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ABSTRACT

Additive manufacturing consists of successive fabrication of materials layer upon layer

to manufacture three-dimensional items. Several key problems such as poor quality

of finished products and excessive operational costs are yet to be addressed before

it becomes widely applicable in the industry. Retroactive/offline actions such as

post-manufacturing inspections for defect detection in finished products are not only

extremely expensive and ineffective but are also incapable of issuing corrective action

signals during the building span. In-situ monitoring and optimal control methods,

on the other hand, can provide viable alternatives to aid with the online detection

of anomalies and control the process. Nevertheless, the complexity of process as-

sumptions, unique structure of collected data, and high-frequency data acquisition

rate severely deteriorates the performance of traditional and parametric control and

process monitoring approaches. Out of diverse categories of additive manufacturing,

Large-Scale Additive Manufacturing (LSAM) by material extrusion and Laser Pow-

der Bed Fusion (LPBF) suffer the most due to their more advanced technologies and

are therefore the subjects of study in this work. In LSAM, the geometry of large

parts can impact the heat dissipation and lead to large thermal gradients between

distance locations on the surface. The surface’s temperature profile is captured by

an infrared thermal camera and translated to a non-linear regression model to formu-

late the surface cooling dynamics. The surface temperature prediction methodology

is then combined into an optimization model with probabilistic constraints for real-

time layer time and material flow control. On-axis optical high-speed cameras can

capture streams of melt pool images of laser-powder interaction in real-time during

the process. Model-agnostic deep learning methods offer a great deal of flexibility

when facing such unstructured big data and thus are appealing alternatives to their

physical-related and regression-based modeling counterparts. A configuration of Con-
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volutional Long-Short Term Memory (ConvLSTM) auto-encoder is proposed to learn

a deep spatio-temporal representation from sequences of melt pool images collected

from experimental builds. The unfolded bottleneck tensors are then further mined to

construct a high accuracy and low false alarm rate anomaly detection and monitoring

procedure.

ii



ACKNOWLEDGEMENTS

I would like to appreciate my family specially my mom for her unconditional love,

Dr. Feng Ju and and the dissertation committee members for their great support

throughout this journey, and Feifan Wang for his collaboration and friendship.

iii



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background Information for Large-scale Additive Manufacturing . . . 2

1.1.1 Print Surface Thermal Modeling and Layer Time Control

for Large-scale Additive Manufacturing . . . . . . . . . . . . . . . . . . . . 4

1.1.2 Dynamic Material Flow and Machine Motion Control for

Large-scale Additive Manufacturing Using Thermal Images . 5

1.2 Background Information for Laser Powder Bed Fusion . . . . . . . . . . . . . 6

1.2.1 Individual Anomaly Detection for Process Variation Man-

agement in Laser Powder Bed Fusion . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 Deep Spatio-temporal Anomaly Detection in Laser Powder

Bed Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Organization of the Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Improve efficiency and quality through process control and design

of experiment in various technologies of additive manufacturing . . . . 11

2.2 Improve Efficiency and Quality Through Process Control in Fused

Filament Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Current Research on Layer Time and Material Flow Control in

Large-scale Additive Manufacturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Melt Pool Image Feature Extraction and Process Variation Man-

agement in Laser Powder Bed Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

iv



CHAPTER Page

2.5 Summary of Key Technical Contributions of the Work Toward

Large-scale Additive Manufacturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Summary of Key Technical Contributions of the Work Toward

Laser Powder Bed Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 PRINT SURFACE THERMALMODELING AND LAYER TIME CON-

TROL FOR LARGE-SCALE ADDITIVE MANUFACTURING . . . . . . . . . 21

3.1 Analysis of Surface Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.3 Temperature Distribution and Cooling Dynamics . . . . . . . . . . 25

3.1.4 Modeling of Temperature Profile . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Adaptive Model with Bayesian Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Real-time Layer Time Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.2 Model for Layer Time Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 DYNAMICMATERIAL FLOWANDMACHINEMOTION CONTROL

FOR LARGE-SCALE ADDITIVEMANUFACTURING USING THER-

MAL IMAGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 Surface Temperature Prediction Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.1 System Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.2 Data Extraction from Thermal Images . . . . . . . . . . . . . . . . . . . . 45

4.1.3 Modeling of Temperature Profile . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Real-time Printing Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

v



CHAPTER Page

4.2.1 Model for Print Time Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.2 Model for Printer Head Speed Control . . . . . . . . . . . . . . . . . . . . 59

4.2.3 Model for Printer Head Speed Control with Acceleration . . . 61

4.3 Solution Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.1 Optimal Solution for Print Time Control Model . . . . . . . . . . . 65

4.3.2 Optimal Solution for Printer Head Speed Control Model . . . . 66

4.3.3 Optimal Solution for Printer Head Speed with Acceleration

Control Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Case Study and Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.1 Optimal Control for Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 INDIVIDUAL ANOMALYDETECTION FOR PROCESS VARIATION

MANAGEMENT IN LASER POWDER BED FUSION . . . . . . . . . . . . . . . . 79

5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1.1 Deep Representation Learning for Feature Extraction from

Melt Pool Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1.2 Individual Anomaly Detection in Melt Pool Images by Clus-

tering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1.3 Statistical Process Monitoring for Anomaly Detection . . . . . . 85

5.2 Case Study and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2.1 Experiment Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2.2 Deep Representation Learning of Melt Pool Images . . . . . . . . 90

5.2.3 Individual Anomaly Detection by Clustering . . . . . . . . . . . . . . . 92

vi



CHAPTER Page

5.2.4 Statistical Process Monitoring and Anomaly Detection Per-

formance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2.5 Comparison with Hand-crafted Features . . . . . . . . . . . . . . . . . . 100

6 DEEP SPATIO-TEMPORAL ANOMALY DETECTION IN LASER

POWDER BED FUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.1.1 Deep Spatio-temporal Representation Learning for Feature

Extraction from Melt Pool Sequence . . . . . . . . . . . . . . . . . . . . . . 105

6.1.2 Spatio-temporal Anomaly Detection in Melt Pool Image

Sequence by Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.1.3 Statistical Process Monitoring for Anomaly Detection . . . . . . 110

6.2 Case Study and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2.1 Experiment Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2.2 Deep Representation Learning of Melt Pool Image Sequence 113

6.2.3 Anomaly Detection and Data Annotation by Clustering . . . . 117

6.2.4 Hyperparameter Fine-tuning and Anomaly Detection Per-

formance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7 CONCLUSION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.1 Directions for Future Research. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

APPENDIX

A PROOF OF PROPOSITION 1 IN CHAPTER 4 . . . . . . . . . . . . . . . . . . . . . . . 142

B PROOF OF PROPOSITION 2 IN CHAPTER 4 . . . . . . . . . . . . . . . . . . . . . . . 144

vii



LIST OF TABLES

Table Page

3.1 Experiment Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Parameter Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Common Experiment Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Experiment Setting for the Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Solving Run Time for SP and DP Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1 Common Loss Functions for Training Neural Networks . . . . . . . . . . . . . . . 81

5.2 Configuration of the Convolutional Auto-encoder . . . . . . . . . . . . . . . . . . . . . 93

5.3 Performance Measurement Criteria for Different Training Splits and

Type-I Error Probability Of α′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4 Performance Measurement Criteria Comparison Between NBEM and

Proposed Method for Different Training Splits . . . . . . . . . . . . . . . . . . . . . . . 102

6.1 Configuration of the Spatio-temporal Auto-encoder . . . . . . . . . . . . . . . . . . . 120

viii



LIST OF FIGURES

Figure Page

1.1 LSAMTM Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Crack Defects Due to Improper Print Surface Temperature . . . . . . . . . . . 4

3.1 The Relationship Between the Strength and Layer Time . . . . . . . . . . . . . . 22

3.2 Schematic of Print Head for Large-scale Additive Manufacturing . . . . . . 23

3.3 Thin Wall and Tool Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Test Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 The Observations of Surface Temperature of a Single Position . . . . . . . . . 27

3.6 Regression Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.7 Residual Normal Quantile Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.8 Bar Plot of Residual Standard Errors for Ten Layers . . . . . . . . . . . . . . . . . 29

3.9 The Observations and Predictions of β̂0, β̂1 and σ̂2 for d = 3 . . . . . . . . . 30

3.10 Comparison of Predicted Intervals for Observations and Predictions

for Different Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.11 Positions Monitored in the Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.12 Comparison of Layer Time from the Optimal Control of Layer Time

and the Fixed Layer Time Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.13 Comparison of Print Surface Temperature from the Optimal Control

of Layer Time and the Traditionally Used Method with a Fixed Layer

Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.14 Values of Objective Function from the Optimal Control of Layer Time

and the Traditionally Used Method with a Fixed Layer Time . . . . . . . . . 42

3.15 The Effect of ω0 on Layer Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.16 The Effect of ω0 on Print Surface Temperature . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 Printed Components and Their Tool Path . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

ix



Figure Page

4.2 System Setup to Capture the Thermal Images from Car Chassis . . . . . . . 47

4.3 Thermal Images Taken by FLIRTM Camera . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Thermal Image Perspective Transformation and Warping . . . . . . . . . . . . . 49

4.5 Sliding Windows Profile Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.6 Surface Plot of Raw Temperature Data for Wall . . . . . . . . . . . . . . . . . . . . . 52

4.7 Surface Plot of Raw Temperature Data for Chassis . . . . . . . . . . . . . . . . . . . 53

4.8 Surface Plot of Estimated Temperature Data for Wall . . . . . . . . . . . . . . . . 56

4.9 Surface Plot of Estimated Temperature Data for Chassis . . . . . . . . . . . . . 56

4.10 Temperature vs Time Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.11 Temperature vs Location Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.12 Printer Head Acceleration Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.13 Shortest Path Representation of the Speed with Acceleration Control

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.14 Partitioned Estimated Heatmap for Wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.15 Partitioned Estimated Heatmap for Chassis . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.16 Optimal Controls for the Layer Time, Speed and Speed with Acceler-

ation Control Models for the Wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.17 Optimal Controls for the Layer Time, Speed and Speed with Acceler-

ation Control Models for the Chassis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.18 Optimal Value of Objective Function for Control Models . . . . . . . . . . . . . . 76

5.1 Framework of Proposed Deep Representation Learning for Anomaly

Detection Methodology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Schematic of the AMMT Experiment Setup (Yang et al. (2019a)) . . . . . 89

5.3 Schematic of the Experimental Build and the Scan Strategy . . . . . . . . . . 90

x



Figure Page

5.4 Image Pre-processing on Melt Ppool Images . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.5 The Architecture of Input Images, Feature Map Matrices and Output

Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.6 The Train and Test Learning Curves to Extract the Deep Representa-

tions from Melt Pool Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.7 10 Arbitrary Melt Pool Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.8 Dendrogram for Hierarchical-based Agglomerative Clustering with Sin-

gle Linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.9 Sample Melt Pool Images Inside C1:anomaly, C2:noisy, and C3:normal

Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.10 Anomaly detection by statistical process monitoring on top of the con-

volutional auto-encoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.11 Anomaly Detection by Statistical Process Monitoring on Top of the

Melt Pool Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.1 Structural Schematic of a ConvLSTM Cell for Sample at Time t . . . . . . 107

6.2 Proposed Spatio-temporal Auto-encoder Model Architecture . . . . . . . . . . 108

6.3 3D Model of the Experimental Specimen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.4 Part Placement in the Building Chamber . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

xi



Figure Page

6.5 Scan Pattern for the Layer 1 of the Experiment (Yang et al. (2021)).

The orange curve is outline of the part of this layer created during

the pre-contour, which is scanned with a lower laser power of 100 W .

Green and red dots represent the start and finish position, respectively.

The dashed arrow indicates the laser moving direction. Note, the laser

beam does have an active path outside the part outline as the laser

power is set to zero. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.6 Image Pre-processing on Melt Pool Images. . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.7 The Train and Validation Learning Curves for Spatio-temporal Auto-

encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.8 Melt Pool Image Sequence Reconstruction by the Proposed Deep Spatio-

temporal Auto-encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.9 Dendrogram for Hierarchical-based Agglomerative Clustering with Av-

erage Linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.10 Bar Chart of Clusters and Their Population Formed by the Agglom-

erative Algorithm at the Cophenetic Distance Of 13 . . . . . . . . . . . . . . . . . . 122

6.11 Examples of Spatio-temporal Anomalies Detected by Clustering on

Top of the Auto-encoding Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.12 Validation F1score for Different Clustering Thresholds and Type-I Error124

6.13 Anomaly Detection by T 2 and S2 Control Charts for Specimen #4 at

Layer 60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.14 Anomaly Detection by T 2 and S2 Control Charts for Different Speci-

mens and Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

xii



Chapter 1

INTRODUCTION

Additive manufacturing consists of successive fabrication of materials layer upon layer

to manufacture three dimensional items. There are diverse categories of additive man-

ufacturing processes including Photopolymer vat processes (PVP), Material jetting

processes (MJP), Binder jetting processes (BJP), Extrusion-based processes (EBP),

Powder Bed Fusion (PBF), Directed Energy Deposition (DED) and Sheet Lamination

Processes (SLP) (Astm (2015)). Out of various additive manufacturing technologies,

material extrusion and specifically Fused Filament Fabrication (FFF) (also referred

to as Fused Deposition Modeling (FDM)) is a more prevalent process for its availabil-

ity to practitioners and low cost of operation (Bikas et al. (2016)). The technologies

of large-scale material extrusion and Laser Powder Bed Fusion (LPBF) however, are

new compared to other additive manufacturing technologies. Thus, several key prob-

lems are yet to be addressed before they are widely applied in industry. Amongst

many issues, the practical application of printing machines is mainly bounded by the

poor quality of finished products and excessive operational costs.

The abundance of real-time data collected during the build-span lends itself well

to the development of optimal control and monitoring techniques to aid with online

parameter tuning and anomaly detection in the process. On the other hand, the

unique structure of collected data and high-frequency data acquisition rate pose a

challenge toward more traditional and parametric control and process monitoring ap-

proaches. Several unrealistic assumptions in the existing methods need to be revised

and later incorporated in the proposed methods to properly address the quality and

efficiency in the additive manufacturing process.
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1.1 Background Information for Large-scale Additive Manufacturing

In FFF, a printer head with an extrusion nozzle attached moves horizontally to

deposit the continuous filament of thermoplastic material on the surface. As soon as

the previously laid down substrate is cool enough to accept another bead of freshly

molten material, it moves vertically to print the next layer on top of the current

layer. FFF is usually utilized to fabricate delicate items in small sizes. However,

recent developments in technology introduced more advanced machines capable of

manufacturing high volume items as large as 30.4m long, 3.0m wide and 1.5m high.

Industrial machines such as Big Area Additive Manufacturing (BAAM) developed

at Oak Ridge National Laboratory (ORNL) (Duty et al. (2017)) and Large Scale

Additive Manufacturing (LSAMTM) developed by Thermwood (Thermwood (2019b))

are using feedstock of thermoplastic materials to manufacture voluminous parts. The

LSAM machine fabricating a car lower chassis is shown in Figure 1.1. Carbon fiber

reinforced thermoplastic material is used for large-scale additive manufacturing to

fabricate parts in large size. The process might takes several hours or even days to

get finished printing a large-scale product. Furthermore, the finished products have

to go through several steps of post-build processing before dispatching. Specifically,

the large size of the parts poses a challenge to practitioners on how to find and tune

the operational settings. Currently, these settings are mostly determined based on

the experience and intuition of the operator.

It has been shown that the current surface temperature of the layer on which

the next layer is about to be printed significantly impacts the mechanical properties

of the printed product (Sun et al. (2008)). For instance, part deformation as the

result of weak bonding between layers can happen if the surface temperature is too

high (Brenken et al. (2018)). On the other hand, cracking and warping can occur
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Figure 1.1: LSAMTM Machine

if the surface temperature is less than the glass transition temperature (Compton

et al. (2017)). Figure 1.2 illustrates the crack defects on a sample print due to

improper print surface temperature. Therefore, it is important to keep the print

surface temperature within an interval for each layer. The lower and upper bounds

of this interval depend on the type of the feedstock materials used by the machine.

The print surface temperature and heat dissipation of each location on the surface

are impacted by several factors such as airflow, humidity, ambient and deposition

temperatures, mechanical properties of the materials and the geometry of the parts.

On the other hand, print surface temperature can be controlled by the means

of a few levers such as proper scheduling of the material depositions on the surface

and active cooling. The time between two consecutive prints is referred to as layer

time. Moreover, for each location on the surface, the print time is defined as the time

when it accepts a new deposition. Either too large or too low layer time and print

time could lead to improper print surface temperature outside the desired interval.

Therefore, it is important to attain an optimal control of the materials depositions on
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Figure 1.2: Crack Defects Due to Improper Print Surface Temperature

the surface. Currently, a commonly used method is to fix the layer time and printer

head speed to simplify the process. However, to follow the dynamics of the process,

both layer time and printer head speed can be adjusted and tuned in real time.

1.1.1 Print Surface Thermal Modeling and Layer Time Control for Large-scale

Additive Manufacturing

The time between two consecutive prints is referred to as layer time. This chapter

aims to provide a robust real-time method that dynamically control the layer time

during the build span. The surface’s temperature change in large-scale material extru-

sion is captured by an infrared thermal camera in real-time. A non-linear regression

model is formulated and proved to fit the cooling dynamics. To deal with the layer-

wise change of cooling dynamics, due to humidity and air flow, the Gaussian process

is used to keep the regression model updated. The regression model together with

the Gaussian process can predict surface temperature of a part accurately, even in a

4



dynamic environment. This method to predict the surface temperature is then com-

bined into an optimization model with probabilistic constraints for a robust real-time

layer time control. Specifically, more than one position on the surface is monitored

and considered in the optimization model, and the resulting layer time for each layer

by solving the optimization model has the quality requirement satisfied and improves

production efficiency.

1.1.2 Dynamic Material Flow and Machine Motion Control for Large-scale

Additive Manufacturing Using Thermal Images

For each location on the surface, the print time is defined as the time when it

accepts a new deposition. The material flow and machine motion control through

printing with adjustable speed determine the print time for each location. This allows

for a greater control over printing compared to the layer time control case where the

print time is the same for all location. To this aim, first the thermal images are

processed to extract the thermal profiles. Similar to layer time control, the extracted

data are translated into a non-linear profile model describing the heat dissipation

on the surface. Exploiting the maneuverability characteristics of the printer head

while considering its mechanical constraints, a real-time printer head speed control

model is formulated as a non-linear mixed integer optimization program to determine

the material flow and machine motion. Following deterministic finite-state optimal

control and shortest path problem paradigm, a novel algorithm is developed to decide

for the optimal printing speed trajectory for each layer. The proposed approach was

tested by two case studies including a thin wall specimen and a car lower chassis.

The results showed that the method can capture the thermodynamics of the process

and achieve a further improvement in both quality and efficiency.
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1.2 Background Information for Laser Powder Bed Fusion

LPBF is an additive manufacturing technique that utilizes laser power to melt

and fuse the thin layers of spread powder on a build plate. Iterative laser beam scans

on the build surface, layer upon layer and dictated by a CAD model, ultimately fab-

ricate the finished product. Melt pools are formed when powder material is heated

and reaches the melting temperature. Lack of fusion or over melting phenomena

contribute to the development of pores in the solidified material, which in return can

degenerate the mechanical properties of the finished parts (Frazier (2014); Gong et al.

(2014); Sadowski et al. (2016)). In particular, extensive studies have shown that the

formation of such defects on parts is highly correlated to the morphological charac-

teristics of the melt pool (Tang et al. (2017); Cunningham et al. (2017); Khairallah

et al. (2016)). The laser power, scan velocity, and hatching distance are the primary

LPBF process parameter acting on melt pool formation and consequently their mor-

phological characteristics. Nevertheless, many random or environmental factors such

as material’s fluid dynamics and properties, layers thermal conduction and convec-

tion, and tools calibration also impact the characteristics of melt pools (Yang et al.

(2020b); Ciurana et al. (2013)). Thus, despite having a set of stable process parameter

settings, melt pools must be actively monitored in real-time to detect the anomalies

in the process.

On-axis thermal or optical high-speed cameras can capture streams of co-axial

melt pool images of laser-powder interaction in real-time during the process. A high

image sampling frequency poses a challenge toward conventional process monitoring

methods that rely on individual samples for fault detection and alarm management.

Furthermore, the scarcity of anomaly events makes it extremely hard to annotate

out-of-control samples and draw a high-fidelity baseline for in-control conditions.
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One widely used solution is to associate each melt pool image to either a normal

or defective spot on the part determined by Non-Destructive Testing (NDT) such as

X-ray micro-Computed Tomography (XCT) scanning or destructive inspection meth-

ods (Gobert et al. (2018); Zhang et al. (2019)). However, obtaining reliable labels with

either approach is tremendously time-consuming and expensive due to the aforemen-

tioned reasons, and the results might suffer from a lack of generalization, especially

in job shop process manufacturing flows. On the other hand, a cheaper yet effective

alternative is to utilize the correlation between defects and morphological malfor-

mation in melt pool images such as splattering, deformation, tiny or oversized melt

pool regions (Fathizadan et al. (2021); Repossini et al. (2017)). Given a set of high-

quality features, the proximity in structural properties of features can be explored to

distinguish the normal and abnormal events in the process.

1.2.1 Individual Anomaly Detection for Process Variation Management in Laser

Powder Bed Fusion

The state-of-the-art methods often rely on oversimplified and hand-crafted fea-

tures of the melt pool to analyze the images (Yang et al. (2020b, 2019a)). These

methods fail to preserve the spatial correlation within images and lose the valu-

able and intricate information inside each sample. A framework to process the melt

pool images by a configuration of Convolutional Auto-Encoder (CAE) neural net-

works is provided. The network’s corresponding bottleneck layer learns a deep low-

dimensional representation from melt pools while preserving the spatial correlation

and complex features intrinsic in the images. As opposed to the manual annotation

of data by X-ray imaging or destructive tests, an agglomerative clustering algorithm

is applied to these representations to automatically extract the anomalies and anno-

tate the data accordingly. A control charting scheme based on Hotelling’s T 2 and
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S2 statistics is then developed to monitor the process’s stability by keeping track of

the learned representations and residuals obtained from the reconstruction of orig-

inal images. An experimental build using a spiral concentrating scan pattern with

varying laser power was conducted on the Additive Manufacturing Metrology Test

bed at the National Institute of Standards and Technology (NIST) (Lane and Ye-

ung (2019)). Testing the proposed methodology on the collected data demonstrates

that the method can extract a set of complex features that are inextricable by us-

ing hand-crafted feature engineering methods. Finally, through extensive numerical

studies, it is shown that the proposed feature extraction and statistical process mon-

itoring scheme is capable of detecting the anomalies in real-time with relatively high

accuracy.

1.2.2 Deep Spatio-temporal Anomaly Detection in Laser Powder Bed Fusion

In addition to spatial correlation, the state-of-the-art melt pool control and mon-

itoring methods in additive manufacturing also disregard the rich temporal inter-

dependencies between melt pool images sequences (Yang et al. (2020b, 2019a) ;

Fathizadan et al. (2021)). The previous work on individual anomaly detection method-

ology is further extended by incorporating both temporal and spatial correlation into

the feature extraction part. To this aim, a configuration of convolutional long short

term memory auto-encoders is developed to learn a deep spatio-temporal represen-

tation from sequences of melt pool images. Unfolded bottleneck tensors and recon-

structed sequences are statistically mined to detect the group anomalies in the pro-

cess. A dual control chart monitoring scheme based on Hotelling’s T 2 and residual’s

variance S2 is again used as an easy-to-implement and intuitive tool to monitor and

control the process in real-time. Deploying a constant laser power, scan velocity, and

hatch distance, four nominally identical experimental builds with cylindrical features
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were printed on the Additive Manufacturing Metrology Testbed at the National In-

stitute of Standards and Technology (NIST) (Lane and Yeung (2020)). The collected

data are used for training, validation, and testing the proposed methodology. The

results demonstrate the superiority of spatio-temporal extracted features in detecting

anomalies compared to hand-crafted feature engineering methods.

1.3 Organization of the Document

In what follows, we first discuss an overview of relevant studies regarding both

LSAM and LPBF in Chapter 2. The experiment settings, thermal profile modeling,

and real-time layer time control method regarding LSAM will be explained in Chap-

ter 3. Chapter 4 introduces the pipeline to extract the data from thermal images

and material flow and machine motion control through printer head speed control

models for LSAM. The structure analysis and procedure to solve each model along

with the numerical results by evaluating two case studies will be provided in these

two chapters. In Chapter 5, the proposed pipeline to process and analyze the melt

pool images from LPBF, including convolutional auto-encoder for deep representa-

tion learning, agglomerative clustering for data annotation, and statistical process

control for anomaly detection, will be explained. Finally, constituents of the pro-

posed methodology for deep spatio-temporal anomaly detection in LPBF, includ-

ing convolutional long short term memory auto-encoders for deep spatio-temporal

representation learning, hierarchical-based agglomerative clustering for anomaly ex-

traction, and dual control charting scheme for statistical process monitoring, will be

delineated in Chapter 6. Given the experiment design including material, part geom-

etry and scan strategy, and laser processing parameters, the numerical results of the

proposed approaches after applying on real-world case studies are discussed in the

latter two chapters. Finally, Chapter 7 concludes the dissertation by summarizing
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the overall work.
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Chapter 2

LITERATURE REVIEW

2.1 Improve efficiency and quality through process control and design of

experiment in various technologies of additive manufacturing

There exists several studies on how to achieve efficiency and quality through pro-

cess control, Design of Experiment (DOE) and Response Surface Methodology (RSM)

in various technologies of additive manufacturing. They mostly inspect the mechan-

ical or material properties of the specimens by conducting different experiments.

Anitha et al. (2001) investigated the effect of FFF process parameters such as layer

thickness on the quality characteristics of the final products using Taguchi method

and analysis of variance. Employing central composite designs, Sood et al. (2010)

studied the relationship among the printing parameters such as layer thickness and

printing orientation. Given the effect of these parameters on the mechanical proper-

ties of specimens such as strength, an optimal settings was pursued to improve the

quality. Using factorial designs, Asadi-Eydivand et al. (2016) investigated the effect

of layer time and printing orientation on dimensional accuracy, compressive strength

and porosity in BJP. Zeng et al. (2012) suggested that process control by temperature

monitoring can result in a higher quality. They also concluded that better quality

is achieved when temperature is uniformly distributed throughout the surface. In

another study on FFF, Mohamed et al. (2016) used Q-optimal designs to decide the

best parameters setting for reducing the production makespan and feedstock material

consumption while maintaining high quality.
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Mireles et al. (2013) and Mireles et al. (2015) developed a decision support sys-

tem that uses thermal imaging information to detect defects and anomalies in PBF.

It was shown that through the use of optimal process control, this tool is capable

of stabilizing the temperature and thus increasing the quality. Farzadi et al. (2015)

evaluated the effect of a limited set of layer printing delays on the mechanical prop-

erties of prototypes such as dimensional accuracy and material strength. In another

study in JMP, Sitthi-Amorn et al. (2015) developed a closed-feedback loop 3D print-

ing platform that incorporates 3D scanning and imaging to calibrate the printer head

in real-time. Yao et al. (2018) first used multifractal analysis to characterize the

defect level of layer-wise thermal images in PBF. Then, they formulated the defect

conditions as a Markov process to determine the optimal control policy of whether

to perform a corrective action at each layer. Khanzadeh et al. (2019) used melt

pool thermal imaging to characterize the underlying thermo-physical dynamics of the

DED process. Self-Organizing Maps (SOMs) was employed as the next step to pre-

dict porosity in thin wall specimen in real-time. Finally, Liu et al. (2019) developed

an closed-loop quality control system based on FFF thermal images. Coupled with

an online defect detection classifier, the system can adjust the material flow rate,

extruder temperature, and layer height to minimize the defects in real-time.

2.2 Improve Efficiency and Quality Through Process Control in Fused Filament

Fabrication

FFF has drawn tremendous attentions since its introduction in the late 80s because

of its wide availability to the practitioners and relative low cost. Several studies have

been devoted to achieve high quality and efficiency through tool path planning in FFF

process (see Agarwala et al. (1996), Han et al. (2002), Huang et al. (2011)). Han et al.

(2003)) performed build time analysis to improve process efficiency of FFF. Jin et al.
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(2019) formulates an optimization model that aims to minimizing the makespan of the

printing of the products. Given collision-avoidance constraints, a heuristic procedure

was developed to find the optimal solution. By investigating process conditions,

Sun et al. (2008) proposed lateral geometric path to improve the bonding quality

of FFF. However, these approaches and results are not necessarily applicable within

the large scale additive manufacturing domain due to different printing and material

characteristics. For instance, heat transfer via conduction and convection is not

negligible anymore in large-scale additive manufacturing. Given that several factors

affect this interaction, new methodologies for data extraction and analysis are required

to provide control in real-time based on the dynamics of the process.

2.3 Current Research on Layer Time and Material Flow Control in Large-scale

Additive Manufacturing

The building dimension of manufactured products in large-scale additive manufac-

turing is considerably larger than that of regular additive manufacturing technologies.

As the result, significantly larger volume of thermoplastic material in high temper-

ature and with distinct mechanical and thermal characteristics is consumed by the

printer nozzle. This renders the cooling process to be notably slower compared to

regular additive manufacturing such as FFF, where the printer head keeps deposit-

ing the materials without pause and purge. Therefore and in contrast to small-scale

additive manufacturing, the effect of heat transfer via conduction and convection on

the dynamics of the process is not negligible anymore and needs to be addressed

from the automation manufacturing point of view. Furthermore and due to the small

scale, the speed of the printer head has been regraded as an irrelevant factor to the

monitoring and control of these processes since it is plausible to assume new layers

can be deposited almost instantaneously. Instead, the literature and practitioners in
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these areas devoted their efforts to investigate the effect of other deemed important

experiment settings such as layer thickness, printing orientation and deposition tem-

perature on the mechanical and quality characteristics of the finished products as it

was discussed by Section 2.1-2.2. Another important distinction factor between large-

scale versus regular additive manufacturing lies in the building span of the operation.

Currently, it takes hours to print a single part on a LSAMtm machine, making the

proper scheduling of printing operations vital to address this issue.

Additive manufacturing making large sized parts was studied as early as 1990s

(Khoshnevis and Dutton (1998)). The majority of early practice of large-scale ad-

ditive manufacturing was in the construction industry and aimed at an approach to

construction automation (Pegna (1997); Khoshnevis et al. (2004); Khoshnevis (2004);

Labonnote et al. (2016); Buswell et al. (2018)). Large-scale additive manufacturing

for production systems received little attention until recent years. The early version

of BAAM machine was developed around 2013 and was as simple as an extruder in-

stalled on a robotic arm (Holshouser et al. (2013)). A more complete BAAM machine

was developed soon after that and successfully fabricated a customized electric vehicle

(Love (2015); Talagani et al. (2015)). Paper by Kunc et al. (2017) shows examples

of trim tools, hand layup tools, vacuum assisted resin transfer molding tools and

autoclave tools fabricated by the BAAM machine. Another large-scale 3D printer

designed for production systems is the LSAM™ machine (Thermwood (2019b,a)). It

operates by a similar mechanism and provides similar functionality but has a larger

size. Thermoset printing, as an alternative of large-scale additive manufacturing,

adopts thermoset polymers, instead of thermoplastic polymers used in the BAAM

machine and the LSAM™ machine. One application of this technology is the large

scale reactive polymer additive system, also referred to as Thermobot (Kunc et al.

(2018); Lindahl et al. (2018); Romberg et al. (2019)). Thermoset polymers behave
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viscoelastically at room temperature, and it reduces the dependence on temperature

control (Lindahl et al. (2018)). The study, presented in this paper, focuses on large-

scale additive manufacturing that takes thermoplastic polymers as raw materials and

is applied to production systems. The LSAM™ machine is adopted to conduct ex-

periments.

Extensive review studies were conducted by Kim et al. (2018) and Colosimo et al.

(2018) on the quality control efforts in additive manufacturing. As it has been out-

lined, several issues need special attentions to ensure the reliability of additive manu-

facturing process, including prediction of optimal printing parameters and mechanical

properties, robust real-time monitoring and process control, and high speed fabrica-

tion and scale. Likewise, the problem of how to achieve efficiency and quality through

manufacturing automation and control of surface temperature in large scale additive

manufacturing has almost remained untouched. Guo and Leu (2013) emphasized the

need for future models to address material flow and machine motion control in various

technologies of additive manufacturing in large scale. Dreifus et al. (2017) examined

the deposition scheduling of large scale additive manufacturing, but they failed to

take print surface temperature into account in the optimization problem. Chesser

et al. (2019) examined the multi-resolution printing, extrusion diversion, and feed-

forward extruder control strategies to improve the geometric quality characteristics

of the parts manufactured by BAAM machine. A handful of studies also relied on

the use of thermal images to extract and model temperature profiles in large scale

additive manufacturing. However, they all suffer from multitude of simplistic as-

sumptions and missing important information in the process. For example, focusing

on a limited portion of the printed component, Compton et al. (2017) studied the

temperature cooling dynamics alongside the vertical-axis for a fixed location on each

layer. It has been also assumed that new layers are deposited instantaneously and
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that there is no thermal gradient across the surface . This assumption is not certainly

true in practice. It is almost impossible to deposit a new layer instantaneously as the

printer head can only operate within a limited speed range. Accordingly, the deposi-

tion time gap between distant locations causes thermal gradients across the surface.

In a most recent study done at ORNL by Borish et al. (2019), the simple average of

actual temperatures across the surface is taken to decide when to print the next layer.

Again, this is not applicable in practice as the distribution of temperature varies a

lot across the surface.

2.4 Melt Pool Image Feature Extraction and Process Variation Management in

Laser Powder Bed Fusion

Melt pool image analysis and feature extraction methods in the literature can be

classified into three major classes: parametric modeling, non-parametric modeling,

and deep learning approaches. Among all the studies, only a few make efforts to

incorporate the effect of spatio-temporal correlation between data into their model-

ing approaches. Regarding parametric modeling, Yang et al. (2019b) extracted the

area of a fitted ellipse around each melt pool using a thresholding constant. Laser

power, scan velocity, and neighborhood spatio-temporal scanning effects are selected

as input variables to predict the melt pool area. Building upon the previous study,

Yang et al. (2020a) developed a Layer-wise Neighboring-Effect Modeling (L-NBEM)

method that uses a fully-connected neural network to predict the melt pool area.

Predictor variables this time are re-engineered to include the data from previous lay-

ers’ scan and exposure settings. Guo et al. (2019) proposed a framework based on

a general linear mixed model called Spatio-Temporal Conditional Auto-Regressive

(STCAR). The model accounts for spatial and temporal correlations within and be-

tween images, respectively. The stability of the process is controlled by monitoring the
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STCAR model’s estimated parameter using a Hotelling’s T 2 control charting scheme.

Given the sparse nature of spatio-temporal anomaly events, Yan et al. (2021) decom-

posed the original tensor of melt pool images to various events, including background,

and natural and anomaly foregrounds. The parameters of the formulated regression

model are estimated by an algorithm of block coordinate descent and monitored by

a likelihood ratio test statistics.

Several studies are devoted to non-parametric modeling with handcrafted fea-

tures in this area. Khanzadeh et al. (2019) applied bi-harmonic surface interpolation

in the spherical coordinate system to extract thermal features from individual melt

pool images. Self-Organizing Maps (SOM) is then utilized to cluster the normal and

porous samples while the accuracy of results is tested by actual labels obtained by

XCT-scan imaging. In a similar effort, Khanzadeh et al. (2016) analyzed melt pool

morphology by converting the melt pool boundary data points to a polar system and

taking the fitted cubic spline coefficient weights as features. Functional Principal

Component Analysis (FPCA) and tensor decomposition are amongst the other fea-

ture extraction methods used by Khanzadeh et al. (2018a,b) that strive to preserve

the spatio-temporal characteristics of melt pool images. Support Vector Machines

(SVM), Decision Trees (DT), and Hotelling’s T 2 control charting are used as the

statistical schemes to classify and detect the porous samples following the melt pool

characterizations. The results, however, suffer from large standard deviations in ac-

curacy and F1 scores. Grasso et al. (2017) acquired the vector of intensities for each

pixel throughout the layers after unfolding the tensor of melt pool images by Vector-

ized Principal Component Analysis (VPCA). The vanilla k-means is used to cluster

the set of weights and Hotelling’s T 2 distances assigned to each frame and each pixel,

respectively. In another study conducted by Grasso et al. (2018), image segmentation

and contour detection is performed to retrieve the melt pool area from infrared melt
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pool images. The extracted features are then fed by a bi-variate control charting

method based on Hotelling’s T 2 statistics to monitor and control the process over

time. Gobert et al. (2018) is another example of studies with handcrafted-feature

engineering where feature extraction is realized by sliding 3D convolution kernels on

tensors of multi-modality data. The votings from an ensemble of multiple classi-

fiers trained on individual modalities are concatenated to predict the porosity of each

x, y, z location on the surface.

The loss of rich spatio-temporal correlation between data as the result of hand-

crafted feature engineering is the common and inevitable issue of all aforementioned

studies. Recently, deep learning methods have emerged in new research streams to

address this issue by interlacing feature extraction with model training. Conclusively,

the structure of collected data determines the set of advanced features required to

achieve superior performance in intended statistical process monitoring, anomaly de-

tection, or labelling tasks (Goodfellow et al. (2016)). Nevertheless, the deployment

of such deep learning methods within the additive manufacturing domain is at an

infancy stage. Amongst the very few studies, Kwon et al. (2020) fed the melt pool

images to the Convolutional Neural Networks (CNN) to fit a regression model for

laser power estimation. The model architecture is capable of capturing the spatial

correlation within the melt pool images while it fails to account for the temporal

correlation between data samples. Very similar work is done by Yang et al. (2019a),

where the areas of individual melt pools are predicted by training a CNN model on

melt pool images. Zhang et al. (2019) extracted the size and location of a porous

region by performing thresholding and feature matching on the cross-sectioning and

XCT imaging data. Various classification and regression tasks are conducted by feed-

ing the melt pool images to CNN model architectures to predict the locations and

sizes of pores. Following an analogous path in this category of additive manufac-
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turing research, we develop a deep spatio-temporal feature extraction method that

provides a superior anomaly detection performance compared to existing parametric

and non-parametric studies.

2.5 Summary of Key Technical Contributions of the Work Toward Large-scale

Additive Manufacturing

In summary, the mentioned above works regarding LSAM lack a proper holistic

modeling of the correlation between operation parameters and important quality char-

acteristics or efficiency of the process from manufacturing automation point of view.

To the best of our knowledge, there exists no established online monitoring frame-

work to utilize such a correlation to provide real-time control specially for large-scale

additive manufacturing. The key technical contributions of this work aiming at filling

these gaps can be highlighted as follows:

1. A novel methodology has been developed to address the issue of robust real-

time monitoring and process control for large-scale additive manufacturing.

Specifically, printing layer time and printer head speed control models were

proposed to optimize the scheduling of the material depositions on the surface

online according to the thermal dynamics of the print surface and mechanical

characteristics of the extruder machine. Disregarding such factors, the current

practice in LSAM is to implement a fixed layer time and fixed printer head

speed strategy. Moreover, the previous studies all lack a realistic perspective of

the process leading to multitude of oversimplifying assumptions such as ignoring

thermal gradient or assuming instant deposition across the surface.

2. A modeling framework has been developed to characterize the temperature

dissipation on the entire surface. Furthermore, a set of digital image processing

19



steps along with a temperature profile modeling framework assist to extract

and model the thermal profiling data with minimum amount of supervision in

real-time.

3. To ensure the viability of our developed control models, they were all analysed

in great details and the corresponding solving procedures were either provided

or developed for each one. Finally, relying on the numerical results from real-

world case studies, it was proved that our method can lead to a simultaneous

improvement in both the fabrication speed and quality of parts.

2.6 Summary of Key Technical Contributions of the Work Toward Laser Powder

Bed Fusion

A prior technical knowledge of the specific AM technology is often necessary to

model the physics-based relationships and detect the anomalies in the process. On

the other hand, high-dimensional and spatio-temporally correlated co-axial images

are widely captured during the laser powder bed fusion process. However, data-

driven regression-based methods suffer from inadequacy and lack of generalizations

in the feature extraction development phase. A framework to translate the collected

data into simple and easy to understand statistical scalars in real-time is developed.

Practitioners will be equipped with generalized feature engineering and ultimately

control charting methodologies that automate the anomaly detection process without

requiring to understand the underlying physical relationships in the process.
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Chapter 3

PRINT SURFACE THERMAL MODELING AND LAYER TIME CONTROL

FOR LARGE-SCALE ADDITIVE MANUFACTURING

3.1 Analysis of Surface Temperature

3.1.1 Motivation

Fabrication of vehicles through large-scale additive manufacturing has been proved

to be possible. However, the gap from the first prototype to mass manufacturing is

always underestimated due to a lot of issues related to quality and efficiency. Great

effort is being made to keep a consistent quality. As has been discovered, the quality

of a final product is sensitive to the print surface temperature, which is referred to as

the temperature on surface of part before a new layer is about to be added.

Fig. 3.1 shows the result of an experiment about the strength and layer time.

As the layer time increases, the surface temperature decreases. It causes a small

strength, which further results in bonding issue like crack. Thus, small print surface

temperature is supposed to be prevented. Meanwhile, the print surface temperature

cannot be larger than a certain level. Hot thermoplastic materials could be not stiff

enough to support a new layer, and the corresponding consequence is deformation of

final product.

Improvement of efficiency and quality through a proper print surface temperature

can be achieved by manufacturing automation. This work is intended to contribute

to this end.
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Figure 3.1: The Relationship Between the Strength and Layer Time

3.1.2 Experimental Setup

The machine used to perform large-scale additive manufacturing is the LSAM™

machine, shown in Fig. 1.1. The process of fabricating a part consists of two steps.

The part is first printed layer by layer and then trimmed by a CNC router. There

are two gantries on a single LSAM™ machine. One is to perform the additive, and

the other the subtractive process. The gantry with a print head can be seen at the

center of Fig. 1.1. The pelletized thermoplastic material is dried and pneumatically

conveyed to the print head. Fig. 3.2 provides a schematic of the print head. The

thermoplastic material gets into heated barrel through feed throat. Several heat zones

are there in the heated barrel to get the thermoplastic material into a softened state.

A nozzle and a compression wheel are installed at the bottom of the print head.

The melted material is squeezed out of the nozzle, and then the compression wheel

flattens the extruded bead. Several cooling fans are equipped on the two sides of the

envelope to expedite the cooling process if needed. This cooling process is monitored

by FLIRTM A65 infrared camera, which is capable of capturing temperatures in the
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Figure 3.2: Schematic of Print Head for Large-scale Additive Manufacturing

Starting/end point

Deposition

Repositioning

Figure 3.3: Thin Wall and Tool Path

range from -40◦C to 550◦C with accuracy of ±5◦C.

In this study, carbon fiber filled polycarbonate (CF/PC) compound named ”SABIC

DC004” is used as the thermoplastic material to print thin wall tests. A single-bead-

wide layer is added on the surface in a clockwise motion for each layer, shown in

Fig. 3.3. Then, the print head moves to the the starting/end point, performing a

purging procedure and waiting for printing the next layer. The experiment setting

is shown in TABLE 3.1. Deposition temperature, denoted by T0, is the temperature
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Table 3.1: Experiment Setting

Item Setting

Deposition temperature, T0 260◦C
Ambient temperature, Tenv 24◦C
Upper bound of surface temperature, Tu 150◦C
Lower bound of surface temperature, Tl 120◦C
The best surface temperature, Tb 135◦C
Fixed layer time, tc 260s
Deposition time per layer, td 15s
Speed 22.7cm/s
Bead Width 2.0cm
Thickness 0.5cm
Length of the final product 91.5cm
Width of the final product 20.3cm
Height of the final product 35.6cm

of the thermoplastic material when it is deposited. Ambient temperature, denoted

by Tenv, was around 24 ◦C, when the experiment was conducted. Based on extensive

experiments by material scientists, the upper bound of print surface temperature Tu,

the lower bound of print surface temperature Tl and the best surface temperature Tb

are set to be 150◦C, 120◦C and 135◦C, respectively. This means that the print surface

temperature should be within upper and lower bounds and as close to the ideal print

surface temperature as possible to achieve good product quality. The deposition time

per layer, denoted by td, is the time that the nozzle spends adding a layer. The total

amount of time for a layer, including the deposition time and waiting time, is referred

to as the layer time, denoted by tc.

The surface temperature of part is monitored by an infrared camera, and its

thermal image is shown in Fig. 3.4a. The frame rate is around 1 frame per second.
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(a) Thermal Image (b) Final Product

Figure 3.4: Test Samples

Fig. 3.4b shows the final product of the thin wall.

3.1.3 Temperature Distribution and Cooling Dynamics

A large volume of thermoplastic material in high temperature is deposited in high

speed. It causes the cooling process to be slow, when it is compared to desktop FFF.

As it was discussed before, time is the primary factor that controls the current surface

temperature. The large-scale of printing products implies that instant deposition of

materials on the surface is not possible. Large values for deposition time per layer

mean that there are considerable time gaps between positions on surface that are far

away from each other. As a result, noticeable thermal gradients can be discerned

between them. On the other hand, the geometry and dimension of the printing

product and spatial correlation of positions within surface and between layers impact

the cooling dynamics of different positions. Therefore, the temperature distribution

and cooling characteristics vary from position to position and layer to layer. A more

detailed analysis of temperature distribution will be discussed later in Chapter 4 when

data extraction procedure from thermal images is outlined.
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The analysis of surface temperature aims at developing a predictive model that can

accurately describe the characteristics of surface temperature. Positions on surface

have different cooling dynamic behaviors, and the cooling dynamic behavior of a

position could also be changing mildly over time. A model describing temperature

profile is required, when multiple positions are considered to determine the best timing

to print the next layer.

3.1.4 Modeling of Temperature Profile

It is complex and unnecessary to formulate a single model of the cooling dynamics

for the whole surface, and thus we start with a single position on the surface of the

thin wall. Fig. 3.5 shows the observations of surface temperatures at this position for

four layers. Each circle in the figure stands for an observation. The horizontal axis

and the vertical axis provide the time when it is observed and the surface temperature

at that time, respectively. The pattern about how the surface temperature of a single

position decreases can be observed in this figure. The surface temperature is close

to the deposition temperature, when a new layer is being printed. The cooling rate

keeps decreasing, as the surface temperature is decreasing. Several outliers in Fig.

3.5 occur, when the position being monitored is blocked by the print head and not

seen by the camera.

According to the paper Wang et al. (2019), the surface temperature of a position

follows the differential equation shown below.

dT (t)

dt
= β0 + β1(T (t)− Tenv), (3.1)

where T (t) is the surface temperature at time t, and β0 and β1 are unknown param-

eters.

Remark 1. Equation (3.1) is an empirical equation with similar form to the New-
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Figure 3.5: The Observations of Surface Temperature of a Single Position

ton’s law of cooling. It was observed long time ago that in ideal conditions the rate

of temperature change of a body is proportional to the difference between the body

temperature and the ambient temperature. However, those ideal conditions are hardly

satisfied in practice. Instead of directly using a law in physics, we adopted a statistical

model motivated by the Newton’s law of cooling, provided by Equation (3.1). We add

a constant term β0 to have a better fit. Parameters are estimated in a data-driven

manner, instead of being derived from physical models. This model keeps a simple

form and is shown to predict future surface temperature with high accuracy.

By solving Equation (3.1), the future surface temperature can be obtained as

follows.

T (t) = Tenv −
β0

β1

+

(
T0 − Tenv +

β0

β1

)
eβ1t, (3.2)

where t denotes the time since the last time thermoplastic material is added to this

position.

Let β̂0 and β̂1 be the estimates of β0 and β1, respectively found by fitting the model

from the data. The fitting procedure involves applying the Gauss-Newton iteration
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Figure 3.6: Regression Plot

method on the Taylor linearization of function T (t) about β0 and β1 (Montgomery

et al. (2012)). Let µi and σi, for i = 0, 1, denote the mean and standard deviation of

β̂i, respectively. Given the estimated parameter β̂ =
[
β̂0, β̂1

]T
, the estimate of T (t),

denoted by T̂
(
t, β̂
)
, is expressed as follows.

T̂
(
t, β̂
)
= Tenv −

µ0

µ1

+

(
T0 − Tenv +

µ0

µ1

)
eµ1t. (3.3)

Denote LBT (t) and UBT (t) as the lower bound and upper bound of surface tem-

perature for (1 − α) one-sided prediction intervals of T (t), respectively. Then, we

have

P
(
T (t) > LBT (t)

)
= 1− α,

P
(
T (t) < UBT (t)

)
= 1− α,

(3.4)

such that

LBT (t) = T̂
(
t, β̂
)
− tα,n−2se

(
T̂
(
t, β̂
))

,

UBT (t) = T̂
(
t, β̂
)
+ tα,n−2se

(
T̂
(
t, β̂
))

,

(3.5)

where tα,n−2 is the 100(1 − α) percentile of the t-distribution with (n− 2) degrees

of freedom. The term se
(
T̂
(
t, β̂
))

in the equations above represents the standard

error of T̂
(
t, β̂
)
, which can be found by the delta method as follows. First, the term
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Figure 3.7: Residual Normal Quantile Plot
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Figure 3.8: Bar Plot of Residual Standard

Errors for Ten Layers

Table 3.2: Parameter Estimates

Term Estimate Std Error t Ratio Prob> |t|

β0 1.00700 0.005942 169.4 < 2× 10−16 *
β1 -0.01003 0.00003 -262.7 < 2× 10−16 *

* shows statistical significance.

T̂
(
t, β̂
)
is approximated using the Taylor linearization about the parameters:

T̂
(
t, β̂
)
≃ T̂ (t,β) +∇T̂ (t,β)

(
β − β̂

)
. (3.6)

Taking the variance from both sides results in

V ar
(
T̂
(
t, β̂
))
≃ ∇T̂ (t,β)V ar

(
β̂
)
∇T̂ (t,β)T , (3.7)

where V ar
(
β̂
)
denotes the variance-covariance matrix of β̂. Finally, se

(
T̂
(
t, β̂
))

can be simply found by taking the squared root of the
(
V ar

(
T̂
(
t, β̂
))

+ σ̂2
)
, where

σ̂2 represents the estimate of the variance of error.

Fig. 3.6 illustrates the resulting fitted model shown by the red line along with

observations shown by black dots. The blue ribbon around the fitted curve in Fig.
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Figure 3.9: The Observations and Predictions of β̂0, β̂1 and σ̂2 for d = 3

3.6 illustrates the intersection of two 95% one-sided prediction intervals for T (t).

The black dots are all close to the red line. The prediction interval is narrow and

covers most of the observations. It suggests that the regression model can describe

the cooling process accurately. TABLE 3.2 shows a summary of the model fitting

result. We have µ0 = 1.00700, µ1 = −0.01003, σ0 = 0.005942, and σ1 = 0.00003.

The estimate of the variance of error σ̂2 given by Mean Square of Residuals (MSRes)

is equal to 0.76014. The normal quantile plot of residuals are illustrated in Fig.

3.7. If some residuals fall outside the confidence interval, one might suspect the non-

normality of the residuals. Some departures from normality can be detected as some

of the residuals fall outside the confidence band for normal distribution. Generally,

statistical inference in non-linear regression is realized by large-sample or asymptotic

theories. This suggests that they are approximately true even if the errors are non-

normally distributed (Montgomery et al. (2012)).

An additional experiment is conducted, and the observations for ten layers are

collected and compared with the predicted surface temperature. Fig. 3.8 is the
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bar plot of the residual standard error for ten layers. The residual standard errors

are all around 1◦C, indicating that the model can fit and predict the future surface

temperature accurately.

3.2 Adaptive Model with Bayesian Methods

The printing environment, such as humidity and airflow, could change during the

printing process. It thus requires the temperature prediction model to be adaptive

to capture the changing cooling dynamics. In this section, we introduce an adaptive

model with Bayesian methods in forecasting β0, β1 and σ̂2. Let β̂i,n, for i = 0, 1, be the

estimate of βi in Equation (3.1) for the nth layer according to the observations of the

nth layer. The estimate β̂i,n approximately follows the Gaussian distribution. Denote

by µi,n and σi,n the mean and standard deviation of β̂i,n, respectively. The estimate

β̂i,n forms a time series with the index n. Let β̂i,N+τ (N) be the τ -step-ahead forecast

made at the end of layer N . Assume the forecast β̂i,N+τ (N) is a random variable

following the Gaussian distribution with mean µi,N+τ (N) and standard deviation

σi,N+τ (N).

The Gaussian process is used to conduct the forecasting. Specifically, the last d

continued estimates of parameters β0 and β1 are taken as input to perform a τ -step-

ahead forecast. Here, d refers to the number of previous layers that are considered

in forecast, and it is determined according to autocorrelation of parameters. Assume

N ≥ d, and then the τ -step-ahead forecast β̂i,N+τ (N) is of interest and obtained

through the historical data β̂i,n, for n = N − d+ 1, N − d+ 2, · · · , N . Let

β̂i =
[
β̂i,N−d+1 β̂i,N−d+2 · · · β̂i,N

]T
, (3.8)

for i = 0, 1. Assume
[
β̂

T

i β̂i,N+τ (N)
]T

, for i = 0, 1, follows the multivariate Gaussian

distribution. Specifically,
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 β̂i

β̂i,N+τ (N)

 ∼ N
 m̂

m̂

 ,

 K K∗

KT
∗ K∗∗

+ σ2
nId+1

 , (3.9)

where σ2
n denotes noise variance, Id+1 is a (d+ 1)× (d+ 1) identity matrix, and

m̂ = [m̂ m̂ · · · m̂]T , (3.10)

m̂ =

∑N
j=N−d+1 µi,j

d
, (3.11)

σ2
n =

∑N
j=N−d+1 σ

2
i,j

d
. (3.12)

Matrices K, K∗ and K∗∗ are represented as follows.

K =



k (0) k (1) · · · k (d− 1)

k (1) k (0) · · · k (d− 2)

... ... . . . ...

k (d− 1) k (d− 2) · · · k (0)


, (3.13)

K∗ =

[
k (τ + d− 1) k (τ + d− 2) · · · k (τ)

]T
, (3.14)

and

K∗∗ = k (0) , (3.15)

where k(x) is a squared exponential kernel function. Specifically,

k(x) = σ2
f exp

(
− x2

2l2

)
, (3.16)

where l and σ2
f are the hyperparameters that control the smoothness and vertical

variation of the approximation to the historical data, and x is the Euclidean dis-

tance between vectors of features. To predict β0 and β1, x has only one dimension,

representing the number of layers. The posterior is given by

β̂i,N+τ (N) | β̂i ∼ N
(
µi,N+τ (N) , σ2

i,N+τ (N)
)
, (3.17)
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where

µi,N+τ (N) = K∗
(
K + σ2

nId
)−1
(
β̂i − m̂

)
+ m̂, (3.18)

σ2
i,N+τ (N) = K∗∗ + σ2

n −K∗
(
K + σ2

nId
)−1

KT
∗ . (3.19)

Following the similar way, the variance of error, σ̂2, is predicted. Let

V̂ =
[
σ̂2
N−d+1 σ̂2

N−d+2 · · · σ̂2
N

]T
, (3.20)

where σ̂2
i , for i = N−d+1, N−d+2, · · · , N , are observed variances of error. Denote

by σ̂2
N+τ (N) the τ -step-ahead forecast of σ̂2. Assume

[
V̂

T
σ̂2
N+τ (N)

]T
follows the

multivariate Gaussian distribution. The Gaussian process is then used to derive

σ̂2
N+τ (N) | V̂ , following the same way that predicts β̂i,N+τ (N). In addition to layer

number, the prediction of σ̂2 also depends on the estimated parameters of β0 and

β1. Therefore, β̂i are included in the set of features to calculate distance x shown in

Equation (3.16) to predict the σ̂2.

Fig. 3.9 shows a case where parameter estimates β̂0, β̂1 and σ̂2 are changing over

time due to the change of printing environment. Three plots in the figure give the

trend of β̂0, β̂1 and σ̂2, respectively. In each plot, the observed means and confidence

intervals are presented by blue color, while the one-step-ahead predicted means and

confidence intervals are presented by red color. The observed means and confidence

intervals of those parameters suggest that, due to the change of the environment, β0

keeps decreasing, β1 keeps increasing, and σ2 is fluctuating in a certain range. A

negative correlation of β0 and β1 is observed, and it is estimated to be around minus

one. The correlation observed from the data will later be used to predict future surface

temperature. The Gaussian process is applied to capture the change of parameters

and do smoothing for the time series. The optimal values of hyperparameters of the

Gaussian process are found by maximizing the marginal log-likelihood of historical
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(a) Layer 4
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(b) Layer 6
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(c) Layer 8
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Figure 3.10: Comparison of Predicted Intervals for Observations and Predictions for

Different Layers

data. d is set to be three, and thus last three layers are used to make a one-step-ahead

prediction. The predicted values of β̂0 and β̂1 for each layer can capture the trend of

observed values of β̂0 and β̂1 well. There is no obvious increasing or decreasing trend

for σ̂2, and the predicted value of σ̂2 can smooth the time series.

The prediction of β̂0, β̂1 and σ̂2 are applied to Equation (3.5) to find the predic-

tion interval of future surface temperature, and the result is shown in Fig. 3.10. Four

plots in Fig. 3.10 are presenting the result for layer 4, layer 6, layer 8 and layer 10,

respectively. In Fig. 3.10a, two blue solid lines indicate the upper bound and lower

bound of surface temperature of layer 4 based on the observations of layer 4, respec-

tively. In other words, β̂0,4, β̂1,4 and σ̂2
4 are estimated and used to do predictions. It

reflects the real temperature dynamics for this layer. The two red dashed lines in Fig.
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3.10a show the predicted upper bound and lower bound, respectively. Specifically, we

let N to be three. β̂i =
[
β̂i,1 β̂i,2 β̂i,3

]T
, for i = 1, 2, and V̂ = [σ̂2

1 σ̂2
2 σ̂2

3]
T , as

historical data is used to predict β̂i,4 (3), for i = 0, 1, and σ̂4 (3) through the Gaussian

process, which then leads to the predicted upper bound and lower bound of surface

temperature. In a similar way, we draw upper bound and lower bound for three other

layers shown in Fig. 3.10b–3.10d, respectively. It can be observed that the prediction

intervals based on parameter predictions for layer 4 and layer 6 are a little wider than

the prediction intervals based on observations. Nonetheless, they still maintain a

high accuracy following the change of printing environment. On the other hand, the

prediction-based prediction intervals for layer 8 and layer 10 are much more accurate

as they quite overlap with observation-based prediction intervals.

3.3 Real-time Layer Time Control

3.3.1 Problem Description

Large-scale additive manufacturing is subject to constraints on print surface tem-

perature, which can be neither too high nor too low. A new layer is supposed to be

printed on a surface with the surface temperature in the range from Tl to Tu and

close to Tb. Currently, a commonly used method is to fix the layer time. The fixed

layer time is predetermined based on experiment or experience. However, the cool-

ing dynamics of a single position on the surface could change over time due to the

change of printing environment. Therefore, any fixed layer time cannot guarantee to

be optimal. A dynamic approach is required to perform real-time layer time control.

The dynamics of surface temperature at different positions are different, and it is

represented by different values of parameters in Equation (3.2). We observed that the

surface temperature decreases slowly at a corner and fast at a long edge. The best time
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to add a layer should be obtained by considering multiple positions comprehensively

based on the prediction of their surface temperature subject to other constraints such

as quality restrictions. In this section, we introduce a real-time layer time control

method. More than one position is monitored and considered in an optimization

model to improve both the quality and efficiency.

3.3.2 Model for Layer Time Control

Denote by M the number of positions being monitored. The temperature change

of the kth position, for k = 1, 2, · · · ,M , is modeled by Equation (3.2) with parameters

βk
0 and βk

1 , which are obtained by one-step-ahead forecasting introduced in Section

3.2. For the predicted surface temperature at the kth position T̂ k (t), the time t starts

with 0 when thermoplastic material is deposited at the kth position. Since the print

speed is fixed, each position shares the same layer time. The optimization model with

decision variable t is built as follows.

min f(t) =
M∑
k=1

ωk

(
T̂ k (t)− Tb

)2
+ ω0t (3.21)

s.t.

P
(
T̂ j (t) ≥ Tl

)
≥ 1− α, for j = 1, · · · ,M, (3.22)

P
(
T̂ j (t) ≤ Tu

)
≥ 1− α, for j = 1, · · · ,M. (3.23)

The objective function, given by Equation (3.21), is a weighted summation with

weight for each term denoted by ωi, for i = 0, 1, · · · ,M . The term ∑M
k=1 ωk(T̂k(t)−Tb)

2

measures how much each position has print surface temperature close to the best

temperature Tb. The term ω0t is the layer time multiplied with a coefficient. Small

values of all those terms are pursued, and it is achieved by minimizing the objective

function. The weight ωi, for i = 0, 1, · · · ,M , which shows how much each term is

valued, is determined based on domain knowledge. Inequation (3.22) and Inequation
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(3.23) are chance constraints. Each inequation, represented by Inequation (3.22), is

to guarantee that the print surface temperature for a single position is larger than

the lower bound with probability (1− α). Similarly, each position has print surface

temperature smaller than its upper bound with probability (1− α), according to

Inequation (3.23). The chance constraints can be reformulated as follows.

LBT (t) ≥ Tl, for j = 1, · · · ,M, (3.24)

UBT (t) ≤ Tu, for j = 1, · · · ,M. (3.25)

Each constraint given by Inequation (3.24) or Inequation (3.25) stands for an

interval. The feasible region is the intersection of all such intervals, and it is a closed

interval, represented by a lower bound tl and an upper bound tu.

Convexity of an optimization model guarantees that the optimal solution can be

derived. A proposition for the model’s convexity is provided as follows.

Proposition 1. The optimization model described by Equation (3.21), Inequation

(3.22) and Inequation (3.23) is convex, if

tu ≤ min

{
t | T̂ k (t) ≥ Tenv

2
− βk

0

2βk
1

+
Tb

2
, k = 1, 2, · · · ,M

}
. (3.26)

Proof. Define function fk (t), for k = 1, 2, · · · ,M , as follows.

fk (t) =
(
T̂ k (t)− Tb

)2
. (3.27)

The second order derivative of fk (t) can be expressed as follows.

df2
k (t)

dt2
= 2ck

(
2

(
T0 − Tenv +

βk
0

βk
1

)
eβ

k
1 t +

(
Tenv − Tb −

βk
0

βk
1

))
, (3.28)

where ck is a positive number given below.

ck =
(
βk
1

)2(
T0 − Tenv +

βk
0

βk
1

)
eβ

k
1 t. (3.29)
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By Equation (3.3), the second order derivative in Equation (3.28) can be reorga-

nized as follows.

df 2
k (t)

dt2
= 4ck

(
T̂ k (t)− Tenv

2
+

βk
0

2βk
1

− Tb

2

)
(3.30)

The condition provided by Inequation (3.26) implies df 2
k (t) /dt

2 ≥ 0, for k=1,2,··· ,M.

Thus, function fk (t) is convex. Function f (t) can be expressed as follows.

f (t) =
M∑
k=1

ωkfk (t) + ω0t, (3.31)

which is also convex. The feasible region is convex, so the optimization model is

convex.

The condition provided by Inequation (3.26) is usually satisfied in practice, when

sample size is large enough to estimate T̂ k (t). Therefore, the optimization model can

be solved by a method for convex optimization problem that can handle nonlinear

objective function and constraints. For this purpose, the Sequential Quadratic Pro-

gramming (SQP) method is used to find the optimal solution. SQP is an iterative

method using the Taylor’s second order approximations of the objective function with

the first order Taylor’s approximations of the constraints. Let b (t) ≥ 0 represent con-

straints provided in Inequation (3.24) and Inequation (3.25). Define the Lagrangian

of the problem as L(t, λ) = f(t)−λT b(t), where vector λ is a Lagrange multiplier. Let

tk and λk be the solution and the Lagrange multiplier at iterate k, respectively. Then,

a solution to the following quadratic programming subproblem defines an appropriate

search direction Dk:

min
Dk
∇f

(
tk
)T

Dk +
1

2

(
Dk
)T ∇2

ttL
(
tk, λk

)
Dk (3.32)

s.t.

∇b
(
tk
)T

Dk + b
(
tk
)
≥ 0. (3.33)
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Figure 3.11: Positions Monitored in the Case Study
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Figure 3.12: Comparison of Layer Time from the Optimal Control of Layer Time and

the Fixed Layer Time Strategy

The values of t and λ for iteration (k + 1) can be obtained by tk+1 = tk+Dk and the

corresponding Lagrange multiplier of the quadratic sub-problem, respectively. The

initial values of t and λ, denoted by t0 and λ0, are determined by choosing a random

value, and the optimal values are found by repeating the process until convergence.

3.4 Case Study

This case study section is dedicated to demonstrating the effectiveness of the de-

veloped real-time layer time control method. In this case study, only two positions

are monitored, with M = 2. In practice, it can be easily extended to a model moni-
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toring more than two positions. The locations of the two positions being monitored

are shown in Fig. 3.11. Position 1 is at the corner and always has a higher surface

temperature, while position 2 is in the middle of an edge and usually has a lower

surface temperature. The coefficients ωi, for i = 0, 1, 2, are set to be one.

The data of surface temperature from 13 layers are collected in this case study.

Two control methods are applied to that data. One is the real-time layer time control

method proposed in this paper, and this method gives the optimal control for layer

time. The other is the traditionally used method with a fixed layer time policy, where

layer time is fixed to be 260s. The two control methods are compared with respect

to two performance measures, layer time and print surface temperature.

Fig. 3.12 shows the comparison of layer time from two control methods. The

horizontal axis gives the layer numbers, and the vertical axis represents the layer

time. The blue color stands for the traditionally used method, and it is a straight

line since the layer time is fixed. The red color gives the layer time of each layer when

the optimal layer time control is applied. In this case study, d is set to be three,

and thus the two lines in blue color and red color overlap in the first three layers. It

starts with the fourth layer that the optimal control of layer time starts reducing layer

time, compared to the fixed-time policy. As the printing environment is changing,

the cooling rate is increasing. The required layer time is decreasing. The optimal

control of layer time can track the change and achieve a better performance. For the

last several layers, the layer time is reduced by about 23%.

Fig. 3.13 presents the print surface temperature from two control methods. The

horizontal axis shows the layer numbers, and the vertical axis gives the temperature.

The straight dashed line in black color marks the best surface temperature, which is

135◦C. The two lines in blue color show the print surface temperatures of position

1 and position 2 with fixed-time policy, respectively. Due to the change of printing
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Figure 3.13: Comparison of Print Surface Temperature from the Optimal Control of

Layer Time and the Traditionally Used Method with a Fixed Layer Time

environment, the cooling rate is increasing, and thus the two blue lines are decreasing.

As the layer time is fixed, it is not capable of adjusting itself to the change of printing

environment. In contrast, the lines in red color, representing the optimal layer time

control, stay around the best surface temperature. The overlap can be seen for the first

three layers, as d is set to be 3. After the third layer, the print surface temperature of

position 1 is a little higher than the best surface temperature, while the print surface

temperature of position 2 is a little lower than the best surface temperature. A better

quality is achieved by comprehensively considering print surface temperature of the

two positions.

The values of the objective function of two control methods are presented in Fig.

3.14. The red color and blue color represent the optimal control and the fixed-time

policy, respectively. There is an overlap for the first three layers. After the third layer,

the optimal control of the layer time results in a smaller value of objective function.

Besides, the improvement is getting larger, as the layer number is increasing.

Coefficient ωi, for i = 0, 1, 2, is set according to the trade-off of layer time and

print surface temperature. To study the effect of coefficient ωi, we fix ω1 and ω2 and

tune ω0, and the resulting performance measures with different ω0 are presented in
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Figure 3.14: Values of Objective Function from the Optimal Control of Layer Time

and the Traditionally Used Method with a Fixed Layer Time
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Figure 3.16: The Effect of ω0 on Print Sur-

face Temperature

Fig. 3.15 and Fig. 3.16. Fig. 3.15 presents the optimal layer time with different ω0

for layer 8. As ω0 is increasing from 0 to 10, the layer time is decreasing and finally

converges. The parameter ω0 is the weight for layer time, and thus a larger ω0 can lead

to a smaller layer time. However, due to the constraints of the optimization model,

the print surface temperature must be smaller than its upper bound. Thus, the plot

shown in Fig. 3.15 will converge. Fig. 3.16 shows the print surface temperature under

different ω0. When ω0 is equal to 0, the print surface temperature is the only measure

considered in the objective function. The print surface temperatures of position 1

and position 2 are on the two sides of the best surface temperature with the same
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distance to the best surface temperature. When ω0 is increasing, more weight is put

on the layer time. The two lines in Fig. 3.16 are increasing and converging due to

the constraints. Because of the chance constraints, the print surface temperature of

position 1 converges to a temperature smaller than the upper bound 150 ◦C.
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Chapter 4

DYNAMIC MATERIAL FLOW AND MACHINE MOTION CONTROL FOR

LARGE-SCALE ADDITIVE MANUFACTURING USING THERMAL IMAGES

4.1 Surface Temperature Prediction Model

4.1.1 System Setup

In this study, two separate cases of components, two thin wall tests and a lower

chassis of a real car are printed. A carbon fiber filled polycarbonate (CF/PC) com-

pound named ”SABIC DC004” is used as the thermoplastic material. For the scope

of this study, we just focus on one of the wall tests and also lower edge of the chassis

outer border, as will be shown in next section. Each layer on the wall forms a rectan-

gle, and each layer on the chassis forms a complex geometry as is shown in Figure 4.1.

For both cases, the printer head starts from the starting point shown by tiny circles

in the figures. It then deposits single-bead-wide molten thermoplastic materials on

the surface as it traverses along the edges in a clockwise direction. The process is

completed once the printer head return to the starting point.

For the walls, the printer head then proceeds to the next wall and repeats the

same process. Once the second wall is over, it will return to a purge station -shown

by dashed lines in Figure 4.1- and wait there until the surface is cool enough for

printing the next layer. However, in case of chassis the entire process consists of

printing three segments subsequently: the outer border, the inner box and the edges

that connect the box and border together. Note that there is no purge and pause here

and the printer keeps printing. That is because the the locations at the beginning of

the path are already too cool when the printer head approaches the end of the path.
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(a) Thin Wall Test (b) Lower Chassis

Figure 4.1: Printed Components and Their Tool Path

As it was mentioned earlier the focus here is on the outer border so the path for the

other two segments are not shown in the figure.

The common experiment settings for both cases are shown in Table 4.1. Accord-

ing to the material characteristics and through extensive experiments, it has been

determined that the lower bound, ideal, and the upper bound of the printing surface

temperature are 120◦C, 135◦C and 150◦C, respectively. Therefore, the feasible re-

gion for temperature is [120, 150], and the closer it is to 135◦C, the higher the quality

is. Table 4.2 provides the dimensions, current fixed layer time denoted by tc, and

deposition time per layer denoted by td for each case separately.

4.1.2 Data Extraction from Thermal Images

The schematic of the system setup for capturing the thermal images from car chas-

sis is illustrated by Figure 4.2. Example RGB images taken by the camera for both

wall tests and lower chassis along with their colormaps are shown in Figure 6.8. The

camera was emissivity corrected in software to account for the slightly lower emissiv-
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Table 4.1: Common Experiment Setting

Parameter Setting

Deposition temperature, Tdep 250◦C

Ambient temperature, Tenv 24◦C

Upper bound of surface temperature, Tu 150◦C

Lower bound of surface temperature, Tl 120◦C

The ideal surface temperature, Tb 135◦C

Printer head speed 535 in/min
Printer head maximum Speed, vu 850 in/min
Printer head minimum Speed, vl 320 in/min
Printer head maximum acceleration/deceleration, a 5.35 in/s2

Bead Width 0.8 in

Thickness 0.2 in

Table 4.2: Experiment Setting for the Case Studies

Parameter
case study

Wall Chassis

Length of the final product 36 in 154 in

Width of the final product 8 in 80 in

Height of the final product 14 in 98 in

Layer time, tc 250s 126s

Deposition time per layer, td 15s 126s
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Figure 4.2: System Setup to Capture the Thermal Images from Car Chassis

ity of ∼ 0.9 of the CF/PC material. This number was verified using a thermocouple

against experiments performed by ORNL using a black body source (Dinwiddie et al.

(2014)). It should be noted that accuracy of thermal readings might get affected by

the distance and angle of locations on the surface relative to the position of camera’s

thermal sensor. This could potentially lead to undemeasuring surface temperature of

distant and off-angle locations. Ideally, installing more cameras and fusing multiple

data readings can resolve this issue. For the sake of both simplicity and accuracy in

real-time analysis, all the digital image processing tasks are performed on thermal

images containing actual temperature values rather than RGB intensities. Given the

wall, the region of interest (ROI) consists of congruent rectangles with their upper

right corners being truncated out of the frame. Whereas for the lower chassis, it con-

sists of congruent polygons forming the outer border with their left and right lower

corners being truncated out of the frame.

For the convenience of future geometric calculations, the first layer in the first

image will be perspectively transformed and warped to form a new polygon such

that the width and length of the bounding box around ROI become parallel to the
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(a) Thin Wall Test (b) Lower Chassis

Figure 4.3: Thermal Images Taken by FLIRTM Camera

X and Y axis, respectively. In a spatial transformation, each point (x, y) of the

reference image is mapped to a point (u = f1(x, y), v = f2(x, y)) in a new coordinate

system of the source image. Specifically, a perspective transform is a type of spatial

transform that preserve the collinearity but changes the ratio of distances. Find a set

of points {R0, R1, . . . , Rn−1} in the reference image, and a set of corresponding points

{S0, S1, . . . , Sn−1} in the source image. The matrix representation of perspective

transformation from reference to source image with transformation matrix M ∈ R3×3,

can be expressed as S = MR, where the columns in R ∈ R3×n and S ∈ R3×n are the

homogeneous coordinate representation of each point:

R =


x0 . . . xn−1

y0 . . . yn−1

1 . . . 1

 , S =


u0 . . . un−1

v0 . . . vn−1

1 . . . 1

 . (4.1)

The transformation matrix M can be solved by minimizing the mean squared

error as follows:

M = SRT (RRT )−1. (4.2)

The reference images and the transformed images found by warping the reference
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(a) Wall Input Image (b) Wall Output Image

(c) Chassis Input Image (d) Chassis Output Image

Figure 4.4: Thermal Image Perspective Transformation and Warping

images are shown in Figure 4.4 for both the wall and chassis. The four matching

points used to derive the the perspective transformation matrix for each case are

shown by tiny red circles in the figures. Once the first round of process is done and

the transformation matrix is estimated, it can be used to transform the images from

next layers. Nevertheless, as more layers of materials get stacked upon older ones,

the location of ROI also shifts upward. Thus, another step is required to register the

source images from next layers back to the reference image in real-time without any

supervision.

For this purpose, the next step toward data extraction concerns with the image

segmentation by thresholding to extract the foreground, here the ROI for the recent
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layer, from the background. Image thresholding binarizes the image by assigning one

to the pixels who have greater value in intensity than a threshold value (class 1),

and assigning the rest to zero (class 0). In this study, we propose Otsu thresholding

method (Otsu (1979)) to automatically extract the threshold value. The threshold

value in Otsu’s method is obtained by finding the best value that maximizes the

homogeneity inside each class or equivalently minimizes the within-class variances.

After mapping the temperature values on the image to integer values, the optimization

problem to seek the threshold value τ by minimizing the sum of weighted within-class

variances is defined as follows:

min
τ

f(τ) = w0(τ)σ
2
0(τ) + w1(τ)σ

2
1(τ), τ ∈ [0, Tdep], τ ∈ Z (4.3)

, where w0(τ) =
∑τ

i=1 N(i) and w1(τ) =
∑Tdep

i=τ+1N(i) are the weights of class 0 and

1, respectively, N(i) denotes the number of pixels with corresponding temperature

equal to i, and Tdep is the deposition temperature as shown in Table 4.1. Denote the

mean of pixels inside class 0 and 1 by µ0(τ) and µ1(τ), respectively, and let σ2
0(τ) and

σ2
1(τ) be the variance of pixels inside each class. Then, we have:

µ0(τ) =
τ∑

i=1

iN(i)

w0(τ)
, µ1(τ) =

Tdep∑
i=τ+1

iN(i)

w1(τ)
, (4.4)

σ2
0(τ) =

τ∑
i=1

i2N(i)

w0(τ)
− µ0(τ)

2, σ2
1(τ) =

Tdep∑
i=τ+1

i2N(i)

w1(τ)
− µ1(τ)

2. (4.5)

Line search methods such as golden section search can be used to minimize the opti-

mization model given by Equation (4.3).

Given the binarized images, the corners of bounding box around the ROI can

be extracted. Let the set P = {(x1, y1), (x2, y2), . . . , (xn, yn)} contain the location of

retrieved pixels belonging to class 1. Then, the corners of bounding box around ROI

denoted by Cj for j = 1, 2, 3, 4 can be found as follows:
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Figure 4.5: Sliding Windows Profile Scan

C1 = ( min
1≤i≤n

{x | (xi, yi) ∈ P}, min
1≤i≤n

{y | (xi, yi) ∈ P}), (4.6)

C2 = ( min
1≤i≤n

{x | (xi, yi) ∈ P}, max
1≤i≤n

{y | (xi, yi) ∈ P}), (4.7)

C3 = (max
1≤i≤n

{x | (xi, yi) ∈ P}, min
1≤i≤n

{y | (xi, yi) ∈ P}), (4.8)

C4 = (max
1≤i≤n

{x | (xi, yi) ∈ P}, max
1≤i≤n

{y | (xi, yi) ∈ P}). (4.9)

Finally, A methodology is required to obtain the temperature in each location. It

has to be robust as there is a high variability of temperature throughout the surface.

In addition, the spatial correlation between locations should be taken into account.

We propose using sliding circular window profile scan. The window will be sliding

in the same direction as the extruder path by an increment of one pixel and take

the maximum temperature inside each circle. The diameter of the circular window

profile scan denoted by ρ is usually set to be equal to the bead width in the images.

A schematic of the method applied on the chassis image is shown in Figure 4.5. The

corners of bounding box around ROI are annotated by the tiny red circles.

Following the proposed methods, two sets of raw temperature data for one layer of

wall and chassis have been extracted, and their corresponding surface plots are shown

in Figure 4.6 and Figure 4.7. The X-axis represents the location of points according

51



Time (s)

0 50 100 150 200 250 Loc
atio

n

0
100

200
300

400

Te
m
pe

ra
tu
re
 (c

o )

50
100
150
200

250

50

100

150

200

250

Figure 4.6: Surface Plot of Raw Temperature Data for Wall

to the order of which they have been printed. The Y-axis and Z-axis represent the

layer time and surface temperature, respectively. The color bar on the right side

demonstrates the relationship between colors on the plot and their corresponding

temperature values. In contrast to PBF and PVP processes, image processing and

data cleansing pose a challenge to LSAM process. This is because the printer head

is quite large, and therefore it obstructs the infrared camera when it traverses to

extrude the materials upon the surface. This will leave some cold marks on the

images and introduce the thermal surface with multiple instances of discontinuity

and interruption. The step by step cleansing procedure to handle the outliers will be

discussed in the next subsection.

4.1.3 Modeling of Temperature Profile

The heat dissipation flow on the surface of complex geometries is commonly es-

timated by computational thermal models such as finite element analysis and graph

theoretic approaches (Yavari et al. (2019), Cole et al. (2020)). In order to investigate

the cooling dynamics of the entire temperature field, we deal with each location as an
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Figure 4.7: Surface Plot of Raw Temperature Data for Chassis

independent profile on the surface. According to Newton’s law of cooling, the temper-

ature dissipation on a surface has a linear relationship with the difference of surface

temperature and ambient temperature. With some small modifications, Wang et al.

(2019) proposed using the following equation for each location:

dT i(t)

dt
= βi

0 + βi
1(T

i(t)− Tenv), (4.10)

where T i(t) is the surface temperature of location i at time t, Tenv is the ambient

temperature, and βi
0 and βi

1 are unknown regression parameters associated with each

location. There exist different methods to introduce the spatial error between loca-

tions on the surface to the model (see the Spatial Error Model (SEM) in Fathizadan

et al. (2017a)). However, this further complicates the real-time framework as we al-

ready accounted for it by employing the sliding windows sampling strategy to collect

the data.

The fitting procedure involves with estimating parameters βi
0 and βi

1 given Tenv.

Specifically, we reformulate Equation (4.10) to be a linear regression model as follow.

T i(t+△t)− T i(t)

△t
= βi

0 + βi
1(T

i(t)− Tenv), (4.11)
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where (T i(t)−Tenv) is the dependent variable, and T i(t+△t)−T i(t)
△t

is the independent

variable. △t denotes the time between two consecutive observations of temperature

at location i. △t is small, so T i(t+△t)−T i(t)
△t

is approximately equal to dT i(t)
dt

in Equation

(4.10). The Least Squares Estimation is applied to estimate parameters βi
0 and βi

1.

The estimates of βi
0 and βi

1 are denoted by β̂i
0 and β̂i

1, respectively. The predicted

future surface temperature of location i for t > ti0 denoted by T̂ i(t, ti0), can be obtained

as follows:

T̂ i(t, ti0) = Tenv −
β̂i
0

β̂i
1

+

(
T i(t0)− Tenv +

β̂i
0

β̂i
1

)
eβ̂

i
1(t−ti0), (4.12)

where ti0 represents the time that we can record the initial temperature T i(t0).

As mentioned in the previous subsection, the extracted thermal data need to be

cleaned before further consideration into the analysis. The data cleansing is mainly

concerned with handling the outliers as the result of extruder obstruction. The steps

are summarized as follows:

1. First the untidy data during the deposition times are simply removed. This has

two main benefits. First, the data during deposition has too many interruptions

leading to a poor fitted temperature model. Also, note that due to the large

size of the parts, there is a noticeable time gap between the deposition time

of distant locations. Removing the messy data during deposition makes sure

that all locations will be sharing the same timestamp and thus simplifies the

analysis.

2. Once the printer is done with the extrusion of materials on the ROI, it might

move to other regions inside the frame and obstruct the camera again. For in-

stance, printer can intercept the vision when it proceeds to print other products

or segments. Thus, the second step of data cleansing involves with handling

the outliers after the initial depositions. Since these outliers are significantly
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colder than the rest of the surface, only the temperature data above a small

enough threshold value are retained, and the rest are replaced by the polynomial

interpolation of surrounding data points.

3. As the last step, the proposed temperature profile modelling and fitting proce-

dure can help to detect and remove the remaining outliers. The Equation (4.12)

is iteratively fitted to the data in each location, and any standardized residuals

outside the z-score interval [−3, 3] are removed. This process continues until

all standardized residuals fall inside the interval.

The resulting estimated temperature surface plots by model fitting and data

cleansing are illustrated in Figures 4.8 and 4.9 for the wall and chassis, respectively.

The temperatures on the new surfaces now have a higher contrast and the surface

itself looks much more smoother compared to the raw data, and therefore reveal the

signatures of cooling dynamics for the whole layer more clearly. For instance, three

bumps corresponding to the location of corners on the surface of the wall indicate

that these regions have slower cooling rate compared to other regions. It is worth

noting from the previous section that printing a layer of the chassis itself is composed

of printing three segments subsequently without pause: the outer border, the inner

box and the edges connecting the box and border together. Finishing the lower edge

of the outer border, i.e. our ROI, the printer head redeposits a set of freshly hot

materials when it returns to print the connecting edges. This will leave two hot peaks

on the temperature surface of the chassis.

Cutting the surface plots across three arbitrary locations on both wall and chassis,

the future surface temperatures of the whole layer have been estimated and plotted

against the actual observations in Figure 4.10 and 4.11, respectively. In addition, the

estimated and actual surface temperature profiles for t = 70 for the wall and chassis
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Figure 4.8: Surface Plot of Estimated Temperature Data for Wall
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Figure 4.9: Surface Plot of Estimated Temperature Data for Chassis
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Figure 4.10: Temperature vs Time Estimation
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Figure 4.11: Temperature vs Location Estimation

have been compared in Figure 4.11 to provide an intuition into the performance of

the model considering the entire surface. As it can be seen by the charts, there is

a reasonably well agreement between the model predictions and observations across

both time and location.

4.2 Real-time Printing Control

4.2.1 Model for Print Time Control

Denote M as the number of locations being monitored. The temperature change

of the ith location, for i = 1, 2, · · · ,M , is modeled by Equation (4.10) with parame-

ters βi
0 and βi

1, which can be estimated by one-step-ahead forecasting methods such
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as Gaussian processes regression (Quiñonero-Candela and Rasmussen (2005)) and

Exponentially Weighted Mean Average (Noorossana et al. (2016)). Then the future

temperature of the ith location for t > ti0, T i(t, ti0) can be estimated following the

Equation (4.12). Here, we assume a fixed speed v for the printer head during the pro-

cess. As it was discussed in Subsection 4.1.3, a unique time stamp across all locations

is obtained by removing the untidy data during the deposition process. Thus, time

t here is a universal variable that can be shared by all locations. The optimization

model for print time control with decision variable t is built as follows:

min f(t) =
M∑
i=1

ωi

(
T̂ i

(
t+

i

v
, ti0

)
− Tb

)2

+ ω0t (4.13)

s.t.

Tl ≤ T̂ i

(
t+

i

v
, ti0

)
, for i = 1, 2, · · · ,M, (4.14)

Tu ≥ T̂ i

(
t+

i

v
, ti0

)
, for i = 1, 2, · · · ,M, (4.15)

t+
i

v
≥ ti0, for i = 1, 2, · · · ,M. (4.16)

In the objective function above, the first term
∑M

i=1 ωi

(
T̂ i
(
t+ i

v
, ti0
)
− Tb

)2
mea-

sures how much each location has predicted print surface temperature close to the

best temperature Tb. The second term ω0t is the print time for the initial location

multiplied with a coefficient. Minimizing the objective function is equivalent to get-

ting the print surface temperature of each location close to tb and minimizing the

starting print time simultaneously. The positive coefficients, ω0, ω1, · · · , ωM , are set

to balance the trade-off between how much the best temperature is valued and how

much a short starting print time is valued. The first two constraints in Equation

(4.14) and (4.15) are to ensure the temperature of no location could go below the

lower bound Tl or above the upper bound Tu of surface temperature, respectively.

Finally, the last constraint in Equation (4.16) is set to force the print time for each
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location to occur after its available ti0. This property will later come in handy in case

of the chassis where some regions accept multiple reprintings during the process.

4.2.2 Model for Printer Head Speed Control

The print time control model introduced in last subsection assumes a constant

speed for the printer head. Constant speed is typically used in practice where the

printer does not allow the adjustment of printing speed. However, there are some

situations where one can leverage the dynamic printer head speed to achieve a more

flexible print by gaining better print quality and efficiency. So the decision is to

determine not only the timing to print, but also the speed to use for different location.

To solve this problem, we propose a new optimization model that controls the print

time and printer head speed during the printing process. First, the locations on the

surface are grouped into partitions such that locations inside each partition share

a similar pattern of cooling dynamics. Then, we adopt a fixed speed within each

partition and try to find the best partition to partition speed trajectory. This is a

valid strategy for two main reasons. First, it is hard to coordinate and maintain a

constantly varying speed profile especially in large parts where the surface consists

of hundreds of locations. Second, the control model needs to be solved for each

and every layer to provide the optimal control variables in real-time. Therefore, the

maximum run time for each model has to be less than the corresponding starting

print time which are usually short. Partitioning will help to reduce the number of

required decision variables and as the result decrease the run time needed to solve

the optimization model.

Let N be total number of partitions on the surface, and denote by tj and vj the

print time and speed at the start of the jth partition, for j = 1, 2, · · · , N , respectively.

Each partition itself consists of multiple locations, and the number of locations within
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each partition defines its distance represented by dj for j = 1, 2, · · · , N . The lower

and upper bounds of the printer head speed determined by the mechanical charac-

teristics of the tool are given by vl and vu, respectively. The optimization model for

simultaneous control of print time tj and printer head speed vj is built as follows:

min f(t, v) =
N∑
j=1

ω
′

j

 dj∑
k=0

(
T̂ j,k

(
tj +

k

vj
, tj0

)
− Tb

)2
+ ω

′

0t
1 (4.17)

s.t.

tj+1 = tj +
dj

vj
, for j = 1, 2, · · · , N, (4.18)

vl ≤ vj, for j = 1, 2, · · · , N, (4.19)

vu ≥ vj, for j = 1, 2, · · · , N, (4.20)

Tl ≥ T̂ j,k

(
tj +

k

vj
, tj0

)
, for j = 1, 2, · · · , N, for k = 0, 1, · · · , dj,(4.21)

Tu ≤ T̂ j,k

(
tj +

k

vj
, tj0

)
, for j = 1, 2, · · · , N, for k = 0, 1, · · · , dj,(4.22)

tj ≥ tj0, for j = 1, 2, · · · , N. (4.23)

Similar to the layer time control model,
∑N

j=1

[∑dj

k=0 ω
′
j

(
T̂ j,k

(
tj + k

vj
, tj0
)
− Tb

)2]
measures the temperature difference of each location from the ideal temperature Tb,

and the second term ω
′
0t

1 is the starting print time multiplied by a coefficient. The

temperature distance from Tb and starting print time is therefore simultaneously min-

imized by solving the model. The positive coefficients ω′
j for j = 1, · · · , N , determine

the value put on each partition. ω′
0 on the other hand determines the importance of

the starting print time compared to temperature distance for partitions.

The print time for the next partition is determined by the print time from previous

partition plus the time it takes to print that partition. The first constraint in Equation

4.18 establishes such a relationship. Equation (4.19) and (4.20) will keep the speed of

the printer head in each partition confined within the tool predefined speed range. The
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two constraints given in Equation (4.21) and (4.22) are to ensure the temperature of no

location could go below the ideal lower bound or upper bound of surface temperature.

Finally, the last constraint in Equation (4.23) is set to force the print time for each

partition j, tj to occur after its corresponding available tj0.

4.2.3 Model for Printer Head Speed Control with Acceleration

As it was argued before and investigated by the control model given in the last

section, the speed of the printer head is an adjustable parameter that can be tuned in

real-time. However, the printer head is not capable of changing the speed instantly.

It requires some time to transit from one speed to another. This time is determined

by another mechanical constraint that the printer head is subject to, called printer

head acceleration/deceleration denoted by a. This imposed time latency might limit

the applicability of the speed trajectory obtained from last model. Therefore, in this

section we propose another control model that addresses this issue by introducing the

acceleration/deceleration factor to the model. We use the term acceleration to point

to both acceleration and deceleration throughout the rest of this study.

Consider an optimal speed trajectory obtained by solving the speed control model.

Suppose we want to reach the speed of vj given vj−1. Generally, there are two

acceleration strategies to transit from one speed to another. The first strategy is to

start accelerating at the intersection of partition j − 1 and j and then proceed by

the fixed speed vj. This strategy is referred to as feed-forward model and is shown

in Figure 4.12a. The second strategy is to first proceed by the fixed speed vj−1 and

then start accelerating before the end of the partition j − 1 toward the beginning of

the partition j. This strategy is referred to as feed-backward model and is shown

in Figure 4.12b. The speed and time are represented by the vertical and horizontal

axes in the figures, respectively. The new variables tja and tj−1
a denote the times
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(a) Feed-forward Model (b) Feed-backward Model

Figure 4.12: Printer Head Acceleration Strategies

to stop accelerating in feed-forward model or to start accelerating in feed-backward

model, respectively. Interchangeably, tja can be expressed by dja the passed distance

during acceleration since tj. Likewise, tj−1
a can also be expressed by the dj−1

a the

passed distance before starting to accelerate since tj−1. Following the feed-forward

acceleration strategy, the new printer head speed control model can be formulated as

follows:
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min f(t, v, da) =
N∑
j=1

ω
′′

j

 dja∑
k=0


T̂ j,k

tj +
−vj−1 +

√
(vj−1)2 + 4ak

2a
, tj0

− Tb

2

+

dj∑
k=dja+1

(
T̂ j,k

(
tja +

k

vj
, tj0

)
− Tb

)2
+ ω

′′

0 t
1 (4.24)

s.t.

tj+1 = tja +
dj − dja

vj
, for j = 1, 2, · · · , N, (4.25)

tja = tj +
| vj − vj−1 |

a
, for j = 1, 2, · · · , N, (4.26)

dja = a
(
tja − tj

)2
+ vj−1

(
tja − tj

)
, for j = 1, 2, · · · , N, (4.27)

vl ≤ vj, for j = 1, 2, · · · , N, (4.28)

vu ≥ vj, for j = 1, 2, · · · , N, (4.29)

Tl ≥ T̂ j,k

tj +
−vj−1 +

√
(vj−1)2 + 4ak

2a
, tj0

 ,

for j = 0, 1, · · · , N, for k = 0, 1, · · · , dja, (4.30)

Tu ≤ T̂ j,k

tj +
−vj−1 +

√
(vj−1)2 + 4ak

2a
, tj0

 ,

for j = 0, 1, · · · , N, for k = 0, 1, · · · , dja, (4.31)

Tl ≥ T̂ j,k

(
tja +

k

vj
, tj0

)
, for j = 1, 2, · · · , N, for k = dja + 1, · · · , dj,(4.32)

Tu ≤ T̂ j,k

(
tja +

k

vj
, tj0

)
, for j = 1, 2, · · · , N, for k = dja + 1, · · · , dj,(4.33)

dja ≤ dj, for j = 1, 2, · · · , N, (4.34)

dja ≥ 0, for j = 1, 2, · · · , N, (4.35)

tja ≥ 0, for j = 1, 2, · · · , N. (4.36)

tj ≥ tj0, for j = 1, 2, · · · , N. (4.37)
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The first term inside the brackets in Equation (4.24),
(
T̂ j,k

(
tj +

−vj−1+
√

(vj−1)2+4ak

2a

, tj0
)
− Tb

)2 aims to minimize the the temperature distances of the locations inside

partition j that are involved in the acceleration process from the best temperature Tb.

The second term inside the brackets,
(
T̂ j,k

(
tja +

k
vj
, tj0
)
− Tb

)2
, aims to minimize the

the temperature distances of the locations inside partition j that are passed by the

fixed speed vj from the best temperature Tb. The final term, ω′′
0 t

1, is again the starting

print time multiplied by a coefficient, and the positive coefficients ω′′
j for j = 1, · · · , N ,

are used to set the trade-off values among different partitions. Similarly, ω′′
0 deter-

mines the importance of the starting print time compared to temperature distance

for partitions.

The first constraint given by Equation (4.25) schedules the print time for next

partition tj+1 after the acceleration time tja plus the time needed to reach the end of

the current partition after dja with fixed speed vj. Given two consecutive speeds vj

and vj−1, the second constraint in Equation (4.26) finds the time to stop accelerating

tja. The passed distance during acceleration dja is determined by the third constraint

provided in Equation (4.27). Similar to last control model, Equations (4.28) and

(4.29) will keep the speed of the printer head in each partition confined within the

printer predefined speed range. Moreover, Equations (4.30) to (4.31) ensure that

temperature of all locations will lie inside the interval defined by the ideal lower

bound or upper bound of surface temperature. Equation (4.34) guarantees that the

passed distance during acceleration dja is less than or equal to the corresponding

partition distance dj. The two Equations (4.35) and (4.36) are set to force dja and

tja to be greater than or equal to zero, respectively. Finally, the last constraint in

Equation (4.37) is set to force the print time for each partition j, tj, to occur after

its corresponding available tj0.
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4.3 Solution Approaches

The three control models introduced in the last section share a common goal which

is to increase the efficiency by decreasing the starting print time and improve the

quality by controlling the surface temperature. However, the complexity involved with

formulation and structure of objective functions and constraints is different for each

model. Therefore, separate methodologies are required to find the optimal control

variables for each model. In the following sections, we first analyze the characteristics

of each model and then provide the suitable procedure to derive the optimal control

variables.

4.3.1 Optimal Solution for Print Time Control Model

Using Equation (4.12), the corresponding ts, for which the model constraints

given in Inequations (4.14), (4.15) and (4.16) hold can be obtained. After some

manipulations, the upper and lower bounds for variable t denoted as tU and tL are as

follows:

tL = max
i

 1

βi
1

ln
Tu − Tenv +

βi
0

βi
1

T i(ti0)− Tenv +
βi
0

βi
1

− i

v
+ ti0

 (4.38)

tU = min
i

 1

βi
1

ln
Tl − Tenv +

βi
0

βi
1

T i(ti0)− Tenv +
βi
0

βi
1

− i

v
+ ti0

 (4.39)

The above equations form a bounded interval for variable t which can be rep-

resented by [tL, tU ]. This will lead the optimization problem to be reformulated as

minimizing the objective function f(t) in Equation (4.13) with bounded decision vari-

able as follow:

min
t

f(t) t ∈ [tL, tU ] (4.40)

The objective function is differentiable and nonlinear but in general, is neither a
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convex nor concave function. However, we provide a necessary and sufficient condition

that when satisfied guarantees the the convexity of the objective function.

Proposition 2. The optimization model described by Equation (4.13) - (4.16)

is convex, if and only if tU ≤ γ, where γ is the numerical solution to the following

equation:
M∑
i=1

(
ai + 2bieβ

i
1(t+

i
v
−ti0)
)
ci = 0 (4.41)

, where ai = Tenv − βi
0

βi
1
− Tb, bi = T i(t0)− Tenv +

βi
0

βi
1
, and ci = 2ωib

i (βi
1)

2
eβ

i
1(t+

i
v
−ti0).

See appendix (A) for proof.

If Proposition 2 holds, then the optimization problem becomes a convex optimiza-

tion model, and the local optimal will be the global solution. The univariate Newton

method can then be applied to find both γ and the optimal layer time control t∗. Se-

lecting a random initial guess t0 from inside [tL, tU ], the following equation is iterated

until convergence:

tk+1 = tk −
f(tk)

f ′(tk)
, for k = 0, 1, 2, · · · . (4.42)

4.3.2 Optimal Solution for Printer Head Speed Control Model

In contrast to print time control model, the printer head speed control model given

by Equations (4.17) - (4.23) can not be further reduced to a more compact model.

Moreover, the objective function is differentiable and nonlinear but in general, is nei-

ther a convex nor concave function. Providing a condition for the convexity of this

problem is fairly complex and thus is out of scope of this study. The optimization

model can be solved by a method for numerical optimization that can handle non-

linear objective function and constraints. For this purpose, the Sequential Quadratic

Programming (SQP) method is used to find the optimal solution. SQP is an itera-

tive method using the Taylor’s second order approximations of the objective function
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with the first order Taylor’s approximations of the constraints (Nocedal and Wright

(2006)). Let b (t, v) = 0 represent the constraint provided in Equation (4.18) and

c (t, v) ≥ 0 represent the constraints provided in Inequation (4.19) - (4.23). Define

the Lagrangian of the problem as L(t, v, λ) = f(t, v) − λT (b(t, v) + c(t, v)), where

vector λ is a Lagrange multiplier. Let tk, vk and λk be the solution and the Lagrange

multiplier at iterate k, respectively. Then, a solution to the following quadratic pro-

gramming subproblem defines an appropriate search direction Dk =
[
Dk

t , D
k
v

]T :
min
Dk
∇f

(
tk, vk

)T
Dk +

1

2

(
Dk
)T ∇2

tt,vvL
(
tk, vk, λk

)
Dk

s.t.

∇b
(
tk, vk

)T
Dk + b

(
tk, vk

)
= 0. (4.43)

∇c
(
tk, vk

)T
Dk + c

(
tk, vk

)
≥ 0.

The values of t, v and λ for iteration (k + 1) can be obtained by
[
tk+1, vk+1

]T
=[

tk, vk
]T

+
[
Dk

t , D
k
v

]T and the corresponding Lagrange multiplier of the quadratic

subproblem, respectively. The initial values of t, v and λ, denoted by t0, v0 and λ0,

are determined by choosing a random value, and the optimal values are found by

repeating the process until convergence. The method can be initialized with several

random values to ensure it is not stuck in a local minimum and that the global optimal

has been found.

4.3.3 Optimal Solution for Printer Head Speed with Acceleration Control Model

The control model given by Equations (4.24) to (4.37) is a non-linear mixed integer

program. Computational complexity aside, this problem clearly doesn’t fit into any

standard structure required by the relevant solving algorithms. For instance, dja that

appears at the index of summation in the objective function must be an integer

variable. This issue arises in other applications and a general strategy usually is to
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break down the original problem into simpler subproblems (Azizi et al. (2019)). It

is worth noting from section (4.2.2) that the locations on the surface are grouped

together to form different partitions. Each partition therefore can serve as a stage

for which the optimal controls are to be found for subproblems. The solutions for

subproblems together form the overall solution for the main problem.

Following the dynamic systems paradigm, we can derive the state of the system

at each stage j. Figure (4.12a) suggests that the state of feed-forward system can be

derived by the vector [tj, vj−1], the print time at the start of the current stage and

speed at the end of the previous stage. On the other hand, the control variable com-

prised of choosing a location to stop accelerating denoted by dja. The set of Equations

given by (4.25) to (4.27) provide the system evolution equations, and the rest are

simply the problem constraints on the upper and lower bound of the variables. The

additive cost of transition from one stage to another is composed of the summation

of differences between surface and best temperature during acceleration with varying

speed, and after acceleration with constant speed. Accordingly, the problem can be

treated as a deterministic finite-state optimal control or alternatively a shortest-path

(SP) problem.

Define the nodes that describe the state of the system at stage j by the tuple

(j, tj, vj−1), such that j ∈ {1, 2, . . . , N}, tj ∈ [tl, tu], and vj−1 ∈ [vl, vu]. The values of

tl and tu are the lower and upper bounds of the print time search region. Denote the

print time for the first and last location on the surface found by solving the speed

control model by ltf and ltl, respectively. Then tl and tu can be derived as follows:

tl = ltf − δ, (4.44)

tu = ltl + δ. (4.45)

The proper choice of δ is important since too wide search region results in the
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Figure 4.13: Shortest Path Representation of the Speed with Acceleration Control

Model

explosion of the problem, and too narrow region leads to suboptimality. Moreover,

vl and vu are the lower and upper bounds of the printer head speed determined by

the mechanical characteristics of the tool as shown by Table 4.1. On the other hand,

choosing a value for control variable dja from the set {0, 1, . . . , dj}, results in landing

to a child node for which the occurred cost is described above. Moreover, S and E

define the artificial origin and terminating nodes, respectively. Obviously, the state

variables are continuous, and therefore their corresponding state space is infinite.

Furthermore, the control space is relatively large which can exponentially increase

the run time needed to solve the model. A common practice is to transform the state

and control space into a grid of discrete values with sufficiently small increments

(Bertsekas (1995)). The discertization increments for tj, vj−1, and dja is set to be

equal to inct, incv, and incd, respectively. A schematic of the SP problem is shown

in Figure (4.13).

A greedy approach to solve this problem is to first solve the speed control model

and then take the optimal starting print time and speed of the first partition as the
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state of the first stage for speed control with acceleration model. Trying different

controls, one can optimize this subproblem and also find the landing child node for

the next stage. The same process continues until all subproblems are optimized sep-

arately. This method is pretty fast but it doesn’t take the optimality of the overall

problem into account. Thus, it usually fails to provide the global optimal. Here, we

propose a label correcting algorithm called ”Dijkstra A∗ with greedy initialization”

that is specifically tailored to solve the SP for printer head speed control with ac-

celeration model. Let distp be a label that maintains the most recent shortest path

from S to node p, and apq be the the cost of moving from parent node p to child node

q, i.e. the cost of arc (p, q). The value of distE and the set of candidate nodes to

enter the shortest path are stored in separate variables called UPPER and OPEN ,

respectively. Using the solution from greedy algorithm, we can construct a initial

good path represented by P = (S, p1, · · · , pk, · · · , E). Then, the label of all nodes

in the greedy path are initially assigned to their distance from S except for node S

where its label is always equal to 0. The label of the rest of the nodes in the system

are also initially assigned to∞, and the initial OPEN list contains the nodes p whose

distp are less than ∞.

As for the A∗ part of the algorithm, each node p requires a positive underestimate

of distance from itself to the terminating node E denoted by hp to further bolster the

test to enter the OPEN list. It is easy to show that any solution found by the speed

control with acceleration model is also feasible for the speed control model but the

vice versa is not correct due to extra acceleration restrictions. Therefore, any solution

found by the speed control with acceleration control must have a greater value for

objective function than that for the speed control model. We utilize this fact to derive

an underestimate for each node.

Proposition 3. The value of objective function obtained by solving the speed
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Algorithm 1: Dijkstra A* with Greedy Initialization

1 Greedy initialization;

2 while OPEN is not empty do

3 Find the node p with minimum value of label from OPEN , i.e.

p = argmin{disti | i ∈ OPEN};

4 Remove the node p from OPEN ;

5 for Each child q of p do

6 if distp + apq + hq < UPPER then

7 distq = distp + apq;

8 Assign p to be the parent of q;

9 if q ̸= E then

10 Place q in OPEN ;

11 else

12 UPPER = distp + apq;

13 end if

14 end if

15 end for

16 end while

control model for (j, tl, vl), the first node at each stage j, is the underestimate of all

other nodes (j, tj, vj−1) for tj ∈ [tl, tu] and vj−1 ∈ [vl, vu] at that stage, i.e.:

f ∗(t, v | j, tl, vl) ≤ f ∗(t, v | j, tj, vj−1), for j = 1, 2, · · · , N (4.46)

,where f ∗(t, v | j, tj, vj−1) is the optimal objective function of speed control model from

partition j onward given that tj seconds have been passed so far and the initial speed

is vj−1.
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See appendix (B) for proof.

Therefore, running the speed control model only for the first node at each stage

will provide the underestimates for the remainder of nodes at that stage. The step

by step procedure of the algorithm is summarized in Algorithm 1.

4.4 Case Study and Numerical Results

4.4.1 Optimal Control for Case Studies

The optimal controls obtained by solving the proposed optimization models are

discussed in this section for both wall test and lower border of the chassis. Refer

to Figures (4.14) and (4.15) for a demonstration on how locations with common

dynamic characteristics are grouped together to form the partitions on the estimated

heatmap of wall and chassis, respectively. The radius of the sliding windows profile

scan introduced in section (4.1.2) is set to be 5 pixels. Therefore, only the locations

by increments of 5 pixels in each partition on the surface will be evaluated for all three

models. This not only ensures a fair comparison of the impact of different control

models on the value of objective function but also significantly reduces the run time

needed to solve the speed control with acceleration model. This also means that incd

has to be set to 5. Furthermore, the minimum and maximum speed and maximum

acceleration/deceleration of the printer head, i.e. vl, vu and a, are found to be about

15 and 40 pixels/s, and 15 pixels/s2 after conversion, respectively. In this study, every

positive coefficient ω, ω′ , and ω
′′ for all three models are set to 1. Also, note that for

the sake of simplicity, we assume a continuous surface by ignoring the truncated area

at the upper right hand side of the wall as it is always possible to capture an image

from the entire surface.

First, the print time and speed control models are solved for both case studies.
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Figure 4.14: Partitioned Estimated Heatmap for Wall

Figure 4.15: Partitioned Estimated Heatmap for Chassis

To this aim, first Propositions 2 is tested for the potential convexity of the print time

control model for both wall and chassis. In case of wall, the bounded interval for

t and γ are found to be [142.60, 203.97] and 239.49 respectively. Meaning the print

time control model for the wall is a convex problem as tu is less than γ. On the other

hand for the chassis, all of the constraint concerning the temperature, i.e. Equations

(4.14) and (4.15) for the layer time and Equations (4.21) and (4.22) for the speed

control models are violated due to the reprintings in partitions 2 and 4. Nevertheless,

the value of γ found to be 100.68, meaning the print time control model is convex for
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time values less than 100.68. In the cases where there exists a fear of non-convexity,

the corresponding solving algorithms should be repeated with several random initial

guesses. Then, the solution with the best objective function can be considered as the

global optimal.

Once the optimal controls for speed control model are found, they are used to

decide for the lower and upper bounds of print time search region needed to solve for

the speed with acceleration control model. They are also used by the greedy algorithm

to augment the Dijkstra A∗ with the initialization step. Specifically, the values of tl,

tu and inct are set to 165, 195, and 0.5 seconds respectively for the wall and 88, 103,

and 0.25 seconds respectively for the chassis. The value of incv is set to be 1 pixels/s

for both cases and following the radius of the sliding windows profile scan, the value of

incd is set to be 5 pixels. Figures 4.16 and 4.17 provide the optimal print time, speed

trajectory and location to stop accelerating found by solving the print time, speed

and speed with acceleration control models for the wall and chassis respectively. As is

expected, in both cases the speed control with acceleration model is showing a similar

pattern to the speed control model in terms of print time. On the other hand, as it is

obvious from the plots the optimal speed trajectory found by speed with acceleration

model is a smoothed version of that for the speed control model. It is not feasible to

reach very high or very low speeds when there is no sufficient distance between two

consecutive partitions. As it is shown by Table 4.2, the current fixed layer times are

equal to 250s and 126s for the wall and chassis, respectively. However, the solutions

provided by the control models suggest that the fabrication speed can be boosted up

by about 30% and 25% for the wall and chassis, respectively. This is a substantial

saving in time when considering that the finished products are composed of several

layers.

Moreover, Figures 4.18a and 4.18b present the value of objective function after
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Figure 4.16: Optimal Controls for the Layer Time, Speed and Speed with Acceleration

Control Models for the Wall
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Figure 4.17: Optimal Controls for the Layer Time, Speed and Speed with Acceleration

Control Models for the Chassis

75



Layer time Speed Speed with acceleration
Control model

1160
1180
1200
1220
1240
1260

Ob
je
ct
iv
e 
fu
nc

tio
n 
va

lu
e

(a) Wall

Layer time Speed Speed with acceleration 
Control model

11600

11650

11700

11750

11800

Ob
je
ct
iv
e 
fu
nc

tio
n 
va

lu
e

(b) Chassis

Figure 4.18: Optimal Value of Objective Function for Control Models

Table 4.3: Solving Run Time for SP and DP Methods

Solving algorithm
Run time (s)

Wall Chassis

Dijkstra A∗ with greedy initialization 139.80 21.05
Backward DP 252.21 24.50

employing the optimal control for each model for the wall and chassis, respectively.

Evaluating the objective functions given by either of the models reveals that fixed

starting print time policy is highly inefficient. The value of objective function by

employing corresponding fixed starting print time for the wall and chassis found to

be equal to 21316.83 and 17358.83, respectively. As can be observed by both plots,

a significant drop in objective function compared to the current fixed-time strategy

is achieved simply by the print time control model following by a more moderate

improvement when speed control is applied. This indicates that the control models are

capable of bringing the temperature of many locations close to the ideal temperature

and keep them within the predefined thermal interval what that is crucial to achieve

a good quality product.
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4.4.2 Discussion

Formulating the speed with acceleration control model as a deterministic finite-

state optimal control or interchangeably a shortest-path (SP) problem, gives rise to

employment of other algorithms designed to solve such problems. Out of the SP

algorithms family, we investigated the Small-Label-first (SLF) and generic Dijkstra

method. The results showed that generic Dijkstra is outperforming the SLF in terms

of the solving run time. Therefore, Dijkstra was selected for further tuning by equip-

ping it with the proposed A∗ and greedy initialization features.

As an alternative to SP, we also utilized the backward Dynamic Programming

(DP) algorithm. Let Jj(xj) denote the cost of moving forward at stage j by its

corresponding state vector xj = [tj, vj−1]. Moreover, let gj(xj, uj) be the additive

cost of transition from stage j to stage j + 1 by taking control variable uj = dja as

described by subsection 4.2.3. The backward Bellman equations minimizing the total

cost of the system are given as follows:

J∗
N+1(xN+1) = gN+1(xN+1) (4.47)

J∗
j (xj) = min

uj∈Uj(xj)
{gj(xj, uj) + J∗

j+1(xj+1 = fj(xj, uj)}, for j = 0, 1, . . . , N(4.48)

, where fj(xj, uj) is the set of system evolution equations given by Equations (4.25)

to (4.27), and Uj(xj) = {0, 1, . . . , dj} is the set of available policies for xj. The

printer head speed with acceleration control model was solved via backward DP and

its performance in terms of run time was compared with Dijkstra A∗ with greedy

initialization. The configurations of the PC used to run the models are Intel (R),

Core TM i7, 8,750 CPU, 2.20 GHz, and 16.0 GB of RAM. Table 4.3 provides the run

time needed to solve the problem with each method for the wall and chassis. As it is

obvious from the table, the proposed SP method is outperforming the DP for both

wall and chassis. This is expected as in the DP algorithm every node and arc will
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participate in the computation where by the proposed method a noticable portion of

the nodes and arcs not relevant to the shortest path are eliminated. It is worth to

mention that it is not possible to use DP as a real time solver for wall because its run

time exceeds the corresponding optimal starting print time.
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Chapter 5

INDIVIDUAL ANOMALY DETECTION FOR PROCESS VARIATION

MANAGEMENT IN LASER POWDER BED FUSION

5.1 Methodology

The framework of the proposed methodology is illustrated in Figure 5.1. The

pre-processed tensor of melt pool images are fed to the CAE, and the bottleneck

tensor from latent space is extracted. This encoded deep representation tensor is

then flattened and deployed by a method of agglomerative clustering to annotate the

data as either normal or anomaly. In the next step, the CAE is retrained on the

normal samples, and the new set of extracted encoded vectors are used to construct

the phase-I of the proposed multivariate control charting method. The deep repre-

sentations of the set of previously discovered anomalies are then employed by the

phase-II control charting to evaluate the method’s performance in terms of anomaly

detection. The three constituents of the framework, including CAE neural networks

to process the melt pool images, agglomerative clustering algorithm to annotate the

data, and the control charting scheme to monitor the process’s stability and perform

anomaly detection, are delineated by the next subsections, respectively.

5.1.1 Deep Representation Learning for Feature Extraction from Melt Pool Images

Assume a set of N grey-scale images each with a dimension of d1 × d2 and let’s

denote the flattened vector of ith image by x⃗i ∈ R1×P , for i = 1, 2, . . . , N , where

P = d1× d2. The vector of weights associated with each neuron j in the hidden layer

is represented by α⃗j = [αj1, αj2, . . . , αjP ], for j = 1, 2, . . . ,M , where M is the total
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Figure 5.1: Framework of Proposed Deep Representation Learning for Anomaly De-

tection Methodology

number of neurons in the hidden layer. Furthermore, let β⃗k = [βk1, βk2, . . . , βkM ]

be the vector of weights associated with each neuron k in the final output layer,

for k = 1, 2, . . . , K, where K is the total number of neurons in the hidden layer or

equivalently the number of classes. The output of each output unit k for the input i,

ŷik, is the probability of assigning each input vector x⃗i to class k. The model utilizes

the outputs ŷik to benchmark its performance against yik, the ground truth for the

sample inputs. The criteria for benchmarking is given by a loss function, which is

pursued to minimized. Table 6.7 provides the expression forms of the minimization

of two common loss functions, mean squared error and cross entropy.

Stochastic gradient descent is used to train the neural network on large data

sets. Without the loss of generality, consider the loss function after dropping the

1/N . Denoted by L(x;α, β), it is comprised of sum of errors for each sample,
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Loss function

Mean squared error Cross entropy

Expression form minα,β
1

N

N∑
i=1

K∑
k=1

(yik − ŷik)
2 minα,β −

1

N

N∑
i=1

K∑
k=1

yikln(ŷik)

Table 5.1: Common Loss Functions for Training Neural Networks

i.e. L(x;α, β) =
∑N

i=1 L(xi;α, β), where L(xi;α, β) is equal to
∑K

k=1 (yik − ŷik)
2 or∑K

k=1 yikln(ŷik) in case of mean squared error or cross entropy, respectively. Then,

given the weights at time τ , the updated weights at time τ + 1 can be found by

moving in the direction of the negative gradient. The size of the movement is a small

non-negative number called learning rate, and is denoted by γ. Specifically, α⃗j and

β⃗k weights are updates as follows:

ατ+1
j1

...

ατ+1
jp

...

ατ+1
jP


=



ατ
j1

...

ατ
jp

...

ατ
jP


− γ



∂L(xi;α,β)
∂ατ

j1

...
∂L(xi;α,β)

∂ατ
jp

...
∂L(xi;α,β)

∂ατ
jP


,



βτ+1
k1

...

βτ+1
km

...

βτ+1
kM


=



βτ
k1

...

βτ
km

...

βτ
kM


− γ



∂L(xi;α,β)
∂βτ

k1

...
∂L(xi;α,β)

∂βτ
km

...
∂L(xi;α,β)

∂βτ
kM


. (5.1)

The value of partial derivatives of loss of each sample with respect to αjp and βkm

is computed by the chain rule for derivatives and error backpropagation. The pro-

cess can be iterated until convergence. Adaptive learning rate and momentum such

as ”Adam” (Kingma and Ba (2014)), ”Adadelta” (Zeiler (2012)) and ”RMSprop”

(Tieleman and Hinton (2012)) is used to avoid a local minima. Finally, as the num-

ber of samples is relatively large in practice, a batch of samples is used to update the

parameters as opposed to one sample at a time procedure in Equation 5.1.

The explosion in the number of weights as image data gets large in dimension can

lead to excessive computational overheads. Furthermore, there is also a loss in spatial
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information when images are flattened for the feed forwarding process. As a remedy,

Convolution Neural Networks are developed to locally connect the features on the

input image to the nodes inside the hidden layers. CNNs consist primarily of three

different types of layers: convolutions, pooling, and fully connected layers. Fully

connected layers are discussed above, so the details for convolutional and pooling

layers are given next. A matrix known as a kernel is slid over the input matrix in

the convolutional layers to create a feature map by performing convolution operation

(Goodfellow et al. (2016)). Let K and S be the f1 × f2 kernel and feature map

matrix, respectively. The feature map can be obtained following the 2-D convolution

operation denoted by ’∗’ on the two-dimensional image X as follows:

S(i, j) = (X ∗K)(i, j) =

f1−1∑
m=0

f2−1∑
n=0

X(i+m, j + n)K(m,n). (5.2)

Then, a non-linear activation function h such as sigmoid function (σ), hyperbolic

tangent (tanh), or Rectified Linear Unit (ReLU) (Bishop (2006)) is applied to the

feature map to obtain the final output, i.e., h(S). In practice, more than one kernel

is applied to the images so as to extract different types of features. The number of

kernels is called filter or kernel depth. Therefore, the final feature map forms a 3D

tensor composed of several feature map matrices.

Next, a pooling layer is applied to the feature map produced by the previous

layer to downsample the data while preserving spatial invariance. The notion behind

pooling layers is relatively straightforward. Max pooling, the most common type of

pooling, is to simply take the maximum value from a given array or matrix. In this

case, the feature map matrix is partitioned into w×u submatrices, and the maximum

values inside each submatrix are taken to form a new matrix denoted by D:

D(i, j) = max{S(i+m, j + n) | m ∈ [0, w], n ∈ [0, u]}. (5.3)
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It is worth noting that the convolutions and max-pooling layers are stacked on

top of each other indefinitely to gain better results in practice.

Finally, the structure behind the proposed CAE can be demystified as follows.

Specifically, Auto-Encoders are a method of unsupervised learning that learn a com-

pact representation of the unlabeled input data. As the name suggests, it is composed

of two components: an encoder and a decoder. The encoder f learns a mapping from

input data X to a compact latent space H, i.e. f : X → H, and the decoder g that

learns a mapping back from latent space to a reconstructed version of original input

data X̃, i.e. g : H → X̃. Remember from above that the ground truth for each

sample is represented by y⃗i = [yi1, yi2, . . . , yiK ], where yik = 1, if sample i belongs to

the class k and the rest are simply zero. The Auto-Encoders have exactly the same

structure and training process as fully connected neural networks with the difference

that y⃗i is simply replaced with x⃗i. In the case of CAEs, just as similar to CNNs, the

data are not flattened, and therefore, the input and output matrices are mapped to

each other while the spatial correlation is preserved. The layer which holds the data

in the latent space is called the bottleneck layer. The bottleneck layer outputs an

encoded tensor of customized dimensions for each Xi denoted by Hi. The model also

has several hyper-parameters, including the number of layers, kernel’s and pooling’s

size and depth, that need to be tuned based on cross-validation or test data, as will

be discussed in subsection 5.2.2.

5.1.2 Individual Anomaly Detection in Melt Pool Images by Clustering

The final learned representation vector can be fed to other methods of unsu-

pervised or supervised learning for further analysis. As discussed before, manual

annotation of melt pool images is time-consuming and expensive. A variation of

clustering algorithms is employed to automatically annotate the melt pool images
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as either normal or anomaly to tackle this challenge. Anomalies are usually defined

as individuals or groups of samples isolated from normal samples by their distin-

guishable characteristics. Agglemoartive clustering tends to merge the samples into

clusters in a hierarchical fashion. At the beginning of the process, each sample is

a cluster of its own. The children clusters are then sequentially combined by the

shortest cophenetic distance (linkage) into larger clusters until all elements end up

being in the same parent cluster. An immediate intuition from this procedure is that

normal samples tend to merge faster and with shorter cophenetic distances while ap-

pending the anomaly samples are postponed until the end of the process and when

cophenetic distances between clusters are large. Furthermore, anomalies tend to form

singleton clusters of their own, while normal samples are grouped together in clusters

with large populations. These characteristics make the agglomerative clustering a

perfect candidate for the anomaly detection, and thus automatic annotation of melt

pool deep representation flattened vectors.

The definition of linkage is what differentiates between the different agglomerative

clustering methods. The most widely used linkage functions include single, complete,

average, and Ward. Denote the vectors of flattened encoded tensors by h⃗i ∈ R1×Q, for

i = 1, 2, · · · , N , where Q is the product of dimensions of the corresponding tensors.

Then, the following linkage functions can be defined:

lsingle(Ci, Cj) = min{dist(h⃗i, h⃗j) | h⃗i ∈ Ci; h⃗j ∈ Cj}, (5.4)

lcomplete(Ci, Cj) = max{dist(h⃗i, h⃗j) | h⃗i ∈ Ci; h⃗j ∈ Cj}, (5.5)

laverage(Ci, Cj) =
∑
h⃗i∈Ci

∑
h⃗j∈Cj

dist(h⃗i, h⃗i)

| Ci || Cj |
, (5.6)

lWard(Ci, Cj) =

√
2 | Ci || Cj |
| Ci | + | Cj |

.dist
(
C̄i, C̄j

)
, (5.7)

where lk(Ci, Cj) denotes the type k linkage between two cluster Ci and Cj. | Ci |
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is the cardinality of cluster Ci. C̄i is the centroid of cluster Ci and is computed as

1/ | Ci |
∑

h⃗i∈Ci
hi. The measure of proximity or similarity between two flattened

encoded vectors h⃗i and h⃗j is denoted by dist(h⃗i, h⃗j). The proximity measure also

varies in type and include cosine similarity, Manhattan or Euclidean distance, and

correlation. For the sake of consistency in computations between different linkage

types, Euclidean distance is used as the primary measure of proximity in this study,

i.e. dist(h⃗i, h⃗j) = ∥h⃗i − h⃗j∥2. The steps of the agglomerative clustering algorithm are

summarized in Algorithm 2. The outputs of the process are summarized by means

of a visualization tool called dendrogram, where the hierarchical structure of parent

and child clusters are demonstrated by u-shape links. The height of the links in the

dendrogram determine the cophenetic distance between two clusters, which can be

also used to decide for the best number of clusters and linkage types visually.

5.1.3 Statistical Process Monitoring for Anomaly Detection

As the last step, a multivariate profile monitoring scheme is deployed to perform

control charting on the flattened encoded vectors. To this aim, the anomaly images

detected by the discussed methods are labeled as out-of-control samples and are

discarded out of the phase-I statistical process monitoring where the parameters are

estimated, and control limits are built based on normal samples. The anomaly vectors

are later employed to evaluate the out-of-control performance of the control charting

method. The multivariate profile monitoring scheme consists of a Hotelling’s T 2

control chart to monitor the deep representation vectors and a Shewhart control

chart for monitoring error variance the of residuals ϵ denoted by σ2. The first step

toward designing the control chart method in phase-I analysis, involves estimating

the mean vector, variance-covariance matrix and upper control limits. Denoting the

(N1 − 1)×Q successive difference matrix by V , it can be calculated as follows:
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Algorithm 2: Hierarchical Agglomerative for Clustering Melt Pool Images

Input: The set of flattened encoded vectors {h⃗1, h⃗2, · · · , h⃗N};

type k linkage function lk(Ci, Cj)

1 for i = 1, · · · , N do // loop over the data

2 Ci = {h⃗i} ; // each object is the cluster of its own

3 end for

4 C = {C1, C2, · · · , CN} ; // super set includes all clusters

5 while | C |> 1 do // loop until super set has

only one object

6 C∗
1 , C

∗
2 ← argmin{lk(Ci, Cj) | Ci ∈ C;Cj ∈ C} ; // pick best clusters

to merge

7 C ← {C \ C∗
1} \ C∗

2 ; // remove them from super set

8 C ← C ∪ {C∗
1 ∪ C∗

2} ; // add their union to the super set

9 end while

V =



v⃗1

v⃗2
...

v⃗N1−1


, (5.8)

where v⃗i = h⃗i+1− h⃗i, i = 1, 2, . . . , N1− 1, and N1 is total number of normal samples.

Then, the variance‐covariance matrix Σ and the mean µ are estimated as follows:

µ⃗ =

∑N1

i=1 h⃗i

N1

, (5.9)

Σ =
V TV

2(N1 − 1)
. (5.10)

The computational relationships for ith sample are defined as follows (Williams

et al. (2007)):
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T 2
i = [h⃗i − µ⃗]TΣ−1[h⃗i − µ⃗], i = 1, 2, . . . , N1 (5.11)

The upper control limit for the above statistics given a normal assumption, is approx-

imated using UCL = χ2
α,Q, where χ2

α,Q is the 100(1 − α)th percentile of chi‐squared

distribution with Q degrees of freedom. However, as the normal assumption is usually

violated in practice, the non-parametric kernel density estimator is fitted on the data

to estimate the empirical probability density functions (Martin and Morris (1996);

Fathizadan et al. (2017b)). Denote the Gaussian kernel function as Γ(u) = 1√
2π
e−u2/2

and its bandwidth by b, then the estimated density at point T 2
i is measured by:

f̂(T 2
i ; b) =

1

n

N1∑
j=1

Γ

(
T 2
i − T 2

j

b

)
, (5.12)

where the optimal value for b is determined by a K − fold cross validation that

maximizes the log likelihood of training data. Denote the hold out set at the kth fold

by Sk, then the optimal value for b is obtained as follows:

b = argmax

(∑K
k=1 log

∏
i∈Sk

f̂(T 2
i ; b)

K

)
. (5.13)

The 100(1 − α)th percentile of the estimated probability density function deter-

mines the upper control limit of the control chart.

Note that the flattened encoded vectors store a low-dimensional representation

that preserves only the main patterns in the original images. The residual variance

of the process can be further investigated to monitor any potential unaccounted vari-

ability. The computational relationship for ith sample is calculated as follows:

S2
i =

e⃗Ti e⃗i
P − 1

, i = 1, 2, . . . , N1 (5.14)

,where the P × 1 vector of the estimated residuals is given by e⃗i = x⃗i − ⃗̃xi, and ⃗̃xi

is the flattened vector of ith decoded image reconstructed from the bottleneck layer.

Again, the nonparametric kernel density estimator estimates the empirical probability
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density function of residual variance statistics. The 100(α/2)th and 100(1 − α/2)th

percentiles of the estimated probability density function determine the lower and

upper control limit, and S̄2 =
∑N1

i=1 S
2
i /N1 is the central control limit of the control

chart, respectively. The two control charts are performing concurrently. Therefore,

considering an overall false alarm probability of α, the false alarm probability of each

individual control chart can be determined by α
′
= 1−

√
1− α.

5.2 Case Study and Results

5.2.1 Experiment Setting

An experiment is conducted on an open-architecture laser powder bed fusion sys-

tem - the Additive Manufacturing Metrology Testbed (AMMT) at the National In-

stitute of Standards and Technology (NIST). Figure 5.2 illustrates a schematic set

up of the testbed with five major subsystems: a build platform, a powder recoating

system, a laser positioning optical system, and two process monitoring modules (Yang

et al. (2019a)). One of the process monitoring systems is a high-speed camera-based

coaxial melt pool monitoring system. The system is designed to allow full control of

laser scans as well as synchronized data acquisitions. It uses a real-time controller

to set galvo position and laser power as well as trigger the acquisition of melt pool

images (Lane et al. (2016)).

In this experiment, a total of 3× 4 Inconel 625 parts are manufactured on a 100

mm ×100 mm build platform (Lane and Yeung (2019)). Each part has the same

nominal 10 mm ×10 mm ×5 mm geometry but built with a unique scan strategy

– a combination of various scan paths, laser power, and scan velocity. An in-house

developed AM software is used to program the scan strategy into a series of position

commands with a time interval of 10 µs (100KHz). The high-speed coaxial melt pool
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Figure 5.2: Schematic of the AMMT Experiment Setup (Yang et al. (2019a))

camera is triggered at 2 kHz (500 µs of sample interval). However, the monitoring

system only captures melt pool images for one of the 12 parts at each layer due to

the camera memory limit. Hence, every part has around 3000 melt pool images every

other 12 layers.

In this study, part 8 is selected because of its richness of the melt pool char-

acteristics. Figure 5.3 shows the scan strategy of this part, named “island spiral

concentrating scan strategy”. Each layer on the part is composed of four adjacent

islands that are printed sequentially. The laser scans each island, spirally following

the numbering order shown in the figure. The part has 250 layers, each with 20

µm thickness. The machine reduces the scan speed when the laser turns direction.

The machine also reduces the laser power for scan speed to avoid high energy input.

Moreover, to avoid high heat concentration and introduce island shape variance, the

machine would rotate the centroid angle at each layer. The range of laser power and
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Figure 5.3: Schematic of the Experimental Build and the Scan Strategy

scan speed is from 0 to 234.83 W and 0 to 900 mm/s, respectively. Part 8 has melt

images captured at layer 8, 20, and 32, etc. We chose the images from layer 8 for the

deep representation learning and control chart method validation.

5.2.2 Deep Representation Learning of Melt Pool Images

The melt pool images from layer 8 of the process have been collected. The original

tensor of the data-set has shape 3769× 128× 120, which means there are 3766 total

images each with a resolution of 128 × 120. An example of an original image is

shown in Figure 6.6a. The original images are cropped to the biggest common frame

that includes the heated area zone’s information. The cropped images now have a

resolution of 60 × 60, as shown in Figure 6.6c. As the last step toward image pre-

processing and following the convolution operation in Equation 5.2, a 2D sharpening

kernel matrix is slid twice on each image to represent the local features in each image.

The example image after the sharpening process is illustrated in Figure 6.6b.

Next, the images are randomly split into training and testing data by a proportion

of 75% and 25%, respectively. Thus a total of 2824 images are used for training the

CAE, and the rest 942 images are utilized to validate the model and prevent potential

overfitting. The images are also normalized to have pixel intensities in [0, 1] interval
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(a) Original Image (b) Cropped Image (c) Sharpened Image

after 2D Convolution

Figure 5.4: Image Pre-processing on Melt Ppool Images

before feeding to the CAE. The proposed CAE architecture is comprised of 14 layers,

out of which the first and last layers contain the input and output images, respectively.

The summary of the model layers, excluding the input and output layers, is shown

in Table 5.2. Layers 2 to 7 and layers 8 to 13 in the model form the encoder and

decoder, and are represented as ’operation_e#’ and ’operation_d#’, respectively in

the table. The compact deep representation from each image is stored in the feature

map tensor from the encoder’s last layer, i.e., ’MaxPool_e6’. This layer is called the

bottleneck layer. The architecture of the resulting feature map tensors is illustrated

in Figure 5.5. In the figure, the number of slices and the corresponding dimension

for each slice in each layer is shown before and after @ sign, respectively. The deep

representation tensor has a dimension of 8× 5× 5.

The CAE model is compiled using the following settings: optimizer ‘Adadelta’

with a batch of size 32, binary cross-entropy as the loss function, and training on 200

epochs. Figure 6.7 demonstrates the learning trend for both train and test data resul-

tant from the training process. The y-axis in the figure displays the loss function and

x-axis is the number of epoches. Ten arbitrary learned encoded deep representation

of melt pool images are obtained from the bottleneck layer, and each is reshaped to
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Figure 5.5: The Architecture of Input Images, Feature Map Matrices and Output

Images

a matrix of shape 40 × 5 so that it could be displayed as an image. The third row

in Figure 5.7 depicts these vectors. Moreover, the first and second row provides the

corresponding original images, and decoded images reconstructed using information

from the bottleneck layer, respectively. As shown by the figure, the encoded vectors

are capable of downsampling the original image while preserving the melt pool’s local

characteristics. Furthermore, the encoded vectors provide a compact deep representa-

tion that can be fed to other methods of supervised or unsupervised learning models

for further analysis. For this aim, the encoded tensors of the shape 8 × 5 × 5 are

flattened to form 200 × 1 vectors. Therefore the original data set is downsized to a

total of 3766 samples, each with 200 features.

5.2.3 Individual Anomaly Detection by Clustering

This step aims to annotate the melt pool images as either normal or anomaly. The

hierarchical-based agglomerative clustering with single linkage given by Algorithm 2

was performed on the flattened encoded vectors, and the resulting dendrogram is

illustrated in Figure 6.9. The x-axis shows the samples, and the y-axis provides the
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Table 5.2: Configuration of the Convolutional Auto-encoder

Type Layer name Operation Number of filers filter size padding

Encoder

conv2D_e1 Convolution+ReLU 16 3× 3 1

MaxPool_e2 Maxpooling 1 2× 2 0

conv2D_e3 Convolution+ReLU 8 3× 3 1

MaxPool_e4 Maxpooling 1 2× 2 0

conv2D_e5 Convolution+ReLU 8 3× 3 1

MaxPool_e6 Maxpooling 1 3× 3 0

Decoder

conv2D_d1 Convolution+ReLU 8 3× 3 1

UpSamp_d2 UpSampling 1 2× 2 0

conv2D_d3 Convolution+ReLU 8 3× 3 1

UpSamp_d4 UpSampling 1 2× 2 0

conv2D_d5 Convolution+ReLU 16 3× 3 1

UpSamp_d6 UpSampling 1 3× 3 0

cophenetic distance to merge the clusters sequentially. The dendrogram’s visual in-

spection reveals several parent clusters with their approximate partitionings specified

by the vertical dashed lines in the figure. Investigating the images inside each cluster

also reveals that they share common characteristics. For instance, the angle of the tail

of the melt pools is the same inside each cluster. However, the first and the second

clusters display quite different behaviors in the dendrogram. First, the number of

samples in the first cluster is low. Second, the samples in this cluster tend to merge

at a relatively large cophenetic distance compared to the rest of the samples in the

data set, meaning they tend to form the singleton clusters of their own. Lastly, and

on the contrary, the samples inside the second cluster are merged at a relatively small

cophenetic distance, and their numbers are also large. These points suggest that the
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Figure 5.6: The Train and Test Learning Curves to Extract the Deep Representations

from Melt Pool Images

data set can be partitioned into three major distinctive clusters: cluster C1 composed

of a few singleton clusters, cluster C2, and cluster C3 composed of remaining clusters.

Truncating the dendrogram at the cophenetic distance of 0.70, results in a total

of 94 singleton clusters, two doubleton clusters, one tripleton cluster, one cluster

with 530 samples, and one cluster with 3138 samples. One can confirm that the

97 singleton and near singleton clusters belong to C1, the cluster with 530 samples

is C2, and the cluster with 3138 samples is, in fact, C3. Three arbitrary images

inside each of these clusters are selected and displayed in Figure 5.9. The left-hand

side, middle, and right-hand side panel contain images in C1, C2, and C3 clusters,

respectively. From now on, clusters C1, C2, and C3 will be referred to as ”anomaly”,

”noisy”, and ”normal” clusters, respectively. This also allows for the construction of

multi-variate control charting method as described before, after removing the samples

inside anomaly and noisy clusters.
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Figure 5.7: 10 Arbitrary Melt Pool Images

Figure 5.8: Dendrogram for Hierarchical-based Agglomerative Clustering with Single

Linkage

5.2.4 Statistical Process Monitoring and Anomaly Detection Performance

Given a set of normal melt pool image obtained by the methodologies described in

the last subsections, one can proceed to perform a control charting scheme to monitor

the stability of the process and also detect the anomalies and out of control situations

in real-time. To this aim, first, the normal data set is randomly split into training

and testing sets by a proportion of 75% and 25%, respectively. Then, the same
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Figure 5.9: Sample Melt Pool Images Inside C1:anomaly, C2:noisy, and C3:normal

Clusters

configuration of CAE proposed in Table 5.2 is retrained and validated this time on

the new training and testing data, respectively. Next, the flattened encoded tensors

of melt pool images belonging to the training data are used to construct the phase-I

control charting scheme proposed in subsection 5.1.3. In this phase and in regards

to Hotelling’s T 2 control chart, the mean vector µ and variance-covariance matrix Σ

given by Equations 5.9 and 5.10 and the value of UCL are estimated all based on the

training data. LCL, CL, and UCL values pertaining to residual variance monitoring

are also estimated using the original and decoded training images.

In phase-II monitoring, the estimated parameters are used to calculate the statis-

tics for monitoring data and decide if the process is either in control or out of control.

Basically, a decision for out of control situation is made when either of T 2 or S2 control

charts issue an out of control alarm. This happens when either monitoring statistics

exceeds their corresponding control limits. On the other hand, if both statistics fall
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inside the control limits, the process can be considered in control. In order to acquire

the monitoring data, the melt pool images in the noisy cluster are all discarded. The

testing data and images in anomaly clusters are labeled as ”normal” and ”anomaly”

data, respectively, and their encoded and decoded tensors are obtained by running

them through the trained CAE. The former and the latter are then employed to evalu-

ate the control charting method’s performance in terms of triggering false alarms and

true anomaly detection, respectively. The common practice to this aim is involved

with forming a confusion matrix that stores the values for True Positive (TP), False

Positive (FP), True Negative (TN), and False Negative (FN). In the context of the

control chart monitoring, a sample can come under one of the following categories:

• TP : if it is anomaly and detected as out of control

• FP : if it is normal but detected as out of control

• TN : if it is normal and detected as in control

• FN : if it is anomaly but detected as in control

Using the elements of confusion matrix, a set of criteria are defined as follows to

asses the quality of process monitoring:

Accuracy =

∑
(TP + TN)∑

(TP + FP + TN + FN)
, Specificity =

∑
(TN)∑

(TN + FP )
,

Sensitivity =

∑
(TP )∑

(TP + FN)
, precision =

∑
(TP )∑

(TP + FP )
,

F1score = 2
Sensitivity.Precision

Sensitivity + Precision
,
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Table 5.3: Performance Measurement Criteria for Different Training Splits and Type-I Error Probability Of α′

Measurement
Type-I error probability of α′

0.0010 0.0064 0.0119 0.0173 0.0228 0.0282 0.0336 0.0391 0.0445 0.0500

Accuracy 93.10% 94.58% 95.16% 95.40%95.40%95.40% 95.38%95.38%95.38% 95.24% 95.07% 94.87% 94.67% 94.43%

(0.0067) (0.0040) (0.0032) (0.0025)(0.0025)(0.0025) (0.0035)(0.0035)(0.0035) (0.0061) (0.0061) (0.0060) (0.0064) (0.0069)

Specificity 99.35%99.35%99.35% 98.78% 98.30% 97.93% 97.47% 96.99% 96.53% 96.05% 95.63% 95.22%

(0.0024)(0.0024)(0.0024) (0.0034) (0.0034) (0.0050) (0.0056) (0.0076) (0.0081) (0.0081) (0.0082) (0.0081)

Sensitivity 47.55% 64.88% 73.79% 78.74% 82.10% 84.68% 86.76% 88.74% 90.22% 91.31%91.31%91.31%

(0.0633) (0.0473) (0.0467) (0.0287) (0.0248) (0.0301) (0.0199) (0.0194) (0.0179) (0.0138)(0.0138)(0.0138)

Precision 92.93%92.93%92.93% 90.00% 87.47% 85.74% 83.34% 81.02% 78.92% 76.87% 75.19% 73.57%

(0.0322)(0.0322)(0.0322) (0.0283) (0.0220) (0.0326) (0.0329) (0.0405) (0.0391) (0.0371) (0.0361) (0.0344)

F1score 62.64% 75.24% 79.91% 81.99% 82.63%82.63%82.63% 82.70%82.70%82.70% 82.57% 82.30% 81.95% 81.44%

(0.0567) (0.0287) (0.0234) (0.0100) (0.0118)(0.0118)(0.0118) (0.0216)(0.0216)(0.0216) (0.0190) (0.0179) (0.0190) (0.0212)
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(a) Hotteling’s T 2 Control Chart to Monitor the Flattened Encoded Vectors

(b) S2 Control Charts to Monitor the Variance of Residuals

Figure 5.10: Anomaly detection by statistical process monitoring on top of the con-

volutional auto-encoders

where accuracy measures the ratio of overall true classifications to the number of

samples, specificity measures the ratio of true classification of normal samples to

the number of normal samples, sensitivity measures the ratio of true classification of

anomalies to the number of anomalies, precision measures the ratio of true classifi-

cation of anomalies to the number of classification of anomalies, and finally F1score

is the harmonic mean of sensitivity and precision.

As it was discussed by Section 5.1.3, the 100(1− α)th percentile of the estimated

probability density function for measured statistics will be used to determine the

control limits. This means there is a 100α probability that the statistics go above

the control limits and get detected as out-of-control (rejected) while they are in fact

in control (true null hypothesis). The larger the α, the smaller the control limits and

thus more alarms will be issued by the charts and vice versa. This will also impact
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the out-of-control detection power of control charts that is represented by 1−β error,

where β is the probability of accepting a sample while it is out-of-control. It is

common to choose the type-I error as a number between 0.001 to 0.05, which means

the corresponding control charts will issue false alarm warnings 0.1% and 5% of the

time. 10 equally spaced points inside this interval are chosen to test and find the best

control limits and therefore the best trade-off between chart’s false alarm rate and out-

of-control detection power. By selecting 10 different random proportions of the data

from the normal cluster as training data for each of the control chart configuration, 100

trials were conducted. Table 5.3 provides the results for performance measurements

criteria. The standard deviation of results is given in parenthesis below each entry.

The highest scores for each measurement have been emboldened in the table. All

the measurements are either monotonically increasing or decreasing with respect to

α
′ , except for accuracy and F1score that reach their maximum at α′

= 0.0228. On

rare occasions where the true classification of normal samples is preferable to the

practitioner, the high score of Specificity can be used to select the α
′ . Figure 5.10

illustrates a slice of phase-II T 2/S2 control charting scheme constructed based on

α
′
= 0.0228. It includes the entire samples from anomalies and covers a portion of

training and test data. The data are sorted according to their labels to provide a

better visual intuition into the control charting method’s performance regarding the

true classification of samples.

5.2.5 Comparison with Hand-crafted Features

As it can be observed by the right-hand side images in Figure 5.9, the deep repre-

sentation of melt pool images allows for the detection of eccentric types of anomalies

that are not detectable by the handcrafted feature engineer methods. For example,

two melt pool images might encompass the same amount of bright pixels or share the
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(a) I Control Chart to Monitor the Melt Pool Areas

(b) MR Control Charts to Monitor the Moving Ranges

Figure 5.11: Anomaly Detection by Statistical Process Monitoring on Top of the Melt

Pool Areas

same melt pool area, but the splashing effect could still distinguish them from each

other. The NBEM model (Yang et al. (2020b)) described briefly in section 2 is an

example study that uses the area of fitted ellipses on the thresholded images of melt

pools as the feature of interest. It should be noted that this work and NBEM study

both share the same experiment setting and data set of melt pool images. In order

to extract the features according to Yang et al. (2020b), the threshold value of 150 is

chosen to segment the melt pools from surrounding areas.

Similar to the procedure described in subsection 5.2.4, normal melt pool images

are employed to construct the phase-I control charting and estimate the parameters.

However, in this case, a univariate monitoring scheme is deployed. It is composed of

a I and a MR chart to monitor the individual observations and their moving range,

respectively, (Montgomery (2007)). The individual observations represented by xi
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Table 5.4: Performance Measurement Criteria Comparison Between NBEM and Pro-

posed Method for Different Training Splits

Model Accuracy Specificity Sensitivity Precision F1score

NBEM 89.20% 98.38% 17.89% 59.77% 27.32%

(0.0045) (0.0052) (0.0029) (0.0798) (0.0079)

Deep representation learning 95.38% 97.47% 82.10% 83.34% 82.63%

(0.0035) (0.0056) (0.0248) (0.0329) (0.0118)

are simply the measured melt pool areas, and their moving range can be calculated

as MRi = |xi − xi−1|. The UCL, CL, and LCL for the I chart to monitor xis is

obtained as follows:

UCL = x+ 3
MR

d2

CL = x (5.15)

LCL = x− 3
MR

d2
,

where x =
∑N1

i=1 xi

N1
, MR =

∑N1
i=2 MRi

N1−1
, and d2 is a predetermined constant equal to

1.128. Moreover, the UCL, CL, and LCL for the MR chart can be obtained as

follows:

UCL = D4MR

CL = MR (5.16)

LCL = D3MR,

where D3 and D4 are predetermined constants equal to 0 and 3.267, respectively.

Figure 5.11 illustrates the phase-II I − MR control charting scheme constructed

based on the above control limits. It includes the entire samples from anomalies and
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covers the same portion of training and test data as Figure 5.10. Similarly, the data

are sorted according to their label to provide better visualization. As it is obvious

by the comparison between the two figures, the control charting scheme based on the

proposed deep representation learning approach outperforms the method based on

melt pool areas in terms of anomaly detection. The set of performance measurement

criteria was calculated for 100 trials, and the results are provided in the first row of

Table 5.4. The second row in the table provides the results based on α
′
= 0.0228 for

the proposed deep representation learning method. The low values for performance

measurement criteria, especially sensitivity, precision, and F1score compared to

the proposed method, prove that simple characterization of melt pools by their area

results in losing valuable information vital to maintaining a quality process monitoring

and control.
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Chapter 6

DEEP SPATIO-TEMPORAL ANOMALY DETECTION IN LASER POWDER

BED FUSION

6.1 Methodology

The proposed methodology adapts the framework in Chapter 5 for spatio-temporal

anomaly detection using sequences of melt pool images and consists of the following

three primary components:

1. Following a sliding windows sampling strategy, the 3D stream of pre-processed

melt pool images is reshaped into samples of sequential data. The resulting 4D

tensor is then fed to an auto-encoder model to extract the deep spatio-temporal

bottleneck features from each sequence.

2. Next, the bottleneck tensors are unfolded into 1D vectors and deployed by an

agglomerative clustering algorithm. By relying on the structural similarity of

bottleneck vectors, each sequence is annotated as either a normal or anomaly

sample.

3. The 1D unfolded bottleneck vector are further downsized to scalars and de-

ployed by a multivariate statistical control charting scheme. The control chart-

ing method provides an intuitive visualization tool for real-time monitoring

of the process’s stability and detecting anomalous spatio-temporal events. The

phase-I of control charting scheme employs random portions of normal unfolded

bottleneck vectors to estimate the in-control baseline for phase-II monitoring.
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The overall performance of the framework is evaluated in phase-II by bench-

marking the accuracy of anomaly detection and false alarm rate.

The following subsections strive to shed light on the underlying structure of the

above components and their interconnection in further detail.

6.1.1 Deep Spatio-temporal Representation Learning for Feature Extraction from

Melt Pool Sequence

A co-axial optical camera captures gray-scale melt pool images in time sequence.

Denoting the total number of frames by m and assuming a sliding time window

of length l, the sequences of melt pool images can be represented by the tensor

S ∈ R(m−l+1)×l×n1×n2 , where n1 × n2 is the dimension of each image. Given the cur-

rent data structure, a high-quality feature extraction method must seize the temporal

correlation between time-indexed samples as well as spatial correlation within each

image. Recurrent neural networks (RNN) have been extensively used to model and

preserve the temporal correlation between samples in sequential and time series data

(Sutskever et al. (2014)). As opposed to general-purpose neural networks, these mod-

els are trained to minimize the error backpropagation through time. However, the

accumulation of near-zero derivatives through time causes the vanilla RNN models to

suffer from vanishing gradient problem and lose the long-range temporal interdepen-

dencies between time-indexed samples (Pascanu et al. (2013)). As a remedy, Long

Short Term Memory (LSTM) networks are introduced to tackle this issue by the in-

clusion of memory states in cells. The memory states are equipped with two gates

for a control mechanism that allows the past information to be confined or forgotten

within the current cell. In order to avoid the loss of spatial information, we use Con-

volutional LSTM neural networks (ConvLSTM) as opposed to fully connected LSTM

where the input data are readily unfolded and fed as 1D vectors (Shi et al. (2015)).
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Figure 6.1 lays out the structural schematic of one ConvLSTM cell for a sample

at time t. Let’s denote the corresponding cell’s memory state and hidden state by

3D tensors Mt and Ht, respectively, and its input sample by the 3D tensor Xt ∈

Rfn1×fn2×fn3 , where fn1×fn2×fn3 is the dimension of feature map after performing

convolutional operation on each original image. The hidden state Ht, stores the

spatio-temporal features of the whole sequence up to the time t. Moreover, the input,

forget, and output 3D gate tensors are given by It, Ft, and Ot, respectively. As it can

be seen by the lower left corner of Figure 6.1, convolutional operations are performed

by sliding kernel patches on the current input image as well as the previous hidden

state to extract the local features and preserve the spatial correlation within the cells

through time. The relationships between cell’s input, states, and gates at time t are

defined as follows:

Ft = σ (Wxf ∗ Xt +Whf ∗ Ht−1 +Wmf ⊙Mt−1 +Bf ) , (6.1)

It = σ (Wxi ∗ Xt +Whi ∗ Ht−1 +Wmi ⊙Mt−1 +Bi) , (6.2)

Ot = σ (Wxo ∗ Xt +Who ∗ Ht−1 +Wmo ⊙Mt +Bo) , (6.3)

Mt = Ft ⊙Mt−1 + It ⊙ tanh (Wxm ∗ Xt +Whm ∗ Ht−1 +Bm) , (6.4)

Ht = Ot ⊙ tanh (Mt) , (6.5)

where ∗ and ⊙ represent convolution and Hadamard product operations, respec-

tively. Moreover, σ and tanh are the element-wise sigmoid and hyperbolic tangent

activation functions given as σ(u) = 1/(1+ e−u) and tanh(u) = (eu− e−u)/(eu+ e−u)

to map the values between [0, 1] and [−1, 1], respectively. The training of the model

includes estimating the 4D tensors W and matrices B. The forget and input gates

in Equation (6.1) and (6.2) determine the amount of information from current input

and previous hidden and memory states to be erased and contributed, respectively.

The cell’s memory state is updated by Equation (6.4). The output gate is obtained

106



Figure 6.1: Structural Schematic of a ConvLSTM Cell for Sample at Time t

by the tensor manipulation of current input and memory as well as previous hidden

state as given by Equation (6.3). Finally, the spatio-temporal feature of the cell

based on the output gate and memory state can be extracted by Equation (6.5). The

tensor dimension of weights is determined based on the dimension of input data, and

number of kernels and their filter size. Moreover, the weights are trained in a simi-

lar manner to RNN using backpropagation through time. Considering a sequence to

sequence training paradigm and a single ConvLSTM unit, if we denote the standard-

ized output sample at time t by 3D tensor Yt, then the cross-entropy loss function

to minimize for each sequence sample of size l is defined as: Loss(X, Y; W, B) =∑l
t=1

∑
All Elements−Yt⊙log(ReLU(Whq∗Ht+Bq)), where log and ReLU are element-

wise logarithmic and Rectified Linear Unit operators, respectively. Stochastic batch

gradient descent is used to update the weights in each error propagation step where

the value of partial derivatives of loss with respect to each weight is computed by the

chain rule for derivatives. For instance, given a non-negative learning rate of γ, Wxo
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Figure 6.2: Proposed Spatio-temporal Auto-encoder Model Architecture

in Equation (6.3) can be updated as follows:

Wτ+1
xo =Wτ

xo − γ
∂Loss(X ,Y ;W,B)

∂Wτ
xo

τ = 0, 1, · · · (6.6)

=Wτ
xo − γ

l∑
t=1

∂Loss(X ,Y ;W,B)

∂Ht

∂Ht

∂Ot

∂Ot

∂Wxo

τ = 0, 1, · · · (6.7)

To learn a compact spatio-temporal representation from the unlabeled sequences

of melt pool images, we develop a spatio-temporal auto-encoder architecture by feed-

ing the same sequence of input data as the output to the model. The encoder f

and decoder g component of the auto-encoder are then designed and trained to learn

a mapping from input data X to a compact spatio-temporal latent space H, and

from H to a reconstructed version of original input data X̃. These mappings can be

summarized by f : X → H and g : H → X̃ for encoder and decoder, respectively.

The overall architecture of the proposed model is shown by Figure 6.2. Specifically,

the encoder component is composed of two subencoders: 1) a spatial subencoder
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and 2) a temporal subencoder stacked on top of the spatial subencoder. The spatial

subencoder learns the 3D spatial feature tensors from each original 2D melt pool im-

age by deep convolutional layers. Next, the resulting tensors are sequentially fed to

the ConvLSTM layers of the temporal subencoder to learn the temporal correlation

between time-indexed samples while preserving the spatial features. The last cell’s

hidden state of the final ConvLSTM layer in the temporal subencoders stores the deep

spatio-temporal bottleneck tensor for each sequence. These tensors are represented by

Hst
i ∈ Rb1×b2×b3 for i = 1, 2, · · · ,m− l+1, where b1, b2, and b3 are custom dimensions

that their size are determined by the layers’ characteristics and model architecture.

The repeat vector layer simply replicates the bottleneck tensor l times to provide

a suitable sequence of length l for the decoder. Mirroring the encoder, the decoder

component also consists of a spatial and a temporal subdecoder. The temporal subde-

coder is placed right on top of the bottleneck layer, and the spatial decoder is stacked

afterward to reconstruct the original image sequence using deep convolutional trans-

pose layers. Refer to Section 6.2.2 for greater detail into the design characteristics of

each layer and training parameters of the proposed model configuration.

6.1.2 Spatio-temporal Anomaly Detection in Melt Pool Image Sequence by

Clustering

The trained bottleneck tensors from previous section are deployed here to per-

form the data annotation and anomaly detection procedures. As discussed before,

the manual annotation of high-frequency streams of melt pool images contaminated

with scarce anomalous data is a prohibitive process. Clustering algorithms, on the

other hand, rely on the structural similarity of high-quality but low-dimensional fea-

ture vectors to automatically extract the normal and anomalous labels for original

data. Refer to Chapter 5 Section 5.1.2 for details regarding the agglomerative cluster-

109



ing algorithm. In the previous chapter we introduced various linkage functions and

used the single linkage to perform anomaly detection. In this chapter, however, the

anomaly melt pools of interest are temporally correlated and occur in a short amount

of time right after each other in groups of samples. Therefore, the single linkage can

no longer detects them. The average linkage function relies on distances of more than

one sample to join child clusters Ci and Cj. The cophenetic distance measured by

this linkage is defined as follows:

laverage(Ci, Cj) =
∑
h⃗i∈Ci

∑
h⃗j∈Cj

dist(h⃗i, h⃗i)

| Ci || Cj |
. (6.8)

In Equation (6.8), h⃗i ∈ R1×Q, for i = 1, 2, · · · ,m − l + 1, denote the vectors of

flattened encoded tensors extracted from bottleneck tensors Hst
i and Q is the product

of dimensions of the bottleneck tensor which is equal to b1 × b2 × b3.

6.1.3 Statistical Process Monitoring for Anomaly Detection

The normal samples retained by the clustering method are deployed in this section

to construct the phase-I multivariate profile monitoring scheme. Phase-I consists of

estimating the unknown parameters to determine the baseline control limits. The an-

notated anomaly sequence samples are held out as validation data set to evaluate the

out-of-control performance of the control charting when fine-tuning the hyperparam-

eters of the model. Analogous to Chapter 5 Section 5.1.3, a Hotelling’s T 2 control

chart is used to monitor the flattened encoded vectors of the deep representation,

while a Shewhart control chart is used to monitor the variance of residuals ϵ denoted

by σ2. It should be noted that the vector of ith sample’s estimated residual e⃗i ∈ R1×P

is given by taking the difference x⃗i − ⃗̃xi, where x⃗i and ⃗̃xi are the sample’s sequence

corresponding unfolded original and decoded tensors with P = l × n1 × n2.
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Figure 6.3: 3D Model of the Experimental Specimen

6.2 Case Study and Results

6.2.1 Experiment Setting

The Additive Manufacturing Metrology Testbed (AMMT) at the National Insti-

tute of Standards and Technology (NIST) is the primary platform developed to study

powder bed fusion processes. AMMT is a fully customized metrology instrument that

enables flexible control and measurement of the L-PBF process (Lane et al. (2016))

that equips a high-speed co-axial camera to capture an in-situ melt pool images ev-

ery 100 µs. Similar to the typical commercial L-PBF machines, AMMT uses galvo

scanner mirrors to control the laser path. It also utilizes a custom-designed dynamic

translating lens for laser flat-field correction, instead of an f-theta lens. This cus-

tom scanning lens is also optimized to enable diffraction-limited image quality for

the melt pool monitoring camera. Using custom-developed scan strategy design soft-

ware, the machine can realize precise laser control for beam power and position at

100 KHz frequency (Yeung et al. (2018)). The melt pool monitoring images are

120 pixels× 120 pixels with a resolution of 8 µm/pixel.
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Figure 6.4: Part Placement in the Building Chamber

The experiment for this study creates four specimens on a wrought nickel alloy

625 (IN625) substrate with identical geometry and size. Figure 6.3 demonstrates

the geometrical features of the experimental specimen, including the bounding box

of size 5mm× 9mm× 5mm, the 45o overhang feature, and the cylinder cavity. The

powder material is IN625 that is a mixture of virgin and recycled powder. 250 layers

at 20 µm thickness per layer construct the finished part. Figure 6.4 captures the part

layout in the build chamber, where the numbers mark the four specimens. The laser

power and scan pattern for layer 1 of a specimen is illustrated in Figure 6.5. The build

employs constant laser power (195 W ) and scan speed (800 mm/s) for the infilling
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area. All layers use stripe scan pattern with skywriting (Lane and Yeung (2020)).

This strategy allows the laser beam to maintain a constant scan speed in the infilling

area. The controller turns off the laser at the end of each track immediately to avoid

over-melting. The speed reduction can only happen on the over-shooting area, which

provides steady energy density to the entire part. This experiment uses a pre-contour

path to melt the outline of each layer by a lower laser power of 100 W . To minimize

the heat accumulation effect, the experiment deploys a 90o rotation strategy. In

other words, the laser beam has a different starting point and scan direction between

layers. Refer to Lane and Yeung (2020) for more detailed information regarding the

experiment settings.

6.2.2 Deep Representation Learning of Melt Pool Image Sequence

The video streams of melt pool images of layer 60 for the first 2 specimens have

been collected. After removing the noisy images, the total number of collected frames

for each specimen is equal to 3167, and each melt pool image has a resolution of

120 pixels × 120 pixels as described in Subsection 6.2.1. A sliding time window of

length 10 divides the collected data for each specimen into sequential samples, each

containing 10 consecutive melt pool images. After the sequential resampling, the ini-

tial data set is a tensor of size 3158× 10× 120× 120 for each specimen. An example

of a raw melt pool image is shown in Figure 6.6a. First, a 2D sharpening kernel

matrix is slid twice on each image to highlight the underlying spatial features further,

as shown by Figure 6.6b. To discard the unused pitch-black regions surrounding the

melt pools, the sharpened images are cropped to their largest common frame which

encompasses the heated area zone. The resultant 60× 60 example image after crop-

ping that serves as the final image for our analysis is shown in Figure 6.6c. The

tensors of two specimens are concatenated together to form a 6316 × 10 × 60 × 60
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Figure 6.5: Scan Pattern for the Layer 1 of the Experiment (Yang et al. (2021)). The

orange curve is outline of the part of this layer created during the pre-contour, which

is scanned with a lower laser power of 100 W . Green and red dots represent the

start and finish position, respectively. The dashed arrow indicates the laser moving

direction. Note, the laser beam does have an active path outside the part outline as

the laser power is set to zero.

tensor. The pixel intensities of images are normalized in [0, 1] interval to stabilize

the model training and prediction behavior. Moreover, to keep an eye on the model’s

performance against unseen data and to avoid potential overfitting in training, the

input data set is randomly split into training and validation segments by a proportion

of 75% and 25%, respectively. Therefore, a total of 4737 melt pool image sequences

take part in training the proposed auto-encoder while the rest 1579 sequences are
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(a) Raw Image (b) Processed Image after

Sharpening with 2D Convo-

lution

(c) Cropped Sharpened Im-

age

Figure 6.6: Image Pre-processing on Melt Pool Images

used for validation. The architecture of the proposed spatio-temporal auto-encoder

for feature extraction from melt pool sequences was first introduced and shown by

Section 6.1.1 and Figure 6.2, respectively. Table 6.1 summarizes the design charac-

teristics for each layer of the model, including operation, size and number of filters,

activation function, and stride parameter. Moreover, the dimensions of the feature

map tensors are shown in the last column of the table. The spatial subencoder is

composed of three stacking convolutional layers. In addition to convolution opera-

tions, these layers also downsample the slices of their input tensors by a scale of value

equal to the stride parameter. The stride parameter determines the number of patch-

to-patch pixels to skip when convolutional filters are slid throughout the image. As

the next step in model architecture, the sequential output tensors of spatial suben-

coder are subsequently fed into two ConvLSTM layers of temporal subencoder. The

ConvLSTM2 can be seen as the bottleneck layer of the model architecture, in which

its final recurrent cell stores the bottleneck tensor Hst. As can be seen by the ta-

ble, the bottleneck tensor is a compact deep spatio-temporal representation extracted

from each sequence of melt pool image samples and has a dimension of 5 × 5 × 64.
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Figure 6.7: The Train and Validation Learning Curves for Spatio-temporal Auto-

encoder

This is equivalent to a dimension reduction ratio of about 95% in the input sequence.

The configured spatio-temporal auto-encoder is compiled and trained with cross-

entropy loss function introduced in Equation (6.7) and ‘Adadelta’ with a batch size of

128 samples as the optimizer engine. Figure 6.7 demonstrates the learning trend for

both training and validation data after 200 epochs. The y-axis in the figure represents

the loss function, and the x-axis shows the number of epochs. After some manual

investigations into the validation data, three samples from different melt pool image

sequence categories are selected and fed as input to the trained model. Figure 6.8a,

6.8b, and 6.8c illustrates those representative samples from ”normal”, ”normal with

individual melt pool anomalies”, and ”abnormal” categories, respectively. The first

row in each subplot shows the original sequence with its images sorted from left to

right according to their chronological appearance. Moreover, the second rows have

the corresponding reconstructed samples based on decoding the information from
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encoded bottleneck tensors. As can be seen by the figures, the encoded bottleneck

tensors are capable of downsampling the original image sequence while preserving the

within spatial characteristics and between temporal correlation between melt pools.

A further investigation of the figures also reveals several important insights into

the performance of the deep spatio-temporal auto-encoder and patterns captured

by the bottleneck tensors. First, the spattered lump on top of the main melt pool

shown in the third from the last image of the original sequence in Figure 6.8b has

been deducted in the corresponding decoded image in the second row. This means

the encoding-decoding procedure, and thus the extracted representations are robust

against individual melt pool anomalies. This is a major improvement over the existing

methods that rely on single non-temporal melt pool anomalies to detect out-of-control

events in the process. On the other hand, in Figure 6.8c, the tiny twin melt pool to the

left of the main pool is consistently present across the original images and therefore has

been captured by the reconstructed sequence. These points imply that the bottleneck

tensors obtained from the original sequences in Figure 6.8a and 6.8b have a similar

structure while the one captured by Figure 6.8c is substantially dissimilar to those.

The anomaly detection procedure shown in the next sections will rely on this behavior

of the bottleneck tensors to accurately and with low false alarm rates find the out-of-

control spatio-temporal events in the process.

6.2.3 Anomaly Detection and Data Annotation by Clustering

As shown by the previous section, the extracted bottleneck tensor Hst has a di-

mension of 5× 5× 64 which after unfolding results in the flattened encoded vector h⃗i

of size 1600. The encoded vectors provide a compact deep representation to be fed to

the agglomerative clustering introduced in Section 6.1.2 and given by Algorithm 2 in

order to determine the spatio-temporal anomaly samples. The resulting dendrogram
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(a) Normal Melt Pool Image Sequence

(b) Normal Melt Pool Image Sequence with Anomaly in a Single Melt Pool

(c) Abnormal Melt Pool Image Sequence

Figure 6.8: Melt Pool Image Sequence Reconstruction by the Proposed Deep Spatio-

temporal Auto-encoder
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trained on the entire samples from two specimens is illustrated in Figure 6.9. The

x-axis in the figure represents the sequence samples, and the y-axis shows the cophe-

netic distance to merge the clusters sequentially. The dendrogram’s visual inspection

reveals the existence of two super-clusters. Each super-cluster itself consists primarily

of one large parent cluster and a few less populated child clusters, as shown by the

vertical black dashed lines on the figure.

Truncating the dendrogram at a cophenetic distance above a certain threshold will

create the desired partitioning as described above. One example of such thresholding

at the cophenetic distance of 13 is shown by the horizontal red line in Figure 6.9.

After sorting according to their population, the resultant clusters are illustrated by

Figure 6.10 in the form of a bar chart. Clusters 9 to 22 fit well into our definition of

anomaly provided in Section 6.1.2 as they merge with other clusters by considerably

larger cophenetic distances and also form near-singleton clusters of their own. Figure

6.11 represents 5 arbitrary sequence samples that fall inside these anomaly clusters

to provide better insights into the structure of detected anomalies by the method. As

can be observed, only samples with spatio-temporal abnormalities are detected, and

sequences with single anomalies in melt pools remain in the normal clusters. It is

worth noting that changing the threshold values for the clustering method can result

in different clusters with varying populations of normal and abnormal samples. In

general, the exact thresholding value depends on the user’s preference and degree of

conservatism. Nevertheless, a hyperparameter fine-tuning step is provided in Section

6.2.4 to further guide the practitioners in this matter.
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Table 6.1: Configuration of the Spatio-temporal Auto-encoder

Coding type Layer name Operation Filters Filter size Stride Output dimension

Input - - - - - 10× 60× 60× 1

Spatial Conv1 Convolution+ReLU 16 5× 5 3 10× 20× 20× 16

subencoder Conv2 Convolution+ReLU 8 3× 3 2 10× 10× 10× 8

Conv3 Convolution+ReLU 8 2× 2 2 10× 5× 5× 8

Temporal ConvLSTM1 Convolution+ LSTM +ReLU 128 2× 2 1 10× 5× 5× 128

subencoder ConvLSTM2 Convolution+ LSTM +ReLU 64 2× 2 1 5× 5× 64

Temporal Repeat Tensor Expand dimension - - - 10× 5× 5× 64

subdecoder ConvLSTM3 Convolution+ LSTM +ReLU 128 2× 2 1 10× 5× 5× 128

ConvTrans1 Convolution transpose+ReLU 8 2× 2 2 10× 10× 10× 8

Spatial ConvTrans2 Convolution transpose+ReLU 8 3× 3 2 10× 20× 20× 8

subdecoder ConvTrans3 Convolution transpose+ReLU 16 5× 5 3 10× 60× 60× 16

Conv4 Convolution+ sigmoid 1 5× 5 0 10× 60× 60× 1

Output - - - - - 10× 60× 60× 1
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Figure 6.9: Dendrogram for Hierarchical-based Agglomerative Clustering with Aver-

age Linkage

6.2.4 Hyperparameter Fine-tuning and Anomaly Detection Performance

The procedure to fine-tune the monitoring hyperparameters based on validation

data, including threshold values for clustering and type-I error for constructing con-

trol charting schemes, is described in this section. After construction, the control

charts are utilized in conjunction with the spatio-temporal auto-encoder to detect

anomalies in unseen test data in real-time. The bottleneck tensors tend to preserve

the main patterns in the original sequences and thus might fail to detect anomalies

caused by the unaccounted variability in the feature extraction procedure. Therefore,

the residual’s variance control charting introduced in Section 6.1.3 with its computa-

tional statistics given by Equation (5.14) can further assist with finding the anomalies.

In general, there is a strong correlation between the two methods in terms of detect-

ing anomaly samples. We build upon this fact to fine-tune the clustering cophenetic

distance threshold and type-I error simultaneously. To this aim, first, ten equally
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Figure 6.10: Bar Chart of Clusters and Their Population Formed by the Agglomera-

tive Algorithm at the Cophenetic Distance Of 13

spaced discrete values inside intervals [8, 16] are selected as candidate thresholds for

clustering. The samples inside the resulting clusters of size less than 40 are counted

toward anomalies, and the rest fall inside the normal category. The obtained normal

samples are then randomly split into training and validation normal data by a pro-

portion of 75% and 25%, respectively. The training normal samples are retained to

construct the phase-I control charting scheme given a type-I error of α′ . Ten equally

spaced points inside interval [0.005, 0.05] have been selected to study α
′ in this work.

More specifically, the phase-I for Hotelling’s T 2, consists of using training nor-

mal data to estimate the mean vector µ and variance-covariance matrix Σ, as given

by Equations (5.9) and (5.10), respectively. The parameter estimates are used to

determine the UCL given a value for α. It should be noted that as the inverse of

the variance-covariance matrix Σ−1 exhibits unstable behavior in the presence of large

dimensions, h⃗i are further downsized to vectors of 400 dimension using Principle Com-

ponents Analysis (PCA). On the other hand, and with respect to residual’s variance
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(a) Sequence at t = 1357

(b) Sequence at t = 1705

(c) Sequence at t = 2263

(d) Sequence at t = 5960

(e) Sequence at t = 5970

Figure 6.11: Examples of Spatio-temporal Anomalies Detected by Clustering on Top

of the Auto-encoding Procedure

S2, phase-I only consists of estimating the UCL for each α value using original and

decoded sequence images as described in Section 6.1.3. The optimal threshold values

for clustering and type-I error are fine-tuned by benchmarking the performance of

each combination against the validation data in phase-II monitoring. The validation

data set consists of validation normal samples and all abnormal samples. In phase-II,

a sample is considered out-of-control when either the T 2 or the S2 monitoring statis-

tics exceed their corresponding control limits. On the other hand, the process can be

considered in-control if all statistics fall inside the control limits.
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Figure 6.12: Validation F1score for Different Clustering Thresholds and Type-I Error

The benchmarking can be realized by placing each sample under TP , FP , TN ,

and FN categories analogous to Chapter 5 Section. 5.2.4. Eventually, the quality

of phase-II monitoring can be measured using the following conventional machine

learning performance evaluation metrics similar to that of Chapter 5:

recall =

∑
(TP )∑

(TP + FN)
, (6.9)

precision =

∑
(TP )∑

(TP + FP )
, (6.10)

F1score = 2
Recall.Precision

Recall + Precision
, (6.11)

Accuracy is not considered in the list of measured metrics because the data is

highly imbalanced. Figure 6.12 provides the validation F1score results after 100 trials

with different cophenetic distance threshold and α
′ combinations. The cophenetic

threshold and type-I error α
′ equal to 11.55 and 0.005, respectively result in the

highest F1score of about 90.60%. Therefore, they have been chosen as the final

hyperparameters combinations for the model.

124



(a) Melt Pool Sequence for Laser Power Equal to 100W versus 195W .

(b) Melt Pool Sequence for Laser Power Equal to 195W .

(c) Melt Pool Sequence for Laser Power Equal to 195W .

Figure 6.13: Anomaly Detection by T 2 and S2 Control Charts for Specimen #4 at

Layer 60.
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(a) Melt Pool Sequence for Specimen #1 at Layer 120.

(b) Melt Pool Sequence for Specimen #3 at Layer 160.

(c) Melt Pool Sequence for Specimen #4 at Layer 200.

Figure 6.14: Anomaly Detection by T 2 and S2 Control Charts for Different Specimens

and Layers
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Finally, the generalization power of the constructed control charts is tested against

unseen data. To this aim, first, several short video clips containing both normal and

abnormal events –from other two specimens and from the layers of experiment that

are not used in the training and validation data– are collected. After passing through

the image pre-processing pipeline, including sharpening, cropping, and discarding

noisy image operations, the video clips are resampled into sliding windows of size 10

sequential images. Next, the samples are fed by the pre-trained auto-encoder, and

resulting spatio-temporal bottleneck tensors Hst and reconstructed sequence X̄ are

retained. Finally and following the control charting procedure, T 2 and S2 monitoring

statistics for each sequence is computed and plotted on the corresponding control

charts. Figure 6.13 illustrates the T 2 and S2 charting results for specimen #4 at

layer 60. Remember from Section 6.2.1 that printing a layer is composed of two

passes: a contour pass with a lower laser power equal to 100W to print the border,

and an infill pass with a higher laser power equal to 195W to print the part core

and cylindrical features. The former pass is not included in the training data and

therefore should be detected as an anomaly in the process if monitored by the method.

An example video clip containing the laser power transition pass in time is shown in

Figure 6.13a. As detected by the charts and shown by the sequence at time frame 365,

melt pool sequences with low laser powers mainly feature smaller melt pool regions.

On the other hand and after the start of the infill pass, the control charts go back to

issue normal signals.

Figure 6.13b and similarly Figure 6.13c represent several scenarios of spatio-

temporal anomalies and normal samples during the process at different times. As it

was previously discussed, T 2 control chart might fail to detect those abnormal sample

whose faulty signature patterns haven’t been captured by the auto-encoding proce-

dure. In those scenarios, the S2 statistics monitors the samples residual’s variance to
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assist the T 2 control chart. Figures 6.14a shows an example event for specimen #1 at

layer 120, in which the first spatio-temporal anomaly instance at time frame 1510 is

detected by S2 while T 2 indicates a normal situation. Figures 6.14b and 6.14c contain

testing samples from specimen #3 at layer 160, and specimen #4 at layer 200, re-

spectively. The majority of detected anomalies so far are mainly characterized by the

presence of splattering effects around the main melt pools across the image sequence.

The control charts in Figures 6.14b and 6.14c illustrate the power and robustness of

the method in detecting a wide-range of rather different anomaly events where the

morphological characteristics of the main pool itself have been compromised in the

process.
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Chapter 7

CONCLUSION

The scope of the dissertation is defined based on developing novel process-specific

monitoring and control methods across two types of additive manufacturing processes.

As delineated by Chapter 1, LSAM and LPBF technologies have been recently devel-

oped but are still under investigation for their lack of viability in practice. The unified

objective of the study includes providing monitoring and optimal control schemes that

mitigate the quality risks and increase the efficiency of the processes. Investigating

the critical assumptions that existing methods often overlooked or failed to model,

the proposed frameworks provide data-driven approaches to preprocess, model and

transform the data into easy-to-implement proactive actions.

Large-scale additive manufacturing uses carbon fiber reinforced thermoplastic ma-

terial to fabricate parts in large size. Print surface temperature is an important factor

that impacts the product quality. A proper layer time results in a proper print sur-

face temperature, leading to an acceptable product quality. However, layer time con-

trol with both quality and efficiency considered has not received sufficient attention.

In this work, in-situ surface thermal modeling and real-time layer time control for

large-scale additive manufacturing are investigated. Specifically, a regression model

together with the Gaussian process is proved to predict surface temperature of parts

accurately, even in a dynamic environment. The regression model is then combined

into an optimization model to derive the optimal layer time for each layer to better

satisfy the quality requirement and also improve the efficiency. The proposed method

is useful for practitioners of large-scale additive manufacturing and is capable of being

embedded in the control system of the large-scale 3D printer to improve the process
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through manufacturing automation.

The second piece of this work toward monitoring and control of LSAM process

investigates the set of images captured by thermal cameras for insights into the ther-

modynamics of the process. Given two case studies, it was shown how different lo-

cations subject to different exogenous and environmental factors, geometry of parts,

and positioning can exhibit different heat dissipation. Specifically, a non-linear pro-

file model was introduced and fitted to the thermal profile data of each location to

capture its corresponding cooling dynamics. The resulting thermal gradient across

the surface motivated the introduction and development of several real-time control

models including a print time control and a printer head speed control model. Each

model was then studied in details and the proper procedures were developed to solve

the models to reach the optimal control variables. Finally. the numerical result were

provided to prove the effectiveness and applicability of the proposed methods.

The prominent signatures of Laser Powder Bed Fusion (LPBF) processes can be

captured by in-situ sensor data, for example, streams of co-axial melt pool images col-

lected during the printing process. In contrast to physics-based modeling approaches,

data-driven methods exhibit stable and robust process monitoring performance if

trained with sufficient data. On the other hand, parametric and regression-based

methods rely on unrealistic assumptions in their development phase, which can be

easily violated in practical and high-dimensional settings. Moreover, reliance on hand-

crafted feature engineering methods deteriorates their performance and generalization

power in comparison with model agnostic deep learning methods that integrate fea-

ture engineering with model architecture training. Specifically, a configuration of

Convolutional Auto-Encoder (CAE) neural networks processes the collected melt pool

images to learn a low-dimensional but deep representation from data. The extracted

features are plugged into an agglomerative clustering algorithm to tag the anomalies
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and automatically annotate the data due to the burdensome and expensive manual

annotation process. Subsequently, a Hotelling’s T 2 and S2 control charting scheme is

developed to monitor the process’s stability by keeping track of the learned represen-

tations and residuals obtained from the reconstruction of original images. Finally, the

numerical results from a real-world case study were provided to prove the proposed

method’s effectiveness, applicability, and accuracy.

Anomaly detection based on individual melt pool monitoring suffers from an over-

inflated false alarm rate. To overcome this, we propose a configuration of convo-

lutional long short term memory auto-encoders composed of spatial and temporal

subencoder/subdecoder components to model the intricate temporal correlation be-

tween melt pool video frames as well as the spatial characteristics within each melt

pool region. After unfolding, the extracted bottleneck tensors are plugged into an ag-

glomerative clustering algorithm with average linkage to annotate the group anoma-

lies and collect the normal samples. The training portion of normal samples is used to

construct the phase-I of the proposed dual control charting method, and the rest are

used as validation samples to fine-tune the hyperparameters of the model. The per-

formance of the method against unseen test data demonstrates its applicability and

effectiveness to detect the anomalies and distinguish the normal events in real-world

experiments.

7.1 Directions for Future Research

The directions for future studies by expanding the current scope of this study are

given as follows:

1. The developed methodology in this study strives to be fairly model agnostic and

data dependent. Nevertheless, by leveraging physical-related models as prior

data, adaptive Bayesian models can be adopted to construct hybrid decision

131



support frameworks.

2. Typically, more than one source of data is captured during the building spans

of various additive manufacturing processes. In addition, data sampling rate

and input dimension varies across different modalities. It is worth investigating

the feature matching and multi-modality data fusion methodologies to unify all

sources of data and bolster the accuracy of proposed control and monitoring

schemes.

3. Despite defining and utilizing several sliding windows sampling strategies to

incorporate spatio-temporal correlation of data into account, the data from

different layers assumed to be independent in this study. The opposite will

introduce further complications to the feature extraction methods by adding an

extra dimension to the tensor of captured data. A future direction would involve

investigating the layerwise framework that employ between layer correlation.

4. Monitoring methods can only provide real-time predictions about upcoming

samples after analyzing the historical data. We can expect to receive accurate

signals that determine when the process is in or out of control and whether

it requires intervention to get back on track. This means repetitive pauses

in the process for further investigation into the cause of anomaly incidents. In

other words, by relying on historical data as opposed to hard-to-derive physical-

related modeling, we can predict the system response using the system’s pre-

dictor or state variables. On the other hand however, given the current and

historical state of the system, real-time optimal control methods strive to pro-

vide a prescriptive analysis by finding the control variables that optimize a

reward or loss function of interest. This will guarantee that the system is

always moving and correcting itself in the right direction without any interrup-
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tion. As an instance, consider an autonomous driving vehicle, where state is

captured by images from the road and environment, control is the magnitude

of acceleration and steering wheel position, and reward is defined as crash or

normal drive. Similarly, let’s define the state of LPBF system as an embed-

ding of the melt pool images and represent its vector by x⃗. The control vector

denoted by u⃗ can be provided by experiment parameter settings such as laser

speed, hatch distance and laser power. Finally, the loss/reward function r can

be defined based on a mechanical characteristics related to the formation of de-

fects or X-CT scan labels. Inevitably, the system evolution equations appears

to be almost impossible to be found by a closed-form equation. Fortunately,

Deep Reinforcement Learning (DRL) methods can provide a ground to learn

the system evolution equations using the historical data for state, control, and

reward functions. Deep Q-learning technique in particular provides an appro-

priate match where the stacks of state and control, i.e., x⃗ and u⃗ are fed to a

neural network and to learn the reward function r.
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Proof. The objective function given by Equation (4.13) can be expressed as follows:

f(t) =
M∑
i=1

[
ωi

(
ai + bieβ

i
1(t+

i
v
−ti0)
)2]

+ ω0t

, where ai = Tenv − βi
0
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− Tb and bi = T i(ti0) − Tenv +
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0
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1
are negative and positive

numbers, respectively. Taking the first order derivative we have:
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The second order derivative can be then obtained as:

∂2f

∂t2
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2
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v
−ti0) is also a positive number.

Theorem 1. Suppose f : Rn −→ R is twice differentiable over an open domain.
Then, f is convex if and only if ∇2f(x) ⪰ 0 for all x ∈ dom(f).

Theorem (1) implies the objective function given by Equation (4.13) is convex if
and only if the following equation holds:

M∑
i=1

(
ai + 2bieβ

i
1(t+

i
v
−ti0)
)
ci ≥ 0

Suppose γ is the numerical solution to
∑M

i=1

(
ai + 2bieβ

i
1(t+

i
v
−ti0)
)
ci = 0. Then, the

above equation holds true if t ≤ γ. The feasible region is also a convex set. As the
result, the layer time control model is convex if and only if tU ≤ γ.
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APPENDIX B

PROOF OF PROPOSITION 2 IN CHAPTER 4
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Proof. The optimal speed control model from each partition onward is independent
from the speed at previous stage. Thus by substituting vj−1 with an arbitrary speed
such as vl, we have:

f ∗(t, v | j, tj, vj−1) = f ∗(t, v | j, tj, vl), for j = 1, 2, · · · , N (B.1)

Furthermore, if tj seconds have been passed so far, then we have:

f ∗(t, v | j, tj, vl) = f ∗(t+ tj, v | j), for j = 1, 2, · · · , N (B.2)

Consider the case where tj = tl and assume t∗ is the optimal layer time for
f ∗(t, v | j). The value of δ in Equation (4.44) is chosen small enough such that:

f ∗(t, v | j, tl, vl) = f ∗(t+ tl, v | j) = f ∗(t, v | j), for j = 1, 2, · · · , N (B.3)

That is because the optimal value of new variable t+tl accommodates itself by taking
a value equal to t∗. In general we have t = t∗ − tj. As the value of tj increases, the
value of t decreases such that f ∗(t, v | j, tj, vj−1) will be kept equal to f ∗(t, v | j). At
a certain point it reaches a value where no further decrease in t is possible because it
has to be non-negative. This is when the optimal value of the objective function starts
to increase. Thus following Equations (B.1) - (B.3) for tj ∈ [tl, tu] and vj−1 ∈ [vl, vu],
we have:

f ∗(t, v | j, tl, vl) ≤ f ∗(t, v | j, tj, vj−1), for j = 1, 2, · · · , N (B.4)
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