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ABSTRACT  
   

Emerging body movement detection and gesture recognition software have opened a gateway of 

possibilities to make technology more intuitive, engaging, and accessible for people. A vast area 

of natural user interfaces is leveraging body motion tracking and gesture recognition technologies 

and a human’s readily expressive body to extend interactions with software beyond mouse clicks 

and scrolls. However, these interfaces have been limited by hardware and software expenses, 

high development time and costs, and learning curves. This paper explores different approaches 

to providing both software developers and designers with easier ways to incorporate computer 

vision-based body and gesture detection solutions into the development of embodied experiences 

without suppressing creativity. Gesture.js is a JavaScript framework as a service (FaaS) that is 

both a thin library on top of the Document Object Model (DOM) consisting of a collection of tools 

for developing embodied-enabled applications on the web and a landmark computation and 

processing application programming interface. It wraps MediaPipe, an open-source collection of 

machine-learning solutions that perform inference over arbitrary sensory data, and additional 

landmark processing frameworks such as KalidoKit, a 3D model rigging solution, and ports the 

necessary information through either an object-oriented or an API-oriented implementation. It also 

comes with its web-based graphical interface for easy connection between Gesture.js and other 

application clients with little to no JavaScript code. This thesis also details a collection of example 

applications that demonstrate the usability, capacity, and potential of this framework.

 Keywords: gesture recognition, embodied applications, cloud computing 
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CHAPTER 1 

INTRODUCTION 

 

The ability to move your body is an essential element in interactive settings. It is natural 

to result in gestures to communicate with others, use your hands to interact with objects, or even 

use your fingers to count. This is because the way we interact with the world, stored as a set of 

abilities and skills, is stored not only in our mind but in our entire body (J, 2019). Similar to muscle 

memory, body intelligence is our learned interactions with the world and can be used to 

strengthen our cognitive abilities. The idea of leveraging this relationship between one’s body 

movement and their overall experience with the world is the study of embodied cognition. More 

specifically, the exploration of one’s psychological factors concerning bodily sequences during an 

interaction with technology is the study of embodied interaction. 

When a user is allowed to move their body naturally and unrestrictedly, it becomes 

significantly easier for them to adapt to a new piece of technology or software program 

(Schrammel, Paletta, & Tscheligi, 2010). This datum has inspired the development of natural user 

interfaces in human-computer interaction. These interfaces utilize natural human actions such as 

voice commands, body movement, or gesture and pose recognition as an input to control a 

software application. More importantly, what makes an interface “natural” is the user’s behavior 

and feeling during the experience by better assisting their human abilities, skills, and processes 

(Wigdor & Wixon, 2011). This thesis will focus on a specific area of natural user interfaces-- those 

that leverage pose, face, hand tracking, and gesture recognition. This collection of applications 

will be referred to as embodied applications.  

While embodied applications are worthwhile, there lacks emphasis on the role of body 

movement in the field of human-computer interaction (Schrammel, Paletta, & Tscheligi, 2010). 

This is due to technological barriers, high hardware and software costs, and a lack of 

standardization in the development of embodied applications. There are two approaches to 

capturing and interpreting body movement. The first approach is known as the hardware-based 

approach, where the user is required to wear some form of device that collects data via sensors 
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and sends it to the computer. Unfortunately, the current devices developed tend to be bulky and 

expensive in to be accurate, which then hinders the naturalness and practicality of one’s 

interactions with a software application (Yeo, Lee, & Lim, 2013). The second approach is known 

as the computer vision-based approach, where cameras and computer vision techniques are 

used to collect and interpret body movement. This approach is a lot more natural for the user but 

lacks accuracy if the analyzing software is weak or the camera is of low quality (Yeo, Lee, & Lim, 

2013). 

Fortunately, with the improvement of computer hardware (i.e., higher quality webcams, 

faster computation speeds) and the introduction of highly accurate machine-learning solutions for 

a live video stream, the role of movement in human-computer interaction is starting to make a 

comeback. MediaPipe, an open-source collection of machine-learning solutions that perform 

inference over arbitrary sensory data, such as live video (Lugaresi, et al., 2019), provides 

developers the opportunity to integrate body detection and tracking without the need to train their 

models, purchase, and integrate hardware, or pay for a subscription or license. The introduction 

of this framework has sparked many ideas in the software development and research community, 

such as sign language interpreters, augmented reality applications, and expression or gesture 

recognition machine learning models. The possibilities are endless. 

MediaPipe is powerful and provides a gateway of opportunities for embodied 

applications. However, it only provides the inference data, more specifically a collection of 

landmark coordinate points for each body part in view. The ability to interpret this data 

semantically such as if a gesture is being made or make use of it by mapping a landmark location 

to a point on a webpage or is not provided and up to the user’s implementation choice, process, 

and skills. This can be discouraging for those who are unfamiliar with the development of 

embodied applications and especially limiting to those who lack access to gesture recognition 

machine learning models. Moreover, while machine learning inference and processing is fast for 

common devices, it is built-in to the device which requires processing power. This thesis will 

explore different approaches to providing both developers and designers with a more 

streamlined, accessible development experience of embodied applications. 
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CHAPTER 2 

BACKGROUND LITERATURE 

 

MediaPipe hosts a collection of machine-learning solutions that fundamentally analyze a 

live video stream and compute a set of landmark points. A landmark point is a three-dimensional 

coordinate composed of x, y, and z. x and y are normalized to [0.0, 1.0] by the image width and 

height respectively, while z represents the landmark depth (MediaPipe, 2020). In Figure 1, a 

depiction of the landmark model for the Hands solution is presented. 

 

Figure 1 

MediaPipe Hands Landmark Model 

 
 
 
 

While this information is mobilizing, the interpretation of this data requires additional 

technological support. For example, the integration of a mapping algorithm of these landmark 

points to a specific location on a website or a machine-learning-based gesture recognition layer. 

These technologies are highly dependent on the developer of an embodied application as there is 

no standard programming language or framework that bundles all these technologies to develop 

embodied applications. In addition to this, MediaPipe’s solutions are built-in, meaning that the 

final application not only has to semantically process the landmarks output but also run the 
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process that produces the landmarks. While MediaPipe is fast and lightweight, there are 

opportunities to package both the production and processing of landmark data as a service. 

 

Building Embodied Experiences 

When the field of computing software was born, it became obvious that a more 

standardized approach to the development of software was needed. This is because as the 

software was seen to solve problems in the world, many methodologies on how to develop this 

software were also proposed. This resulted in a “methodology jungle,” which is the difficulty of 

selecting the appropriate methodology for a given software development project. To combat this, 

frameworks were introduced to package certain methodologies in a way that abstracts upon the 

design or architecture of a specific system (Mnkandla, 2009). A software framework is a code 

skeleton that abstracts upon a specific implementation of a solution. 

In this paper, the solution is creating embodied applications, more precisely, applications 

that interpret body detection and tracking data semantically. There is no framework or specific 

implementation that abstracts upon or standardizes this for software developers. NoTouch.js is a 

front-end development framework for interacting with websites with hand gestures. It is great at 

semantically wrapping gestures into an action, such as mapping a pointer finger’s curl to a click. 

However, it is limited as it only provides a click interaction and does not allow flexibility for the 

user to choose what gesture results in a click (Akcura, 2018). Gest.js is like NoTouch.js but gives 

developers more flexibility as to what a gesture could mean. It is computer vision-based and 

focuses on listening and using pre-defined gestures to define an interaction (Micheal, 2013). 

However, unlike NoTouch.js, the coordinates of where one’s hand is to the application interface 

are not given, and so gestures are difficult to map interactions to a specific element on a website. 

The closest framework that attempts to interpret both gestures and body landmark point 

coordinates into interactions with a website is Handsfree.js. Unlike the previously introduced 

frameworks, Handsfree.js is powered by MediaPipe’s machine learning models. This allows the 

developer to directly access the raw landmark data but also have access to a collection of plugins 

that interpret the data (Ramos, 2021). These plugins are tremendously useful for generic 



  5 

interactions like click and scroll, but once again, they constrain the interaction by locking in the 

gesture. Also, Handsfree.js’ interactions are restricted to only clicks and scrolls, which at first 

seem sufficient as these interactions are almost equivalent to what a mouse can do, but 

compress the capability and potential of embodied applications. Adding a new dimension to 

webpages transcends beyond simply the addition of input devices; They should capitalize 

increased expressivity our bodies can provide as an input to software applications. 

 

Pose and Movement Detection as a Service 

Simply interpreting landmark data into a collection of useful interactions for developers is 

not enough. Another key element that is missing from these frameworks is that the computation 

and generation of landmark data require it to be computed on the application itself. This is 

problematic for users of a specific application, especially if they are running it on a slow computer, 

and developers need to make heavy use of processors for other reasons such as rendering a 

high-fidelity virtual world. For example, TouchDesigner is a software development platform for 

building real-time interactive multimedia content and makes heavy use of a computer’s CPU for 

video and audio reading and decoding and GPU for rendering media (Derivative, 2021). 

Therefore, the production and processing of landmark data are not feasible for experiences 

created in TouchDesigner. A framework as a service (FaaS) offers solutions by production 

environment type (i.e. a web application) by providing the foundation to rapidly develop an 

application. It can be customized according to business needs but does not require the full 

implementation of a system (McKenzie, 2014). There is a need for this in embodied application 

development for software developers and designers. 

This paper proposes a framework as a service, Gesture.js, that aims to simplify the 

development of embodied applications without hindering the creativity of developers and 

designers. It wraps the computation of MediaPipe’s landmark data as well as the processing of 

this data into a set of customizable interactions and gestures as a service so that applications can 

focus on creating immersive experiences efficiently and smoothly. 
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CHAPTER 3 

FRAMEWORK ARCHITECTURE AND DESIGN 

 

System Architecture 

Gesture.js takes in data from MediaPipe and additional body detection or gesture 

recognition frameworks and a video stream all in conjunction with each other to interpret and 

package them as customizable semantic functions for an embodied application to use. 

 

Figure 2 

Gesture.js Data Flow and Entry Points 
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As indicated in Figure 2, there are three main entry points of data. The first entry point is 

for the external frameworks and libraries that compute the necessary data for evaluation. While 

MediaPipe computes the raw landmark data, Fingerpose is a gesture classifier that will interpret 

these landmarks as an arrangement of finger positions that define a specific gesture. For 

example, the victory sign gesture is distilled to an uncurled index and middle finger pointing 

upwards and fully curled ring, pinky, and thumb fingers. The combination of finger curls and 

directions make up a gesture description, which is compared against the live input of landmark 

data. KalidoKit is a blendshape and kinematics solver specifically for MediaPipe’s landmark data 

designed for rigging virtual reality models (VRM) and Live2D avatars. The second entry point is 

for the input of a camera’s video stream. Typically, this camera is the webcam on a user’s laptop 

or desktop computer, it can also be configured to be an external camera. This video stream is 

routed to MediaPipe either directly or with WebRTC. Lastly, the third entry point is the embodied 

application itself. Since Gesture.js is an interface for MediaPipe and interpretations of its 

landmark data, a collection of features are provided for an embodied application to call 

accordingly. These features can be distilled into four categories: Data Processing, Gesture 

Classification, Interaction Semantization, and Virtual Reality Model Rigging. 

Data Processing. To ensure the highest amount of customization, the ability to compute 

landmark data within the application (not recommended) and access raw landmark data is 

provided. If the developer would like to use MediaPipe individually or in conjunction with other 

frameworks, the object-oriented implementation allows for the developer to do so. However, if the 

developer would rather use the CPU to compute graphics or other heavy processes instead of the 

external frameworks, then the API-oriented implementation allows for easy configuration to do so. 

The developer can simply install Gesture.js’ npm package and run gesture to reveal a graphical 

user interface for configuration. This feature is a work in progress and a screenshot of this 

interface will be provided when completed. 

Gesture Classification. Powered by Fingerpose, gesture recognition is as easy as 

calling the isMakingGesture() method in either the object-oriented or API-oriented 

implementations. A collection of predefined, static gestures is provided, so the developer will only 
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need to refer to its name without any pre-training or classification beforehand. As exhibited in 

Table 1, a list of common gestures is delineated as a collection of finger curls and directions. 

 

Table 1 

Excerpt of Gestures Library 

Gesture Name Parameter 
Name 

Estimate Type Reference Image 

Pinch “pinch” interactiveGestures 

 

Fist “fist” interactiveGestures 

 

Point “point” interactiveGestures 

 

One “one” numberGestures 

 

Two “two” numberGestures 
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Three “three” numberGestures 

 

Four “four” numberGestures 

 

Five “five” numberGestures 

 

Thumbs Up “thumbsUp” miscellaneousGestures 

 

Thumbs Down “thumbsDown” miscellaneousGestures 

 

Victory Sign “victorySign” miscellaneousGestures 

 

 

Interaction Classification. Like the gesture classification feature, there is a collection of 

predefined interactions that allow the developer to build their experiences. This feature is 

available for both the object-oriented approach and the API-oriented approach. Each interaction 

can be customized with a series of callback functions and gesture variables. Detailed in Table 2, 
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each interaction has its designated method name with specific callback requirements and optional 

gesture variables. 

 

Table 2 

Excerpt of Interactions Library 

Interaction Name Parameters Gesture Variable(s) 

onFace callback : function none 

onPose callback : function none 

onRightHand callback : function none 

onLeftHand callback : function none 

userHoversObject 

landmarkPoints : array of int, 
object : HTML element, 
successCallback : function, 
failedCallback : function 

none 

userClicksObject object : HTML element, 
successCallback : function clickGesture (Default: pinch) 

userDragsAndDrops 
pickUpCallback : function, 
dragCallback : function, 
dropCallback : function 

prePickUpGesture (Default: open 
hand) 

pickUpGesture (Default: fist) 

isMakingGesture gestureName : String none 

 

Virtual Reality Model Rigging. With the support of KalidoKit, the ability to rig a 3D 

model based on real-time body and face landmark points is available in the object-oriented 

implementation. Since KalidoKit is based on the animated 3D computer graphics application 

programming interface, Three.js, only WebGL-capable applications can utilize its rigging 

solutions. Moreover, KalidoKit only supports humanistic models as it only provides solvers for 

pose, face, and hands. This feature is designed for developing Three.js scenes with virtual reality 

human-like models with real-time body and face tracking. 
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CHAPTER 4 

EXAMPLE APPLICATIONS AND ANALYSIS 

 

To demonstrate the ease of setting up Gesture.js and using its features, a variety of 

example applications were developed. These examples can be accessed at the following link: 

https://masters-thesis-project.herokuapp.com/example. This paper will present them and discuss 

their potential impacts. 

 

Interacting with the DOM: Improving Accessibility on the Web 

Creating website applications that can be interacted with using gestures and movement 

is the foundation of Gesture.js. This example application demonstrates how to use Gesture.js’ 

gesture classification library and interaction classification methods to create simple, yet powerful 

experiences. Being able to touch an element on a website is the first step. By instantiating the 

Gesture class, the developer can pass in a callback function when a user “touches” an element in 

the Document Object Model (DOM). In this example, as shown in Figure 3, a piano is composed 

of div elements, and each element is passed into the userHoversObject() method. More complex 

methods such as userDragsAndDropsObject(), demonstrated in Figure 4, require more callbacks 

but are just as easy to implement onto a div element.  
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Figure 3 

Demonstrating Hover or Touch with a Piano 

 

 

Figure 4 

Demonstrating Combination of Hover and Gesture with Drag and Drop 
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Three Game Environments: Analyzing the Performance of Gesture.js 

 While the performance of Gesture.js on each game environment is visually apparent, a 

brief data collection process on each embodied experience was performed. The following 

performance metrics recorded are times of loading events, range of frame per second (FPS), 

CPU usage, and GPU usage. Lag, which is the response time from the computer, is computed 

based on the Animation Frame Fired activity. This activity is performed every time the application 

calls requestAnimationFrame() to redraw the game environment, and so lag is understood based 

on the total time an Animation Frame Fired activity takes to complete. Since the duration of each 

Animation Frame Fired activity varies, the total time of all activities, as well as the range, is 

provided. The performance metrics and durations of Animation Frame Fired activities were 

collected using Google’s Developer Tools’ Performance tab and computed accordingly. The 

bandwidth, or rate of data transfer from Gesture.js to an application, was also computed based on 

the network metrics found in the Developer Tools’ network tab. These metrics are the number of 

requests, amount of data transferred, and total time to complete, and the total time spend loading. 

If the application is using Gesture.js as a service, then additional details about the time taken to 

complete a request related to landmark computation or interpretation are provided. 

 

Bubble Shooter Performance Analysis 

The first game environment, Bubble Shooter, demonstrates how to map landmark points 

to an HTML document and use gestures as a form of input. In this example, a simple bubble 

shooter game consisting of HTML elements for the bubbles and gun is controlled by a user’s 

hand location and gestures. When a user closes their first, the angle of the gun can be aimed with 

the user’s hand position, and when the user opens their hand, the gun shoots a bubble into the 

rows of bubbles. This HTML and Javascript code was taken from an open-source example written 

by rembound.com and a Gesture.js layer was applied that effectively replaced the mouse cursor 

position with hand landmark tracking (Rembound, 2015). 
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Figure 5 

Bubble Shooter Graphical User Interface 

 

 

As shown in Figure 6, even though the game environment consists of HTML elements 

that are relatively low impact, most of the CPU is being used by MediaPipe for landmark 

interpretation and Tensorflow due to Fingerpose.js’ gesture recognition. In the Bubble Shooter 

application, in the activities which are Request Animation Fired, a large majority of the activity 

duration is the computation of landmarks, more specifically the running MediaPipe’s Holistic 

model. Detailed in Figure 7, about 91.1% of the time is spent running MediaiPipe’s landmark 

computation, 5.9% is spent using Fingerpose.js’ gesture recognition, and 0.2% is spent running 

Gesture.js’ landmark interpretation. Lastly, the network performance, or the bandwidth, is shown 

in Figure 8. Since the Bubble Shooter game environment is running Gesture.js itself, it does not 

request or receive any landmark data over a network. Most of the load time occurs at the 

beginning, where it loads the appropriate models, libraries, and files. 
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Figure 6 

Developer Tools’ Performance Profile for Bubble Shooter 

 

 

Figure 7 

Bubble Shooter’s Animation Frame Fired Composition 

 



  16 

Figure 8 

Developer Tools’ Network Metrics for Bubble Shooter 

 

 

Infinite Runner Performance Analysis 

 The next game environment, exhibited by the Infinite Runner example application, 

demonstrates how to map landmark points to a 3D space. Three.js, a computer graphics 

application programming interface, is used to render a WebGL-based 3D scene that animates a 

hero object. In this example, a simple infinite runner game consisting of a stone ball rolling 

through an obstacle course of random dynamically-rendered trees are adapted for a user to 

control via their nose. The Three.js code was taken from an open-source example written by 

Juwal Bose and a Gesture.js layer was applied that effectively replaced the arrow key interactions 

with nose landmark tracking (Bose, 2017). 
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Figure 9 

Infinite Runner Graphical User Interface 

 
 

In the performance analysis of this game environment, it is best to first understand to 

CPU, GPU, and frame rate of the application without the Gesture.js layer. Therefore, in Figure 10, 

the performance profile of just the Three.js code is provided to show the relatively higher need for 

the CPU and GPU to render a 3D scene compared to an HTML-based scene. About 28% of the 

CPU is needed for scripting, which mostly consists of the request of animation frames to rerender 

the game environment. It was also found that due to faster Animation Frame Fired activities, the 

frame rate was about 59.7 FPS. Once the Gesture.js layer is added, the CPU and GPU must now 

focus on handling the computation and interpretation of landmarks—both handled in the requests 

of animation frames—as well as the Three.js environment. Depicted in Figure 11, as soon as the 

application changes to an embodied application, the CPU usage jumps from 28% to 96%. This 

change is largely due to the computation of landmarks on MediaPipe’s end, which is shown in 

Figure 12 to take about 80% of an Animation Frame Fired activity. This led to an average frame 

rate of 25 FPS, which is visually apparent to the user. Similar to Bubble Shooter, the application 
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is experiencing this lag because it runs Gesture.js itself instead of using it as a service. This is 

also the cause of why the network performance is similar to Bubble Shooter. 

 

Figure 10 

Developer Tools’ Performance Profile for Infinite Runner (without Gesture.js) 
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Figure 11 

Developer Tools’ Performance Profile for Infinite Runner (with Gesture.js) 
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Figure 12 

Infinite Runner’s Animation Frame Fired Composition 

 

 

Figure 13 

Developer Tools’ Network Metrics for Infinite Runner 

 



  21 

Embodied Pong Performance Analysis 

 To reap the benefits of Gesture.js, it must be used as a service. Moreover, the 

computation and interpretation of the landmark data need to be computed by something other 

than the embodied application itself. In this next game environment, Embodied Pong 

demonstrates how to call Gesture.js as a service, particularly with WebSockets, and map results 

to a point in 3D space. Similar to Infinite Runner, the game environment consists of a 3D scene 

made by Three.js and takes a single landmark point, a user’s nose, to move an object in this 

scene. In this example, the object is a paddle and the scene is a pong board with another paddle 

that is controlled by a simple AI. This Three.js code was taken from an open-source example 

written by Nikhil Suresh and a Gesture.js layer was applied that effectively replaced the A and D 

keys with nose landmark tracking (Suresh, 2013). 

           This example is slightly different from the last two previous game environments, as two 

instances need to send and receive landmark data. An instance can be a client or a server, but 

there needs to be at least one instance in charge of computing the landmark data. In the Bubble 

Shooter and Infinite Runner examples, the embodied application served as an instance, but since 

there was only one instance, it was the one that was in charge of computing the landmarks. In 

this example, you have presented the instance in charge of computation, and it will automatically 

generate a link to the appropriate instance that will serve to be the embodied application. The 

embodied application, the 3D pong game, is essentially the client for the first page and will 

request landmark data from it to correctly move the paddle according to the user’s node position. 

For both instances to communicate, both links must be open. This can be done by opening both 

links in two different windows (not tabs) on the same computer or a different one. For example, 

the generated link can be opened in a mobile browser and it will still work. If the user opens the 

generated link on a WebXR-compatible phone, the user can view the embodied application in VR 

mode, attach it to a headset such as Google Cardboard, and enter the 3D space from the 

perspective of the paddle. This is key to Gesture.js, as now web applications gain a new 

dimension of interaction that allows higher immersion and interactivity. 
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Figure 14 

Embodied Pong Graphical User Interface 

 

 

As shown in Figure 15, both the CPU and GPU usage for the embodied application is 

characteristically lower than those of the previous two examples. This is because all of the work 

to compute the landmarks is done by another instance, the “server” page. In Figure 16, this is 

exhibited as the performance profile is notably similar to the performance profiles of Bubble 

Shooter and Infinite Runner. Moreover, the Animation Frame Fired activity only contains the work 

of Three.js’ rendering of the 3D environment and objects. Instead of getting the landmarks directly 

from MediaPipe within this Animation Frame Fired activity, it utilizes WebSockets to call the 

“server” instance for landmark data. This is exhibited in Figure 18, where the network 

performance shows the request and response timings of one request of landmark data. On an 

internet connection with a download speed of 13.70 Mbps and upload speed of 6.86 Mbps, the 

amount of time a request and response would take is about 273.86 ms. This method of retrieving 
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landmark data from another instance is considerably better than the amount of time it was taking 

to compute them itself within the Animation Frame Fired activities in the previous two examples. 

 

Figure 15 

Developer Tools’ Performance Profile for Embodied Pong (Client) 
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Figure 16 

Developer Tools’ Performance Profile for Embodied Pong (Server) 

 

 

Figure 17 

Embodied Pong’s Animation Frame Fired Composition 
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Figure 18 

Developer Tools’ Network Metrics for Embodied Pong (with Request Details) 

 

  

Ideally, this other instance would not need to serve an HTML page and should just run on 

an actual server, local or on the cloud. Gesture.js supports this as it is also a published node 

package manager (npm) module that can be installed and used as a Node.js module for server-

side computing. The module is currently public under the name @ahfowler/gesture and can be 

found here: https://www.npmjs.com/package/@ahfowler/gesture.  

 
Performance, Lag, and Network Results 

Building embodied applications are indeed CPU-intensive. Even with the addition of 

MediaPipe’s pre-trained models, the consistent computation of these landmarks requires more 

than 80% of the CPU which is problematic for applications requiring addition computation itself for 

other processes, such as rendering a complex game environment. As shown in Table 3 and 

Table 4, the first two applications, Bubble Shooter and Infinite Runner, both attempted to run 
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Gesture.js on the same instance as the embodied application. This drastically affected the rate of 

frames per second, dropping it from 60 FPS to around 20 FPS. It also required more than 80% of 

the GPU and more than 90% of the CPU to simply maintain the constant computation of 

landmark data. 

 
Table 3 

Performance Metrics of Game Environments 

Game 
Environment 
Name 

Loading Events 

Range of 
Frames 
per 
Second 
(FPS) 

CPU Usage GPU 
Usage 

Bubble 
Shooter 

DOMContentLoaded: 1969.8 
ms 

onLoadEvent: 1992.2 ms 

FirstPaint: 4107.8 ms 

FirstContentfulPaint: 4107.8 
ms 

20.1 – 22.2 Scripting: 92% 

Rendering: 
0.12% 

Painting: 0.09% 

System: 1.50% 

Idle: 5.43% 

GPU: 
81% 

Idle: 
18% 

Infinite 
Runner 

DOMContentLoaded: 987.6 ms 

onLoadEvent: 1028.6 ms 

FirstPaint: 974.8 ms 

FirstContentfulPaint: 974.8 ms 

24 – 28.6  Scripting: 95% 

Rendering: 
0.08% 

Painting: 0.08% 

System: 0.79% 

Idle: 3.19% 

GPU: 
83.38% 

Idle: 
16.62% 

Embodied 
Pong 

DOMContentLoaded: 817.5 ms 

onLoadEvent: 1026.5 ms 

FirstPaint: 491.6 ms 

FirstContentfulPaint: 491.6 ms 

59.4 – 58.8 Scripting: 2.2% 

Rendering: 
0.19% 

Painting: 0.41% 

System: 1.37% 

Idle: 95.81% 

GPU: 
86.19% 

Idle: 
13.81% 

 

While CPU usage is highly determined for the computer running the embodied 

application, it is also important to note the amount of time it takes to complete an animation 

frame. The lag of a website is highly dependent on the animation frames it attempts to render at 
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an as fast, consistent rate. In the first two examples, the Animation Frame Fired duration was 

considerably larger than the last example, mainly because in this activity, it is computing and 

interpreting landmarks as well as rendering the game environment with or without these 

landmarks. As depicted in Table 4, around 80% of the animation activity is spent computing 

landmarks, while less a 1% of it is being spent rendering the game environment. This results in 

the lag user experiences as they move with the application. 

 

Table 4 

Lag Computation of Game Environments 

Game 
Environment 
Name 

Range of 
Animation Frame 
Fired Duration 

Total 
Animation 
Frame 
Fired 
Duration 

Landmark 
Computation 
Usage 

Landmark 
Interpretation 
Usage 

Game 
Environment 
Usage 

Bubble 
Shooter 

0.3 ms – 159.8 
ms 

6030.4 ms 91.1% 6.1% 

(0.2% 
Gesture.js) 

0.00% 

Infinite 
Runner 

0.4 ms – 101.4 
ms 

6497.8 ms 80% 15.4%  

(1.8% 
Gesture.js) 

0.7% 

Embodied 
Pong 

0.3 ms – 159.8 
ms 

6030.4 ms 91.1% 6.1%  

(0.2% 
Gesture.js) 

0.00% 

 

 As discussed, the solution to eliminating lag is to decrease the time spent creating an 

animation frame. This can be done by taking the landmark computation off of the embodied 

application’s hands and put into another instance such as another application or a server. 

Demonstrated in Figure 18, the third example is distributed system that requests data from 

another instance, a “server” page, and uses this data to render the Three.js environment. The 

duration of a request and response consists of its wait time after the request and the response 

content download time. It is also good to note that the number of requests significantly decreases 
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with the third application because the experience no longer needs to request MediaPipe’s models 

for landmark computation or external libraries for landmark interpretation. Instead, it only focuses 

on the emitting event through WebSockets to an instance that will make those requests 

themselves. 

 

Table 5 

Network Metrics of Game Environments 

Game 
Environment 
Name 

Number of 
Requests 

Amount of 
Data 
Transferre
d 

Amount of 
Resources 
Used 

Request 
Response 
Wait Time 

Request 
Response 
Content Download 
Time 

Bubble 
Shooter 

263 
Requests 

8.1 kB 8.93 s N/A N/A 

Infinite 
Runner 

235 
Requests 

7.5 kB 9.97 s N/A N/A 

Embodied 
Pong 

31 Requests 56.8 kB 4.3 MB 91.17 ms 179.24 ms 
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Embodied Virtual Reality: Advancing WebXR and Three.js 

As Gesture.js is powered by MediaPipe, all machine-learning models developed by 

MediaPipe are accessible. The Holistic Model is particularly powerful because it combines the 

Hands, Pose, and Face Mesh models. This tracking can be used for full-body movement tracking 

in virtual reality environments. This example application demonstrates this in conjunction with 

KalidoKit’s rigging solutions to simulate a hardware-less, purely computer-vision-based virtual 

reality experience. 

 

Figure 19 

Rigged Characters in a Virtual Room Space 
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Figure 20 

First-Person View in WebXR Mode 
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CHAPTER 5 

CONCLUSION 

 

Embodied applications are a game-changer as they provide a new way for people to 

interact with applications that transcend beyond mouse clicks and scrolls. Using body movements 

or gestures can allow users to use highly expressive interactions with software and therefore 

create interactive, immersive experiences. With the introduction of MediaPipe, an open-source 

collection of machine-learning solutions for body point detection, a gateway of embodied 

application development has resurfaced in the field of software engineering and human-computer 

interaction. However, there is a need for the standardization and abstraction of software 

development methodologies as well as a service that separates the computation and inference of 

landmark data into semantic gesture and interaction configuration. This paper has explored the 

ways to help developers achieve as well as introduced a framework, Gesture.js, that aims to fulfill 

these needs for software developers and designers so that they can focus on creating immersive 

experiences efficiently and smoothly. 

 

Current Limitations 

There are several limitations of Gesture.js that were discovered throughout the 

development process. Unfortunately, most of these problems stem from the limitations of 

MediaPipe. The good news is that while there is a cascading effect of limitations, this means that 

with the inevitable advancement of computer vision-based body part detection models and 

improvement of hardware like webcams and computing power of personal devices, Gesture.js 

and its relevant frameworks will consequently become better. 

For example, KalidoKit uses landmark data from MediaPipe to calculate 3D model face, 

body, and hand positions. However, the rigging is severely limited by the low accuracy and 

tracking rate of MediaPipe’s pose model. This leads to some technical difficulties with Gesture.js’ 

embodied virtual reality example application, especially when a user backs up to move their legs. 
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Another aspect of Gesture.js is the lack of machine learning, such as a neural network-

based, gesture recognition framework. Fingerpose is simply a similarity calculator, and so gesture 

recognition depends highly on the clarity of its gesture descriptions and the distinctiveness of the 

gestures for each other. For example, in the interactive example application, the click gesture (a 

pinch between an index finger and thumb) scores quite similarly to an open hand gesture 

because only two out of five fingers are not fitting the description of a pinch. Therefore, utilizing 

gestures in embodied applications is quite difficult, especially when certain gestures look even 

remotely like one another. 

 

Future Research and User Studies 

 Aside from the anticipation of better computer vision-based body part detection models 

and improvement of computer hardware, the next steps of Gesture.js are to replace Fingerpose 

with a neural network-based gesture recognition model, provide the user the ability to define their 

gestures, and incorporate gestures that contain movement patterns or require more than one 

hand. Since the purpose of this thesis was to develop a framework that enables developers to 

create embodied applications easier, the ability to develop a gesture recognition machine-

learning model is outside of this scope. However, in the future, Gesture.js hopes to integrate a 

pre-trained gesture recognition model that utilizes neural networks 

           Similarly, since the focus of Gesture.js is to improve the development experience of 

embodied applications, user experience studies are needed to effectively evaluate the qualitative 

experience of development. Moreover, it would also be beneficial to learn more about how one’s 

body can effectively interact with an application. Since a user experience case study is outside of 

this scope, yet highly advantageous, a conceptual plan will be proposed for future research. 

 

Using Gesture.js: A User Case Study Proposal 

 To evaluate the usability of Gesture.js with the assistance of creating embodied 

applications, a study detailing the learnability, ease of technological integration, creative flexibility, 

and reliability is suggested. As Gesture.js is intended to support application developers, the 
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participants should intend to create a web-based embodied experience, thus requiring at least a 

general idea of their application’s architecture. This is so they can effectively decide whether to 

use Gesture.js as a service or directly. An introductory level of JavaScript is also required as 

Gesture.js is a JavaScript-based framework. Ideally, the participants should be a mix of software 

developers, designers, and researchers with various software development experiences. 

           The study should be conducted where a participant is instructed to develop a simple 

embodied application with pre-existing code, such as an HTML document with a button. Given 

Gesture.js’ documentation and open-source code, the participant is expended to apply Gesture.js 

as a layer and convert, say a button, to react to a user’s gesture or body position. The complexity 

of this activity can increase with the discretion of the conducting researcher. Regardless of the 

outcome of the participant, the following results, shown in Table 6, should be recorded. 
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Table 6 

User Case Study Metrics and Descriptions 

Metric Name Purpose Result Format Suggestions Example 

Learnability This is recorded to calculate 
how easy it is to learn how to 
use Gesture.js. This is the 
evaluation of API 
documentation, semantics of 
functionality, intuitiveness of 
architecture, and judgment of 
the framework’s attempt at 
abstraction. 

Time spent consulting 
documentation; Participant 
comments; Amount of 
“errors” made during 
development 

13 minutes 
spent 
consulting 
documentation 

Ease of 
Integration 

This is used to determine how 
easy it is to convert a pre-
existing application into an 
embodied application. This is 
the evaluation of the portability 
and modularity of Gesture.js. 

Participant comments; How 
many lines of code of the 
preexisting application were 
changed to support 
Gesture.js 

The user fixed 
2 lines of 
preexisting 
applications to 
incorporate 
gesture-based 
click 

Creative 
Flexibility 

This metric determines how 
easy it is to implement an 
envisioned embodied 
interaction with Gesture.js. 
This evaluates the capability 
and flexibility of the framework. 

Similarity between 
participant’s initial intention 
and final product; 
Participant comments; 
Amount of “errors” made 
during development 

The user 
intended to 
create a click 
gesture with a 
pinch but 
resulted in 
using a fist 

Reliability This is recorded to calculate 
the number of technical errors 
that occurs during 
development. This evaluates 
Gesture.js’ logical 
implementation. 

Amount of technical 
difficulties occurred that 
were not caused by the 
participant; Log of technical 
errors 

onHands() 
function does 
not fire when 
onFace() also 
runs 

Comments This metric is to capture any 
other qualitative experiences a 
participant would like to share. 

Log of participant 
comments, questions, or 
suggestions 

“I don’t like 
how it does 
not capture 
two gestures 
at the same 
time.” 

Development 
Success 

This is the final determination 
of whether the user 
successfully converted a 
preexisting application to an 
embodied one. 

Binary result (Pass/Fail); 
Analysis or evaluation if the 
final application meets 
embodied standard 

Partial Pass; 
User 
incorporated 
gesture but 
not the 
position of the 
hand 
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 Next Steps for Gesture.js 

As previously mentioned, Gesture.js is a cloud-deployable framework that can be 

installed as a node package manager (npm) module for Node.js applications. The module is 

currently public under the name @ahfowler/gesture. This module will be maintained and updated. 

Gesture.js provides many benefits to both the software development and art and design 

community and industry. As its purpose is to help developers and designers create applications 

that are more engaging, immersive, and interactive without having to sacrifice their CPU or time 

to pick an application-specific algorithm and develop an interpretation/mapping technique, there 

are many beneficial impacts it can have on the general community. One impact is that it can 

make previously existing applications more accessible to those who struggle with motor abilities 

of traditional input methods, such as touch, mouse, or keyboard. Integrating movement and 

gestures into applications can make technology more inclusive and natural, and there is no need 

to build a new application infrastructure for it as Gesture.js serves as a layer on top of pre-existing 

HTML documents. Another benefit is that Gesture.js can increase the overall interactivity of 

software in general. By adding a new dimension of interaction that transcends typical input 

methods such as clicks and scrolls, web applications and gaming environments can increase 

engagement between users and applications, leading to more meaningful experiences. 

A technological contribution of Gesture.js is the ability to provide its support in the form of 

service by leveraging server-side or cloud computing. As discussed in the analysis of the three 

gaming environments, when Gesture.js is used as a service, embodied applications can run more 

complex scripts and render higher quality experiences without having to worry about the 

computation and interpretation of body point landmarks. This leads to the last impact, which is to 

empower creativity among everyone regardless of technological background. By removing the 

technological limitations by simplifying the development and separating computing, it is the goal 

that Gesture.js will effectively make the development of embodied applications more accessible 

so anyone and everyone can leverage the power of using one’s body. 
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