906 ,5.867157 51.204113 ,5.867157 51.204113 ,3.7717285 56.3245201 ,3.7717285 56.3245201 ,0 61.4449272 ,0
61.4449272 ,1.2572327 66.5653381 ,1.2572327 66.5653381 ,0.8381653 71.6857605 ,0.8381653 71.6857605 ,0.4190979
76.8061676 ,0.4190979 76.8061676 ,5.0289612 81.9265747 ,5.0289612 81.9265747 ,5.4480591 87.0469818 ,5.4480591
87.0469818 ,0.8381653 92.1674042 ,0.8381653 92.1674042 ,2.9335632 97.2878113 ,2.9335632 97.2878113 ,6.7052917
102.4082184 ,6.7052917 102.4082184 ,5.4480591 107.5286255 ,5.4480591 107.5286255 ,5.867157 112.6490479 ,5.867157
112.6490479 ,6.2862244 117.769455 ,6.2862244 117.769455 ,1.6763306 122.8898621 ,1.6763306

122.8898621 ,1.2572327 128.0102844 ,1.2572327 128.0102844 ,5.867157 133.1306763 ,5.867157 133.1306763 ,3.7717285
138.2510834 ,3.7717285 138.2510834 ,0 143.3715057 ,0 143.3715057 ,1.2572327 148.4919128 ,1.2572327

148.4919128 ,0.8381653 153.6123199 ,0.8381653 153.6123199 ,0.4190979 158.7327423 ,0.4190979
158.7327423 ,5.0289612 163.8531342 ,5.0289612 163.8531342 ,5.4480591 168.9735718 ,5.4480591
168.9735718 ,0.8381653 174.0939789 ,0.8381653 174.0939789 ,2.9335632 179.2143707 ,2.9335632
179.2143707 ,6.7052917 184.3348083 ,6.7052917 184.3348083 ,5.4480591 189.4552002 ,5.4480591
189.4552002 ,5.867157 194.575592 ,5.867157 194.575592 ,6.2862244 199.6960144 ,6.2862244 199.6960144 ,1.6763306
204.8164368 ,1.6763306 204.8164368 ,1.2572327 209.9368591 ,1.2572327 209.9368591 ,5.867157 215.057251 ,5.867157
215.057251 ,3.7717285 220.1776428 ,3.7717285 220.1776428 ,0 225.2980957 ,0 225.2980957 ,1.2572327
230.4184875 ,1.2572327 230.4184875 ,0.8381653 235.5388947 ,0.8381653 235.5388947 ,0.4190979
240.659317 ,0.4190979 240.659317 ,5.0289612 245.7797089 ,5.0289612 245.7797089 ,5.4480591 250.9001007 ,5.4480591
250.9001007 ,0.8381653 256.0205383 ,0.8381653 256.0205383 ,2.9335632 261.1409302 ,2.9335632

261.1409302 ,6.7052917 266.261322 ,6.7052917 266.261322 ,5.4480591 271.3817139 ,5.4480591 271.3817139 ,5.867157
276.5021667 ,5.867157 276.5021667 ,6.2862244 281.6225586 ,6.2862244 281.6225586 ,1.6763306
286.7429504 ,1.6763306 286.7429504 ,1.2572327 291.8634033 ,1.2572327 291.8634033 ,5.867157 296.9837952 ,5.867157
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296.9837952 ,3.7717285 302.104187 ,3.7717285 302.104187 ,0 307.2246094 ,0 307.2246094 ,1.2572327
312.3450623 ,1.2572327 312.3450623 ,0.8381653 317.4654236 ,0.8381653 317.4654236 ,0.4190979
322.5858459 ,0.4190979 322.5858459 ,5.0289612 327.7062378 ,5.0289612 327.7062378 ,5.4480591
332.8266907 ,5.4480591 332.8266907 ,0.8381653 337.9470825 ,0.8381653 337.9470825 ,2.9335632
343.0674744 ,2.9335632 343.0674744 ,6.7052917 348.1879272 ,6.7052917 348.1879272 ,5.4480591
353.3082886 ,5.4480591 353.3082886 ,5.867157 358.4286804 ,5.867157 358.4286804 ,6.2862244 363.5491333 ,6.2862244
363.5491333 ,1.6763306 368.6695557 ,1.6763306 368.6695557 ,1.2572327 373.7899475 ,1.2572327

373.7899475 ,5.867157 378.9103394 ,5.867157 378.9103394 ,3.7717285 384.0307312 ,3.7717285 384.0307312 ,0
389.1511841 ,0 389.1511841 ,1.2572327 394.2716064 ,1.2572327 394.2716064 ,0.8381653 399.3919983 ,0.8381653
399.3919983 ,0.4190979 404.5124207 ,0.4190979 404.5124207 ,5.0289612 409.6328125 ,5.0289612
409.6328125 ,5.4480591 414.7532043 ,5.4480591 414.7532043 ,0.8381653 419.8736572 ,0.8381653
419.8736572 ,2.9335632 424.9940796 ,2.9335632 424.9940796 ,6.7052917 430.1144714 ,6.7052917
430.1144714 ,5.4480591 435.2348633 ,5.4480591 435.2348633 ,5.867157 440.3552246 ,5.867157 440.3552246 ,6.2862244
445.475708 ,6.2862244 445.475708 ,1.6763306"/ >

Graphical Set 10: Participant B (Granted Points)
<line id=" XMLID_4_" class="st0" x1="0" y1 ="8.3816223" x2 ="4.5059662" y2 ="8.3816223"/ >
<line id=" XMLID_3_" class="st0" x1="0" y1 ="1.6763306" x2 ="4.5059662" y2 ="1.6763306"/ >
<polyline id=" XMLID_2_" class="st1" points ="0 ,5.0289612 5.1204071 ,5.0289612 5.1204071 ,5.4480438

10.2408218 ,5.4480438 10.2408218 ,0.83815 15.3612289 ,0.83815 15.3612289 ,2.9335632 20.4816437 ,2.9335632
20.4816437 ,6.7052917 25.6020508 ,6.7052917 25.6020508 ,5.4480438 30.7224655 ,5.4480438 30.7224655 ,5.8671417
35.8428802 ,5.8671417 35.8428802 ,6.2862244 40.9632797 ,6.2862244 40.9632797 ,1.6763306 46.0836906 ,1.6763306
46.0836906 ,1.2572327 51.204113 ,1.2572327 51.204113 ,5.8671417 56.3245201 ,5.8671417 56.3245201 ,3.7717133
61.4449272 ,3.7717133 61.4449272 ,0 66.5653381 ,0 66.5653381 ,1.2572327 71.6857605 ,1.2572327 71.6857605 ,0.83815
76.8061676 ,0.83815 76.8061676 ,0.4190826 81.9265747 ,0.4190826 81.9265747 ,5.0289612 87.0469818 ,5.0289612

87.0469818 ,5.4480438 92.1674042 ,5.4480438 92.1674042 ,0.83815 97.2878113 ,0.83815 97.2878113 ,2.9335632
102.4082184 ,2.9335632 102.4082184 ,6.7052917 107.5286255 ,6.7052917 107.5286255 ,5.4480438
112.6490479 ,5.4480438 112.6490479 ,5.8671417 117.769455 ,5.8671417 117.769455 ,6.2862244 122.8898621 ,6.2862244
122.8898621 ,1.6763306 128.0102844 ,1.6763306 128.0102844 ,1.2572327 133.1306763 ,1.2572327

133.1306763 ,5.8671417 138.2510834 ,5.8671417 138.2510834 ,3.7717133 143.3715057 ,3.7717133 143.3715057 ,0
148.4919128 ,0 148.4919128 ,1.2572327 153.6123199 ,1.2572327 153.6123199 ,0.83815 158.7327423 ,0.83815
158.7327423 ,0.4190826 163.8531342 ,0.4190826 163.8531342 ,5.0289612 168.9735718 ,5.0289612
168.9735718 ,5.4480438 174.0939789 ,5.4480438 174.0939789 ,0.83815 179.2143707 ,0.83815 179.2143707 ,2.9335632
184.3348083 ,2.9335632 184.3348083 ,6.7052917 189.4552002 ,6.7052917 189.4552002 ,5.4480438
194.575592 ,5.4480438 194.575592 ,5.8671417 199.6960144 ,5.8671417 199.6960144 ,6.2862244 204.8164368 ,6.2862244
204.8164368 ,1.6763306 209.9368591 ,1.6763306 209.9368591 ,1.2572327 215.057251 ,1.2572327

215.057251 ,5.8671417 220.1776428 ,5.8671417 220.1776428 ,3.7717133 225.2980957 ,3.7717133 225.2980957 ,0
230.4184875 ,0 230.4184875 ,1.2572327 235.5388947 ,1.2572327 235.5388947 ,0.83815 240.659317 ,0.83815
240.659317 ,0.4190826 245.7797089 ,0.4190826 245.7797089 ,5.0289612 250.9001007 ,5.0289612
250.9001007 ,5.4480438 256.0205383 ,5.4480438 256.0205383 ,0.83815 261.1409302 ,0.83815 261.1409302 ,2.9335632
266.261322 ,2.9335632 266.261322 ,6.7052917 271.3817139 ,6.7052917 271.3817139 ,5.4480438 276.5021667 ,5.4480438
276.5021667 ,5.8671417 281.6225586 ,5.8671417 281.6225586 ,6.2862244 286.7429504 ,6.2862244

286.7429504 ,1.6763306 291.8634033 ,1.6763306 291.8634033 ,1.2572327 296.9837952 ,1.2572327
296.9837952 ,8.3816223 302.104187 ,8.3816223 302.104187 ,3.7717133 307.2246094 ,3.7717133 307.2246094 ,0
312.3450623 ,0 312.3450623 ,1.2572327 317.4654236 ,1.2572327 317.4654236 ,0.83815 322.5858459 ,0.83815
322.5858459 ,0.4190826 327.7062378 ,0.4190826 327.7062378 ,5.0289612 332.8266907 ,5.0289612
332.8266907 ,5.4480438 337.9470825 ,5.4480438 337.9470825 ,0.83815 343.0674744 ,0.83815 343.0674744 ,2.9335632
348.1879272 ,2.9335632 348.1879272 ,6.7052917 353.3082886 ,6.7052917 353.3082886 ,5.4480438
358.4286804 ,5.4480438 358.4286804 ,5.8671417 363.5491333 ,5.8671417 363.5491333 ,6.2862244
368.6695557 ,6.2862244 368.6695557 ,1.6763306 373.7899475 ,1.6763306 373.7899475 ,1.2572327
378.9103394 ,1.2572327 378.9103394 ,8.3816223 384.0307312 ,8.3816223 384.0307312 ,3.7717133
389.1511841 ,3.7717133 389.1511841 ,0 394.2716064 ,0 394.2716064 ,1.2572327 399.3919983 ,1.2572327
399.3919983 ,0.83815 404.5124207 ,0.83815 404.5124207 ,0.4190826 409.6328125 ,0.4190826 409.6328125 ,5.0289612
414.7532043 ,5.0289612 414.7532043 ,8.3816223 419.8736572 ,8.3816223 419.8736572 ,0.83815 424.9940796 ,0.83815
424.9940796 ,2.9335632 430.1144714 ,2.9335632 430.1144714 ,6.7052917 435.2348633 ,6.7052917
435.2348633 ,5.4480438 440.3552246 ,5.4480438 440.3552246 ,5.8671417 445.475708 ,5.8671417
445.475708 ,6.2862244"/ >

Graphical Set 11: Participant B (Predicted Busyness)
<line id=" XMLID_5_" class="st0" x1="0" y1 ="7.5704956" x2 ="4.5059662" y2 ="7.5704956"/ >
<line id=" XMLID_4_" class="st0" x1="0" y1="0" x2 ="4.5059662" y2="0"/>
<polyline id=" XMLID_3_" class="st1" points ="0 ,4.5422974 5.1204071 ,4.5422974 10.2408218 ,4.5422974

15.3612289 ,4.5422974 15.3612289 ,3.0281982 20.4816437 ,3.0281982 25.6020508 ,3.0281982 30.7224655 ,3.0281982
30.7224655 ,4.5422974 35.8428802 ,4.5422974 40.9632797 ,4.5422974 46.0836906 ,4.5422974 51.204113 ,4.5422974
51.204113 ,3.0281982 56.3245201 ,3.0281982 61.4449272 ,3.0281982 66.5653381 ,3.0281982 66.5653381 ,4.5422974
71.6857605 ,4.5422974 76.8061676 ,4.5422974 81.9265747 ,4.5422974 81.9265747 ,3.0281982 87.0469818 ,3.0281982
87.0469818 ,4.5422974 92.1674042 ,4.5422974 97.2878113 ,4.5422974 97.2878113 ,3.0281982 102.4082184 ,3.0281982
107.5286255 ,3.0281982 107.5286255 ,6.0563965 112.6490479 ,6.0563965 112.6490479 ,4.5422974
117.769455 ,4.5422974 122.8898621 ,4.5422974 122.8898621 ,3.0281982 128.0102844 ,3.0281982
133.1306763 ,3.0281982 133.1306763 ,4.5422974 138.2510834 ,4.5422974 143.3715057 ,4.5422974
148.4919128 ,4.5422974 153.6123199 ,4.5422974 158.7327423 ,4.5422974 158.7327423 ,3.0281982
163.8531342 ,3.0281982 163.8531342 ,4.5422974 168.9735718 ,4.5422974 174.0939789 ,4.5422974
179.2143707 ,4.5422974 184.3348083 ,4.5422974 189.4552002 ,4.5422974 189.4552002 ,3.0281982
194.575592 ,3.0281982 194.575592 ,4.5422974 199.6960144 ,4.5422974 204.8164368 ,4.5422974 209.9368591 ,4.5422974
215.057251 ,4.5422974 220.1776428 ,4.5422974 225.2980957 ,4.5422974 230.4184875 ,4.5422974

235.5388947 ,4.5422974 240.659317 ,4.5422974 245.7797089 ,4.5422974 250.9001007 ,4.5422974
256.0205383 ,4.5422974 256.0205383 ,6.0563965 261.1409302 ,6.0563965 261.1409302 ,4.5422974
266.261322 ,4.5422974 271.3817139 ,4.5422974 276.5021667 ,4.5422974 281.6225586 ,4.5422974
286.7429504 ,4.5422974 291.8634033 ,4.5422974 291.8634033 ,6.0563965 296.9837952 ,6.0563965
296.9837952 ,4.5422974 302.104187 ,4.5422974 307.2246094 ,4.5422974 312.3450623 ,4.5422974
317.4654236 ,4.5422974 322.5858459 ,4.5422974 327.7062378 ,4.5422974 332.8266907 ,4.5422974
337.9470825 ,4.5422974 343.0674744 ,4.5422974 348.1879272 ,4.5422974 353.3082886 ,4.5422974
358.4286804 ,4.5422974 363.5491333 ,4.5422974 363.5491333 ,6.0563965 368.6695557 ,6.0563965
368.6695557 ,4.5422974 373.7899475 ,4.5422974 378.9103394 ,4.5422974 384.0307312 ,4.5422974
389.1511841 ,4.5422974 394.2716064 ,4.5422974 399.3919983 ,4.5422974 399.3919983 ,6.0563965
404.5124207 ,6.0563965 404.5124207 ,4.5422974 409.6328125 ,4.5422974 414.7532043 ,4.5422974
419.8736572 ,4.5422974 424.9940796 ,4.5422974 430.1144714 ,4.5422974 435.2348633 ,4.5422974
435.2348633 ,6.0563965 440.3552246 ,6.0563965 440.3552246 ,4.5422974 445.475708 ,4.5422974"/ >
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Graphical Set 12: Participant B (Predicted Stress)
<line id=" XMLID_5_" class="st0" x1="0" y1 ="7.8228607" x2 ="4.5059662" y2 ="7.8228607"/ >
<line id=" XMLID_4_" class="st0" x1="0" y1="0" x2 ="4.5059662" y2="0"/>
<polyline id=" XMLID_3_" class="st1" points ="0 ,4.6937103 5.1204071 ,4.6937103 10.2408218 ,4.6937103

15.3612289 ,4.6937103 20.4816437 ,4.6937103 25.6020508 ,4.6937103 30.7224655 ,4.6937103 35.8428802 ,4.6937103
40.9632797 ,4.6937103 46.0836906 ,4.6937103 51.204113 ,4.6937103 56.3245201 ,4.6937103 61.4449272 ,4.6937103
66.5653381 ,4.6937103 71.6857605 ,4.6937103 76.8061676 ,4.6937103 81.9265747 ,4.6937103 87.0469818 ,4.6937103
92.1674042 ,4.6937103 97.2878113 ,4.6937103 102.4082184 ,4.6937103 102.4082184 ,3.1291504 107.5286255 ,3.1291504
107.5286255 ,6.2583008 112.6490479 ,6.2583008 112.6490479 ,4.6937103 117.769455 ,4.6937103

122.8898621 ,4.6937103 128.0102844 ,4.6937103 133.1306763 ,4.6937103 138.2510834 ,4.6937103
143.3715057 ,4.6937103 148.4919128 ,4.6937103 148.4919128 ,6.2583008 153.6123199 ,6.2583008
153.6123199 ,4.6937103 158.7327423 ,4.6937103 163.8531342 ,4.6937103 168.9735718 ,4.6937103
174.0939789 ,4.6937103 174.0939789 ,6.2583008 179.2143707 ,6.2583008 184.3348083 ,6.2583008
189.4552002 ,6.2583008 189.4552002 ,4.6937103 194.575592 ,4.6937103 199.6960144 ,4.6937103
204.8164368 ,4.6937103 209.9368591 ,4.6937103 215.057251 ,4.6937103 220.1776428 ,4.6937103
225.2980957 ,4.6937103 230.4184875 ,4.6937103 235.5388947 ,4.6937103 240.659317 ,4.6937103
245.7797089 ,4.6937103 250.9001007 ,4.6937103 256.0205383 ,4.6937103 256.0205383 ,6.2583008
261.1409302 ,6.2583008 261.1409302 ,4.6937103 266.261322 ,4.6937103 271.3817139 ,4.6937103
276.5021667 ,4.6937103 281.6225586 ,4.6937103 286.7429504 ,4.6937103 291.8634033 ,4.6937103
291.8634033 ,6.2583008 296.9837952 ,6.2583008 296.9837952 ,4.6937103 302.104187 ,4.6937103
307.2246094 ,4.6937103 312.3450623 ,4.6937103 317.4654236 ,4.6937103 322.5858459 ,4.6937103
327.7062378 ,4.6937103 332.8266907 ,4.6937103 337.9470825 ,4.6937103 343.0674744 ,4.6937103
348.1879272 ,4.6937103 353.3082886 ,4.6937103 358.4286804 ,4.6937103 363.5491333 ,4.6937103
363.5491333 ,6.2583008 368.6695557 ,6.2583008 368.6695557 ,4.6937103 373.7899475 ,4.6937103
378.9103394 ,4.6937103 384.0307312 ,4.6937103 389.1511841 ,4.6937103 394.2716064 ,4.6937103
399.3919983 ,4.6937103 399.3919983 ,6.2583008 404.5124207 ,6.2583008 404.5124207 ,4.6937103
409.6328125 ,4.6937103 414.7532043 ,4.6937103 419.8736572 ,4.6937103 424.9940796 ,4.6937103
430.1144714 ,4.6937103 435.2348633 ,4.6937103 435.2348633 ,6.2583008 440.3552246 ,6.2583008
440.3552246 ,4.6937103 445.475708 ,4.6937103"/ >

Graphical Set 13: Participant B (Predicted Typical)
<line id=" XMLID_5_" class="st0" x1="0" y1 ="7.8228302" x2 ="4.5059662" y2 ="7.8228302"/ >
<line id=" XMLID_4_" class="st0" x1="0" y1="0" x2 ="4.5059662" y2="0"/>
<polyline id=" XMLID_3_" class="st1" points ="0 ,3.1291199 5.1204071 ,3.1291199 10.2408218 ,3.1291199

15.3612289 ,3.1291199 20.4816437 ,3.1291199 25.6020508 ,3.1291199 30.7224655 ,3.1291199 35.8428802 ,3.1291199
40.9632797 ,3.1291199 46.0836906 ,3.1291199 51.204113 ,3.1291199 56.3245201 ,3.1291199 61.4449272 ,3.1291199
66.5653381 ,3.1291199 71.6857605 ,3.1291199 71.6857605 ,4.6937103 76.8061676 ,4.6937103 76.8061676 ,1.5645599
81.9265747 ,1.5645599 81.9265747 ,3.1291199 87.0469818 ,3.1291199 92.1674042 ,3.1291199 92.1674042 ,4.6937103
97.2878113 ,4.6937103 97.2878113 ,3.1291199 102.4082184 ,3.1291199 102.4082184 ,4.6937103 107.5286255 ,4.6937103
107.5286255 ,6.2582703 112.6490479 ,6.2582703 112.6490479 ,3.1291199 117.769455 ,3.1291199

117.769455 ,4.6937103 122.8898621 ,4.6937103 122.8898621 ,3.1291199 128.0102844 ,3.1291199
133.1306763 ,3.1291199 138.2510834 ,3.1291199 138.2510834 ,4.6937103 143.3715057 ,4.6937103
148.4919128 ,4.6937103 148.4919128 ,3.1291199 153.6123199 ,3.1291199 158.7327423 ,3.1291199
163.8531342 ,3.1291199 168.9735718 ,3.1291199 174.0939789 ,3.1291199 179.2143707 ,3.1291199
179.2143707 ,4.6937103 184.3348083 ,4.6937103 184.3348083 ,3.1291199 189.4552002 ,3.1291199
194.575592 ,3.1291199 199.6960144 ,3.1291199 204.8164368 ,3.1291199 209.9368591 ,3.1291199 215.057251 ,3.1291199
220.1776428 ,3.1291199 220.1776428 ,4.6937103 225.2980957 ,4.6937103 225.2980957 ,3.1291199

230.4184875 ,3.1291199 230.4184875 ,4.6937103 235.5388947 ,4.6937103 235.5388947 ,3.1291199
240.659317 ,3.1291199 245.7797089 ,3.1291199 245.7797089 ,4.6937103 250.9001007 ,4.6937103
250.9001007 ,3.1291199 256.0205383 ,3.1291199 261.1409302 ,3.1291199 266.261322 ,3.1291199
271.3817139 ,3.1291199 271.3817139 ,4.6937103 276.5021667 ,4.6937103 281.6225586 ,4.6937103
286.7429504 ,4.6937103 291.8634033 ,4.6937103 291.8634033 ,3.1291199 296.9837952 ,3.1291199
302.104187 ,3.1291199 307.2246094 ,3.1291199 312.3450623 ,3.1291199 317.4654236 ,3.1291199
322.5858459 ,3.1291199 327.7062378 ,3.1291199 332.8266907 ,3.1291199 337.9470825 ,3.1291199
343.0674744 ,3.1291199 348.1879272 ,3.1291199 353.3082886 ,3.1291199 358.4286804 ,3.1291199
363.5491333 ,3.1291199 368.6695557 ,3.1291199 373.7899475 ,3.1291199 378.9103394 ,3.1291199
378.9103394 ,4.6937103 384.0307312 ,4.6937103 389.1511841 ,4.6937103 389.1511841 ,3.1291199
394.2716064 ,3.1291199 399.3919983 ,3.1291199 404.5124207 ,3.1291199 409.6328125 ,3.1291199
409.6328125 ,4.6937103 414.7532043 ,4.6937103 419.8736572 ,4.6937103 424.9940796 ,4.6937103
430.1144714 ,4.6937103 430.1144714 ,3.1291199 435.2348633 ,3.1291199 435.2348633 ,1.5645599
440.3552246 ,1.5645599 440.3552246 ,3.1291199 445.475708 ,3.1291199"/ >

Graphical Set 14: Participant B (Weekday - Weekend)
<line id=" XMLID_4_" class="st0" x1="0" y1 ="9.3874207" x2 ="4.5059662" y2 ="9.3874207"/ >
<line id=" XMLID_3_" class="st0" x1="0" y1="0" x2 ="4.5059662" y2="0"/>
<polyline id=" XMLID_2_" class="st1" points ="0,0 5.1204071 ,0 10.2408218 ,0 10.2408218 ,9.3874207

15.3612289 ,9.3874207 20.4816437 ,9.3874207 25.6020508 ,9.3874207 30.7224655 ,9.3874207 35.8428802 ,9.3874207
35.8428802 ,0 40.9632797 ,0 46.0836906 ,0 46.0836906 ,9.3874207 51.204113 ,9.3874207 56.3245201 ,9.3874207
61.4449272 ,9.3874207 66.5653381 ,9.3874207 71.6857605 ,9.3874207 71.6857605 ,0 76.8061676 ,0 81.9265747 ,0
81.9265747 ,9.3874207 87.0469818 ,9.3874207 92.1674042 ,9.3874207 97.2878113 ,9.3874207 102.4082184 ,9.3874207
107.5286255 ,9.3874207 107.5286255 ,0 112.6490479 ,0 117.769455 ,0 117.769455 ,9.3874207 122.8898621 ,9.3874207
128.0102844 ,9.3874207 133.1306763 ,9.3874207 138.2510834 ,9.3874207 143.3715057 ,9.3874207 143.3715057 ,0
148.4919128 ,0 153.6123199 ,0 153.6123199 ,9.3874207 158.7327423 ,9.3874207 163.8531342 ,9.3874207
168.9735718 ,9.3874207 174.0939789 ,9.3874207 179.2143707 ,9.3874207 179.2143707 ,0 184.3348083 ,0 189.4552002 ,0
189.4552002 ,9.3874207 194.575592 ,9.3874207 199.6960144 ,9.3874207 204.8164368 ,9.3874207

209.9368591 ,9.3874207 215.057251 ,9.3874207 215.057251 ,0 220.1776428 ,0 225.2980957 ,0 225.2980957 ,9.3874207
230.4184875 ,9.3874207 235.5388947 ,9.3874207 240.659317 ,9.3874207 245.7797089 ,9.3874207
250.9001007 ,9.3874207 250.9001007 ,0 256.0205383 ,0 261.1409302 ,0 261.1409302 ,9.3874207 266.261322 ,9.3874207
271.3817139 ,9.3874207 276.5021667 ,9.3874207 281.6225586 ,9.3874207 286.7429504 ,9.3874207 286.7429504 ,0
291.8634033 ,0 296.9837952 ,0 296.9837952 ,9.3874207 302.104187 ,9.3874207 307.2246094 ,9.3874207
312.3450623 ,9.3874207 317.4654236 ,9.3874207 322.5858459 ,9.3874207 322.5858459 ,0 327.7062378 ,0 332.8266907 ,0
332.8266907 ,9.3874207 337.9470825 ,9.3874207 343.0674744 ,9.3874207 348.1879272 ,9.3874207

353.3082886 ,9.3874207 358.4286804 ,9.3874207 358.4286804 ,0 363.5491333 ,0 368.6695557 ,0 368.6695557 ,9.3874207
373.7899475 ,9.3874207 378.9103394 ,9.3874207 384.0307312 ,9.3874207 389.1511841 ,9.3874207

394.2716064 ,9.3874207 394.2716064 ,0 399.3919983 ,0 404.5124207 ,0 404.5124207 ,9.3874207 409.6328125 ,9.3874207
414.7532043 ,9.3874207 419.8736572 ,9.3874207 424.9940796 ,9.3874207 430.1144714 ,9.3874207 430.1144714 ,0

435.2348633 ,0 440.3552246 ,0 440.3552246 ,9.3874207 445.475708 ,9.3874207"/ >
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Graphical Set 15: Participant B (Actual Steps)
<line id=" XMLID_3_" class="st1" x1="0" y1 ="38.0544968" x2 ="4.5059662" y2 ="38.0544968"/ >
<line id=" XMLID_2_" class="st1" x1="0" y1 ="25.1239777" x2 ="4.5059662" y2 ="25.1239777"/ >
<polyline id=" XMLID_4_" class="st0" points ="0 ,15.1545715 5.1204071 ,19.6737823 10.2408218 ,10.3444214

15.3612289 ,33.9878464 20.4816437 ,45.6511688 25.6020508 ,19.7061157 30.7224655 ,40.4531059
35.8428802 ,43.1685028 40.9632797 ,13.4089203 46.0836906 ,20.5530396 51.204113 ,13.5188599
56.3245201 ,36.5157547 61.4449272 ,42.9745331 66.5653381 ,21.1090469 71.6857605 ,40.7698975
76.8061676 ,31.033226 81.9265747 ,17.0812073 87.0469818 ,19.6479111 92.1674042 ,17.0812073
97.2878113 ,36.4446335 102.4082184 ,39.8259735 107.5286255 ,19.796608 112.6490479 ,39.4833069
117.769455 ,40.3302536 122.8898621 ,18.2320099 128.0102844 ,20.1845245 133.1306763 ,16.745018
138.2510834 ,38.2096558 143.3715057 ,46.7437897 148.4919128 ,19.4798126 153.6123199 ,42.3150978
158.7327423 ,42.9034386 163.8531342 ,16.5445938 168.9735718 ,11.1654968 174.0939789 ,0 179.2143707 ,36.6450577
184.3348083 ,42.1146736 189.4552002 ,14.792511 194.575592 ,40.517746 199.6960144 ,37.226944
204.8164368 ,12.7236099 209.9368591 ,21.5034409 215.057251 ,12.7882767 220.1776428 ,32.8628922
225.2980957 ,45.3408318 230.4184875 ,16.4346848 235.5388947 ,40.7828369 240.659317 ,42.3603439
245.7797089 ,17.798851 250.9001007 ,18.723381 256.0205383 ,13.1438599 261.1409302 ,37.0071259
266.261322 ,41.946579 271.3817139 ,22.1629028 276.5021667 ,41.1448975 281.6225586 ,42.056488
286.7429504 ,17.4044571 291.8634033 ,19.7772141 296.9837952 ,51.1336937 302.104187 ,37.2786713
307.2246094 ,46.2976952 312.3450623 ,22.0077286 317.4654236 ,42.0306129 322.5858459 ,35.5007095
327.7062378 ,17.139389 332.8266907 ,19.3052673 337.9470825 ,16.3376846 343.0674744 ,38.151474
348.1879272 ,46.4722672 353.3082886 ,21.6779938 358.4286804 ,36.2506866 363.5491333 ,39.8065796
368.6695557 ,15.8011017 373.7899475 ,20.7728577 378.9103394 ,59.1376991 384.0307312 ,37.7764664
389.1511841 ,46.8924904 394.2716064 ,19.2406006 399.3919983 ,34.7507553 404.5124207 ,43.8796921
409.6328125 ,17.7859116 414.7532043 ,61.8660355 419.8736572 ,12.0900269 424.9940796 ,37.750618
430.1144714 ,35.4942551 435.2348633 ,20.2427063 440.3552246 ,42.8517113 445.475708 ,43.0844688"/ >

Table A.1: Key for Scaling to Reported Ticks from retrieved Graphical Sets 1-15
Used for Chapter 4 (Participants A & B) and Chapter 5 (Participant B)

Just Walk Graphical Tick Reported Tick Reported
Participant Set# Line ID Real Value Line ID Real Value

A



1 XMLID_7_ 6000 XMLID_5_ 8000
2 XMLID_3_ 200 XMLID_2_ 400
3 XMLID_6_ 200 XMLID_5_ 400
4 XMLID_2_ 0 XMLID_5_ 5
5 XMLID_2_ 0 XMLID_5_ 5
6 XMLID_6_ 6000 XMLID_5_ 8000
7 XMLID_6_ 6000 XMLID_5_ 8000

B



8 XMLID_6_ 6000 XMLID_5_ 8000
9 XMLID_5_ 0 XMLID_3_ 400
10 XMLID_4_ 0 XMLID_3_ 400
11 XMLID_5_ 0 XMLID_4_ 5
12 XMLID_5_ 0 XMLID_4_ 5
13 XMLID_5_ 0 XMLID_4_ 5
14 XMLID_4_ 0 XMLID_3_ 1
15 XMLID_3_ 6000 XMLID_2_ 8000

A.3 Final Processed Sets, ‘Accuracy’ & Confidence

Since cited source plots draw on a linear scale, the equation y = mx+c is used for

the recovery of the final set from any initially established arbitrary scale. Graphical

Sets 1-15 are used with the scaling information provided in Table A.1.

Following appropriate rounding per the facts in Section A.2 and exclusion of re-
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dundant points (i.e., staircase plots, polygon object), the final recovered sets from

the described high-precision digitization procedure are provided in Tables A.2-A.6.

Finally, estimated accuracy information and confidence statements are presented in

Table A.7.
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Table A.2: Final Processed Set (1/3) of Published Just Walk Plot from Mer-
cere, 2017 (Participant A) Used in Chapter 4: Intervention Days 0-40

(see Table A.7 for Estimated Accuracy and Confidence)

Day
Goals

Expected
Points

Granted
Points

Predicted
Busyness

Predicted
Stress

Behavior (∆k)

steps/day 100-500 0-500 1-4 1-5 steps/day
0 5193 100 175 3 2 8075 (2)
1 4818 300 100 2 2 5438 (14)
2 8474 450 300 4 3 6699 (6)
3 8060 200 450 3 3 8861 (15)
4 8608 150 200 4 3 9207 (17)
5 5815 450 150 2 2 12694 (19)
6 4317 475 450 3 3 6554 (18)
7 7961 425 475 2 2 8813 (13)
8 5189 500 425 3 2 8180 (21)
9 4813 300 500 3 2 5264 (16)
10 8492 150 300 3 3 4870 (13)
11 8038 400 150 3 3 9082 (14)
12 8634 450 400 2 3 8486 (12)
13 5789 150 450 1 2 9097 (8)
14 4339 125 150 2 3 7538 (3)
15 7948 175 125 3 2 5276 (17)
16 5193 100 175 3 2 8637 (18)
17 4818 300 100 3 3 5479 (17)
18 8474 450 300 4 4 5120 (13)
19 8060 200 450 4 4 9086 (14)
20 8608 150 200 3 4 8504 (11)
21 5815 450 150 1 2 9819 (15)
22 4317 475 450 3 2 10434 (9)
23 7961 425 475 4 4 7002 (13)
24 5189 500 425 3 2 8040 (12)
25 4813 300 500 3 3 6717 (17)
26 8492 150 300 4 3 6170 (14)
27 8038 400 150 4 4 11126 (17)
28 8634 450 400 2 2 9349 (10)
29 5789 150 450 3 3 10127 (11)
30 4339 125 150 4 4 6421 (16)
31 7948 175 125 4 4 5139 (6)
32 5193 100 0 4 4 2669 (19)
33 4818 300 0 4 3 2026 (3)
34 8474 450 0 4 4 1485 (12)
35 8060 200 0 2 1 4187 (15)
36 8608 150 0 3 2 3193 (14)
37 5815 450 0 2 3 5745 (17)
38 4317 475 450 4 3 6695 (13)
39 7961 425 475 4 3 4335 (18)
40 5189 500 425 3 3 8120 (18)
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Table A.3: Final Processed Set (2/3) of Published Just Walk Plot from Mer-
cere, 2017 (Participant A) Used in Chapter 4: Intervention Days 41-80

(see Table A.7 for Estimated Accuracy and Confidence)

Day
Goals

Expected
Points

Granted
Points

Predicted
Busyness

Predicted
Stress

Behavior

steps/day 100-500 0-500 1-4 1-5 steps/day
41 4813 300 500 2 3 6078 (18)
42 8492 150 300 2 2 5269 (15)
43 8038 400 150 2 3 9189 (19)
44 8634 450 0 3 3 2336 (19)
45 5789 150 450 3 3 8928 (19)
46 4339 125 150 3 3 6122 (13)
47 7948 175 125 4 4 4823 (16)
48 5193 100 175 3 4 8610 (18)
49 4818 300 100 2 2 5442 (25)
50 8474 450 300 3 3 4965 (13)
51 8060 200 450 3 3 8713 (13)
52 8608 150 200 3 3 9577 (4)
53 5815 450 150 2 3 10208 (9)
54 4317 475 450 2 3 6071 (23)
55 7961 425 475 2 3 5105 (16)
56 5189 500 425 2 2 10413 (19)
57 4813 300 500 3 3 6581 (18)
58 8492 150 300 3 4 5413 (16)
59 8038 400 150 3 4 8661 (16)
60 8634 450 400 3 3 9741 (13)
61 5789 150 0 2 3 7312 (16)
62 4339 125 150 3 3 6288 (4)
63 7948 175 125 2 2 5643 (14)
64 5193 100 175 3 3 8524 (17)
65 4818 300 100 4 4 5366 (17)
66 8474 450 300 4 4 5113 (12)
67 8060 200 450 4 4 8787 (12)
68 8608 150 200 4 4 8529 (17)
69 5815 450 0 4 4 5836 (15)
70 4317 475 450 2 2 7385 (15)
71 7961 425 475 2 2 5120 (17)
72 5189 500 425 2 2 8354 (17)
73 4813 300 500 2 2 5913 (6)
74 8492 150 300 2 2 6256 (5)
75 8038 400 0 3 3 4260 (17)
76 8634 450 400 3 3 8223 (19)
77 5789 150 450 3 3 9250 (13)
78 4339 125 150 3 3 5923 (14)
79 7948 175 125 4 4 4506 (17)
80 5193 100 0 4 5 4770 (6)
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Table A.4: Final Processed Set (3/3) of Published Just Walk Plot from Mer-
cere, 2017 (Participant A) Used in Chapter 4: Intervention Days 81-87

(see Table A.7 for Estimated Accuracy and Confidence)

Day
Goals

Expected
Points

Granted
Points

Predicted
Busyness

Predicted
Stress

Behavior

steps/day 100-500 0-500 1-4 1-5 steps/day
81 4818 300 100 4 5 5638 (12)
82 8474 450 0 4 4 1944 (18)
83 8060 200 0 4 4 5215 (16)
84 8608 150 0 4 4 3656 (16)
85 5815 450 0 4 3 6528 (18)
86 4317 475 0 4 3 3226 (12)
87 7961 425 0 4 3 4092 (7)
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Table A.5: Final Processed Set (1/2) of Published Just Walk Plot from Freigoun
et al., 2017 (Participant B) Used in Chapters 4 and 5: Intervention Days 0-50

(see Table A.7 for Estimated Accuracy and Confidence)

Day
Goals

Expected
Points

Granted
Points

Predicted
Busyness

Predicted
Stress

Predicted
Typical

Weekday/
Weekend

Behavior

steps/day 100-500 0-500 1-4 1-5 1-4 {0, 1} steps/day
0 8442 175 200 2 2 3 1 9542
1 9102 450 175 2 2 3 1 8843
2 5834 325 450 2 2 3 0 10286
3 4551 100 325 3 2 3 0 6629
4 8424 175 100 3 2 3 0 4825
5 5143 150 175 3 2 3 0 8838
6 5120 125 150 2 2 3 0 5629
7 8970 400 125 2 2 3 1 5209
8 8460 425 400 2 2 3 1 9812
9 9097 150 425 2 2 3 0 8707
10 5825 275 150 3 2 3 0 9795
11 4569 500 275 3 2 3 0 6238
12 8397 425 500 3 2 3 0 5239
13 5170 450 425 2 2 3 0 8621
14 5093 475 450 2 2 2 1 5580
15 8993 200 475 2 2 4 1 7086
16 8442 175 200 3 2 3 0 9244
17 9102 450 175 2 2 3 0 8847
18 5834 325 450 2 2 2 0 9244
19 4551 100 325 3 2 3 0 6249
20 8424 175 100 3 3 2 0 5726
21 5143 150 175 1 1 1 1 8824
22 5120 125 150 2 2 3 1 5779
23 8970 400 125 2 2 2 0 5648
24 8460 425 400 3 2 3 0 9066
25 9097 150 425 3 2 3 0 8764
26 5825 275 150 2 2 3 0 9296
27 4569 500 275 2 2 2 0 5976
28 8397 425 500 2 2 2 1 4656
29 5170 450 425 2 1 3 1 8873
30 5093 475 450 2 2 3 0 5341
31 8993 200 475 3 2 3 0 5250
32 8442 175 200 2 2 3 0 9327
33 9102 450 175 2 2 3 0 10159
34 5834 325 450 2 1 3 0 11886
35 4551 100 325 2 1 2 1 6218
36 8424 175 100 2 1 3 1 5372
37 5143 150 175 3 2 3 0 9598
38 5120 125 150 2 2 3 0 5619
39 8970 400 125 2 2 3 0 6128
40 8460 425 400 2 2 3 0 9918
41 9097 150 425 2 2 3 0 8560
42 5825 275 150 2 2 3 1 9908
43 4569 500 275 2 2 2 1 6803
44 8397 425 500 2 2 3 0 4873
45 5170 450 425 2 2 2 0 9344
46 5093 475 450 2 2 3 0 5578
47 8993 200 475 2 2 3 0 5334
48 8442 175 200 2 2 2 0 9133
49 9102 450 175 2 2 3 1 8990
50 5834 325 450 1 1 3 1 9853
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Table A.6: Final Processed Set (2/2) of Published Just Walk Plot from Freigoun
et al., 2017 (Participant B) Used in Chapters 4 and 5: Intervention Days 51-87

(see Table A.7 for Estimated Accuracy and Confidence)

Day
Goals

Expected
Points

Granted
Points

Predicted
Busyness

Predicted
Stress

Predicted
Typical

Weekday/
Weekend

Behavior

steps/day 100-500 0-500 1-4 1-5 1-4 {0, 1} steps/day
51 4551 100 325 2 2 3 0 6162
52 8424 175 100 2 2 3 0 5398
53 5143 150 175 2 2 2 0 8458
54 5120 125 150 2 2 2 0 5522
55 8970 400 125 2 2 2 0 5381
56 8460 425 400 2 2 2 1 9194
57 9097 150 425 1 1 3 1 8827
58 5825 275 0 2 2 3 0 3977
59 4569 500 275 2 2 3 0 6120
60 8397 425 500 2 2 3 0 4725
61 5170 450 425 2 2 3 0 8482
62 5093 475 450 2 2 3 0 5385
63 8993 200 475 2 2 3 1 6395
64 8442 175 200 2 2 3 1 9235
65 9102 450 175 2 2 3 0 8900
66 5834 325 450 2 2 3 0 9359
67 4551 100 325 2 2 3 0 5985
68 8424 175 100 2 2 3 0 4698
69 5143 150 175 2 2 3 0 8533
70 5120 125 150 2 2 3 1 6279
71 8970 400 125 1 1 3 1 5729
72 8460 425 400 2 2 3 0 9442
73 9097 150 425 2 2 3 0 8673
74 5825 275 0 2 2 2 0 2739
75 4569 500 275 2 2 2 0 6043
76 8397 425 500 2 2 3 0 4633
77 5170 450 425 2 2 3 1 8910
78 5093 475 450 1 1 3 1 6511
79 8993 200 475 2 2 3 0 5099
80 8442 175 200 2 2 2 0 9135
81 9102 450 0 2 2 2 0 2317
82 5834 325 450 2 2 2 0 10016
83 4551 100 325 2 2 2 0 6047
84 8424 175 100 2 2 3 1 6396
85 5143 150 175 1 1 4 1 8755
86 5120 125 150 2 2 3 0 5258
87 8970 400 125 2 2 3 0 5222
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Table A.7: Presentation of Round Off Accuracy and Confidence in the Recovery of
Published Graphical Data in 1-15 from Cited Sources (NA = NB = 88 measurements)

Just Walk
Participant

Graphical
Set #

Rounding Accuracy
Confidence Notes∗

Min Mean

A



1 99.18% 99.99% Exact Recovery 16-day cycle verified & enforced numerically.
2 98.09% 99.97% Exact Recovery 16-day cycle verified & enforced numerically.
3 99.81% 99.95% Exact Recovery “IF-THEN” verified numerically & visually.
4 99.98% 99.99% Exact Recovery Confirmed visually.
5 99.98% 99.99% Exact Recovery Confirmed visually.

6, 7 N/A∗∗ N/A∗∗ |∆k| < 25 steps/day† Both sets are for Behavior ; see notes below.†

B



8 99.9997% 99.9999% Exact Recovery 16-day cycle verified numerically.
9 99.9992% 99.9998% Exact Recovery 16-day cycle verified numerically.
10 99.9995% 99.9997% Exact Recovery “IF-THEN” verified numerically.
11 99.9999% 99.9999% Exact Recovery Confirmed visually.
12 99.9992% 99.9997% Exact Recovery Confirmed visually.
13 99.9996% 99.9997% Exact Recovery Confirmed visually.
14 100% 100% Exact Recovery Confirmed visually.

15 99.9999% 99.9999% Exact Recovery‡ See notes below.‡

∗All conclusions in this tabulation and below are drawn with the strict use of published Just Walk information outlined in Section
A.2 (sufficient to the extent of given statements).

∗∗In this case, information from both polyline objects in Sets 6 and 7 (resulting from ‘cutting’ an obtained polygon object) are
used jointly; only confidence can be estimated. Unique data points (in time) from both polyline objects are selected with an
accuracy of a single polyline (i.e., similar to accuracy in all other sets).

†Estimated from dmax ∆ke, where ∆k ∈ R88 is the vector containing maximum integer gap values (absolute) between both
polyline objects from Sets 6 and 7. Estimated accuracy is > 99.07%. Minimum gap is 0 steps/day; maximum is 25 steps/day.

‡“Exact” is reported since the recovery/digitization procedure produced a single polyline object provided in Set 15 (with
identical properties to Sets 1-5, 8-14), rendering the estimated accuracy > 99.9999% and hence the “exactness” from knowing
that steps/day must be a whole number.
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