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ABSTRACT

Existing machine learning and data mining techniques have difficulty in handling three

characteristics of real-world data sets altogether in a computationally efficient way:

(1) different data types with both categorical data and numeric data, (2) different

variable relations in different value ranges of variables, and (3) unknown variable

dependency.

This dissertation developed a Partial-Value Association Discovery (PVAD) algo-

rithm to overcome the above drawbacks in existing techniques. It also enables the

discovery of partial-value and full-value variable associations showing both effects

of individual variables and interactive effects of multiple variables. The algorithm

is compared with Association rule mining and Decision Tree for validation purposes.

The results show that the PVAD algorithm can overcome the shortcomings of existing

methods.

The second part of this dissertation focuses on knee point detection on noisy data.

This extended research topic was inspired during the investigation into categoriza-

tion for numeric data, which corresponds to Step 1 of the PVAD algorithm. A new

mathematical definition of knee point on discrete data is introduced. Due to the un-

availability of ground truth data or benchmark data sets, functions used to generate

synthetic data are carefully selected and defined. These functions are subsequently

employed to create the data sets for this experiment. These synthetic data sets are

useful for systematically evaluating and comparing the performance of existing meth-

ods. Additionally, a deep-learning model is devised for this problem. Experiments

show that the proposed model surpasses existing methods in all synthetic data sets,

regardless of whether the samples have single or multiple knee points.

The third section presents the application results of the PVAD algorithm to real-

world data sets in various domains. These include energy consumption data of an
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Arizona State University (ASU) building, Computer Network, and ASU Engineering

Freshmen Retention. The PVAD algorithm is utilized to create an associative network

for energy consumption modeling, analyze univariate and multivariate measures of

network flow variables, and identify common and uncommon characteristics related

to engineering student retention after their first year at the university. The findings

indicate that the PVAD algorithm offers the advantage and capability to uncover

variable relationships.
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Chapter 1

INTRODUCTION

1.1 Background

Real-world data sets often have the following three properties: (1) the existence

of variable relations in different ranges of variable values, (2) unknown variable de-

pendency, and (3) the inclusion of both numeric and categorical data.

Regarding (1), existing data mining or machine learning methods fit a model

by considering the variables’ full range of values. The fitted model is used to find

or explain the relationship among variables. By fitting with only one model, these

methods assume that one single model is sufficient to explain the data. However, there

are several drawbacks when making such an assumption. The first problem is that

we may have different relationships over different ranges of data values. The second

problem is that a relationship may exist for a particular range and no relationships

exist in other data value ranges. What is more, fitting one single model over the

entire data value range results in a poor fit to the data if different relationships exist

in different ranges of data. This can be seen from the Fisher’s Iris data set (Frank

and Asuncion, 2008) in which the classification of the target variable (Plant Type)

using all independent variables only works on the target value Iris Sentosa but not on

the remaining two (Iris Versicolor and Iris Virginica). For such data where variable

relations only hold for partial ranges of variable values or different variable relations

hold for different ranges of variable values, fitting a model using the same variable

relations for all variable values does not fit all data values well, that is, the model

explains or represents the whole data set poorly. Hence, it is desirable to have a
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method that discovers both full-value and partial-value relations among variables.

What is more, variable dependency is often not known a priori in real-world data.

In existing techniques, it is necessary to select a variable as either an independent

or target variable before training the model. Once a variable is designated as an

independent variable, it remains fixed and cannot be changed to be a dependent

variable. This limitation adds an additional constraint when using a single model to

analyze data relationships. In fact, a variable can be an independent variable in one

relation while it can be a dependent variable in other relations.

The third characteristic is the inclusion of both numeric and categorical data. For

example, the engineering student data at Arizona State University (ASU) that we

analyze to understand engineering retention (Ye et al., 2018c; Ye, 2017b) has both

numeric data fields such as age and GPA and categorical data fields such as gender

and race. While some of the current techniques can only handle data of the same

type, it is desirable to have a method that can overcome this shortcoming.

However, the above three properties cannot be handled by existing data mining

or machine learning techniques all at once. The Partial-Value Association Discovery

(PVAD) algorithm is therefore developed to overcome those drawbacks of existing

techniques.

1.2 State of the Art

There are several methods that can deal with one or some of the real-world data set

properties. Taking the examples of Decision and Regression Tree (Ye, 2013a, 2003) as

well as Random Forest (Breiman, 2001; Ho, 1995, 1998) these are supervised learning

methods that can build tree-like models. Although the computation required to split

an internal node for continuous variables is not efficient, they can handle mixed-type

data (3). Nonetheless, decision tree methods require prior knowledge of variable
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dependency. To find out all the associations among variables, these methods have to

be applied multiple times, and each time one variable is selected as a target/dependent

variable and the rest as attribute/independent variables. Therefore, the Decision and

Regression Tree can handle (1) and (3) but not (2). In addition, techniques such as

parametric and non-parametric regression (Friedman, 1991; Hastie et al., 2009; Zhang

and Singer, 2010), as well as Support Vector Machine (Gasse et al., 2012; Breiman,

1998, 1996; Freund and Schapire, 1997; Mason et al., 1999), are some commonly

used supervised learning models. Depending on the data type of target variables,

classification or prediction can be performed. With categorical data presented in the

data set, the corresponding variables have to be transformed into dummy variables

before fitting into a model (Draper and Smith, 1998). Nonetheless, these models

assume that the role of a variable in a variable relation is known (i.e., which variable

is an independent or dependent variable) and a variable can only play one role of

being either an independent variable or a dependent variable in one layer of variable

relations. Once a variable is considered as an independent variable, it can no longer

be utilized as a dependent variable which is a main disadvantage, especially when

the role of a variable is not known or when multiple layers of variable relations are

required where a variable can play different roles of being an independent or dependent

variable in different variable relations at different layers. Thus, these methods are also

capable of handling (3) but not (1) and (2). The same drawbacks can be found in

Artificial Neural Networks Tso and Yau (2007) which cannot work with categorical

data directly and requires prior knowledge of independent and dependent variables.

Bayesian networks (Frank and Asuncion, 2008; Ye et al., 2018c; Tsamardinos et al.,

2006; Ellis and Wong, 2008), structural equation models (Jones et al., 2014a) and

reverse engineering methods (AKUTSU et al., 1999; Bazil et al., 2011) are examples

of the few options left that do not require prior knowledge of variables. However,

3



those techniques discover only variable relations for full ranges of all variable values

instead of relations for specific values. Hence, these methods can work on (2) and (3)

but not (1).

The last but most related approach is Association Rule Mining, which is one of

the data mining techniques for discovering associative relationships among data. It

was originally used for market basket analysis to find out items that are frequently

purchased together. An example of a rule is “diaper → beer”. The strength of a rule

can be evaluated by its support and confidence (Agrawal et al., 1993). An association

rule with high confidence suggests a high probability that a customer buying a diaper

will also grab a beer. Apriori (Agrawal et al., 1996) is the first implemented algorithm

for Association Rule Mining. In general, there are two main steps in the algorithm

(Han et al., 1999; Tseng and Chen, 2005). Step 1 finds frequent itemsets that meet

the minimum support threshold and Step 2 discovers association rules that satisfy

the minimum confidence threshold using itemsets found in Step 1. Though pruning

is applied in each step of candidate rule generation, the exponential time and space

complexity lead to the mining process being prohibitive. This expensive process also

makes Association Rule Mining for high-dimensional data a challenging task

After all, Association Rule Mining cannot return all the associations among vari-

ables. This method generates rules based on the notion of frequent itemset. In every

iteration of Step 1, any itemset that has less frequency count than the minimum sup-

port threshold is pruned and no longer be considered in the next iteration. However,

these less supported itemsets may also have associations among the variables. What

is more, it is natural that certain values of a variable have lower frequency counts.

This can be seen in examples of minorities or people with higher incomes. Early

pruning will lose all the associations involving those variable values.
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1.3 Research Objective and Contributions

The inadequacies of existing techniques in dealing with real-world data are dis-

cussed in Section 1.2. These methods are shown to be only able to handle some of

the characteristics of real-work data, but not all of them. Association Rule Mining is

also considered but its outputs do not return a full set of associations.

Hence, the primary objective of this dissertation is to develop an algorithm that

can overcome the deficiencies in the current techniques. This algorithm is capable of

identifying both partial-value and full-value associations in the variables. We have

proven the advantage and the capability of the algorithm in discovering variable

relations by applying it to analyze data sets in different fields. In particular, we have

deployed it to:

1. Identify student characteristics that affect the retention of first-year engineering

students at ASU. (Ye and Fok, 2019; Ye et al., 2019, 2021a),

2. Construct an associative network to model variable relations of energy con-

sumption data for a building at ASU (Ye et al., 2018b,a),

3. Establish both univariate and multivariate metrics to analyze computer network

traffic data in order to identify network attacks and anomalies Ye et al. (2019,

2021b).

Another significant contribution we have made is the development of a compu-

tationally efficient method, called YFM3 (Ye and Fok, 2019), for finding the longest

associations. Unlike existing methods that exhaustively examine all possible com-

binations of variable values, our method offers a shortcut approach. Bypassing any

iterations, YFM3 directly provides the longest associations with exceptional computa-

tional efficiency. This breakthrough saves a significant amount of time and resources
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in the process.

This research was further expanded during the investigation of Step 1 of the

PVAD’s algorithm, which is essentially categorizing numerical data into categorical

data. This process involves identifying knee point(s) on the curve of sorted data.

Therefore, our contributions to this problem are as follows:

1. Introducing a new mathematical definition for a knee point in discrete data sets.

We have demonstrated and explained the necessity of rescaling the data,

2. Creating a benchmark data set that provides noisy data within the original data

range, along with ground truth labels that are independent of any underlying

algorithm/techniques,

3. Developing a new deep-learning model, UNetConv, for detecting knee points in

discrete data sets. We have demonstrated that the proposed model outperforms

other state-of-the-art methods in both seen and unseen data.

1.4 Dissertation Organization

The proposed dissertation research will be presented in the following chapters.

Chapter 2 presents the PVAD Algorithm. Details are given in Section 2.1. The

method was validated through a sensitivity analysis to assess the impact of parameter

values on the results. Section 2.2 describes the results of the analysis. Furthermore,

in Sections 2.3 and 2.4, the results of the PVAD algorithm are compared with those

of Association Rule Mining and Decision Tree for verification purposes. The results

show that the PVAD algorithm can overcome the shortcomings of existing methods.

Chapter 3 presents an extended research topic which is known as the Knee Point

Detection Problem. This topic was inspired during the investigation into categoriza-

tion for numeric data, which corresponds to Step 1 of the PVAD algorithm. Section
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3.3 provides a novel mathematical definition of knee point on continuous functions,

along with its extension to discrete data. The deep-learning model devised for this

problem is described in Section 3.4, and its performance compared with existing

methods is given in Section 3.5.

The PVAD algorithm is eligible to deal with real-world data. Chapter 4 describes

the applications of the PVAD algorithm to real-world data sets in different domains.

Sections 4.1 - 4.5 presents the PVAD method’s application to the real-world data

sets: energy consumption data of an Arizona State University (ASU) building, Com-

puter Network, and ASU Engineering Freshmen. The findings show that the PVAD

algorithm has the advantage and the capability of discovering variable relations.
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Chapter 2

PARTIAL-VALUE ASSOCIATION DISCOVERY

2.1 Methodology

The PVAD algorithm consists of three main steps.

Step 1. Identify value intervals/categorical values of variables,

Step 2. Discover partial-value associations of variable values,

Step 3. Construct a multi-layer structural model using established partial-

value associations.

In Step 1, we consider two kinds of variables presenting in a data set: cate-

gorical variables and numeric variables. A categorical variable already comes with

its categorical values which can be used directly in Step 2 of the PVAD algorithm.

This step is illustrated by the chemical data set (http://www.stat.columbia.edu/ gel-

man/book/data/) as shown in Table 2.1. This data set has four numeric variables:

Temperature, Ratio, Contact, and Conversion. The variable Temperature has three

numeric values: 1100, 1200, and 1300, which can be directly taken as three categorical

values of Low, Medium and High, respectively. To transform the numeric data into

categorical, we plot the sorted values of the variable, identify data clusters, and use

the non-overlapping intervals of data clusters to define the categorical values of the

numeric variable. Figure 2.1a shows an example of using this method to determine

the data clusters and the categorical values of the numeric variable, Contact, from

the chemical data set. This variable has the following 16 values in the data set:
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0.0120 0.0120 0.0115 0.0130 0.0135 0.0120 0.0400 0.0380

0.0320 0.0260 0.0340 0.0410 0.0840 0.0980 0.0920 0.0860

The data plot in Figure 2.1a shows these 16 values in the sorted order of increas-

ing values in three data clusters with the non-overlapping intervals to define three

categorical values of c1, c2, and c3: [0.0115, 0.0135] = c1, [0.0260, 0.0410] = c2, and

[0.0840, 0.0980] = c3. These three data clusters are identified by inspecting visually

the biggest jumps in the value differences or distances of consecutive data points in

the data plot. As shown in Figure 2.1a, the value distances of consecutive data points

within each of these three data clusters are smaller than the value distances between

the data clusters. Based on this principle of having distances of data points within a

data cluster smaller than the distances of data points in different data clusters, clus-

tering techniques such as hierarchical clustering (Ye, 2013a, 2003) can also be used to

produce the same data clusters. We can also use elbow points in the data plot that

start line segments with different slopes to identify data clusters since changes in line

segment slopes indicate big changes in the distances of consecutive data points. Sim-

ilarly, to transform the variable Ratio, we plot the sorted values of Ratio in Figure

2.1b and identify three data clusters and their corresponding categorical intervals:

[5.3, 13.5] = Low, [17, 17] = Medium, and [23, 23] = High. Following the same proce-

dure. While for the variable Conversion, the identified clusters are plotted in Figure

2.1c and the corresponding categorical intervals are: [15.0, 20.5] = Low, [28.0, 38.5] =

Medium, and [44.5, 50.5] = High. The above data clusters are all identified by visually

inspecting the largest distances of adjacent data points. Using clustering techniques

such as hierarchical clustering can produce the same data clusters.
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If both Method 1 and Method 2 are used to transform a numeric variable into a

categorical variable, the two sets of categorical values from Method 1 and Method

2 are compared to select the set of categorical values with the smallest number of

categorical values based on the MDL principle (Ye, 2013a, 2003).

The data in Table 2.1 are transformed into categorical values as shown in Table

2.2.

Table 2.1: Original Chemical Data Set.

Instance Temperature Ratio Contact Conversion
1 1300 7.5 0.012 49
2 1300 9 0.012 50.2
3 1300 11 0.0115 50.5
4 1300 13.5 0.013 48.5
5 1300 17 0.0135 47.5
6 1300 23 0.012 44.5
7 1200 5.3 0.04 28
8 1200 7.5 0.038 31.5
9 1200 11 0.032 34.5
10 1200 13.5 0.026 35
11 1200 17 0.034 38
12 1200 23 0.041 38.5
13 1100 5.3 0.084 15
14 1100 7.5 0.098 17
15 1100 11 0.092 20.5
16 1100 17 0.086 19.5

When we collect new data, we may have data values not present in the original

data set which are used to derive intervals of values and define categorical values. It

is possible that new data may have values falling in the gaps of the intervals used

to define categorical values. For any numeric value falling in a gap of intervals, the

numeric value can take the categorical value for the interval which has a value closest

to the numeric value. For example, the transformed variable Conversion has cate-

gorical values for the following intervals: [15.0, 20.5] = Low, [28.0, 38.5] = Medium,

and [44.5, 50.5] = High. A new data record with a Conversion value of 23.1 takes the

categorical value of Low because it is closest to the upper interval of [15.0, 20.5].
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Figure 2.1(a): The plot of the sorted values of Contact.

Figure 2.1(b): The plot of the sorted values of Ratio

Figure 2.1(c): The plot of the sorted values of Conversion.

Figure 2.1: Determining data clusters and categorical values of variables in the chem-
ical data set
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Table 2.2: Transformed Chemical Data Set by Step 1 of PVAD

Instance Temperature Ratio Contact Conversion

1 High Low Low High

2 High Low Low High

3 High Low Low High

4 High Low Low High

5 High Medium Low High

6 High High Low High

7 Medium Low Medium Medium
8 Medium Low Medium Medium
9 Medium Low Medium Medium
10 Medium Low Medium Medium
11 Medium Medium Medium Medium
12 Medium High Medium Medium

13 Low Low High Low

14 Low Low High Low

15 Low Low High Low

16 Low Low High Low

Step 2 of the PVAD algorithm discovers partial-value associations of variable

values, and each partial-value association is in the form of X = A → Y = B where X

and Y are the vectors of one or more variables, A and B are the values of X and Y,

respectively, X is called conditional variable(s), and Y is called associative variable(s),

X = A are called conditional variables’ values (CV), and Y = B are called associative

variables’ values (AV). Each data record in the data set is called an instance with

instance #. Step 2 of the PVAD algorithm consists of the following steps.

Step 2.1. Discover 1-to-1 partial-value associations, x = a → y = b, where the as-

sociation involves only one conditional variable and only one associative

variable. For each value a of each variable x, each value b of each variable

y, and the candidate association, x = a → y = b, we carry out the following

steps:

Step 2.1.1. Compute the co-occurrence ratio (cr) of each candidate associ-

12



ation, x = a → y = b as follows:

cr(x = a → y = b) =
Nx=a, y=b

Nx=a

(2.1)

, where Nx=a, y=b is the number of instances containing both x

= a and y = b, and Nx=a is the number of instances containing

x = a.

Step 2.1.2. Store each candidate 1-to-1 association, including its cr value,

NCV , and the instance indices # which is the set of instances

supporting this association (i.e. instances supporting x = a and

y = b), where NCV is the number of instances containing CV(x

= a). A candidate 1-to-1 association is defined as an association

with cr ̸= 0 or ∞ in Equation 2.1, that is, Nx=a and y=b ̸= 0 and

Nx=a ̸= 0

Step 2.1.3. Establish the 1-to-1 partial-value association, x = a → y = b, if

cr(x = a → y = b) ≥ α, where α is set to a value in the range

of (0, 1] and is close or equal to 1.

Note that an established association has cr ≥ α, and a candidate association

may have any cr value in (0, 1].

In Step 2.2, we discover p-to-q partial-value associations, X = A → Y = B, where

the association involves either multiple conditional variables or multiple associative

variables, using the methods of YFM1, and YFM2 and the procedure shown in Figure

2.2 to generate all the established p-to-q partial-value associations.

The method of YFM1 takes each group of the established k-to-l associations (e.g.

the established 1-to-1 associations from Step 2.1) having the same or inclusive set of
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Figure 2.2: The procedure of using YFM1 and YFM2 to establish partial-value asso-
ciations.

supporting instances and the same CV, and establishes k-to-q associations, {CV} →

{AVq}, where q > l and {AVq} is any combination of AVs from the associations in

the group, because of the following:

cr(CV → {AVq}) =
NCV and {AVq}

NCV

=
min{NCV and AVi | i=1,...,q}

NCV

= min{cr(CV → AV1), . . . , cr(CV → AVq)} ≥ α

(2.2)

The YFM1 method also takes each group of the established k-to-l associations

having the same or inclusive set of supporting instances and the same AV, and estab-

lishes p-to-l associations, {CVp} → {AV }, where p > k and {CVp} is any combination

of CVs from the associations in the group, because of the following:
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cr({CVp} → AV ) =
N{CVp} and AV

N{CVp}

≥ max{cr(CV1 → AV ), . . . , cr(CVp → AV )}

≥ α

(2.3)

where N{CVp} ≤ N{CVi}, i = 1, . . . , p and N{CVp} and AV = min{NCVi and AV | i =

1, . . . , p}. Moreover, the method of YFM1 takes the associations in the group having

the same CV and their largest common subset satisfying the following condition:

NCommon Subset

NCV

≥ α (2.4)

where NCommon Subset is the number of instances in the largest common subset,

and establishes k-to-q associations, {CV } → {AVq}, where q > l and {AVq} is any

combination of AVs from the associations in the group, because of the following:

cr(CV → {AVq}) =
NCommon Subset

NCV

≥ α (2.5)

For example, suppose that we have the group of the established 1-to-1 associations

from Step 2.1, x1 = a1 → y1 = b1 with the supporting set of instances {1, 2, 3, 4, 5}

and x1 = a1 → y2 = b2 with the same supporting set of instances 1, 2, 3, 4, 5 or a

subset of instances {1, 2, 3, 4}, where 1, 2, 3, 4, and 5 are instance #. {1, 2, 3, 4}

is an inclusive set to {1, 2, 3, 4, 5} as {1, 2, 3, 4, 5} includes {1, 2, 3, 4}, in other

words, the inclusive set {1, 2, 3, 4} is a subset of {1, 2, 3, 4, 5}. We establish the

1-to-2 association, x1 = a1 → y1 = b1, y2 = b2, using YFM1.

The p-to-q associations established in YFM1 provide more specific CV or AV than

the k-to-l associations. For example, the associations established for the energy con-
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sumption data set, [ ] include the following 1-to-1 association and 2-to-1 associations:

1-to-1: E = Medium → A = High

2-to-1: E = Medium, C = High → A = High

where E stands for electricity consumption, A stands for outside air temperature,

and C stands for cooling consumption. Both cooling and heating may use electricity.

The 1-to-1 association indicates the association of the medium level of electricity

consumption with the high level of air temperature in general. The two CVs in the

2-to-1 association provide a more specific association of the cooling consumption part

of the electricity consumption with the high level of air temperature.

The method of YFM2 establishes p-to-1 associations from the candidate (p− 1)-

to-1 associations in the following steps:

1. Sort the (p− 1)-to-1 associations by their CV

2. For each group of associations with the same CV

a) For each association ti in the group, determine the minimum number of

instances required for the common subset, mi, as follows:

mi = ⌈ni × α⌉ (2.6)

where ni is the total number of instances in the set of instances supporting

association ti.

b) For every other association tj in the group, if the variable in the AV of

association tj is not the same as the variable in the AV of association ti

AND nintersection ≥ mi, where nintersection is the number of instances in the

intersection of the two instance sets supporting ti and tj, we establish a
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new p-to-1 association with CV = {CV and AV in ti} and AV = {AV in

tj}, because this new association has the following cr value ≥ α:

cr( {CV and AV in ti} → AV in tj) =
nintersection

ni

≥ mi

ni

≥ α (2.7)

For example, suppose that we have α = 0.5 and a group of two 2-to-1 associations

with the same CV as follows:

x1 = a1, x2 = a2 → x3 = a3,with the supporting set of instances {1, 2}, thus n1 = 2

x1 = a1, x2 = a2 → x4 = a4,with the supporting set of instances {1, 3}, thus n2 = 2.

For the first association, t1, we have:

n1 = 2,m1 = ⌈2× 0.5⌉ = 1.

The second association, t2, has AV which is not the same as AV in the first

association. The intersection of the two instance sets supporting the first and second

associations is {1}. The number of instances in the intersection is 1 ≥ m1. Thus, we

establish a new 3-to-1 association:

x1 = a1, x2 = a2, x3 = a3 → x4 = a4

It is computationally fast to discover 1-to-1 associations in Step 2.1. It takes time

for YFM2 to examine possible combinations of multiple variable values. However,

there is no shortcut by only considering established associations. This is illustrated

by the following example. The data set is shown below and YFM2 is used to establish
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2-to-1 associations from the given 1-to-1 candidate associations:

Instance x1 x2 x3
1 1 0 1
2 1 0 1
3 1 0 1
4 0 0 0
5 0 0 0
6 0 1 1
7 0 1 1
8 0 1 1

If we set α = 0.9, we have for this data set:

cr(x1 = 0 → x2 = 0) =
2

5
= 0.4,with the supporting set of instances {4, 5}

cr(x1 = 0 → x3 = 0) =
2

5
= 0.4,with the supporting set of instances {4, 5}

For the first 1-to-1 association, we compute:

m1 = ⌈2× 0.9⌉ = 2

Since the intersection of the above two 1-to-1 associations has 2 instances, 4, 5,

we establish the new 2-to-1 association from the above two 1-to-1 associations:

x1 = 0, x2 = 0 → x3 = 0

Note that in this example, both 1-to-1 associations have cr < α and so they are

not established. From this result, we show that attribute values in a (p − 1)-to-1

candidate association can become part of an established p-to-1 association in a later

iteration of YFM2. Hence, it is necessary to keep these candidate 1-to-1 associations
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in order to establish all 2-to-1 associations. In general, we need to store all candidate

p-to-1 associations (p = 1, 2, . . . ,M − 1) with their crs and supporting instance sets

as inputs to the YFM2.

In the procedure of using YFM1 and YFM2 in Step 2.2 as shown in Figure 2.2, at

first we use YFM1 to establish 1-to-2, . . . , 1-to-M associations from the established

1-to-1 associations from Step 2.1, where M is the total number of variables in the

data set. Secondly, we use YFM2 to establish 2-to-1 associations from the candidate

1-to-1 associations, 3-to-1 associations from the candidate 2-to-1 associations, . . . ,

and M -to-1 associations from the candidate (M -1)-to-1 associations. At last, we

use YFM1 to establish 2-to-2, . . . , 2-to-M associations from the established 2-to-

1 associations, . . . , M -to-2, . . . , M -to-M associations from the established M -to-1

associations. However, this procedure of Step 2.2 can be cut short (that is, stopped

earlier) if an application needs p-to-q associations up to the given values of p and q,

where p < M and q < M . If we are interested in associations whose AV involves a

certain value of a given variable only, the procedure of YFM2 can be stopped as soon

as a k-to-1 association with such an AV is established, because any p-to-1 association

with the same AV, where p > k, will be established using the same set of supporting

instances for the k-to-1 association by taking in more CVs in these instances and the

k-to-1 association is more generic and powerful association than the p-to-1 association.

Recently we developed YFM3, a computationally fast method of discovering the

longest associations which include m-to-1 associations and 1-to-m associations, where

m + 1 is the total number of variables in a data set. Suppose that we have an Excel

file containing a data set with 5 columns for 5 variables, x1, x2, x3, x4, x5, and 16

rows for 16 instances shown below.
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x1 x2 x3 x4 x5
S Y S A T
S Y S C T
D Y S A T
D Y S C T
S Y L A T
S Y L C F
D Y L A F
D Y L C F
S P S A T
S P S C F
D P S A F
D P S C F
S P L A T
S P L C F
D P L A F
D P L C F

Using this Excel file, we create five new Excel files with only two columns for two

new variables in each file. In File 1, the first column is x1, and the second column is

named x2x3x4x5 which is the concatenation of the other four variables, x2, x3, x4, x5,

as shown below.

x1 x2x3x4x5
S YSAT
S YSCT
D YSAT
D YSCT
S YLAT
S YLCF
D YLAF
D YLCF
S PSAT
S PSCF
D PSAF
D PSCF
S PLAT
S PLCF
D PLAF
D PLCF

20



File 2 has x2 as the first column and the concatenation of x1x3x4x5 as the second

column. File 3 has x3 as the first column and the concatenation of x1x2x4x5 as the

second column. File 3 has x3 as the first column and the concatenation of x1x2x4x5

as the second column. File 4 has x4 as the first column and the concatenation of

x1x2x3x5 as the second column. File 5 has x5 as the first column and the concatena-

tion of x1x2x3x4 as the second column. It is computationally fast to generate 1-to-1

associations using each of the five new data files. Putting together all 1-to-1 associa-

tions for all new data files produces all 1-to-4 associations and 4-to-1 associations. For

example, a 1-to-1 association produced from File 1, x2x3x4x5 = PLAF → x1 = D,

gives a 4-to-1 association of x2 = P, x3 = L, x4 = A, x5 = F → x1 = D.

Step 2.3 of the PVAD algorithm takes all the established associations from Step

2.1 and Step 2.2, uses β to remove the associations whose supporting set of instances

has less than the β number of instances, uses γ to remove the 1-to-1 associations

whose CV or AV exists in more than or equal to γ of all the instances in the data set,

where β denotes the number of instances and can be set to a positive integer equal

to or greater than 1, and γ is the percentage of instances in the data set and can be

set to a value in (0%, 100%]. Hence, β is used to remove any association which is not

supported by a sufficient number of instances in the data set. γ is used to remove

any 1-to-1 association with its CV or AV being present in too many instances of the

data set (too common in the data set). A 1-to-1 association with such a common

CV or AV gives little meaningful, useful information on variable relations since the

association is established solely due to the common presence of CV or AV in the data

set.

In Step 3 of the PVAD algorithm, a multi-layer structural system model of partial/full-

value associations is constructed. Step 3 of the PVAD algorithm consists of the
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following steps.

Step 3.1 Consolidate and generalize the partial-value associations from Step 2 as

follows:

If we have one association, x = a1 → y = b, and another association,

x = a2 → y = b, also

• If a1 and a2 are two different but non-consecutive values of x, we

replace x = a1 → y = b and x = a2 → y = b by a consoli-

dated/generalized association, x = a1/a2 → y = b, where the operator

/ of two terms represents either of two terms but not both terms;

• If a1 and a2 are two consecutive values of x, we replace x = a1 → y = b

and x = a2 → y = b by a consolidated/generalized association, x =

a → y = b, where a is a new categorical value of x including a1 and

a2.

Hence, if all values of variables have the same association, this step will con-

solidate and generalize the same associations for various values of variables

in the associative network into one association for all values of variables.

Hence, the PVAD algorithm can identify both partial-value and full-value

associations of variables. We use x = ∗, to represent all values of x.

If one association has a more specific CV or AV than the CV or AV of an-

other association, we can express the two associations using a consolidated

representation. For example, x = a, y = b, z = c → s = d has a more specific

CV than the CV of x = a, y = b → z = c. Meanwhile, the CV of x = a, y

= b → z = c also has a more specific CV than the CV of x = a → z = c.
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We can express these three associations using the following representation:

x = a (y = b (z = c)) → s = d.

We can read each CV from the above representation by reading inside out

of parentheses to get x = a and y = b and z = c at first, x = a and y = b

secondly, and x = a at last.

We use the operator | of two terms to represent one or both terms to be

present. Hence, the following expression:

x1 = a1 | x2 = a2 → (x3 = a3) x4 = a4/a5,

represents the following associations:

x1 = a1 → x4 = a4

x2 = a2 → x4 = a4

x1 = a1, x2 = a2 → x4 = a4

x1 = a1 → x4 = a5

x2 = a2 → x4 = a5

x1 = a1, x2 = a2 → x4 = a5

x1 = a1 → x3 = a3, x4 = a4

x1 = a1 → x3 = a3, x4 = a5

x2 = a2 → x3 = a3, x4 = a4

x2 = a2 → x3 = a3, x4 = a5

x1 = a1, x2 = a2 → x3 = a3, x4 = a4

x1 = a1, x2 = a2 → x3 = a3, x4 = a5.

The pair of brackets [ ], is used to group some terms. For example, the
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following expression:

[x1 = a1, x2 = a2]/x3 = a3 → x4 = a4

represents the following associations:

x1 = a1, x2 = a2 → x4 = a4

x3 = a3 → x4 = a4.

Step 3.2 Use partial/full-value associations from Step 3.1 to construct an associa-

tive network which is a multi-layer structural model of partial/full-value

associations from Step 3.1. A node is added to the associative network to

represent each unique CV or AV of associations from Step 3.1. A directed

link, called an associative link, is drawn in the associative network to repre-

sent each association. An associative network is drawn using a N-diagram.

Figure 2.2 shows how x = a (y = b (z = c)) → s = d is represented in the

N-diagram of an associative network. In an N-diagram of an associative

network, a link starts from or points to the inside of an oval, and we read

CV or AV inside out. For example, in Figure 2.2, the link starting from the

inside of the oval which contains x = a has no other ovals outside this oval

and thus represents x = a only. The same link pointing to the inside of the

oval containing s = d represents s = d only since there are no other ovals

outside this oval. The link starting from the inside of the oval containing z

= c represents x = a, y = b, and z = c by reading inside out. Hence, the

three links in Figure 2.2 represent:

x = a (y = b (z = c)) → s = d,
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that is, three associations:

x = a (y = b (z = c)) → s = d,

Step 3.3 Remove a direct link between one CV node and one AV node if there are

multiple paths from the CV node to the AV node since the direct link can

be derived from a path of associative links from this CV node to this AV

node. For example, if we have two paths going to node x3 = a3 : x1 =

a1 → x3 = a3 and x1 = a1 → x2 = a2 → x3 = a3, we remove the direct

link x1 = a1 → x3 = a3 because the direct link x1 = a1 → x3 = a3 can be

derived from x1 = a1 → x2 = a2 → x3 = a3.

2.2 Sensitivity Analysis

Three parameters α, β, and γ in the PVAD algorithm are used to discover as-

sociations. To better understand the effect of these parameters on the results, the

PVAD algorithm is run on ASU energy consumption system data with three different

settings:

1. α = 0.8, β = 50, γ = 0.95 vs. α = 1. β = 50, γ = 0.95;

2. α = 1, β = 10, γ = 0.95 vs. α = 1. β = 50, γ = 0.95;

3. α = 1, β = 50, γ = 0.95 vs. α = 1. β = 50, γ = 1.

In each setting, only one parameter value is varied and the remaining two are fixed.

For simplicity, only 4-to-1 established associations are shown and compared. The

metric used in this section is the percentage of instances covered by the established

associations. Concretely, as instance # covered is stored along with the corresponding

association, by taking the union of all those instance #s, we know that an instance

# in the union set is covered by at least one of the established associations. Lastly,
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by counting the instances in the union set and dividing it by the number of data

records in the data set, the resulting fraction measures the percentage of instances

“explained” by the established associations.

The first setting is to test how α affects the results. We run the PVAD two times

with configurations α = 0.8, β = 50, γ = 0.95 vs. α = 1. β = 50, γ = 0.95 As α is

the threshold for cr such that a candidate association is established if its cr ≥ α. It is

expected that a higher value of α will lead to less established associations. The results

are shown in Table 2.3. The first four rows show the associations commonly found

in both configurations. In fact, if keeping β and γ constant, using a lower valuer of

α will return a superset of results that uses a larger α. Regarding the percentage of

covered instances, it is 62.37% for α = 0.8 and 10.48% for α = 1. There is a significant

decrease because α = 1 looks for the strongest association – wherever a row contains

the CV, in the same row, it should also have the AV.

Table 2.3: Sensitivity Analysis of α.

α = 0.8, β = 50, γ = 0.95 α = 1.β = 50, γ = 0.95

Established Associations cr Established Associations cr
T=12:15 PM - 5:30 PM, E=High,
C=Low, A=Medium → H=Medium

1 T=12:15 PM - 5:30 PM,
E=High, C=Low, A=Medium
→ H=Medium

1

T=12:15 PM - 5:30 PM, E=Medium,
C=High, H=Low → A=High

1 T=12:15 PM - 5:30 PM,
E=Medium, C=High, H=Low
→ A=High

1

T=12:15 PM - 5:30 PM, E=Medium,
C=Low, H=Low → A=High

1 T=12:15 PM - 5:30 PM,
E=Medium, C=Low, H=Low
→ A=High

1

T=5:45 PM - 11 PM, E=High, C=Low,
A=Medium → H=Medium

1 T=5:45 PM - 11 PM, E=High,
C=Low, A=Medium →
H=Medium

1

T=11:15 PM - 6 AM, E=Low, C=Low,
A=Medium → H=Medium

0.81

T=11:15 PM - 6 AM, C=Low, H=High,
A=Low → E=Low

0.99

Continued on next page
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Table 2.3: Sensitivity Analysis of α. (Continued)

T=11:15 PM - 6 AM, C=Low, H=Low,
A=High → E=Low

0.99

T=11:15 PM - 6 AM, C=Low,
H=Medium, A=Low → E=Low

0.95

T=11:15 PM - 6 AM, C=Low,
H=Medium, A=Medium → E=Low

0.95

T=12:15 PM - 5:30 PM, E=High,
C=Low, H=Medium → A=Medium

0.86

T=12:15 PM - 5:30 PM, E=Low,
C=Low, H=Medium → A=High

0.84

T=12:15 PM - 5:30 PM, E=Medium,
C=High, A=High → H=Low

0.95

T=12:15 PM - 5:30 PM, E=Medium,
C=Low, A=Medium → H=Medium

0.83

T=12:15 PM - 5:30 PM, C=High,
H=Low, A=High → E=Medium

0.95

T=5:45 PM - 11 PM, E=Medium,
C=Low, A=High → H=Medium

0.95

T=5:45 PM - 11 PM, E=Medium,
C=Low, A=Medium → H=Medium

0.81

T=5:45 PM - 11 PM, C=Low, H=High,
A=Medium → E=Medium

0.82

T=6:15 AM - 8 AM, E=Medium,
C=Low, H=High → A=Low

0.9

T=6:15 AM - 8 AM, E=Medium,
C=Low, A=Medium → H=Medium

0.88

T=8:15 AM - 12 PM, E=Medium,
C=Low, A=High → H=Medium

0.84

T=8:15 AM - 12 PM, E=Medium,
C=Low, A=Medium → H=Medium

0.84

T=8:15 AM - 12 PM, C=Low,
H=Medium, A=High → E=Medium

0.91

T=8:15 AM - 12 PM, C=Low,
H=Medium, A=Medium →
E=Medium

0.82

% of covered instances: 62.37% % of covered Instances: 10.48%

To test for β value’s effect on the results, the second experiment has configurations

α = 1, β = 10, γ = 0.95, and α = 1. β = 50, γ = 0.95. The role of β is to make

sure that the CVs of an association appear “frequent” enough in the data set. As a

higher value of β requires the CVs to have a larger frequency count in the data set, it
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is expected that fewer associations can be established as β increases. Similar to α, a

lower value of β generates more rules and the rules are a superset to those discovered

by using a larger β value. The associations are presented in Table 2.4 which all have

cr = 1. It can be observed from the table that there are only four associations found

for β=50. The percentage of covered instances also drops from 78.73% to 10.48%

when changing β from 10 to 50. It is not surprising as we do not have many rows

having these four attribute values altogether.

Table 2.4: Sensitivity Analysis of β

Established Associations of
Setting

Established Associations of
Setting

α = 1, β = 10, γ = 0.954 α = 1, β = 50, γ = 0.95

T=12:15 PM - 5:30 PM, E=High,
C=Low, A=Medium → H=Medium

T=12:15 PM - 5:30 PM, E=High,
C=Low, A=Medium → H=Medium

T=12:15 PM - 5:30 PM, E=Medium,
C=High, H=Low → A=High

T=12:15 PM - 5:30 PM, E=Medium,
C=High, H=Low → A=High

T=12:15 PM - 5:30 PM, E=Medium,
C=Low, H=Low → A=High

T=12:15 PM - 5:30 PM, E=Medium,
C=Low, H=Low → A=High

T=5:45 PM - 11 PM, E=High, C=Low,
A=Medium → H=Medium

T=5:45 PM - 11 PM, E=High, C=Low,
A=Medium → H=Medium

T=11:15 PM - 6 AM, E=Low, H=High,
A=Low → C=Low
T=11:15 PM - 6 AM, E=Low, H=High,
A=Medium → C=Low
T=11:15 PM - 6 AM, E=Low, H=Low,
A=High → C=Low
T=11:15 PM - 6 AM, E=Low, H=Low,
A=Medium → C=Low
T=11:15 PM - 6 AM, E=Low,
H=Medium, A=High → C=Low
T=11:15 PM - 6 AM, E=Low,
H=Medium, A=Lo → C=Low
T=11:15 PM - 6 AM, E=Low,
H=Medium, A=Medium → C=Low

T=11:15 PM - 6 AM, E=Medium,
H=Medium, A=Low → C=Low

T=11:15 PM - 6 AM, E=Medium,
H=Medium, A=Medium → C=Low

Continued on next page
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Table 2.4: Sensitivity Analysis of β (Continued)

T=11:15 PM - 6 AM, C=Low, H=High,
A=Medium → E=Low
T=12:15 PM - 5:30 PM, E=High,
H=Medium, A=Medium → C=Low
T=12:15 PM - 5:30 PM, E=Low,
C=Low, H=Low → A=High
T=12:15 PM - 5:30 PM, E=Low,
H=Low, A=High → C=Low
T=12:15 PM - 5:30 PM, E=Low,
H=Medium, A=High → C=Low
T=12:15 PM - 5:30 PM, E=Low,
H=Medium, A=Medium → C=Low

T=12:15 PM - 5:30 PM, E=Medium,
H=High, A=Low → C=Low

T=12:15 PM - 5:30 PM, E=Medium,
H=High, A=Medium → C=Low

T=12:15 PM - 5:30 PM, E=Medium,
H=Medium, A=Low → C=Low

T=12:15 PM - 5:30 PM, E=Medium,
H=Medium, A=Medium → C=Low
T=12:15 PM - 5:30 PM, C=Low,
H=High, A=Low → E=Medium
T=12:15 PM - 5:30 PM, C=Low,
H=Medium, A=Low → E=Medium

T=5:45 PM - 11 PM, E=High, C=Low,
H=Low → A=High

T=5:45 PM - 11 PM, E=High, C=Low,
A=Low → H=Medium
T=5:45 PM - 11 PM, E=High,
H=Medium, A=Low → C=Low
T=5:45 PM - 11 PM, E=Low, H=Low,
A=High → C=Low
T=5:45 PM - 11 PM, E=Low,
H=Medium, A=High → C=Low
T=5:45 PM - 11 PM, E=Low,
H=Medium, A=Medium → C=Low

T=5:45 PM - 11 PM, E=Medium,
C=High, H=Low → A=High

T=5:45 PM - 11 PM, E=Medium,
H=High, A=Low → C=Low

T=5:45 PM - 11 PM, E=Medium,
H=High, A=Medium → C=Low

T=5:45 PM - 11 PM, E=Medium,
H=Medium, A=Low → C=Low

Continued on next page
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Table 2.4: Sensitivity Analysis of β (Continued)

T=5:45 PM - 11 PM, E=Medium,
H=Medium, A=Medium → C=Low

T=6:15 AM - 8 AM, E=Low, H=High,
A=Low → C=Low
T=6:15 AM - 8 AM, E=Low,
H=Medium, A=Low → C=Low
T=6:15 AM - 8 AM, E=Low,
H=Medium, A=Medium → C=Low

T=6:15 AM - 8 AM, E=Medium,
C=Low, A=High → H=Medium

T=6:15 AM - 8 AM, E=Medium,
H=High, A=Low → C=Low

T=6:15 AM - 8 AM, E=Medium,
H=Medium, A=High → C=Low

T=6:15 AM - 8 AM, E=Medium,
H=Medium, A=Low → C=Low

T=6:15 AM - 8 AM, E=Medium,
H=Medium, A=Medium → C=Low
T=6:15 AM - 8 AM, C=Low,
H=Medium, A=High → E=Medium
T=8:15 AM - 12 PM, E=Low,
H=Medium, A=High → C=Low
T=8:15 AM - 12 PM, E=Low,
H=Medium, A=Low → C=Low
T=8:15 AM - 12 PM, E=Low,
H=Medium, A=Medium → C=Low

T=8:15 AM - 12 PM, E=Medium,
H=High, A=Low → C=Low

T=8:15 AM - 12 PM, E=Medium,
H=High, A=Medium → C=Low

T=8:15 AM - 12 PM, E=Medium,
H=Medium, A=Low → C=Low

T=8:15 AM - 12 PM, E=Medium,
H=Medium, A=Medium → C=Low

E=High, C=High, H=Medium,
A=High → T=5:45 PM - 11 PM

% of covered instances: 2343/2976 =
78.73%

% of covered instances: 312/2976 =
10.48%

While β sets a lower bound of occurrence frequency in an association, γ sets an

upper bound to the percentage of AV frequency count. Recall that the purpose of

setting γ is to remove associations with AV being present in too many instances of the
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data set (too common in the data set), a lower value of γ has a stronger restriction

on the number of times that AV can be found in the data set. Consequently, less

associations will be established for a lower value of γ. The last experiment in this

section compares the results of settings α = 1, β = 50, γ = 0.95 vs. α = 1. β = 50,

γ = 1.

As shown in Table 2.5, setting γ = 1 gives more established associations than γ

= 0.95. The last eleven associations in the left column all have AV equal to C=Low

which can be found in 2848 out of 2976 (= 96%) instances in the dataset.

Table 2.5: Sensitivity Analysis of γ

Established Associations % of
AV in
data

Established
Associations

% of AV
in data

T=12:15 PM - 5:30 PM,
E=High, C=Low, A=Medium →
H=Medium

0.7 T=12:15 PM -
5:30 PM, E=High,
C=Low, A=Medium
→ H=Medium

0.7

T=12:15 PM - 5:30 PM,
E=Medium, C=High, H=Low →
A=High

0.34 T=12:15 PM - 5:30 PM,
E=Medium, C=High,
H=Low → A=High

0.34

T=12:15 PM - 5:30 PM,
E=Medium, C=Low, H=Low
→ A=High

0.34 T=12:15 PM - 5:30 PM,
E=Medium, C=Low,
H=Low → A=High

0.34

T=5:45 PM - 11 PM, E=High,
C=Low, A=Medium →
H=Medium

0.7 T=5:45 PM - 11 PM,
E=High, C=Low,
A=Medium →
H=Medium

0.7

T=11:15 PM - 6 AM, E=Low,
H=High, A=Low → C=Low

0.96

T=11:15 PM - 6 AM, E=Low,
H=Low, A=High → C=Low

0.96

T=11:15 PM - 6 AM, E=Low,
H=Medium, A=Low → C=Low

0.96

T=11:15 PM - 6 AM, E=Low,
H=Medium, A=Medium →
C=Low

0.96

T=12:15 PM - 5:30 PM, E=High,
H=Medium, A=Medium →
C=Low

0.96

Continued on next page

31



Table 2.5: Sensitivity Analysis of γ (Continued)

T=12:15 PM - 5:30 PM, E=Low,
H=Medium, A=High → C=Low

0.96

T=12:15 PM - 5:30 PM,
E=Medium, H=Medium,
A=Medium → C=Low

0.96

T=5:45 PM - 11 PM, E=Medium,
H=Medium, A=Low → C=Low

0.96

T=5:45 PM - 11 PM, E=Medium,
H=Medium, A=Medium →
C=Low

0.96

T=6:15 AM - 8 AM, E=Low,
H=Medium, A=Low → C=Low

0.96

T=8:15 AM - 12 PM, E=Medium,
H=Medium, A=Medium →
C=Low

0.96

% of covered instances: % of covered instances:
2343/2976 = 78.73% 312/2976 = 10.48%

2.3 Verification of PVAD: Comparison with Association Rule Results

As discussed in Section 1.2, Association Rule Mining is the most similar technique

to the PVAD algorithm. The technique first uses the Aprori algorithm to determine

frequent item sets that satisfy the minimum support (Ye, 2013a, 2003). Then each

frequent item set is broken up into all possible combinations of association rules which

are then evaluated to see if any of them satisfy the minimum confidence threshold.

The main shortcoming of Association Rule mining is its inability to discover all

associations. While that deficiency is only briefly mentioned in Section 1.2, it is

further investigated in this section. Both techniques are applied to the chemical

data set in Table 2.2. The respective values of minimum support and confidence

threshold are 50 and 0.8. For comparison purposes, the PVAD parameters α, β and

γ are set to be 0.8, 30, and 1 respectively. The reason for setting β to be lower

than the minimum support is that we only want to look at associations with co-

occurrence frequency larger than or equal to 50 but not the occurrence frequency.
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Restricting β=50 will lead to an early drop of candidate associations which will then

return fewer associations. Nonetheless, we will only consider associations with co-

occurrence frequency ≥ 50 when comparing the results. As all the association rules

derived from Association Rule Mining are also discovered in the PVAD algorithm, the

common results are displayed in Table 2.6. Table 2.7 shows associations that are only

found by PVAD and this finding supports our claim at the start of this section that

Association Rule Mining cannot discover all the associations. From the viewpoint of

covered instances, the association rules altogether cover 2032/2976 = 68.28% of data

set instances. Not only those 2032 instances, associations of PVAD also cover other

instances and its % of covered instances is 2976/2976 = 100% meaning that every

instance in the data set is covered by at least one PVAD association.

Table 2.6: Common Results Found by Association Rule Mining and PVAD.

Established Associations
α = 0.8, β = 30, γ = 1 and Co-Occ Freq ≥ 50 )

cr

2-to-3
T=12:15 PM - 5:30 PM, C=High → E=Medium, H=Low, A=High 0.9

4-to-1
T=11:15 PM - 6 AM, E=Low, C=Low, A=Medium → H=Medium 0.81

T=11:15 PM - 6 AM, E=Low, H=High, A=Low → C=Low 1

T=11:15 PM - 6 AM, E=Low, H=Low, A=High → C=Low 1

T=11:15 PM - 6 AM, E=Low, H=Medium, A=Low → C=Low 1

T=11:15 PM - 6 AM, E=Low, H=Medium, A=Medium → C=Low 1

T=11:15 PM - 6 AM, C=Low, H=High, A=Low → E=Low 0.99

T=11:15 PM - 6 AM, C=Low, H=Low, A=High → E=Low 0.99

T=11:15 PM - 6 AM, C=Low, H=Medium, A=Low → E=Low 0.95

T=11:15 PM - 6 AM, C=Low, H=Medium, A=Medium → E=Low 0.95

T=12:15 PM - 5:30 PM, E=High, C=Low, H=Medium → A=Medium 0.86

T=12:15 PM - 5:30 PM, E=High, C=Low, A=Medium → H=Medium 1

T=12:15 PM - 5:30 PM, E=High, H=Medium, A=Medium → C=Low 1

T=12:15 PM - 5:30 PM, E=Low, C=Low, H=Medium → A=High 0.84

T=12:15 PM - 5:30 PM, E=Low, H=Medium, A=High → C=Low 1

T=12:15 PM - 5:30 PM, E=Medium, C=High, H=Low → A=High 1

Continued on next page

33



Table 2.6: Common Results Found by Association Rule Mining and PVAD. (Contin-
ued)

T=12:15 PM - 5:30 PM, E=Medium, C=High, A=High → H=Low 0.95

T=12:15 PM - 5:30 PM, E=Medium, C=Low, H=Low → A=High 1

T=12:15 PM - 5:30 PM, E=Medium, C=Low, A=Medium → H=Medium 0.83

T=12:15 PM - 5:30 PM, E=Medium, H=Medium, A=High → C=Low 0.98

T=12:15 PM - 5:30 PM, E=Medium, H=Medium, A=Medium → C=Low 1

T=12:15 PM - 5:30 PM, C=High, H=Low, A=High → E=Medium 0.95

T=5:45 PM - 11 PM, E=High, C=Low, A=Medium → H=Medium 1

T=5:45 PM - 11 PM, E=High, H=Medium, A=Medium → C=Low 0.96

T=5:45 PM - 11 PM, E=Medium, C=Low, A=High → H=Medium 0.95

T=5:45 PM - 11 PM, E=Medium, C=Low, A=Medium → H=Medium 0.81

T=5:45 PM - 11 PM, E=Medium, H=Medium, A=High → C=Low 0.92

T=5:45 PM - 11 PM, E=Medium, H=Medium, A=Low → C=Low 1

T=5:45 PM - 11 PM, E=Medium, H=Medium, A=Medium → C=Low 1

T=6:15 AM - 8 AM, E=Low, H=Medium, A=Low → C=Low 1

T=8:15 AM - 12 PM, E=Medium, C=Low, A=High → H=Medium 0.84

T=8:15 AM - 12 PM, E=Medium, C=Low, A=Medium → H=Medium 0.84

T=8:15 AM - 12 PM, E=Medium, H=Medium, A=High → C=Low 0.96

T=8:15 AM - 12 PM, E=Medium, H=Medium, A=Medium → C=Low 1

T=8:15 AM - 12 PM, C=Low, H=Medium, A=High → E=Medium 0.91

Table 2.7: Associations only found by PVAD algorithm

1-to-1 cr 3-to-1 cr
T=11:15 PM - 6 AM →
E=Low

0.96 T=11:15 PM - 6 AM, E=Low,
H=High → C=Low

1

T=11:15 PM - 6 AM →
C=Low

1 T=11:15 PM - 6 AM, E=Low,
H=Low → C=Low

1

T=12:15 PM - 5:30 PM →
C=Low

0.91 T=11:15 PM - 6 AM, E=Low,
H=Medium → C=Low

1

T=5:45 PM - 11 PM →
C=Low

0.92 T=11:15 PM - 6 AM, E=Low,
A=High → C=Low

1

T=6:15 AM - 8 AM→ C=Low 1 T=11:15 PM - 6 AM, E=Low,
A=Low → C=Low

1

T=8:15 AM - 12 PM →
E=Medium

0.83 T=11:15 PM - 6 AM, E=Low,
A=Medium → C=Low

1

T=8:15 AM - 12 PM →
C=Low

0.98 T=11:15 PM - 6 AM, E=Low,
A=Medium → H=Medium

0.81

Continued on next page
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Table 2.7: Associations only found by PVAD algorithm (Continued)

E=High → C=Low 0.91 T=11:15 PM - 6 AM, C=Low,
H=High → E=Low

0.99

E=High → H=Medium 0.89 T=11:15 PM - 6 AM, C=Low,
H=Low → E=Low

0.98

E=Low → C=Low 1 T=11:15 PM - 6 AM, C=Low,
H=Medium → E=Low

0.94

E=Medium → C=Low 0.93 T=11:15 PM - 6 AM, C=Low,
A=High → E=Low

0.94

C=High → E=Medium 0.8 T=11:15 PM - 6 AM, C=Low,
A=Low → E=Low

0.97

C=High → A=High 0.96 T=11:15 PM - 6 AM, C=Low,
A=Medium → E=Low

0.96

H=High → C=Low 1 T=11:15 PM - 6 AM, C=Low,
A=Medium → H=Medium

0.82

H=Low → A=High 0.88 T=11:15 PM - 6 AM, H=High,
A=Low → E=Low

0.99

H=Medium → C=Low 0.98 T=11:15 PM - 6 AM, H=High,
A=Low → C=Low

1

A=High → C=Low 0.88 T=11:15 PM - 6 AM, H=Low,
A=High → E=Low

0.99

A=Low → C=Low 1 T=11:15 PM - 6 AM, H=Low,
A=High → C=Low

1

A=Medium → C=Low 1 T=11:15 PM - 6 AM, H=Medium,
A=Low → E=Low

0.95

A=Medium- → H=Medium 0.84 T=11:15 PM - 6 AM, H=Medium,
A=Low → C=Low

1

1-to-2 cr T=11:15 PM - 6 AM, H=Medium,
A=Medium → E=Low

0.95

T=11:15 PM - 6 AM →
E=Low, C=Low

0.96 T=11:15 PM - 6 AM, H=Medium,
A=Medium → C=Low

1

T=8:15 AM - 12 PM →
E=Medium, C=Low

0.81 T=12:15 PM - 5:30 PM, E=High,
C=Low → H=Medium

0.88

E=High → C=Low,
H=Medium

0.83 T=12:15 PM - 5:30 PM, E=High,
H=Medium → C=Low

1

C=High-E=Medium, A=High 0.8 T=12:15 PM - 5:30 PM, E=High,
H=Medium → A=Medium

0.86

A=Medium-C=Low,
H=Medium

0.84 T=12:15 PM - 5:30 PM, E=High,
A=Medium → C=Low

1

1-to-3, 1-to- 4 cr T=12:15 PM - 5:30 PM, E=High,
A=Medium → H=Medium

1

None T=12:15 PM - 5:30 PM, E=Low,
C=Low → A=High

0.87

2-to-1 cr T=12:15 PM - 5:30 PM, E=Low,
H=Medium → C=Low

1

T=11:15 PM - 6 AM, E=Low
→ C=Low

1 T=12:15 PM - 5:30 PM, E=Low,
H=Medium → A=High

0.84
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Table 2.7: Associations only found by PVAD algorithm (Continued)

T=11:15 PM - 6 AM, C=Low
→ E=Low

0.96 T=12:15 PM - 5:30 PM, E=Low,
A=High → C=Low

1

T=11:15 PM - 6 AM, H=High
→ E=Low

0.99 T=12:15 PM - 5:30 PM, E=Medium,
C=High → H=Low

0.95

T=11:15 PM - 6 AM, H=High
→ C=Low

1 T=12:15 PM - 5:30 PM, E=Medium,
C=High → A=High

1

T=11:15 PM - 6 AM, H=Low
→ E=Low

0.98 T=12:15 PM - 5:30 PM, E=Medium,
H=Low → A=High

1

T=11:15 PM - 6 AM, H=Low
→ C=Low

1 T=12:15 PM - 5:30 PM, E=Medium,
H=Medium → C=Low

0.99

T=11:15 PM - 6 AM,
H=Medium → E=Low

0.94 T=12:15 PM - 5:30 PM, E=Medium,
A=High → C=Low

0.84

T=11:15 PM - 6 AM,
H=Medium → C=Low

1 T=12:15 PM - 5:30 PM, E=Medium,
A=Medium- → C=Low

1

T=11:15 PM - 6 AM, A=High
→ E=Low

0.94 T=12:15 PM - 5:30 PM, E=Medium,
A=Medium-H=Medium

0.83

T=11:15 PM - 6 AM, A=High
→ C=Low

1 T=12:15 PM - 5:30 PM, C=High,
H=Low → E=Medium

0.95

T=11:15 PM - 6 AM, A=Low
→ E=Low

0.97 T=12:15 PM - 5:30 PM, C=High,
H=Low → A=High

1

T=11:15 PM - 6 AM, A=Low
→ C=Low

1 T=12:15 PM - 5:30 PM, C=High,
A=High → E=Medium

0.95

T=11:15 PM - 6 AM,
A=Medium → E=Low

0.96 T=12:15 PM - 5:30 PM, C=High,
A=High → H=Low

0.95

T=11:15 PM - 6 AM,
A=Medium → C=Low

1 T=12:15 PM - 5:30 PM, C=Low,
H=Low → A=High

1

T=11:15 PM - 6 AM,
A=Medium → H=Medium

0.82 T=12:15 PM - 5:30 PM, C=Low,
A=Medium → H=Medium

0.89

T=12:15 PM - 5:30 PM,
E=High → C=Low

0.96 T=12:15 PM - 5:30 PM, H=Medium,
A=High → C=Low

0.99

T=12:15 PM - 5:30 PM,
E=High → H=Medium

0.84 T=12:15 PM - 5:30 PM, H=Medium,
A=Medium → C=Low

1

T=12:15 PM - 5:30 PM,
E=Low → C=Low

1 T=5:45 PM - 11 PM, E=High,
C=Low-H=Medium

0.92

T=12:15 PM - 5:30 PM,
E=Low → A=High

0.87 T=5:45 PM - 11 PM, E=High,
H=Medium → C=Low

0.9

T=12:15 PM - 5:30 PM,
E=Medium → C=Low

0.88 T=5:45 PM - 11 PM, E=High,
A=Medium → C=Low

0.96

T=12:15 PM - 5:30 PM,
C=High → E=Medium

0.95 T=5:45 PM - 11 PM, E=High,
A=Medium → H=Medium

1

T=12:15 PM - 5:30 PM,
C=High → H=Low

0.95 T=5:45 PM - 11 PM, E=Medium,
C=Low → H=Medium

0.82

T=12:15 PM - 5:30 PM,
C=High → A=High

1 T=5:45 PM - 11 PM, E=Medium,
H=High → C=Low

1

Continued on next page
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Table 2.7: Associations only found by PVAD algorithm (Continued)

T=12:15 PM - 5:30 PM,
H=Low → A=High

1 T=5:45 PM - 11 PM, E=Medium,
H=Medium → C=Low

0.98

T=12:15 PM - 5:30 PM,
H=Medium → C=Low

0.99 T=5:45 PM - 11 PM, E=Medium,
A=Low → C=Low

1

T=12:15 PM - 5:30 PM,
A=High → C=Low

0.87 T=5:45 PM - 11 PM, E=Medium,
A=Medium → C=Low

1

T=12:15 PM - 5:30 PM,
A=Medium → C=Low

1 T=5:45 PM - 11 PM, E=Medium,
A=Medium → H=Medium

0.81

T=12:15 PM - 5:30 PM,
A=Medium → H=Medium

0.89 T=5:45 PM - 11 PM, C=Low,
H=High → E=Medium

0.82

T=5:45 PM - 11 PM, E=High
→ C=Low

0.89 T=5:45 PM - 11 PM, C=Low,
A=Medium → H=Medium

0.84

T=5:45 PM - 11 PM, E=High
→ H=Medium

0.91 T=5:45 PM - 11 PM, H=High,
A=Medium → C=Low

1

T=5:45 PM - 11 PM, E=Low
→ C=Low

1 T=5:45 PM - 11 PM, H=Medium,
A=High → C=Low

0.86

T=5:45 PM - 11 PM,
E=Medium → C=Low

0.92 T=5:45 PM - 11 PM, H=Medium,
A=Low → C=Low

1

T=5:45 PM - 11 PM, C=High
→ A=High

0.91 T=5:45 PM - 11 PM, H=Medium,
A=Medium → C=Low

0.98

T=5:45 PM - 11 PM, C=Low
→ H=Medium

0.81 T=6:15 AM - 8 AM, E=Low,
H=Medium → C=Low

1

T=5:45 PM - 11 PM, H=High
→ E=Medium

0.82 T=6:15 AM - 8 AM, E=Low,
A=Low → C=Low

1

T=5:45 PM - 11 PM, H=High
→ C=Low

1 T=6:15 AM - 8 AM, E=Medium,
H=High-C=Low

1

T=5:45 PM - 11 PM,
H=Medium → C=Low

0.95 T=6:15 AM - 8 AM, E=Medium,
H=Medium-C=Low

1

T=5:45 PM - 11 PM, A=Low
→ C=Low

1 T=6:15 AM - 8 AM, E=Medium,
A=Low → C=Low

1

T=5:45 PM - 11 PM,
A=Medium → C=Low

0.99 T=6:15 AM - 8 AM, E=Medium,
A=Medium → C=Low

1

T=5:45 PM - 11 PM,
A=Medium → H=Medium

0.84 T=6:15 AM - 8 AM, C=Low,
H=High → A=Low

0.87

T=6:15 AM - 8 AM, E=Low-
C=Low

1 T=6:15 AM - 8 AM, C=Low,
A=Medium → H=Medium

0.87

T=6:15 AM - 8 AM,
E=Medium → C=Low

1 T=6:15 AM - 8 AM, H=High,
A=Low → C=Low

1

T=6:15 AM - 8 AM, H=High
→ C=Low

1 T=6:15 AM - 8 AM, H=Medium,
A=Low → C=Low

1

T=6:15 AM - 8 AM, H=High
→ A=Low

0.87 T=6:15 AM - 8 AM, H=Medium,
A=Medium → C=Low

1

T=6:15 AM - 8 AM,
H=Medium → C=Low

1 T=8:15 AM - 12 PM, E=Low,
H=Medium → C=Low

1

T=6:15 AM - 8 AM, A=Low
→ C=Low

1 T=8:15 AM - 12 PM, E=Medium,
H=High → C=Low

1

Continued on next page
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Table 2.7: Associations only found by PVAD algorithm (Continued)

T=6:15 AM - 8 AM,
A=Medium → C=Low

1 T=8:15 AM - 12 PM, E=Medium,
H=Medium → C=Low

0.98

T=6:15 AM - 8 AM,
A=Medium → H=Medium

0.87 T=8:15 AM - 12 PM, E=Medium,
A=High → C=Low

0.94

T=8:15 AM - 12 PM, E=Low
→ C=Low

1 T=8:15 AM - 12 PM, E=Medium,
A=High → H=Medium

0.82

T=8:15 AM - 12 PM,
E=Medium → C=Low

0.97 T=8:15 AM - 12 PM, E=Medium,
A=Low → C=Low

1

T=8:15 AM - 12 PM, C=Low
→ E=Medium

0.83 T=8:15 AM - 12 PM, E=Medium,
A=Medium → C=Low

1

T=8:15 AM - 12 PM, H=High
→ C=Low

1 T=8:15 AM - 12 PM, E=Medium,
A=Medium → 4=Medium

0.84

T=8:15 AM - 12 PM,
H=Medium → E=Medium

0.84 T=8:15 AM - 12 PM, C=Low,
H=Medium → E=Medium

0.84

T=8:15 AM - 12 PM,
H=Medium → C=Low

0.98 T=8:15 AM - 12 PM, C=Low,
A=High → E=Medium

0.89

T=8:15 AM - 12 PM, A=High
→ E=Medium

0.89 T=8:15 AM - 12 PM, C=Low,
A=High-H=Medium

0.82

T=8:15 AM - 12 PM, A=High
→ C=Low

0.94 T=8:15 AM - 12 PM, C=Low,
A=Medium → E=Medium

0.83

T=8:15 AM - 12 PM, A=High
→ H=Medium

0.8 T=8:15 AM - 12 PM, C=Low,
A=Medium → H=Medium

0.84

T=8:15 AM - 12 PM, A=Low
→ C=Low

1 T=8:15 AM - 12 PM, H=Medium,
A=High → E=Medium

0.92

T=8:15 AM - 12 PM,
A=Medium → E=Medium

0.83 T=8:15 AM - 12 PM, H=Medium,
A=High → C=Low

0.96

T=8:15 AM - 12 PM,
A=Medium → C=Low

1 T=8:15 AM - 12 PM, H=Medium,
A=Low → C=Low

1

T=8:15 AM - 12 PM,
A=Medium → H=Medium

0.84 T=8:15 AM - 12 PM, H=Medium,
A=Medium → E=Medium

0.82

E=High, C=Low →
H=Medium

0.91 T=8:15 AM - 12 PM, H=Medium,
A=Medium → C=Low

1

E=High, H=Medium →
C=Low

0.93 E=High, C=Low, A=Medium →
H=Medium

1

E=High, A=Medium →
C=Low

0.97 E=High, H=Medium, A=Medium
→ C=Low

0.97

E=High, A=Medium →
H=Medium

1 E=Low, H=High, A=Low→ 3=Low 1

E=Low, H=High- → C=Low 1 E=Low, H=High, A=Medium →
C=Low

1

E=Low, H=Low → C=Low 1 E=Low, H=Low, A=High →
C=Low

1

E=Low, H=Medium →
C=Low

1 E=Low, H=Medium, A=High →
C=Low

1

E=Low, A=High → C=Low 1 E=Low, H=Medium, A=Low →
C=Low

1

Continued on next page
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Table 2.7: Associations only found by PVAD algorithm (Continued)

E=Low, A=Low → C=Low 1 E=Low, H=Medium, A=Medium →
C=Low

1

E=Low, A=Medium →
C=Low

1 E=Medium, C=High, H=Low →
A=High

1

E=Medium, C=High →
H=Low

0.84 E=Medium, C=High, A=High →
H=Low

0.84

E=Medium, C=High →
A=High

1 E=Medium, C=Low, H=Low →
A=High

0.89

E=Medium, H=High →
C=Low

1 E=Medium, C=Low, A=Medium →
H=Medium

0.84

E=Medium, H=Low →
A=High

0.93 E=Medium, H=High, A=Low →
C=Low

1

E=Medium, H=Medium →
C=Low

0.99 E=Medium, H=High, A=Medium
→ C=Low

1

E=Medium, A=High →
C=Low

0.85 E=Medium, H=Medium, A=High
→ C=Low

0.97

E=Medium, A=Low →
C=Low

1 E=Medium, H=Medium, A=Low →
C=Low

1

E=Medium, A=Medium →
C=Low

1 E=Medium, H=Medium,
A=Medium → C=Low

1

E=Medium, A=Medium →
H=Medium

0.84 C=High, H=Low, A=High →
E=Medium

0.93

C=High, H=Low →
E=Medium

0.93 3-to-2 cr

C=High, H=Low → A=High 1 T=11:15 PM - 6 AM, E=Low,
A=Medium → C=Low, H=Medium

0.81

C=High, A=High →
E=Medium

0.84 T=11:15 PM - 6 AM, H=High,
A=Low → E=Low, C=Low

0.99

C=Low, H=Low → A=High 0.84 T=11:15 PM - 6 AM, H=Low,
A=High → E=Low, C=Low

0.99

C=Low, A=Medium →
H=Medium

0.84 T=11:15 PM - 6 AM, H=Medium,
A=Low → E=Low, C=Low

0.95

H=High, A=Low → C=Low 1 T=11:15 PM - 6 AM, H=Medium,
A=Medium → E=Low, C=Low

0.95

H=High, A=Medium →
C=Low

1 T=12:15 PM - 5:30 PM, E=High,
H=Medium → C=Low, A=Medium

0.86

H=Medium, A=High →
C=Low

0.95 T=12:15 PM - 5:30 PM, E=High,
A=Medium → C=Low, H=Medium

1

H=Medium, A=Low →
C=Low

1 T=12:15 PM - 5:30 PM, E=Low,
H=Medium → C=Low, A=High

0.84

H=Medium, A=Medium-
C=Low

0.99 T=12:15 PM - 5:30 PM, E=Medium,
C=High → H=Low, A=High

0.95

2-to-2 cr T=12:15 PM - 5:30 PM, E=Medium,
A=Medium → C=Low, H=Medium

0.83

Continued on next page
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Table 2.7: Associations only found by PVAD algorithm (Continued)

T=11:15 PM - 6 AM, H=High
→ E=Low, C=Low

0.99 T=12:15 PM - 5:30 PM, C=High,
H=Low → E=Medium, A=High

0.95

T=11:15 PM - 6 AM, H=Low
→ E=Low, C=Low

0.98 T=12:15 PM - 5:30 PM, C=High,
A=High → E=Medium, H=Low

0.9

T=11:15 PM - 6 AM,
H=Medium → E=Low,
C=Low

0.94 T=5:45 PM - 11 PM, E=High,
A=Medium → C=Low, H=Medium

0.96

T=11:15 PM - 6 AM, A=High
→ E=Low, C=Low

0.94 T=5:45 PM - 11 PM, E=Medium,
A=Medium → C=Low, H=Medium

0.81

T=11:15 PM - 6 AM, A=Low
→ E=Low, C=Low

0.97 T=8:15 AM - 12 PM, E=Medium,
A=Medium → C=Low, H=Medium

0.84

T=11:15 PM - 6 AM,
A=Medium → E=Low,
C=Low

0.96 T=8:15 AM - 12 PM, H=Medium,
A=High → E=Medium, C=Low

0.88

T=11:15 PM - 6 AM,
A=Medium → C=Low,
H=Medium

0.82 T=8:15 AM - 12 PM, H=Medium,
A=Medium → E=Medium, C=Low

0.82

T=12:15 PM - 5:30 PM,
E=High → C=Low,
H=Medium

0.84

T=12:15 PM - 5:30 PM,
E=Low → C=Low, A=High

0.87

T=12:15 PM - 5:30 PM,
C=High → E=Medium,
H=Low

0.9

T=12:15 PM - 5:30 PM,
C=High → E=Medium,
A=High

0.95

T=12:15 PM - 5:30 PM,
C=High → H=Low, A=High

0.95

T=12:15 PM - 5:30 PM,
A=Medium → C=Low,
H=Medium

0.89

T=5:45 PM - 11 PM, E=High
→ C=Low, H=Medium

0.82

T=5:45 PM - 11 PM, H=High
→ E=Medium, C=Low

0.82

T=5:45 PM - 11 PM,
A=Medium → C=Low,
H=Medium

0.83

T=6:15 AM - 8 AM, H=High
→ C=Low, A=Low

0.87

T=6:15 AM - 8 AM,
A=Medium → C=Low,
H=Medium

0.87
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Table 2.7: Associations only found by PVAD algorithm (Continued)

T=8:15 AM - 12 PM,
H=Medium → E=Medium,
C=Low

0.83

T=8:15 AM - 12 PM, A=High
→ E=Medium, C=Low

0.84

T=8:15 AM - 12 PM,
A=Medium → E=Medium,
C=Low

0.83

T=8:15 AM - 12 PM,
A=Medium → C=Low,
H=Medium

0.84

E=High, A=Medium →
C=Low, H=Medium

0.97

E=Medium, C=High →
H=Low, A=High

0.84

E=Medium, A=Medium →
C=Low, H=Medium

0.84

C=High, H=Low →
E=Medium, A=High

0.93

2.4 Verification of PVAD: Comparison with Decision Tree Results

Decision tree is a data mining technique to learn decision rules that express re-

lations of the dependent variable y with independent variables x in a directed and

acyclic graph (Ye, 2013a, 2003). The software, Weka, was used to construct decision

trees of the energy consumption system data, To construct a decision tree in Weka,

there are different algorithms such as ID3 (Quinlan, 1986) and J48 (Quinlan, 2014).

The latter is an extended version of ID3 with additional features such as dealing with

missing values and continuous attribute value ranges. It also addresses the over-fitting

problem that decision trees are prone to by pruning. The pruning process requires

the computation of the expected error rate. If the error rate of a subtree is greater

than that of a leaf node, a subtree is pruned and replaced by the leaf node.

In our research, ID3 was used for the comparison with the PVAD algorithm be-

cause ID3 produces comparable results with associations produced by the PVAD
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Table 2.8: Decision rules from the ID3 Tree with Air Temperature as the target
variable same as PVAD association rules.

# Decision rules that appear the same as PVAD association rules

1 H=Medium, E=High, T=12:15 PM to 5:30 PM → A=Medium

2 H=Medium, E=Low, T=12:15 PM to 5:30 PM → A=High

3 H=Low, T=12:15 PM to 5:30 PM → A=High

4 H=High, E=Medium, T=6:15 AM to 8 AM → A=Low

algorithm. Leaf nodes produced by ID3 are pure in that the class labels of instances

are the same in each leaf node. The purity of the leaf node corresponds to AV in

associations from the PVAD algorithm having the same variable value. The PVAD

algorithm produces all associations up to N-to-1 associations, where N+1 is the num-

ber of variables. In other words, the PVAD algorithm can generate the longest CVs

and find the AV that they are associated with. The combination of CVs corresponds

to the path from the root of a decision tree down to a leaf node.

Because the decision tree technique requires the identification of one dependent

variable (the target variable) and independent variables (attribute variables) for each

decision tree, five decision trees need to be constructed for each of the five variables

as the dependent variable. Tables 2.8-2.11 list decision rules produced by one of the

five ID3 trees.
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Table 2.9: Decision rules from the ID3 Tree with Air Temperature = Low as the
target variable same as PVAD association rules.

5 H=Medium, E=High, T=11:15 PM to 6 AM → A=Low

6 H=High, E=Low, T=11:15 PM to 6 AM → A=Low

7 H=High, E=Medium, T=11:15 PM to 6 AM →A=Low

8 H=High, E=Medium, T=12:15 PM to 5:30 PM → A=Low

9 H=High, E=Low, T=6:15 AM to 8 AM → A=Low

10 H=Medium, E=Low, T=6:15 AM to 8 AM → A=Low

11 H=High, E=Low, T=8:15 AM to 12 PM → A=Low

12 H=High, E=Medium, T=8:15 AM to 12 PM → A=Low

13 H=Low, C=Low, E=Medium, T=5:45 PM to 11 PM → A=Low

Table 2.10: Decision rules from the ID3 Tree with Air Temperature = Medium as the
target variable.

14 H=Low, T=6:15 AM to 8 AM → A=Medium

15 H=Medium, E=Low, T=11:15 PM to 6 AM → A=Medium

16 H=Low, E=Medium, T=11:15 PM to 6 AM → A=Medium

17 H=Medium, E=Medium, T=11:15 PM to 6 AM → A=Medium

18 H=High, E=Low, T=12:15 PM to 5:30 PM → A=Medium

19 H=High, E=Low, T=5:45 PM to 11 PM → A=Medium

20 H=High, E=Medium, T=5:45 PM to 11 PM → A=Medium

21 H=Medium, E=Medium, T=6:15 AM to 8 AM → A=Medium

22 H=Medium, E=High, T=8:15 AM to 12 PM → =Medium

23 H=Medium, E=Low, T=8:15 AM to 12 PM → A=Medium

24 H=Medium, C=Low, E=High, T=5:45 PM to 11 PM → A=Medium

25 H=Medium, C=Low, E=Medium, T=5:45 PM to 11 PM → A=Medium

26 H=Medium, C=Low, E=Medium, T=8:15 AM to 12 PM → A=Medium

Table 2.11: Decision rules from the ID3 Tree with Air Temperature = High as the

target variable.

27 H=Low, E=Low, T=11:15 PM to 6 AM → A=High

28 H=Low, E=High, T=5:45 PM to 11 PM → A=High

29 H=Low, E=Low, T=5:45 PM to 11 PM → A=High

30 H=Low, E=Low, T=8:15 AM to 12 PM → A=High

31 H=Medium, C=High, E=High, T=5:45 PM to 11 PM → A=High

32 H=Medium, C=Low, E=Low, T=5:45 PM to 11 PM → A=High

33 H=Low, C=High, E=Medium, T=5:45 PM to 11 PM → A=High

34 H=Medium, C=High, E=Medium, T=5:45 PM to 11 PM → A=High

Continued on next page
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Table 2.11: Decision rules from the ID3 Tree with Air Temperature = High as the

target variable. (Continued)

35 C=High, H=Low, E=Medium, T=8:15 AM to 12 PM → A=High

36 H=Medium, C=High, E=Medium, T=8:15 AM to 12 PM → A=High

37 H=Low, C=Low, E=Medium, T=8:15 AM to 12 PM → A=High

38 H=Medium, C=High, E=Medium, T=12:15 PM to 5:30 PM → A=High

39 H=Medium, C=Low, E=Medium, T=12:15 PM to 5:30 PM → A=High

Although the decision rules from the decision trees appear to have the same form

as associations from the PVAD algorithm, a decision rule has a different meaning

from an association from the PVAD algorithm. A decision rule derived from the

root of a decision tree to a leaf node of the decision tree represents a frequent item

set with instances in the leaf node having the values of the target variable and the

attribute variables in the decision rule. This is why we see a path in a decision tree is

also present in another tree even though different decision trees have different target

variables. For example, the attribute values in E=Medium, A=High, H=Medium,

C=Low, T=12:15 PM to 5:30 PM, are found in all four decision trees. Note that the

energy consumption data set has only five variables. Redundant paths of different

decision trees can be found more often for larger data sets with more variables. This

means the waste of computation time and space and the difficulty of sorting out results

from a number of decision trees. Hence, a decision rule corresponds to a frequent item

set in the association rule technique, whereas an association from the PVAD algorithm

corresponds to an association rule in the association rule technique. This is why there

are decision rules in Tables 2.8-2.11 that are not found in associations of the PVAD

algorithm because frequent item sets for those decision rules were eliminated in the

process of forming associations. Hence, the PVAD algorithm has the advantage over

the decision tree technique because the PVAD algorithm discovers associations rather

than frequent item sets.
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There is another difference between the decision tree technique and the PVAD

algorithm. Each step of constructing a decision tree performs the splitting of a data

subset for data homogeneity based on the comparison of splits using only one variable

and its values rather than combinations of multiple variables due to the large number

of combinations and the enormous computation costs. Hence, the resulting decision

tree contains decision rules with the consideration of only one variable at a time and

may miss decision rules that can be generated if multiple variables and their values

are considered and compared at a time. However, the PVAD algorithm examines

one to multiple variables at a time and does not miss any associations that exist.

This can be seen from the results in Table 2.8-2.11. All the associations found have

only one AV: x2. While there are associations identified by PVAD can have two or

more AVs, such as “x1=11:15 PM - 6 AM, x5=Medium → x2=Low, x3=Low” and

“x1=12:15 PM - 5:30 PM, x3=High → x2=Medium, x4=Low, x5=High”, the PVAD

algorithm thus has the advantage to the decision tree technique that it does not miss

any established associations and using YFM1 and YFM2.

Moreover, the decision tree algorithm requires the identification of the dependent

variable (the target variable) and the independent variables (the attribute variables)

although there may be no prior knowledge for the identification of which variable is a

dependent or independent variable. This is why five decision trees, with one decision

tree taking each of the five variables as the target variable, had to be constructed for

the energy consumption data. The PVAD algorithm does not require the distinction

of dependent and independent variables but discovers variable value relations and the

role of each variable in each variable value relation.

Furthermore, the PVAD algorithm can generate p-to-q associations with q > 1 that

the decision tree technique cannot generate because a decision tree is constructed for

only one target variable and produces only p-to-1 decision rules. Therefore, associ-
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ations found by the PVAD algorithm are more comprehensive. As discussed in the

previous section, the PVAD algorithm overcomes shortcomings of existing statistical

analysis and data mining techniques and produces partial/full-value associations that

cannot be produced from other existing techniques.

46



Chapter 3

DEEP LEARNING MODEL FOR KNEE POINT DETECTION ON NOISY DATA

3.1 Introduction

Researchers in various fields frequently encounter the task of identifying knees/elbows.

In this context, ”knees” are points where the concavity of a curve is negative (con-

cave downward), while ”elbows” are points where the concavity is positive (concave

upward). Generally speaking, a knee point represents an advantageous operation

point that optimizes the balance between system performance and operational costs.

Therefore, a reliable and precise knee/elbow point detection method is desired as se-

lecting the ”right” operating point can lead to efficient utilization of system resources,

which in turn results in cost savings and performance benefits. In the field of system

behavior, a knee point is a point at which the cost of altering system parameters is no

longer justified by the expected performance benefit. This concept can be observed

in the Network Congestion Control problem, where an ideal sending rate is desired to

ensure fair traffic share and prevent congestion. If the curve of packet delay increases

significantly and then levels off, indicating there is network congestion, the protocol

should halt increasing the sending rate. In the application of lithium-ion batteries,

the knee point on a Capacity Fade Curve hints the beginning of lithium-ion cell degra-

dation and the battery is approaching its End-of-Life (Neubauer and Pesaran, 2011;

Williard, 2011; Yang et al., 2017; Schuster et al., 2015). In the application of BotNet

Detection, a knee point can help identify potential controllers used by a master host

to relay to bots. When it comes to clustering applications, the Elbow method is one

of the most popular approaches for determining the ideal number of clusters. The

47



elbow point on the plot of an evaluation criteria curve, such as the within-cluster sum

of squares as a function of the number of clusters, represents the ideal number of clus-

ters. Choosing the appropriate number of clusters can help in preventing over-fitting

and ensuring precise outcomes.

In the most common practice, researchers typically use a rule-of-thumbs approach.

This intuitive and heuristic method involves plotting the graph and identifying the

knee point(s) by visual inspection. An example of this practice can be seen in (Ye

et al., 2019), where a Partial-Value Association Discovery Algorithm (PVAD) was

developed to discover relations in mixed-type real-world data. The first step of the

PVAD algorithm requires converting the numeric values of each continuous attribute

into categorical values. The technique used in the dissertation is a heuristic process

that involves pinpointing the most substantial jumps in value differences between

consecutive data points (known as elbow points) to form data clusters (intervals).

However, this ad hoc approach has two main drawbacks: it is highly subjective and

the determination of knee points is non-repeatable. Another commonly used method

is to define a metric based on system-specific or operational characteristics, which

requires prior knowledge. It must be pointed out that system-specific approaches are

not practical in the scenario that the data set being analyzed contains attributes from

various domains.

Our hypothesis regarding this knee point detection problem aligns with the au-

thors in (Satopaa et al., 2011). They state that a knee point estimation method should

be: ”[quote] not require tuning for a specific system or operational characteristics is

applicable in a wide range of settings”. It is worth noting that the first formal defini-

tion of a knee point was documented in that same paper. On top of that, we would

like to make an additional assumption that the identification of a knee point should

be independent of the data unit, and thus we propose a new definition of knee point
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in this dissertation. For the above reasons, we are interested in developing a concise

and reproducible knee point determination process. Our objective is to develop a

technique that requires minimal human intervention, which can help to identify the

data point(s) for grouping data values into intervals that also capture the distribution

of data values.

Our main contributions are: i) we provide a novel mathematical definition of

knee/elbow, ii) develop a benchmark data set that includes ground truth of knee

point and synthetic samples, iii) propose a new deep learning approach that supports

multiple knee point detection, and iv) compare our method with existing methods.

The rest of the dissertation is structured in the following way. We begin by

reviewing related work in Section 3.2. We then provide a formal definition of knee

point in discrete data in Section 3.3. Section 3.4 presents our proposed method and

the architecture of our network. The details of the experiment implementation and

results are described in Section 3.5.

3.2 Related Work

Various approaches (Antunes et al., 2018, 2019; Salvador and Chan, 2004; Zhao

et al., 2008; Tolsa, 2000) have been proposed to identify knees/elbows in discrete

data. In this section, we present the most commonly used approaches and compare

them in Section 3.5.

L-Method

For every point on the curve except the endpoints, the L-Method (Salvador and

Chan, 2004) selects a candidate point and fits a line from the first data point to the

candidate point, and fits another line from the candidate point to the endpoint. Root

Mean Squared Error (RMSE) is then computed to measure how close the fitted lines

49



are to data points. The candidate point with the lowest score is selected as an elbow

point. However, this method performs best when the size of data points on each side

of the elbow is reasonably balanced. It has the tendency to predict a larger elbow

index for curves with long tails (more data points on the right side). To overcome

this issue, the authors also proposed an iterative refinement method to cut the curve

tail and reduce the focus region in each iteration. In each iteration, one candidate

elbow point is selected each time. This process stops until the selected elbow value

converges. Since this method is designed primarily for determining the ideal number

of clusters in cluster analysis, it is only effective when dealing with simple concave

curves or curves with limited data size nonetheless. One needs to check the curve

shape beforehand and decide the method to be deployed.

Dynamic First Derivative Threshold

The Dynamic First Derivative Threshold (DFDT ) method (Antunes et al., 2018)

is designed to determine the ideal number of clusters in an evaluation criteria plot.

It first approximates the first derivative of a curve, followed by using a threshold

algorithm (IsoData) (Ridler et al., 1978) that computes the threshold value for sep-

arating the first derivative approximation values into higher-value and lower-value

groups. The elbow point is selected as the data point whose derivative value is clos-

est to the threshold value. One major drawback of DFDT is that it is prone to curve

with a nearly vertically straight line at the beginning (long curve head), causing the

threshold algorithm to always return a larger threshold value. This in turn misleads

the method into predicting the elbow point close to the curve head. As such, the

authors have incorporated an iterative refinement to the method, similar to the one

in the conventional L-Method. Instead of removing the curve tail, DFDT removes

a small segment from the head of the curve in each iteration, specifically the por-

50



tion from the origin to half of the distance from the previously selected elbow. This

process is repeated until the selected elbows converge at the same point.

AL-Method

The AL-Method (Antunes et al., 2019) is an extension of the traditional L-method.

The method attempts to determine the point with a sharper angle as an elbow point,

so it considers an additional angle score while selecting an elbow point. The angle

score is computed as the square of the deviation of the angle between the fitted lines

(θi) from 90 degrees: |90 − θi|2. Same as the L-Method, it requires using linear

regression to fit two straight lines for every point on the curve, except the endpoints.

The RMSEs and the angle scores are then respectively rescaled to a range of [0, 1], and

combined to calculate the overall score. The point with the lowest score is selected as

an elbow point. The authors also deployed the same tail-cutting iterative refinement

method to address curves with long heads or long tails, as in DFDT.

S-Method

The authors of the AL-Method also proposed the S -Method (Antunes et al., 2019)

as a further development in the same paper. This method fits three straight lines to

a curve to handle curves with long heads or tails. The first and third lines fit for the

curve head and tail respectively, while the middle fitted line captures the nature of the

curve shape and thus is able to detect the elbow point. The criterion for selecting an

elbow point is the weighted RMSE scores, which are weighted by the number of data

points in the corresponding line segment used in curve fitting. The authors found

that using linear regression to fit the points in the selected range introduces bias to

the slope of the fitted line. They suggested fitting the lines by using the first and last

point in the range but left this as an area for future exploration. This observation is
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applicable to the AL-Method as well.

The above-mentioned methods are primarily designed to meet the needs of de-

tecting elbows in clustering applications. The common drawback of these methods

is that they are only effective for a narrow range of the x-interval (expected num-

ber of clusters). Experiments show that these methods have low accuracy when the

number of expected clusters is large. Another limitation is that these methods have

only been tested on curves with a single elbow point. If the data points are divided

into smaller regions and these methods are called recursively and applied to those

regions, non-elbow points may also be incorrectly identified as elbow points. Conse-

quently, these methods do not perform well when used recursively. Though AL and

S -Methods have demonstrated excellent performance on error curves from specific

clustering algorithms. This indicates that the accuracy of the models can be affected

by the underlying clustering algorithm. Therefore, we believe it is crucial to develop

a method that is independent of any underlying algorithms and conduct experiments

that can test the method’s true ability to detect knee points. Nonetheless, both AL

and S methods have a high computational cost, which can be prohibitively expensive

for curves with a large number of data points.

Kneedle

Kneedle (Satopaa et al., 2011) is the only algorithm that is capable of detecting

multiple knees without the need for recursive calls. The algorithm works by first

fitting the data to a smoothing pine, which reduces noise and in an attempt to preserve

the original curve shape. The (x, y) values are then normalized into a unit square.

After projecting the smoothed points to y = x, the method defines a unique threshold

value for each local maximum point and determines those local maxima meeting

certain conditions as knee points. The rationale behind this is that knees are points
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further from a straight line. The threshold value is based on the distance between

consecutive x-values and a user-specified sensitivity parameter ζ. A lower ζ value

tends to declare a knee point more aggressively, which can increase the risk of false

positives. The major weakness of the method is that the fitted smoothing spline

may return data points that fall outside the original data range and return irrelevant

results.

U-Net

U-Net (Ronneberger et al., 2015) is a popular convolutional neural network for

biomedical image segmentation. Its architecture consists of successive downsampling

and upsampling layers that enable it to learn global features. The network also

includes skip connections that can pass local features learned in the same level of the

downsampling layer to the upsampling layer at the same level. These local features

are then combined with spatial information learned through a sequence of upsampling

layers to yield more precise segmentation. Because of its impressive performance in

capturing both local and global contextual information of the input image, U-Net has

been modified and successfully applied to other visual computing domains such as

medical image reconstruction (Zhou et al., 2022; Lee et al., 2018; Andersson et al.,

2019; Ding et al., 2019) and pansharpening (Yao et al., 2018; Cao et al., 2021).

3.3 Knee Point Definition

As in previous works (Satopaa et al., 2011; Salvador and Chan, 2004; Antunes

et al., 2018, 2019), a mathematical definition of curvature for continuous function

has been used as a foundation for knee/elbow definition. For a twice-differentiable

function f(x), the signed curvature of f at point (x, f(x)) is given by:
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Ky(x) =
y′′(

1 + ( y′ )2
)3/2

(3.1)

Curvature measures the amount by which the tangent vector of the curve changes

as the point moves along the curve. The notion of selecting the point of minimum

curvature as the knee point is well-suited to heuristics, as minimum curvature captures

the exact point at which the curve reaches a peak and then stabilizes instead of

continuing to increase or decrease, and as a result, can be used to identify knees. It is

noteworthy to mention that in the case of single knee/elbow detection, the problem

of finding knee point or elbow point is interchangeable. If a curve presents positive

concavity, it can be inverted to a negative concavity curve by replacing the x and y

data points with the difference of the corresponding maximum value to the original

data values (i.e. replace xi by xmax − xi and yi by ymax − yi), where xmax and ymax

are the maximum values of x and y respectively.

However, the above curvature definition is limited to continuous functions, it is not

well-defined for discrete data sets. Fitting a continuous function to a set of noisy data

is one possible way to extend the definition of curvature on discrete data. Despite the

difficulty of fitting, the point identified in the fitting curve may fall outside the valid

data range or shift the true knee point position, leading to irrelevant or inaccurate

results.

Nevertheless, our goal is to develop an algorithm that performs effectively for data

sets having different ranges of values. This is important because real-world data can

have a wide range of possible values, and it is crucial for our algorithm to be reliable

irrespective of data magnitude. To achieve this, it is necessary to normalize the data

into a unit square beforehand.

Let DN =
{
(x1,y1), · · · , (xN ,yN)

}
be a set of N samples, where the i-th sample

54



(xi,yi) consists of L data points such that xi = (x i
1, · · · , x i

L) and yi = (y i
1 , · · · , y i

L).

The rescaling operation that normalizes (xi,yi) to (x̃i, ỹi) is:

For j = 1, ..., L,

x̃ i
j =

x i
j − x i

min

x i
max − x i

min

(3.2a)

ỹ i
j =

y i
j − y i

min

y i
max − y i

min

(3.2b)

, where x i
min = min(x i

1, · · · , x i
L) and y i

min = min(y i
1 , · · · , y i

L). The values of x̃i

and ỹi both fall in the range of [0, 1]. If we re-arrange Equation 3.2a and 3.2b, then

we have

x i
j = x̃ i

j (x
i
max − x i

min) + x i
min

:= a i
x x

i
j + b ix (3.3a)

y i
j = ỹ i

j (y
i
max − y i

min) + y i
min

:= a i
y y

i
j + b iy (3.3b)

Applying the above results to Equation 3.1, the resulting curvature equation of

normalized data becomes:

Kỹ(x̃) =

a2x
ay
f ′′(ax x̃+ bx)[

1 +
(

ax
ay
f ′(ax x̃+ bx)

)2
]3/2 (3.4)

It is important to note that normalizing data does change the curve shape and

thus alter the knee/elbow point position. Figure 3.1 (a) and (b) demonstrate how

normalizing data changes the curvature shape and knee position. Figure 3.1 (a)

shows the curve of y = 5 × 1
1+e−10x+5 = 5 × f̃(x) generated by 1000 evenly-spaced
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Figure 3.1: An example showing data normalization changes the curvature shape and
knee position. (a) The curve of y = 5× 1

1+e−10x+5 generated by 1000 evenly-spaced x
values in [0, 1]. The normalized values are plotted as ỹ in the figure; (b) Curvatures
and the corresponding knee point indices of the curves. The normalization operation
applies a squeezing effect to the curve of y, resulting in a smaller rate of change as
observed in ỹ. This reduces the range of values of Kỹ(x̃) and causes a shift in the
position of the knee point.

x values in [0, 1]. Its corresponding curvature is Ky(x) = 5·10·f̃(1−f̃)(1−5f̃)[
1+(5·10·f̃(1−f̃))

2
]3/2 . By

inputting the corresponding values of xmin, xmax, ymin, ymax which are 0, 1, 0.033, and

4.967 into Equation 3.4 and making the necessary substitutions, we have Kỹ(x̃) =
1

4.934
f ′′(x̃)[

1+( 1
4.934

f ′(x̃))
2
]3/2 . One can observe that the curvature of y ranges from −3.740 and

3.740, while that for ỹ is −3.308 to 3.308. The change in curvature value is a result

of the rescaling operation applied to the x and y values. This operation compressed

the 1000 x and y values into shorter intervals of [0, 1] respectively. As a result, the

curve of ỹ is flatter than y, resulting in a slower deviation of the tangent to the curve

of ỹ in the interval. This in turn leads to a decrease in curvature values and a shift

of the knee point to a forwarder (leftward) position.
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3.4 Proposed Approach

This section describes the architecture of our proposed convolutional neural net-

work (UNetConv) and introduces the loss function and inference method used for

knee point detection.

3.4.1 Model Architecture

The proposed network architecture is displayed in Figure 3.2. It should be pointed

out that the height and width of each layer output are not entirely drawn to scale.

The model is comprised of two main components: a U-Net model and a sequence of

convolutional layers. The first part receives the input and processes it through the

encoding path, then through a bottleneck, and finally through the decoding path.

Both paths consist of four levels of blocks. In the encoding path, each block has

a convolutional layer with 11 × 11 kernel with same padding, followed by a batch

normalization (BN) layer and a ReLU activation function. The last layer of each

block is a 2× 2 max pooling layer with a stride of 2, which reduces the feature map

width by half for the purpose of downsampling. The bottleneck layer consists of a

single convolutional layer, which also has an 11 × 11 kernel, same padding, and 256

channels.

In the decoding path, additional layers are added to every level. First, an up-

convolutional layer with 2× 2 kernel is applied to upsample a feature map, followed

by a BN layer and a ReLU activation function. A skip connection then takes place,

which concatenates the feature map with the output from the encoding part at the

same level. Lastly, the feature map is fed to a convolutional layer of 11 × 11 kernel

with same padding. In both encoding and decoding paths, the number of channels in

each block is 32, 64, 128, and 256.
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The second part of the model is a sequence of convolutional layers. Each layer has

a 2× 2 convolutions and same padding. The number of channels in the layers is 16,

8, 4, and 1 respectively. The final step is normalization, which maps the output to

a probability, indicating the likelihood of the current data point being a knee point.

The network contains about 3.3M parameters in total.

Figure 3.2: An illustration of the architecture of our proposed method, UNetConv.
The model is comprised of two main components: a U-Net model and a sequence of
convolutional layers. The U-Net model component part passes the input through the
encoding path, followed by a bottleneck layer and then to the decoding path. Both the
encoding path and decoding path contain four levels of blocks. The numbers beneath
and in the bottom right corner of each block respectively indicate the number of
channels and size of the resulting feature map passed through that specific layer.

3.4.2 Soft F1 score

The F1 score is a statistical measure to evaluate the accuracy of a classification

model. It is particularly useful when the classes/labels in the data set are imbalanced,

which is the case of our scenario - there are at most 5 knee points in each sample. The

traditional F1 score is a harmonic mean of two other metrics - precision and accuracy.

Details are discussed in Section 3.5.3.

The issue with the traditional F1 score is that it is not differentiable. It accepts
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binary (0 or 1) inputs of prediction and ground truth, then it computes integer values

of True Positives, False Positives, and False Negatives. Thus, it can not be used as

a loss function to compute the gradient and update the model’s weights during the

training phase. This limitation can be overcome by modifying the F1 metric to accept

probabilities as inputs and calculate the required counting numbers as a continuous

sum of likelihood. The equation is given in the following.

Let (p̂ i
1, . . . , p̂

i
n) be a set of predicted probabilities by the model and (p i

1, . . . , p
i
n)

be the binary ground truth of sample i respectively, where p i
j = 1 if a knee is attained

at index j, 0 otherwise. The soft F1-score F̃1 is :

F̃1(p̂
i,pi) =

∑L
j=1 p̂

i
j p

i
j∑L

j=1 p̂
i
j +

∑L
j=1 p

i
j

(3.5)

F̃1 naturally approximates the traditional F1 classification metric and shares the

same property of indicating better precision and accuracy with a higher score (with

1 being the best value).

3.4.3 Non-Maximal Suppression

Non-Maximal Suppression (NMS ) (Redmon et al., 2016) is a common technique

in computer vision to eliminate multiple detections of the same object. With pre-

specified threshold value δ and the area of interest (suppression area), the process

of NMS involves dropping all detections whose prediction values are below δ. The

algorithm selects the highest-scoring candidate and suppresses all other overlapping

candidates within the area of interest. This process repeats until no candidates re-

main.

In this research, the UNetConv model is designed to predict the probability of a

data point being a knee point. Often it is clear which data point is a knee and the
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probability curve predicted by the model presents a tall narrow spike shape. However,

there are cases where multiple spikes may occur near a knee point, which could be

due to noise or the model naturally predicting higher probability near a knee point,

making it difficult to determine. For this reason, we implement NMS to fix this issue.

3.5 Experiments

This section explains how we create noisy data for the training and test sets. We

then provide details on how we implement the experiment. Finally, we evaluate the

proposed network and compare it to other existing methods.

3.5.1 Synthetic Data

To evaluate the model performance, we select twelve functions to generate sam-

ples and create data sets. These functions (FT 1-12 ) are listed in Table 3.1. One

important note here is that we make certain assumptions about the curve being used.

Specifically, we assumed that the curve has two main characteristics: (1) monotone

increasing, and (2) having at least one knee point in the interval. FT 1-9 are func-

tions that have only one knee point in the interval. FT6 is the translated Scaled

Exponential Linear Unit (SELU) function and FT9 is the cumulative distribution

function (CDF) of normal distribution. On the other hand, the number of knees

K(≥ 2) for FT 10-12 samples can be specified, which allows for multiple knee points

in these functions. In these multi-knee functions, FT10 is the sum of multiple logis-

tic functions and its curve is a smooth step function. FT11 is a combination of sine

functions, the resulting function can be described as a translated tilted sine function.

FT12 (see Figure 3.3) is a synthetic function formed by the summation of functions

from the single-knee family. The number of functions chosen to generate a sample

of FT12 corresponds to the number of knees in the sample. Each time, a function
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Figure 3.3: Graphical representation of a FT12 multi-knee sample. This sample is
formed by summing graphs from three single-knee functions, which is a combination
of FT8, 1 and 6.

from the single-knee family is randomly selected to concatenate with the currently

connected curve. There is one restriction on the slope when joining the curves: the

slope formed by the last two points in the existing curve should not be greater than

the slope of the first two points of the next curve being connected. This prevents the

creation of additional knee points upon connection.

To introduce some noise to the generated sample, while maintaining the func-

tion data range, we consider each function in Table 3.1 as a cumulative distribution

function (CDF). We then generate noisy data points ŷ by making use of the empir-

ical distribution function and Inverse Transform Sampling method. Mathematically,

given a CDF fX̃ and a uniform variable U ∼ Uniform[0, 1], the random variable

R = f−1

X̃
(U) can be described by fX̃ . Therefore, the empirical distribution of R can

be written as the following:
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Table 3.1: Selected functions to generate samples and create data sets.

Code Function Description Flipped?

FT1 ln(x) Logarithm Y

FT2 (−1)m+1xm, for m = 3, 5, 9 or 11 Polynomial Y

FT3 x
1
m , for m = 3, 5, 9, . . . , 17 Rational Y

FT4 1
1+e−x Logistic Y

FT5 − ln (1 + e−x) Translated Soft-

plus

Y

FT6 1− e−x Translated SELU Y

FT7∗∗ (mx
s
)p − (mx

s
)qe−(x

s
)r Product of expo-

nential and ratio-

nal function

N

FT8 y(x) =

{
m1x, if x ∈ [0, x[η − 1]]

m2x+ c2, if x ∈ [x[η], 1]
Piecewise Linear N

FT9 1
σ
√
2π

∫ x

−∞ e−
(t−µ)2

2σ2 ,where

{
µ = 13,

σ = 5
Normal Distribu-

tion CDF

Y

FT10
∑K

i=1
c1,i

1+e−c2,i(x−c3,i)
Sum of K Logistic

functions

N

FT11 1
m

∑K
i=1

( 2K
K−i)

i·22K−1 sin(ix) + (x+ t) · q · ln(x) Translated tilted

sine

N

FT12 Sum of FT 1-8 Sum of single-knee

functions

N

Notation: 1) η: knee index of a sample, where 0 ≤ η ≤ L− 1; 2) K: number of knee(s) in a

sample; 3) ∗∗: Values of p, q, r are determined by a brute force search in the set of values

[1, 2, 3, 4, 5], the possible values of s are [10, 20] and that for m is [0.1, 0.2, . . . , 5.0].

For r ∈ X̃,

f̂R(r) =

∑L′

j=1 1Rj ≤ r

L

=

∑L′

j=1 1f−1(Uj)≤ r

L′

(
∵ Rj = f−1

X̃
(Uj)

)
=

∑L′

j=1 1Uj ≤ f(r)

L′ (3.6)

Based on the above results, we can obtain noisy data points ŷi by using the cumu-

62



lative count of randomly generated points that follow a standard uniform distribution

with a value less than ỹj. The complete procedure to generate a sample is summarized

in the following:

i. Generate L pairs of noise-free data points (x i
j , y

i
j ) where

x i
j = x i

lb +
j

L− 1
(x i

ub − x i
lb)

y i
j = f(x i

j )

for j = 0, 1, · · · , L− 1

ii. Compute the normalized values (x̃i, ỹi) of sample i by inputting the results from

the previous step into Equations 3.2a and 3.2b

iii. Generate {um}L
′

m=1 from the standard uniform distribution Uniform[0, 1], where

L′ is not necessarily same as L

iv. Compute the noisy data points (x̂ i
j , ŷ

i
j ) for sample i, where

x̂ i
j = x̃ i

j (3.7a)

ŷ i
j =

∑L′

m=1 1um ≤ ỹ i
j

L′ (3.7b)

It is noteworthy to mention that the x interval varies between samples, even if

they are generated from the same function. Generally speaking, a wider x interval

leads to a curve with sharper curvature after normalization. Varying x interval allows

us to create samples with different ranges of curvature values. Another benefit is that

the curve may have different shapes for different intervals of x. Taking FT4 as an

example, the curve exhibits an elbow point at approximately x = −1.36 (see curve
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y1 in Figure 3.4 (a). We pick the regions [−30, 10] (blue) and [0, 25] (orange), and

generate 512 (x, y) data points in these intervals. The respective normalized data

points are displayed as ỹ1 and ỹ2 in 3.4 (b). The blue region has a wider x interval.

Its curve segment displays an elbow point, as its x interval includes x = −1.36. The

curve shape of ỹ1 is noticeably different from ỹ2, even though both are produced by

the same function. Therefore, their respective knee point position is also notably

distinct from each other.

To further improve the diversity of data, we also randomly flip a normalized sample

along the y = 1− x axis if there exists an analytical expression for the inverse of the

chosen function. Again taking FT4 as an example, its inverse function is the logit

function y = ln(x/(1−x)) which has a significantly different curve shape and different

knee point position. Figure 3.4 (b) shows the flipped data of ỹ1. The knee point of

flipped ỹ1 occurs at the very beginning of the curve.

3.5.2 Implementation Details

Synthetic Training Set and Test Sets

We create three distinct data sets using the functions outlined in Table 3.1 in order

to test the model performance. The network is trained on 7000 samples from FT1-8,

10-12, reserving FT9 for building a separate test set since we want to investigate the

model’s performance on samples from unseen functions. In the 7000-sample training

set, there is an equal portion of single-knee and multi-knee samples, with 3500 of each

category. Each function is proportionally represented within its respective portion.

Specifically, functions FT10-12 each account for 33.33% in all multiple knee samples,

while the remaining distributions each account for 12.5% of all the single knee samples.

The model performance is tested by identifying knee point index/indices in three test

64



Figure 3.4: An example showing varying the x interval can generate samples with
a variety of curve shapes, different ranges of curvature values, and thus different
positions of knee point(s). (a) A graph showing the logistic function, y = 1

1+e−x , for
x ∈ [−40, 40]. (b) The curve shape of ỹ1 is noticeably different from ỹ2, even though
both are produced by the same function. The figure also shows the flipped curve of
y1. Unlike the logit function, the knee point of flipped ỹ1 occurs at the very beginning
of the curve.

sets containing 300, 800, and 100 samples, respectively. The 300-sample test set

(denoted as mknee) includes 100 samples from each multi-knee distribution (FT10-

12 ), and the 800 test set (denoted as sknee) also comprises 100 samples from each

single-knee distribution (FT1-8 ). The last test set contains 100 samples from FT9

distribution (denoted as ng). Since the model has not been trained with samples from

this distribution, its outcome will demonstrate the model’s capability in capturing

knee point properties. Every sample in the data sets has 512 (x, y) data points. Upon

analyzing the data, the range of knee curvature values per data set is as follows: [-

337.32, -3.00] for the training set, [-339.39, -3.00] for the 800-sample sknee test set,

[-326.32, -5.78] for the 300-sample mknee test set, and [-40.85 to -6.82] for the 100-
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Table 3.2: Values of configuration that were attempted when applying the Exponen-
tially Weighted Moving Average (EWM) to smooth data. The configuration that
achieves the lowest MSE between the smoothed data and noise-free data is chosen.
The optimal configuration varies for each sample.

Configuration Values

Center of Mass 0.2, 0.4, . . . , 10.0

Span 1.2, 1.4, . . . , 10.0

Half-life 0.2, 0.4, . . . , 10.0

Alpha 0.1, 0.3, . . . , 0.9

sample ng test set. To sum up, the range of knee curvature in this experiment is

between -339.39 and -3.00. In all of the synthetic data sets, the knees are not located

within 10 indices from the boundary.

Real-World Data Set

To further assess the model’s performance on real-world data, three variables (Birth

Date (Year), Math ALEKS, and Fall Hours) are selected from the ASU 2017 Engineer-

ing Freshmen Data (Engr2017) which is analyzed in Section 4.5.1. The corresponding

data points for these variables are 2717, 2579, and 2668. The target knee points in

these variables were determined by using the YFM1 method of the PVAD algorithm.

It is worth noting that all of these variables have multiple knee points. However, the

only variable that has a knee point within the first 10 indices is Birth Date (Year),

which occurs at index 7.

Data Preprocessing for Other Model/Methods

Since the Kneedle method requires curve smoothing in the data preprocessing stage,

each sample is first smoothed by Exponentially Weighted Moving Average (EWM)
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before being projected/rotated. We test various configurations (as shown in Table 3.2)

and select the one that achieves the lowest MSE between the true noise-free y values

and the fitted curve for each sample. In addition, for methods primarily designed

for detecting elbows in clustering applications such as DFDT and AL-Method, we

translate the data points of each single-knee sample by (x̃ i
j , 1 − ỹ i

j ) such that the

translated curve has consistent positive concavity, which is similar to the loss function

shape in clustering applications.

Loss Function

As discussed in Section 3.4.2, the traditional F1 is an intractable step function for

gradient descent. To overcome this limitation, we implement the soft F̃1 score as a

surrogate function of F1. Strictly speaking, our loss function is defined as:

min
α

F̃1

+ 1− F̃1 (3.8)

, where α is a constant. To determine the value of α, we run our model with

α set to 0.01, 0.1, and 1, each with a single trial, using the loss function described

in Equation 3.8. We select the α value that results in the lowest loss value for the

subsequent experiment. The selected α value is 0.1.

Optimization

We train the network for 200 epochs with batch size = 64. AdaDelta is employed

with an initial learning rate = 0.5 and momentum = 0.5. For every 10 epochs, the

learning rate is decreased by half. The loss function used is given in Equation 3.5.
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Post-Processing on Model Output

In the testing stage, the model output of the i-th sample, p̂i, undergoes further

processing using NMS. This method predicts the knee index/indices and returns a

binary prediction p̂ i
NMS with a value of 1 at index j, indicating the detection of a

knee at the j-th data point. The probability threshold selected for NMS is 0.5. The

suppression area is set to be ± 10 indices, dropping any candidates located 10 indices

from the left and 10 indices from the right of the selected knee point in each iteration.

The resulting binary output p̂ i
NMS is compared with the binary ground truth pi to

compute the traditional F1 score for model performance evaluation.

3.5.3 Metric

The F1 score is one of the most widely used metrics in classification analysis. It is

the harmonic mean of precision and recall, providing a single score that balances these

two metrics. This is useful because a model with high recall but low precision may

correctly identify a lot of true positives, but may also identify many false positives.

Since some algorithms cannot detect at the exact same knee point, we incorporate

allowable index error in the calculation of F1 score to accommodate for this issue as

in (Satopaa et al., 2011). As an illustration, suppose we have a data set with points

at x = 1, 2, 3, ..., 7, and the knee occurs at x = 5 and 7. We consider the algorithm

to have ”correctly” identified the knees if it identifies any points at x = 3, 4, 5, 6, or

7 as knees, with a margin of error of 2.

3.5.4 Evaluation

Results on Synthetic Data
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Table 3.3: Quantitative results of UNetConv and other methods, with an allowable
index error of 2.

Test
Set

DFDT DFDT
Ref

AL AL
Ref

S S
Ref

Kneedle
Proj

Kneedle
Rot

UNetConv

sknee 0.021 0.024 0.274 ▷◁ 0.044 ▷◁ 0.09 0.09 0.740

mknee – – – – – – 0.063 0.063 0.720

ng 0.000 0.000 0.040 ▷◁ 0.000 ▷◁ 0.11 0.11 0.810

▷◁: Fail to Converge

Figure 3.5: F1 scores of (a) UNetConv, DFDT,AL, S and Kneedle methods for varying
allowable index error on the sknee data set; (b)UNetConv and Kneedle methods for
varying allowable index error on the mknee data set; (c) UNetConv, DFDT, AL, S
and Kneedle methods for varying allowable index error on the ng data set.

We evaluate our network by running 20 trials on all three synthetic test sets. The

average of the F1 scores per test set is then compared with other methods mentioned

in Section 3.2. Since the AL-Method is an extension of the traditional L-Method, we

only consider the AL-Method in this evaluation. In Figure 3.5, the F1 scores for each

method per test set are plotted against allowable errors ranging from 1 to 6. Our

method is denoted byUNetConv. We use two curve-fitting methods for both AL and

S methods: fitting a straight line that best matches all the data within the specified

range (best fit), and fitting the first and last data point within the specified range

(linear fit). Since the results using linear fit are better than best fit irrespective of AL
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or S methods in all scenarios, we only list the results using linear fit in Figure 3.5 and

Table 3.3. The iterative refinement methods of the AL-Method and S -Method are

denoted as AL Ref and S Ref, respectively. However, we are unable to obtain results

as these methods fail to converge to the same knee point for some samples. In the

original work of Kneedle, projection is implemented to transform data points instead

of rotation. We perform both projection (Kneedle Proj ) and rotation (Kneedle Rot)

when comparing the results. For each test set and each data transformation method,

we select the ζ value that achieves the highest mean F1 score among the allowable

index errors and only consider these results when making comparisons. For Kneedle

Rot, the best ζ values for sknee,mknee and ng are 0.01, [0.007, 0.008] and [0.006, 0.02]

respectively. As for Kneedle Proj, the corresponding ideal ζ values for sknee,mknee

and ng are 0.02, 0.01, and [.008, 0.03]. For simplicity, we take the lowest ζ value since

there are multiple ζ values achieving the same mean F1 score. To demonstrate the

overall performance of the knee detectors, we plot the knees detected by UNetConv

and the techniques that achieve the top three F1 scores in Figures 3.6 and 3.7. Table

3.3 shows the quantitative results of the proposed model and other methods, with an

allowable error of 2.

Results on Real-World Data

Regarding the variables in the real-world dataset Engr2017, we use the same config-

urations except the allowable index errors are set to 50 and 60. This adjustment is

made to account for the fact that these variables contain over 2000 data points. Table

3.4 shows the resulting F1 scores for each index error allowed for each variable. Fig-

ure 3.8 displays the data points (blue), the probability output by UNetConv (aqua),

the predicted knee indices (green), and the knees identified (red) using YFM1 of the

PVAD algorithm for each of the variables.
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Figure 3.6: A demonstration of the overall performance of the knee detectors on
single-knee noisy data ŷ. (a) UNetConv, AL-Method, AL-Method with Refinement
and DFDT with Refinement for FT8 sample; (b) UNetConv, S -Method, AL-Method
and AL-Method with Refinement for FT5 sample; (c) UNetConv, DTDT, DFDT
with Refinement and S-Method for FT9 sample.
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Figure 3.7: A demonstration of the overall performance of the knee detectors on
multiple-knee noisy data ŷ. The figures show UNetConv, Kneedle with Rotation and
Kneedle with Projection for (a) FT10 sample; (b) FT11 sample; (c) FT12 sample.
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Table 3.4: Quantitative results of UNetConv on Engr2017 Variables

Allowable
Index Error

Birth Date (Year) Math ALEKS Fall Hours

50 0.333 0.571 0.286
60 0.667 0.571 0.286

3.5.5 Discussions on the results

In all the synthetic test sets and all settings of allowable index error, UNetConv

outperforms the existing methods. From Table 3.3, our model attains the highest F1

score of 0.74 in the sknee test set, with the second best result of 0.274 attained by the

AL-Method. The results of other methods are all below 0.1. For the multiple-knee

mknee test set, UNetConv obtains the highest score of 0.72, followed by Kneedle

(0.063), which results in the same score regardless of using rotation or projection to

transform the curve. For the unseen 100-sample noisy Gaussian ng test set, UNet-

Conv again surpasses other methods. Even in the most extreme scenario where the

allowable index error is set to 1, our model reaches 0.55, 0.57, and 0.61 F1 scores on

the test sets, which are double the best results achieved by other methods.

The DFDT techniques are not capable of locating knee points as most of the sam-

ples have both an elbow point and a knee point on the curves as their first derivative

values are both close to zero. The use of only first derivative values makes it challeng-

ing to differentiate between an elbow and a knee. It is thus understandable that the

method struggles to have good performance. Though there is an iterative refinement

method to help overcome this shortcoming, there is only a minor improvement in

the model performance. Based on our analysis of the test sets, we have found that

these methods perform better on the FT8 data set, which consists of noisy piecewise

straight-line functions. This is due to the fact that the first-derivative values of these

73



Figure 3.8: A demonstration of UNetConv performance of variables (a) x16: Birth
Date (Year), (b) x29: Math ALEKS and (c) x35: Fall Hours in Engr2017 data set.
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samples can be distinctly separated into higher and lower value groups, thus making

it easier for the method’s threshold algorithm IsoData to accurately estimate the

optimal knee point.

For the AL-method, it achieves the second highest F1 score on the sknee data

set. This method works best on simple curve shapes, like FT8 and FT9, where each

curve segment is close to a straight line and the angle score can accurately capture a

knee point. However, when it comes to the curve segment with a quadratic or higher

degree of curve shape (as in FT7 ), the fitted straight lines and the angle between

no longer contribute positively towards locating a knee. We also observe that this

method is not as effective when being used on curves with a gradual rate of change

or less sharp curvature.

The S -method works poorly on all the single-knee samples. One primary reason

is the imprecise fitting of straight lines onto curved segments. The fitted curve with

the lowest RMSE is not a reliable indicator of the presence of a knee point. The S -

method not only shares the same limitations as the AL-method, but it is also limited

to working with simple concave curves. As a result, it consistently forecasts the initial

point as a knee point. This explains its poor performance on the ng test set (FT9 ),

which always has an elbow point before a knee point.

Regardless of whether rotation or projection is used, Kneedle produces consistent

results for all test sets. One must define a single sensitivity value to compute a unique

threshold at every local maximum point of the transformed data curve. However, de-

termining a universal sensitivity value that effectively applies to all local maximum

points of a sample is challenging due to the variation in the transformed data mag-

nitude. Furthermore, Kneedle is highly susceptible to noise, which can erroneously

classify a spike as local maximum and thus consider a noisy data point as a candidate.

It is worth noting that the knee point may not always be reached at a local maximum.
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The Kneedle algorithm has a tendency to detect multiple false negatives.

Lastly, it is observed that the performance of UNetConv drops significantly when

being applied to the Engr2017 data set. The F1 scores fall below 0.6 for all the

variables. There is no notable improvement despite increasing the allowable indices

from 50 to 60, which means a total allowance of 20 indices. This observation suggests

that some of the knee points predicted by UNetConv are far from the target knee

point(s). From Figure 3.8, it can be seen that the model blindly identifies a knee point

on a relatively flat curve segment. For example, the model predicts knee points at

indices 896 and 1506 for the variable Birth Date (Year), even though the curve shows

a generally horizontal shape in the interval [0.3, 0.6]. Furthermore, as expected, the

model could not detect the first knee point of variable Birth Date (Year), which is

located at index 7, since the training samples all have knee points ± 10 indices away

from the boundaries.

Another possible reason for a decrease in the model performance is that there

are predictions being indiscriminately dropped by NMS because of failing to meet

the threshold value requirement. An example can be seen in Figure 3.8 (b). The

probability output curve reaches its peaks relatively close to the target knee points

at 316 and 813, they are aborted by NMS due to the probability values at these

points below 0.5. On the other hand, it is worth noting that the presence of peaks

near a knee point implies that UNetConv effectively learns the features for knee point

identification, but the selection of NMS threshold value does exert influence on the

results. After all, one can still utilize the model’s probability output and leverage the

peaks on a curve to aid in detecting knee point(s).
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3.6 Conclusion, Limitations and Future Work

In this dissertation, we introduce a novel mathematical definition for a knee point

in discrete data sets. We show and explain the necessity of rescaling the data. We

develop a benchmark data set that provides noisy data within the original data

range, along with ground truth labels that are independent of any underlying al-

gorithm/techniques. We believe that this benchmark data set can serve as a common

ground for evaluating future knee detection designs. We propose a new model, UN-

etConv, for detecting knee points in discrete data sets, and compare its performance

with existing approaches using the developed benchmark data set and real-world data.

Our results indicate that UNetConv outperforms other existing methods and exhibits

exceptional performance on unseen data. The evaluation results on real-world data

show that UNetConv demonstrates potential by giving reasonable results for keen

point prediction and justifies additional investigation.

The limitations of this study include: (1) The noise introduced to the samples

is Gaussian noise, which can make it relatively easier for the model to detect knee

points due to its distinct characteristics. However, in real-world scenarios, the noise

may not always follow a Gaussian distribution, which can affect the accuracy and

generalizability of the model’s performance. (2) The target knee points in the real-

world data set are detected initially through visual inspection without normalization.

This process imports a certain level of subjectivity when determining the knee points.

(3) There is a lack of versatility in the functions chosen to generate samples. As a

result, there are numerous curve shapes that have yet to be explored by the model.

(4) In all the synthetic data sets, the highest number of knee points observed in a

curve is five. It remains uncertain whether the proposed model is capable of dealing

with scenarios involving more than five knee points.
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Considering the aforementioned limitations, it is essential to conduct an extensive

and in-depth investigation. Future work includes but is not limited to incorporating a

wider range of samples with varying levels of noise. This will provide valuable insights

into the model’s robustness and its ability to handle noisy data, thereby revealing the

model’s sensitivity to noise.
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Chapter 4

APPLICATIONS OF PVAD RESULTS ON REAL-WORLD DATA

The PVAD algorithm was validated through a sensitivity analysis to evaluate the

impact of parameter values on the results. In Chapter 2, we also demonstrate how the

PVAD algorithm can address the limitations of existing methods. The objective of

this chapter is to illustrate that the PVAD algorithm is eligible to analyze real-world

data in various domains, including energy consumption (Section 4.1), engineering stu-

dent retention (Sections 4.4 and 4.5), and network traffic (Sections 4.2 and 4.3). The

applications show that the PVAD algorithm is capable of learning variable relations

for both full and partial value ranges. The findings show that the PVAD algorithm

has the advantage and capability of discovering variable relations.

4.1 ASU Energy Consumption System Dataset

The PVAD algorithm has been applied to energy consumption system data col-

lected at ASU in an attempt to build a PVAD-based system modeling. The energy

consumption data was collected from an ASU building in the entire month of Jan-

uary 2013. The data was sampled every 15 minutes on each day of January 2013 and

contained 2976 data records. The data has four numeric variables: E for electricity

consumption in kilo watts per hour (kWh), C for energy consumption for cooling in

tons per hour (TonHr), H for energy consumption for heating in mmBTU, and A for

outside air temperature in Fahrenheit (F), as well as the variable, T for TimeStamp,

taking such values as “Jan 1 2013 12:00AM”, “Jan 1 2013 12:15AM”, etc. Although

TimeStamp appears like a categorical variable with 2976 different values in 2976 data

records, TimeStamp is a numeric variable with values being sampled every 15 min-
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Figure 4.1: The plot of variable C (Energy Consumption for Cooling) in the increasing
order of values with data clusters.

utes. TimeStamp is an important variable since it is related to changes in outside

temperature and changes of occupants and their activities in the building at various

times of each day. Hence, it is expected that TimeStamp has close relations with

other numeric variables in the data set. The PVAD algorithm is used to analyze the

energy consumption data using α = 0.8, β = 10 (out of 2976 instances in the data

set), and γ = 95%. The set of the results from each combination of α, β and γ can be

examined for meanings and information which the results reveal in the context of the

application. The most meaningful, useful set of the results from a given combination

of α, β and γ can be used to establish the final results and system model.

4.1.1 Analysis of PVAD results on ASU Energy Consumption System Dataset

In Step 1 of the PVAD algorithm, because we do not have any categorical variable

in the data set to use Method 2, we first use Method 1 to transform each of the four
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Figure 4.2: The plot of variable E (Electricity Consumption) in the increasing order
of values with data clusters.

Table 4.1: Categorical values of variables and their corresponding numeric values for
the energy consumption data.

Variable Categorical Value Corresponding Numeric
Values

T (TimePeriod)

11:15 PM – 6 AM Sampling every 15 minutes

6:15 AM – 8 AM Sampling every 15 minutes

8:15 AM – 12 PM Sampling every 15 minutes

12:15 PM – 5:30 PM Sampling every 15 minutes

5:45 PM – 11 PM Sampling every 15 minutes

E (Electricity)
Low < 42
Medium [42, 58)

High ≥ 58

C (Cooling)
Low < 34
High ≥ 34

H (Heating)
Low < 0.18
Medium [0.18, 0.28)

High ≥ 0.28

A (Air Temperature)
Low < 40
Low [40, 55)

Medium ≥ 55
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numeric variables, E, C, H, and A, into a categorical variable by plotting values of

each variable in an increasing order and identifying the initial data clusters. The

initial data clusters and their intervals of values may be adjusted so that values of

each variable at similar times are included in the same intervals. Figures 4.1 and 4.2

show examples of plotting the data points of E and C, along with the corresponding

final data clusters. Table 4.1 shows categorical values of all the variables E, C, H and

A which are determined using the intervals of values for the data clusters. With the

newly transformed categorical variables of E, C, H and A, we then use Method 2 to

transform TimeStamp into a categorical variable, TimePeriod, by using each of the

four categorical variables (E, C, H and A) and their categorical values as a guide to

determine intervals of TimeStamp values corresponding to different categorical values

of each categorical variable. Table 4.1 shows the categorical values of TimePeriod (T).

Tables 4.2-4.3 list the most specific association(s) in each group of the associations

with the same AV. Table 4.4 lists the most generic association(s) in each group of the

associations with the same AV. Variable relations for energy consumption are revealed

by each association in Tables 4.2-4.4. In Tables 4.2-4.4, there are groups that give

similar associations. For example, the associations in Group 1 and Group 2 in Table

4.4 are similar. For the groups with similar associations, we marked only one group

using the symbol ∧ in the column of group #. Most of the associations in Tables 4.2-

4.4 involve C=Low for cooling being low in CV or AV because most of the instances in

the data set (2848 out of a total of 2976 instances) contain C=Low due to the month

of January when the data was collected. Since C=Low is so common in the data set,

C=Low can be dropped from the associations when interpreting associations.
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Table 4.2: The most specific associations in each group of associations with the same
AV: Set 1.

Group
#

The most specific association(s) in group

1 A=Medium, [ T=12:15 PM to 11 PM, E=High]/ [ T=6:15 AM
to 11 PM, E=Medium]/[T=11:15 PM to 6 AM, E=Low] →
H=Medium, C=Low

2∧ A=Medium, C=Low, [T=11:15 PM to 6 AM, E=Low]/[T=6:15 AM to
12 PM, E=Medium]/[T=12:15 PM to 11 PM,
E=High/Medium] → H=Medium
A=High, C=Low, E=Medium, T=8:15 AM to 12 PM →
H=Medium

3∧ A=High, E=Medium, C=High, T=12:15 PM to 5:30 PM →
H=Low

4 C=High, E=Medium, T=12:15 PM to 5:30 PM → A=High |
H=Low

5∧ H=High, E=Medium, T=6:15 AM to 8 AM → A=Low, C=Low

6 H=Medium, E=Low, T=12:15 PM to 5:30 PM → A=High,
C=Low

7∧ [E=Medium, C=*, H=Low]/[E=Low, C=Low, H=Medium], T=12:15
PM to 5:30 PM → A=High
C=High, T=5:45 PM - 11 PM → A=High

8 H=Medium, E=High, T=12:15 PM to 5:30 PM → A=Medium,
C=Low

9∧ H=Medium, C=Low, E=High, T=12:15 PM to 5:30 PM, →
A=Medium

10 H=High, C=Low, E=Medium, T=6:15 AM to 8 AM →
A=Low

11∧ [A=Low, H=High]/[ A=High, H=Low]/[ A=Low/Medium,
H=Medium], C=Low, T=11:15 PM to 6 AM → E=Low

12 [A=Low, H=High]/[A=High, H=Low]/[A=Medium/Low,
H=Medium], T=11:15 PM to 6 AM → C=Low, E=Low

Table 4.3: Specific associations in each group of associations with the same AV: Set
2

13 A=Medium, H=High, T=5:45 PM to 11 PM → C=Low, E=Medium
T=8:15 AM to 12 PM, H=Medium, A=High/Medium →
E=Medium, C=Low

Continued on next page
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Table 4.3: Specific associations in each group of associations with the same AV: Set
2 (Continued)

14∧ A=High, H=Low, C=High, T=12:15 PM to 5:30 PM →
E=Medium
A=Medium, H=High, C=Low, T=5:45 PM to 11 PM →
E=Medium
A=Medium/High, H=Medium, C=Low, T=8:15 AM to 12 PM
→ E=Medium

15 H=Low, C=High, T=12:15 PM to 5:30 PM → A=High |
E=Medium

16∧ A=High, C=High, T=12:15 PM to 5:30 PM, → H=Low | E=Medium
A=Medium/High, C=Low, T=8:15 AM to 12 PM → H=Medium
| E=Medium

Table 4.4: Generic associations in each group of associations with the same AV

Group # The most generic association(s) in each group

1∧ A=Medium/E=High → H=Medium

2 E=High/A=Medium, C=Low → H=Medium

3 E=Medium, C=High, A=High → H=Low

4 E=Medium, C=High → H=Low | A=High

5∧ H=High, T=6:15 AM to 8 AM → A=Low.

6∧ E=Low, T=12:15 PM to 5:30 PM → A=High

7∧ H=Low → A=High
T=5:45 PM - 11 PM, C=High → A=High
C=Low, E=Low, T=12:15 PM to 5:30 PM → A=High

8∧ H=Medium, E=High, T=12:15 PM to 5:30 PM → A=Medium

9 H=Medium, C=Low, E=High, T=12:15 PM to 5:30 PM →
A=Medium

10 H=High, C=Low, T=6:15 AM to 8 AM → A=Low
11 C=Low, T=11:15 PM to 6 AM → E=Low

12∧ T=11:15 PM to 6 AM → E=Low
13∧ T=8:15 AM to 12 PM → E=Medium

H=High, T=5:45 PM to 11 PM → E=Medium

14 H=High, C=Low, T=5:45 PM to 11 PM → E=Medium
C=High → E=Medium

15 C=High → A=High | E=Medium

16∧ A=High, C=High, T=12:15 PM to 5:30 PM→ H=Low | E=Medium
A=Medium/High, C=Low, T=8:15 AM to 12 PM → H=Medium
| E=Medium
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The associative network of the energy consumption system model shown in Figure

4.3 was constructed using the associations in the groups marked with ∧ in Table

4.4. Figure 4.3 shows the factors associated with the high, medium and low air

temperatures (from the associations with A as the AV), the factors associated with

the Medium and Low heating consumption (from the associations with H as the AV),

and the factors associated with the medium and low electricity consumption (from

the associations with E as the AV).

Figure 4.3 shows that E, C, H and A are related differently in different time

periods. For example, in the afternoon, T = 12:15 PM to 5:30 PM, the medium

heating consumption (H = Medium) along with the high electricity consumption (E

= High) is associated with the medium air temperature (A = Medium), whereas in

the early morning, T = 6:15 AM to 8 AM, the high heating consumption (H = High)

is associated with the low air temperature (A = Low). Similarly, the most specific

associations in Tables 4.2-4.3, even the most generic associations in Table 4.4 and

in Figure 4.3 show that associations of T, E, C, H and A differ in different value

ranges of these variables. This illustrates that the PVAD algorithm can discover

full/partial-value variable relations that exist in many real-world systems.

4.2 Analysis of PVAD results on 2016 Computer Network Dataset

To protect the security of computer networks and detect anomalous network be-

haviors including cyber attacks, computer networks need to be monitored by collecting

and analyzing network traffic data (Ye, 2008). Network anomalies are detected by

first establishing profiles of normal network behaviors and detecting large deviations

from profiles of normal network behaviors. A set of TCP flow data between the In-

ternet and all hosts from a medium size enterprise (with approximately 5,000 users

and 30,000 devices on computer networks) was collected on July 12, 2016 without re-
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Figure 4.3: The most generic associations in the groups marked by ∧ in Table 4.4
represented in an associative network.

ports of any cyber attacks or network anomalies. This data set was used to establish

characteristics of normal network behaviors.

A network session between a source host and a destination host for a certain

network application is defined by the source IP address, the destination IP address,

the source port, the destination port, and the protocol (e.g., TCP or UDP), and

contains a sequence of packets called a flow. Flow data for a flow captures features

of packets in each flow (Ye, 2008). TCP flow data in this data set are bi-flow data

that contain features of packets flowing in both directions from the source to the

destination and from the destination to the host in each flow.

This set of bi-flow data contains 168,655 data records and it has the following
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twenty data fields in each data record.

• sIP (source IP address)

• dIP (destination IP address) dPort (destination port)

• sTime (start time) eTime (end time)

• Dir (direction of flow)

• Dur (ms) (duration in ms) Dur (s) (duration in s)

• Pro (protocol = 6 for TCP)

• cRTT (time difference in ms between the first query packet and the first response

packet)

• QPkts (query/source packets) QBytes (query/source bytes)

• RPkts (response/destination packets) RBytes (response/destination bytes)

• QiFlags (TCP flags in the first query packet)

• QrFlags (union of TCP flags in remaining query packets) RiFlags (TCP flags

in the first response packet)

• RrFlags (union of TCP flags in remaining response packets)

Traditionally normal network behaviors are established using univariate analytical

techniques (Ye, 2008). However, multivariate characteristics of normal network be-

haviors looking into relations of multiple network flow attributes should also be added

to obtain complete profiles of normal network behaviors. In this dissertation, we il-

lustrate how the PVAD algorithm was used to establish multivariate characteristics

of normal network behaviors.

This data set was analyzed using the PVAD algorithm with α = 0.95, β = 2,

and γ = 100% to uncover multivariate data associations. In Step 1 of the PVAD

algorithm, the following sixteen data fields were extracted from the original twenty

data fields, and were transformed into categorical data.
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• x1: frequency of source IP address, from sIP

• x2: frequency of destination IP address, from dIP

• x3: frequency of source port, from sPort

• x4: frequency of destination port, from dPort

• x5: start time in minute, from sTime-min

• x6: direction of flow, from Dir

• x7: duration in ms, from Dur

• x8: time difference in ms between the first query packet and the first response

packet, from cRTT

• x9: query/source packets, from QPkts

• x10: query/source bytes, from QBytes

• x11: response/destination packets, from RPkts

• x12: response/destination bytes, from RBytes

• x13: TCP flags in the first query packet, from QiFlags

• x14: union of TCP flags in remaining query packets, from QrFlags

• x15: TCP flags in the first response packet, from RiFlags

• x16: union of TCP flags in remaining query packets, from RrFlags

The frequency of each field value was computed to give univariate characteristics

of TCP flow data in this data set. Table 4.5 gives the dominant value of each data

field. The dominant value of a data field has the highest percentage of data in the

data set having this value.

The PVAD algorithm produced 1-to-1, . . . , 15-to-1 associations. Table 4.6 gives

the 1-to-1 associations with 100,000 or more supporting instances and the 15-to-1

association with the three largest numbers of supporting instances.
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Table 4.5: The Dominant Value of Each Data Field in TCP Flow Data

Dominant Data Field
Value

Percentage of Data Instances with
This Value

x1=[2] 0.34562865

x2=[151, 5748] 0.860342119

x3=[1, 6] 0.567727017

x4=[212, 78165] 0.962449972

x5=29 0.144407222
x6=in 0.762266165
x7=[0.507, 1.104] 0.287255047

x8=[0.001, 0.008] 0.30560019

x9=[1, 6] 0.866182443

x10=[168, 172] 0.294346447

x11=[1, 5] 0.854068957

x12=[40, 223] 0.519041831

x13=S 0.91663455
x14=FA 0.351872165
x15=SA 0.930669117
x16=FPA 0.624517506

Table 4.6: Examples of 1-to-1 Associations and 15-to-1 Associations for Computer
Network Data

x2=[151, 5748]→x4=[212, 78165] 143429

x2=[151, 5748]→x15=SA 141269

x2=[151, 5748]→x13=S 138002

x6=in→x2=[151, 5748] 126971

x6=in→x4=[212, 78165] 125852

x6=in→x15=SA 124913
x8=[0]→x2=[151, 5748] 101980

x8=[0]→x4=[212, 78165] 101355

x8=[0]→x6=in 102245

x9=[1, 6]→x4=[212, 78165] 142464

x9=[1, 6]→x11=[1, 5] 142645

x11=[1, 5]→x4=[212, 78165] 140638

x11=[1, 5]→x9=[1, 6] 142645

x13=S→x4=[212, 78165] 150458

Association Number of
Supporting
Instances

Continued on next page
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Table 4.6: Examples of 1-to-1 Associations and 15-to-1 Associations for Computer
Network Data (Continued)

x13=S→x15=SA 153412
x15=SA→x4=[212, 78165] 153144

x15=SA→x13=S 153412
x16=FPA→x13=S 102804
x16=FPA→x15=SA 105008
x16=FPA→x4=[212, 78165] 102572

x1=[2], x3=[1,6], x4=[212, 78165], x5=29,
x6=in, x7=[0.049, 0.506], x8=[0], x9=[1, 6],
x10=[168, 172], x11=[1, 5], x12=[40, 223],x13=S, x14=FA,
x15=SA, x16=FA → x2=[151, 5748]

1329

x2=[151, 5748], x3=[1,6], x4=[212, 78165],x5=39,
x6=out, x7=[0, 0.048], x8=[0.001,0.008], x9=[1, 6],
x10=[173, 624], x11=[1, 5], x12=[224, 1561], x13=S,
x14=FPA, x15=SA, x16=FPA → x1=[147]

303

x1=[178, 8872], x2=[151, 5748], x3=[1,6], x5=39,
x6=out, x7=[0, 0.048], x8=[0.001, 0.008], x9=[1, 6],
x10=[173, 624], x11=[1, 5], x12=[224, 1561], x13=S,
x14=FPA, x15=SA, x16=FPA → x4=[212, 78165]

303

Association Number of
Supporting
Instances

4.3 Analysis of PVAD results on Intrusion Detection Evaluation Dataset

Network anomaly detection aims at detecting anomalies which manifest devia-

tions from normal network flows and behaviors, including an ever-evolving variety of

new network intrusions/attacks whose signatures have not been captured from their

past occurrences (Ye, 2008; Chandola et al., 2009). Network anomaly detection is a

fundamental part of day-to-day operations for Internet Service Providers (ISPs) and

enterprises to maintain the efficiency and reliability of computer networks. Building

Network Anomaly Detectors (NADs) requires our knowledge about robust measures

of network flows which bring out differences in network flows of benign network ac-

tivities and network attacks.

This dissertation presents an analytical study of network flow data in benign
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network activities and network attacks provided by the Canadian Institute of Cy-

bersecurity. Section 4.3.1 presents network flow data of benign network activities

and network attacks analyzed in this study. Section 4.3.2 describes univariate and

multivariate data analyses of network flow data. Section 4.3.3 gives analytical results

and measures of network flows derived from analytical results to detect differences

between benign network activities and network attacks. Section 4.3.4 provides an

overview of the research findings.

4.3.1 Network Flow Data Of Benign Network Activities And Network Intrusions

The Intrusion Detection Evaluation Dataset (CICIDS2017) from Canadian Insti-

tute of Cybersecurity (http://www.unb.ca/cic/) is used in this study to investigate

univariate and multivariate measures of network flow data that can be used to detect

network flows of network attacks. Network flow data in this data set is collected on a

testbed system with two separate networks including a victim network and an attack

network (Sharafaldin et al., 2018). The attack network has one router, one switch

and four PCs. The victim network has three servers, one firewall, two switches and

ten PCs. All incoming and outgoing network traffic to the victim network is captured

through one port in the main switch of the victim network. This dataset contains

data of benign and attack network traffic which is captured over five days, Monday

to Friday (Sharafaldin et al., 2018). Benign and intrusion network traffic on Monday,

Tuesday and Wednesday is analyzed in this study and is described in this section.

Monday traffic includes only benign traffic. All benign network traffic is generated

using the B-Profile which is based on profiling the abstract behavior of 25 users in-

volving five protocols of HTTP, HTTPS, FTP, SSH, and email protocols (Sharafaldin

et al., 2017). For each protocol, the B-Profile uses the packet size distribution of the

protocol, the number of packets per flow, patterns in the payload, the size of the
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payload, and the request time distributions of the protocol to generate benign events

on the testbed infrastructure (Sharafaldin et al., 2017). Benign network traffic is also

generated on each day of Tuesday and Wednesday as the background traffic on the

testbed infrastructure.

Attacks are implemented on the testbed infrastructure on Tuesday and Wednesday

as follows:

• Tuesday: brute force attacks of password cracking (FTP-Patator in the morning,

and SSH-Patator in the afternoon)

• Wednesday: DoS attacks (Slowhttptest, Slowloris, GoldenEye and Hulk in the

morning, and Heartbleed in the afternoon)

83 attributes of network flows are extracted from pcap files of captured packet

data. The first packet of a network flow is considered from the source IP to the

destination IP and determines the direction of the network flow. A TCP flow is

usually terminated upon the connection teardown by a FIN packet. A UDP flow is

terminated by a flow timeout. This study uses 72 attributes out of these 83 attributes

since some attributes are not useful in determining differences in benign network flows

and attack network flows. For example, the timestamp attribute is not useful as times

of benign network traffic and attack network traffic in this dataset are not like event

times in the real world. Table 4.7 lists these 72 attributes and their corresponding

variables for each network flow. In Table 4.7, the following acronyms are used:

IAT: inter-arrival time representing the time between two packets of a flow,

Fwd: forward,

Bwd: backward,

Init: initial,
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Win: window,

Pkt: packet,

Seg: segment,

Std: standard deviation,

Max: maximum,

Min: minimum.

Table 4.7: 72 attributes of network flows used in this study

x1 Source IP Ad-
dress

x25 Fwd IAT To-
tal

x49 ACCount ACK
Flag Count

x2 Source Port x26 Fwd IAT
Mean

x50 URG Flag
Count

x3 Destination
IP Address

x27 Fwd IAT Std x51 ECE Flag
Count

x4 Destination
Port

x28 Fwd IAT Max x52 Down/Up Ra-
tio

x5 Protocol x29 Fwd IAT Min x53 Average
Packet Size

x6 Flow Duration x30 Bwd IAT To-
tal

x54 Avg Fwd
Segment Size

x7 Total Fwd
Packets

x31 Bwd IAT
Mean

x55 Avg Bwd
Segment Size

x8 Total Bwd
Packets

x32 Bwd IAT Std x56 Fwd
Header length

x10 Total Length of
Bwd Packets

x34 Bwd IAT Min x58 Subflow Fwd
Bytes

x11 Fwd Packet
Length Max

x35 Fwd PSH
Flags

x59 Subflow Bwd
Packets

x12 Fwd Packet
Length Min

x36 Fwd Header
Length

x60 Subflow Bwd
Bytes

x13 Fwd Packet
Length Mean

x37 Bwd Header
Length

x61 Init Win
bytes forward

x14 Fwd Packet
Length Std

x38 Fwd Pack-
ets/s

x62 Init Win
bytes backward

x15 Bwd Packet
Length Max

x39 Bwd Pack-
ets/s

x63 Act data pkt
fwd

x16 Bwd Packet
Length Min

x40 Min Packet
Length

x64 Min seg
size forward

Variable Attribute Variable Attribute Variable Attribute

Continued on next page
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Table 4.7: 72 attributes of network flows used in this study (Continued)

x17 Bwd Packet
Length Mean

x41 Max Packet
Length

x65 Active Time
Mean

x18 Bwd Packet
Length Std

x42 Packet
Length
Mean

x66 Active Time
Std

x19 Flow Bytes/s x43 Packet
Length
Std

x67 Active Time
Max

x20 Flow Packets/s x44 Packet
Length
Variance

x68 Active Time
Min

x21 Flow IAT Mean x45 FIN Flag
Count

x69 Idle Time Mean

x22 Flow IAT Std x46 SYN Flag
Count

x70 Idle Time Std

x23 Flow IAT Max x47 RST Flag
Count

x71 Idle Time Max

x24 Flow IAT Min x48 PSH Flag
Count

x72 Idle Time Min

Variable Attribute Variable Attribute Variable Attribute

4.3.2 Methods Of Univariate And Multivariate Data Analyses

Data of one activity (benign or attack) on each day is taken as one individual

data set. For example, benign data on Monday is one data set, benign data on

Tuesday is another data set, and FTP-Patator attack data on Tuesday is a different

set. In each data set, network flow variables x1 to x5 have categorical values, and all

other network flow variables of 72 variables in Table 4.7 are numeric variables with

numeric values. For each numeric data variable, we transform the numeric data of the

variable into categorical data. Then we perform both the univariate analysis and the

multivariate analysis of categorical data by analyzing the frequency distribution of

categorical values of each network flow variable and using the PVAD (Partial-Value

Association Discovery) algorithm (Ye, 2018, 2016) to obtain 1-to-1 data associations

of all network flow variables. The details of transforming numeric data to categorical

data, univariate data analysis, and multivariate data analysis are provided below.
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Table 4.8: Examples of dd values showing distribution differences

Wednesday
Benign

Wednesday
Slowhttp Attack

Variable
Value

Freq-
uency

% Variable Value Freq-
uency

% Absolute
Difference

in
Percentage

x1=g1 [1, 758] 60606 0.1377 0.00 0.14

x1=g2 [829,
24634]

105846 0.2405 x1=
g2 [2213, 7950]

5499 1.00 0.76

x1=
g3 [25018,
60303]

273579 0.6217 0.00 0.62

Sum:
1.52 = dd

x20=Infinity 348 0.0008 0.00 0.00
x20=
g1 [-2000000,
11904.7619]

290334 0.6598 x20=
g1 [-2000000,
11904.7619]

5164 0.94 0.28

x20=
g2 [11940.2985,
3000000]

149349 0.3394 x20=
g2 [11940.2985,
3000000]

335 0.06 0.28

Sum:
0.56 = dd

x12=g1 [0, 258] 439669 0.9992 x12=g1 [0, 258] 4898 0.89 0.11

x12=g2 [261,
680]

80 0.0002 x12=g2 [261,
680]

326 0.06 0.06

x12=
g3 [681, 1460]

167 0.0004 x12=g3 [681,
1460]

82 0.01 0.01

x12=
g4 [1472, 2065]

115 0.0003 x12=
g4 [1472, 2065]

193 0.04 0.03

Sum:
0.22 = dd

x18=g1 [0,
193.2924]

357135 0.8116 x18=
g1 [0, 193.2924]

5119 0.93 0.12

x18=
g2 [193.3699,
1102.3637]

78416 0.1782 x18=
g2 [193.3699,
1102.3637]

138 0.03 0.15

x18=
g3 [1102.4398,
3160.9941]

4480 0.0102 x18=
g3 [1102.4398,
3160.9941]

242 0.04 0.03

Sum:
0.31 = dd
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Transformation of numeric data to categorical data

For each data set, we transform each numeric variable to a categorical variable. x5

is a categorical variable indicating the protocol of a network flow and has only a

few categorical values. No data transformation is needed for x5. Although network

flow variables x1 to x4 are categorical variables with categorical values, each of these

variables has a large number of categorical values. For example, each value of x1

represents a source IP address, and there are a large number of source IP addresses

in each data set. Because the frequency of each source IP address is more relevant

than the source IP address itself for network anomaly detection, we compute the

frequency of each x1 value, that is, each source IP address in each data set. The

source IP address of x1 in each data record is then replaced by the frequency value

of this source IP address for the data set. For example, if a source IP address occurs

300 times in the data set and a data record has this source IP address as the x1 value,

the x1 value is now assigned to 300 – the frequency of this IP address in this data set.

Similarly, x3 represents the destination IP address, and the x3 value in each data set

is replaced by the frequency value of the destination IP address in the data record.

The variable, x2, represents the source port. If x2 has a system port (in the range

of 0-1023) in a data record, the x2 value is kept since the use of a specific system

port is important for network anomaly detection. If x2 has a non-system port in a

data record, the frequency of this non-system port in the data set is calculated, and

the x2 value is replaced by the frequency of this non-system port. The variable, x4,

representing the destination port, is transformed in the same way of transforming x2.

x1 to x4 with frequency values are now numeric variables.

Hence, except x5, all network flow variables are numeric variables. For each nu-

meric variable and its numeric values, the PVAD algorithm (Ye, 2018, 2016) is used
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to transform numeric values into categorical values. First of all, the set of Mon-

day benign data is transformed to obtain categorical variables for this data set. We

consider benign network traffic on Monday as the normal profile to detect network

anomalies. Hence, categorical values defined using the Monday benign data set are

used to transform each of data sets for Tuesday benign, Wednesday benign, Tues-

day FTP-Patator attack, Tuesday SSH-Patator attack, Wednesday Slowhttp attack,

Wednesday Slowloris attack, Wednesday GoldenEye attack, Wednesday Hulk attack,

and Wednesday Heartbleed attack. When a numeric variable in a data set of the

benign or an attack on Tuesday and Wednesday has a numeric value falling outside

value ranges of categorical values defined from the benign data set of Monday, the

PVAD algorithm puts the numeric value into a category value whose value range is

closest to the numeric value. For example, if we have two categorical values with

value ranges of [1, 2.1] and [2.3, 4], a numeric value of 2.15 is closer to 2.1 than 2.3

and thus 2.15 is transformed to the categorical value with the range of [1, 2.1].

Univariate data analysis

For each data set with all categorical variables, frequencies of categorical values for

each individual variable are computed, which gives us the frequency distribution of

the variable which is a univariate data characteristic as it represents a data char-

acteristic of one individual variable. A measure of distribution difference called dd

is developed to measure the difference in frequency distributions of the same vari-

able among data sets of Monday benign, Tuesday benign, Wednesday benign, Tues-

day FTP-Patator attack, Tuesday SSH-Patator attack, Wednesday Slowhttp attack,

Wednesday Slowloris attack, Wednesday GoldenEye attack, Wednesday Hulk attack,

and Wednesday Heartbleed attack. dd between one activity y (benign or attack) and

another activity z is computed as follows:
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dd =
∑
i

|viy − viz| (4.1)

where viy is the percentage of the ith categorical value for activity y, viz is the

percentage of the ith categorical value for activity z, and the percentage of the ith

categorical value is computed by having the frequency of this categorical value divided

by the total number of data records in the data set. Table 4.8 gives four examples

of computing dd between Wednesday benign and Wednesday Slowhttp attack for x1,

x20, x12 and x18. In the example of x1, g2 [829, 24634] is not the dominant value of

x1 under Wednesday benign, whereas the same value is the dominant and only value

of x1 under Wednesday Slowhttp attack. The dd value for this difference between two

frequency distributions of x1 is 1.52. In the example of x20, g1 [−2000000, 11904.7619]

is the dominant value under both Wednesday benign and Wednesday Slowhttp attack.

However, this value is taken by 66% of network flows in Wednesday benign but 94%

of network flows in Wednesday Slowhttp attack. The dd value for this difference

between two frequency distributions is 0.56. The other two examples of x12 and

x18 show similar frequency distributions between Wednesday benign and Wednesday

Slowhttp Attack with the dd values of 0.22 and 0.31. In this study, we consider that

two frequency distributions are different if the dd value is ≥ 0.5, and two frequency

distributions are similar if the dd value is < 0.5.

Multivariate data analysis

The PVAD algorithm with the parameter setting of α = 0.95, β = 10, and γ = 0.95

is applied to each data set to obtain 1-to-1 associations of two variables and their

values, in the form of CV → AV, where CV denotes a Conditional variable’s Value

and AV denotes an Associative variable’s value. For example, if the PVAD algorithm
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discovers the following association:

x17 = g1 [0, 75.3333] → x18 = g1 [0, 192.333]

it means that among all network flows whose backward packet length mean (x17)

falls in the range of [0, 75.3333] (the first categorical value of x17), 95% or more

of them (α = 0.95) have their backward packet length standard deviation (x18) fall

in the range of [0, 192.333] (the first categorical value of x18). That is, the first

categorical value of x17 is closely associated with the first categorical value of x18.

Then 1-to-1 associations are compared among benign and attacks to look into:

• associations present in benign but are absent in attacks,

• associations present in attacks but are absent in benign.

4.3.3 Univariate And Multivariate Measures Of Network Flows Derived From

Analytical Results

This section presents results of univariate data analysis and multivariate data

analysis. Univariate and multivariate measures of network flows are derived from

analytical results to detect differences of attack network traffic from benign network

traffic, and are reported in this section.

Univariate Measures of Attacks/Anomalies

For each variable, Monday benign, Tuesday benign and Wednesday benign have simi-

lar distributions with dd values < 0.5. This demonstrates the reliability and effective-

ness of dd in measuring frequency distribution differences. Table 4.9 gives variables

whose frequency distribution under each attack is different from that under the Mon-

day benign.
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To build a network anomaly detector, we can use frequency distributions of vari-

ables from Monday as the norm. We can use a sliding time window from the present

time to a time in the past (e.g., a 10-minute time window or a one-hour time win-

dow) to get a sample of network flows at every given time (e.g., every minute or every

hour), analyze frequency distributions of variables for network flows in the sample,

and monitor the number and pattern of variables whose frequency distribution is

different from the norm. An increase in the number of variables with distribution

differences may need a close attention of security analysts or system administrators

to look into the pattern of variables with frequency distribution differences (i.e., what

specific variables have the difference) and investigate whether or not an anomaly

should be detected. Especially, if the pattern of variables with frequency distribution

differences matches closely with the specific pattern of a known attack or anomaly

(e.g., the pattern of variables shown in seven attack columns in Table 4.9), the se-

curity analyst or system administrator can be alarmed with this particular attack or

anomaly.

Network flow variables in each attack column in Table 4.9 are compared with

network flow variables extracted for each attack using the feature selection of the

random forest technique in (Sharafaldin et al., 2018). Network flow variables, which

are selected by both our method based on frequency distribution differences and

the feature extraction method of the random forest technique, are underlined and

highlighted in bold in Table 4.9. Network flow variables which are selected by the

feature selection method of the random forest technique but not by our frequency

distribution difference method are listed in the last row of Table 4.9. Hence, our

frequency distribution difference method discovers some of the network flow variables

which are selected by the feature selection method of the random forest technique.

Moreover, our frequency distribution difference method uncovers many more network

100



flow variables which are useful to detect anomalies or attacks. For example, there

are huge differences between the frequency distributions of the Monday benign and

each attack in the frequency distributions of x1, x3, x4, and x5 representing the

source IP address, destination IP address, protocol, and flow duration. However,

x1, x3, x4, and x5 are not selected by the feature selection of the random forest

technique because these variables have only one original numeric value in each attack

whereas the benign data has this same value and other values, making it impossible to

discriminate each attack from the benign using the classification of the random forest

technique. Statistically, the frequency distribution gives the complete picture of data

for a variable in comparison with any other univariate feature for data discrimination

including that used by the random forest technique.

Table 4.9: Variables with different frequency distribution under each attack from be-
nign

x1 x x x x x x x
x3 x x x x x x x
x4 x x x x x x x
x5 x x x x x x x
x6 x x x x x x x
x15 x x
x17 x x x x x x
x18 x x x
x20 x x x x
x21 x x x
x22 x x x x x x
x23 x x x x x x
x25 x x x x x x
x26 x x x x x x
x27 x x x x x x
x28 x x x x x x
x30 x x x x
x31 x x
x32 x x x
x33 x x

Variable Tue.
FTP-
Patator

Tue.
SSH-
Patator

Wed.
Slowhttp

Wed.
Slowloris

Wed.
Goldeye

Wed.
Hulk

Wed.
Heart-
bleed

Continued on next page
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Table 4.9: Variables with different frequency distribution under each attack from be-
nign (Continued)

x34 x
x35 x
x36 x
x37 x
x38 x x x
x41 x x
x42 x x
x43 x x x
x44 x x
x46 x x
x48 x x x x x
x49 x x x x
x50 x
x53 x x
x55 x x
x56 x
x60 x
x61 x x x x x
x65 x x
x66 x x
x68 x
x69 x x x x
x70 x x
x71 x x x x
x72 x x x x
Total
# of
Variables

20 2 23 32 27 25 12

Missing
from
variables
in
(Sharafaldin
et al.,
2017)

x38 x9, x58 x24 x21,
x24,
x29

x6, x9,
x18,
x58

Variable Tue.
FTP-
Patator

Tue.
SSH-
Patator

Wed.
Slowhttp

Wed.
Slowloris

Wed.
Goldeye

Wed.
Hulk

Wed.
Heart-
bleed

Multivariate Measures of Attacks/Anomalies

Table 4.10 gives variables in CVs of 1-to-1 associations in each benign activity and

each attack. In Table 4.10, M stands for Monday, T stands for Tuesday, and W
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stands for Wednesday. Unlike benign network flows involving a large range of diverse

activities by a large number of users, each attack usually involves a much narrower

range of activities with specific goal(s). Hence, 1-to-1 associations of benign network

flows have almost all network flow variables in CVs (i.e., 71 variables for Monday

benign, 71 variables for Tuesday benign, and 70 for Wednesday benign, out of totally

72 variables) due to a variety of data associations in a variety of network flows,

whereas fewer variables (i.e., 9 to 45 variables for Tuesday attacks and Wednesday

attacks) are involved in CVs of 1-to-1 associations due to more consistent network

flows during attacks.

Hence, the number of variables in CVs of 1-to-1 associations can be used as a

multivariate measure to detect attacks/anomalies. This multivariate measure can

be used together with the univariate measure in Section 4.3.3 in a network anomaly

detector. Specifically, we can use a sliding time window from the present time to a

time in the past (e.g., a 10-minute time window or a one-hour time window) to get

a sample of network flows at every given time (e.g., every minute or every hour),

extract 1-to-1 associations from network flow data in the sample from the sliding

window using the PVAD algorithm, and monitor the number of variables in CVs of

those 1-to-1 associations. When this number of variables in CVs drops to smaller than

the usual number in the benign condition, security analysts or system administrators

will be alerted for an anomaly/attack. They may look into variables in CVs to see

whether or not they are similar to the group of variables for any known attack (e.g.,

the group of variables in each of the last seven columns for seven attacks in Table

4.10). If the group of variables matches closely with the group of variables associated

with a known attack or anomaly, security analysts or system administrators can be

alarmed with this particular attack or anomaly.

In addition to the number of variables in CVs of 1-to-1 associations, specific
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variables present in CVs of 1-to-1 associations of benign network flows but absent

in CVs of 1-to-1 associations of attack or anomaly network flows can be another

multivariate measure of attacks or anomalies. For example, the following variables

are in CVs of 1-to-1 associations of benign network flows on Monday, Tuesday and

Wednesday but absent in CVs of 1-to-1 associations of all seven attacks: x1 – x5, x7

– x8, x11, x14, x16, x47, x51, x57 – x59, and x63. If a majority of these variables do

not show up in the CVs of 1-to-1 associations from network flows in a sliding window,

security analysts and system administrators can be alerted for an anomaly/attack.

It is also found that 1-to-1 associations of Tuesday FTP-Patator and Tuesday

SSH-Patator attacks involve mostly associations of the following variables:

• x6: Flow Duration

• x22: Flow IAT Std

• x23: Flow IAT Min

• x25: Fwd IAT Total

• x26: Fwd IATMean

• x27: Fwd IAT Std

• x28: Fwd IAT Max

• x30: Bwd IAT Total

• x33: Bwd IAT Max

• x35: Fwd PSH Flags

• x38: Fwd Packets/s

• x48: PSH Flag Count

• x49: ACK Flag Count

• x61: Init Win Bytes forward.
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Table 4.10: Variables in CVs of 1-to-1 associations in benign activities and attacks

x1 x x x
x2 x x x
x3 x x x
x4 x x x
x5 x x x
x6 x x x x x x x x x
x7 x x x
x8 x x x
x9 x x x x x x x x x
x10 x x x x
x11 x x x
x12 x x x x
x13 x x x x
x14 x x x
x15 x x x x
x16 x x x
x17 x x x x x x x
x18 x x x x x x x
x19 x x x x x
x20 x x x x x x x
x21 x x x x x x
x22 x x x x x x x x
x23 x x x x x x x x
x24 x x x x x
x25 x x x x x x x x
x26 x x x x x x x x
x27 x x x x x x x x
x28 x x x x x x x x
x29 x x x x x x
x30 x x x x x x x x
x31 x x x x x x
x32 x x x x x x x x
x33 x x x x x x x x x
x34 x x x x x x
x35 x x x x x x x
x36 x x x x
x37 x x x x
x38 x x x x x x x x
x39 x x x x x x x x
x40 x x x x
x41 x x x x x
x42 x x x x x x
x43 x x x x x x x x
x44 x x x x x x

Vari-
able

Mon.
Benign

Tue.
Benign

Wed.
Benign

Tue.
FTP-
Pata-
tor

Tue.
SSH-
Pata-
tor

Wed.
Slow-
http

Wed.
Slow-
loris

Wed.
Gold-
eye

Wed.
Hulk

Wed.
Heart-
bleed

Continued on next page
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Table 4.10: Variables in CVs of 1-to-1 associations in benign activities and attacks
(Continued)

x45 x x x x
x46 x x x x x x x
x47 x x x
x48 x x x x x x x x x x
x49 x x x x x x x x x x
x50 x x x x x x x x
x51 x x x
x52
x53 x x x x x x
x54 x x x x
x55 x x x x x x
x56 x x x x
x57 x x x
x58 x x x
x59 x x x
x60 x x x x
x61 x x x x x x x x x x
x62 x x x x x x
x63 x x x
x64 x x
x65 x x x x x x
x66 x x x x x x
x67 x x x x x x
x68 x x x x x x
x69 x x x x x x x
x70 x x x x x x x
x71 x x x x x x x
x72 x x x x x x x
Total
# of
Vari-
ables
in
CVs

71 71 70 19 22 45 35 36 18 9

Vari-
able

Mon.
Benign

Tue.
Benign

Wed.
Benign

Tue.
FTP-
Pata-
tor

Tue.
SSH-
Pata-
tor

Wed.
Slow-
http

Wed.
Slow-
loris

Wed.
Gold-
eye

Wed.
Hulk

Wed.
Heart-
bleed

Such data associations are not present in benign network flows. In the above

variables, only x38, x49 and x61 are among the variables extracted using the feature

selection of the random forest technique (Sharafaldin et al., 2017).
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4.3.4 Summary

Based on the univariate and multivariate analyses of benign and attack network

flow data from Canadian Institute of Cybersecurity, the following univariate and

multivariate measures are established to detect network attacks/anomalies:

• Univariate measure: the number of variables with dd ≥ 0.5 from the benign with

the greater number indicating the greater likelihood of an attack/anomaly,

• Multivariate measures: the number of variables in CVs of 1-to-1 associations

with a smaller number indicating the more likelihood of an attack/anomaly.

Two specific attacks, FTP-Patator and SSH-Patator attacks, are also character-

ized by the presence of x1 – x5, x7 – x8, x11, x14, x16, x47, x51, x57 – x59, and x63

in CVs of 1-to-1 associations.

4.4 Analysis of PVAD results on ASU Fall 2009 Engineering Freshmen Data

Many studies have investigated various factors of student retention and success

in STEM (Sciences, Technologies, Engineering, and Math) undergraduate education,

including demographics, financial aids, test scores and grades, courses and curricu-

lums, intellectual skills and abilities, motivational factors, academic and social envi-

ronments, and interventions. Existing findings on STEM retention and success are

usually obtained from statistical analyses that do not model interactive, concurrent

effects of multiple factors. As indicated in (Li et al., 2009a), analytical techniques

that can analyze and model interactive and concurrent effects of multiple factors are

needed to produce a complete framework of STEM retention and success.

We obtained data of 890 undergraduate students who entered the engineering

college at Arizona State University (ASU) in Fall 2009. Table 4.11 lists 51 data fields

in this data set. These data fields are collected from college applications and ASU

107



academic records of these students. The data set has 890 instances for 890 students,

respectively.

Table 4.11: Data fields in ASU 2009 Engineering Freshmen Data

x1:FA09 Entering x18: SAT ACT Calculated x35: Scholarship
Major Index Group Dollar Amount
x2: x19: x36:
SP10 Enrollment ALEKS Group FA09 Earned Hours
x3: FA10 University x20: x37:
Enrollment AP Hours FA09 GPA
x4: FA10 x21: Count of Any x38: Count of
College Enrollment AP Hours Grades D, E, and W

x5: Age x22: Count of MatChmCse x39: Count of
AP Hours Grade A

x6: Gender x23: Count of Mat27None x40: Count of
AP Hours Grades A and B

x7: Minority x24: x41:
Application Earliness FA09 Math Course

x8: Underrepresented x25: x42:
Minority Orientation Earliness FA09 Math Grade
x9: x26: x43: SP10
National Origin Admitted 1stProgram Earned Hours
x10: x27: x44:
Target Market Admitted 1stPlan SP10 GPA
x11: x28: x45:
1st Generation Barrett Honors College E2 Camp
x12: x29: x46:
High School ASU Residence Hall Camp
x13: x30: x47: EPICS
High School Local City
Class Rank Percentage

x14: High School x31: x48:
ABOR GPA Live ON Campus Fulton Match
x15: x32: x49:
High School City Live ES Community Tutor Visits
x16: x33: x50:
High School Rating FinAid Dollar Amount Use of Tutor

x17: x34: Financial Need x51:
High School Charter Dollar Amount Tutor Visit Group

The objective of analyzing engineering student data is to identify characteristics
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of engineering students for engineering retention. That is, we want to find out what

characteristics of engineering students are associated with student retention in engi-

neering. The variable, x4, indicates engineering retention with x4 = 1 for a student

enrolling in the engineering college in Fall 2010, one year after entering the engineer-

ing college in Fall 2009, or x4 = 0 for a student no longer enrolling in the engineering

college in Fall 2010. By analyzing this data set, we want to examine and identify

what specific values of variables other than x4 are associated with x4 = 1 and with

x4 = 0. Hence, among all associations produced by the PVAD algorithm, we are

interested in associations with x4 = 1 or x4 = 0 as AV.

In addition to parameter α, two other parameters, β and γ, are also needed in

the PVAD algorithm. β is used to remove associations whose number of supporting

instances (instances containing variable values in the numerator of Equation 2.1 is

smaller than β. γ is used to remove an association with a common CV or AV that

appears in more than γ of the data set. For the data set of engineering student data,

α is set to 1 and 0.8, β is set to 10, and γ is set to 71%. We set γ = 71% because 625

students out of a total 890 students (70.22% of students) have x4 = 1 and we want

to keep associations with x4 = 1 as AV.

We first examine 1-to-1 associations with x4 = 1 as AV when α is set to 1, there

are no 1-to-1 associations with AV of x4 = 1.

The list below gives CVs of 1-to-1 associations with AV of x4 = 1 for α = 0.8 with

the number of supporting instances ≥ 27 (the number shown in parentheses for each

CV). A student may be a supporting instance for several associations.

Group 1: not poor ASU performance

• x38: Cnt DEW = none (450)

similar CVs in this group:
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• x37 ≥ 3.5 (292)

• x39 = [4, 6] (280)

• x40 ≥ 6 (236)

• x42 ≥ B+ (216)

• x44 = [3.5, 4] (171)

• x43 = [17, 20] (89)

• x36 = [17, 20] (77)

Group 2: good high school performance

• x20: AP Hours = [3, 38] (253, 53)

• x21: Cnt AnyAP = 1 (253, 53)

similar CV in this group:

• x22 = 1 (205)

• x23 = 1 (200)

• x41 = Calculus for Engineer II, Calculus for Engineer III, Modern

Differential Equations (212)

• x28 = 1 (152)

• x19 = 120-130 (82)

• x33 ≥ 23000 (46)

• x35 ≥ 23000 (33)

Group 3: demographics and social-economic background

• x12 = Desert Vista High School, Dobson High School, Chandler High

School, Desert Mountain High School, Mountain Pointe High School,

Brophy College Preparatory, in other words, certain high schools in

areas of families with social-economic advantages and/or engineering

background (95, 9)

• x7 = Asian/Pacific Islander (73, 6)

• x34 ≤ 1000 (27, 1)
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Group 4: student origin

• x15 = Chandler (45, 1)

• x49: Tutor Visits = [2, 21] (71, 4)

• x50: Cnt UseTutor = 1 (55, 5)

• x51 = 3 to 9 Visits (38, 4)

If the second number is included in parentheses for an association, it is the number

of instances supporting this association only without supporting any previous group

of associations. For example, x20: AP Hours = [3, 38] (253, 53), indicates that there

is a total of 253 supporting instances for the association with this CV, and among 253

instances there are only 53 instances supporting this association without supporting

any association in group 1.

There are 243 instances supporting both group 1 and group 2 of associations

along with some associations in other groups, 296 instances supporting group 1 of

associations along with some in other groups but not group 2, 10 instances supporting

group 2 of associations along with some in other groups but not group 1, and only

29 instances supporting other groups but not group 1 or group 2. That is, group 1

of associations presents the most dominant CVs for engineering retention of AV: x4

= 1. In group 1, x38: Cnt DEW = none, is the most dominant CV with the largest

number of supporting instances, 450. Hence, not having any poor grade of D, E or

W (which does not earn any credit) in the first year at ASU is the most dominant

student characteristic for engineering retention.

All 1-to-1 associations for AV of x4 = 1 involve a total 578 supporting instances

(students). Because 625 students have x4 = 1, there are 625-578=47 students with

x4 = 1 but not among the supporting instances of 1-to-1 associations for AV of

x4 = 1. To reveal uncommon characteristics of engineering retention for a small

number of 47 students not covered by 1-to-1 associations for AV: x4 = 1, we computed
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frequencies and percentages of variable values for these 47 students in the comparison

with frequencies and percentages of variable values for 578 students. The percentage

of 47 students for a given variable value is computed by dividing the frequency of 47

students for the given variable value by 47. The percentage of 578 students for a given

variable value is computed by dividing the frequency of 578 students for the given

variable value by 578. The percentage of 47 students is divided by the percentage of

578 students to give a ratio. Table 4.12 gives frequencies and percentages of variable

values for these 47 students in comparison with frequencies and percentages of variable

values for 578 students, for variable values with the frequency of 47 students ≥ 5 and

the ratio of the 47 student percentage to the 578 student percentage ≥ 2. A large

ratio ≥ 2 for a variable value indicates that the variable value is 2 times or more

present among 47 students than 578 students.

Table 4.12: Frequencies and Percentages of 47 Students with x4 = 1

x1:FA09 Entering Major=Civil Engi-
neering

9, 19.15% 50, 8.65% 2.21

x1=Computer Systems Engineering 6, 12.77% 33, 5.71% 2.24

x7:Minority=International 6, 12.77% 17, 2.94% 4.34

x10:TargetMarket=CA 6, 12.77% 21, 3.63% 3.51

x10=International 6, 12.77% 16, 2.77% 4.61

x12:HighSchool=Foreign High School 5, 10.64% 13, 2.25% 4.73

x13:High School Class Rank Pct=31 to
60

11, 23.40% 53, 9.17% 2.55

x14:High School ABOR GPA=[2, 3) 12, 25.53% 27, 4.67% 5.47

x14=none 7, 14.89% 18, 3.11% 4.78

x15:High School City=None 23, 48.94% 122, 21.11% 2.32

x17: High School Charter=None 5, 10.64% 13, 2.25% 4.73

Variable Value Frequency,
Percentage

of
47

Students

Frequency,
Percentage

of
578

Students

Ratio of 47
Student

Percentage
to 578
Student

Percentage

Continued on next page

112



Table 4.12: Frequencies and Percentages of 47 Students with x4 = 1 (Continued)

x18: SAT ACT Index Group=103 – 107 6, 12.77% 27, 4.67% 2.73

x18=108 – 110 5, 10.64% 25, 4.33% 2.46

x18=94 – 102 5, 10.64% 8, 1.38% 7.69

x18=No Index 7, 14.89% 30, 5.19% 2.87

x19:ALEKS Group=70- 80 5, 10.64% 12, 2.08% 5.12

x19=90-100 9, 19.15% 46, 7.96% 2.41

x24:App Earliness=(5, 8] 19, 40.43% 81, 14.01% 2.88

x25:Orient Earliness=none 10, 21.28% 57, 9.86% 2.16

x27:Admit 1st Plan=ESCSEBSE 6, 12.77% 22, 3.81% 3.35

x30:Local City=TEMPE 6, 12.77% 17, 2.94% 4.34

x33:FinAid $=0 5, 10.64% 24, 4.15% 2.56

x33=none 13, 27.66% 50, 8.65% 3.2

x34:Need $ ≥ 15000 16, 34.04% 97, 16.78% 2.03

x34=none 13, 27.66% 51, 8.82% 3.13

x35:Scholarship $=none 35, 74.47% 118, 20.42% 3.65

x36:FA09 Earned Hrs=[6, 11] 15, 31.91% 22, 3.81% 8.38

x37:FA09 GPA ≤ 2.5 26, 55.32% 33, 5.71% 9.69

x38:Count of DEW=1 29, 61.70% 102, 17.65% 3.5

x38=2 10, 21.27% 20, 3.46% 6.15

x38=3 5, 10.64% 5, 0.87% 12.3

x39:Count of A=1 21, 44.68% 74, 12.80% 3.49

x39=none 12, 25.53% 29, 5.02% 5.09

x40:Count of AB=1 5, 10.64% 1, 0.17% 61.49

x40=2 10, 21.28% 28, 4.84% 4.39

x40=3 13, 27.66% 48, 8.30% 3.33

x41:FA09 Math Class=Precalculus 13, 27.66% 69, 11.94% 2.32

x42:FA09 Math Grade=D 13, 27.66% 19, 3.29% 8.41

x42=E 6, 12.77% 9, 1.56% 8.2

x42=W 13, 27.65% 35, 6.06% 4.57

x43:SP10 Earned Hours=[6, 11] 13, 27.66% 59, 10.21% 2.71

x44:SP10 GPA≤2.5 23, 48.94% 86, 14.88% 3.29

x45:E2Camp=0 17, 36.17% 71, 12.28% 2.94

Variable Value Frequency,
Percentage

of
47

Students

Frequency,
Percentage

of
578

Students

Ratio of 47
Student

Percentage
to 578
Student

Percentage

Continued on next page
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Table 4.12: Frequencies and Percentages of 47 Students with x4 = 1 (Continued)

x46:Camp=None 17, 36.17% 71, 12.28% 2.94

Variable Value Frequency,
Percentage

of
47

Students

Frequency,
Percentage

of
578

Students

Ratio of 47
Student

Percentage
to 578
Student

Percentage

44 out of 47 students have x38: Count of D, E and W grades = 1, 2, or 3, in contrast

to 450 out of 578 students who have x38 = none. Although most of those 47 students

have x38 = 1, 2, or 3, they still continue in engineering after one year at ASU.

Many of those 47 students are international students, students with average or below

average high school performance, students who did not apply for ASU early, students

who have little scholarship dollars, students who have either little financial need or

financial need > $15000, and students who have one grade of A and fewer than four

grades of A or B, and students who have the grade of D, E or W in their math class.

Hence, among students who have 1 to 3 grades of D, E and W in their first year of

college, students with the above characteristics continue in engineering.

There are no 1-to-1 associations for AV of x4 = 0 when α is set to 1. CVs of

1-to-1 associations for AV of x4 = 0, α = 0.8 are listed below with the number of

supporting instances in parentheses.

• x44 = none (48)

• x43: Spring10 Earned Credit Hours = none (47)

• x38: Count of DEW = 4 or 5 (35)

• x40 = 1 (32)

• x36 = none or [1, 5] (28)

These CVs of 1-to-1 associations for AV of x4 = 0 are all related to poor ASU

grade/performance, including the count of D, E and W grades is 4 or 5. Therefore,
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1-to-1 associations for AV: x4 = 1 tell us that not poor ASU performance is associated

with engineering retention, whereas 1-to-1 associations for AV: x4 = 0 tell us that

poor ASU performance is associated with students leaving engineering.

These 1-to-1 associations for AV of x4 = 0 have 80 supporting instances among a

total of 265 students who have x4 = 0. Hence, there are 265 – 80 = 185 students with

x4 = 0 but not being covered by the 1-to-1 associations for x4 = 0. Table 4.13 gives

frequencies and percentages of variable values for these 185 students in comparison

with frequencies and percentages of variable values for 80 students, for variable values

with the frequency of 185 students ≥ 10 and the ratio of the 185 student percentage

to the 80 student percentage ≥ 2. A large ratio ≥ 2 for a variable value indicates that

the variable value is 4 times or more present among 185 students than 80 students.

Table 4.13: Frequencies and Percentages of 185 Students with x4 = 0

x1=Aerospace Engr (Astro-
nautics)

6, 3.24% 1, 1.25% 2.59

x1=Chemical Engineering 17, 9.19% 3, 3.75% 2.45

x3=1 133, 71.89% 24, 30% 2.4

x6=F 133, 71.89% 24, 30% 2.4

x14=[3.7, 4.0] 76, 41.08% 11, 13.75% 2.99

x15=Gilbert 10, 5.41% 1, 1.25% 4.32

x15=Tempe 11, 5.95% 1, 1.25% 4.76

x18=129 - 146 44, 23.78% 4, 5% 4.76

x27=ESCHEBSE 15, 8.11% 3, 3.75% 2.16

x28=1 34, 18.38% 3, 3.75% 4.9

x29=Cereus Hall 28, 15.14% 3, 3.75% 4.04

x33=[7500, 9000] 51, 27.57% 10, 12.5% 2.21

x35=[9001, 23000) 27, 14.59% 1, 1.25% 11.68

Variable Value Frequency,
Percentage of
185 Students

Frequency,
Percentage of
80 Students

Ratio of 185
Student

Percentage
to

80 Student
Percentage

Continued on next page
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Table 4.13: Frequencies and Percentages of 185 Students with x4 = 0 (Continued)

x36=[12, 16] 133, 71.89% 20, 25% 2.88

x37=[3.0, 3.5) 49, 26.48% 5, 6.25% 4.24

x37=[3.5, 4) 40, 21.62% 2, 2.5% 8.65

x38=1 61, 32.97% 8, 10% 3.3

x38=none 81, 43.78% 11, 13.75% 3.18

x39=2 42, 22.70% 7, 8.75% 2.59

x39=3 30, 16.22% 2, 2.5% 6.49

x39=4 22, 11.89% 1, 1.25% 9.51

x39=5 11, 5.95% 1, 1.25% 4.76

x40=4 40, 21.62% 3, 3.75% 5.77

x40=5 42, 22.90% 6, 7.5% 3.03

x40=6 33, 17.84% 1, 1.25% 14.27

x42=A 16, 8.65% 1, 1.25% 6.92

x42=B 31, 16.76% 3, 3.75% 4.47

x42=B+ 9, 4.86% 1, 1.25% 3.89

x42=C+ 10, 5.41% 1, 1.25% 4.32

x43=[12, 16] 118, 63.78% 13, 16.25% 3.93

x43=[17, 20] 11, 5.95% 1, 1.25% 4.76

x44≥4 13, 7.03% 1, 1.25% 5.62

x44=[2.5, 3.0) 35, 18.92% 4, 5% 3.78

x44=[3.0, 3.5) 45, 24.32% 2, 2.5% 9.73

x44=[3.5, 4) 34, 18.38% 2, 2.5% 7.35

x46=Camp 2 32, 17.30% 5, 6.25% 2.77

Variable Value Frequency,
Percentage of
185 Students

Frequency,
Percentage of
80 Students

Ratio of 185
Student

Percentage
to

80 Student
Percentage

In addition to 80 students who left engineering with poor grades, we have 185

students who are mostly good students but left engineering for a non-engineering

major at ASU. As shown in Table 4.13, among those 185 students who left engineering

after one year at ASU, we have the following.

• 133 students continued for a non-engineering major in university
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• 133 students are female

• Many are top students in high school

• Some are honor students

• Some have FA09 GPA in [3.0, 4)

• Many have good amounts of scholarship $

• 133 students have FA09 earned credit hours of [12, 16]

• 129 students have SP10 earned credit hours of [12, 16]

• 128 students have FA09 GPA ≥ 2.5

• 127 students have SP10 GPA ≥ 2.5

• 142 students have the count of D, E, and W grades = none or 1

• 105 students have the count of A grade ≥ 2

• 115 students have the count of A and B grades ≥4

• Many have FA09 Math grade ≥ C+.

Based on the above results for x4 = 1 and x4 = 0, we need to improve the

retention of two types of engineering students: (1) students with poor ASU grades,

and (2) students who had decent to good ASU grades but left engineering for a

non-engineering major at ASU, especially female students.

The PVAD algorithm also produced 2-to-1, . . . , 50-to-1 associations for AV of x4

= 1 and AV of x4 = 0. The examination of these p-to-1 associations with p = 2,

. . . , 50 gives us similar information about engineering retention to that from 1-to-1

associations.

4.5 Analysis of PVAD results on Common and Uncommon Characteristics of

Engineering Student Retention after the First Year in University

Many studies (Gross et al., 2015; Hieb et al., 2015; Coletti et al., 2014; Gross

et al., 2013; Shaw et al., 2013; Tyson, 2011; Gross, 2011; Weatherton et al., 2011;
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Moses et al., 2011; Teague et al., 2018; Orr, 2019; Veletzos et al., 2018; Chan-Hilton,

2019; Maccariella Jr et al., 2019; Sithole et al., 2017) investigated various factors of

retention in STEM (Science, Technologies, Engineering, and Mathematics) education

for undergraduates, including demographics (Geisinger et al., 2013; Ackerman et al.,

2013a; Kokkelenberg and Sinha, 2010), financial aids (Gross et al., 2015; Herzog, 2005;

Sulaiman, 2016; Orr, 2019), test scores and grades in high school (Hieb et al., 2015;

Weatherton et al., 2014; Ackerman et al., 2013b; Hall et al., 2013; Geisinger et al.,

2013; Ackerman et al., 2013a; Shaw et al., 2013; Kauffmann et al., 2007; Herzog,

2005), test scores and grades in university/college (Hieb et al., 2015; Coletti et al.,

2014; Tyson, 2011; Garćıa-Ros et al., 2019; Orr, 2019; Veletzos et al., 2018), courses

and curriculums (Coletti et al., 2014; Jones et al., 2014b; Camacho and Lapuz, 2014;

Ackerman et al., 2013b), intellectual skills and abilities (Hieb et al., 2015; Coletti

et al., 2014; Weatherton et al., 2014; Moses et al., 2011; Kauffmann et al., 2008),

motivational factors and self-efficacy (Hieb et al., 2015; Jones et al., 2014b; Acker-

man et al., 2013b; White and Massiha, 2016; Martin III, 2018), academic and social

environments (Coletti et al., 2014; Camacho and Lapuz, 2014; Geisinger et al., 2013;

Sithole et al., 2017), and interventions (Desai and Stefanek, 2017; Fuesting, 2019; Ud-

din and Johnson, 2019). These studies identified factors that were commonly shared

by a significant number of undergraduate students who achieved STEM retention

and thus presented common student characteristics of STEM retention. However,

there are uncommon/untypical undergraduate students including Type 1 students

who do not have common student characteristics of STEM retention but still achieve

STEM retention, and Type 2 undergraduate students who have common student

characteristics of STEM retention but do not achieve STEM retention. There is little

understanding of the characteristics of those uncommon/untypical students in STEM

retention. Characteristics of Type 1 uncommon/untypical students will enable us to
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work on attracting and recruiting such students to STEM fields although they do

not fit into common profiles of students in STEM. Characteristics of Type 2 uncom-

mon/untypical students will help us design intervention mechanisms to address and

correct elements that drive them to leave STEM.

This study focuses on engineering retention and aims at identifying characteristics

of uncommon/untypical students in engineering retention, called uncommon charac-

teristics of engineering retention. Our study took two steps to first identify common

student characteristics of engineering retention and then used common student char-

acteristics of engineering retention to determine uncommon/untypical students and

identify characteristics of uncommon/untypical students as uncommon student char-

acteristics of engineering retention. The identification of uncommon student char-

acteristics of engineering retention will guide us to carry out recruitment and inter-

ventions to help more students achieve engineering retention, thus broadening the

participation of more students in engineering fields.

4.5.1 Data Sets and Data Analyses

This section describes the data sets and data analyses performed to identify com-

mon and uncommon characteristics of engineering retention.

Data Sets

In this study, we collected and analyzed six large sets of engineering student data

covering six classes of students who entered Ira A. Fulton Schools of Engineering at

ASU in the Fall of 2009, 2011, 2014, 2015, 2016 and 2017, respectively. The following

are the retention rates of engineering students in these six classes after the first year

at ASU:

• 2009 engineering students: 70% of 890 students
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• 2011 engineering students: 72% of 1522 students

• 2014 engineering students: 96% of 1931 students

• 2015 engineering students: 89% of 2535 students

• 2016 engineering students: 84% of 2833 students

• 2017 engineering students: 84% of 2717 students

Each data set has one data record for each student. In each data record, there is

the retention variable indicating whether or not the student stayed in engineering after

the first year, as well as other variables for student data covering demographics (e.g.,

gender, age, race, and home city), high school academic performance (e.g., SAT, ACT,

GPA, rank percentile, and AP hours), academic performance at ASU (e.g., grades,

credit hours, GPA, and major), financial aids, and survey data covering academic

confidence, support, wellness, and university life concerning academics, social, and

hours of various activities.

Data Analyses to Identify Common Characteristics of Engineering Reten-

tion

The first step of our data analysis was to identify common characteristics of engi-

neering retention. For this purpose, we carried out both multivariate analysis and

univariate analysis of data in each data set.

The PVAD (Partial-Value Association Discovery) algorithm (Ye, 2018, 2016, 2017a,

2013b) was chosen to perform the multivariate analysis of data in this study because

each data set has both categorical data variables and numeric data variables and the

PVAD algorithm was developed recently to handle both categorical data and numeric

data together and uncover multivariate data associations from data. The PVAD al-

gorithm was used to obtain data associations. Each association is in the form of X →

retention = YES, where X represents the specific value(s) of one or multiple variables.
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Hence, X in each data association reveals characteristics of students whose retention

variable(s) indicates them staying in engineering after the first year at ASU. In this

study, we looked into only 1-to-1 data associations with X containing one variable

and its specific value, because p-to-1 data associations, p > 1, with X containing

multiple variables and their specific value are often combinations of characteristics

from 1-to-1 data associations. A supporting instance of a 1-to-1 data association is

the data record of a student who stayed in engineering after the first year and has

the specific value of the X variable in this data association. From 1-to-1 data associ-

ations which are supported by a majority of students who stayed in engineering, we

reported variables and their values in those 1-to-1 data associations as the common

characteristics of students who stayed in engineering.

If there were data records in the data set which have retention = YES but were

not covered by 1-to-1 data associations of X → retention = YES from the PVAD algo-

rithm, we performed the univariate data analysis of these data records by determining

the frequency of each value for each variable in these data records and comparing the

frequency of the same variable value in the entire data set of the student population.

If there were a sufficient number of data records with the frequency of a variable

value significantly higher than the frequency of the same variable value in the entire

student population, we reported the variable value as a common characteristic of

students who stayed in engineering.

Hence, common characteristics of students who stayed in engineering after the

first year were obtained by using the PVAD algorithm of multivariate data analy-

sis to obtain associations of student characteristics with retention = YES and the

univariate frequency analysis of those data records that were not covered by data

associations from the PVAD algorithm. There is no need to carry out the univari-

ate frequency analysis if data associations from the PVAD algorithm cover all data
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records of students with X → retention = YES.

The same multivariate data analysis using the PVAD algorithm and the univari-

ate frequency analysis were also performed to obtain 1-to-1 data associations in the

form of X → retention = NO and frequencies of variable values to extract common

characteristics of students who left engineering after the first year at ASU.

Data Analyses to Identify Uncommon Characteristics of Engineering Re-

tention

Common characteristics of engineering retention for retention = YES were then used

to identify Type 1 uncommon/untypical students who did not have common char-

acteristics of engineering retention but stayed in engineering after the first year and

Type 2 uncommon/untypical students who had common characteristics of engineering

retention but left engineering after the first year. Characteristics shared by a majority

of Type 1 students and characteristics shared by a majority of Type 2 students were

examined and identified as uncommon characteristics of engineering retention.

4.5.2 Results

Table 4.14 presents common characteristics of students who stayed in engineering

after the 1st year at ASU. All the characteristics in Table 4.14 were obtained from

1-to-1 data associations of X → retention = YES with the largest numbers of sup-

porting instances. The characteristics from data associations with small numbers of

supporting instances are not listed in Table 4.14 because they are not considered as

common characteristics.

Table 4.14 shows that not poor academic performance in the first year, in terms

of GPA above 2.5 ± α (0 ≤ α ≤ 0.52, varying for different data sets) and no D, E and

W grades or no/few ASRs (Academic Status Reports), is the common characteristic
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of students who stayed in engineering after the first year at ASU, consistently and

dominantly among all data sets. ASU uses grades of A, B, C, D, and W (withdrawal)

with A, B, and C giving the full course credits and producing 4.0, 3.0, and 2.0,

respectively, in the GPA computation, and D, E, and W giving no course credits. ASU

requires a minimum of 2.0 GPA to graduate. ASRs are used by course instructors

when they want to give warnings to students who lag behind. The 2008 and 2011

data sets have data for the count of D, E, and W grades and the count of A and B

grades, but do not have data for the count of ASRs. The 2014-2017 data sets do not

have data for the count of D, E, and W grades or the count of A and B grades, but

have data for the count of ASRs.

Among many variables measuring academic performance, GPA provides a com-

prehensive measure of academic performance, and is the most dominant indicator for

retention as shown in Table 4.14, followed by the count of D, E, and W grades, the

count of A and B grades, and the count of ASRs. The characteristic of GPA above

2.5 ± α (0 ≤ α ≤ 0.52), e.g., 2.43 and 2.56 in the 2015 and 2016 data sets, 2.67 and

3.02 in the 2011 data set, and 2.29 and 2.67 in the 2017 data set, for retention = YES

was found in five out of six data sets. In addition to the GPA characteristic, no D,

E, or W grades (in the 2009 data set), the average count of A and B grades ≥ 4 (in

the 2011 data set), or few or no ASRs (in the 2014-2017 data sets) were also found.

Table 4.14: Common characteristics of students who stayed in engineering after the
first year at ASU

2009 625 • Count of D, E, and W grades is 0 (450 stu-
dents)

• Fall GPA ≥ 3.5 (292 students), or
• Have AP hours (253 students)

Data set # of Students who
stayed in engineering

Common student characteristics (# of students
with characteristic)

Continued on next page
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Table 4.14: Common characteristics of students who stayed in engineering after the
first year at ASU (Continued)

2011 1101 • Fall GPA ≥ 3.02 (815 students),
• Spring cumulative GPA ≥ 2.67 (951 stu-
dents), or

• Average count of A and B grades ≥ 4 (828
students)

2014 1859 • Spring cumulative GPA in (0, 4.24] (1841
students)

• Number of ASR (Academic Status Report)
in Fall Week 1 in [0, 3] (1854 students), or

• Number of ASR in Spring Week 1 in [0, 2]
(1858 students)

2015 2264 • GPA Fall GPA ≥ 2.56 (2043 students),
• Spring GPA ≥ 2.43 (2033 students),
• Fall ASR Count in [0, 3] (2194 students), or
• Spring ASR Count in [0, 2] (2188 students)

2016 2387 • Fall GPA ≥ 2.56 (2147 students)
• Spring cumulative GPA ≥ 2.55 (2057 stu-
dents)

• Spring GPA ≥ 2.43 (1985 students)
• Spring ASR Count in [0, 2] (2233 students),
or

• Fall ASR Count is 0 (1616 students)

2017 2287 • Fall GPA ≥ 2.67 (1911 students)
• Spring GPA ≥ 2.29 (1813 students)
• Spring ASR Count is 0 (1859 students), or
• Fall ASR Count is 0 (1750 students)

Data set # of Students who
stayed in engineering

Common student characteristics (# of students
with characteristic)

Table 4.15 presents the common characteristics of students who left engineering

after their first year at ASU. The characteristics from the univariate frequency anal-

ysis were noted in Table 4.15. Other characteristics in Table 4.15 were obtained from

1-to-1 data associations of X → retention = NO with large numbers of supporting

instances. The characteristics from data associations with small numbers of support-

ing instances are not listed in Table 4.15 because they are not considered as common

characteristics.

Table 4.15 shows that poor academic performance in the first year, in terms of
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GPA around or below 2.5 ± α (0 ≤ α ≤ 0.52), e.g., 2.5 in the 2009 data set, 2.43

and 2.55 in the 2014 data set, 2.42 and 2.54 in the 2015 and 2016 data sets, and 2.85

in the 2017 data set, and non-zero counts of grades D, E and W or ASRs (e.g., 1, 4

and 5 counts of grades D, E and W in the 2009 data set, 1 to 2 and 4 to 7 counts of

grades D, E and W in the 2011 data set, and 1 to 4 counts of ASRs in the 2017 data

set), is the common characteristic of students who left engineering after the first year

at ASU. Hence, the characteristics of students who stayed in engineering as shown

in Table 4.14 are consistent with the characteristics of students who left engineering

as shown in Table 4.15 as both tables show that the GPA of above versus around or

below and zero versus 2.5± α (0 ≤ α ≤ 0.52) non-zero count of D, E, and W grades

or ASRs in the first year at ASU separate the majority of students who stayed from

the majority of students who left engineering. This may be attributed to the fact

that students earn no course credits from D, E, and W grades.

Among the common characteristics of students who stayed in engineering in Table

4.14, GPA below 2.5 ± α (0 ≤ α ≤ 0.52), e.g., 2.29, 2.43, 2.5, 2.55, 2.56, 2.67 and 3.02

in different data sets, and non-zero count of D, E and W grades (see Table 4.16 and

Table 4.17) were used to identify Type 1 students who had such poor GPA and grade

counts but still stayed in engineering and Type 2 students who did not have such

poor GPA or grade counts but left engineering. Table 4.16 shows the characteristics

of Type 1 students. Table 4.17 shows the characteristics of Type 2 students.
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Table 4.15: Common characteristics of students who left engineering after the first
year at ASU

2009 265 • 35 students have the count of D, E, and W grades
in [4, 5]

• 185 students without the above characteristics
have more of the following characteristics than the
population (from the univariate frequency analy-
sis):

◦ 95% have no AP hours, versus 69% of the
population

◦ 33% have the count of D, E, and W grades is
1, versus 22% of the population

◦ 31% have Spring GPA < 2.5, versus 21% of
the population

2011 421 • Average count of A or B grades is 0 (93 students)
• Maximum count of A or B grades is [0, 1] (116
students)

• Average count of D, E and W grades is [4, 7] (84
students)

• Average count of C, D, E and W grades is [5, 7]
(73 students)

• Fall GPA is [0, 1.71] (99 students)
• Spring cumulative GPA is [0, 1.04] (71 students)
• 249 students without the above characteristics
have more of the following characteristics than the
population (from the univariate frequency analy-
sis):

◦ 23% have the average count of A and B
grades = 2, versus 11% of population

◦ 51% have the average count of D, E and W
grades in [1, 2], versus 25% of the population

◦ 67% are white, versus 57% of population

◦ 39% are sophomores to start the current ma-
jor, versus 24% of the population

Data
set

# of Students
who left engi-
neering

Common student characteristics
(# of students with characteristic)

Continued on next page
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Table 4.15: Common characteristics of students who left engineering after the first
year at ASU (Continued)

2014 72 • 72 students have more of the following charac-
teristics than the population (from the univariate
frequency analysis):

◦ 89% are not honor students, versus 74% of
the population

◦ 65% are white, versus 49% of population

◦ 51% have the Spring probation, versus 9% of
the population

◦ 21% have the Fall probation, versus 5% of
the population

◦ 31% have Fall GPA < 2.55, versus 8% of the
population

◦ 26% have Spring GPA < 2.43, versus 8% of
the population

2015 271 • 216 students have more of the following charac-
teristics than the population (from the univariate
frequency analysis):

◦ 88% are not honor students, versus 74% of
the population

◦ 58% do not live on campus, versus 41% of
the population

◦ 29% have the Fall GPA in (0, 2.54], versus
12% of the population

◦ 37% have the Spring Semester GPA in (0,
2.42], versus 12% of the population

Data
set

# of Students
who left engi-
neering

Common student characteristics
(# of students with characteristic)

Continued on next page
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Table 4.15: Common characteristics of students who left engineering after the first
year at ASU (Continued)

2016 447 • Fall GPA is 0 (92 students)
• Advisor Hold = Y (208 students)
• 170 students without the above characteristics
have more of the following characteristics than the
population (from the univariate frequency analy-
sis):

◦ 94% are not honor students, versus 77% of
the population

◦ 42% have Fall GPA in (0, 2.54], versus 15%
of the population

◦ 53% have Spring cumulative GPA in (0,
2.54], versus 16% of the population

◦ 45% have Spring GPA in (0, 2.42], versus
17% of the population

2017 430 • Spring cumulative GPA in [0, 1.21] (56 students)
• 374 students without the above characteristics
have more of the following characteristics than the
population (from the univariate frequency analy-
sis):

◦ 38% have Spring ASR Count in [1, 4], versus
21% of the population

◦ 31% have Spring cumulative GPA in [1.92,
2.85], versus 18% of the population

◦ 22% have Fall ASR Count in [2, 3], versus
11% of the population

Data
set

# of Students
who left engi-
neering

Common student characteristics
(# of students with characteristic)

Table 4.16 shows that students with the following characteristics had more ten-

dency to stay in engineering even with GPA around or below 2.5± α (0 ≤ α ≤ 0.52)

and non-zero count of D, E and W grades at ASU:

• Students who are not white, in four out of six data sets

• Students who are not honor students, in five out of six data sets (this is related

to the poor academic performance of those students)
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• Male students, in three out of six data sets.

Hence, it appears that not-white students and male students had more tendency

to stay in engineering even with poor academic performance.

Table 4.16: Characteristics of Type 1 students who had poor academic performance
but still stayed in engineering

2009 Among 625 students who
stayed
in engineering, 56 students
had:
• Count of D, E, and W
grades > 0, AND
• Fall GPA < 2.5

• 95% male, versus 79% of population
• 52% are not white, versus 39% of pop-
ulation

• 32% are URM (Under Represented
Minority), versus 22% of the popula-
tion

• 82% have no AP hours, versus 69% of
the population

• 96% are not honors students, versus
79% of the population

2011 Among 1101 students who
stayed
in engineering, 128 students
had:
• Fall GPA < 3.02,
• Spring GPA < 2.67, AND
• Average count of AB grades
< 4

• 90% (115 students) are male, versus
82% of the population

• 55% (70 students) are not white, ver-
sus 18% of the population

• 33% (42 students) have transferred
hours at admission > 0, versus 14%
of the population

2014 Among 1859 students who
stayed in engineering, 46 stu-
dents had:
• Fall GPA < 2.55, AND
• Spring GPA < 2.43

• 91% are not honor students, versus 74
% of the population

2015 Among 2264 students who
stayed
in engineering, 64 students
had:
• Fall GPA < 2.56, AND
• Spring GPA < 2.43

• 95% are not honor students, versus
75% of the population

• 61% are not white, versus 52% of the
population

Data
set

# of students who had mea-
sures of not poor academic
performance

Characteristics of students

Continued on next page
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Table 4.16: Characteristics of Type 1 students who had poor academic performance
but still stayed in engineering (Continued)

2016 Among 2387 students who
stayed
in engineering, 165 students
had:
• Fall GPA < 2.56, AND
• Spring cumulative GPA
< 2.55

• 94% are not honor students, versus
77% of the population

• 62% are not white, versus 50% of the
population

2017 Among 2287 students who
stayed
in engineering, 303 students
had:
• Fall GPA < 2.67, AND
• Spring GPA < 2.29

• 94% are not honors students, versus
77% of the population

• 46% are not resident, versus 35% of
the population

• 85% are male, versus 79% of the pop-
ulation

Data
set

# of students who had mea-
sures of not poor academic
performance

Characteristics of students

Table 4.17 shows that students with the following characteristics had more ten-

dency to leave engineering even with a GPA above 2.5 ± α (0 ≤ α ≤ 0.52) or zero

counts of grades D, E and W in the first year at ASU:

• White students, in four out of six data sets

• Students who are not Arizona residents, in two out of six data sets

• Students who are not honor students, in two out of six data sets.

Type 1 students in Table 4.16 and Type 2 students in Table 4.17 are uncom-

mon/untypical students – students who did not leave or stay in engineering based

on the common characteristics of engineering retention with regards to GPA and

counts of D, E, and W grades or ASRs in the first year at ASU. It is interesting that

race/ethnicity in terms of white students versus not-white students is the major char-

acteristic of those uncommon/untypical students, as Table 4.17 shows that white stu-

dents had more tendency to leave engineering even with a GPA above approximately

2.5 (not-poor academic performance) at ASU, and Table 4.16 shows that not-white
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students had more tendency to stay in engineering even with GPA around or below

2.5 ± α (0 ≤ α ≤ 0.52) (poor academic performance) at ASU. Gender also plays a

role among those uncommon/untypical students as male students had more tendency

to stay in engineering even with GPA around or below 2.5 ± α (0 ≤ α ≤ 0.52). Un-

common/untypical students who are not honor students tended to be less stable or

to vary more in the retention outcome.

Student data in this study covers demographics, high school academic performance

(e.g., GPA, rank percentile, AP hours, SAT, ACT, etc.), academic performance in

university (e.g., GPA, grade counts, credit hours, ASRs, probations, etc.), scholar-

ships and financial aids/needs, and survey data covering academic confidence, family

and social support, wellness, university life related to academics, social, and hours of

work and various activities. Based on the results of this study, the GPA measure of

academic performance in university and certain demographics such as race/ethnicity

and gender are most relevant to student retention after the first year at ASU. Most

measures of high school academic performance including GPA, rank percentile, SAT,

and ACT are not useful in determining student retention in engineering at ASU. At

ASU, the majority of domestic students received scholarships and financial aid from

ASU or other sources, which may be one reason why financial aid and needs are not

related to student retention in engineering at ASU. Survey data, covering academic

confidence, family and social support, wellness, university life concerning academics,

social, and hours of work and various activities, is not relevant to student retention in

engineering at ASU, likely because the survey data was collected at the beginning of

the first semester when students had little experience yet to give a good assessment

of their study and life. Moreover, it may be better to let students think and assess

only one or a few survey questions at a time rather than having students complete

many questions at a time, in order to get more accurate, robust survey data.
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Table 4.17: Characteristics of Type 2 students who had not-poor academic perfor-
mance but left engineering

2009 Among 265 students who left
engineering,
159 students have:
• Count of D, E, and W
grades = 0, OR
• Count of D, E, and W
grades > 0 & Fall GPA ≥ 2.5

• 91% have no AP hours, versus 69%
of the population

2011 Among 421 students who left
engineering,
220 students have:
• Fall GPA ≥ 3.02,
• Spring cumulative GPA ≥
2.67, OR
• Average count of A and B
grades ≥ 4

• 29% are not white, versus 18% of the
population

• 65% (144 students) are not fresh-
man when starting the current ma-
jor, whereas 48% of the population

2014 Among 72 students who left
engineering, 49
students have:
• Fall GPA ≥ 2.55, OR
• Spring GPA ≥ 2.42

• 86% are not honor students, versus
74% of the population

• 59% are white, versus 49% of the
population

2015 Among 271 students who left
engineering,
185 students have:
• Fall GPA ≥ 2.56, OR
• Spring GPA ≥ 2.43

• 57% are not resident, versus 41% of
population

• 57% are white, versus 48% of the
population

2016 Among 447 students who left
engineering,
174 students have:
• Fall GPA ≥ 2.56, OR
• Spring cumulative GPA ≥
2.55

• 91% are not honor students, versus
77% of the population

• 60% are not resident, versus 37% of
the population

• 64% are white, versus 50% of the
population

2017 Among 430 students who left
engineering,
313 students have:
• Fall GPA in ≥ 2.67, OR
• Spring GPA ≥ 2.29

No difference from population

Data set Measures of not poor aca-
demic performance

Student characteristics

4.5.3 Conclusions, Implications, and Limitations

This study reveals the following common and uncommon characteristics of engi-

neering student retention:
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• Students stayed in engineering as long as their academic performance was not

poor in terms of having a GPA above 2.5 ± α (0 ≤ α ≤ 0.52) and zero counts

of D, E, and W grades.

• There are two types of students who stayed in engineering after the first year

at ASU: (1) students with GPA above 2.5 ± α (0 ≤ α ≤ 0.52), and (2) not-

white students as well as male students even with GPA around or below 2.5

± α (0 ≤ α ≤ 0.52).

• There are two types of students who left engineering after the first year at ASU:

(1) students with GPA around or below 2.5± α (0 ≤ α ≤ 0.52), and (2) students

having GPA above 2.5 ± α (0 ≤ α ≤ 0.52), whose reason to leave engineering

varied individually, with especially white students having more tendency to

leave engineering.

Hence, this study adds to the field of engineering education the above findings

about the dominant role that a university GPA of 2.5 ± α (0 ≤ α ≤ 0.52) played in

engineering student retention, and relations of gender, race/ethnicity and non-honor

students to the retention of uncommon/untypical students. Moreover, this study adds

new findings about some factors of STEM retention investigated in the past. This

study points out that measures of high school academic performance (e.g., GPA,

rank percentile, SAT, and ACT) (Tyson, 2011; Weatherton et al., 2011; Moses et al.,

2011; Kokkelenberg and Sinha, 2010; Li et al., 2009b; Klopfenstein and Thomas, 2009;

Kauffmann et al., 2007; Herzog, 2005) are not useful in determining student retention

in engineering at ASU. This study reveals that scholarships and financial aids (Gross

et al., 2015, 2013; Gross, 2011; Herzog, 2005) are not related to engineering student

retention at ASU possibly because switching from engineering to non-engineering did

not affect students’ scholarships and financial aids.

The university has a minimum GPA requirement of 2.0 for graduation. Individual
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degree programs may have additional GPA requirements for certain courses. Various

scholarships may have different GPA requirements. It is not clear whether or not the

minimum GPA requirement of 2.0 for graduation and additional GPA requirements

for scholarships and certain courses are related to the GPA of 2.5± α as the dominant

characteristic of engineering retention.

These findings have implications and can be used in the future to guide stu-

dent recruiting and the development of new intervention mechanisms for engineer-

ing retention. For student recruiting, our efforts of recruiting more students from

a diverse range of ethnicity backgrounds, especially non-white students, should be

continued and expanded with the expectation of success in the retention of students

from non-traditional ethnicity backgrounds. For the development of new intervention

mechanisms, we should investigate intervention mechanisms to improve the grades

and academic performance of students, especially with a focus on identifying poorly

performing students early on and designing and using intervention mechanisms to

move such students out of D, E, and W grades. We are investigating active learning

methods to have students learn more in classes, as well as new grading methods with

dynamical due dates and bonuses for early submission to change the procrastination

habit that some students have and motivate and allow students with different abilities

to study on different paces.

This study has limitations since we focused on common and uncommon charac-

teristics of engineering student retention, did not analyze retention rates and charac-

teristics of transfer students, did not look into elements which drove Type 2 students

to leave engineering, as well as many other issues related to engineering student re-

tention. Another limitation is that the findings of this study are based on data from

only one university.
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Chapter 5

CONCLUSIONS AND FUTURE WORK

This dissertation explores the common challenges faced by existing machine learn-

ing and data mining techniques in handling real-world data sets. It highlights three

main difficulties: mixed-type data, variable relations across value ranges, and un-

known variable dependencies.

To address these challenges, this dissertation introduces a novel algorithm called

Partial-Value Association Discovery (PVAD). PVAD not only overcomes the draw-

backs of existing techniques but also enables the discovery of partial-value and full-

value variable associations. The advantage of PVAD is shown by comparing two other

commonly used techniques: Association rule mining and Decision Tree. The compar-

ison results demonstrate that the PVAD algorithm outperforms both Association rule

mining and Decision Tree in terms of its ability to uncover meaningful associations

in real-world data sets.

This research also investigates knee point detection on noisy data. A new math-

ematical definition of knee point on discrete data is introduced, and a deep-learning

model, UNetConv, is developed that outperforms existing methods. The model out-

performs existing methods and exhibits exceptional performance on synthetic data.

However, there are limitations, including the use of only Gaussian noise in the train-

ing samples, limited curve shapes explored by the model, subjective determination of

knee points in real-world data, and uncertainty in handling scenarios with more than

five knee points. Future work should include incorporating a wider range of sam-

ples (both training and test data) with varying levels of noise to assess the model’s

robustness and sensitivity to noise.
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In the final section of this study, the PVAD algorithm is applied to real-world

data sets in various domains. We present the application and analyses of the PVAD

algorithm to actual data sets. The primary objective of this section is to further

illustrate the effectiveness of PVAD in capturing the variable relations. In all the ap-

plications, PVAD demonstrates its competence in capturing both variable’s individual

and interactive effects.

Specifically, in the application of network data, univariate and multivariate mea-

sures are established in detecting network attacks. Future work of this study includes

comparison with other distribution difference measures in existing literature. This

comparative analysis will enable us to gain a deeper understanding of the effective-

ness of the measures

Overall, this dissertation addresses the limitations of existing machine learning

and data mining techniques and introduces a novel algorithm that overcomes these

limitations. It provides insights into handling real-world data sets and offers practical

solutions for uncovering variable relationships in various domains. Future research in

this study will focus on validating the PVAD findings. This may include conducting

controlled experiments to explore and confirm the factors and the corresponding factor

levels identified by PVAD, thereby verifying their significance.
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