
Gesture.js: A Cloud-Deployable Framework for Building Embodied Experiences

by

Azaria Fowler

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved April 2022 by the
Graduate Supervisory Committee:

Tejaswi Gowda, Chair
Anastasia Kuznetsov
Yoshihiro Kobayashi

ARIZONA STATE UNIVERSITY

May 2022

 i

ABSTRACT

Emerging body movement detection and gesture recognition software have opened a gateway of

possibilities to make technology more intuitive, engaging, and accessible for people. A vast area

of natural user interfaces is leveraging body motion tracking and gesture recognition technologies

and a human’s readily expressive body to extend interactions with software beyond mouse clicks

and scrolls. However, these interfaces have been limited by hardware and software expenses,

high development time and costs, and learning curves. This paper explores different approaches

to providing both software developers and designers with easier ways to incorporate computer

vision-based body and gesture detection solutions into the development of embodied experiences

without suppressing creativity. Gesture.js is a JavaScript framework as a service (FaaS) that is

both a thin library on top of the Document Object Model (DOM) consisting of a collection of tools

for developing embodied-enabled applications on the web and a landmark computation and

processing application programming interface. It wraps MediaPipe, an open-source collection of

machine-learning solutions that perform inference over arbitrary sensory data, and additional

landmark processing frameworks such as KalidoKit, a 3D model rigging solution, and ports the

necessary information through either an object-oriented or an API-oriented implementation. It also

comes with its web-based graphical interface for easy connection between Gesture.js and other

application clients with little to no JavaScript code. This thesis also details a collection of example

applications that demonstrate the usability, capacity, and potential of this framework.

 Keywords: gesture recognition, embodied applications, cloud computing

 ii

DEDICATION

I would like to dedicate this thesis to my beloved family members and close friends. I am truly

thankful for having a constant source of encouragement and affirmation from them during my

graduate school journey. I am deeply grateful for the support and motivation of my parents, Yu-

mei and Todd Sinclair, who have encouraged me to apply to graduate school even when I felt I

would have never succeeded in doing so. Without them, I would have never been able to become

the person I am today.

 iii

ACKNOWLEDGMENTS

Throughout my graduate school journey, I have received a great deal of support and

inspiration from several people at Arizona State University. I would like to thank my thesis chair,

Dr. Tejaswi Gowda, whose expertise was invaluable to not only my research but software

development career. Your insightful feedback has pushed me to become more resourceful when

solving my problems and has brought my work to a higher level. I would also like to acknowledge

my committee members, Dr. Stacey Kuznetsov, and Dr. Yoshihiro Kobayashi, for taking the time

to guide me throughout my research. Your expertise has been both inspiring and insightful to my

thesis, and I am grateful for all the tools you have provided me to choose the right direction in my

research.

 iv

TABLE OF CONTENTS

 Page

LIST OF TABLES .. v

LIST OF FIGURES ... vi

CHAPTER

1 INTRODUCTION ... 1

2 BACKGROUND LITERATURE ... 3

Building Embodied Experiences .. 4

Pose and Movement Detection as a Service ... 5

3 FRAMEWORK ARCHITECTURE AND DESIGN .. 6

System Architecture .. 6

4 EXAMPLE APPLICATIONS AND ANALYSIS ... 11

Interacting with the DOM: Improving Accessibility on the Web 11

Three Game Environments: Analyzing Performance of Gesture.js 13

Embodied Virtual Reality: Advancing WebXR and Three.js 29

5 CONCLUSION .. 31

Current Limitations ... 31

Future Research and User Studies ... 32

Next Steps for Gesture.js .. 35

BIBLIOGRAPHY ... 36

 v

LIST OF TABLES

Table Page

1. Excerpt of Gestures Library .. 8

2. Excerpt of Interactions Library .. 10

3. Performance Metrics of Game Environments .. 26

4. Lag Computation of Game Environments .. 27

5. Network Metrics of Game Environments .. 28

6. User Case Study Metrics and Descriptions ... 34

 vi

LIST OF FIGURES

Figure Page

1. MediaPipe Hands Landmark Model .. 3

2. Gesture.js Data Flow and Entry Points ... 6

3. Demonstrating Hover or Touch with a Piano .. 12

4. Demonstrating Combination of Hover and Gesture with Drag and Drop 12

5. Bubble Shooter Graphical User Interface .. 14

6. Developer Tools’ Performance Profile for Bubble Shooter .. 15

7. Bubble Shooter’s Animation Frame Fired Composition .. 15

8. Developer Tools’ Network Metrics for Bubble Shooter .. 16

9. Infinite Runner Graphical User Interface ... 17

10. Developer Tools’ Performance Profile for Infinite Runner (without Gesture.js) 18

11. Developer Tools’ Performance Profile for Infinite Runner (with Gesture.js) 19

12. Infinite Runner’s Animation Frame Fired Composition .. 20

13. Developer Tools’ Network Metrics for Infinite Runner ... 20

14. Embodied Pong Graphical User Interface ... 22

15. Developer Tools’ Performance Profile for Embodied Pong (Client) 23

16. Developer Tools’ Performance Profile for Embodied Pong (Server) 24

17. Embodied Pong’s Animation Frame Fired Composition ... 24

18. Developer Tools’ Network Metrics for Embodied Pong (with Request Details) 25

19. Rigged Characters in a Virtual Room Space .. 29

20. First-Person View in WebXR Mode ... 30

 1

CHAPTER 1

INTRODUCTION

The ability to move your body is an essential element in interactive settings. It is natural

to result in gestures to communicate with others, use your hands to interact with objects, or even

use your fingers to count. This is because the way we interact with the world, stored as a set of

abilities and skills, is stored not only in our mind but in our entire body (J, 2019). Similar to muscle

memory, body intelligence is our learned interactions with the world and can be used to

strengthen our cognitive abilities. The idea of leveraging this relationship between one’s body

movement and their overall experience with the world is the study of embodied cognition. More

specifically, the exploration of one’s psychological factors concerning bodily sequences during an

interaction with technology is the study of embodied interaction.

When a user is allowed to move their body naturally and unrestrictedly, it becomes

significantly easier for them to adapt to a new piece of technology or software program

(Schrammel, Paletta, & Tscheligi, 2010). This datum has inspired the development of natural user

interfaces in human-computer interaction. These interfaces utilize natural human actions such as

voice commands, body movement, or gesture and pose recognition as an input to control a

software application. More importantly, what makes an interface “natural” is the user’s behavior

and feeling during the experience by better assisting their human abilities, skills, and processes

(Wigdor & Wixon, 2011). This thesis will focus on a specific area of natural user interfaces-- those

that leverage pose, face, hand tracking, and gesture recognition. This collection of applications

will be referred to as embodied applications.

While embodied applications are worthwhile, there lacks emphasis on the role of body

movement in the field of human-computer interaction (Schrammel, Paletta, & Tscheligi, 2010).

This is due to technological barriers, high hardware and software costs, and a lack of

standardization in the development of embodied applications. There are two approaches to

capturing and interpreting body movement. The first approach is known as the hardware-based

approach, where the user is required to wear some form of device that collects data via sensors

 2

and sends it to the computer. Unfortunately, the current devices developed tend to be bulky and

expensive in to be accurate, which then hinders the naturalness and practicality of one’s

interactions with a software application (Yeo, Lee, & Lim, 2013). The second approach is known

as the computer vision-based approach, where cameras and computer vision techniques are

used to collect and interpret body movement. This approach is a lot more natural for the user but

lacks accuracy if the analyzing software is weak or the camera is of low quality (Yeo, Lee, & Lim,

2013).

Fortunately, with the improvement of computer hardware (i.e., higher quality webcams,

faster computation speeds) and the introduction of highly accurate machine-learning solutions for

a live video stream, the role of movement in human-computer interaction is starting to make a

comeback. MediaPipe, an open-source collection of machine-learning solutions that perform

inference over arbitrary sensory data, such as live video (Lugaresi, et al., 2019), provides

developers the opportunity to integrate body detection and tracking without the need to train their

models, purchase, and integrate hardware, or pay for a subscription or license. The introduction

of this framework has sparked many ideas in the software development and research community,

such as sign language interpreters, augmented reality applications, and expression or gesture

recognition machine learning models. The possibilities are endless.

MediaPipe is powerful and provides a gateway of opportunities for embodied

applications. However, it only provides the inference data, more specifically a collection of

landmark coordinate points for each body part in view. The ability to interpret this data

semantically such as if a gesture is being made or make use of it by mapping a landmark location

to a point on a webpage or is not provided and up to the user’s implementation choice, process,

and skills. This can be discouraging for those who are unfamiliar with the development of

embodied applications and especially limiting to those who lack access to gesture recognition

machine learning models. Moreover, while machine learning inference and processing is fast for

common devices, it is built-in to the device which requires processing power. This thesis will

explore different approaches to providing both developers and designers with a more

streamlined, accessible development experience of embodied applications.

 3

CHAPTER 2

BACKGROUND LITERATURE

MediaPipe hosts a collection of machine-learning solutions that fundamentally analyze a

live video stream and compute a set of landmark points. A landmark point is a three-dimensional

coordinate composed of x, y, and z. x and y are normalized to [0.0, 1.0] by the image width and

height respectively, while z represents the landmark depth (MediaPipe, 2020). In Figure 1, a

depiction of the landmark model for the Hands solution is presented.

Figure 1

MediaPipe Hands Landmark Model

While this information is mobilizing, the interpretation of this data requires additional

technological support. For example, the integration of a mapping algorithm of these landmark

points to a specific location on a website or a machine-learning-based gesture recognition layer.

These technologies are highly dependent on the developer of an embodied application as there is

no standard programming language or framework that bundles all these technologies to develop

embodied applications. In addition to this, MediaPipe’s solutions are built-in, meaning that the

final application not only has to semantically process the landmarks output but also run the

 4

process that produces the landmarks. While MediaPipe is fast and lightweight, there are

opportunities to package both the production and processing of landmark data as a service.

Building Embodied Experiences

When the field of computing software was born, it became obvious that a more

standardized approach to the development of software was needed. This is because as the

software was seen to solve problems in the world, many methodologies on how to develop this

software were also proposed. This resulted in a “methodology jungle,” which is the difficulty of

selecting the appropriate methodology for a given software development project. To combat this,

frameworks were introduced to package certain methodologies in a way that abstracts upon the

design or architecture of a specific system (Mnkandla, 2009). A software framework is a code

skeleton that abstracts upon a specific implementation of a solution.

In this paper, the solution is creating embodied applications, more precisely, applications

that interpret body detection and tracking data semantically. There is no framework or specific

implementation that abstracts upon or standardizes this for software developers. NoTouch.js is a

front-end development framework for interacting with websites with hand gestures. It is great at

semantically wrapping gestures into an action, such as mapping a pointer finger’s curl to a click.

However, it is limited as it only provides a click interaction and does not allow flexibility for the

user to choose what gesture results in a click (Akcura, 2018). Gest.js is like NoTouch.js but gives

developers more flexibility as to what a gesture could mean. It is computer vision-based and

focuses on listening and using pre-defined gestures to define an interaction (Micheal, 2013).

However, unlike NoTouch.js, the coordinates of where one’s hand is to the application interface

are not given, and so gestures are difficult to map interactions to a specific element on a website.

The closest framework that attempts to interpret both gestures and body landmark point

coordinates into interactions with a website is Handsfree.js. Unlike the previously introduced

frameworks, Handsfree.js is powered by MediaPipe’s machine learning models. This allows the

developer to directly access the raw landmark data but also have access to a collection of plugins

that interpret the data (Ramos, 2021). These plugins are tremendously useful for generic

 5

interactions like click and scroll, but once again, they constrain the interaction by locking in the

gesture. Also, Handsfree.js’ interactions are restricted to only clicks and scrolls, which at first

seem sufficient as these interactions are almost equivalent to what a mouse can do, but

compress the capability and potential of embodied applications. Adding a new dimension to

webpages transcends beyond simply the addition of input devices; They should capitalize

increased expressivity our bodies can provide as an input to software applications.

Pose and Movement Detection as a Service

Simply interpreting landmark data into a collection of useful interactions for developers is

not enough. Another key element that is missing from these frameworks is that the computation

and generation of landmark data require it to be computed on the application itself. This is

problematic for users of a specific application, especially if they are running it on a slow computer,

and developers need to make heavy use of processors for other reasons such as rendering a

high-fidelity virtual world. For example, TouchDesigner is a software development platform for

building real-time interactive multimedia content and makes heavy use of a computer’s CPU for

video and audio reading and decoding and GPU for rendering media (Derivative, 2021).

Therefore, the production and processing of landmark data are not feasible for experiences

created in TouchDesigner. A framework as a service (FaaS) offers solutions by production

environment type (i.e. a web application) by providing the foundation to rapidly develop an

application. It can be customized according to business needs but does not require the full

implementation of a system (McKenzie, 2014). There is a need for this in embodied application

development for software developers and designers.

This paper proposes a framework as a service, Gesture.js, that aims to simplify the

development of embodied applications without hindering the creativity of developers and

designers. It wraps the computation of MediaPipe’s landmark data as well as the processing of

this data into a set of customizable interactions and gestures as a service so that applications can

focus on creating immersive experiences efficiently and smoothly.

 6

CHAPTER 3

FRAMEWORK ARCHITECTURE AND DESIGN

System Architecture

Gesture.js takes in data from MediaPipe and additional body detection or gesture

recognition frameworks and a video stream all in conjunction with each other to interpret and

package them as customizable semantic functions for an embodied application to use.

Figure 2

Gesture.js Data Flow and Entry Points

 7

As indicated in Figure 2, there are three main entry points of data. The first entry point is

for the external frameworks and libraries that compute the necessary data for evaluation. While

MediaPipe computes the raw landmark data, Fingerpose is a gesture classifier that will interpret

these landmarks as an arrangement of finger positions that define a specific gesture. For

example, the victory sign gesture is distilled to an uncurled index and middle finger pointing

upwards and fully curled ring, pinky, and thumb fingers. The combination of finger curls and

directions make up a gesture description, which is compared against the live input of landmark

data. KalidoKit is a blendshape and kinematics solver specifically for MediaPipe’s landmark data

designed for rigging virtual reality models (VRM) and Live2D avatars. The second entry point is

for the input of a camera’s video stream. Typically, this camera is the webcam on a user’s laptop

or desktop computer, it can also be configured to be an external camera. This video stream is

routed to MediaPipe either directly or with WebRTC. Lastly, the third entry point is the embodied

application itself. Since Gesture.js is an interface for MediaPipe and interpretations of its

landmark data, a collection of features are provided for an embodied application to call

accordingly. These features can be distilled into four categories: Data Processing, Gesture

Classification, Interaction Semantization, and Virtual Reality Model Rigging.

Data Processing. To ensure the highest amount of customization, the ability to compute

landmark data within the application (not recommended) and access raw landmark data is

provided. If the developer would like to use MediaPipe individually or in conjunction with other

frameworks, the object-oriented implementation allows for the developer to do so. However, if the

developer would rather use the CPU to compute graphics or other heavy processes instead of the

external frameworks, then the API-oriented implementation allows for easy configuration to do so.

The developer can simply install Gesture.js’ npm package and run gesture to reveal a graphical

user interface for configuration. This feature is a work in progress and a screenshot of this

interface will be provided when completed.

Gesture Classification. Powered by Fingerpose, gesture recognition is as easy as

calling the isMakingGesture() method in either the object-oriented or API-oriented

implementations. A collection of predefined, static gestures is provided, so the developer will only

 8

need to refer to its name without any pre-training or classification beforehand. As exhibited in

Table 1, a list of common gestures is delineated as a collection of finger curls and directions.

Table 1

Excerpt of Gestures Library

Gesture Name Parameter
Name

Estimate Type Reference Image

Pinch “pinch” interactiveGestures

Fist “fist” interactiveGestures

Point “point” interactiveGestures

One “one” numberGestures

Two “two” numberGestures

 9

Three “three” numberGestures

Four “four” numberGestures

Five “five” numberGestures

Thumbs Up “thumbsUp” miscellaneousGestures

Thumbs Down “thumbsDown” miscellaneousGestures

Victory Sign “victorySign” miscellaneousGestures

Interaction Classification. Like the gesture classification feature, there is a collection of

predefined interactions that allow the developer to build their experiences. This feature is

available for both the object-oriented approach and the API-oriented approach. Each interaction

can be customized with a series of callback functions and gesture variables. Detailed in Table 2,

 10

each interaction has its designated method name with specific callback requirements and optional

gesture variables.

Table 2

Excerpt of Interactions Library

Interaction Name Parameters Gesture Variable(s)

onFace callback : function none

onPose callback : function none

onRightHand callback : function none

onLeftHand callback : function none

userHoversObject

landmarkPoints : array of int,
object : HTML element,
successCallback : function,
failedCallback : function

none

userClicksObject object : HTML element,
successCallback : function clickGesture (Default: pinch)

userDragsAndDrops
pickUpCallback : function,
dragCallback : function,
dropCallback : function

prePickUpGesture (Default: open
hand)

pickUpGesture (Default: fist)

isMakingGesture gestureName : String none

Virtual Reality Model Rigging. With the support of KalidoKit, the ability to rig a 3D

model based on real-time body and face landmark points is available in the object-oriented

implementation. Since KalidoKit is based on the animated 3D computer graphics application

programming interface, Three.js, only WebGL-capable applications can utilize its rigging

solutions. Moreover, KalidoKit only supports humanistic models as it only provides solvers for

pose, face, and hands. This feature is designed for developing Three.js scenes with virtual reality

human-like models with real-time body and face tracking.

 11

CHAPTER 4

EXAMPLE APPLICATIONS AND ANALYSIS

To demonstrate the ease of setting up Gesture.js and using its features, a variety of

example applications were developed. These examples can be accessed at the following link:

https://masters-thesis-project.herokuapp.com/example. This paper will present them and discuss

their potential impacts.

Interacting with the DOM: Improving Accessibility on the Web

Creating website applications that can be interacted with using gestures and movement

is the foundation of Gesture.js. This example application demonstrates how to use Gesture.js’

gesture classification library and interaction classification methods to create simple, yet powerful

experiences. Being able to touch an element on a website is the first step. By instantiating the

Gesture class, the developer can pass in a callback function when a user “touches” an element in

the Document Object Model (DOM). In this example, as shown in Figure 3, a piano is composed

of div elements, and each element is passed into the userHoversObject() method. More complex

methods such as userDragsAndDropsObject(), demonstrated in Figure 4, require more callbacks

but are just as easy to implement onto a div element.

 12

Figure 3

Demonstrating Hover or Touch with a Piano

Figure 4

Demonstrating Combination of Hover and Gesture with Drag and Drop

 13

Three Game Environments: Analyzing the Performance of Gesture.js

 While the performance of Gesture.js on each game environment is visually apparent, a

brief data collection process on each embodied experience was performed. The following

performance metrics recorded are times of loading events, range of frame per second (FPS),

CPU usage, and GPU usage. Lag, which is the response time from the computer, is computed

based on the Animation Frame Fired activity. This activity is performed every time the application

calls requestAnimationFrame() to redraw the game environment, and so lag is understood based

on the total time an Animation Frame Fired activity takes to complete. Since the duration of each

Animation Frame Fired activity varies, the total time of all activities, as well as the range, is

provided. The performance metrics and durations of Animation Frame Fired activities were

collected using Google’s Developer Tools’ Performance tab and computed accordingly. The

bandwidth, or rate of data transfer from Gesture.js to an application, was also computed based on

the network metrics found in the Developer Tools’ network tab. These metrics are the number of

requests, amount of data transferred, and total time to complete, and the total time spend loading.

If the application is using Gesture.js as a service, then additional details about the time taken to

complete a request related to landmark computation or interpretation are provided.

Bubble Shooter Performance Analysis

The first game environment, Bubble Shooter, demonstrates how to map landmark points

to an HTML document and use gestures as a form of input. In this example, a simple bubble

shooter game consisting of HTML elements for the bubbles and gun is controlled by a user’s

hand location and gestures. When a user closes their first, the angle of the gun can be aimed with

the user’s hand position, and when the user opens their hand, the gun shoots a bubble into the

rows of bubbles. This HTML and Javascript code was taken from an open-source example written

by rembound.com and a Gesture.js layer was applied that effectively replaced the mouse cursor

position with hand landmark tracking (Rembound, 2015).

 14

Figure 5

Bubble Shooter Graphical User Interface

As shown in Figure 6, even though the game environment consists of HTML elements

that are relatively low impact, most of the CPU is being used by MediaPipe for landmark

interpretation and Tensorflow due to Fingerpose.js’ gesture recognition. In the Bubble Shooter

application, in the activities which are Request Animation Fired, a large majority of the activity

duration is the computation of landmarks, more specifically the running MediaPipe’s Holistic

model. Detailed in Figure 7, about 91.1% of the time is spent running MediaiPipe’s landmark

computation, 5.9% is spent using Fingerpose.js’ gesture recognition, and 0.2% is spent running

Gesture.js’ landmark interpretation. Lastly, the network performance, or the bandwidth, is shown

in Figure 8. Since the Bubble Shooter game environment is running Gesture.js itself, it does not

request or receive any landmark data over a network. Most of the load time occurs at the

beginning, where it loads the appropriate models, libraries, and files.

 15

Figure 6

Developer Tools’ Performance Profile for Bubble Shooter

Figure 7

Bubble Shooter’s Animation Frame Fired Composition

 16

Figure 8

Developer Tools’ Network Metrics for Bubble Shooter

Infinite Runner Performance Analysis

 The next game environment, exhibited by the Infinite Runner example application,

demonstrates how to map landmark points to a 3D space. Three.js, a computer graphics

application programming interface, is used to render a WebGL-based 3D scene that animates a

hero object. In this example, a simple infinite runner game consisting of a stone ball rolling

through an obstacle course of random dynamically-rendered trees are adapted for a user to

control via their nose. The Three.js code was taken from an open-source example written by

Juwal Bose and a Gesture.js layer was applied that effectively replaced the arrow key interactions

with nose landmark tracking (Bose, 2017).

 17

Figure 9

Infinite Runner Graphical User Interface

In the performance analysis of this game environment, it is best to first understand to

CPU, GPU, and frame rate of the application without the Gesture.js layer. Therefore, in Figure 10,

the performance profile of just the Three.js code is provided to show the relatively higher need for

the CPU and GPU to render a 3D scene compared to an HTML-based scene. About 28% of the

CPU is needed for scripting, which mostly consists of the request of animation frames to rerender

the game environment. It was also found that due to faster Animation Frame Fired activities, the

frame rate was about 59.7 FPS. Once the Gesture.js layer is added, the CPU and GPU must now

focus on handling the computation and interpretation of landmarks—both handled in the requests

of animation frames—as well as the Three.js environment. Depicted in Figure 11, as soon as the

application changes to an embodied application, the CPU usage jumps from 28% to 96%. This

change is largely due to the computation of landmarks on MediaPipe’s end, which is shown in

Figure 12 to take about 80% of an Animation Frame Fired activity. This led to an average frame

rate of 25 FPS, which is visually apparent to the user. Similar to Bubble Shooter, the application

 18

is experiencing this lag because it runs Gesture.js itself instead of using it as a service. This is

also the cause of why the network performance is similar to Bubble Shooter.

Figure 10

Developer Tools’ Performance Profile for Infinite Runner (without Gesture.js)

 19

Figure 11

Developer Tools’ Performance Profile for Infinite Runner (with Gesture.js)

 20

Figure 12

Infinite Runner’s Animation Frame Fired Composition

Figure 13

Developer Tools’ Network Metrics for Infinite Runner

 21

Embodied Pong Performance Analysis

 To reap the benefits of Gesture.js, it must be used as a service. Moreover, the

computation and interpretation of the landmark data need to be computed by something other

than the embodied application itself. In this next game environment, Embodied Pong

demonstrates how to call Gesture.js as a service, particularly with WebSockets, and map results

to a point in 3D space. Similar to Infinite Runner, the game environment consists of a 3D scene

made by Three.js and takes a single landmark point, a user’s nose, to move an object in this

scene. In this example, the object is a paddle and the scene is a pong board with another paddle

that is controlled by a simple AI. This Three.js code was taken from an open-source example

written by Nikhil Suresh and a Gesture.js layer was applied that effectively replaced the A and D

keys with nose landmark tracking (Suresh, 2013).

 This example is slightly different from the last two previous game environments, as two

instances need to send and receive landmark data. An instance can be a client or a server, but

there needs to be at least one instance in charge of computing the landmark data. In the Bubble

Shooter and Infinite Runner examples, the embodied application served as an instance, but since

there was only one instance, it was the one that was in charge of computing the landmarks. In

this example, you have presented the instance in charge of computation, and it will automatically

generate a link to the appropriate instance that will serve to be the embodied application. The

embodied application, the 3D pong game, is essentially the client for the first page and will

request landmark data from it to correctly move the paddle according to the user’s node position.

For both instances to communicate, both links must be open. This can be done by opening both

links in two different windows (not tabs) on the same computer or a different one. For example,

the generated link can be opened in a mobile browser and it will still work. If the user opens the

generated link on a WebXR-compatible phone, the user can view the embodied application in VR

mode, attach it to a headset such as Google Cardboard, and enter the 3D space from the

perspective of the paddle. This is key to Gesture.js, as now web applications gain a new

dimension of interaction that allows higher immersion and interactivity.

 22

Figure 14

Embodied Pong Graphical User Interface

As shown in Figure 15, both the CPU and GPU usage for the embodied application is

characteristically lower than those of the previous two examples. This is because all of the work

to compute the landmarks is done by another instance, the “server” page. In Figure 16, this is

exhibited as the performance profile is notably similar to the performance profiles of Bubble

Shooter and Infinite Runner. Moreover, the Animation Frame Fired activity only contains the work

of Three.js’ rendering of the 3D environment and objects. Instead of getting the landmarks directly

from MediaPipe within this Animation Frame Fired activity, it utilizes WebSockets to call the

“server” instance for landmark data. This is exhibited in Figure 18, where the network

performance shows the request and response timings of one request of landmark data. On an

internet connection with a download speed of 13.70 Mbps and upload speed of 6.86 Mbps, the

amount of time a request and response would take is about 273.86 ms. This method of retrieving

 23

landmark data from another instance is considerably better than the amount of time it was taking

to compute them itself within the Animation Frame Fired activities in the previous two examples.

Figure 15

Developer Tools’ Performance Profile for Embodied Pong (Client)

 24

Figure 16

Developer Tools’ Performance Profile for Embodied Pong (Server)

Figure 17

Embodied Pong’s Animation Frame Fired Composition

 25

Figure 18

Developer Tools’ Network Metrics for Embodied Pong (with Request Details)

Ideally, this other instance would not need to serve an HTML page and should just run on

an actual server, local or on the cloud. Gesture.js supports this as it is also a published node

package manager (npm) module that can be installed and used as a Node.js module for server-

side computing. The module is currently public under the name @ahfowler/gesture and can be

found here: https://www.npmjs.com/package/@ahfowler/gesture.

Performance, Lag, and Network Results

Building embodied applications are indeed CPU-intensive. Even with the addition of

MediaPipe’s pre-trained models, the consistent computation of these landmarks requires more

than 80% of the CPU which is problematic for applications requiring addition computation itself for

other processes, such as rendering a complex game environment. As shown in Table 3 and

Table 4, the first two applications, Bubble Shooter and Infinite Runner, both attempted to run

 26

Gesture.js on the same instance as the embodied application. This drastically affected the rate of

frames per second, dropping it from 60 FPS to around 20 FPS. It also required more than 80% of

the GPU and more than 90% of the CPU to simply maintain the constant computation of

landmark data.

Table 3

Performance Metrics of Game Environments

Game
Environment
Name

Loading Events

Range of
Frames
per
Second
(FPS)

CPU Usage GPU
Usage

Bubble
Shooter

DOMContentLoaded: 1969.8
ms

onLoadEvent: 1992.2 ms

FirstPaint: 4107.8 ms

FirstContentfulPaint: 4107.8
ms

20.1 – 22.2 Scripting: 92%

Rendering:
0.12%

Painting: 0.09%

System: 1.50%

Idle: 5.43%

GPU:
81%

Idle:
18%

Infinite
Runner

DOMContentLoaded: 987.6 ms

onLoadEvent: 1028.6 ms

FirstPaint: 974.8 ms

FirstContentfulPaint: 974.8 ms

24 – 28.6 Scripting: 95%

Rendering:
0.08%

Painting: 0.08%

System: 0.79%

Idle: 3.19%

GPU:
83.38%

Idle:
16.62%

Embodied
Pong

DOMContentLoaded: 817.5 ms

onLoadEvent: 1026.5 ms

FirstPaint: 491.6 ms

FirstContentfulPaint: 491.6 ms

59.4 – 58.8 Scripting: 2.2%

Rendering:
0.19%

Painting: 0.41%

System: 1.37%

Idle: 95.81%

GPU:
86.19%

Idle:
13.81%

While CPU usage is highly determined for the computer running the embodied

application, it is also important to note the amount of time it takes to complete an animation

frame. The lag of a website is highly dependent on the animation frames it attempts to render at

 27

an as fast, consistent rate. In the first two examples, the Animation Frame Fired duration was

considerably larger than the last example, mainly because in this activity, it is computing and

interpreting landmarks as well as rendering the game environment with or without these

landmarks. As depicted in Table 4, around 80% of the animation activity is spent computing

landmarks, while less a 1% of it is being spent rendering the game environment. This results in

the lag user experiences as they move with the application.

Table 4

Lag Computation of Game Environments

Game
Environment
Name

Range of
Animation Frame
Fired Duration

Total
Animation
Frame
Fired
Duration

Landmark
Computation
Usage

Landmark
Interpretation
Usage

Game
Environment
Usage

Bubble
Shooter

0.3 ms – 159.8
ms

6030.4 ms 91.1% 6.1%

(0.2%
Gesture.js)

0.00%

Infinite
Runner

0.4 ms – 101.4
ms

6497.8 ms 80% 15.4%

(1.8%
Gesture.js)

0.7%

Embodied
Pong

0.3 ms – 159.8
ms

6030.4 ms 91.1% 6.1%

(0.2%
Gesture.js)

0.00%

 As discussed, the solution to eliminating lag is to decrease the time spent creating an

animation frame. This can be done by taking the landmark computation off of the embodied

application’s hands and put into another instance such as another application or a server.

Demonstrated in Figure 18, the third example is distributed system that requests data from

another instance, a “server” page, and uses this data to render the Three.js environment. The

duration of a request and response consists of its wait time after the request and the response

content download time. It is also good to note that the number of requests significantly decreases

 28

with the third application because the experience no longer needs to request MediaPipe’s models

for landmark computation or external libraries for landmark interpretation. Instead, it only focuses

on the emitting event through WebSockets to an instance that will make those requests

themselves.

Table 5

Network Metrics of Game Environments

Game
Environment
Name

Number of
Requests

Amount of
Data
Transferre
d

Amount of
Resources
Used

Request
Response
Wait Time

Request
Response
Content Download
Time

Bubble
Shooter

263
Requests

8.1 kB 8.93 s N/A N/A

Infinite
Runner

235
Requests

7.5 kB 9.97 s N/A N/A

Embodied
Pong

31 Requests 56.8 kB 4.3 MB 91.17 ms 179.24 ms

 29

Embodied Virtual Reality: Advancing WebXR and Three.js

As Gesture.js is powered by MediaPipe, all machine-learning models developed by

MediaPipe are accessible. The Holistic Model is particularly powerful because it combines the

Hands, Pose, and Face Mesh models. This tracking can be used for full-body movement tracking

in virtual reality environments. This example application demonstrates this in conjunction with

KalidoKit’s rigging solutions to simulate a hardware-less, purely computer-vision-based virtual

reality experience.

Figure 19

Rigged Characters in a Virtual Room Space

 30

Figure 20

First-Person View in WebXR Mode

 31

CHAPTER 5

CONCLUSION

Embodied applications are a game-changer as they provide a new way for people to

interact with applications that transcend beyond mouse clicks and scrolls. Using body movements

or gestures can allow users to use highly expressive interactions with software and therefore

create interactive, immersive experiences. With the introduction of MediaPipe, an open-source

collection of machine-learning solutions for body point detection, a gateway of embodied

application development has resurfaced in the field of software engineering and human-computer

interaction. However, there is a need for the standardization and abstraction of software

development methodologies as well as a service that separates the computation and inference of

landmark data into semantic gesture and interaction configuration. This paper has explored the

ways to help developers achieve as well as introduced a framework, Gesture.js, that aims to fulfill

these needs for software developers and designers so that they can focus on creating immersive

experiences efficiently and smoothly.

Current Limitations

There are several limitations of Gesture.js that were discovered throughout the

development process. Unfortunately, most of these problems stem from the limitations of

MediaPipe. The good news is that while there is a cascading effect of limitations, this means that

with the inevitable advancement of computer vision-based body part detection models and

improvement of hardware like webcams and computing power of personal devices, Gesture.js

and its relevant frameworks will consequently become better.

For example, KalidoKit uses landmark data from MediaPipe to calculate 3D model face,

body, and hand positions. However, the rigging is severely limited by the low accuracy and

tracking rate of MediaPipe’s pose model. This leads to some technical difficulties with Gesture.js’

embodied virtual reality example application, especially when a user backs up to move their legs.

 32

Another aspect of Gesture.js is the lack of machine learning, such as a neural network-

based, gesture recognition framework. Fingerpose is simply a similarity calculator, and so gesture

recognition depends highly on the clarity of its gesture descriptions and the distinctiveness of the

gestures for each other. For example, in the interactive example application, the click gesture (a

pinch between an index finger and thumb) scores quite similarly to an open hand gesture

because only two out of five fingers are not fitting the description of a pinch. Therefore, utilizing

gestures in embodied applications is quite difficult, especially when certain gestures look even

remotely like one another.

Future Research and User Studies

 Aside from the anticipation of better computer vision-based body part detection models

and improvement of computer hardware, the next steps of Gesture.js are to replace Fingerpose

with a neural network-based gesture recognition model, provide the user the ability to define their

gestures, and incorporate gestures that contain movement patterns or require more than one

hand. Since the purpose of this thesis was to develop a framework that enables developers to

create embodied applications easier, the ability to develop a gesture recognition machine-

learning model is outside of this scope. However, in the future, Gesture.js hopes to integrate a

pre-trained gesture recognition model that utilizes neural networks

 Similarly, since the focus of Gesture.js is to improve the development experience of

embodied applications, user experience studies are needed to effectively evaluate the qualitative

experience of development. Moreover, it would also be beneficial to learn more about how one’s

body can effectively interact with an application. Since a user experience case study is outside of

this scope, yet highly advantageous, a conceptual plan will be proposed for future research.

Using Gesture.js: A User Case Study Proposal

 To evaluate the usability of Gesture.js with the assistance of creating embodied

applications, a study detailing the learnability, ease of technological integration, creative flexibility,

and reliability is suggested. As Gesture.js is intended to support application developers, the

 33

participants should intend to create a web-based embodied experience, thus requiring at least a

general idea of their application’s architecture. This is so they can effectively decide whether to

use Gesture.js as a service or directly. An introductory level of JavaScript is also required as

Gesture.js is a JavaScript-based framework. Ideally, the participants should be a mix of software

developers, designers, and researchers with various software development experiences.

 The study should be conducted where a participant is instructed to develop a simple

embodied application with pre-existing code, such as an HTML document with a button. Given

Gesture.js’ documentation and open-source code, the participant is expended to apply Gesture.js

as a layer and convert, say a button, to react to a user’s gesture or body position. The complexity

of this activity can increase with the discretion of the conducting researcher. Regardless of the

outcome of the participant, the following results, shown in Table 6, should be recorded.

 34

Table 6

User Case Study Metrics and Descriptions

Metric Name Purpose Result Format Suggestions Example

Learnability This is recorded to calculate
how easy it is to learn how to
use Gesture.js. This is the
evaluation of API
documentation, semantics of
functionality, intuitiveness of
architecture, and judgment of
the framework’s attempt at
abstraction.

Time spent consulting
documentation; Participant
comments; Amount of
“errors” made during
development

13 minutes
spent
consulting
documentation

Ease of
Integration

This is used to determine how
easy it is to convert a pre-
existing application into an
embodied application. This is
the evaluation of the portability
and modularity of Gesture.js.

Participant comments; How
many lines of code of the
preexisting application were
changed to support
Gesture.js

The user fixed
2 lines of
preexisting
applications to
incorporate
gesture-based
click

Creative
Flexibility

This metric determines how
easy it is to implement an
envisioned embodied
interaction with Gesture.js.
This evaluates the capability
and flexibility of the framework.

Similarity between
participant’s initial intention
and final product;
Participant comments;
Amount of “errors” made
during development

The user
intended to
create a click
gesture with a
pinch but
resulted in
using a fist

Reliability This is recorded to calculate
the number of technical errors
that occurs during
development. This evaluates
Gesture.js’ logical
implementation.

Amount of technical
difficulties occurred that
were not caused by the
participant; Log of technical
errors

onHands()
function does
not fire when
onFace() also
runs

Comments This metric is to capture any
other qualitative experiences a
participant would like to share.

Log of participant
comments, questions, or
suggestions

“I don’t like
how it does
not capture
two gestures
at the same
time.”

Development
Success

This is the final determination
of whether the user
successfully converted a
preexisting application to an
embodied one.

Binary result (Pass/Fail);
Analysis or evaluation if the
final application meets
embodied standard

Partial Pass;
User
incorporated
gesture but
not the
position of the
hand

 35

 Next Steps for Gesture.js

As previously mentioned, Gesture.js is a cloud-deployable framework that can be

installed as a node package manager (npm) module for Node.js applications. The module is

currently public under the name @ahfowler/gesture. This module will be maintained and updated.

Gesture.js provides many benefits to both the software development and art and design

community and industry. As its purpose is to help developers and designers create applications

that are more engaging, immersive, and interactive without having to sacrifice their CPU or time

to pick an application-specific algorithm and develop an interpretation/mapping technique, there

are many beneficial impacts it can have on the general community. One impact is that it can

make previously existing applications more accessible to those who struggle with motor abilities

of traditional input methods, such as touch, mouse, or keyboard. Integrating movement and

gestures into applications can make technology more inclusive and natural, and there is no need

to build a new application infrastructure for it as Gesture.js serves as a layer on top of pre-existing

HTML documents. Another benefit is that Gesture.js can increase the overall interactivity of

software in general. By adding a new dimension of interaction that transcends typical input

methods such as clicks and scrolls, web applications and gaming environments can increase

engagement between users and applications, leading to more meaningful experiences.

A technological contribution of Gesture.js is the ability to provide its support in the form of

service by leveraging server-side or cloud computing. As discussed in the analysis of the three

gaming environments, when Gesture.js is used as a service, embodied applications can run more

complex scripts and render higher quality experiences without having to worry about the

computation and interpretation of body point landmarks. This leads to the last impact, which is to

empower creativity among everyone regardless of technological background. By removing the

technological limitations by simplifying the development and separating computing, it is the goal

that Gesture.js will effectively make the development of embodied applications more accessible

so anyone and everyone can leverage the power of using one’s body.

 36

REFERENCES

Akcura, K. (2018). NoTouch.js A JavaScript Library for Touch-Free Web Browsing. Concordia
University, Montreal.

Basques, K. (2017, April 6). Analyze runtime performance. Retrieved from Chrome Developers:

https://developer.chrome.com/docs/devtools/evaluate-performance/

Bose, J. (2017, Sep 4). Creating a Simple 3D Endless Runner Game Using Three.js. Retrieved
from envatotuts+: https://gamedevelopment.tutsplus.com/tutorials/creating-a-simple-3d-
endless-runner-game-using-three-js--cms-29157

Derivative. (2021, April 21). Frequently Asked Questions. Retrieved from TouchDesigner by
Derivative: https://docs.derivative.ca/Frequently_Asked_Questions

J, P. (2019, May 13). Embodied interaction: body, movement and experience. Retrieved March
2022, from UX Design: https://uxdesign.cc/embodied-interaction-body-movement-and-
experience-ba1e5ea9d616

Lugaresi, C., Tang, J., Nash, H., McClanahan, C., Uboweja, E., Hays, M., . . . Grundmann, M.
(2019). MediaPipe: A Framework for Building Perception Pipelines. 1-9.

McKenzie, C. (2014, August). FaaS (Framework as a Service). (TechTarget, Producer) Retrieved
from TechTarget: https://www.techtarget.com/searchcloudcomputing/definition/FaaS-
Framework-as-a-Service.

MediaPipe. (2020). MediaPipe Hands. Retrieved from MediaPipe:
https://google.github.io/mediapipe/solutions/hands.html

Micheal, H. (2013). Gest.js. Retrieved from GitHub: https://hadi.io/gest.js/

Mnkandla, E. (2009). About software engineering frameworks and methodologies. AFRICON, 1-
5.

Ramos, O. (2021). Handsfree.js. Retrieved from Handsfree.js: https://handsfree.js.org/

Rembound. (2015, August 22). Bubble Shooter HTML5. Retrieved from Rembound:
https://rembound.com/articles/bubble-shooter-game-tutorial-with-html5-and-javascript

Schrammel, J., Paletta, L., & Tscheligi, M. (2010). Exploring the Possibilities of Body Motion Data
for Human Computer Interaction Research. HCI in Work and Learning, Life and Leisure -
6th Symposium of the Workgroup Human-Computer Interaction and Usability
Engineering, (pp. 305-317). Klagenfurt.

Suresh, N. (2013, July 24). Creating a 3D Game With Three.js and WebGL. Retrieved from Build
New Games: http://buildnewgames.com/webgl-threejs/

Wigdor, D., & Wixon, D. (2011, December). The Natural User Interface. In Brave NUI World.

Yeo, H.-S., Lee, B. G., & Lim, H. (2013, May). Hand tracking and gesture recognition system for
human-computer interaction using low-cost hardware. Multimedia Tools and Applications,
74, 2687-2715.

