
ARGOS: Adaptive Recognition and Gated Operation System for Real-time Vision

Applications

by

Mohammad Farhadi Bajestani

A Dissertation Presented in Partial Fulfillment
of the Requirement for the Degree

Doctor of Philosophy

Approved April 2022 by the
Graduate Supervisory Committee:

Yezhou Yang, Chair
Sarma Vrudhula
Carole-Jean Wu

Yi Ren

ARIZONA STATE UNIVERSITY

May 2022

ABSTRACT

Deep neural network-based methods have been proved to achieve outstanding per-

formance on object detection and classification tasks. Deep neural networks follow

the “deeper model with deeper confidence” belief to gain a higher recognition accu-

racy. However, reducing these networks’ computational costs remains a challenge,

which impedes their deployment on embedded devices. For instance, the intersection

management of Connected Autonomous Vehicles (CAVs) requires running computa-

tionally intensive object recognition algorithms on low-power traffic cameras. This

dissertation aims to study the effect of a dynamic hardware and software approach

to address this issue. Characteristics of real-world applications can facilitate this dy-

namic adjustment and reduce the computation. Specifically, this dissertation starts

with a dynamic hardware approach that adjusts itself based on the toughness of in-

put and extracts deeper features if needed. Next, an adaptive learning mechanism

has been studied that use extracted feature from previous inputs to improve system

performance. Finally, a system (ARGOS) was proposed and evaluated that can be

run on embedded systems while maintaining the desired accuracy.

This system adopts shallow features at inference time, but it can switch to deep

features if the system desires a higher accuracy. To improve the performance, ARGOS

distills the temporal knowledge from deep features to the shallow system. Moreover,

ARGOS reduces the computation furthermore by focusing on regions of interest. The

response time and mean average precision are adopted for the performance evaluation

to evaluate the proposed ARGOS system.

i

To my parents and fiancée

for their love, support, and encouragement.

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

CHAPTER

LIST OF FIGURES . viii

CHAPTER

1 INTRODUCTION . 1

1.1 Problem Statement . 1

1.2 Related Work . 2

1.2.1 Object Detection . 3

1.2.2 Visual Systems Performance . 4

1.3 Human Visual System. 5

1.4 Contributions . 7

1.5 Dissertation Outline . 9

2 ADAPTIVE HARDWARE . 11

2.1 Introduction . 11

2.2 Related Work . 11

2.3 Proposed approach . 13

2.3.1 Adaptive and Hierarchical CNNs . 14

2.3.2 AH-CNN Architecture . 14

2.3.3 Implementation on FPGA . 17

2.3.4 Training Phase . 18

2.3.5 Learning Procedure . 18

2.3.6 Model Training Details . 19

2.3.7 Experiments . 19

2.3.8 Implementation . 20

iii

CHAPTER Page

2.3.9 Overall Evaluation . 22

2.4 Conclusion . 25

3 TEMPORAL ADAPTATION . 26

3.1 Introduction . 26

3.2 Related Work . 27

3.3 Proposed approach . 28

3.3.1 Temporal Knowledge Distillation . 29

3.3.2 TKD Approach . 31

3.3.3 The TKD Architecture . 32

3.3.4 Distillation Loss . 33

3.3.5 Key Frame Selection . 35

3.4 Experiments . 37

3.4.1 Ablation Study . 39

3.4.2 Overall Performance . 41

3.4.3 Further Study and Discussions . 42

3.5 Conclusion . 45

4 TEMPORAL ADAPTATION ON EMBEDDED SYSTEMS 47

4.1 Introduction . 47

4.2 Background and Related Work. 49

4.2.1 Background . 50

4.2.2 Related Work . 51

4.3 System Framework . 52

4.3.1 Knowledge Transfer . 52

4.3.2 Main Architecture . 54

iv

CHAPTER Page

4.4 Experimental Results . 57

4.4.1 Setup . 57

4.4.2 Experimental Results . 60

4.4.3 Further Discussion . 63

4.5 Conclusion . 65

5 ARGOS: AN ADAPTIVE AND REGION-SCALE PROPOSER BASED

OBJECT RECOGNITION SYSTEMS . 66

5.1 Introduction . 66

5.2 Related Work . 70

5.2.1 Dynamic Neural Networks . 70

5.2.2 Quantized Neural Networks . 72

5.2.3 Online Knowledge Distillation . 73

5.2.4 Video Object Detection . 73

5.3 ARGOS Approach . 74

5.3.1 Binary Region Proposal . 74

5.3.2 Online Knowledge Distillation . 79

5.3.3 Masking . 84

5.4 Experiments . 85

5.4.1 Experiment Setup . 85

5.4.2 Binary Region Proposal . 87

5.4.3 Online Knowledge Distillation . 92

5.5 Conclusion . 97

6 CONCLUSION . 98

REFERENCES . 101

v

LIST OF TABLES

Table Page

2.1 Available Resources on the Zynq Xc7z020, in Comparison to Used

Resources by Convolution Parts. 21

2.2 Performance Evaluation on Different Parts of the Design. 22

2.3 Top-1 Accuracy of the HLS Optimized IP-cores. 23

3.1 Performance of TKD with Different Training Methods over Hollywood

Scene Dataset and the Pursuit of Happiness. 39

3.2 Compression of Accuracy (Iou=0.5) over Youtube Object Dataset. 41

3.3 Parameter Study of λ over the TKD. 43

4.1 Comparison of Different Approaches. Local Training and Network

Training Both Use the Proposed Key Frame Selection Method Us-

ing Full Precision Data. The Energy Column Is the Average Energy

Consumption for Each Frame. Overall Score Is the Ratio of F1 Score

to Energy. 59

5.1 Results of Quantizing Different Layers of QU-Net and the Effect of

Applying a DCT-II Transform to the Input. Each Combination Was

Trained for 50 Iterations. The mAP Is Calculated on the Instance

Segmentation Classes of Cityscapes Dataset. The DCT Based Model

Has a Lower Computation, but It Selects More than 99% of the Image,

Which Does Not Reduce the Computation of the Deeper Model. 86

vi

Table Page

5.2 Results of the Object Detection Metrics on the Cityscapes and the

COCO Dataset. Rn-101 Represents the Resnet-101 Backbone and Dc

Represents the Dynamic Convolution Approach. I Use the QU-Net

Model under the ARGOS Ecosystem as the Region Proposal Model in

These Experiments. 88

5.3 Different Methods Have Been Compared in Terms of Accuracy (mAP),

Frame per Second Obtained Using Workstation and Embedded De-

vices, Energy, and Score (mAP/Energy). ARGOS Improves the En-

ergy Consumption by 89% in Comparison with Yolov5x. 93

vii

LIST OF FIGURES

Figure Page

1.1 Stimulus Materials, Fmri Brain Coverage, and Significant Meg-fmri

Fusion Results over Different Objects and Background (Cichy et al.,

2016). 6

2.1 The Scheme of Cnn Implementation on Fpga Using Dynamic Recon-

figuration and Adaptive Feedback. The Adaptive Feedback Makes the

Decision to Classify the Image or Apply the next Stack of Convolution

Layers Based on the Output Confidences Computed from Each Part. . . 16

2.2 Layout of the Reconfigurable Design. 20

2.3 The Stop Ratio for Each Part on Cifar-10, Cifar-100, and SVHN Dataset. 23

2.4 Computation Reduction of Entropy (Ent), Confidence (Conf), Skip-

net+SP (Sp) and Skipnet+hrl+sp (Rl) with Feed-forward Gates (G1

Has Two Convolution Layers, G2 Has One Convolution Layer) While

Preserving the Full Network Accuracy. The Computation Cost In-

cludes the Computation of Decision Method. I Am Able to Reduce

the Computation Costs by ≈30%, ≈27% and ≈57% on the Cifar-10,

Cifar-100, and Svhn Data Using Confidence Decision Method Com-

pared to the Base Model. Since the Feed-forward Gates Are More

Expensive, Skipnet Is Not a Suitable Method for the Scope of the Study. 24

3.1 An Illustration of the TKD Model’s Actual Performance: F-1 Score

Distribution over Example Object Categories in Different Environ-

ments Using TKD. 28

viii

Figure Page

3.2 An Overview of Tkd (Temporal Knowledge Distillation): A Low-cost

Student Model Is Tasked to Detect Objects in the Main Thread. To

Retain High Accuracy, a Key Frame Selector Decides to Activate the

Oracle Model and Adapt the Student over the Environment. Since

the Execution of the Oracle Model and Retraining the Student Model

Occurs in Separate Thread, It Does Not Have Significant Effect on the

Inference Latency. 32

3.3 Target Tensor Composition. 34

3.4 Key Frames Selected Using TKD over Two Scenes from the Hollywood

Scene Dataset Marsza lek et al. (2009). The Red Crosses Indicate the

Key Frames Selected by My Method. See Further Discussion in Sec. 3.4.3. 36

3.5 Accuracy and Speed in Youtube-objects Dataset. 42

3.6 Computational Costs for Loss Functions. 43

3.7 Key Frames Histogram. 44

4.1 The Limited Knowledge of Shallow Model Can Be Adapted to the New

Environment Using the Deep Model Knowledge. 48

4.2 An Overview of Knowledge Transfer Method: The Main Thread of

Execution on the User-end Device Runs a Shallow Student Model to

Detect Objects. To Keep the Desired Accuracy, a Key Frame Selection

Module Decides to Retrain the Student Model Based on the Oracle

Model. 53

4.3 Experimental Setup. 58

ix

Figure Page

4.4 F1 Score Variation. In the Case of Fixed Camera, the Network Training

(NT) Using Wi-fi Connection Even Has a Better F1 Score in Compar-

ison with the Local Training (LT). Both NT and LT Operate on Half

Precision Data. The High Spike Indicates That the Model Has Been

Adapted to the Environment While the Low Spike Shows the Scene

Change. 61

4.5 Comparison of (a) Recall, (B) Average Training Time, (C) Total En-

ergy Consumption of All Frames, and (D) Average Inference Time, for

Fixed and Moving Camera Videos Using Wi-Fi and LAN Connections.

The Efficiency of Key Frame Selection Method (KFS) Has Been Also

Compared with the Case in Which All the Frames Are Trained (w/o

KFS). 62

5.1 ARGOS Predicts the Regions of Interest in Images for Further Pro-

cessing (Through Bin Packing or Gather-scatter).. 67

5.2 ARGOS Experimental Set Up. 70

5.3 ARGOS Implementation with the Online Knowledge Distillation Method:

A Light Student Model Is Responsible for Detecting Objects in the

Scene in Addition to an Event Detection System to Extract the Re-

gions of Interest. These Regions Are Packed to Obtain a Compact

Input Containing Only the Regions of Interest, Which Is Then Sent

to a Deeper Model for Final Detection. Further, the Light Model Is

Trained Adaptively to Reduce the Dependency on the Feature Extrac-

tion from the Deeper Model. 77

x

Figure Page

5.4 Original Image Vs Regions of Interest (RoIs); I Start with the Regions

Proposed by the Event Detection Mechanism. These Are Further Re-

duced to Remove the Regions with No Chance of Object Existence and

Regions with Pre-detected Objects. 81

5.5 ARGOS System Design. 85

5.6 Results of the Segmentation Metrics on the Instance Segmentation

Classes in the Cityscapes Dataset. Rn-101 Represents the Resnet-101

Backbone, and Dc Represents the Dynamic Convolution. 91

5.7 Results of the mAP Statistics for Object Detection and Segmentation

Were Calculated on COCO Dataset. CM R-CNN Represents the Cas-

cade Mask R-CNN. 91

5.8 An Example of a Fast-moving Object Which Can Be Missed by Object

Detectors Due to Their Inference Time. 94

5.9 Results of the mAP Statistics Calculated on the UA-DETRAC Dataset

with the Models Constrained to Process 25 Fps. 96

5.10 Results on the Wisenet Dataset. The Results Listed Show the Execu-

tion Time and Accuracy of the Model with Online Knowledge Distil-

lation and Without It (wo/T). 97

xi

Chapter 1

INTRODUCTION

1.1 Problem Statement

Object detection and classification plays a critical role in a variety of embedded

applications such as obstacle avoidance (Carrio et al., 2018), detection and tracking

(Breuers et al., 2018), object searching (Ye et al., 2018) and intersection management

(Khayatian et al., 2020). We have witnessed the great success of Convolutional Neural

Networks (CNNs)-based methods in the object detection task during the past decade.

This success has led researchers to explore deeper models such as RetinaNet (Lin et al.,

2018) or Swin transformer (Liu et al., 2021), which yield high recognition accuracy.

The “secret” sauce behind the success of these deeper and deeper CNNs models is the

stacking of repetitive layers and increasing the number of model parameters (Chen

et al., 2017a). This practice becomes possible while the applications are running in

big data centers or infrastructures with high-performance processing capabilities.

However, the disadvantages of this practice are obvious, and the high perfor-

mance is achieved by the significant growth of the model complexity: stacking up

layers and increasing the model parameters of the system, which is computationally

expensive and also increases the inference time significantly. Hence, these models are

not suitable for real-time and embedded visual processing systems and thus impede

their deployment in the era of intelligent robots and autonomous vehicles. The same

concerns also lie in the energy conservation and computation limits since deep mod-

els require a large number of matrix multiplications, which are time-consuming and

energy-demanding for mobile robotic applications.

1

For instance, the vision-based intersection management (vIM) of CAVs is one of

the emerging applications which will become an essential part of cities (Khayatian

et al., 2020). A study conducted by American Automobile Association (AAA) shows

more than two people are killed every day in the U.S. due to accidents caused by

red-light runners (Bomey, 2019), and vIM can significantly reduce it. In vIMs, the

processing unit needs to be at the intersection; using cloud computing is not feasi-

ble as it requires an extensive network infrastructure that can support the required

bandwidth for the cameras; also, the network delay will increase the response time.

Moreover, vIM needs to be powered by solar panels in remote regions, limiting the

management unit’s available energy. Object recognition and tracking is the most

energy and computational demanding module in vIM. This problem is aggravated

as vIM needs to be accurate and agile in an embedded environment with limited

resources.

1.2 Related Work

The last few years in the field of deep learning has laid the foundation for major

advancements in visual recognition systems, ranging from object recognition (Lin

et al., 2018), action recognition (Lea et al., 2016), to scene recognition (Zhou et al.,

2014). Significant improvements in recognition accuracy have allowed a wide range

of science fiction ideas to materialize, resulting in economic and societal benefits with

AI applications such as autonomous vehicles (Chen et al., 2015a), IoT systems (Tang

et al., 2017), industrial robots, and intelligent health care systems (Rav̀ı et al., 2017;

Izadyyazdanabadi et al., 2017).

2

1.2.1 Object Detection

CNN-based object detection methods can be categorized into two groups: two-

stage and single-shot detectors. In two-stage techniques such as GP-FRCNN (Amin

and Galasso, 2017) and FG-BRNet (Fu et al., 2019), a region proposal network (RPN)

localizes regions with a likelihood of object presence, followed by a classification stage.

Attempts are made to improve this category of detectors’ performance by adaptively

adjusting the input image resolution (Chin et al., 2019), processing challenging re-

gions with a separate CNN model (Singh et al., 2018) or using a selective mechanism

to reduce the number of proposed regions by the RPN (Kouris et al., 2019). In single-

shot approaches such as YOLO (Redmon and Farhadi, 2018), and SpotNet (Perreault

et al., 2020), the inference is performed in a single pass by combining region proposal

and classification stages. Our work adopts single-shot detectors in experiments con-

sidering their higher efficiency. Note, our proposed idea can be applied over two-stage

approaches as well such as Faster RCNN.

Image Segmentation, or the task of locating the objects and boundaries in im-

ages, is another application for CNN-based methods. Models such as Segnet (Badri-

narayanan et al., 2015) have been proposed, which reduce the memory consumption

and computation. But research (Saood and Hatem, 2020) has shown that the perfor-

mance of SegNet deteriorates when there are multiple objects in the scene. Further,

DeepLab (Chen et al., 2017b), and PSPNet (Zhao et al., 2017) are improved segmen-

tation models, but these come at the cost of higher computation cost as well. U-Net

(Ronneberger et al., 2015) is a CNN that was developed for image segmentation in

the biomedical field. It consists of an encoder that extracts the salient features from

the image and a decoder part that enables the reconstruction of the binary mask that

gives us the location of the objects of interest. Binary segmentation (single class seg-

3

mentation) has been explored in the past (Putten et al., 2020; Isensee and Maier-Hein,

2020; Gupta et al., 2020) for medical images. We extend the U-Net model (quantized

and binarized) to fit different use cases for the task of binary segmentation.

1.2.2 Visual Systems Performance

The increasing number of real-world applications require their corresponding vi-

sual recognition engine to not only recognize well but also actively and effectively

adjust its computational resources to handle the ever-changing physical world situa-

tions that the systems will face. The seminal work of the cascaded classification of

Viola and Jones (Viola and Jones, 2001) represents the line of studies on cost-sensitive

classification. The essence of their work is to treat classification as a cascaded process

that contains control layers deciding the exit points where the system is confident in

its current inference. Following a similar line of work, more recently, Li et al. (2015);

Shen et al. (2017) has proposed cascading CNNs structures to reduce the computa-

tional cost by reducing the structural complexities of CNNs.

The system resources concerns trigger various approaches, such as using the align-

ment of memory and SIMD (Single instruction, multiple data) operations to boost

matrix operations (Gong et al., 2014), specific hardware (FPGA) solutions (Qiu et al.,

2016), and network compression methods (Han et al., 2015a; Kim et al., 2015; Zhang

et al., 2016). More recently, studies by Chen et al. (2017a) and Hinton et al. (2015)

proposed transferring the knowledge of deep models to shallow models while main-

taining the recognition accuracy.

Another thrust of work has focused on reducing the resources consumption of

CNNs (due to expensive computation and memory usage) by compressing the net-

work structures (Ba and Caruana, 2014; Han et al., 2016a, 2015b; Rastegari et al.,

2016a). Network pruning is one of well-studied approach which removes unnecessary

4

connections from CNN model, to gain inference speedup (Han et al., 2016a; Wen et al.,

2016; Iandola et al., 2016). Quantizing (Han et al., 2015a) and binarizing (Rastegari

et al., 2016a; Courbariaux et al., 2016) are two other methods that have been used to

reduce network size and computation load. These methods improve performance at

the hardware level by reducing the size of weights at the binary code level. However,

the standard GPU implementation still remains challenging for these methods to

achieve runtime speedup (Han et al., 2015b). Also, the advantages of these methods

over other one-stage methods without the fully connected layers (which is the target

layer for network pruning (Han et al., 2015a)) is not clear.

Although these approaches do improve the model efficiency, they ignore the tem-

poral dependencies among the frames from dynamic scenes, which is one of the critical

capabilities to maintain high recognition accuracy while being energy-aware.

1.3 Human Visual System

The human visual system (HVS) is the most efficient and effective available visual

system. This system has mechanisms such as Visual adaption to improve system

overall performance.

Visual adaption involves temporary changes in the human perception system when

exposed to intense or new stimulus and by the lingering aftereffects when the stimulus

is removed (Webster, 2015). Other studies from (Webster, 2015) show that the visual

system adapts to the changes in the environment and this adjustment can happen

in a few milliseconds. More specifically, a study from Clifford et al. (2007) reveals

that the face recognition process happens at a higher level of cognition, and later at

the stage of visual encoding we observe that our sensory systems adapt itself to the

prevailing environment. This shows that HVS relies heavily on the prior estimation

of the objects’ appearance distribution to improve the perception capability at the

5

current time-stamp.

The HVS adaptation happens both in the “low” and “high” level visual features.

The human visual system adapts to the distribution of “low-level” visual features

such as color, motion, and texture, as well as the “high-level” visual features such as

face classification including identity, gender, expression, or ethnicity (Webster, 2015).

This adaptation can be both short-term and long-term. For instance, our perception

system adapts itself to the general visual features of the environment which we are

living in for a long time such as faces and colors (like training a heavy recognition

model). Also, it can adapt itself dynamically when the environment changes, for

example, moving from the indoor environment to the outdoor (Webster, 2015) (like

adapting a shallow model). This adaptation capability is essential for our HVS to

perform recognition well and efficient, with low energy consumption.

60 100 140

HVS Response Time (ms)

Figure 1.1: Stimulus Materials, Fmri Brain Coverage, and Significant Meg-fmri Fusion
Results over Different Objects and Background (Cichy et al., 2016).

In addition to temporal adaptation, the HVS has two stages for conducting visual

classification: 1) a shallow primary stage and 2) a decision layer to pick a further

processing pathway (Ritchie et al., 2015). The study also supports the theory that

the structure of the object representation in the HVS influences the decision layer

during visual classification. Results from another research that is conducted in the

6

field of neuroscience (Cichy et al., 2014) showed that the response time of our HVS

given a specific image as the stimuli differs a lot based on the category that the image

belongs to. These results again suggest that HVS has a decision system that controls

our processing resources assigned for each image. The study by Cichy et al. (2016)

shows the brain-behavior corresponding to the images from different categories (in

Fig. 1.1). From the fMRI imaging, researchers have speculation that for some input

images, only a “shallow” part of our HVS is utilized while for other categories they

invoke a “deeper” processing.

1.4 Contributions

Inspired by the aforementioned findings, I propose ARGOS, which is capable of

running heavy neural networks on embedded systems. I have also deployed ARGOS

on a prototype camera which is powered by a solar panel and can be used for traffic

monitoring. For designing ARGOS, I have considered both the software and hardware

aspect of the system.

In ARGOS, the object detection and classification modules are responsible for

detecting and classifying objects in the observing environment. For these modules, I

am using the state of the art proposed models that have the capability to adapt to

the other ARGOS modules.

The adaptive hardware module controls the resources on the target machine to de-

liver maximum efficiency. This module changes the computation resource base on the

desired accuracy and response time to improve energy efficiency, given that ARGOS

is designed for embedded and real-time applications. In chapter 2, I have introduced

this module and the challenges ARGOS is facing. Using partial reconfiguration in

FPGAs and distributed processing, I am addressing these challenges. A feedback

procedure controls the partial reconfiguration. I reported the implementation of the

7

feedback procedure for determining the path of inference in the CNN based on the

confidence level. I have implemented the mechanism on an MPSoC (Pynq-Z1) with

an ARM CPU and FPGA.

The temporal adaptation module is responsible for adapting the system to the ob-

serving environment. The inspiration for this module comes from visual adaptation

in HVS. This module will be responsible for detecting changes in the environment and

adapting the whole system to the new changes while maintaining system performance.

In chapter 3, I have addressed the challenges and the mechanism for this module. I

introduced an end-to-end trainable framework to transfer the temporal knowledge

(a.k.a., the perception of the moment) of the oracle model to the student model. I

have also designed a novel teacher-bonded loss for knowledge distillation which has

a simple structure and performs inferences briskly. I proposed an efficient method to

select key frames from the dynamic scene that indicate the right timing to train the

student model and improve detection accuracy. I designed and conducted empirical

experiments on both the public datasets (the Youtube Object dataset and the Holly-

wood Scene dataset) as well as on two long videos with multiple scene changes, which

validate each of the aforementioned novel design choices, by observing a fast object

recognition performance while maintaining high detection accuracy.

In the next stage, I studied the performance and challenges of the temporal knowl-

edge distillation concept in an embedded environment with limited resources. In chap-

ter 4, I have discussed these challenges and different approaches which can address

them. Finally, I demonstrate a novel framework for transferring knowledge between

two devices, one executing a DNN and the other executing an SHNN. This approach

substantially advances edge computing for performing complex and computationally

intensive applications. I presented an extensive exploration of various ways in which

knowledge transfer can occur and evaluated them in terms of specific, well-defined

8

metrics. The quality of the detection results depends on when the DNN should be

activated for possible knowledge transfer. Toward this, I presented a novel key frame

selection mechanism that significantly improves the efficiency of the knowledge trans-

fer. The proposed framework for incremental knowledge transfer in object detection

is made open-source and has been released for public distribution on Github.

Finally, I studied a novel mechanism to decompose the incoming frames into small

independent sub-regions. Hence, ARGOS can focus on regions with a probability of

object existence or more complexity for further processing. This mechanism reduces

computation time and energy consumption. I designed a mechanism (based on shallow

analysis or binary segmentation) that can efficiently propose regions of Interest (RoIs).

I have also extended the ARGOS concept to a variety of DNNs, such as transformers

and online knowledge distilation. Finally, A full-stack developed system on-device

with extensive experimentation. I have tested the prototype for the vIM application.

1.5 Dissertation Outline

The rest of this dissertation is organized as follows. In chapter 2, I have shown

the potential and challenges of adaptive hardware. The architecture and mechanism

which can be used to facilitate this adaption have also been discussed. In chapter 3,

the temporal adaption mechanism, which is inherited from the human visual system,

has been described that can reduce the number of hardware adaptions and improve

performance. Moreover, I have studied the consequences of this approach on system

accuracy. In chapter 4, I showed how the temporal adaptation could be transferred

to an embedded environment. I studied different approaches for this adaptation and

the communication medium effect on this adaptation. In chapter 5, I merged the

previous modules and combined them with a mechanism to reduce to input deployed

for the vIM application. This mechanism can reduce the computation by focusing on

9

the regions of interest. Finally, we concluded this dissertation in chapter 6.

10

Chapter 2

ADAPTIVE HARDWARE

2.1 Introduction

The ultimate goal of the ARGOS is to be able to apply computer vision algorithm

on embedded devices in real-world applications. To run the computer vision applica-

tions, we should manage the hardware resources due to low energy constraints and

limited computing resources on these devices. We should achieve the system desire

accuracy and response time while maintaining energy. We can adapt distributed com-

puting to answer the limited computation (Eshratifar and Pedram, 2018) in embedded

devices. However, this approach can significantly increase the system response time.

In the following, I have summarized the challenges we are facing on the hardware

side.

• Reduce the system response time.

• Manage energy consumption.

• Maintaining the accuracy while decreasing the response time.

2.2 Related Work

In the last few years, many designs and mechanisms proposed to optimize neu-

ral networks for running over embedded networks. Cai et al. (2019) proposed using

neural network search to design networks based on hardware architecture. Eshrat-

ifar and Pedram (2018) proposed a distributed structure to offload part of network

11

computation on cloud resources. Although this works can respond to some concerns,

they can not provide the desired accuracy and response time in all scenarios.

Another thrust of work has focused on reducing the resource consumption of

CNNs or other types of neural networks through various techniques of compressing

the network structures (Ba and Caruana, 2014; Han et al., 2016a, 2015b; Rastegari

et al., 2016a). Network pruning is one of the well-studied approaches which removes

unnecessary nodes and edges from network, to compress model and gaining infer-

ence speedup (Han et al., 2016a; Wen et al., 2016; Iandola et al., 2016). However,

Han et al. (2015b) pointed out that using the standard GPU implementation, the

speedup is hard to achieve due to the lack of high degrees of exploitable regularity

and computation intensity in the resulting network with sparse connections.

The use of adaptive structures is a relatively newer approach which decides how to

further process the image (Shen et al., 2017; Zhou et al., 2017; Teerapittayanon et al.,

2016; Bengio et al., 2015). Teerapittayanon et al. (2016) proposed an adaptive model

to allow early exit based on the entropy of model output which is called Branchy-

Net. By adding sub-outputs to the model, Branchy-Net checks the entropy of model

output and if the entropy is low enough, terminates the procedure. By doing this,

Branchy-Net achieved 2x speedups at the inference time (Teerapittayanon et al.,

2016). However, Branchy-Net spends a considerable amount of time to evaluate the

early output (Bolukbasi et al., 2017); it does not a have clear procedure to select the

location of early branches, and it is changing the structure of original model to have

an early exit. In response to the mentioned issue, Bolukbasi et al. (2017) proposed

an adaptive method which adopts the Branchy-Net idea and stacks several models

such as AlexNet (Krizhevsky et al., 2013) and ResNet (He et al., 2016a). This model

still suffers from the overhead time of evaluating the model’s early output. Another

study in (Wang et al., 2018b), proposed a method based on a decision gate to skip

12

some of the blocks in ResNet structure. The decision gates include convolution and

fully connected layers which are trained using reinforcement learning. These decision

gates are not suitable for shallow CNN models such as ResNet-18 (He et al., 2016b).

The implementation of CNNs on FPGAs has been studied from the literature

to certain extent. More specifically, BinaryEye in (Jokic et al., 2018) has presented

an implementation of binary neural networks on FPGA. The presented implementa-

tion can be used in IoT and distributed systems where the stream of images for a

camera needs to be processed. A framework called FINN has been also presented in

(Umuroglu et al., 2017) for the inference of binarized neural networks. The mentioned

implementation does not adopt the partial reconfiguration to address the limitation

of resources on FPGA.

Dynamic partial reconfiguration has been done in the relevant literature in (Al Kadi

et al., 2013; Kästner et al., 2018). In (Al Kadi et al., 2013), the authors have imple-

mented the reconfiguration steps in a Zynq 7000 FPGA but do not implement CNN

architectures. Dynamic reconfiguration has been done in (Kästner et al., 2018) for

the CNNs on the Pynq board. In the mentioned work, they have stated that the

implementation of CNN using reconfiguration at each layer is expensive.

2.3 Proposed approach

To address concerns in 2.1, I have implemented the idea of adaptive switching

between shallow and deep networks on FPGA platform using partial reconfiguration

to reduce the amount of needed computation. The confidence level was observed to

be the most efficient factor to switch in comparison with the methods presented in

Skip-Net (Wang et al., 2018b) and Branchy-Net (Teerapittayanon et al., 2016).

13

2.3.1 Adaptive and Hierarchical CNNs

The key module of my proposed Adaptive and Hierarchical convolutional neural

networks (AH-CNN) model is a feedback procedure which is designed to compre-

hensively evaluate the classification procedure. More specifically, AH-CNN consists

of three parts: 1) a shallow part which is a light-weight CNN model; 2) a deci-

sion layer which evaluates shallow part’s performance and makes a decision; and

3) a deep part which is a deep CNN with a high inference accuracy. The overall

objective of my dynamic system is to obtain the highest possible recognition accu-

racy during critical time instances while maintaining a satisfiable performance using

the shallow part during non-critical moments. Following this intuition, I put for-

ward a mechanism with a combination of a shallow model, feedback procedure and

a deep model, which has a flexible structure at the same time. This mechanism can

achieve the same high recognition accuracy as other very deep networks by partially

reconfiguring the hardware structure. Thus, an intelligent agent equipped with the

AH-CNN can adaptively adjust its model structure to maintain a balance between

the expected classification accuracy and the model complexity. This procedure can

be applied repetitively and has several decision layers. In the following section, I will

describe the details of the AH-CNN architecture.

2.3.2 AH-CNN Architecture

The authors in (Zeiler and Fergus, 2014) showed that the preceding layers in deep

neural networks respond to class-agnostic low-level features, while the rear layers

extract more specific high-level features. Objects of certain categories can be classified

solely by the low-level features but for the images of other categories, we need more

specific high-level features, and deeper layers are needed to extract them. Thus,

14

I design my architecture to have three modules: the shallow part, the deep part

and a decision layer. Hence, the proposed AH-CNN with a design of an adaptive

and hierarchical structure, can yield different behaviors based on the input image

characteristics. I will describe the three mentioned modules in the following.

Shallow Part: In this work, the FPGA is loaded with the shallow part first.

This part can be applied to the input tensor without any reconfiguration cost and

classifies all input images and it outputs two results: 1) a predicted label y = j and

2) a confidence value (P (y = j|Xi) = softmax(zj) = exp(zj)/
∑

k exp(zk), where z is

the output of fully connected layer over the input image Xi) which will be later used

in the feedback procedure.

Deep Part: This part is the next group of convolution layers which should be

loaded on FPGA. Due to the transfer and configuration time, loading the new part

on the FPGA is expensive. This group of convolution layers is responsible to extract

more specific high-level features and detect the images which are misclassified by the

shallow part. This part will be applied over the output of the last convolution in the

shallow part to reach higher confidence. Decision Layer: This part of AH-CNN

takes the shallow part’s outputs and makes a decision to whether activate the deep

part, or simply terminate further processing and take the shallow part’s result as

the overall model output. This layer has a feedback procedure to make the network

behavior decision by evaluating the shallow part.

To this end, the decision layer currently yields a binary behavior based on three

factors: 1) the confidence value from the shallow part; 2) the priority of the object

classes; 3) the overall expected classification accuracy (which is obtained by validating

the model over the data set). The binary behavior either activates the deep part or

takes the shallow part’s classification output as the overall model’s output.

Algorithm 1 shows the AH-CNN processing procedure in the inference phase.

15

Algorithm 1 AH-CNN: Inference Phase

Require: Input image Xi , Desired accuracy Λ, Number of early branches Ni, High priority classes
SHP .
while Xi do

while Ni do
Assign proper Γ based on Λ
β, ShOutput← ForwardPropagate(Xi, Shallow)
if SHP appear in ShOutput Top-n then

Γ = Γ + Θ
end if
if β <= Γ then

Load deep part on FPGA
Output← ForwardPropagate((ShOutput,Deep)

else
Output← ShOutput

end if
end while

end while

1 2 3

4

PR PR

Figure 2.1: The Scheme of Cnn Implementation on Fpga Using Dynamic Recon-
figuration and Adaptive Feedback. The Adaptive Feedback Makes the Decision to
Classify the Image or Apply the next Stack of Convolution Layers Based on the
Output Confidences Computed from Each Part.

The decision layer first checks the top-n classification results from the shallow part’s

classification vector. If a label from the high priority set (SHP) exists, there is a

higher probability that the input needs further processing. Next, the decision layer

checks the current expected classification accuracy, which will affect the fraction of all

the input images that need further processing. Finally, the model checks the shallow

part’s Confidence value. The interpretation of the confidence value yields a feedback

16

procedure. The priority of the object classes and the overall expected classification

accuracy are then considered to tune a threshold value to compare with the confidence

value, which I refer to it as the trigger point later.

The most critical element of the feedback procedure of AH-CNN is the trigger

point Γ. After feed-forwarding each image over the shallow part, the decision layer

gets the confidence value β and compares it with the assigned threshold Γ. If β does

not reach Γ, it means that the shallow part has less confidence than my system’s

tolerance over the input image and further processing is needed to gain a higher

expected accuracy. As a consequence, the decision layer load and activates the deep

part. The value of the trigger point can be actively adapted according to the real-

world situations. In cases that I do not need a high accuracy, I can decrease the

trigger point value. In cases that the member of SHP appear in the top-n outputs, I

can increase the trigger value (Γ) by Θ to expect a higher classification accuracy over

that image. The trigger point makes my model innately adaptive. I discuss how to

set a proper trigger point as well as its range in Section. 2.3.6.

2.3.3 Implementation on FPGA

The overall scheme of implementation on the FPGA is depicted in Figure 2.1. The

convolution layers in the CNN are based on the ResNet CNN structure. The whole

CNN is divided into three parts which are numbered in the figure. The output of

each part can be used as the input for the pooling layer in part 4. There is a Partial

Reconfiguration unit labeled as PR which changes the bitstream file on the FPGA

when necessary. The reason for partial reconfiguration is to save the LUT area on

the FPGA and address the limitation of computational resources.

In order to implement the CNN on FPGA, a quantized version of CNN has been

used which is popular in the FPGA community (Umuroglu et al., 2017). In this

17

network, the weights are binary and the activation data are five bits (quantized bits).

Even using this quantization method and binary values, an acceptable accuracy of

classification can be obtained which is shown in the experimental result section.

Batch processing has been used to improve the overall throughput of the system.

During batch processing, the reconfiguration overhead of changing the bitstream files

would be considered for all the images that are going to be processed in the network.

Therefore, the overhead of reconfiguration would be negligible when calculating the

inference time for one image on average.

2.3.4 Training Phase

Both the shallow and the deep part aim to classify images with the best possible

performance that can be achieved individually. Consequently, the feedback procedure

should not have any influence over the shallow part’s classification performance. I

train both the deep part and the shallow part using the stochastic gradient mini-batch

(Dean et al., 2012). Also, the mean and range of trigger point value are needed to be

learned from the training data. In the following sections, I first introduce the overall

model learning procedure in Section. 2.3.5, and then report my training details in

Section. 2.3.6.

2.3.5 Learning Procedure

In the first stage, all parts are trained jointly over training set ST and validated

over validation set SV . In each epoch, the accuracy of all parts are evaluated over the

validation. The model with the highest accuracy over the deepest part will be selected

as the best model due to reaching the best possible accuracy at critical inference time.

Identifying the trigger point: Following the aforementioned design, the shal-

low part after feed-forwarding each input image has a confidence value over the output

18

belief vector. To have an evaluation over this value and its range, I feed all images

from ST into shallow part and collect the confidence values. The calculated mean

CMean and the standard deviation CStd over these values are used to control the

expected classification accuracy of the AH-CNN.

2.3.6 Model Training Details

Initializing: I first adopt the ResNet-18 model as the base model, where each

of the blocks in this model is considered as a separate classification module. I added

a pooling and a fully connected layer for each part. Xaviar initialization (Glorot

and Bengio, 2010) is used for having proper initial weights to propagate the signals

precisely.

Defining the loss function: For a classification task, the cross entropy is mostly

used as loss function. Here, We have several parts which get their input from previous

layer and have independent classification layer output. Consequently, these parts

should be trained jointly. The objective function can be formulated as

L(ŷ, y; θ) =
∑

N L(ŷn, y; θ),

where

L(ŷ, yn; θ) = − 1
ζST

∑
k y

k
n log f(xk; θ),

and N denotes the total number of classification modules, xk the input images, ζ the

set of all possible labels and f(θ) denotes the whole model.

2.3.7 Experiments

The theoretical framework I have presented suggests two hypotheses that deserve

empirical tests: 1) AH-CNN can perform visual classification with much higher effi-

19

Figure 2.2: Layout of the Reconfigurable Design.

ciency while maintaining the accuracy; and 2) Deep CNN models can be executed on

a resource-constrained FPGA using partial reconfiguration.

To validate these two hypotheses, I implement AH-CNN on Xilinx Zynq-7000 and

evaluate on the CIFAR-10, CIFAR-100 (Krizhevsky and Hinton, 2009) and SVHN

(Netzer et al., 2011) datasets. I implemented the AH-CNN as described in Sec. 2.3.1

where all convolution parts were implemented as separate hardware IP cores. I utilize

Vivado HLS to synthesis the IP cores. The training procedure was performed using

the PyTorch framework.

2.3.8 Implementation

I select the PYNQ-Z1 to perform my evaluations. This board consists of a Xilinx

Zynq-7000 ZC7020 and a dual-core ARM A9 processor. Images were loaded to my

convolution IP cores through a Direct Memory Access (DMA) IP core.

I adopt the Resnet-18 (He et al., 2016a) as the base model. Due to limited

available LUTs on this board, the network was broken into three parts. All parts

consist of a group of convolution layers, pooling and fully connected layer. To reduce

20

the reconfiguration time, I remove the last pooling and fully connected layer and

create a new part which will be shared. Figure 2.1 shows an overview of my model.

Part 1 is the shallowest model of this architecture. Parts 2-3 are the deeper blocks

for extracting more features. Part 4 is the common one among all. Table 2.1 shows

the resources needed for each part and total available resources on FPGA.

Part 1 Part 2 Part 3 Part 4 Total
BRAM 81 91 96 31 280

DSP 120 96 96 24 220
FF 15672 16647 34069 9908 106400

Table 2.1: Available Resources on the Zynq Xc7z020, in Comparison to Used Re-
sources by Convolution Parts.

As shown previously, the total hardware resources needed for the whole architec-

ture is more than available resource over the target device. Moreover, there are shared

modules over all convolution parts such as Part 4, DMA, etc. Consequently, I applied

Dynamic Partial Reconfiguration in order to reduce the reconfiguration time by just

changing the convolution parts and keeping the shared modules. Fig. 2.2 shows the

layout of my implementation. The reconfigurable area is shown by purple and the

fixed ports on the FPGA by white.

The resulting partial parts have all the same size of 2.4 MB and the size of main

bitstream is 4 MB.

Training: The training part was carried out using PyTorch framework. I im-

plemented special quantized convolution layer and fully connected layer with 1-bit

weight and 5-bit activation. The initial learning rate is set to be 0.01 and it was

decreased by a factor of 10 in every 20 epochs. Training continues until 100 epochs

with a mini-batch size of 256.

Feedback Evaluation: The aforementioned procedure in section. 2.3.6 is fol-

lowed to estimate the confidence value. The mean and the standard deviation of all

21

the confidence values were achieved after the various parts were collected over ST .

2.3.9 Overall Evaluation

I choose the CIFAR10, CIFAR-100, and SVHN validation sets in the overall AH-

CNN model testing. Here, I evaluate the partial reconfiguration approach. Also, I

compare three selection methods: 1) my proposed feedback procedure; 2) SkipNet

method (Wang et al., 2018b); and 3) an entropy-based method (Bolukbasi et al.,

2017).

Bitstream
FPGA
Config
Time

FPGA
Execution

Time

CPU
Execution

Time
FLOPS

Part 1 38-42 ms 2 ms 98 ms 10.24M
Part 2 38-42 ms 2 ms 57 ms 8.6M
Part 3 38-42 ms 2 ms 49 ms 8.5M

Table 2.2: Performance Evaluation on Different Parts of the Design.

Partial Reconfiguration: I have three accelerator IPs to reconfigure which are

connected to the ARM processor through AXI interface, clocked at 100 MHz. The

AXI channel and partial reconfiguration module is controlled by a Python script. I

have also implemented a CPU version of AH-CNN architecture which runs on an

ARM chip at 666 MHz. Table 2.2 shows the measurements of partial reconfiguration,

FPGA and CPU execution time. As the reconfiguration region is same for all IPs,

The reconfiguration time is always the same. By using batch processing (batch=512),

the throughput of my system is ≈160 image per second while applying all parts to

the images. This is 32 times faster than the CPU implementation.

Table 2.3 shows the accuracy that can be achieved by applying each IP of con-

volutions to the input stream. It is clear that the system can reach to the higher

accuracy by extracting more feature using deeper layers. Also, a significant portion

22

CIFAR10
CIFAR100

SVHN
Top1 Top5

Part 1 70.95 42.26 72.14 80.35
Part 2 80.57 52.23 80.25 91.24
Part 3 86.27 56.60 83.46 94.62

Table 2.3: Top-1 Accuracy of the HLS Optimized IP-cores.

CIFAR10 CIFAR100 SVHN
0

10

20

30

40

50

60

70

80
Ra

tio
 %

Part-1
Part-2
Part-3

Figure 2.3: The Stop Ratio for Each Part on Cifar-10, Cifar-100, and SVHN Dataset.

of images can be classified correctly without using deep layers.

Feedback Procedure: Initially, I explore the trigger point by collecting the confi-

dence of each AH-CNN branch. AH-CNN model achieves 85.4%, 55.4%, 94.2% Top-1

validation accuracy over CIFAR10, CIFAR-100, and SVHN respectively. In Fig. 2.3,

I also report the portion of images classified by each branch. Due to the simplicity of

the feedback procedure, this method has the lowest overhead.

SkipNet (Wang et al., 2018b): In this method, instead of selecting images by

my feedback procedure, decision layer selects images using a gate consisting of con-

volution and fully connected layers. I adopt two different gates and two training

methods proposed by Wang et al. (2018b) to evaluate my method. These gates show

desirable performance over large CNN models. However they do not have the same

performance over models such as ResNet-18 or ResNet-38. For each decision, one or

two convolution layers and a fully connected layer should be applied to the stream.

23

SP_G1 SP_G2 RL_G1 RL_G2 Ent Conf
0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
4.0
4.4
4.8
5.2
5.6

FL
OP

s(
1e

7)

CIFAR 10
Model Cost
Decision Overhead

SP_G1 RL_G1 Ent Conf
0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
4.0
4.4
4.8
5.2
5.6

FL
OP

s(
1e

7)

CIFAR 100
Model Cost
Decision Overhead

SP_G1 SP_G2 RL_G1 RL_G2 Ent Conf
0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
4.0
4.4
4.8
5.2
5.6

FL
OP

s(
1e

7)

SVHN
Model Cost
Decision Overhead

Figure 2.4: Computation Reduction of Entropy (Ent), Confidence (Conf), Skip-
net+SP (Sp) and Skipnet+hrl+sp (Rl) with Feed-forward Gates (G1 Has Two Con-
volution Layers, G2 Has One Convolution Layer) While Preserving the Full Network
Accuracy. The Computation Cost Includes the Computation of Decision Method.
I Am Able to Reduce the Computation Costs by ≈30%, ≈27% and ≈57% on the
Cifar-10, Cifar-100, and Svhn Data Using Confidence Decision Method Compared to
the Base Model. Since the Feed-forward Gates Are More Expensive, Skipnet Is Not
a Suitable Method for the Scope of the Study.

Entropy Selection (Bolukbasi et al., 2017): This method uses the entropy of

the shallow part’s output to decide whether the input image needs further processing

or not (Bolukbasi et al., 2017). The work (Bolukbasi et al., 2017) implemented

two variants: two-stacked model (AlexNet (Krizhevsky et al., 2013) and -50 (He

et al., 2016a) and three-stacked model (AlexNet, GoogleNet (Szegedy et al., 2015)

and ResNet-50). Due to calculating the entropy of the output vector at each branch,

this method is more expensive than the feedback procedure.

24

Fig. 2.4 depicts the computation reduction by applying the different decision pro-

cedures. I observe that by just considering the confidence, the model outperforms the

SkipNet gates. SkipNet gates not only are so expensive but also are not as successful

as other methods in my case study. The confidence and entropy selection have the

same results however the confidence method has less computation cost. The con-

fidence selection method decreased the computation to 69.8%, 71.8%, 43.8% of the

base model in CIFAR-10, CIFAR-100, and SVHN respectively. Also, the throughput

of model reaches to 268, 217, and 408 images per second.

2.4 Conclusion

This chapter proposed a new approach to running heavy neural networks on FP-

GAs with constrained resources. I stacked various shallow and deep models yielding

an adaptive and hierarchical structure for quantized neural networks. I conducted ex-

periments on CIFAR-10, CIFAR-100, and SVHN and empirically validated that AH-

CNN maintains a similarly low inference time as the shallow models while achieving

the high recognition accuracy of the deep model on image classification tasks. The

flexible nature of this hierarchical method makes it suitable for applications that need

adaptive behavior towards dynamic priority change over object categories, such as an

agent with active perception. Although this mechanism can improve the system per-

formance, the number of hardware adaptions can still affect inference time. The next

chapter introduces a concept that can reduce hardware adaptation by learning from

previous observations.

25

Chapter 3

TEMPORAL ADAPTATION

3.1 Introduction

As illustrated in the introduction section, the Human visual system (HVS) adapts

to ”high” and ”low” level features to reduce resource utilization and improves the re-

sponse time Webster (2015). We can also use the prior estimation of the objects’ ap-

pearance distribution to improve the system performance. For clarity, in autonomous

car application, we are not expecting to observe ”ship” in the scene, so we can shift

the system domain of knowledge to improve the accuracy over objects which have a

higher chance of being seen. However, this effort can cause that system to lose its

generality over other objects. Consequently, we are trying to adapt the system to the

observing environment while keeping the system generality. This approach can help

us to use a shallow model (which is adapted to the environment) for observing the

environment and use a deeper model for new objects and adaptation.

To summarize problems:

• Temporal adaptation: we need a method to distill temporal knowledge form the

shallow model to deep model.

• Keep the system generality: ARGOS should maintain the state of the art vision

model accuracy.

• Cost-effective: training a neural network is an expensive manner, this procedure

should be cost-effective at inference time.

26

3.2 Related Work

Domain Adaptation: Object detection in the real world still needs to address

challenges such as low image quality, large variance in the backgrounds, illumination

variation, etc. These could lead to a significant domain shift between the training,

validation and the test data. Consequently, the field of domain adaptation has been

widely studied in image classification Tzeng et al. (2014); Lu et al. (2017) and object

detection Chen et al. (2018); Dai and Van Gool (2018) tasks. These methods im-

proves accuracy on well-known bench-marking datasets. Nevertheless, they typically

adopt an offline domain adaptation procedure and do not concern with domain-change

during the inference stage.

Knowledge Distillation: Knowledge distillation is another approach to boost

accuracy in CNNs. Under the knowledge distillation setting, an ensemble of CNN

models or a very deep model will serve as the teacher model, which transfers its

knowledge to the student model (shallow model). Hinton et al.Hinton et al. (2015)

proposed a method to apply teacher prediction as a “soft-label” and distills teacher

classifier’s knowledge to the student. Moreover, they proposed a temperature cross

entropy instead of L2 distance as the loss function. Romero et al.Romero et al. (2014)

proposed a so-called “hint” procedure to guide the training of the student model.

There are also other approaches to distill knowledge between different domains such

as from RGB to depth images Gupta et al. (2016); Su and Maji (2016).

Knowledge distillation has been also applied to the object detection task. Chen et

al.Chen et al. (2017a) proposed a method which adopts all of the soft labeling (labels

generated by the teacher), the hard labeling (the ground truth) and the hint procedure

to transfer knowledge from the teacher with deep feature extractor to the student with

a shallow feature extractor. They adopt a two-stage method (FasterRCNNRen et al.

27

Figure 3.1: An Illustration of the TKD Model’s Actual Performance: F-1 Score
Distribution over Example Object Categories in Different Environments Using TKD.

(2015)) in their system. Mehta et al.Mehta and Ozturk (2018) applied same procedure

to one stage method (Tiny-Yolo v2).

Mullapudi et al.Mullapudi et al. (2018) proposed an online model distillation for

efficient segmentation. They adopt a light CNN model as student and a heavy model

as teacher. At the inference time, the student model is trained periodically using the

teacher knowledge. However, the naive usage of a fixed period may not be efficient

in their approach. Moreover, it may not handle never seen objects in the scene since

they have been observed in the middle of a period.

3.3 Proposed approach

In this section, I am introducing my complected work to address challenges in

Sec 3.1. I design a framework that utilizes the knowledge distillation techniques to

transfers temporal knowledge from the heavy model to a light model, named TKD.

The TKD framework boosts visual processing efficiency while maintaining the heavy

28

model’s (also called the oracle model) performance. Figure 3.1 illustrates the overall

goal of this work. In this figure, I show how TKD improves recognition accuracy

over different scenes, compared to the oracle model which I assume to be a perfect

model. Also, I have the baseline model which is a tiny model with low accuracy

compared to oracle recognition due to a much smaller number of parameters. TKD

achieves higher accuracy by adapting itself to the observed environment. In the case

of an indoor scene, the TKD recognition accuracy improves significantly over objects

which are more probable to be observed inside a building. In the outdoor case, TKD

recognition accuracy improves over the objects such as a car, bus, and truck which are

more probable to be observed outside. In other words, for a similar amount of model

parameters as the baseline tiny model, the TKD achieves much better performance

over the more probable objects by dynamically learning from the oracle model.

3.3.1 Temporal Knowledge Distillation

Conventional use of knowledge distillation has been proposed for training CNNs

based classification models. In these models, I have a dataset (xi, yi), i = 1, 2, ..., n

where xi and yi are input images and the class labels. The student model is trained

to optimize the following general loss function:

Os = Student(x);Ot = Teacher(x)

L(Os, (y,Ot)) = βLgt(Os, y) + (1− β)Lt(Os, Ot),

(3.1)

where Lt is the loss using teacher output (Ot) and Lgt is the loss using ground truth

y Mehta and Ozturk (2018); Chen et al. (2017a); Hinton et al. (2015). Here, β is a

modulation factor.

In addition to the classification task, object detection also could benefit from

knowledge distillation procedure. However, it’s not as straightforward as the classifi-

cation task. Most notably, the teacher model’s output may yield misleading guidance

29

to the student modelChen et al. (2017a). The teacher regression result can be contra-

dictory to the ground truth labels, also the output from the teacher regression module

is unbounded. To address these issues, Chen et al. (2017a) proposed a procedure to

only adopt teacher’s output at beneficial times. For a one-stage object detection

setting, Mehta and Ozturk (2018) optimized the student model with a similar loss

function to Eq. 3.1.

In this work, I propose a novel and bio-inspired way of adopting the teacher

model’s knowledge. Namely, temporally estimating the expectation of object labels,

their sizes and shapes based on the previous observed frames or E[yi|α1, α2, ..., αi−1]

where yi is our objects label and α our observations. This expectation changes in

time by camera or objects movements, and/or the changing of the field of view. Here,

I utilize this extracted knowledge to improve object detection performance. Unlike

the previous work such as Mehta and Ozturk (2018); Chen et al. (2017a), I am not

aiming to improve the feature extractor and/or the general knowledge of the student

model. I optimize the decoder inside the student model to adapt it towards the

current environment. It is done by increasing the likelihood of objects which are

more frequently found from the previous observations. Since the model requires the

online training during the inference stage, it should be able to address the following

challenges:

1. Training is a time consuming procedure, running it at inference stage will hurt

model efficiency;

2. Selecting the key frames which the student model needs to be adapted;

3. Objects with low appearance probability may not be detected by the student

model after adaptation;

4. The Oracle model still will introduce noise at locations where there are no

objects. Simply training the student model with noisy oracle output decreases

30

the accuracy.

In the following, I will introduce my approach to address these challenges respec-

tively.

3.3.2 TKD Approach

In this work, I adopt Yolo-v3 (as teacher) and Tiny-Yolo v3 (as student) Redmon

and Farhadi (2018) as the base object detection methods. These two models are

one-stage object detection models. In both models, object detection is conducted

at various layers. The middle layers are used to detect large objects and the last

layers to detect small objects. Studies Redmon and Farhadi (2018), Mullapudi et al.

(2018) and Lin et al. (2018) showed that this strategy successfully improves the object

detection accuracy with a significant edge.

The overall objective of proposed system is to estimate the expectation of object

labels, their sizes and shapes on the temporal domain and to improve the performance

of the student model. Following this intuition, I put forward a mechanism with

a combination of an oracle model (which I consider it as the best possible model)

and a student model (which is fast but has considerably lower accuracy compared

to the oracle). TKD transfers the temporal knowledge of the oracle model to the

student model at the inference time. By transferring this knowledge, the student

model adapts itself to the current environment or scene. Without loss of generality,

I select the Yolo-v3 object detection model as the oracle model due to its reliable

and dominating performance compared with other one-stage methods. I select the

Tiny-Yolo detection model Redmon and Farhadi (2018) as the student model due to

its high base frame rate and having a similar model structure with the Yolo-v3.

31

Input Frames Student Object Detector Key Frame Selector

Activate
The

Oracle

Yes

Oracle Object Detector

Update Student

Retrain
TKD

Decoder

System Output

Create New Thread

3
x3

, C
o

n
v,

 1
6

Po

o
l,

/2
3

x3
, C

o
n

v,
 3

2
Po

o
l,

/2
3

x3
, C

o
n

v,
 6

4
Po

o
l,

/2
3

x3
, C

o
n

v,
 1

2
8

Po
o

l,
/2

3
x3

, C
o

n
v,

 2
5

6
Po

o
l,

/2
3

x3
, C

o
n

v
5

1
2

Po
o

l,
/2

,
3

x3
, C

o
n

v,
 1

0
2

4

1x1
Conv
256

3x3
Conv
512

3x3
Conv
255

1x1
Conv
128

3x3
Conv
256

3x3
Conv
255

1x1
Conv
256

3x3
Conv
512

3x3
Conv
255

1x1
Conv
128

3x3
Conv
256

3x3
Conv
255

G
en

er
al

 D
ec

o
d

er
TK

D
 D

ec
o

d
er

Student Structure

Feature extractor

Figure 3.2: An Overview of Tkd (Temporal Knowledge Distillation): A Low-cost
Student Model Is Tasked to Detect Objects in the Main Thread. To Retain High
Accuracy, a Key Frame Selector Decides to Activate the Oracle Model and Adapt
the Student over the Environment. Since the Execution of the Oracle Model and Re-
training the Student Model Occurs in Separate Thread, It Does Not Have Significant
Effect on the Inference Latency.

3.3.3 The TKD Architecture

I show the overall framework in Figure 4.2. In the student model, I include two

decoders as the TKD decoder and the general decoder. Then, the pre-trained Yolo-

v3Redmon and Farhadi (2018) is adopted as the oracle. I run the Oracle model with

the input image and the weights of student’s TKD decoders get updates at specific

frames from the oracle model’s result. Finally, I design a decision procedure using an

LSTM model, to generate the signals that indicate the right timing to use the Oracle

knowledge.

Specifically, I train Tiny-Yolo with general decoder over the COCO datasetLin

et al. (2014). The design of Tiny-Yolo has two general decoders to improve the

accuracy over different object sizes. I first make a copy of the general decoders

bounded together as TKD decoder. The TKD decoder is updated during the inference

stage. I only update the last three layers of Tiny-Yolo and treat it as the decoder,

scince it yields enough performance in practice. I keep the general decoder from Tiny-

32

Yolo together with the TKD decoder to make the final detection. TKD decoder and

general decoder are executed in two parallel threads which do not increase the latency

significantly. This will preserve the chance of detecting viable objects addressing

challenge (3) in Sec. 3.3.1.

3.3.4 Distillation Loss

Before describing the proposed distillation loss, I provide a brief overview of the

other distillation loss functions. First, Chen et al. Chen et al. (2017a) proposed a

combination of hint procedure and weighted loss function. They generate boxes and

labels using both the student and the teacher model, then calculate two loss values

comparing the teacher’s output and the ground truth. At the end, they sum up

the weighted loss values. If the student model outperforms the teacher model, they

continue training only using the ground-truth supervision. More recently, Mehta et

al. Mehta and Ozturk (2018) applied the similar procedure to the one-stage object

detection models (Tiny-Yolo v2 with some modification). They generate bounding

boxes and labels, and apply Non-Maximum Suppression (NMS) to these boxes and

then follow the loss function to optimize the student model. The loss is defined in

the following equation:

Lfinal = LCbb(b
gt
i , b̂i, b

T
i , o

T
i) + LCcl(p

gt
i , p̂i, p

T
i , o

T
i)

+LCobj(o
gt
i , ôi, o

T
i),

(3.2)

where LCbb, L
C
cl, L

C
obj are objectness loss, classification loss and regression loss which

are calculated using both ground truth and the teacher output. Also, b̂i, p̂i, ôi are

bounding box coordinates, class probability and objectness of the the student model.

bgti , p
gt
i , o

gt
i and bTi , p

T
i , o

T
i are values derived from ground truth and the teacher model

output.

In my study of the Yolo-v3 and Tiny-Yolo models, I noticed that the detection

33

layer is the most computationally expensive part. In this layer, several processes

are done (sorting, applying softmax to classification cells, removing low confidence

boxes, etc.) to produce bounding boxes and then applying NMS to these boxes.

These processes are computationally slow due to its multiple steps of processing, and

also running over CPU by implementation. Consequently, directly adopting these

loss functions will be also computationally expensive during the inference stage.

With this observation, I adopt the mean square error (MSE) between the tensors

generated by the student decoder and the oracle decoder, which should be the fastest

method. However, the side effects are also notorious. The oracle model generates

noises over some parts of frame which has no object existences; hence directly forcing

the student model to retrain will hurt its performance.

Another approach could be calculating the MSE between the tensor cells which

have a high confidence of object existence. But, the approach will hurt the student’s

recognition accuracy too. By applying this loss function, the student model tends to

generate redundant detection boxes which yields a larger number of false positives.

Oracle
Output

Student
Output

Target

× (𝟏 − 𝝀)

𝑹𝒆𝒑𝒍𝒂𝒄𝒆

𝑪𝒐𝒑𝒚

Figure 3.3: Target Tensor Composition.

34

To alleviate the downsides of both loss designs and still to preserve their advan-

tages, I introduce a novel loss by a combination of them in Equation 5.7:

Lfinal =
∑
‖THs − THo ‖22

+
∑
‖TEs − ((λ ∗ TEs) + ((1− λ) ∗ TEo))‖22,

(3.3)

where THs &THo are the student and oracle cells with a high chance of object existences

and TEs &TEo are the cells with a low expectation. More specifically, the first part

on the left side of Eq. 5.7 calculates the MSE between the parts which have high

confidence of objects. The second part calculates a modulated MSE between the cells

with a low expectation from both the oracle output tensor and the student output

tensor. Here, λ is the modulation factor. Figure 3.3 shows the procedure of creating

the target tensor.

By using this loss function, the student model will have a lower chance to generate

extra false positives. Also, it would not strictly force the student model to mimic the

oracle exactly. I aim to partially address the challenges 1) and 4) in Sec. 3.3.1, with

such a fast and effective loss function.

3.3.5 Key Frame Selection

Another crucial module to enable TKD working properly is a procedure to demon-

ically select the time instances to train the student model during the inference stage.

Specifically, TKD seeks the frames that by training over them the model has a higher

expectation of reducing the loss, thus eventually improves the detection accuracy. For

the rest of this document, I denote these frames as the key frames.

Selecting a larger number of frames as the key frames will hurt the performance

since re-training is computationally expensive; While, selecting too few number of

frames will hurt the detection accuracy as the student may not align well with the

oracle model in time. Thus, an effective and fast procedure to select the key frames

35

A
B C D

Ti
n

y
Yo

lo
TK

D

Frame

Lo
ss

100 200 300 400 500 6000
0

0.5

1

1.5

2

2.5

3

Figure 3.4: Key Frames Selected Using TKD over Two Scenes from the Hollywood
Scene Dataset Marsza lek et al. (2009). The Red Crosses Indicate the Key Frames
Selected by My Method. See Further Discussion in Sec. 3.4.3.

is highly desired to yield a positive effect on the system’s performance.

I propose a key frame selection procedure which is both efficient and also practical.

First, I check the training prevention factor τ . If the student model has been trained

in any last τ frames; I will exit the key selection procedure. It is based on the

reasonable assumption that if we have any environment change, it typically takes τ

frames that this change be fully observable. Thus, when I train the student, training

for the next τ frames would not be beneficiary. Second, I start my decision process

which I formulate in Equations 5.11:

I ∈ {0, 1}

 0 Do not distill knowledge,

1 Distill knowledge,

I = LSTM(Fs) ∨ IR, IR ∼ B(2, Pt),

Pt =

 max((Pt−1 − 0.05), 0.05) ∆L < σ,

min(2Pt−1, 1.0) ∆L > σ,

(3.4)

where I is the indicator that denotes our final decision. It takes the disjunction of

the LSTM’s output and the random module’s output. I pass the features extracted

36

from the student model Fs (the last layer before the decoder) to the LSTM module

(with one LSTM layer & one fully connected layer) which outputs a signal indicating

to train the student model or not. Here, it is worth to note that I introduce another

binary random module IR (with binomial distribution B(2, pt)) which decides in a

random fashion to train the student model or not. The random procedure is added

as a safeguard in case the LSTM model outputs a sequence of erroneous decisions.

At the end, I update the LSTM module based on the result feeding back after the

training procedure. If the LSTM makes a correct decision where the observed loss

decrease ∆L < σ where in my experiments σ = −0.05, the random factor Pt will

be reduced by 0.05. If the LSTM model makes a wrong decision, I update the LSTM

model and double the random factor Pt. Figure 3.4 shows an example output of key

frames selected by my method. I apply knowledge distillation selectively to a few

number of frames which partially addresses the aforementioned challenges 1) and 2)

in Sec. 3.3.1.

3.4 Experiments

The presented theoretical framework suggests three hypotheses that deserve em-

pirical tests: 1) TKD can perform visual recognition efficiently, without hurting the

recognition performance significantly; 2) the novel loss function can improve online

training of the decoder; and 3) with the TKD frame selector mechanism, the overall

system yields the best performance over other key-frame selection mechanisms, by lo-

cating the key frames more accurately (frames which training over them can improve

TKD accuracy).

To validate these three hypotheses, I evaluate TKD on the Hollywood scene

dataset Marsza lek et al. (2009), YouTube-Objects dataset Prest et al. (2012), The

Pursuit of HappynessMuccino (2008) and the office Daniels (2013). I have trained all

37

the base models (RetinaNet Lin et al. (2018), FasterRCNNRen et al. (2015), Yolo-v3

and Tiny-Yolo Redmon and Farhadi (2018)) over MS COCO dataset Lin et al. (2014).

I implemented the TKD as described in Sec. 3.3.2 with two different configurations.

First, I perform the process of inference and distillation sequentially among the same

thread; the other way, I perform the distillation in a separate thread and run the

student and oracle in parallel, both architecture implemented using the PyTorch en-

vironment Paszke et al. (2017). All experiments are carried out on one single NVIDIA

TITAN X Pascal graphics card.

Hollywood scene dataset Marsza lek et al. (2009) has 10 classes of scenes

distributed over 1152 video. In this dataset, videos are collected from 69 movies. The

length of these video clips are from 5 seconds to 180 seconds. Length and diversity of

video clips make this dataset a perfect candidate to evaluate the key selector method

and the novel loss function.

YouTube-Objects dataset Prest et al. (2012) is a weakly annotated dataset

from YouTube videos, 10 object classes of the PASCAL VOC ChallengeEveringham

et al. (2010) has been used in this dataset. It contains 9 and 24 video clips for each

object class which length of these videos are between 30 seconds to 3 minutes. I used

this dataset to evaluate TKD overall performance due to its high-quality objects level

annotations.

The pursuit of happyness Muccino (2008) & The office Daniels (2013)

are two famous movie and TV series. This two video clips contains several scenes

which have the smooth transitions. The Pursuit of happyness serves a great testbed

since it has scenes in different locations such as office, street, etc. It is also more close

to the real world scenario from a camera of the intelligent agent. Also, the Office

is selected as most of scenes have been recorded in the same location which make it

suitable for testing the novel loss function.

38

Method
Hollywood Scene Dataset The pursuit of happiness

IOU=0.5 IOU=0.6 IOU=0.75 IOU=0.5 IOU=0.6 IOU=0.75
AP F-1 AP F-1 AP F-1 AP F-1 AP F-1 AP F-1

Random Selection 0.71 0.75 0.54 0.68 0.48 0.49 0.65 0.65 0.55 0.58 0.35 0.43
Scene Change
Detection

0.68 0.58 0.47 0.50 0.23 0.35 0.54 0.58 0.45 0.53 0.35 0.44

Tiny-Yolo 0.45 0.16 0.38 0.14 0.10 0.28 0.37 0.11 0.25 0.10 0.08 0.06
Tiny-Yolo (73%)
+ Yolo-v3 (27%)

0.60 0.49 0.59 0.49 0.44 0.46 0.58 0.47 0.52 0.46 0.39 0.44

TKD 0.75 0.76 0.58 0.69 0.49 0.50 0.73 0.67 0.59 0.61 0.40 0.46

Table 3.1: Performance of TKD with Different Training Methods over Hollywood
Scene Dataset and the Pursuit of Happiness.

3.4.1 Ablation Study

As shown in table 3.1, I compare different strategies to highlight the effectiveness

of my proposed novel loss and key frame selector. I consider the output of oracle

model as ground truth and evaluating different methods over it. Here, I compare

five methods: 1) TKD with random key frame selection; 2) TKD with Scene Change

detection; 3) Tiny-Yolo without any training; 4) Combination of Tiny-Yolo and Yolo-

v3 without training; and 5) TKD with my proposed key frame selection method.

In the following experiments I have set the λ to be 0.4 which is obtained heuris-

tically. In 3.4.3, I will go through the findings which I observed in my search for the

best λ.

Random Selection: Here, instead of selecting key frames by my proposed

method, decision modules selects frames purely randomly for further processing. Dur-

ing the testing phase, the probability is set to be 27% (to make sure it selects more

frames than my method (25% in average)). Random selection achieves 0.75 F1 score

(IOU=0.5) in Hollywood scene dataset and achieves 0.65 F1 score (IOU=0.5) in the

pursuit of happiness. On average, it reaches a frame-rate of 89 frame per second

(FPS).

Scene Change Detection:This method uses the content-aware scene detection

39

method Castellano (2018). It finds areas where the difference between two subsequent

frames exceeds the threshold value and used them as key frames for training the

student. I selected the threshold with the highest performance and accuracy to report.

This method achieves 0.58 F1 score and 0.58 F1 score in Hollywood scene dataset and

The pursuit of happyness respectively. This method selected 24% frames as key

frames ultimately. On average, the system yields a 93 FPS.

Tiny-Yolo without any training: I test Tiny-Yolo Redmon and Farhadi (2018)

to show the accuracy of a strong baseline model without temporal knowledge distilla-

tion. This model achieves 0.16 F1 score and 0.11 F1 score in Hollywood scene dataset

and The pursuit of happyness respectively, which are significantly lower than other

mentioned methods. However, This model has 220 FPS, the fastest among all.

Tiny-Yolo + Yolo-v3 without training: In this configuration, I used Tiny-

Yolo and Yolo-v3 v3 Redmon and Farhadi (2018) together. I designed a random

procedure which runs Yolo-v3 with a probability of 27% and Tiny-Yolo for the rest

of times. This model achieves 0.49 F1 score and 0.47 F1 score in Hollywood scene

dataset and the pursuit of happyness respectively. Frame-rate approaches 89 FPS.

TKD with the key frame selection method: Initially, I set τ (the training

prevention factor) to 2 (I observe that the transition between two scene takes at least

2 frames); along with setting the minimum random selection to 5%. In Hollywood

dataset, my method selects around 26% of frames and the F1 score achieves 0.76

(IOU=0.5). In The pursuit of happyness movies, my method selects around 24% of

frames and the F1 score reaches to 0.67 (IOU=0.5). In average, the system achieves a

frame-rate of 91 FPS sequentially and 220 FPS with running inference and knowledge

distillation in parallel.

Table 3.1 lists the experimental results I observed with these variants. These ex-

periments shows, the TKD, while maintaining a similar frame-rate as other methods,

40

Method
IOU=0.5

mAP F-1 score
RetinaNet-50Lin et al. (2018) 0.45 0.44
FasterRCNNRen et al. (2015) 0.52 0.50

Tiny-Yolo Redmon and Farhadi (2018) 0.38 0.33
Tiny-Yolo (73%) + Yolo-v3 (27%) 0.44 0.45

TKD 0.56 0.55
Oracle (Teacher)

Yolo-v3Redmon and Farhadi (2018) 0.60 0.62

Table 3.2: Compression of Accuracy (Iou=0.5) over Youtube Object Dataset.

it can achieve higher recognition accuracy. To further validate this claim, I conduct

one additional experiment on a single-shot movie Mokri (2013), TKD selects 21%

and random procedure selects 27% of the total frames for re-training. They reach

comparable F1-score (TKD:0.807, Random:0.812), but my TKD method uses 10400

frames less than the random one.

3.4.2 Overall Performance

Table 3.2 shows mean average precision (mAP) and F1 score for five different

object detection models as well as my TKD method over the Youtube object dataset

Prest et al. (2012). For the student models without oracle’s supervision, I train

them to the best performance I could achieve. Not surprisingly, larger or deeper

models with larger numbers of parameters perform better than shallower models,

while smaller models run faster than larger ones. However, TKD achieves a high

detection accuracy compare to RetinaNet, FasterRCNN, Tiny-Yolo, combination of

Tiny-Yolo and Yolo-v3 (same configuration which is described in Sec. 3.4.1). TKD’s

detection performance also approaches the performance of the oracle model (Yolo-v3).

In this experiment, 25% of frames has been selected for training using the proposed

key frames selection method.

41

0 50 100 150 200
Frames Per Secound

0.35

0.4

0.45

0.5

0.55

0.6

0.65

F
-1

 S
co

re

Tiny-Yolo

Yolo-V3

RetinaNet-50

FasterRCNN

TKD-Sequential TKD-Parallel

Tiny-Yolo +Yolo

Figure 3.5: Accuracy and Speed in Youtube-objects Dataset.

To illustrate the accuracy-speed trade-off, I further plot them in Figure 3.5, where

we can see that the TKD archives higher accuracy compare to other shallow methods

while still operating far above the real-time speeds with a 91 FPS. The oracle model

has a better detection accuracy, but it runs much slower than the TKD.

3.4.3 Further Study and Discussions

In this section, I provide further insight into the loss function design, the general

knowledge distillation idea, and suggest an application of the proposed method.

Loss function: I studied λ effect over number of true positives and false positive

generated by TKD. All tests are done over an episode from The office Daniels (2013).

I choose this video since it was recorded in one indoor environment, with a consistent

objects distribution. Table 3.3 shows the student model’s detection accuracy varies

with the different choices of λ. At λ = 0, I observed lower number of false positives

since fewer number of frames (5%) selected by the key frame selection module. With

a low λ (except at 0), I observe an increase in false positives as the model tries to

generate more boxes and loss function doesn’t punish hardly enough onto the student

42

0 20 40 60 80 100 120 140 160 180 200
Number of Targets

0

50

100

150

200

E
xe

cu
tio

n
T

im
e

(m
s)

 Our loss
Mehta' 18

Figure 3.6: Computational Costs for Loss Functions.

ssd 0 0.2 0.4 0.6 0.8 1
IOU
0.5

AP 0.47 0.72 0.82 0.83 0.79 0.8
F-1 0.36 0.649 0.676 0.656 0.634 0.643

#TP 3353 8570 8371 7806 7274 7438
#FP 215 2952 1522 1129 814 841

Table 3.3: Parameter Study of λ over the TKD.

model for generating false positives. With a high λ I observe drops in the true positive

rates since we are forcing the student to learn noises which are likely introduced by

the oracle model. Consequently, 0.4 is empirically the best choice here, and I set it

as the λ value for all the experiments.

To validate the loss design, I further compare its performance with the one from

Mehta and Ozturk (2018). Mehta and Ozturk (2018)’s loss is based on Non-Maximum

Suppression (NMS) algorithm running on the CPU which is computationally more

expensive in comparison with my approach. Figure 3.6 depicts that, an increasing

number of targets from each frame will result in the increasing of execution time for

calculating the loss function for both methods. However, while achieving comparable

mAP, my loss design has an almost constant execution time, while Mehta and Ozturk

(2018)’s is linearly growing.

Temporal knowledge distillation: Here, I take a closer look at the key selection

module. Figure 3.4 shows its performance over two video clips from the Hollywood

43

0 500 1000 1500
The Number of Observed Frames

0

50

100

of

 K
ey

 F
ra

m
es

Moving Camera
Fixed Camera

Figure 3.7: Key Frames Histogram.

scene dataset. Red crosses are frames which selected by my proposed method as key

frames. At peaks, we have a scene change and logically these points would be the

best candidate for training. Following this insight, I observe my model has a lag on

detecting these points. Here, I argue that training over these frames are actually not

the best ones for improving the student model’s accuracy. Scene detection method

is able to identify these points yet table 3.1 shows it achieves lower accuracy. Figure

3.4 shows the TKD after detecting a change in loss start stabilizing the model by

selecting most of frames (parts A & C) and for the rest select less number of frames

(parts B & D).

The proposed key frame selection method leads to improved performance compar-

ing with Mullapudi et al. (2018)’s. Figure 3.7 shows that the number of selected key

frames is adjusted based on the domain change. With the fixed camera case in which

the domain does not change, the number of selected frames decreases along observing

more frames (validated over UCF Crime datasetSultani et al. (2018)). Indeed, for

the case of a moving camera, more key frames are selected to adjust the TKD to the

specific domain. Here, the method presented in Mullapudi et al. (2018) relies on a

static strategy of selecting frames which are chosen manually at the beginning.

For further evaluation, I applied TKD on one episode of the office TV series.

44

Then, I test the trained student model over another episode without any re-training

at the inference time. I observed an increase of precision by 6% comparing to the case

in which I use the original student model without applying TKD. The result demon-

strates the domain adaption capability of my method. Furthermore, it maintains a

high recall over other domains which indicates that unseen objects have a chance to

be detected. With the method presented in Mullapudi et al. (2018), the model loses

its generality over unseen objects due to the practice of optimizing the overall model

with the new frames.

3.5 Conclusion

This chapter proposes a novel approach to distill temporal knowledge of an accu-

rate but slow object detection model to a tinier model yielding a light and accurate

object detection paradigm for robotic applications called TKD. I conducted experi-

ments on the Hollywood scene dataset, Youtube object dataset, the pursuit of hap-

piness movie, and the office TV series. I empirically validated that TKD maintains

a high inference efficiency while achieving a high recognition accuracy. The accuracy

even approaches the original oracle model for the object detection task.

The promising experimental results I observed suggest several potential lines of

work which can further improve the system’s performance. The frame selection pro-

cedure and training over the whole key frame are not efficient, and there are several

concerns:

• A new object can be added to the environment, and the key frame selection

does not detect this change on time.

• The key frame selector chooses unnecessary frames for retraining.

• The TKD passes the whole key frame to the oracle; however, the system has

45

uncertainty over a small region, not the entire frame.

In the next chapter, I studied the effect of mentioned concerns on system perfor-

mance. I have also introduced a framework that can mitigate these concerns in an

embedded environment with limited resources.

46

Chapter 4

TEMPORAL ADAPTATION ON EMBEDDED SYSTEMS

4.1 Introduction

The Internet of Things (IoT) refers to a world in which almost any thing is instru-

mented with sensors, computers and communication devices. These embedded systems

will be utilized in a wide range of domains including surveillance, retail, healthcare,

transportation, industrial robotics and many more. The emergence of IoT is taking

place alongside a radical change in how the captured data is processed, namely, with

the use of deep neural networks (DNNs). They have become the dominant algorith-

mic framework for extracting valuable information from massive amounts of disparate

data for the purpose of prediction, classification and decision making.

DNNs are computationally intensive algorithms that involve several layers of nodes

that perform billions of multiply-accumulate operations on very large dimensional

data sets. Thus, DNNs have to be executed on high performance, large capacity

cloud servers. Unfortunately, this means that the massive amounts of data generated

by the IoT devices need to be transferred to the cloud, which will soon make this

approach infeasible due to the limited bandwidth, the unacceptably large latency,

and the potential for compromising the security.

The preferred solution is to have some or all the data processed by a user-end

device, which is the first recipient of the data (e.g. a smartphone (Mao et al., 2019), or

a smart surveillance camera (Xiong et al., 2019)). However, the limited computation

and storage capabilities and/or energy capacity of user-end devices precludes them

from executing complex DNN algorithms (Farhadi et al., 2019; Han et al., 2016b).

47

Transition
Shallow
model

Knowledge

Shallow
model

Knowledge
(Updated)Deep Model

Knowledge

Figure 4.1: The Limited Knowledge of Shallow Model Can Be Adapted to the New
Environment Using the Deep Model Knowledge.

Edge computing is aimed at addressing this problem by having a part or all of the

computation performed on a more powerful local computer called an edge device

that is connected to the user-end device via a local area network (LAN) or Wi-Fi

connection.

In this chapter, I present a new approach to improve the execution of DNN al-

gorithms in an edge computing environment. The proposed system targets complex

DNN algorithms (e.g., RetinaNet (Lin et al., 2017), Faster-RCNN (Ren et al., 2015))

designed for object detection in digital images and videos in different domains (Figure

4.1). Object detection arises in practically every computer vision task and now plays

a central role in nearly every one of the applications domains mentioned above. The

goal of this work is to demonstrate how two devices – a lower performance user-end

device and a much higher performance edge device can cooperate in the execution

of computationally intensive DNN algorithms to achieve substantial improvement in

energy consumption of the user-end device while achieving nearly the same quality

of results as would be if the algorithms were executed solely on the more powerful

device.

The proposed approach is based on a two-level hierarchy of models – a Shallow

neural network (SHNN) (the student) that runs on the user-end device, and a DNN

48

(the oracle) that runs on the more powerful edge device. The edge device can also

execute the SHNN. The use of the SHNN exploits an important characteristic of

images, namely, that in any given image over a period of time, the diversity of objects

is quite limited (Farhadi and Yang, 2019), and therefore, a DNN may not be necessary

and a smaller, shallower model will suffice. On the other hand, when changes do occur,

they must be detected, and the shallow model must be updated.

As shown in Figure 4.1, my approach detects such changes, activates the DNN

as required, which in turn transfers the new knowledge (the encoding of the ground

truth in the new weights) from the edge device to the user-end device to update the

shallow model. All of this is done while performing inference, i.e., at run-time. The

knowledge transferred includes the weights in the decoder layers (layers that detect

the objects using the extracted features from previous layers). This transfer enables

us to improve the inference time and energy consumption while having a tolerable

accuracy loss compared to the deep model.

I demonstrate these ideas by implementing the proposed approach on a pair of

devices where the user-end device is an NVIDIA Jetson Nano development kit and

the edge device is a Dell workstation with NVIDIA Titan Xp GPU. The experiments

show that the proposed method can achieve the desired accuracy with significantly

lower inference time. Moreover, the total energy consumption of the user-end device

was reduced by 78% when compared to running the DNN entirely on the user-end

device. Moreover, the results show that the ratio of object detection accuracy to the

energy consumption is improved significantly using the proposed approach.

4.2 Background and Related Work

In this section, the background on the object detection methods and the metrics

for evaluating their accuracy are described. Different categories of related work are

49

described and the drawbacks of each group are discussed.

4.2.1 Background

Object detection methods: Existing methods for object detection using CNNs

can be classified as either two-stage or one-stage approaches. In two-stage methods

such as FasterRCNN (Ren et al., 2015), R-FCN (Dai et al., 2016), and AdaScale

(Chin et al., 2019) classification and localization are implemented using two separate

steps involving classification and region proposal. The one-stage approaches (such

as Yolo (Redmon and Farhadi, 2018), SSD (Liu et al., 2016), and RetinaNet (Lin

et al., 2017)) classify and localize objects in one step. One-stage detection models

are generally faster while the accuracy of two-stage models is higher. However, at

a smaller intersection of the ground-truth and the predicted object (intersection of

union = 0.5), one-stage models can achieve nearly the same accuracy of the two-stage

methods. In this chapter, I use single stage models, since they are better suited for

embedded devices with limited computation resources.

Metrics for evaluation of detection accuracy: There are three main validation

metrics in object detection: Recall, Precision, and F1 score (Powers, 2011).

Recall: This is the number of correctly detected objects divided by the total number

of objects in the scene. Recall is crucial in safety-critical systems where missing an

object in the scene could be catastrophic.

Precision: This is the total number of correctly detected objects divided by the

total number of detected objects. This is useful for evaluating the systematic errors

of detection.

F1 score: This is a measure of overall detection accuracy and is defined as 2 ×
Precision×Recall
Precision+Recall

.

50

4.2.2 Related Work

Implementation of object detection on cloud

Neurosurgeon (Kang et al., 2017) and JointDNN (Eshratifar et al., 2018) are two re-

cent examples of performing image classification collaboratively between an user-end

device and a cloud server. However, they do not consider object detection methods,

which are a superset of image classification methods. Glimpse (Chen et al., 2015b)

performs object detection on mobile devices using a cloud server. When the net-

work delay exceeds a certain threshold, their approach uses tracking to estimate the

location of objects based on an active cache of frames.

MobiEye (Mao et al., 2019) is another cloud-based object detection system for

mobile devices implemented in a multi-threaded asynchronous manner. The first

thread sends the key frames to the cloud for object detection. The second thread

performs the object tracking based on the result of processed key frames using optical

flow network. The response time of object detection for key frames is dependent on

the network delay. Therefore, when the network delay is high, the newly observed

objects in the scene may be missed.

Domain adaptation

Domain adaptation refers to training a model for a specific domain of observation.

There is a substantial body of work on domain adaptation in object classification and

detection methods (Lu et al., 2017; Chen et al., 2018; Dai and Van Gool, 2018). These

methods have been presented to deal with challenges such as low quality images, and

large variance in the background. This variation can result in a domain change in the

training, validation, and test sets. However, existing methods do not consider sudden

changes in the scene when performing inference at run-time.

51

Knowledge transfer

Knowledge transfer (a.k.a knowledge distillation) (Mullapudi et al., 2019; Farhadi and

Yang, 2019) has been widely used to improve the accuracy of object detection systems.

This method transfers the knowledge of a deeper model (oracle) to a lighter model

(student) with fewer parameters. If the shallower model can gain this knowledge, it

will have the same accuracy as the deeper model while using fewer resources. However,

the student model would not adapt to this knowledge since it has fewer parameters

but it can adapt partially.

Mullapudi et al. (2019) proposed an image segmentation method where the shallow

model is trained periodically at fixed intervals. The selection of fixed interval may

not be efficient. In chapter 3, I (Farhadi and Yang, 2019) have proposed a systematic

procedure using Long Short-Term Memory (LSTM) to determine the intervals at

which the training of shallow model should be done. However, running the LSTM

would be expensive on resource-confined user-end devices.

In this chapter, a knowledge transfer framework is proposed in edge computing

environment for energy-constrained user-end devices. This framework is explored in

different ways using real-world direct measurements.

4.3 System Framework

4.3.1 Knowledge Transfer

In this section, the idea of online knowledge transfer in the edge computing domain

is described. Moreover, an efficient method is proposed to select the frames that

should be sent to the edge device for re-training the shallow model.

In most vision datasets, there are a variety of domains that the model needs to

learn. However, in real-world applications such as surveillance cameras, we are con-

52

Student Oracle

Figure 4.2: An Overview of Knowledge Transfer Method: The Main Thread of Exe-
cution on the User-end Device Runs a Shallow Student Model to Detect Objects. To
Keep the Desired Accuracy, a Key Frame Selection Module Decides to Retrain the
Student Model Based on the Oracle Model.

fronted with a specific domain and with limited types of objects. Although the scene

can change, the changes are typically slow. Here, the oracle knowledge over this tem-

poral domain can be used to adapt the student model to the observing environment

(which has been called temporal knowledge distillation (Mullapudi et al., 2019)). This

approach can improve the accuracy and response time.

Although methods of knowledge transfer can improve the performance signifi-

cantly, their implementation poses several challenges: 1) models may lose their gen-

erality and may not be able to detect objects seen for the first time; 2) training the

student model for each and every incoming frame incurs high computation cost; 3)

training a student model on the embedded device can affect other simultaneously run-

ning tasks, whereas training over the network incurs delay for adaptation. I address

these challenges in the proposed approach.

53

4.3.2 Main Architecture

My method of knowledge transfer between a shallow and deep model extends

the approaches described in (Farhadi and Yang, 2019; Mullapudi et al., 2019) to

energy-constrained embedded systems. Figure 4.2 shows an overview of the proposed

architecture which consists of three main parts: 1) the student model which is a

shallow CNN model; 2) the oracle model which has a deep structure that can reach

the state-of-the-art accuracy in detection; and 3) the key frame selection method

which selects the epochs at which student adaptation occurs.

The user-end device observes a scene and detects objects in the scene. Meanwhile,

it adapts itself to the observing environment to improve the overall accuracy. In the

following, each of these modules is described. Note that the presence of the oracle

model in the user-end device is for evaluation purposes in the approach.

Student

This is a shallow model with a limited number of parameters requiring much less

computation than a deep model. The student can learn only a limited amount of

knowledge due to fewer parameters. Here, the student has a similar structure to

Tiny-Yolo v3 (Redmon and Farhadi, 2018) with some modification to the decoder

part. The student model (see Figure 4.2) consists of three parts: 1) a feature extractor,

2) a general decoder, and 3) an adaptive decoder. The feature extractor, which has

the same structure as the base model (Tiny-Yolo) is trained on a conventional object

detection dataset. The general decoder (same structure as base model) detects objects

using the extracted features and is trained along with a feature extractor during the

training stage. Finally, the adaptive decoder is optimized during inference time using

the oracle knowledge. Another stack of convolutions has been added to the adaptive

54

decoder to improve the detection accuracy of small objects (Figure 4.2).

Oracle

This is a model with a larger number of parameters and a deeper structure and as

a result can reach the state-of-the-art accuracy over the target dataset (called oracle

model). This model will be used to extract knowledge over the temporal domain. The

knowledge will be used for adapting the student model to the observing environment.

Here, Yolo v3 is used as the oracle model due to the similarity of structure to that of

Tiny-Yolo and its lower latency compared with two-stage object detection methods.

This makes the optimization procedure more efficient at inference time.

Optimizer (weight update)

To transfer knowledge from the oracle to the student model, Adam gradient descent

method (Kingma and Ba, 2014) is used. First, the distance between the student and

oracle model needs to be calculated. The student and oracle both have three output

matrices with the same size. By calculating the L2 distance of student and oracle

outputs (
∑
‖T Si −TOi ‖22 , i = [1, 2, 3]), the distance of two models is calculated. Next,

using this distance as the loss value, the optimizer updates the weights of adaptive

decoder in the student model. After adaptation, the weights of running student model

will be replaced by the new weights.

Key frame selection

It is important to know when we need more knowledge while observing the envi-

ronment. Training over all incoming frames will be expensive while training over a

number of frames is needed to maintain accuracy. Mullapudi et al. (2019) proposed

a static interval key frame selection that is selected by the user at the beginning. To

55

reach the desired accuracy, the interval should be small which will increase the infer-

ence time, energy consumption, and hardware utilization. In chapter 3, I (Farhadi and

Yang, 2019) proposed a combination of a uniform selector and an LSTM module to

select key frames. This method achieves higher performance compared to Mullapudi

et al. (2019). However, running the proposed LSTM module on a resource-constrained

device would be costly.

In the proposed approach, Kalman filtering (Kalman, 1960) is used to track

changes on the scene. If there is a significant change on the scene compared to

the last adaptation, the frame is a good candidate for re-training. Also, frames are

selected using a binomial selector described in equation 5.11:

I ∈ {FALSE, TRUE}

I = Motion(FS , FL) ∧ IR, IR ∼ B(2, Pt),

Pt =

 max((Pt−1 − 0.05), 0.05) ∆L < σ,

min(2Pt−1, 1.0) ∆L > σ,

FS : Observed frame, FL : Last key frame,

(4.1)

where I denotes the final decision of the selector indicating whether or not to re-train.

The IR is sampled from the binomial distribution. The probability of selection (Pt) is

changed based on knowledge transfer loss. If ∆L (i.e. the difference between current

loss and previous training loss), improves more than σ, the probability factor will be

doubled to increase frames for knowledge transfer. Otherwise, Pt will be decreased

to select fewer frames for training. At least 5% of frames are selected as a sample

to avoid missing the scene changes. The value of σ is a hyper parameter which is

obtained after several rounds of experiments. This value can be changed based on

the type of loss function. Here, the value of σ is chosen to be σ = 0.5.

Moreover, we will not select any other frame for adaptation while we are processing

56

a key frame. This approach makes the detection system more adaptable to the newest

observed objects by avoiding the queuing of frames.

Knowledge source

The student module can be updated using local or remote knowledge. As shown

in Figure 4.2, the detection system has its own Oracle (local Oracle) to update the

weights and adapt to the environment. The local Oracle is both optimizer and oracle

model. Also, the user-end device can request a network oracle (edge) for a deeper

knowledge and optimization. The edge has a clone of student model and updates this

clone and sends it back to the user-end device. This approach is not on-time due to

network latency. Section 4.4 includes a detailed evaluation of these trade-offs.

Multi-threading

To minimize the inter-effect of these sub-modules, each module is running on a sep-

arate thread. Although these modules are running independently, they may affect

each other due to limited resources on the device. For instance, the oracle module

can use most of the available CUDA cores while we are running the student model

and cause an increase in inference time.

4.4 Experimental Results

In this section, the experimental setup and the results of applying the approach

are described.

4.4.1 Setup

Hardware Setup: The user-end device is NVIDIA Jetson Nano developer kit (jet,

2019) which is the first recipient of camera frames. This kit is equipped with a

57

quad-core ARM A57 CPU operating at 1.43 GHz and a 4GB 64-bit LPDDR4 RAM.

Moreover, it has a 128-core Maxwell GPU. The edge device is a Dell workstation

with an Intel Xeon W-2125 CPU operating at 4.0 GHz having 32GB of RAM and an

NVIDIA Titan Xp GPU.

Both Local Area Connection (LAN) and Wi-Fi were tested as the communication

medium between devices (tested in a network with a WAN (wide-area network) back-

bone). The bandwidth of Wi-Fi and LAN connections were approximately 13 and

100 Mb/s respectively. To measure the power consumption of the user-end device,

Monsoon HV power monitor was used (Figure 4.3).

Dataset: To verify the efficiency of the proposed approach, two types of videos

from fixed and moving cameras were selected. The fixed camera case was from the

surveillance videos in the UCF dataset (Sultani et al., 2018). The moving camera case

was from the car crash dataset (Chan et al., 2016). The initial weights of student and

oracle model were obtained by training on the Microsoft COCO dataset (Lin et al.,

2014).

Evaluation Metrics: The proposed approach to train on the edge device over a

network was evaluated in terms of accuracy and performance metrics. The F1 and

Recall scores are representative metrics for the accuracy of the detection method.

In the experiments, the output of deep model was assumed to be the ground-

Figure 4.3: Experimental Setup.

58

Table 4.1: Comparison of Different Approaches. Local Training and Network Training
Both Use the Proposed Key Frame Selection Method Using Full Precision Data. The
Energy Column Is the Average Energy Consumption for Each Frame. Overall Score
Is the Ratio of F1 Score to Energy.

Metrics
Energy

(J)
Inference
Time (s)

F1
Score

Overall
Score

Shallow Model 1.06 0.187 0.489 0.46

Deep Model 4.55 0.669 1 0.22

Local Training 1.83 0.215 0.753 0.41

Network
Training (Wi-Fi)

1.25 0.198 0.731 0.58

Network
Training (LAN)

0.98 0.193 0.745 0.76

truth and the proposed approaches were compared with the knowledge of deep model.

Moreover, the average inference time and training time for all the processed frames

was measured. Additionally, the total energy consumption of the user-end device

processing the whole video was compared. This energy consumption is attributed

to different factors including video decoding, inference, non-maximum suppression

(NMS) post processing, and network communication. In order to evaluate the overall

efficiency of the approach, both in terms of accuracy and energy consumption, the

overall score is used as the ratio of F1 score to energy consumption (DAC, 2018;

Alyamkin et al., 2018).

Test Scenarios: The test scenarios include three cases:

1. Network Training (NT): the weights are updated on the edge device through

either Wi-Fi or LAN connections. The input data is a tensor of size 416×416×3

which needs to be transmitted from the user-end device to the edge device.

Moreover, the weights of decoder (explained in Figure 4.2) will be sent from the

edge to the user-end device.

2. Local Training (LT): The weights are updated locally on the user-end device.

59

In this approach, the calculation of loss function to update the weights is also

done on the user-end device.

3. No Training: The weights are not updated at all and the inference is done using

the shallow model.

The aforementioned scenarios were tested using full precision and half precision weight

and data values on the videos of both fixed and moving cameras. The efficiency of key

frame selection (KFS) method was compared with the case in which all the frames

were selected as the key frame (w/o KFS).

4.4.2 Experimental Results

Table I shows the comparison of LT and NT versus running the deep or shallow

model on the user-end device for the fixed camera video. In case of NT using LAN,

the energy consumption and inference time were reduced by around 78% and 71%

compared with running the whole deep model on the user-end device while the F1

score was reduced only by ≈ 25%. However, as shown in (Farhadi and Yang, 2019),

the accuracy of student model using knowledge transfer remains almost the same as

the deep model in Youtube video dataset (Prest et al., 2012). On the other hand,

running the shallow model on the user-end device resulted in unacceptable accuracy

(F1 score = 0.489). Note that training the shallow model locally led to additional

87% energy consumption. The overall efficiency of the approaches was evaluated using

the overall score (i.e. the ratio of F1 score to energy). The overall score of network

training (LAN) leads to 1.65x and 3.45x improvement compared with running the

shallow and deep model on the user-end device. The reason for getting better overall

score in LAN compared with Wi-Fi is due to the lower communication delays in

the network. Still, the network training using Wi-Fi can gain better overall score

60

compared with other approaches.

Network Training No Training Local Training

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

F
1
 S

c
o
re

Epoch (200 frames) - Fixed Camera

Scene change

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

Epoch (200 frames) – Moving Camera

Model

Adaptation

Figure 4.4: F1 Score Variation. In the Case of Fixed Camera, the Network Training
(NT) Using Wi-fi Connection Even Has a Better F1 Score in Comparison with the
Local Training (LT). Both NT and LT Operate on Half Precision Data. The High
Spike Indicates That the Model Has Been Adapted to the Environment While the
Low Spike Shows the Scene Change.

The variation of F1 score was also measured (shown in Figure 4.4). Both NT

and LT perform significantly better than the case in which no incremental training

was done (both fixed and moving camera videos). Moreover, higher F1 score was

achieved in the case of fixed camera videos. It demonstrates that the adaptation is

more effective in fixed camera videos due to fewer changes in the scene. In the case

of fixed camera, NT outperforms LT since training latency is lower which leads to

higher achievable accuracy.

The presence of low spikes in some parts of Figure 4.4 suggests that there is sig-

nificant scene changes in the video at those epochs. On the other hand, the high

spike indicates the epochs that the detection system was able to adapt to the en-

vironment. Due to different re-training latency values, a shift in the spikes among

different scenarios can be observed.

Figure 4.5 (a) shows the average Recall for the different scenarios mentioned ear-

lier. Recall in the case of LAN connection was better than Wi-Fi. This is due to the

fact that the data transmission latency of LAN connection was lower than Wi-Fi and

the student model was updated more frequently. On the other hand, the accuracy

61

N L N N L N N

c

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Moving Camera Fixed Camera Moving Camera Fixed Camera

Full Precision Half Precision

R
e
c
a
ll

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Moving Camera Fixed Camera Moving Camera Fixed Camera

Full Precision Half Precision

In
fe

re
n

c
e

 T
im

e
 (

s
)

0

0.5

1

1.5

2

2.5

3

3.5

Moving Camera Fixed Camera Moving Camera Fixed Camera

Full Precision Half Precision

T
ra

in
in

g
 T

im
e

 (
s
)

0.00E+00

1.00E+04

2.00E+04

3.00E+04

4.00E+04

5.00E+04

6.00E+04

7.00E+04

8.00E+04

9.00E+04

Moving Camera Fixed Camera Moving Camera Fixed Camera

Full Precision Half Precision

E
n

e
rg

y
C

o
n

s
u

m
p

ti
o

n
 (

J
)

(a) (b)

(c) (d)

No Training LT + KFS NT(Wi-Fi) + KFS NT(LAN) + KFS LT w/o KFS
NT(Wi-Fi) w/o
KFS

NT(LAN) w/o
KFS

Figure 4.5: Comparison of (a) Recall, (B) Average Training Time, (C) Total Energy
Consumption of All Frames, and (D) Average Inference Time, for Fixed and Moving
Camera Videos Using Wi-Fi and LAN Connections. The Efficiency of Key Frame
Selection Method (KFS) Has Been Also Compared with the Case in Which All the
Frames Are Trained (w/o KFS).

of NT and LT are close even when using the low speed wireless connection since the

training latency is the same. Moreover, training over the network using half precision

data reduces the communication time for sending the data and weight values signif-

icantly while having a negligible effect on the accuracy. Note that the values of F1

score followed the same trend as with Recall.

Figure 4.5 (b) shows the average training time of all processed frames. Network

training using a LAN connection has the lowest training time while training using

the Wi-Fi has the highest among all cases. Using half precision data reduces the

training time significantly specifically in NT using Wi-Fi connection. Even using half

precision data, LT was still having lower training time than the NT (Wi-Fi) since the

training time locally using half precision incurs lower computation.

62

The total energy consumption of the user-end device for different scenarios is com-

pared in Figure 4.5 (c). The lowest energy consumption was achieved using NT with

LAN connection. This is due to the fact that the transfer of weights to the edge device

was done faster and the user-end device was not involved in the training procedure.

Although the training time for NT (Wi-Fi) was highest, the energy consumption is

close to NT(LAN) case (NT (LAN) achieves higher accuracy as mentioned before).

It can be also seen that LT leads to higher energy consumption compared with NT.

There are two reasons for this observation: 1) The high computation cost of running

the oracle model locally; 2) Increase of inference time due to interference of local

training with the online inference.

Figure 4.5 (d) shows the average inference time of all frames. The effect of local

training can be again observed in the higher inference time compared with the network

training. NT(Wi-Fi) leads to lower inference time compared with NT(LAN). The

reason is due to higher accuracy obtained in NT(LAN) scenario. Note that the post

processing on the detected objects (NMS) took longer time for the scenarios with

higher accuracy which led to higher inference time.

The efficiency of key frame selection method was also evaluated in the experiments.

It can be observed in Figure 4.5 (a) that NT (LAN)+KFS performs closely in terms of

Recall metric compared with the case where the training happens at all video frames

(NT (LAN) w/o KFS). Moreover, the energy consumption and the inference time in

the case of LT w/o KFS is significantly higher in comparison with LT+KFS since the

re-training should happen for all the frames in LT w/o KFS.

4.4.3 Further Discussion

The experimental results gave us some insights on how to design the system for

the implementation of online knowledge transfer. The takeaways can be summarized

63

as below:

• Local training: The energy consumption of this method is higher compared to

other approaches. On the other hand, the training time is more predictable in

comparison with network training using Wi-Fi. This is due to the fact that the

communication time using Wi-Fi follows a stochastic behavior.

• Network training: This approach can lead to higher accuracy/energy ratio on

average. Network training using LAN connection is as predictable as local

training since the LAN connection is more stable compared with Wi-Fi.

• Loss Function: The used loss function in this section is based on the Euclidean

distance of student and oracle model. However, the calculation of this loss

function is computationally intensive on the CPU of user-end device. There-

fore, local training can be more expensive in terms of energy consumption and

inference time.

• Frame selection: The frame selection strategy selects more frames to train at

the beginning of the environment observation. The number of selected frames

is decreased throughout the observation of the environment. This observation

was more vivid in fixed camera videos.

• Potential solution: Based on these observations, a combination of network and

local training is suggested where the initial frame training can be done on the

edge device. For the rest of the frames, a decision making policy can determine

whether the training should be done locally or on the edge device. The deci-

sion making policy can be based on the stability of the communication media.

Moreover, the number of frames to be trained affects the decision making policy.

For instance, when the number of frames to be trained is higher, the network

64

training is a better option.

4.5 Conclusion

In conclusion, I introduced and implemented a framework for incremental knowl-

edge transfer in an edge computing environment. The parameters of a shallow model

running on the user-end device are updated during inference at some key frames to

achieve the close accuracy as using a deep model. I demonstrated the proposed ap-

proach in the real-world scenario. The framework consisting of a shallow and a deep

model resulted in 78% energy reduction when compared to running the deep model

alone. The experiments also revealed that communication latency could substantially

affect vision adaptation. Hence, we need another approach to transfer knowledge from

oracle to student for real-time applications with high network latency. In chapter 5, I

introduced a novel approach that, by focusing on the region of interests, reduces the

knowledge transfer significantly.

65

Chapter 5

ARGOS: AN ADAPTIVE AND REGION-SCALE PROPOSER BASED OBJECT

RECOGNITION SYSTEMS

5.1 Introduction

In recent years, there has been significant success in computer vision with appli-

cations such as object detection and instance segmentation. Although research in

this field has been progressing rapidly, there is still a considerable gap between re-

search and practical deployment. The vision-based intersection management (vIM)

of CAVs is one of the emerging applications which will become an essential part of

cities (Khayatian et al., 2020). A study conducted by American Automobile Asso-

ciation (AAA) shows more than two people are killed every day in the U.S. due to

accidents caused by red-light runners (Bomey, 2019). We face two main challenges

in vIM: 1) The processing unit needs to be at the location; using cloud computing

is not feasible as it requires an extensive network infrastructure that can support

the required bandwidth for the cameras. Furthermore, network delays increase re-

sponse time. 2) Existing DNNs are energy hungry, affecting deployment practicality

for battery-powered or energy-harvested systems. Object recognition is the most en-

ergy and computational demanding module in vIM. This problem aggravated as vIM

needs to be accurate and agile in an embedded environment with limited resources.

A new set of recognition models have been proposed to address the high compu-

tation cost of neural networks using new architectures (Iandola et al., 2016; Sandler

et al., 2018; Tan et al., 2019; Zhang et al., 2018) or compressing models (Han et al.,

2015a; Wu et al., 2016; Zhou et al., 2016). These approaches consider all image

66

QU-Net (BNN)
64

128

256
512

512

64

128

256
512

Online Knowledge distillation

Online

learning

Yes

No

B
in

 P
a
c

k
in

g
G

a
th

e
r-

S
c
a

tt
e
r

G S

Mask

Figure 5.1: ARGOS Predicts the Regions of Interest in Images for Further Processing
(Through Bin Packing or Gather-scatter)..

regions equally important and apply a model to all image pixels. Dynamic neural

networks try to solve this issue by adopting gating mechanisms to control the depth

of the model, such as Skipnet (Wang et al., 2018b) and SACT (Figurnov et al.,

2017); or selecting regions that are important and process those independently, such

as Dynamic Convolution (Verelst and Tuytelaars, 2020). Although these approaches

showed promising results, their applicability is limited to residual neural networks

(He et al., 2016a).

In addition, new methods have been proposed for video object recognition which

consider the temporal relationships between frames (Farhadi and Yang, 2020; Liu

et al., 2019; Mullapudi et al., 2019) to reduce the computation cost and inference time.

These models are inspired by the human visual system, which relies on contextual

cues and memory to supplement their understanding of the environment (Oliva, 2005).

These models use a light model for the inference time and adapt it to the environment

using online knowledge distillation from a deeper model. Although this set of object

recognition models can reduce the computation cost and thus the inference time, their

predictive performance relies on deep features extraction on a few key frames. The

key frame selection highly depends on how often significant scene change happens and

the number of emerging new objects. Thus, the key frame mechanism becomes the

67

impeding factor preventing model deployment on embedded devices. Furthermore,

the processing time of selecting and extracting features from the key frames can

degrade system response time, switching from one scene to another as a deeper model

is applied to the whole frame.

In this , I am considering two main characteristics in vIM application that help us

meet the requirements with minimum resources: 1) cameras are fixed, and the domain

of the observing environment will not change; hence we can use temporal knowledge

adaptation and use a lighter model at inference time; 2) as cameras will be installed

on traffic or street lights pole (15 feet, with 15-degree angle), the relative speed

is significantly slower compared to other applications such as autonomous vehicles

hence a high frame-rate detection is not needed. Moreover, target objects take a

small portion of the whole frame. Hence, we can focus on location with a chance of

an object’s existence.

I focus on reducing the model computation complexity by reducing the model

input size. Mainly, DNNs are applied to all pixels in visual feature extraction as

there is a data dependency between pixels. Here, I use a light neural network to

decompose images into sub-regions and apply a deep neural network to regions of

interest (RoI). The light neural network is considered as a pre-processing step and

can be implemented in various fashions.

First, I use a binary RoI proposal model, QU-Net (fig.5.1), that efficiently predicts

regions with a high probability of object existence. QU-Net is a binary neural network

(BNN) which generates a binary segmentation mask. The regions proposed by this

module can have a single object or multiple objects (if objects partially occlude each

other). As QU-Net uses a BNN backbone, its computation and memory cost is

meager and can be applied to high-resolution images. Furthermore, ARGOS method

is general, unlike Skipnet or Dynamic convolution, which is only applicable to residual

68

convolutional neural networks (CNNs).

Second, I extended this concept to methods based on online (or temporal) knowl-

edge distillation. As mentioned, in these models, a light model adapts to the environ-

ment using a deep model output on key frames. An eminent issue is the key frame

selection and processing using an expensive model. Even with scene changes only

happening in parts of the input frame, models at the earlier stages of the pipeline

have to process the key frame entirely. Following this observation, a straight-forward

idea is to only process the RoIs and reuse previously extracted features for the rest

to improve recognition execution performance at inference time.

I adopt the light model as RoIs proposal model (by reducing the network’s con-

fidence). I also use an event-based mechanism to improve RoIs identification. After

decomposing the input frame to separate RoIs, I apply the deep model to those re-

gions. Such a system design can reduce the computation by skipping processing a

substantial portion of the input frame that are not challenging or have an object.

I provide two methods to process the RoIs in a neural network. First, the gather-

scatter approach based on the implementation described in (Verelst and Tuytelaars,

2020). This method is more efficient than other sparse matrix operations because

it gathers the elements into a single dense matrix before applying the convolution

operation. However, this method requires the implementation of custom layers for

each neural network. Bin-packing is another approach for processing the RoIs that

extracts each rectangular region of interest from the image and packs them into

a batch of frames. This method is highly flexible. It can be applied to any pre-

implemented neural network with no layer-wise dependency, at the cost of adding

extraneous areas.

To validate the effectiveness of ARGOS, I conducted extensive empirical studies on

the COCO (Lin et al., 2015), Cityscapes (Cordts et al., 2016), WiseNet (Marroquin

69

Figure 5.2: ARGOS Experimental Set Up.

et al., 2019) and UA-DETRAC (Wen et al., 2020) datasets. I compared ARGOS

performance with Dynamic Convolutions (Verelst and Tuytelaars, 2020) as well as

other state-of-the-art methods with a set of evaluation metrics, including recognition

accuracy, processing time, and energy consumption. ARGOS tests on COCO and

Cityscapes datasets showed a computation reduction of 25% and 57%, respectively,

with a marginal average accuracy loss of 4% and 1.5%. Moreover, it reduces the

computation by 20% and 40% compared to the dynamic convolutions (Verelst and

Tuytelaars, 2020) approach in object detection and segmentation tasks while improv-

ing the mAP by 3% and 20%. It reduced the computational cost by 89% and 80% on

UA-Detrac and Wisenet with a marginal decrease in accuracy, 3%. Figure 5.2 shows

the prototype for vIM application.

5.2 Related Work

5.2.1 Dynamic Neural Networks

Dynamic neural networks (Han et al., 2021b) are networks that can adapt their

structures or parameters to varied inputs, allowing them to achieve superiority in

terms of computational efficiency and accuracy. Recently, these networks formed a

key part of several literature studies. Sample-wise dynamic networks take into con-

70

sideration that different inputs may have different computational demands. Skipnet

(Wang et al., 2018b), and SACT (Figurnov et al., 2017) exploit this assumption and

dynamically adjust the layers based on the complexity of the image. Temporal-wise

dynamic networks rely on the fact that specific frames may contain redundant in-

formation. This information can allow the networks to execute the critical frames

selectively. AdaFrame (Wu et al., 2019b) is an example of this type. These methods

rely on the assumption that certain input frames can be effortless to process while

spatial-wise dynamic convolutions rely on region-wise complexity, which is more suited

towards real-time scenarios since every image can contain challenging regions.

Spatial-wise dynamic convolutions exploit the fact that the different regions in

an image contribute unequally to feature extraction and focus the execution on the

regions with a probability of containing an object of interest. Background subtraction

estimates the difference between successive frames to estimate the moving objects has

been widely used in the realm of identifying the regions of interest for spatial process-

ing by dynamic neural networks (Nguyen and Choi, 2020; Sengar and Mukhopadhyay,

2020). However, these methods work on certain fixed assumptions and lack the flex-

ibility to handle natural movements in the environment as well as the movement of

the camera. Pixel-level dynamic networks are a type of spatial-wise method that

performs adaptive computation at the pixel level. Dynamic Convolutions (Verelst

and Tuytelaars, 2020) is one such approach that uses a mask to execute specific re-

gions with crucial information for feature extraction. Dynamic Convolutions rely

on residual blocks, and after each block, create an attention mask and only process

selected regions. Therefore, a smaller spatial area for processing help in reducing

the overall computational cost of the network. ARGOS has the same functionality;

however, it does not rely on features extracted from residual blocks, making it more

general. Moreover, it can reduce the initial layer computation as we have the RoIs

71

using ARGOS pre-processing mechanism.

5.2.2 Quantized Neural Networks

In CNNs, the main contributors to the complexity of a model are the convolu-

tional operations because of the significant overhead of the repeated multiplication

functions. Many methods have been proposed to reduce this overhead. Reducing the

bit-width of the activations and weights has been one of them that helps in reduc-

ing the complexity of the respective layers. Binarized Neural Networks (Courbariaux

et al., 2016), and XNOR Net (Rastegari et al., 2016b) took it further by proposing

methods to binarize the weights and activations of the entire network. However, an

entire binarized neural network is not feasible because of the accuracy loss. A layer-

wise priority for binarization is used to alleviate the problem (Wang et al., 2018a).

As the binarization of deep layers leads to a lower accuracy drop, they use a bottom

to top approach.

To counter the issue of the accuracy loss during binarization, flexible models which

supported the use of different bit widths were developed. Zhou et al. (2016) (DoReFa-

Net) introduced a method to train models using low bit-width weights and activations

as well as efficiently implement them on different hardware devices such as FPGA,

CPU, etc. Furthermore, it provided an efficient method to quantize the different

layers. But all these models proposed had been tested on image classification and

object detection and still cannot be applied on real application due to high accuracy

degradation. By considering this fact I am adapting BNNs as a pre-processing to

improve the CNNs performance. The binary segmentation model can recognize the

interest areas for various objects and reduce the computation of DNN by reducing

the processing regions.

72

5.2.3 Online Knowledge Distillation

In chapter 3, I introduced an online Knowledge distillation mechanism which is an

approach to transferring information from one model (teacher) to another (student)

at inference time. This approach trains an efficient model to mimic the output of

an expensive teacher (Farhadi and Yang, 2020), as a form of model compression.

Early explorations of knowledge distillation focused on using the teacher’s rich output

to train the student over the entire original data distribution. New studies (Han

et al., 2021a; Farhadi and Yang, 2020) adopt it in online learning and show benefits.

Mullapudi et al. (2019) adopts online knowledge distillation to improve inference time

for image segmentation. A light model is used for inference, and at fixed intervals,

it extracts features from the selected frames (key frames) with an expensive model

to train the light one. Instead of using fixed intervals, I (Farhadi and Yang, 2020)

proposed (chapter 3) an adaptive mechanism to select key frames. Chapter 4 studies

(Farhadi et al., 2020) shows that processing the key frame on embedded devices

will hurt the inference time and energy consumption. I extended ARGOS to online

knowledge distillation without relying on key frame processing. Instead, I apply the

expensive CNN model on RoIs, not the whole frame. The RoIs are detected based

on light model output with low confidence. Moreover, a loss function is designed to

use partial information extracted from RoIs combined with information extracted in

early detection to train the light model.

5.2.4 Video Object Detection

Temporal cues have been used in video processing to reduce computational costs.

Researchers adopt optical flow (Zhu et al., 2017), or recurrent network (Liu and

Zhu, 2018) architectures to modify the previous frame’s extracted features and reuse

73

the features for current frame detection. These approaches heavily rely on the key

frame mechanism, which is computationally expensive. Moreover, it can increase the

response time when we have a new object in the scene. Liu et al. (2020) suggest

the usage of external sensor data (LiDAR) to select regions for further processing;

however, this information is not available in all applications. Here, ARGOS has an

agile detector (pure vision-based) that detects RoIs and applies an expensive CNN

model on them. Furthermore, it can retrain itself (based on implementation) to avoid

future repetitive requests.

5.3 ARGOS Approach

The core of ARGOS is the decomposing image module, which locates RoIs in in-

put frames and creates independent sub-regions for deep feature extraction. ARGOS

can be implemented in active or passive mode. In passive mode, ARGOS detects

RoIs as a pre-processing stage and reduces the DNN module’s input size (and com-

putation). I implemented this configuration using a binary region proposal. In active

mode, Outputs from these regions can be aggregated with early detection to train

the light detector (which also functions as the RoIs detector) and reduce the number

of future operations in the online knowledge distillation methods. In the following,

I describe these two main approaches to implement the ARGOS; 1) using a binary

neural network (Passive), 2) using the light model in online knowledge distillation

methods (Active).

5.3.1 Binary Region Proposal

Due to the memory and computation efficiency, Binary neural networks have re-

ceived significant attention in recent years. However, these models cannot achieve

high accuracy on complex problems such as object recognition. Therefore, I adapt

74

these models as a pre-processing step for proposing RoIs, which is a binary segmen-

tation. Here, We need to find regions with a high probability of object existence.

This task is much easier compared to semantic segmentation or object detection. I

also tested different methods to reduce the computation of this model (the so-called

”QU-Net”).

Architecture: I adapted the U-net (Ronneberger et al., 2015) architecture as the

baseline. I divided the model into three parts with different quantization structures to

develop a light version of U-Net. The backbone of the network used binary modules

with the final layers using binary weights and 4-bit activations. Moreover, instead

of using full precision on early layers, I quantized them to improve inference time

without affecting accuracy.

For a convolutional neural network, the first layers are critical as losing any in-

formation cannot be reclaimed at later stages. Thus, it is essential to ensure that

the relevant information is passed down with minimal disruption. I achieved this by

using 1-bit weights and 8-bit activations in the convolution layers at the initial stage

and the following two downsampling stages (the yellow regions in Fig. 5.1).

Once the initial layers extract the relevant features, the information capacity can

be reduced with minimal loss of information. Therefore, the last two downsampling

layers were replaced with 1-bit weights and 1-bit activations in QU-Net model (the

gray regions in Fig. 5.1). My initial approach was to use Melius Blocks (Bethge et al.,

2020) which consist of a DenseBlock and Improvement Block that helps maintain the

feature quality, especially with the increase of channels in the last few downsampling

layers. However, it was not found to contribute significantly to the accuracy based on

the experiments. Thus, I replaced the convolution layers with the DoReFa-Net based

(Zhou et al., 2016) binarized modules.

It was important for the relevant information to flow up to the final layer to

75

reconstruct the binary mask from the extracted features. The experiments showed

that reducing the activation layer bandwidth to less than 4-bits led to severe accuracy

degradation. Therefore, I use a 1-bit weight and a 4-bit activation to ensure that the

information captured in the downsampling layers is fed through the upsampling layers

(represented by dark green regions in Fig. 5.1) to the final feature map. The last

layer is full-precision to provide a dynamic range of values that are obtained in the

one-hot output tensor.

Each convolution layer with quantized weights and activations also has a squeeze

and excitation block (Hu et al., 2018). This approach can help in modeling channel-

wise attention and increasing the information capacity of the model with a negligible

increase in computation cost.

Forward and Backward Propagation: In QU-Net, the entire model is com-

posed of 1-bit weights except for the last layer. The weights are binarized using the

sign function that rounds each value to the closest integer in the set {-1,1} as defined

in Eq. 5.1. To solve the issue of the non-differentiability of the sign function, the

Straight-Through Estimator (STE) (Bengio et al., 2013) was utilized which passes

the output of the gradient as it is.

Dt(x, y) =

+1 if x ≥ 0

−1 otherwise.

(5.1)

Each weight parameter also has a multiplicative scalar constant associated with

it that allows the increase in the range of weights while still utilizing bit convolution

kernels. This technique led us to use a scalar constant for each weight which is

equal to the mean of all the absolute values in the specific parameter as defined in

Eq. 5.2. Zhou et al. (2016) first proposed this method which allowed the network

the flexibility to use bit-convolutional kernels both in forward-propagation as well as

back-propagation.

76

Event
Detection

Generate
Requests

Bin
Packing

Te
a

ch
er

Unpack

R
es

u
ltBackbone

General Decoder

Loss &
Optimizer

Knowledge
Distillation

Adaptive DecoderStudent

Figure 5.3: ARGOS Implementation with the Online Knowledge Distillation Method:
A Light Student Model Is Responsible for Detecting Objects in the Scene in Addition
to an Event Detection System to Extract the Regions of Interest. These Regions Are
Packed to Obtain a Compact Input Containing Only the Regions of Interest, Which
Is Then Sent to a Deeper Model for Final Detection. Further, the Light Model Is
Trained Adaptively to Reduce the Dependency on the Feature Extraction from the
Deeper Model.

The activation quantization methodology followed three different representations

depending on the depth of the layer. The quantization functions as defined in Eq

5.2 and 5.3 adopted. Here ri represents the number in the real format while ro is the

quantized version of the number with k representing the number of bit representation.

• Forward Pass

ro =

sign(ri) ·mean(abs(ri)) if weight

1
2k−1

round((2k − 1)ri) if activation

(5.2)

• Backward Pass

dl

dri
=

dl

dro
. (5.3)

Training: The training was performed for a standard 50 epochs. I used an

RMSProp optimizer (Hinton et al., 2012) with a learning rate of ”1e-5”, weight decay

of ”1e-8”, and momentum of ”0.9”. I used a lower learning rate than usual to account

for the small range of the weight values. The weights were binarized at forwarding

pass, but each back-propagation step involved calculating the gradients on the real-

valued weight tensors. All of the training was performed on images of resolution

77

320 × 320. Although the initial training was performed on 640 × 640 images, it was

found that the reduction in accuracy was negligible, allowing us to use a lighter model.

Using a lower resolution of 160× 160 increased the area selected drastically, making

it unfeasible for use as a region proposal network. For deeper networks, images of

640× 640 resolution are used.

My focus in building the region proposal system was to ensure that all the objects

were detected with very few missed objects. Therefore, I modified the loss function

to provide more weights to the foreground class with a lesser focus on the background

class. The loss function I used was a combination of weighted CrossEntropy + scaled

Dice loss. This came at the expense of a larger number of false positives but allowed

the capture of most of the regions, which are essential to a region proposal network.

Lroi = −weightce[0] ∗ log(exp(x[0])/(
∑
j

exp(x[j])))

− weightce[1] ∗ log(exp(x[1])/(
∑
j

exp(x[j])))

sfdc[0] ∗
∑
p0g0∑

p0 +
∑
g0

+ sfdc[1] ∗
∑
p1g1∑

p1 +
∑
g1
. (5.4)

Here, the cross-entropy losses are defined by the initial two parts of Eq. 5.4 where

x represents the class probability. Each class (0,1) also has a corresponding weight

weightce associated with it, equal to the inverse number of samples in the class. The

following two parts of the equation represent the dice coefficients for each class with

a scale factor (sfdc) associated with each class. The scale factor is the inverse ratio

of samples summing to 1. Here p represents the predicted labels, and g represents

the actual labels. It helps measure the overlap between the two sets and improves

accuracy when combined with the cross-entropy loss.

Validation: The predicted mask consists of a 2-dimensional vector containing

78

the values for each class (binary). This is reduced to a one-dimensional vector where

elements indicate the argument for the maximum score, with 0 being the background

and 1 being the foreground. The final output is dilated to ensure the surrounding

regions around the objects are covered, which is essential in visual recognition tasks

such as segmentation where the surrounding context can help improve the accuracy.

I focused on testing the validity of the algorithm on the two main metrics -

• The number of regions detected with an IOU threshold of 50%, 75%, and 95%;

• The amount of area covered by the true positives compared to the actual area

of labels.

5.3.2 Online Knowledge Distillation

To show the generality of ARGOS, I extend it to online knowledge distillation

models. In these models, there is a light (or shallow) model which adapts to the

observed environment (Farhadi and Yang, 2020; Zhang and Ma, 2020). I swap the

QU-Net with the light model in these types of feature extractors. Next, I take the low

confidence output of the light model with an event detection mechanism to propose

RoIs that need deep processing. The use of multiple feature extractors can improve

the system response time while maintaining accuracy. I (Farhadi et al., 2020) showed

the benefits of this method, specifically on fixed cameras (similar to vIM), as the

distribution of objects does not change significantly. I added the ARGOS mechanism

to this methodology using the following steps. First, the light detector (student)

plays the role of the initial object detector and region proposal (RoIs). Student

output consists of two types of detections: 1) Objects with low confidence; 2) Objects

with high confidence—objects with high confidence considered as accurate detections.

Regions with low confidence detected objects selected as RoIs. I combined this with

79

a background-foreground subtraction (camera is fixed) to select RoIs that I have

also observed an event to improve the performance. Next, I send the RoIs for deep

feature extraction using the deeper model (teacher). Using the extracted feature by

the teacher, I update the student to avoid future requests. In Fig.5.3, I depict these

parts.

Event Detection

To identify the challenging regions (RoIs), I adopt a decision mechanism with mo-

tion detection; specifically, a Forgetting Morphological Temporal Gradient (FMTG)

(Richefeu and Manzanera, 2006). FMTG implements a nonlinear Σ∆ filter, which is

known for an efficient analog to digital conversion. Formally, I compute the current

background image Mt and the time-variance image Vt iteratively:

• Compute mean over incoming frames, I0, ..., It−1, It:

M0(x, y) = I0(x, y),

Mt(x, y) = Mt−1(x, y) + sgn[It(x, y)−Mt−1(x, y)],

∆t(x, y) = |Mt(x, y)|. (5.5)

• Compute the variance:

V0(x, y) = ∆0(x, y),

if ∆ 6= 0, Vt(x, y) = Vt−1(x, y)+

sgn[N ×∆t(x, y)− V(t− 1)(x, y)]. (5.6)

80

Focusing on regions
with a probability of
new observed object

Removing regions
where

P(object)<Threshold

Removing regions
detected using the

light detector

Figure 5.4: Original Image Vs Regions of Interest (RoIs); I Start with the Regions
Proposed by the Event Detection Mechanism. These Are Further Reduced to Remove
the Regions with No Chance of Object Existence and Regions with Pre-detected
Objects.

• Motion label:

Dt(x, y) =

0 if ∆t(x, y) < Vt(x, y)

1 otherwise.

(5.7)

Here, N denotes an amplification factor for new incoming frames. This procedure

can produce small noisy regions inside selected regions (false negatives) and also not

selected regions (false positives), which I call bubbles. Therefore, I apply a dilation

filter on the output, followed by an erosion filter.

Further Processing Requests Generation

After the initial detection and RoIs, I locate areas that need further processing. As

shown in Fig. 5.4, I segment the image into sub-regions and focus on those regions

which have activity based on event detection. Next, I remove regions with a low

chance of object existence based on the general decoder’s output, Pr(object) < Γ,

where the Γ could be tuned based on the desired recall on the validation set during

training time. The experiments showed that the adaptive decoder loses its generality

at inference time; hence I use the general decoder for region selection. Finally, I check

the ”intersection over union” (IOU) of these regions with objects the adaptive decoder

has detected earlier. If the adaptive decoder already detected objects, I remove them

from future processing.

81

Knowledge Distillation Stage

In this stage, ARGOS uses the consolidated results from the previous module to

improve the light detector or student. This action will reduce future requests (in-

depth processing) and improve the ARGOS response time by detecting most of the

objects using the student model. Back-propagation based training relies on a loss

function comparing the student and teacher output. As the consolidated results have

been produced by combining the student and the teacher, I do not have access to

teacher output over the whole frame; consequently, a new loss function is needed to

train the student using partial knowledge.

Previously, I (Farhadi and Yang, 2020) adopt a combination of student’s and

teacher’s outputs as the ground truth for supervised student re-training, to avoid a

sharp shift of the student model towards teacher’s output and thus preserve student’s

knowledge by the following loss function:

Lfinal =
∑
‖THs − THt ‖22

+
∑
‖TLs − ((λ ∗ TLs) + ((1− λ) ∗ TEt))‖22,

(5.8)

where λ denotes the modulation factor in their weighted loss function. THs and THt

are the students and teacher output tensors with high confidence in object existence

and TLs and TLt tensors with low confidence. This loss function needs the teacher and

student to have a similar structure (single-shot).

To have a detection-model-agnostic system, the loss function should be general

enough to work with any object detection model as a teacher (single-shot or two-

stage detector). Second, the loss function should maintain the current knowledge of

students while distilling new information. To this end, I present a loss function that

fulfills the design requirements. First, I calculate the following losses:

82

Localization Loss:

Lloc =
1

|D|
∑
D

(1−GIOU(BS
i,j , B

T
i,j)) +

1

|N|
∑
N
‖BS

i,j −BSI
i,j ‖22,

where, Bi,j = (x, y, w, h), Ci,j = (c1, ..., cn), 0 ≤ Oi,j ≤ 1,

D = {α|α is a region processed by teacher.},N = {α|α /∈ D}.

(5.9)

Classification Loss (with Binary Cross-Entropy (BCE):

Lcls =
1

|D|
∑
D
BCE(CSi,j , C

T
i,j) +

1

|N|
∑
N
‖CSi,j − CSIi,j ‖22,

where, σ(x) = ex/(ex + 1),

BCE((x1, ..., xn), (y1, ..., yn)) =∑
n

−wi[yi.log(σ(xi)) + (1− yi).log(1− σ(xi)))].

(5.10)

Here, w is for weighting classes in an unbalanced dataset.

Objectness Loss (with a generalized intersection over union loss (GIOU) (Rezatofighi

et al., 2019)):

Lobj =
1

|D|
∑
D
BCE(OS

i,j , O
T
i,j) +

1

|N|
∑
N
‖OS

i,j −OSI
i,j ‖22. (5.11)

B, C, and O are the box coordinates, class label, and object existence probability for

each cell in the student’s output tensor. I present student output before training as

BSI , CSI , and OSI . The student’s output after each iteration is denoted as BS, CS,

OS, and the teacher’s as BT , CT , OT .

I calculate the overall loss by summing the localization, objectness, and classifi-

cation loss in each training iteration: Loss = λlocLloc + λobjLobj + λclsLcls where λloc,

λobj, and λcls are modulation factors. This overall loss function can take the ground

truth from any object detector as a teacher as it takes detection coordinates and class

for training.

83

5.3.3 Masking

RoIs can be processed separately or bached. I aim to process these requests using

a GPU accelerator as they are efficient in performing batch processing. The proposed

regions (the output mask of RoIs detector) could be processed in two fashions: 1)

bin-packing; 2) Gather and scatter.

First, I adopt a bin-packing algorithm to put the regions (RoIs) next to each other,

which is different from a conventional batching method due to the various sizes of the

”proposed regions”. The bin packing problem for two-dimensional objects is NP-hard.

Therefore, I adopt the ”Maximal rectangles best short side fit”, a heuristic algorithm

(Jylänki, 2010). Using this heuristic approach reduces the execution time for packing,

which is negligible compared to the input frame’s processing time through the teacher

model. Furthermore, in the experiments, ARGOS can accommodate dynamic bin

sizes. Therefore, if the teacher model could also accept dynamic input sizes, it could

significantly reduce the computation.

The gather-scatter method can also be used to perform efficient tensor compu-

tation. The gather step takes each active position in the tensor and consolidates it

to a smaller tensor, after which the normal convolution is applied. This is mapped

back to the original tensor using the scatter method. Thus, it is effectively equal to

performing operations on a smaller image based on the number of active positions

with adding less overhead to the overall operation. Although this method focuses

on the active regions with no outside areas processed, additional effort is required to

implement a custom layer.

84

Jetson

Nano

Solar

Controller

& Battery

Watchdog

NE555

Timer

5 V

I/O-Signalig

I2
C

-P
o

w
e
r

M
o

n
it

o
ri

n
g

GSM/GNSS

SIM7600G-H

USB

CSI

I2C

Sony

IMX462

PTZ

Controller

I2
C

Acetometer

Compass

LSM303

I2
C

Figure 5.5: ARGOS System Design.

5.4 Experiments

To validate the framework, I conducted different experiments to compare ARGOS

with state-of-the-art methods. In the following, I presented the experiments in two

separate configurations; 1) Based on the Binary neural networks, 2) Based on online

knowledge distillation.

5.4.1 Experiment Setup

Hardware: The embedded device is the NVIDIA Jetson Nano developer kit (jet,

2019), a quad-core ARM A57 CPU (operating at 1.43 GHz), 4 GB 64-bit LPDDR4

RAM, and 128-core Maxwell GPU. I also assigned a 2 GB swap memory to accommo-

date the memory overflow that can occur while testing heavy DNNs such as SpotNet

(Perreault et al., 2020) as the memory is shared between CPU and GPU. I measured

the power consumption using tegrastats (jet, 2019). The training and other experi-

ments were conducted on a Dell workstation with an Intel Xeon W-2125 CPU and

an NVIDIA Titan Xp.

I have implemented the prototype version for vIM tests (Fig. 5.2). Fig. 5.5 shows

85

Table 5.1: Results of Quantizing Different Layers of QU-Net and the Effect of Apply-
ing a DCT-II Transform to the Input. Each Combination Was Trained for 50 Iter-
ations. The mAP Is Calculated on the Instance Segmentation Classes of Cityscapes
Dataset. The DCT Based Model Has a Lower Computation, but It Selects More than
99% of the Image, Which Does Not Reduce the Computation of the Deeper Model.

DCT Input
Intial Layers
Quantized
(8bit/1bit)

Middle Layers
Quantized
(1bit/1bit)

Upsampling Layers
Quantized
(4bit/1bit)

RoIs
Detected(%)

Area
Processed

FLOPs(G)

No No No No 98.36 0.3658 62.68
No No Yes No 98.23 0.3689 55.27
No No Yes Yes 98.23 0.3870 18.36
No Yes Yes Yes 97.97 0.3815 5.30
Yes Yes Yes Yes 99.66 0.9820 0.112

the system design for the vIM implementation. A solar panel powers the visual

system. The IMX462 camera observes the scene, and detected objects are sent to

the server using NB-IoT network (Sinha et al., 2017). In addition, I have included a

watchdog for checking system low-level functionality, an accelerometer/compass, and

a GNSS sensor used for localizing the field of view.

Dataset: I evaluated the Binary proposal model or QU-Net on the Cityscapes

(Cordts et al., 2016) which focuses on vehicle object detection and semantic under-

standing of urban street scenes. It consists of 3475 fine annotated images for train

and validation sets. I split the cityscape dataset into 2975 training images and 500

validation images. Apart from that, I also trained the model on COCO dataset (Lin

et al., 2015) to test the performance on a large number of classes. The 2017 part of

the COCO was used, which consists of 118k training and 5k validation images.

I also evaluated the online knowledge distillation (ARGOS version) on UA-DETRAC

(Wen et al., 2020) and WiseNet (Marroquin et al., 2019) datasets. I selected these

datasets as the camera is stationary, and I can use the event-based mechanism. UA-

DETRAC has 140,000 frames of real-world traffic scenes. In this dataset, 1.2 million

vehicles are labeled with bounding boxes. The videos were recorded at 25 frames per

second (fps) in the JPEG format, and the resolution of images is 960× 540 pixels. I

86

also conducted experiments on the WiseNet dataset to study the performance of my

proposed design for indoor scenarios. The WiseNet dataset is composed of 62 videos

recorded using six cameras for people detection and tracking.

Deep Learning platform: I perform all the experiments using PyTorch library

(Paszke et al., 2019). I use the same library for evaluating the performance of other

methods.

5.4.2 Binary Region Proposal

I tested the BNN model (QU-Net) for RoIs proposal on different configurations to

evaluate the effect of other compressing mechanisms on my model. I used the gather-

scatter approach to apply the mask for the experiments on QU-Net. Although the

binary region proposal model can result in increased computational complexity, the

experiments showed that it is very minimal compared to the actual complexity of the

deeper models. Thus, applying it to the image can reduce the overall computation

significantly.

Quantization and DCT-based approach

I performed initial experiments to analyze two different methods to reduce the com-

putation of a network -

• The effect of quantization on the U-Net network;

• The effect of using a 2D type II discrete cosine transform on the image to obtain

a downsampled version that can be used as input to the network.

Quantization based approach: In CNNs, the main contributor to the complex-

ity is the convolution operations. These operations have a significant overhead due to

87

Table 5.2: Results of the Object Detection Metrics on the Cityscapes and the COCO Dataset. Rn-101 Represents the
Resnet-101 Backbone and Dc Represents the Dynamic Convolution Approach. I Use the QU-Net Model under the ARGOS
Ecosystem as the Region Proposal Model in These Experiments.

Model Dataset Precision Recall mAP@0.5 mAP@0.5:0.95 FLOPs(G)

RN101-YOLO Cityscapes (CityPersons) 68.7 49.5 56.4 32.5 42.29

DC based RN101-YOLO Cityscapes (CityPersons) 66.2 45.5 51.1 27.2 27.58

RN101-YOLO + ARGOS Cityscapes (CityPersons) 69.5 45.9 52.9 30.1 21.93

YOLOv5m Cityscapes 76.6 46.5 53.3 31.1 51.41

YOLOv5m + ARGOS Cityscapes 78.4 45.1 52 29.7 22.32

YOLOv5m COCO 69.7 57.5 62.8 43.5 51.41

YOLOv5m + ARGOS COCO 72.4 53.5 60.0 40.2 42.42

YOLOv5l COCO 72.8 61.5 66.5 47.2 115.61

YOLOv5l + ARGOS COCO 72.5 59 63.7 43.8 88.78

YOLOv5x COCO 74.9 62.7 68.4 49.5 219.02

YOLOv5x + ARGOS COCO 74.1 60.5 65.5 45.8 163.49

88

the repeated multiplication functions and heavy memory communications. Binariza-

tion can alleviate this overhead at the expense of accuracy drop. To understand how

the binarization of each module affects accuracy, I performed various experiments as

shown in Table 5.1. The quantized model reduced computation by a factor of 10

when compared to the full precision model. Moreover, the model occupied a space of

2MB, which allows us to fit the model on various low-memory devices. It can also be

seen that the quantized model detects a close percentage of RoIs as the full-precision

model, with a minor increase in the total area of the image captured.

DCT based approach: Along with quantization, to further reduce the compu-

tation cost, I include a DCT based method to reduce the computations of the overall

network further. Xu et al. reported that applying DCT can reduce the computa-

tion cost of CNN models (Xu et al., 2020). However, as reported in table 5.1, the

experiments showed that a DCT-based approach for QU-Net did not bring any ben-

efits in reducing the computation of deeper models. The output of the DCT based

region proposal model did not conform to the actual object presence locations, which

resulted in a large area being captured on dilating the outputs. The DCT model

proposes 99% of the images as the regions of object presence (RoIs), equivalent to

sending the entire image through the deeper network. Comparatively, the non-DCT

approach selected only 38% of the images.

I tested ARGOS on two main applications of computer vision - object detection

and segmentation to observe its effect on the accuracy and computation of proposed

methods in these domains. I also compared the method with dynamic convolution

(Verelst and Tuytelaars, 2020). Dynamic convolution tries to reduce the processing

regions on residual neural networks such as ResNet. This type of convolution neural

network has a computational budget parameter that can be set which determines the

relative amount of FLOPs that should be executed. For example, a value of 0.25

89

indicates 25% of the FLOPs should be executed. To have a fair comparison, I used a

value of 0.25 as the budget in all my experiments. The method is shown to outperform

the dynamic convolution in both cases.

Object Detection: As mentioned, the dynamic convolution requires a model

implemented using a residual backbone. Hence, I used a YOLO model with a ResNet-

101 (Yang, 2021) backbone as the baseline model (the model can be plugged into any

prebuilt framework). QU-Net was trained on the Cityscapes dataset separately for

50 epochs. Both the baseline and the dynamic convolutions (with a 0.25 budget)

were trained for 200 epochs. Models were evaluated on the person detection anno-

tations (CityPersons) as provided on the official website (cit, 2021). Table 5.2 shows

the outperformance of ARGOS compares to the dynamic convolution approach. A

combination of my model with the baseline model enabled a reduction of FLOPs by

50%. It was 6 GFLOPs lower than the dynamic convolutions along with an mAP

gain of close to 3%. Moreover, the reported FLOPs are the computation cost of both

the deeper model and QU-Net.

Segmentation: I used the PSPNet model with the ResNet-101 backbone as the

baseline model. ARGOS model was trained on the Cityscapes dataset separately

for 50 epochs. The baseline model and the dynamic convolution with a 0.25 budget

were trained for 120 epochs each. This was evaluated on the instance segmentation

classes in the Cityscapes dataset. Fig. 5.6a shows the method outperforming the

dynamic convolution with an mAP gain of close to 20%. ARGOS has a computational

reduction of 62%, whereas the dynamic convolution achieved a reduction of 41%.

COCO Dataset

To further understand the scalability of ARGOS, I performed experiments on the

COCO dataset using the YoloV5 (CNN) model and the Swin(Transformer) model.

90

RN101-
PSPNet

DC based
RN101-
PSPNet

RN101-
PSPNet+
QU-Net

40
50
60
70
80
90

100

Pe
rc

en
ta

ge

Pixel Accuracy
mIOU

100

150

200

250

300

350

FLOPs(G)

Figure 5.6: Results of the Segmentation Metrics on the Instance Segmentation Classes
in the Cityscapes Dataset. Rn-101 Represents the Resnet-101 Backbone, and Dc
Represents the Dynamic Convolution.

CM R-CNN CM R-CNN+
QU-Net

0

10

20

30

40

50

m
AP

 (%
)

Box mAP
Mask mAP

700

750

800

850

900

950

FLOPs(G)

Figure 5.7: Results of the mAP Statistics for Object Detection and Segmentation
Were Calculated on COCO Dataset. CM R-CNN Represents the Cascade Mask R-
CNN.

These experiments show how ARGOS performs when I have more classes than the

Cityscape dataset tests. I used the original models as the baseline and evaluated the

performance with the QU-Net model, and without it.

The comparison between the Yolov5 and QU-Net + Yolov5 model is shown in

Table 5.2. There was a significant reduction for the Cityscapes dataset (57%) with

a slight reduction in model accuracy. For the COCO dataset, the decrease was less

pronounced (25%). For the Swin transformer (Fig.5.6b), the method reduced the

91

number of FLOPs by 114 GFLOPs with a 4.8% reduction in object detection accuracy

and 3.8% in instance segmentation accuracy.

The COCO dataset consists of images where most of the objects were captured at

a close range. This increases the total area occupied by the objects when compared

to other real-world datasets such as Cityscapes. My model exploits the real-world

assumption of objects occupying a smaller area compared to the background. Thus,

the reduction in computational cost is larger when I test the model on the Cityscapes

dataset compared to the COCO dataset.

5.4.3 Online Knowledge Distillation

I (Farhadi et al., 2020) showed that online knowledge distillation could reduce

the computation of convolutional neural networks using temporal adaptation to the

observing environment. However, their experiments showed that the key frame selec-

tion and processing are expensive for embedded devices and need to be processed on

the cloud (Farhadi et al., 2020). Therefore, I tested ARGOS approach for this type

of CNNs to validate its effectiveness. In addition, I conducted the experiments on

Jetson Nano to study ARGOS performance in a constrained environment.

UA-DETRAC Dataset

Training: I pre-train the student model, and teacher on COCO (Lin et al., 2015)

dataset. Then, the pre-trained models were fine-tuned on the UA-DETRAC dataset

(offline training). The bag of freebies (Bochkovskiy et al., 2020) is used to improve

the accuracy during the offline training stage. In Knowledge distillation and training,

the ADAM optimization (Kingma and Ba, 2014) was applied for end-to-end train-

ing. The optimization is performed in the 16-bit numerical format at the inference

time. To improve the performance in 16-bit precision, I add 1e-4 to the denomina-

92

Table 5.3: Different Methods Have Been Compared in Terms of Accuracy (mAP), Frame per Second Obtained Using
Workstation and Embedded Devices, Energy, and Score (mAP/Energy). ARGOS Improves the Energy Consumption by
89% in Comparison with Yolov5x.

Model
Overall

% ↑
Easy
% ↑

Medium
% ↑

Hard
% ↑

Cloudy
% ↑

Night
% ↑

Rainy
% ↑

Sunny
% ↑

FPS ↑
WS

FPS ↑
Embedded

Energy (J) ↓ Score ↑

FG-BR Net (Fu et al., 2019) 79.96 93.49 83.60 70.78 87.36 78.42 70.50 89.8 10 - - -
HAT (Wu et al., 2019a) 78.64 93.44 83.09 68.04 86.27 78.00 67.97 88.78 3.6 - - -

GP-FRCNN (Amin and Galasso, 2017) 77.96 92.74 85.39 67.22 83.23 77.75 70.17 86.56 4 - - -
SpotNet (Perreault et al., 2020) 86.80 97.58 92.57 76.58 89.38 89.53 80.93 91.42 14 0.068 100.93 0.008

SSD-VDIG (Qijie and Feng, 2019) 82.68 94.60 89.71 70.65 89.81 83.02 73.35 88.11 2 0.092 41.28 0.020
YOLOv5x (Jocher et al., 2021) 86.89 95.96 90.17 79.89 90.67 84.86 83.42 90.92 9 0.2 31.255 0.026
Yolov3+FP (Kim et al., 2019) 85.29 96.04 89.42 76.55 88.00 88.67 78.90 88.91 9 0.395 15.975 0.050

TKD (Farhadi and Yang, 2020) 51.29 54.48 53.65 48.47 62.79 41.87 50.91 47.69 47 0.79 8.53 0.060
ARGOS 83.53 93.16 86.34 76.71 90.71 78.45 77.64 90.6 25 1.8 3.44 0.22

93

15

Figure 5.8: An Example of a Fast-moving Object Which Can Be Missed by Object
Detectors Due to Their Inference Time.

tor (backpropagation stage) to improve numerical stability during online knowledge

distillation.

Evaluation Metrics: The evaluation metric for accuracy in the UA-DETRAC

detection benchmark is stringent: the Mean Average Precision (mAP) with a high

Intersection over Union (IOU) threshold set to ”0.7”. As the target is embedded

devices, both the inference time and energy need to be considered in evaluations. I

study the inference time (FPS) and its effect on real-scenarios accuracy. The ratio of

mAP to energy consumption (Alyamkin et al., 2018) is used to evaluate the overall

efficiency in terms of accuracy and energy consumption. I have ranked the proposed

methods using this metric in Table5.3.

Implementation: ARGOS executes at 16-bit precision, and experiments are

performed on the workstation and embedded environment. I adapted Yolov5x as the

teacher in the experiments. Image resolution is set to 864× 864 at inference time. I

used Bin-packing for applying the mask. The online knowledge distillation is executed

on a separate thread; event detection and early detection are running concurrently

to improve inference time. To have a fair comparison in the target device (Jetson

Nano), I transfer the state of art methods to 16-bit precision and PyTorch.

Discussion: Table 5.3 compares the proposed ARGOS with different models

evaluated on UA-DETRAC. The ARGOS achieves the first rank among tested meth-

94

ods in terms of energy and accuracy score. Although I added extra steps such as

event detection, the experiments showed that the region removal procedure reduces

the total execution time. I reduced the processing time by 80 ms, as the event de-

tection and light detector run in parallel in CPU and GPU (Event detection: 80ms,

Backbone:237ms, Decoders:8.5ms). The experiments also showed that bin-packing

and region-removal execution time are negligible compared to other modules (2.5ms

8.5ms). Thus, ARGOS could maintain accuracy while reducing the inference time in

embedded devices.

I observe the low performance of SpotNet(Perreault et al., 2020) in the embedded

environment, which is due to the high memory requirements of this model (Although

it was running on 16-bit precision). Due to limited memory space, FG-BR Net (Fu

et al., 2019), HAT (Wu et al., 2019a), (Kouris et al., 2019), GP-FRCNN (Amin

and Galasso, 2017), were not tested on the target device. The feature extractors in

these works are expensive, although they have reduced the second stage processing.

TKD (Farhadi and Yang, 2020) (base on online knowledge distillation) has inferior

performance due to the teacher’s execution cost, which does not allow the system

to be updated based on changes in the scene. This phenomenon shows the poor

performance of methods that relies on the key frame mechanism in a constrained

system.

In real-world scenarios for vIM, the system needs to know object types and their

locations. Hence, we have detection and then tracking. If we detect an object, we can

start following it with less computation. Considering this fact, I tried to understand

what will happen if an object remains in the scene less than the object detector’s

execution time. Fig. 5.8 shows an example of this case where the camera (traffic

camera) observed the marked car less than 3 seconds. In this example, most of the

proposed methods will miss the object. I conducted another experiment to reevaluate

95

ARGOS Yolov5x SpotNet
0

20

40

60

80

m
AP

Figure 5.9: Results of the mAP Statistics Calculated on the UA-DETRAC Dataset
with the Models Constrained to Process 25 Fps.

proposed methods based on this fact. Here, I removed objects which are in the scene

less than the inference time of each method and ran the evaluation on their results.

I removed objects using tracking information in the UA-DETRAC dataset. Fig. 5.9

shows the final results, which demonstrates the effectiveness of ARGOS in real-world

scenarios.

WiseNet Dataset

To further validate ARGOS performance in fixed camera scenarios (for vIM), I de-

signed another experiment in indoor videos using the WiseNet dataset (Marroquin

et al., 2019). Here, I understand the benefit of early detection and online knowl-

edge distillation on system inference time and accuracy. I compare ARGOS with its

Teacher (Yolov5x) and a modified ARGOS version, which doesn’t have the online

knowledge distillation and light detector module. All these configurations have been

tested on the target embedded device in 16-bit precision at 512×512 resolution. Fig.

5.10 shows the Mean Average Precision (mAP) with IOU = 0.5 and inference time

of mentioned configurations. Although ARGOS has not reached its teacher accuracy;

however, its inference time is 4.9× less than the teacher. Moreover, ARGOS modified

96

Yolov5x ARGOS wo/T ARGOS40

50

60

70

80

Pe
rc

en
ta

ge

mAP
F1

200

400

600

800

1000

1200

1400

Inference Tim
e(m

s)

Figure 5.10: Results on the Wisenet Dataset. The Results Listed Show the Execution
Time and Accuracy of the Model with Online Knowledge Distillation and Without It
(wo/T).

version’s (wo/T) accuracy is less than ARGOS and its inference time is significantly

more than ARGOS, which shows the benefits of online knowledge distillation. The

knowledge distilled from the deeper model to the light model (student) helps in re-

ducing the number of requests to be processed by the teacher model.

5.5 Conclusion

This chapter presents an approach for efficient temporal knowledge distillation.

This approach focuses on regions with a probability of object existence and more

complexity and extracts deep features from them. I showed that this approach could

reduce inference time and make the running oracle model easier in an embedded

system. I tested this concept over different types of deep neural networks (DNNs)

and showed its superiority over running the DNN on the whole frame.

97

Chapter 6

CONCLUSION

Throughout the dissertation, I have studied different aspects of an adaptive system

for processing images on an embedded system with limited resources. In addition,

I studied the applications’ characteristics and their effect on system performance.

Finally, I concluded this dissertation by proposing ARGOS for processing images

efficiently and testing it on traffic monitoring applications.

In chapter 2, I proposed a new approach to running heavy neural networks on

a platform based on FPGAs (with reconfiguration capability) with constrained re-

sources. I stacked various shallow and deep models for quantized neural networks

yielding an adaptive and hierarchical structure. This adaptive structure uses partial

reconfiguration in FPGA to adapt itself based on the complexity of the input image

and extract deep features if needed. I also designed a feedback procedure that controls

the hardware adaption. To validate its performance, I tested the proposed system

(AH-CNN) on CIFAR-10, CIFAR-100, and SVHN. The experiments showed that this

structure could improve inference time while maintaining accuracy. AH-CNN is suit-

able for applications that need adaptive behavior towards dynamic priority change

over object categories.

Although AH-CNN can reduce inference time, the number of hardware adaptions

can still affect inference time if it happens frequently. I solved this issue by designing

a novel approach to distilling temporal knowledge of an accurate but slow object de-

tection model to a tinier model. In chapter 3, I suggested using previous observations

and shifting the shallow model knowledge to the observing domain. Hence, I was able

to reduce the deep feature extraction on the next images. I called this method tem-

98

poral knowledge distillation or TKD. I tested TKD on the Hollywood scene dataset,

Youtube object dataset, the pursuit of happiness movie, and the office TV series. The

experiments showed that TKD maintains a high inference efficiency while achieving

a high recognition accuracy. Furthermore, I observed that the accuracy of TKD can

reach the Oracle model in specific applications.

In chapter 5, I studied the temporal knowledge distillation concept in a constrained

system. I tested the system in different system designs. Finally, based on the ob-

servations, I introduced a framework that can facilitate temporal adaptation in an

embedded environment with limited resources.

I introduced and implemented a framework for incremental knowledge transfer,

which can rely on local or cloud knowledge based on network latency. The parameters

of a shallow model running on the user-end device are updated on a cloud clone or

local instance during inference at some key frames to achieve close accuracy to the

oracle model. I tested the proposed approach in different real-world scenarios where

the camera can be fixed or moving. This framework resulted in 78% energy reduction

when compared to running the deep model alone. However, the experiments also

revealed that communication latency or the number of key frames could substantially

affect vision adaptation.

I find out that the key frame selection procedure and training over the whole key

frame are not efficient, and there are several concerns:

• There is a potential that a new object is added to the environment, and the key

frame selection does not detect this change on time.

• The key frame selector chooses unnecessary frames for retraining and increasing

the inference time.

• The temporal adaptation module passes the whole key frame to the oracle while

99

the system has uncertainty over a small region, not the entire frame.

In chapter 5, I introduced a novel approach that, by focusing on the region of in-

terests, reduces the knowledge transfer significantly and addresses mentioned issues.

I present an approach for decomposing images into independent sub-regions and re-

ducing the processing units. Although BNNs cannot reach state-of-the-art accuracy,

I showed that these networks could significantly reduce the computation of DNNs

while maintaining accuracy. Moreover, ARGOS can be extended to other methods to

improve the processing speed while maintaining reasonably high accuracy and, at the

same time, saving energy. Experiments on traffic camera videos (vIM application)

showed 89% energy reduction and 4.9× faster inference speed. It shows the sparsity

of objects in vIM compared to other applications in which objects are close to the

camera (coco dataset). Furthermore, the experiments reveal the effectiveness of on-

line training and its positive effect on efficiency. Finally, the promising experimental

results suggest two potential future research avenues: 1) schedule the sub-process

(RoIs) in a heterogeneous environment; 2) distill knowledge to the student model

with partial information while processing other regions.

100

REFERENCES

“2018 system design contest”, http://www.cse.cuhk.edu.hk/ byu/2018-DAC-SDC/
index.html (2018).

“Jetson nano developer kit (online)”, https://developer.nvidia.com/embedded/jetson-
nano-developer-kit, accessed: 2019-10-12 (2019).

“The cityscapes dataset”, https://www.cityscapes-dataset.com/, accessed: 2021-08-
13 (2021).

Al Kadi, M., P. Rudolph, D. Gohringer and M. Hubner, “Dynamic and partial re-
configuration of zynq 7000 under linux”, in “2013 International Conference on
Reconfigurable Computing and FPGAs (ReConFig)”, pp. 1–5 (IEEE, 2013).

Alyamkin, S., M. Ardi, A. Brighton, A. C. Berg, Y. Chen, H.-P. Cheng, B. Chen,
Z. Fan, C. Feng, B. Fu et al., “2018 low-power image recognition challenge”, arXiv
preprint arXiv:1810.01732 (2018).

Amin, S. and F. Galasso, “Geometric proposals for faster r-cnn”, in “2017 14th IEEE
AVSS”, pp. 1–6 (IEEE, 2017).

Ba, J. and R. Caruana, “Do deep nets really need to be deep?”, in “Advances in
neural information processing systems”, pp. 2654–2662 (2014).

Badrinarayanan, V., A. Kendall and R. Cipolla, “Segnet: A deep convolutional
encoder-decoder architecture for image segmentation”, CoRR abs/1511.00561,
URL http://arxiv.org/abs/1511.00561 (2015).

Bengio, E., P.-L. Bacon, J. Pineau and D. Precup, “Conditional computation in neural
networks for faster models”, arXiv preprint arXiv:1511.06297 (2015).

Bengio, Y., N. Léonard and A. Courville, “Estimating or propagating gradients
through stochastic neurons for conditional computation”, (2013).

Bethge, J., C. Bartz, H. Yang, Y. Chen and C. Meinel, “Meliusnet: Can binary neu-
ral networks achieve mobilenet-level accuracy?”, arXiv preprint arXiv:2001.05936
(2020).

Bochkovskiy, A., C.-Y. Wang and H.-Y. M. Liao, “Yolov4: Optimal speed and accu-
racy of object detection”, arXiv preprint arXiv:2004.10934 (2020).

Bolukbasi, T., J. Wang, O. Dekel and V. Saligrama, “Adaptive neural networks for
efficient inference”, in “International Conference on Machine Learning”, pp. 527–
536 (2017).

Bomey, N., “Deaths from cars running red lights hit 10-year high,
aaa study finds”, URL https://www.usatoday.com/story/money/
2019/08/29/traffic-deaths-red-light-running-aaa-study/2122242001/
(2019).

101

Breuers, S., L. Beyer, U. Rafi and B. Leibel, “Detection-tracking for efficient person
analysis: The detta pipeline”, in “2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)”, pp. 48–53 (IEEE, 2018).

Cai, H., L. Zhu and S. Han, “ProxylessNAS: Direct neural architecture search on
target task and hardware”, in “International Conference on Learning Representa-
tions”, (2019), URL https://arxiv.org/pdf/1812.00332.pdf.

Carrio, A., S. Vemprala, A. Ripoll, S. Saripalli and P. Campoy, “Drone detection
using depth maps”, in “2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS)”, pp. 1034–1037 (IEEE, 2018).

Castellano, B., “Pyscenedetect”, (2018).

Chan, F.-H., Y.-T. Chen, Y. Xiang and M. Sun, “Anticipating accidents in dashcam
videos”, in “Asian Conference on Computer Vision”, pp. 136–153 (Springer, 2016).

Chen, C., A. Seff, A. Kornhauser and J. Xiao, “Deepdriving: Learning affordance for
direct perception in autonomous driving”, in “Proceedings of the IEEE Interna-
tional Conference on Computer Vision”, pp. 2722–2730 (2015a).

Chen, G., W. Choi, X. Yu, T. Han and M. Chandraker, “Learning efficient object
detection models with knowledge distillation”, in “Advances in Neural Information
Processing Systems”, pp. 742–751 (2017a).

Chen, L.-C., G. Papandreou, I. Kokkinos, K. Murphy and A. L. Yuille, “Deeplab: Se-
mantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs”, IEEE transactions on pattern analysis and machine intelli-
gence 40, 4, 834–848 (2017b).

Chen, T. Y.-H., L. Ravindranath, S. Deng, P. Bahl and H. Balakrishnan, “Glimpse:
Continuous, real-time object recognition on mobile devices”, in “Proceedings of
the 13th ACM Conference on Embedded Networked Sensor Systems”, pp. 155–168
(ACM, 2015b).

Chen, Y., W. Li, C. Sakaridis, D. Dai and L. Van Gool, “Domain adaptive faster
r-cnn for object detection in the wild”, (2018).

Chin, T.-W., R. Ding and D. Marculescu, “Adascale: Towards real-time video object
detection using adaptive scaling”, arXiv preprint arXiv:1902.02910 (2019).

Cichy, R. M., D. Pantazis and A. Oliva, “Resolving human object recog-
nition in space and time”, Nature Neuroscience 17, 3, 455–462, URL
http://www.nature.com/doifinder/10.1038/nn.3635 (2014).

Cichy, R. M., D. Pantazis and A. Oliva, “Similarity-based fusion of meg and fmri re-
veals spatio-temporal dynamics in human cortex during visual object recognition”,
Cerebral Cortex 26, 8, 3563–3579 (2016).

102

Clifford, C. W., M. A. Webster, G. B. Stanley, A. A. Stocker, A. Kohn, T. O. Sharpee
and O. Schwartz, “Visual adaptation: Neural, psychological and computational
aspects”, Vision research 47, 25, 3125–3131 (2007).

Cordts, M., M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke,
S. Roth and B. Schiele, “The cityscapes dataset for semantic urban scene under-
standing”, in “Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR)”, (2016).

Courbariaux, M., I. Hubara, D. Soudry, R. El-Yaniv and Y. Bengio, “Binarized neural
networks: Training deep neural networks with weights and activations constrained
to+ 1 or-1”, arXiv preprint arXiv:1602.02830 (2016).

Dai, D. and L. Van Gool, “Dark model adaptation: Semantic image segmentation
from daytime to nighttime”, arXiv preprint arXiv:1810.02575 (2018).

Dai, J., Y. Li, K. He and J. Sun, “R-fcn: Object detection via region-based fully
convolutional networks”, in “Advances in neural information processing systems”,
pp. 379–387 (2016).

Daniels, G., “The Office”, (2013).

Dean, J., G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior, P. Tucker,
K. Yang, Q. V. Le et al., “Large scale distributed deep networks”, in “Advances in
neural information processing systems”, pp. 1223–1231 (2012).

Eshratifar, A. E., M. S. Abrishami and M. Pedram, “Jointdnn: an efficient train-
ing and inference engine for intelligent mobile cloud computing services”, arXiv
preprint arXiv:1801.08618 (2018).

Eshratifar, A. E. and M. Pedram, “Energy and performance efficient computation
offloading for deep neural networks in a mobile cloud computing environment”,
in “Proceedings of the 2018 on Great Lakes Symposium on VLSI”, pp. 111–116
(ACM, 2018).

Everingham, M., L. Van Gool, C. K. Williams, J. Winn and A. Zisserman, “The pascal
visual object classes (voc) challenge”, International journal of computer vision 88,
2, 303–338 (2010).

Farhadi, M., M. Ghasemi, S. Vrudhula and Y. Yang, “Enabling incremental knowl-
edge transfer for object detection at the edge”, in “Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops”, pp. 396–397
(2020).

Farhadi, M., M. Ghasemi and Y. Yang, “A novel design of adaptive and hierarchi-
cal convolutional neural networks using partial reconfiguration on fpga”, in “2019
IEEE High Performance Extreme Computing Conference (HPEC)”, pp. 1–7 (IEEE,
2019).

Farhadi, M. and Y. Yang, “Tkd: Temporal knowledge distillation for active percep-
tion”, arXiv preprint arXiv:1903.01522 (2019).

103

Farhadi, M. and Y. Yang, “Tkd: Temporal knowledge distillation for active percep-
tion”, in “2020 IEEE WACV”, pp. 942–951 (IEEE, 2020).

Figurnov, M., M. D. Collins, Y. Zhu, L. Zhang, J. Huang, D. P. Vetrov and
R. Salakhutdinov, “Spatially adaptive computation time for residual networks.”,
in “CVPR”, vol. 2, p. 7 (2017).

Fu, Z., Y. Chen, H. Yong, R. Jiang, L. Zhang and X.-S. Hua, “Foreground gating and
background refining network for surveillance object detection”, IEEE Transactions
on Image Processing 28, 12, 6077–6090 (2019).

Glorot, X. and Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks”, in “Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics”, pp. 249–256 (2010).

Gong, Y., L. Liu, M. Yang and L. Bourdev, “Compressing deep convolutional net-
works using vector quantization”, arXiv preprint arXiv:1412.6115 (2014).

Gupta, S., S. Ali, L. Goldsmith, B. Turney and J. Rittscher, “Mi-unet: Improved
segmentation in ureteroscopy”, in “2020 IEEE 17th International Symposium on
Biomedical Imaging (ISBI)”, pp. 212–216 (2020).

Gupta, S., J. Hoffman and J. Malik, “Cross modal distillation for supervision trans-
fer”, in “Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition”, pp. 2827–2836 (2016).

Han, D., D. Im, G. Park, Y. Kim, S. Song, J. Lee and H.-J. Yoo, “Hnpu: An adap-
tive dnn training processor utilizing stochastic dynamic fixed-point and active bit-
precision searching”, IEEE Journal of Solid-State Circuits (2021a).

Han, S., H. Mao and W. J. Dally, “Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding”, arXiv preprint
arXiv:1510.00149 (2015a).

Han, S., H. Mao and W. J. Dally, “Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding”, in “Proceedings
of the International Conference on Learning Representations”, (2016a).

Han, S., J. Pool, J. Tran and W. Dally, “Learning both weights and connections for
efficient neural network”, in “Advances in Neural Information Processing Systems”,
pp. 1135–1143 (2015b).

Han, S., H. Shen, M. Philipose, S. Agarwal, A. Wolman and A. Krishnamurthy,
“Mcdnn: An approximation-based execution framework for deep stream process-
ing under resource constraints”, in “Proceedings of the 14th Annual International
Conference on Mobile Systems, Applications, and Services”, pp. 123–136 (2016b).

Han, Y., G. Huang, S. Song, L. Yang, H. Wang and Y. Wang, “Dynamic neural
networks: A survey”, (2021b).

104

He, K., X. Zhang, S. Ren and J. Sun, “Deep residual learning for image recogni-
tion”, in “Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition”, pp. 770–778 (2016a).

He, K., X. Zhang, S. Ren and J. Sun, “Deep Residual Learning for Image Recog-
nition”, 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) pp. 770–778, URL http://ieeexplore.ieee.org/document/7780459/
(2016b).

Hinton, G., N. Srivastava and K. Swersky, “Lecture 6.5-rmsprop: Divide the gradient
by a running average of its recent magnitude”, COURSERA: Neural networks for
machine learning 4, 2, 26–31 (2012).

Hinton, G., O. Vinyals and J. Dean, “Distilling the knowledge in a neural network”,
stat 1050, 9 (2015).

Hu, J., L. Shen and G. Sun, “Squeeze-and-excitation networks”, in “Proceedings of
the IEEE conference on computer vision and pattern recognition”, pp. 7132–7141
(2018).

Iandola, F. N., S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally and K. Keutzer,
“Squeezenet: Alexnet-level accuracy with 50x fewer parameters and¡ 0.5 mb model
size”, arXiv preprint arXiv:1602.07360 (2016).

Isensee, F. and K. H. Maier-Hein, “Or-unet: an optimized robust residual u-net for
instrument segmentation in endoscopic images”, (2020).

Izadyyazdanabadi, M., E. Belykh, M. Mooney, N. Martirosyan, J. Eschbacher,
P. Nakaji, M. C. Preul and Y. Yang, “Convolutional neural networks: Ensem-
ble modeling, fine-tuning and unsupervised semantic localization”, arXiv preprint
arXiv:1709.03028 (2017).

Jocher, G., A. Stoken, Ayush Chaurasia, J. Borovec, NanoCode012, TaoXie,
Yonghye Kwon, Kalen Michael, L. Changyu, Jiacong Fang, Abhiram V, Laughing,
Tkianai, YxNONG, P. Skalski, A. Hogan, Jebastin Nadar, Imyhxy, L. Mammana,
AlexWang1900, C. Fati, D. Montes, J. Hajek, L. Diaconu, M. T. Minh, , Marc, Al-
binxavi, , Fatih, , Oleg and Wanghaoyang0106, “ultralytics/yolov5: v6.0 - yolov5n
’nano’ models, roboflow integration, tensorflow export, opencv dnn support”, URL
https://zenodo.org/record/5563715 (2021).

Jokic, P., S. Emery and L. Benini, “Binaryeye: A 20 kfps streaming camera system
on fpga with real-time on-device image recognition using binary neural networks”,
in “2018 IEEE 13th International Symposium on Industrial Embedded Systems
(SIES)”, pp. 1–7 (IEEE, 2018).

Jylänki, J., “A thousand ways to pack the bin-a practical approach to two-dimensional
rectangle bin packing”, (2010).

Kalman, R., “A new approach to linear filtering and prediction problems”, Journal
of Basic Engineering 82, 1, 35–45 (1960).

105

Kang, Y., J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars and L. Tang, “Neuro-
surgeon: Collaborative intelligence between the cloud and mobile edge”, in “ACM
SIGARCH Computer Architecture News”, vol. 45, pp. 615–629 (ACM, 2017).

Kästner, F., B. Janßen, F. Kautz, M. Hübner and G. Corradi, “Hardware/software
codesign for convolutional neural networks exploiting dynamic partial reconfigura-
tion on pynq”, in “2018 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW)”, pp. 154–161 (IEEE, 2018).

Khayatian, M. et al., “R2 im-robust and resilient intersection management of con-
nected autonomous vehicles”, in “ITSC”, (IEEE, 2020).

Kim, K.-J., P.-K. Kim, Y.-S. Chung and D.-H. Choi, “Multi-scale detector for ac-
curate vehicle detection in traffic surveillance data”, IEEE Access 7, 78311–78319
(2019).

Kim, Y.-D., E. Park, S. Yoo, T. Choi, L. Yang and D. Shin, “Compression of deep
convolutional neural networks for fast and low power mobile applications”, arXiv
preprint arXiv:1511.06530 (2015).

Kingma, D. and J. Ba, “Adam: A method for stochastic optimization”, arXiv preprint
arXiv:1412.6980 (2014).

Kouris, A., C. Kyrkou and C.-S. Bouganis, “Informed region selection for efficient
uav-based object detectors: altitude-aware vehicle detection with cycar dataset”,
in “2019 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS)”, pp. 51–58 (IEEE, 2019).

Krizhevsky, A. and G. Hinton, “Learning multiple layers of features from tiny images”,
(2009).

Krizhevsky, A., I. Sutskever and G. Hinton, “Imagenet classification with deep con-
volutional neural networks”, in “NIPS 2012”, (2013).

Lea, C., R. Vidal and G. D. Hager, “Learning convolutional action primitives for
fine-grained action recognition”, in “Robotics and Automation (ICRA), 2016 IEEE
International Conference on”, pp. 1642–1649 (IEEE, 2016).

Li, H., Z. Lin, X. Shen, J. Brandt and G. Hua, “A convolutional neural network
cascade for face detection”, in “Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition”, pp. 5325–5334 (2015).

Lin, T.-Y., P. Goyal, R. Girshick, K. He and P. Dollár, “Focal loss for dense ob-
ject detection”, in “Proceedings of the IEEE international conference on computer
vision”, pp. 2980–2988 (2017).

Lin, T.-Y., P. Goyal, R. Girshick, K. He and P. Dollár, “Focal loss for dense object
detection”, IEEE transactions on pattern analysis and machine intelligence (2018).

106

Lin, T.-Y., M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona,
D. Ramanan, C. L. Zitnick and P. Dollár, “Microsoft coco: Common objects in
context”, (2015).

Lin, T.-Y., M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár and
C. L. Zitnick, “Microsoft coco: Common objects in context”, in “Computer Vision–
ECCV 2014”, pp. 740–755 (Springer, 2014).

Liu, M. and M. Zhu, “Mobile video object detection with temporally-aware feature
maps”, in “Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition”, pp. 5686–5695 (2018).

Liu, M., M. Zhu, M. White, Y. Li and D. Kalenichenko, “Looking fast and slow:
Memory-guided mobile video object detection”, arXiv preprint arXiv:1903.10172
(2019).

Liu, S., S. Yao, X. Fu, R. Tabish, S. Yu, A. Bansal, H. Yun, L. Sha and T. Abdelzaher,
“On removing algorithmic priority inversion from mission-critical machine inference
pipelines”, in “2020 IEEE Real-Time Systems Symposium (RTSS)”, pp. 319–332
(IEEE, 2020).

Liu, W., D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu and A. C. Berg, “Ssd:
Single shot multibox detector”, in “European conference on computer vision”, pp.
21–37 (Springer, 2016).

Liu, Z., Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin and B. Guo, “Swin trans-
former: Hierarchical vision transformer using shifted windows”, in “Proceedings of
the IEEE/CVF International Conference on Computer Vision”, pp. 10012–10022
(2021).

Lu, H., L. Zhang, Z. Cao, W. Wei, K. Xian, C. Shen and A. van den Hengel, “When
unsupervised domain adaptation meets tensor representations”, (2017).

Mao, J., Q. Yang, A. Li, H. Li and Y. Chen, “Mobieye: An efficient cloud-based
video detection system for real-time mobile applications”, in “Proceedings of the
56th Annual Design Automation Conference 2019”, pp. 1–6 (2019).

Marroquin, R., J. Dubois and C. Nicolle, “Wisenet: An indoor multi-camera multi-
space dataset with contextual information and annotations for people detection
and tracking”, Data in brief 27, 104654 (2019).

Marsza lek, M., I. Laptev and C. Schmid, “Actions in context”, in “IEEE Conference
on Computer Vision & Pattern Recognition”, (2009).

Mehta, R. and C. Ozturk, “Object detection at 200 frames per second”, arXiv preprint
arXiv:1805.06361 (2018).

Mokri, S., “Fish and cat”, (2013).

Muccino, G., “The pursuit of happyness”, (2008).

107

Mullapudi, R. T., S. Chen, K. Zhang, D. Ramanan and K. Fatahalian, “Online model
distillation for efficient video inference”, arXiv preprint arXiv:1812.02699 (2018).

Mullapudi, R. T., S. Chen, K. Zhang, D. Ramanan and K. Fatahalian, “Online model
distillation for efficient video inference”, in “Proceedings of the IEEE International
Conference on Computer Vision”, pp. 3573–3582 (2019).

Netzer, Y., T. Wang, A. Coates, A. Bissacco, B. Wu and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning”, URL
http://ufldl.stanford.edu/housenumbers/nips2011housenumbers.pdf(2011).

Nguyen, D. V. and J. Choi, “Toward scalable video analytics using
compressed-domain features at the edge”, Applied Sciences 10, 18, URL
https://www.mdpi.com/2076-3417/10/18/6391 (2020).

Oliva, A., “Gist of the scene”, in “Neurobiology of attention”, pp. 251–256 (Elsevier,
2005).

Paszke, A., S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Des-
maison, L. Antiga and A. Lerer, “Automatic differentiation in pytorch”, (2017).

Paszke, A., S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga et al., “Pytorch: An imperative style, high-performance
deep learning library”, Advances in neural information processing systems 32,
8026–8037 (2019).

Perreault, H., G.-A. Bilodeau, N. Saunier and M. Héritier, “Spotnet: Self-attention
multi-task network for object detection”, in “2020 17th Conference on Computer
and Robot Vision (CRV)”, pp. 230–237 (IEEE, 2020).

Powers, D. M., “Evaluation: from precision, recall and f-measure to roc, informedness,
markedness and correlation”, (2011).

Prest, A., C. Leistner, J. Civera, C. Schmid and V. Ferrari, “Learning object class
detectors from weakly annotated video”, in “Computer Vision and Pattern Recog-
nition (CVPR), 2012 IEEE Conference on”, pp. 3282–3289 (IEEE, 2012).

Putten, J., F. Van der Sommen and P. With, “Influence of decoder size for binary
segmentation tasks in medical imaging”, p. 43 (2020).

Qijie, Z. and N. Feng, “pytorch-ssd”, https://github.com/qijiezhao/pytorch-ssd
(2019).

Qiu, J., J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang, N. Xu, S. Song
et al., “Going deeper with embedded fpga platform for convolutional neural net-
work”, in “Proceedings of the 2016 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays”, pp. 26–35 (ACM, 2016).

Rastegari, M., V. Ordonez, J. Redmon and A. Farhadi, “Xnor-net: Imagenet classi-
fication using binary convolutional neural networks”, in “European Conference on
Computer Vision”, pp. 525–542 (Springer, 2016a).

108

Rastegari, M., V. Ordonez, J. Redmon and A. Farhadi, “Xnor-net: Imagenet classi-
fication using binary convolutional neural networks”, (2016b).

Rav̀ı, D., C. Wong, F. Deligianni, M. Berthelot, J. Andreu-Perez, B. Lo and G.-
Z. Yang, “Deep learning for health informatics”, IEEE journal of biomedical and
health informatics 21, 1, 4–21 (2017).

Redmon, J. and A. Farhadi, “Yolov3: An incremental improvement”, arXiv preprint
arXiv:1804.02767 (2018).

Ren, S., K. He, R. Girshick and J. Sun, “Faster r-cnn: Towards real-time object detec-
tion with region proposal networks”, in “Advances in neural information processing
systems”, pp. 91–99 (2015).

Rezatofighi, H., N. Tsoi, J. Gwak, A. Sadeghian, I. Reid and S. Savarese, “Gener-
alized intersection over union: A metric and a loss for bounding box regression”,
in “Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition”, pp. 658–666 (2019).

Richefeu, J. and A. Manzanera, “A new hybrid differential filter for motion detection”,
in “Computer Vision and Graphics”, pp. 727–732 (Springer, 2006).

Ritchie, J. B., D. A. Tovar and T. A. Carlson, “Emerging Object Representations in
the Visual System Predict Reaction Times for Categorization”, PLoS Computa-
tional Biology 11, 6, 1–18 (2015).

Romero, A., N. Ballas, S. E. Kahou, A. Chassang, C. Gatta and Y. Bengio, “Fitnets:
Hints for thin deep nets”, arXiv preprint arXiv:1412.6550 (2014).

Ronneberger, O., P. Fischer and T. Brox, “U-net: Convolutional networks for biomed-
ical image segmentation”, (2015).

Sandler, M., A. Howard, M. Zhu, A. Zhmoginov and L.-C. Chen, “Mobilenetv2:
Inverted residuals and linear bottlenecks”, in “Proceedings of the IEEE conference
on computer vision and pattern recognition”, pp. 4510–4520 (2018).

Saood, A. and I. Hatem, “Covid-19 lung ct image segmentation using deep learning
methods: Unet vs. segnet”, (2020).

Sengar, S. S. and S. Mukhopadhyay, “Moving object detection using statistical back-
ground subtraction in wavelet compressed domain”, Multimedia Tools and Appli-
cations 79, 9, 5919–5940 (2020).

Shen, H., S. Han, M. Philipose and A. Krishnamurthy, “Fast video classification via
adaptive cascading of deep models”, in “Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition”, (2017).

Singh, B., M. Najibi and L. S. Davis, “Sniper: Efficient multi-scale training”, arXiv
preprint arXiv:1805.09300 (2018).

109

Sinha, R. S., Y. Wei and S.-H. Hwang, “A survey on lpwa technology: Lora and
nb-iot”, Ict Express 3, 1, 14–21 (2017).

Su, J.-C. and S. Maji, “Adapting models to signal degradation using distillation”,
arXiv preprint arXiv:1604.00433 (2016).

Sultani, W., C. Chen and M. Shah, “Real-world anomaly detection in surveillance
videos”, in “Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition”, pp. 6479–6488 (2018).

Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke and A. Rabinovich, “Going deeper with convolutions”, in “Proceedings of
the IEEE conference on computer vision and pattern recognition”, pp. 1–9 (2015).

Tan, M., B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard and Q. V. Le,
“Mnasnet: Platform-aware neural architecture search for mobile”, in “Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition”, pp.
2820–2828 (2019).

Tang, J., D. Sun, S. Liu and J.-L. Gaudiot, “Enabling deep learning on iot devices”,
Computer 50, 10, 92–96 (2017).

Teerapittayanon, S., B. McDanel and H. Kung, “Branchynet: Fast inference via early
exiting from deep neural networks”, in “Pattern Recognition (ICPR), 2016 23rd
International Conference on”, pp. 2464–2469 (IEEE, 2016).

Tzeng, E., J. Hoffman, N. Zhang, K. Saenko and T. Darrell, “Deep domain confusion:
Maximizing for domain invariance”, arXiv preprint arXiv:1412.3474 (2014).

Umuroglu, Y., N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre and
K. Vissers, “Finn: A framework for fast, scalable binarized neural network in-
ference”, in “Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays”, pp. 65–74 (ACM, 2017).

Verelst, T. and T. Tuytelaars, “Dynamic convolutions: Exploiting spatial sparsity for
faster inference”, (2020).

Viola, P. and M. Jones, “Rapid object detection using a boosted cascade of simple
features”, in “Computer Vision and Pattern Recognition, 2001. CVPR 2001. Pro-
ceedings of the 2001 IEEE Computer Society Conference on”, vol. 1, pp. I–I (IEEE,
2001).

Wang, H., Y. Xu, B. Ni, L. Zhuang and H. Xu, “Flexible network binarization with
layer-wise priority”, in “2018 25th IEEE International Conference on Image Pro-
cessing (ICIP)”, pp. 2346–2350 (2018a).

Wang, X., F. Yu, Z.-Y. Dou, T. Darrell and J. E. Gonzalez, “Skipnet: Learning dy-
namic routing in convolutional networks”, in “Proceedings of the European Con-
ference on Computer Vision (ECCV)”, pp. 409–424 (2018b).

110

Webster, M. A., “Visual adaptation”, Annual review of vision science 1, 547–567
(2015).

Wen, L., D. Du, Z. Cai, Z. Lei, M.-C. Chang, H. Qi, J. Lim, M.-H. Yang and S. Lyu,
“Ua-detrac: A new benchmark and protocol for multi-object detection and track-
ing”, Computer Vision and Image Understanding 193, 102907 (2020).

Wen, W., C. Wu, Y. Wang, Y. Chen and H. Li, “Learning structured sparsity in deep
neural networks”, in “Advances in Neural Information Processing Systems”, pp.
2074–2082 (2016).

Wu, J., C. Leng, Y. Wang, Q. Hu and J. Cheng, “Quantized convolutional neural
networks for mobile devices”, in “Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition”, pp. 4820–4828 (2016).

Wu, S., M. Kan, S. Shan and X. Chen, “Hierarchical attention for part-aware face
detection”, International Journal of Computer Vision 127, 6, 560–578 (2019a).

Wu, Z., C. Xiong, C.-Y. Ma, R. Socher and L. S. Davis, “Adaframe: Adaptive frame
selection for fast video recognition”, (2019b).

Xiong, Z., Z. Yao, Y. Ma and X. Wu, “Vikingdet: A real-time person and face
detector for surveillance cameras”, in “2019 16th IEEE International Conference
on Advanced Video and Signal Based Surveillance (AVSS)”, pp. 1–7 (IEEE, 2019).

Xu, K., M. Qin, F. Sun, Y. Wang, Y.-K. Chen and F. Ren, “Learning in the frequency
domain”, (2020).

Yang, L., “flexible-yolov5”, https://github.com/yl305237731/flexible-yolov5
(2021).

Ye, X., Z. Lin, H. Li, S. Zheng and Y. Yang, “Active object perceiver: Recognition-
guided policy learning for object searching on mobile robots”, in “2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS)”, pp. 6857–
6863 (IEEE, 2018).

Zeiler, M. D. and R. Fergus, “Visualizing and understanding convolutional networks”,
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 8689 LNCS, PART 1, 818–833
(2014).

Zhang, L. and K. Ma, “Improve object detection with feature-based knowledge dis-
tillation: Towards accurate and efficient detectors”, in “International Conference
on Learning Representations”, (2020).

Zhang, X., X. Zhou, M. Lin and J. Sun, “Shufflenet: An extremely efficient convolu-
tional neural network for mobile devices”, in “Proceedings of the IEEE conference
on computer vision and pattern recognition”, pp. 6848–6856 (2018).

111

Zhang, X., J. Zou, K. He and J. Sun, “Accelerating very deep convolutional net-
works for classification and detection”, IEEE transactions on pattern analysis and
machine intelligence 38, 10, 1943–1955 (2016).

Zhao, H., J. Shi, X. Qi, X. Wang and J. Jia, “Pyramid scene parsing network”, in
“Proceedings of the IEEE conference on computer vision and pattern recognition”,
pp. 2881–2890 (2017).

Zhou, B., A. Lapedriza, J. Xiao, A. Torralba and A. Oliva, “Learning deep features
for scene recognition using places database”, in “Advances in neural information
processing systems”, pp. 487–495 (2014).

Zhou, H.-Y., B.-B. Gao and J. Wu, “Adaptive feeding: Achieving fast and accurate
detections by adaptively combining object detectors”, in “Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition”, pp. 3505–3513 (2017).

Zhou, S., Y. Wu, Z. Ni, X. Zhou, H. Wen and Y. Zou, “Dorefa-net: Training
low bitwidth convolutional neural networks with low bitwidth gradients”, arXiv
preprint arXiv:1606.06160 (2016).

Zhu, X., Y. Wang, J. Dai, L. Yuan and Y. Wei, “Flow-guided feature aggregation for
video object detection”, in “Proceedings of the IEEE International Conference on
Computer Vision”, pp. 408–417 (2017).

112

