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ABSTRACT

Water, energy, and food are essential resources to sustain the development of the

society. The Food-Energy-Water Nexus (FEW-Nexus) must account for synergies

and trade-offs among these resources. The nexus concept highlights the importance of

integrative solutions that secure supplies to meet demands sustainably. The existing

frameworks and tools do not focus on formal model composability, a key capability

for creating simulations created from separately developed models. The Knowledge

Interchange Broker (KIB) approach is used to model the interactions among models

to achieve composition flexibility for the FEW-Nexus.

Domain experts generally use the Water Evaluation and Planning (WEAP) and

Low Emissions Analysis Platform (LEAP) systems to study water and energy sys-

tems, respectively. The food part of FEW systems can be modeled inside the WEAP

system. An internal linkage mechanism is available for combining and simulating

WEAP and LEAP models. This mechanism is used for the validation and perfor-

mance evaluation of independent modeling and simulation proposed in this research.

The Componentized WEAP and LEAP RESTful frameworks are component-based

representations for the legacy and closed-source WEAP and LEAP systems. These

modularized systems simplify their use with other simulation frameworks.

This research proposes two interaction model frameworks based on the Knowledge

Interchange Broker approach. First, an Algorithmic Interaction Model (Algorithmic-

IM) was developed to integrate the WEAP and LEAP models. The Algorithmic-IM

model can be defined via programming language and has a fixed cyclic execution

protocol. However, this approach has tightly interwoven the interaction model with

its execution and has limited support for flexibly creating model hierarchies. To

overcome these restrictions, the system-theoretic Parallel DEVS formalism is used

to develop a DEVS-Based Interaction Model (DEVS-IM). As in the Algorithmic-IM,

i



the DEVS-IM is implemented as a RESTful framework, uses MongoDB for defining

structural DEVS models, and supports automatic code generation for the DEVS-

Suite simulator. The DEVS-IM offers modular, hierarchical structural modeling,

reusability, flexibility, and maintainability for integrating disparate systems.

The Phoenix Active Management Area (AMA) is used to demonstrate the real-

world application of the proposed research. Furthermore, the correctness and perfor-

mance of the presented frameworks in this research are evaluated using the Phoenix-

AMA model.
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Chapter 1

INTRODUCTION

Recently, there has been an increasing focus on the dynamics, interactions, and feed-

back between water, energy, and food systems. By 2030, it is expected for water de-

mand to increase by 12% (Boretti & Rosa, 2019), energy by 14% (Cozzi et al., 2020),

and food demands by 12% (Serraj & Pingali, 2018) concerning the 2019 levels, mainly

because of the increase in population, urbanization, climate change (Gondhalekar &

Ramsauer, 2017; Islam & Karim, 2019), and resource scarcity (Ma et al., 2018; Xia

& Yan, 2022). These resources are often managed separately, although policymakers

and resource managers need to understand the interactions among them. Under-

standing the Food-Energy-Water Nexus (FEW-Nexus) is necessary for better use,

production, and management (Hoff, 2011; Keairns et al., 2016). The “nexus” refers

to the relationships that connect food, energy, and water systems to one another. The

“incorporation” and “cross-linking” defining the nexus is crucial for understanding

and managing the food, energy, and water systems as a whole system. Improving our

understanding of these systems, as a whole system, requires modeling the degree to

which each system depends on and affects others (see Figure 1.1). It is essential for

making informed and mutually compatible decisions for short-/long-term planning.

Combined water, energy, and food resource planning is receiving more and more

attention from varied stakeholders, including academia, public and local national,

and international organizations. Thus, it is no surprise that an in-depth understand-

ing of the FEW-Nexus is crucial for sustainable resource planning. As shown in
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Figure 1.1, the FEW-Nexus system has bi-directional dependencies. For example,

water is needed to irrigate land for food production and cool power plants for en-

ergy generation. Energy is required for agricultural practices, transport, and treat

water. Agricultural activities can generate energy through biofuels but also affect

water quality. In addition to these internal interactions between the systems, other

external factors (e.g., climate change, population growth, and economic instabilities)

increase the complexity of the whole system. For example, what will happen in the

nexus if the price of energy increases by a resource producer? Thus, constraints in

one area can significantly impact others. Such inter-connectivity aims for cross-sector

coordination rather than sector-specific optima to avoid unintended side-effects and

negative sectoral trade-offs. Knowledge of the linkages, synergies, and conflicts in the

FEW-Nexus model is needed to provide decision-making mechanisms for policymak-

ers in each resource most likely to produce positive effects in the other resources.

Figure 1.1: Conceptual Diagram of the FEW-Nexus with Exemplar Couplings.
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Numerous and diverse tools/frameworks have been presented in different contexts

since the interpretation and centrality of the FEW-Nexus. Those tools/frameworks

can be roughly categorized into; 1) Resource-Environmental Footprint Quantifica-

tion Model: to quantify the resource and economic efficiency (e.g., UWOT (Baki &

Makropoulos, 2014) and REWSS (A. T. Dale & Bilec, 2014)), 2) Assessment and

Systematic Simulation Model: to assess and model the performance of the FEW

systems (e.g., WEF Nexus Tool 2 (Daher & Mohtar, 2015) and CMDP (Nanduri

& Saavedra-Antolnez, 2013)), and 3) Optimal Management / Integrated Model: to

consider multiple systems and the interactions between them as an intricate process

involving several modeling and computational complexities (e.g., CLEWS (Howells

et al., 2013) and WEAP-LEAP (SEI, 2022b; Sieber et al., 2005)). The research in

this article is in the context of Integrated Models. The metropolitan Phoenix serves

as a subject study area for this research on the FEW-Nexus.

Regarding modeling disparate systems, examining systems in terms of their parts

and relationships allows some parts of a system-of-systems to be modeled in detail

while all other parts (that affect or are affected by it) are simple or even excluded.

This is attractive as system complexity and scale can be significantly constrained by

replacing the dynamics of a system as inputs and outputs. For example, in modeling

a water system that uses solar energy, the amount of available photovoltaic energy

can be modeled as piecewise input regimes. A key consequence of this choice is that

the input regime is non-functional. In contrast, a reactive model produces outputs in

part based on consuming inputs dynamically from other models. This photovoltaic

model supplies energy to the water system subject to water demand fluctuation can

lead to a better understanding of a water system that cannot be achieved through

input data alone. From this vantage point, the need for component-based modeling
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and simulation is evident for understanding the interactions among the different parts

of a complex system (e.g., the FEW-Nexus) (Hoff, 2011; Keairns et al., 2016).

Considering the water, energy, and food systems as separate models and coupling

them via a third model brings up not only the modularity for the systems but also

flexibility and rigorous predictive simulation for the integrated FEW-Nexus (Fard &

Sarjoughian, 2020, 2021b). Therefore, at least four models can be considered to rep-

resent the whole system; one for the water system, one for the energy system, one for

the food system, and one for their nexus. From a highly abstract modular perspec-

tive, water, energy, and food systems have some input/output ports to interchange

data from/to the other system. In a general view, systems can have different model

structures and behaviors defined according to formal specifications. This research is

based on using the Water Evaluation and Planning (WEAP) system (SEI, 2022d)

for the water and food sections and the Low Emission Analysis Platform (LEAP)

system (SEI, 2022b) for the energy section. The advantage of relying on previously

established frameworks can be reducing the effort and resources needed for model

development. In addition, domain experts can participate in collective work using

existing tools and reduce learning curves. It also allows for better use of previously

acquired knowledge and experience.

1.1 Motivation & Problem Statement

The nexus concept initially emphasized the intricate nature of the food, energy,

and water sectors that needed to be addressed together (Bazilian et al., 2011). The

World Economic Forum (Initiative et al., 2012), as the earliest organization, ad-

vocated paying more attention to the separable linkages among the three sectors.

Subsequently, many related studies have been undertaken (Biggs et al., 2015; Siddiqi

& Anadon, 2011). Modeling the FEW-Nexus is a complex and challenging task that
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requires extensive data on specific study areas (Kaddoura & El Khatib, 2017). Since

presenting the FEW-Nexus, although numerous and diverse frameworks/tools have

been used in different contexts, there is currently no modeling framework with the

instruments needed to facilitate comprehensive analyses of the FEW-Nexus (P. Zhang

et al., 2019).

The first challenge is understanding each model (i.e., water, energy, and food)

individually. Then, due to the complex interdependent nature of the FEW-Nexus,

it is often unclear how an action in one sector may impact the others. So, a chal-

lenge is extracting the interconnection between food, energy, and water models. The

“nexus” refers to the complex and inherent linkages among models. To better grasp

the interdependency among FEW sectors, the system must be studied and modeled

at different levels (Giampietro et al., 2013). So, another challenge is defining the

objectives and the level of abstraction. For example, the WEF Nexus Tool 2.0 is a

web-based tool for guiding resource allocation at the country level, for a given level

of food self-sufficiency and a set of technologies, land uses, and resource availabilities

(Daher & Mohtar, 2015); and the Climate, Land, Energy, Water Climate, Land, En-

ergy, Water (CLEW) framework is based on a system’s thinking approach to analyze

interactions between interconnected sectors (Kaddoura & El Khatib, 2017). Tools

like WEF Nexus Tool 2.0 have higher abstraction than tools like CLEW, which are

defined by their significant data requirements and resource intensity. The complexity

of an integrated modeling framework could make its development and application

both difficult and costly. The data intensity brings up the next challenge, which is

the lack of accurate data/information. In other words, one of the most significant

limitations for the FEW-Nexus modeling is the extensive amount of required data

(Kaddoura & El Khatib, 2017).
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1.1.1 Food-Energy-Water Nexus Tools/Frameworks

Considering simulation studies of integrated food, energy, and water systems,

frameworks/tools such as Precipitation Runoff Modeling System (PRMS) (Mark-

strom et al., 2015) and WEF-Nexus Tool 2.0 (Daher & Mohtar, 2015) have been

developed. These tools are not based on component-based modeling principles and

service-oriented computing. The PRMS is a deterministic, distributed-parameter,

physical process-based modeling system developed to evaluate the impacts of various

climate and land use combinations on surface-water runoff, sediment yields, and gen-

eral basin hydrology. The WEF Nexus Tool 2.0 is a scenario-based tool for guiding

resource allocation at the country level for a given level of food self-sufficiency and

a set of technologies, land uses, and resource availabilities. The CLEW framework

is based on a system’s approach to analyzing interactions between interconnected

sectors (Kaddoura & El Khatib, 2017). It uses existing simulation tools (WEAP,

LEAP, and AEZ) based on a modular structure to illustrate synergies and trade-offs

within the CLEW areas for decision-making related to achieving development goals

(Howells et al., 2013). The CLEW framework applies to different geographical scales

from global to regional, national, and urban levels (“CLEWS-Home”, 2022). Tools

with higher complexity scores (e.g., CLEW, WEAP, and LEAP), unlike those with

lower complexity scores (e.g., WEF Nexus Tool 2.0), can capture details for specific

resource interactions, whereas they are unable to cover a larger number of interactions

and system components, simultaneously (Dargin et al., 2019).

1.1.2 WEAP and LEAP Componentization

In a general view, the advantage of relying on previously established tools and

frameworks (instead of developing from scratch) is reducing the effort and resources
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needed for model development. Also, domain experts can participate in collective

work using existing tools and better use previously acquired knowledge and expe-

rience. Some popular modeling and simulation tools and frameworks, such as the

WEAP and LEAP systems, appear to be component-based since non-componentized

models are displayed as components in the tool. As shown in Figure 2, the WEAP

models are defined as a network of water supply and demand entities (nodes) that

are connected via transportation entities (links). Likewise, the LEAP models are

defined as a network of resource and demand entities (nodes) that are connected via

transformation entities (links). Indeed, the WEAP and LEAP models are based on

mass-balanced equations and shared variables. Approaches that use shared variables

amongst models lack the flexibility afforded by component-based modeling frame-

works. Simulations developed using component-based modeling approaches are essen-

tial in detailing different behaviors belonging to different parts of a system-of-systems.

In a component-based modeling framework, each model is a standalone component

having its inputs, outputs, and functions encapsulated. So, it promotes modularity,

which is a crucial enabler for synthesizing hierarchical models (Zeigler et al., 2017).

A particular consequence of modeling frameworks such as WEAP and LEAP is

the difficulty of using them systematically with other frameworks. A desirable mod-

eling framework should simplify and promote combing models that are developed in

different frameworks or tools. In such a modeling framework, each model entity is a

standalone component having its inputs and outputs, and functions encapsulated and

thus not shared with any other model. In a component-based modeling framework,

models are clients and servers that can be independently acted on. In a direct way,

the componentization of tools such as WEAP and LEAP can further their use in

modeling and simulation system-of-systems, including the class of the FEW system

(Hoff, 2011).
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The composition of models is considered essential in developing complex systems

and simulation models capable of expressing a system’s structure and behavior (Sar-

joughian, 2006). From a component-based modeling approach, systems are integrated

from homogeneous or heterogeneous sub-systems. Each sub-system can be considered

an independent system or component. A component is an encapsulated software unit

with a known set of inputs and expected output behavior, where the implementa-

tion details may be hidden or unknown (Petty et al., 2014). Considering the water,

energy, and food systems as separate models/components and coupling them via an

interaction model leads to modularity and composability for modeling, simulating,

and evaluating the FEW and its nexus (Fard & Sarjoughian, 2020; Fard et al., 2020).

The components of the water and energy models and the defined relations in the

interaction model can be considered as a network (see Figure 1.2).

Figure 1.2: Conceptual Diagram of Componentized Water and Energy Network
Models.

1.1.3 Composability

Creating a large and complex system simulation requires breaking the problem

into parts that can be addressed separately. Also, understanding complex systems

requires decomposition because no one can otherwise comprehend the full details.

Furthermore, testing systems are vastly simplified if one can do it module by module
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and then at the system level (Davis & Anderson, 2004). Composition, as a verb, is the

process or capability of selecting and assembling components for execution. Compo-

sition, as a noun, refers to a set of components composed to produce an integrated or

interoperable whole (Petty et al., 2014). Composability is a system design principle

that deals with the inter-relationships of components. A highly composable system

provides components that can be selected and assembled in various combinations to

satisfy specific user requirements and answer trade-off questions (Davis & Anderson,

2004). The main challenge of achieving model composability has appropriate con-

cepts and methods to compose different model types with well-defined syntax and

semantics (Sarjoughian, 2006) and its use for specific application domains (Mayer &

Sarjoughian, 2007).

Component-based approaches decompose complex designs into more manageable

pieces and help reuse existing modules. Creating a simulation of a large, complex

system requires breaking the problem into parts that can be addressed separately.

This helps to permit specialization, facilitate computing alternative ways of handling a

given component, and maintain the software over time. Furthermore, new components

in a component-based approach can be created via the hierarchical composition of

the previously proven components. Thus, the interaction styles among components

are well-defined at each level and are constrained to that local scope. So, the first

requirement is having a component-based approach for modeling the system. The

modeler should be able to assemble the suitable system-of-systems model with plug-

and-play and answer trade-off questions. On the other hand, understanding complex

systems requires decomposition because no one can comprehend the whole’s details.

Testing systems are vastly simplified if one can do it module by module and then at

the system level (Davis & Anderson, 2004). So, modularity is good, but composability

is more than modularity.
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1.1.4 Interaction Model Specification

The FEW-Nexus is inherently complex. It requires the integration of complex

physical phenomena and built systems. This complexity is further compounded by

how scholars, policymakers, and other stakeholders engage with the concept and

their different perspectives to understand it. A comprehensive review is reported five

perspectives to view the FEW-Nexus (Proctor et al., 2021):

• Ecosystem Health Perspective: A significant emphasis is placed on quantify-

ing environmental impacts and encouraging sustainable practices. The primary

goal from this perspective is to manage FEW sectors such that environmental

impacts are minimized while still achieving FEW securities. Life Cycle Assess-

ment (Roy et al., 2009) and Ecological Indicators (Saladini et al., 2018) are two

of the most common tools used when viewing the nexus from this perspective.

• Waste Management Perspective: Emphasizes the critical role of waste in re-

source security. Wasted food represents a significant source of inefficiency within

Nexus. Water is directly wasted through excessive water use in irrigating crops

and domestic areas, such as lawns and excess household use. One increasingly

used framework for understanding waste management is the Circular Economy

(Geissdoerfer et al., 2017).

• Institutional Change Perspective: This focuses on institutions’ actions, studying

how policies have previously impacted the Nexus and are currently impacting

it while also identifying methods for implementing this understanding to rec-

ommend beneficial strategies. Many of the studies focusing on the perspective

start with a quantitative analysis such as Input-Output analysis. Others use
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an agent-based modeling approach to try and predict how stakeholders and

ecosystems may react to changes in the FEW-Nexus policies.

• Stakeholder Trust Perspective: Explores public opinions of the Nexus. This

work directly studies current opinions towards the Nexus via stakeholder en-

gagement. In addition, it predicts how opinions may shift in the future. One of

the most common tools used to assess citizens’ views on the nexus is to survey

them.

• Learning Process Perspective: The learning process of stakeholders, why and

how they learn, has been explored from multiple directions, e.g., economics and

political science point of view, using a psychological lens, and adopting behav-

ioral and cultural traits (across multiple generations). The learning process

perspective seeks to understand how public opinions towards the FEW-Nexus

develop over time and how outside forces shape this understanding.

Overall, endeavors in the FEW-Nexus domain primarily focus on three aspects:

(1) understanding and interpreting the concept of the FEW-Nexus; (2) developing

modeling approaches that can identify trade-offs and synergies of the FEW system,

internalize social and environmental impacts, and guide the development of cross-

sectional policies; and (3) conducting empirical research to show the driving forces of

the FEW system and probe collaboration potentials between different stakeholders

(P. Zhang et al., 2019).

The Knowledge Interchange Broker (KIB) approach has been introduced to for-

malize the interactions between the models specified in different modeling formalisms

(Sarjoughian, 2006). The KIB approach can be used to define data mappings, synchro-

nization, concurrency, and timing. The conceptual basis of the KIB is that disparities

between different syntaxes and semantics need to be accounted for with a separate
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model syntax and semantics, thus enabling independent modeling of interactions be-

tween the composed models. This approach has been applied to different domains

(Barton et al., 2016; Huang et al., 2009). In this research, the KIB concept is used

to define the relationship between the WEAP and LEAP models externally.

Using a formal modeling method to model and simulate the interactions between

disparate models is advantageous. A component-based, hierarchical modeling ap-

proach that aligns with system thinking helps with the development, reuse, and

maintainability of interaction models. A discrete-event simulation method is used

in this research to define a framework specification based on the KIB approach to

defining the interaction between disparate systems. In a discrete-event abstraction,

only a finite number of relevant events occur during a bounded time interval. This

contrasts with continuous models, which take continuous signals as input. A discrete-

event system is characterized by the output events which are generated in response

to a series of input events Zeigler et al., 2018. The Parallel Discrete EVent System

(DEVS) specification is a popular formalism for modeling complex dynamic systems

using a discrete-event abstraction. Formalism has a rigorous formal definition and

strong support for modularity (i.e., models can be hierarchically nested). An Inter-

action Model framework is developed in this article based on the KIB approach and

Parallel DEVS formalism (Fard & Sarjoughian, 2021b).

1.2 Research Objective

The needs mentioned in Section 1.1 motivated us toward studying the WEAP and

LEAP systems to understand their modeling approaches, execution and calculation

processes, and accessible input and output data. In the next step, there is a need to

define a well-defined componentized specification (componentization) for the WEAP

and LEAP legacy systems. It facilitates integrating the WEAP and LEAP systems
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(legacy modeling and simulation systems) with other modeling and simulation tool-

s/frameworks to model and simulate systems-of-systems (i.e., the FEW-Nexus). The

componentization requires exposing the entities of water and energy models in the

WEAP and LEAP systems to be represented as external logical components to be

combined with models of other systems. The preliminary work on this research de-

scribed a webservice-based design and implementation using the idea of software

components for the WEAP and LEAP systems (Fard & Sarjoughian, 2019).

After having a component-based representation for the WEAP and LEAP sys-

tems, the most significant section is the design and specification for the Interaction

Model (see Figure 2). The Interaction Model has some inputs and outputs connected

to the external systems (i.e., the WEAP and LEAP systems). Generally, the external

systems connected to the Interaction Model can have arbitrary system specifications

(even though the WEAP and LEAP have the same specification). The Interaction

Model can receive input data, process them, and send the results to the external sys-

tems. Furthermore, the constraints and validations can be applied to the Interaction

Model. The execution of the whole system (the Interaction Model and the connected

systems) is also controlled in the Interaction Model. Thus, our next research question

is how to model and simulate the nexus of the Componentized WEAP and LEAP

systems.

The WEAP and LEAP systems can bi-directionally share data (called WEAP-

LEAP internal linkage). On the one hand, the WEAP and LEAP source codes are not

public, so their internal linkage cannot be examined/evaluated. On the other hand,

the WEAP and LEAP models must obey the internal linkage constraints (e.g., having

the same time interval and time granularity in a year and manual execution). So, the

WEAP-LEAP internal linkage cannot be considered a flexible modeling methodology

for the FEW-Nexus, due to mentioned limitations (the detail of the WEAP-LEAP
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internal linkage is presented in Section 3.3). But the WEAP-LEAP internal linkage

is used in our research to validate the correctness of the modeling and simulation in

the Interaction Model.

The overarching goal of this research is to develop a service-oriented framework for

developing simulations targeted at a scientific understanding of FEW dynamics. The

tool is based on the Software-as-a-Service (SaaS) model. Cloud providers manage the

infrastructure and platforms that run the water, energy, food, and interaction model

applications, a capability foreseen to be essential for large-scale, recurrent FEW-

Nexus studies. The tool will offer composable modeling and interoperable simulation

with features for data management infrastructure. The aim is to enable a better un-

derstanding of the FEW-Nexus at decision-relevant temporal. Such a service-oriented

modeling and simulation tool can benefit the creation of verified and validated simu-

lation models serving the needs of resource managers and decision-makers responsible

for making policies and decisions toward sustainable water, energy, and food resources.

1.3 Contributions

Regarding the mentioned problems in Section 1.1 and the defined objectives in

Section 1.2, the main contributions of this research are:

• Legacy Tools Componentization: New insight is gained into the develop-

ment of the Componentized WEAP/LEAP RESTful framework by examining

the underlying details and formulation of the WEAP/LEAP entities as proxy

component models using the Model Driven Architecture (MDA) approach and

the UML diagrams (moving between different levels of abstraction).

• Algorithmic Interaction Model: Developed an Algorithmic interaction model

framework based on the Knowledge Interchange Broker (KIB) modeling ap-
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proach and object-oriented principles which has a minimal number of elements

to define the model and a cyclic and synchronous fixed execution protocol.

• DEVS-Based Interaction Model: Developed a framework that conforms to

the KIB approach and Parallel DEVS formalism. The framework has a set of

predefined modeling elements to simplify interaction modeling (for the modelers

who are not experts in the DEVS formalism) and define a generic ontology for

the disparate external systems connected to the interaction model (family of

models is persistently stored in the MongoDB database). Furthermore, the

DEVS-Suite simulator is used to develop, test, debug, and run the interaction

model.

• Webservice-Oriented Modeling & Simulation: Developed a distributed

environment for modeling and simulating the Componentized WEAP, Compo-

nentized LEAP, and the Algorithmic/DEVS interaction models based on the

Service-Oriented Architecture.

• Water-Energy Nexus Modeling of the Phoenix AMA Model: Devel-

oped the Water-Energy Nexus model using the Algorithmic-IM and DEVS-IM

frameworks for the Phoenix Active Management Area. These models replicate

the same nexus developed using the WEAP-LEAP Internal Linkage. The de-

veloped models using the frameworks are evaluated and validated based on the

WEAP-LEAP Internal Linkage model.
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Chapter 2

BACKGROUND

The WEAP and LEAP are the primary tools to model the Water and Energy systems

in this research. So, the characteristics and capabilities of the WEAP and LEAP

systems are described with a focus on their use with other frameworks and tools. Also,

their internal linkage is described in detail. Then, the RESTful framework, as the

underlying framework for developing the Componentized WEAP and Componentized

LEAP, is described. Finally, the Discrete EVent System Specification (DEVS) is

presented. DEVS is the infrastructure concept to design the second generation of the

Interaction Model.

2.1 Composability

Composition of water and energy models for the FEW-Nexus is the main topic

in this research, and the focus is to use the Knowledge Interchange Broker Approach

(Sarjoughian, 2006) for interaction modeling. Creating a simulation of a large, com-

plex system requires breaking the problem down into parts that can be addressed

separately, it helps to reduce the effects of interruption, to permit specialization, to

facilitate computing alternative ways of handling a given component, to maintain the

software over time, and to reduce risk by relying upon previously proven components

where possible. So, the first requirement is having a component-based approach for

modeling the system. The modeler should assemble the suitable system-of-systems

model with a plug-and-play approach and answer trade-off questions. On the other

hand, understanding complex systems requires decomposition because no one can

otherwise comprehend the whole’s details. Testing systems are vastly simplified if
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one can do it module by module and then at the system level (Davis & Anderson,

2004). So, modularity is good, but composability is more than modularity.

Composition (as a verb) is the process or capability of selecting and assembling

components for execution. Composition (as a noun) refers to a set of components

that have been composed to produce an integrated or inter-operable whole (Petty

et al., 2014). In other words, composability can select and assemble simulation com-

ponents in various combinations into sound simulation systems to satisfy specific user

requirements (Davis & Anderson, 2004). The main challenge of achieving model com-

posability has appropriate concepts and methods to compose different model types.

Both the disparate models and their interactions should apply a well-defined syn-

tax and semantics (Sarjoughian, 2006) for given application domains (e.g., (Mayer,

2009)).

Heterogeneous model types (composting models with different model specifica-

tions) can offer greater flexibility than homogeneous model types (composting mod-

els with the same model specification). Decomposition and composition of models

are challenging when models are heterogeneous in terms of consistency of the model

specifications (correctness and validation). Consider injecting data and control from

an external source that does not have the same approach to model specification and

execution. For instance, one model may have an innate concept of time, while the

other does not.

Model composition from a system-theoretic standpoint can be classified intomono-

, super-, meta-, and poly-formalism methods (Sarjoughian, 2006). The first two are

grounded in the concept that, in some cases, a single formalism is well suited for

modeling different parts of a system. In contrast, the latter two are based on disparate

modeling formalisms to describe the parts of a complex system.
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In the mono-formalism approach, different parts of a system can be modeled via

a single formalism (homogeneous models). It is common to use a single modeling

formalism to specify one aspect of a system. Using this modeling approach, mod-

els of different system parts adhere to a single structure and behavior specification.

As shown in Figure 2.1a, MA∪B,{Ψ} is used to model system A (e.g., discrete-event

process), system B (e.g., event-based control), and their interactions using modeling

formalism Ψ.

In the super-formalism approach (see Figure 2.1b), a modeling formalism, MB̃,{Φ},

encapsulates within the super-formalism, MB,{Ψ}. Models B̃ and B are different and

the former must be encapsulated inside the latter (model B wrappers model B̃). A

general approach is to use multiple model specification abstractions and hide the de-

tails of an encapsulated lower-level model specification inside an enclosing higher-level

model specification. For example, a simple optimization model can be encapsulated

as an I/O System (i.e., atomic) DEVS component. A super modeling formalism can

support model specifications that are at the same level of abstraction.

In the meta-formalism approach, two models described in different modeling for-

malisms can be transformed entirely or partially to other formalisms. As depicted in

Figure 2.1c, MÂ∪B̂,{Θ} is a composition of models with their interactions specified in

formalisms Θ. Here models A and B (specified in Ψ and Φ) are mapped to Â and

B̂. This requires Ψ and Φ transform to Θ. Indeed, the interactions between models

A and B are specified in terms of Â and B̂. A good example based on this approach

is High-Level Architecture (HLA).

In the poly-formalism approach, a separate model handles the differences between

the composed models. As shown in Figure 2.1d, MA∪B∪C,{Ω} is the composition of

MA,{Ψ} and MB,{Φ}, using MC,{Ω}. The interactions between models A and B are

specified in Ω. Unlike the meta-modeling formalism approach, in the poly model
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(a) (b)

(c) (d)

Figure 2.1: Model Composability Approaches. (a) Mono (b) Super (c) Meta (d)
Poly Approach.

composability approach, models are not transformed to a set of models, all of which

are described following a single modeling formalism. Furthermore, poly modeling for-

malism is distinct from the strong form of super formalism that can both support the

interactions (data and control exchanges) among different model types (e.g., discrete-

event and linear optimization) and support different kinds of data transformation and

control schemes that are described external to the models that are composed. Using

the poly model composability approach, standard forms of data transformation (i.e.,

aggregation and dis-aggregation) are inherently supported. The best example based

on this approach is Knowledge Interchange Broker (KIB).
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This research is based on the poly-formalism approach (see Figure 2.1d), even

though the WEAP and LEAP systems are based on the same formalism. Because

our approach is to present a solution as dynamically as possible, for example, to

replace the current tools (WEAP and/or LEAP), or add a new framework (e.g., for

the Food system, or any new system such as Climate and Economy).

2.1.1 Knowledge Interchange Broker

Using multiple modeling formalisms to model a large system, such as the FEW-

Nexus, is crucial. The KIB approach has been introduced to formalize the interactions

between the models specified in different modeling formalisms (Sarjoughian, 2006).

The conceptual basis of the KIB is that disparities between different syntaxes and

semantics need to be accounted for with a separate model syntax and semantics, thus

enabling independent modeling of interactions between the composed models. Syn-

tactic characterization specifies the elements (and their relationships) of valid models,

whereas semantic characterization pertains to the dynamic behavior of each model in

particular formalism. The KIB composition specification is treated as an independent

model between the disparate models that explicitly addresses the interaction activities

in terms of data transformation, concurrency, synchronization, and timing properties

(which account for both structural and behavioral compositions). In other words,

the KIB approach emphasizes on separation of model specification and its execution

protocol. This separation makes it possible to treat model composability and exe-

cution interoperability differently, given different composition approaches. The KIB

approach has been applied to different domains (Boyd & Sarjoughian, 2020; Huang

et al., 2009; Mayer, 2009; Sarjoughian et al., 2013; C. Zhang et al., 2020).

The data transformation property of the KIB approach involves data aggregation

from a set of data values to one data value (e.g., average, maximum, and minimum),
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data dis-aggregation from one data value to a set of data values (e.g., distribution

and division), and data conversion from one unit to another unit. The concurrency

property needs to specify how simultaneous interaction messages are handled. The

execution of individual models controlled by the KIB can be as simple as sequential

or as complex as asynchronous. The concurrency property is closely related to the

synchronization property, which specifies when interaction messages can be sent or

received. The composition specification using the KIB provides a systematic approach

for describing interactions among disparate models at the modeling level. Finally,

the timing property addresses how time is presented and advanced in the individual

formalisms and how timing is mapped between the modeling formalisms.

The KIB approach differs from the generic concept of broker architectural pattern

(Buschmann et al., 2007), which has been widely used in the software community. The

broker pattern is an architectural pattern that can be used to structure distributed

software systems with decoupled components that interact by remote procedure calls.

It provides location transparency, re-usability, changeability, and extensibility of com-

ponents. The main responsibility of a broker component is to facilitate communication

(message transferring) between the client and server. The broker has no knowledge of

the client or server. The interface provided by the broker component can ensure the

syntactic properness of the interaction, but it cannot guarantee semantic correctness

since it lacks the semantic knowledge of the messages and operations involved in the

interaction (Huang, 2008).

2.2 Parallel Discrete EVent System Specification

Parallel Discrete EVent System Specification (Parallel DEVS) is a popular formal-

ism for modeling complex dynamic systems using a discrete-event abstraction (Zeigler

et al., 2018). The term “DEVS” is used in the rest of the paper, referring to the Paral-
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lel DEVS formalism. The main advantages of DEVS are its rigorous formal definition

and its support for modularity. DEVS is a hierarchical, continuous-time formalism

devised for the modeling and simulation of reactive systems. Thus, systems can be

modeled as a set of communicating automata in a hierarchical fashion using atomic

and coupled DEVS models. The formal specification of the atomic DEVS model is:

Atomic =< X, Y, S, δext, δint, δcon, λ, ta >

In this description, the input ports/events, output ports/events, and sequential state

set are represented by X, Y , and S. The external transition function is δext : Q×X →

S where Q = {(s, e)|s ∈ S, 0 ≤ e ≤ ta(s)}. This function is a mapping between the

occurrence of a bag of external events on one or more input ports and the sequential

state set at any time. The internal transition function, δint : S → S, defines how the

model reacts to internal events. The confluent function, δcon : Q ×X → S, handles

the occurrence of simultaneous internal and external events. The output function

λ : S → Y specifies output generation by mapping the state set to a bag of output

events on one or more output ports at any instance of time. Finally, the time advance

function, ta : S → R+
0,∞, specifies the timing behavior of the system.

Hierarchical structures in DEVS are made possible through coupling input and

output ports of atomic/coupled models subject to no direct feedback coupling. Cou-

pled models do not contain state information; they only specify how components are

placed and connected in a strict hierarchical tree. The coupled model specification in

a P-DEVS model is:

Coupled = < X, Y,D,Md|d ∈ D,EIC,EOC, IC >

In the description, X and Y remain as input and output ports/events. D is the

index set (component names) for internal atomic/coupled models. {Md} is the set
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of internal atomic/coupled models for which the index set D. Finally, the three sets

EIC, EOC, and IC contain a set of external output port couplings, a set of external

input port couplings, and a set of internal couplings (for internal couplings between

atomic/coupled models within {Md}), respectively.

A framework of abstract simulators has been proposed to simulate DEVS models

(Zeigler et al., 2018). The framework consists of a hierarchy of simulator objects that

mirrors the hierarchical structure of the simulated DEVS model. A DEVS simulator

corresponds to each atomic model, and a DEVS coordinator corresponds to each

coupled model. The correspondence between the model and the simulator objects is

illustrated in Figure 2.2.

Figure 2.2: Mapping a Hierarchical Model onto a Hierarchical Simulator.

Simulator and coordinator modules manage timing and choice of functions to be

executed as well as sending and receiving input/output events for atomic and coupled

models they supervise. The control of the simulator module on the timing aspect of an

atomic model is depicted in Figure 2.3. The time of the last event (tL), time of next

event (tN), and external input events are used by the simulator module to control the

execution of an atomic model. Among the internal/external events belonging to all

atomic models, the ones with the earliest scheduled time (i.e., tN) will be executed.
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Depending on whether an external event, an internal event, or both occur at time

instance tN , the appropriate function/s within the atomic model is/are invoked.

Figure 2.3: Time Management in the Coordinator Module (with Solid Borders and
in Orange) and Invocation of the Atomic Model Functions (with Dashed Borders and
in Green) in the Simulator Module.

2.2.1 DEVS-Suite Simulator

DEVS-Suite is an object-oriented implementation of the DEVS formalism and an

open source, discrete event, and general-purpose simulation environment (ACIMS,

2022c; Kim et al., 2009). It supports describing complex structures and behaviors

of systems using object-oriented modeling techniques and advanced features of the

Java programming language. The DEVS-Suite user interface provides a consistent,

efficient, integrated hierarchical component-based representation of models with run-

time I/O and state trajectories and tabular data visualization (ACIMS, 2022d). The

DEVS-Suite has a powerful and robust simulation engine that enables the modeler to

simulate the flexible application of a model’s steps. In the DEVS-Suite, the execution

of the models can be animated in terms of the input/output messages for coupled

models and the state changes for the atomic models. Every atomic and coupled

model component can have its own time-based trajectories and log files for inputs and

outputs as well as the common phase and sigma state variables for atomic models

(Zengin, 2010). The architecture of the DEVS-Suite simulator environment is Model
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Facade View Control (MFVC) (Sarjoughian & Singh, 2004). Simulation data can

be displayed with its animation and viewing of time trajectories generated by the

DEVS abstract simulator. The DEVS-Suite visualization constraints to visualize the

number of the model’s ports (restricted to 19 ports), so an atomic or coupled model

should not have more than 19 ports to use the visualization part helpfully.

2.3 Service Oriented Architecture

Service-oriented architecture (SOA) is a technology-neutral, platform-independent

design, which provides the aspects of reusability, agility, loose coupling, and interop-

erability with the help of a collection of services. The main advantage of building

services is that they provide a standard way of interaction. Nowadays, there are two

main web-service protocols. One is the Simple Object Access Protocol (SOAP) (Box

et al., 2000), and the other is the REpresentational State Transfer (REST) (Fielding

& Taylor, 2002; Fielding, 2000). The former is an XML-based standard communica-

tion specification over a particular protocol such as HTTP and SMTP (Simple Mail

Transfer Protocol). The latter is a web-based architectural style with flexible message

formats such as XML and JSON. Following are the principles that must be satisfied

if an interface needs to be referred to as RESTful (Pautasso & Wilde, 2010).

1. Client-Server: It separates the user interface implementation from the data

storage concerns. It also simplifies the server components to improve the user

interface across multiple platforms and higher scalability.

2. Uniform Interface: By applying the software engineering principle of gener-

ality to the component interface, the overall system architecture is simplified,

and the visibility of interactions is improved.
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3. Stateless: Each client request to the server must contain all information nec-

essary to understand the request. Indeed, the session state is kept entirely on

the client.

4. Resource Caching: Cache constraints require that the data within a response

to a request be implicitly or explicitly labeled as cacheable or non-cacheable.

If a response is cacheable, then a client cache is given the right to reuse that

response data for later, equivalent requests.

From the client’s perspective, the SOAP is based on the operation/method, whereas

the REST is based on the resource. The RESTful framework is an implementation

of the REST architecture based on the HTTP protocol (Richardson & Ruby, 2008).

Asynchronous requests, higher security and reliability, and error reduction are the

main reasons for choosing the SOAP standard. Greater scalability, compatibility,

performance, and simplicity are the common reasons for choosing the REST stan-

dard.

Web services such as the Extensible Modeling and Simulation Framework (XMSF)

(Brutzman et al., 2002) are defined as an integrable set of standards, profiles, and

recommended practices for web-based modeling & simulation (Sonntag et al., 2011).

The XMSF supports the migration of legacy components into web-enabled compo-

nents for distributed heterogeneous simulation applications. It is based on SOAP and

XML (Brutzman et al., 2002). In contrast, the proposed WEAP web-service system

benefits from the RESTful web services and the Ecore modeling framework.

2.4 Used Tools to Model the Water and Energy Systems

There exist a wide variety of many tools for modeling and simulating water and

energy systems, serving purposes ranging from natural processes to engineered distri-
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bution networks. The Water Evaluation and Planning (WEAP) and Low Emissions

Analysis Platform (LEAP) systems are used in this research to model and simulate the

water and energy systems, respectively. The WEAP and LEAP tools are described

in detail in the following sections.

2.4.1 Water Evaluation and Planning System

The Water Evaluation and Planning (WEAP) system is a tool created in 1988 for

modeling, simulating, and evaluating water systems (Sieber et al., 2005). Models are

defined as a network of water supply and demand entities (nodes) that are connected

via transportation entities (links). A WEAP model defines the allocation of water

from different sources through preferences and mass balance constraints. The WEAP

system provides a set of entities and procedures to study and find solutions to the

problems faced by decision-makers. Using a scenario-based approach, each study area

has natural watersheds, reservoirs, streams, and canals that serve to supply demands

by various users, including households, industry, and agriculture (Yates et al., 2005).

The WEAP tool is widely used globally for water allocation and water management

(Amin et al., 2018; J. Gao et al., 2017; Höllermann et al., 2010; Lévite et al., 2003;

Psomas et al., 2016).

The development of a WEAP model includes several steps (SEI, 2022d). A study

is defined to have a time frame, a spatial boundary (see Figure 2.4), system entities,

and configuration. The predefined “Current Accounts” scenario, which can be used

to calibrate a model, provides a snapshot of actual water demand, pollution loads,

resources, and supplies for the system at the initial state. Scenarios are defined using

the “Current Accounts” and explore the impact of alternative assumptions or policies

on future water availability and use. Finally, the scenarios are evaluated regarding
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water sufficiency, costs and benefits, compatibility with environmental targets, and

sensitivity to uncertainty in key variables.

Figure 2.4: General Configuration in the WEAP System.

As a tightly integrated modeling, simulation, and analysis tool, the WEAP sys-

tem consists of five views/parts to model different aspects of a water system. The

structure of the model must be defined in the Schematic view. A water model in

the WEAP system is a graph of node and link entities shown in the Schematic view

(the solid red box in Figure 2.5a). The predefined node and link entities can be

used to construct the nodes and links assigned to a geospatial map (the dotted blue

box in Figure 2.5a). Table 2.1 lists the definition and usage of the WEAP’s entities.

The main entities are River, Diversion, Reservoir, Groundwater, Desalination Plant,

Demand site, Catchment, Wastewater Treatment Plant, Runoff, Transmission Link,

Return Flow, Run of River Hydro, Flow Requirement, and Streamflow Gauge. Some

entities are presented as nodes (e.g., Demand Site and Groundwater), and some are

presented as links between two nodes (e.g., Transmission and Return flow). The

preliminary information about a node (e.g., the name property) must be set in the
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Schematic view. Also, status (active or deactivate) and priority can be set for nodes

and links. In Figure 2.5a, the number between parenthesis next to each entity type

(e.g., River and Demand Site) shows its quantity. The number between parenthesis

for each entity in the geospatial map indicates its priority relative to other entities

during simulation executions.

Table 2.1: The Definition and Usage of the WEAP System Entities.

Entity Definition / Usage

River
A collection of River Nodes to flow in or flow out the water in

the system.

Diversion Same as River but cannot flow out the water.

Groundwater Represent the groundwater resource in a water system.

Other Sup-

plies

To show a water supply but without storage capability between

months.

Demand Site A set of water users that share a physical distribution system.

Catchment

Specify processes such as precipitation, evapotranspiration, snow,

and ice accumulation, melt, runoff, irrigation, and yields on agri-

cultural and non-agricultural land.

Wastewater

Treatment

Plant

Represent the water treatment process in the system. Receiving

water from demand sites, removing pollutants, and then return-

ing treated effluent.

Runoff

Represent the water due to snow and ice melt, irrigation, and soil

moisture storage that is not consumed by evapotranspiration or

losses to increased soil moisture.
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Continuation of Table 2.1

Transmission

Link

Deliver water from surface water (reservoir and withdrawal

nodes), groundwater, and other supplies to satisfy final demand

at demand sites.

Return Flow

Unconsumed water at a demand site can be directed to one

or more demand sites, wastewater treatment plants, surface, or

groundwater nodes via a Return Flow.

River Nodes

- Reservoir nodes represent reservoir sites on a river.

- Run-of-River Hydropower nodes define points on which

run-of-river hydropower stations are located.

- Flow Requirement nodes define the minimum instream flow

required at a point on a river or diversion to meet water qual-

ity, fish & wildlife, navigation, recreation, downstream or other

requirements.

- Withdrawal nodes represent points where any number of de-

mand sites receive water directly from a river.

- Diversion nodes divert water from a river or other diversions

into a canal or pipeline called a diversion.

- Tributary nodes define points where one river joins another.

- Return Flow nodes represent return flows from demand sites

and wastewater treatment plants.

- Streamflow Gauges represent points where actual streamflow

measurements have been acquired and can be used as points of

comparison to simulate flows in the river.
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The defined entities in a Schematic view have predefined inputs and outputs

(called data and result variables in the WEAP system). The next part in the WEAP

system is the Data view which serves to parameterize the inputs and equations for the

entities in a tree structure. The tree has “Supply and Resources”, “Demand Sites and

Catchments”, “Hydrology”, “Water Quality”, and “Key Assumptions” categories (the

solid red box in Figure 2.5b)). The Data view allows a modeler to create variables and

relationships, enter assumptions and projections using mathematical expressions, the

time-series wizard, and link to external files (e.g., CSV or Excel data files). The input

variables of an entity are separated into different categories according to their usage.

For example, Figure 2.5b (the dotted blue box) shows the West City demand site has

seven categories (“Water Use”, “Loss and Reuse”, “Demand Management”, “Water

Quality”, “Cost”, “Priority”, and “Advanced”), and “Annual Activity Level”, “An-

nual Water Use Rate”, “Monthly Variation”, and “Consumption” variables belong to

the “Water Use” category.

The Results view is for choosing the outputs of the simulation to be extracted and

viewed in charts, tables, and on the Schematic view (see Figure 2.5c). Also, different

entities, scenarios, years, and units can be used as plots displaying variable values for

time-steps. The data can be filtered for a detailed and flexible display of the model

input and output data values for time-step trajectories. The Scenario Explorer view

can be used to select experiments to be observed and stored for post-processing. It

provides the facility to observe the changes in the selected outputs by changing inputs.

The Notes view provides a place to add the documentation for each entity.

From the modeling perspective, the structure of the model (entities and their

connections) must be defined in the Schematic view. Then, the input data will be

injected into the input variables of the model via the Data view. Finally, after the

simulation execution, the output data of the model is observable via the Results view.
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(a)

(b)

(c)

Figure 2.5: The WEAP System Views. (a) Schematic View (b) Data View (c)
Results View
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The experiments for a model in the WEAP system are designed via scenarios and

general configuration (see Figure 2.4). The Scenario Explorer and Notes views of the

WEAP system do not impact the structure or behavior of a model.

From the simulation perspective, the WEAP system is based on Discrete-Time

System Specification (Zeigler et al., 2018), and it has an uninterruptible execution.

All input data must be ready before the start of every simulation. According to

the general configuration, all output data will be accessible after a whole simulation

execution period (from the start year to the end year). Interrupting the WEAP

simulation midstream and resuming it is not allowed. In this respect, WEAP models

are not reactive since they cannot have input from any external simulation model

while being executed.

The WEAP system has predefined entities for common supply resources such

as reservoirs, transmission links, and demand sites. The WEAP development team

can add new entities due to the WEAP system being proprietary. Even though

entities with their input and output variables are known, their mass-balance equations

cannot be discovered from outside. The variables for the entities appear to be shared

within the WEAP system. A water model’s logical and schematic parts are tightly

interwoven into the scenarios, general configuration, and results.

The WEAP system uses mixed-integer linear programming (MILP) to optimize

the satisfaction of requirements for the demand sites, reservoir filling, user-specified

instream flows, and hydropower entities subject to demand priorities, supply prefer-

ences, mass balance and other constraints (SEI, 2022d). The WEAP system supports

LPSolve, XA, and Gurobi MILP solvers. The LPSolve is open source and included

in the WEAP system. XA and Gurobi are commercial products (Gurobi, 2022). For

very large models, the commercial solvers can perform faster. The simulation results

can vary slightly depending on the selected solver.
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2.4.2 Low Emission Analysis Platform System

The Low Emissions Analysis Platform (LEAP) is an integrated modeling tool

that can be used to track energy consumption, production, and resource extraction

in all sectors of an economy. The LEAP was initially created in 1980 on a main-

frame computer. In 1983, with funding from US-AID, it was converted for use on

a minicomputer, and the first user interface was added. By 1985, LEAP had been

ported again to the newly emerging IBM PC microcomputer, making wider dissem-

ination and a more user-friendly interface possible. In 1992, the first global energy

study using LEAP was published (Lazarus et al., 1993). With climate change rising

on the international agenda, LEAP has further enhanced as a tool for Greenhouse

Gas (GHG) mitigation assessments. By the late 1990s, with support from the Dutch

Government (DGIS), a new Windows-based version of LEAP was created, allowing

the original goal of a highly user-friendly energy and environment planning tool. The

first version of the new tool was made public in early 2001, which caused a significant

increase in the number of LEAP users (see Figure 5). In 2012, the LEAP system

was linked to the WEAP system to support Water-Energy Nexus (WEN) modeling

analyses. Domain experts and researchers widely use the WEAP and LEAP tools for

WEN analyses (Howells et al., 2013).

The LEAP system can be used to account for both the energy sector and non-

energy sector greenhouse gas (GHG) emission sources and sinks. In addition to track-

ing GHGs, LEAP can also analyze emissions of local and regional air pollutants (SEI,

2022b). LEAP is intended as a medium to long-term modeling tool. Most of its

calculations occur on an annual time-step, and the time horizon can extend for an

unlimited number of years. Studies typically include both a historical period known

as the Current Accounts, in which the model is run to test its ability to replicate
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Figure 2.6: Number of LEAP’s Users Since 2003.

known statistical data, as well as multiple forward-looking scenarios. Some results

are calculated with a finer level of temporal detail. For example, for electric sector

calculations, the year can be split into different user-defined “time-slices” to represent

seasons, types of days, or even representative times of the day. These slices can be

used to examine how loads vary within the year and how electric power plants are

dispatched differently in different seasons.

LEAP is designed around the concept of long-range scenario analysis. Scenarios

are self-consistent storylines of how an energy system might evolve. Using LEAP,

policy analysts can create and then evaluate alternative scenarios by comparing en-

ergy requirements, social costs and benefits, and environmental impacts. The LEAP

Scenario Manager can be used to describe individual policy measures, which can then

be combined in different combinations and permutations into alternative integrated

scenarios. This approach allows policymakers to assess the marginal impact of an in-

dividual policy and the interactions that occur when multiple policies and measures

are combined. For example, the benefits of appliance efficiency standards combined
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with a renewable portfolio standard might be less than the sum of the benefits of the

two measures considered separately.

As a tightly integrated modeling, simulation, and analysis tool, the LEAP tool

consists of seven views/parts. In the Analysis view, the structure of the model must

be defined using five types of entities; Demand, Transformation, Process, Resource,

and Effect (the solid red box in Figure 2.7a). Table 2.2 lists the definition and usage

of the LEAP’s entities. The defined entities have predefined inputs and outputs

(called data and result variables in the LEAP system). This view also serves to

parameterize the inputs and equations for the entities in a tree structure with the

Demand, Transformation, Resource, and Key Assumptions categories (the dotted

blue box in Figure 2.7a). The Analysis view allows a modeler to create variables and

relationships, enter assumptions and projections using mathematical expressions, the

time-series wizard, and link to external files (e.g., CSV or Excel data file). The

input variables of an entity are listed according to the selected entity or branch. For

example, Figure 2.7a (the dotted blue box) shows the Mark Wilmer demand has two

variables; Activity Level and Final Energy Intensity Time Sliced.

The Results view displays results in charts and tables for all parts of the energy

system (see Figure 2.7b). Also, different entities, scenarios, years, and units can be

used as plots displaying variable values for time-slices. The Energy Balance view

can be used to select experiments to be observed in a standard energy balance table,

chart, or Sankey Diagram. The Summaries and Overviews views are used to create

customized tabular reports and store data for post-processing. They provide the

facility to observe the changes in the selected outputs by changing the inputs. The

Technology and Environmental Database (TED) view provides extensive information

describing the technical characteristics, costs, and environmental impacts of energy

technologies available internationally or in particular developing country regions. The
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Table 2.2: The Definition and Usage of the LEAP System Entities.

Entity Definition / Usage

Demand

A dis-aggregated end-use based approach for modeling the re-

quirements for final energy consumption. The energy demand

analysis methodology can be Activity Level Analysis, Stock

Analysis, or Transport Analysis.

Transformation

Simulate of the conversion and transportation of energy forms

from the point of extraction of primary resources and imported

fuels to the point of final fuel consumption.

Process

Represent the unique technologies that convert energy from one

form to another or transmit or distribute energy, such as indi-

vidual power plants or groups of power plants.

Resource
Represent the availability of primary resources (e.g., fossil,

wind, solar, nuclear, etc.)

Effect
Represent the environmental effect (e.g., air pollutant, soil pol-

lutant, etc.) produced in the energy network.

Notes view provides a place to add the documentation for each entity. From the

modeling perspective, the structure of the model (entities and their connections) and

the initialization for the inputs must be defined in the Analysis view. Then, the

output data of the model is observable after the simulation execution via the Results

view. From the simulation perspective, the LEAP system (like the WEAP system) is

based on Discrete-Time System Specification, and it has an uninterruptible execution.

The LEAP system uses two frameworks for optimization calculation for Lin-

ear Programming (LP) and Mixed Integer Linear Programming (MILP); The Open

Source Energy Modeling System (OSeMOSYS) and the Next Energy Modeling sys-
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(a)

(b)

Figure 2.7: The LEAP System Views. (a) Data View (b) Results View

tem for Optimization (NEMO) (SEI, 2022c). Table 2.3 provides a quick comparison

of the OSeMOSYS and NEMO frameworks (Institute, 2022). The GLPK and CBC

solvers are free, and CPLEX, Gurobi, MOSEK, and XPress are commercial.
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Table 2.3: Comparison Between Osemosys and Nemo Optimization Frameworks.

Feature OSeMOSYS NEMO

Developer KTH SEI

Installation Integrated into LEAP Via Separate Download

Platform
GLPK (last updated

2018)

Julia (actively developed at

MIT)

Open Source Yes Yes

Licensing
Free & Include with

LEAP

Free. It can be downloaded from

the LEAP website (no separate

license required)

Small Data Set Faster Fast

Large Data Set Slow Fast

Time Slicing Limited Flexibility Very Flexible

Energy Storage No Yes

Solvers GLPK, CPLEX
GLPK, CPLEX, CBC, Gurobi,

MOSEK, XPress

Parallel Developed
Only when using

CPLEX
Yes

Active Status Unknown Yes, by SEI

Network and Power

Flow Simulation
No

Yes, in NEMO & Coming to

LEAP/NEMO

2.4.3 WEAP & LEAP Data Schema

Figure 2.8a presents the data schema related to an entity from the outside per-

spective for a prototypical model and scenario. The data schema in Figure 2.8a has
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three axes – the y-axis is used for variable names, the z-axis is used for the years of

a simulation, and the x-axis is used for yearly time granularity. Each entity (e.g., a

demand site in the WEAP system or Transformation in the LEAP system) has several

input and output variables. A variable can have annual time granularity like variable

v2 shown in Figure 2.8a which has one value per year or finer time granularity (for

example, monthly, weekly, daily, and so on) like variables v1 shown in Figure 2.8a.

The time granularity for variables that do not have annual time-steps must be defined

in the General Configuration (Time Step per Year section in Figure 2.4 and the same

configuration in the LEAP system). Each cell in Figure 2.8 has a float-type data

value according to its defined time granularity. Years and time-steps/time-slices in

each year have ascending order. For example, the green (which has a circle sign) and

orange (which has a cross sign) cells in Figure 2.8a present the first and last times-

tamp’s values for the variable v1 in a simulation scenario. Considering Figure 2.8a,

there are m × q timestamp’s values (number of years × number of time-steps/time-

slices per year) for variable v1. The variable v2 for the same simulation experiment has

m timestamp’s values for years y1, y2,. . ., ym, each having one time-step/time-slice.

Figure 2.8b shows the data schema for one variable related to multiple scenarios.

Considering any variable in Figure 2.8a, the y-axis is used for the years of a simulation,

the z-axis is used for the number of simulation scenarios, and the x-axis is used for

yearly time granularity. For example, suppose variable v1 is selected from Figure 2.8a

and expanded for multiple scenarios. The result will be Figure 2.8b, which presents

the data cell values for scenarios s1, · · · , sr for years y1, . . ., ym which each cell is

divided to q equal time-steps/time-slices. It is important to note that the values in

the lowest horizontal level (the yellow cells) are the same for all scenarios because

they represent the values for the Current Accounts scenario. Other scenarios affect

the values of a variable from the start year (start year + 1) to the end year.
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(a) (b)

Figure 2.8: WEAP/LEAP’s Component Data Schema (a) Data of Different Variable
given a Scenario. (b) Data of a Variable given Different Scenario.

Both WEAP and LEAP systems support VB-Script, JavaScript, Perl, and Python

languages using the standard COM Automation Server to access the entities, vari-

ables, data, and execution control. Even though the entities with their input and

output variables are known, their mass-balance equations are unknown and cannot

be discovered from outside. The variables for the entities are shared within the

WEAP and LEAP tools. A water/energy model’s logical and schematic parts are

tightly interwoven with the scenarios, configurations, and results.
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Chapter 3

LITERATURE REVIEW

3.1 Water and Energy Modeling

There exist a wide variety of many tools for modeling and simulating water and

energy systems, serving purposes ranging from natural processes to engineered distri-

bution networks. Such software tools are developed by representing water and energy

systems as data sets with functions, objects, and services. Legacy and object-oriented

software systems can be encapsulated as services in Service Oriented Architecture

(SOA) paradigm. Various approaches have been proposed for transforming legacy

software systems to be integrable with other software systems (Bisbal et al., 1999).

One of these approaches is “wrapping” where any proprietary legacy software system

with input/output API (e.g., WEAP and LEAP systems) can be encapsulated inside

other software systems (Sneed, 2006; Sneed et al., 2006). Individual functions in the

legacy software are wrapped into web services. New components are designed ac-

cording to the code segments that perform a service or data modification. Each new

component is given a Web Services Description Language (WSDL) interface and tar-

geted for either SOAP or RESTful framework. This research follows the rationale and

the general approach of transforming a legacy system to flexible service-oriented soft-

ware frameworks in addition to component-based modeling and simulation (Zeigler

et al., 2017).

Services and service compositions with resource management supporting load bal-

ancing and context storage are proposed for legacy modeling and simulation tools

(Pullen et al., 2005). This approach is applied to a legacy solid multibody simula-
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tion. This tool consists of five Fortran programs which are wrapped individually in

Java-based web-services. The Message Passing Interface (MPI, 2022) concept is used

to define the communication between process (or communication) logic and domain

logic with workflows/service compositions. The result improves the existing legacy

application and speeds up the overall simulation execution by automating manual

tasks and parallelizing web-services to control, orchestrate, and visualize simulation

experiments. The Componentized WEAP RESTful framework shares the wrapping

legacy software applications; however, its primary goal is to support structured inte-

gration with other modeling and simulation tools and generally scientific applications.

An objected-oriented modeling framework without using the SOA paradigm is

proposed for simulating watershed flow and sediment processes at the catchment

scale based on fine-grained components (Qin et al., 2019). This work is based on the

systems-of-systems concept to build new water-related models quickly and effectively

by de/composing models in the manner of plug and play of user-defined components.

The objects from decomposition are encapsulated into corresponding components

using dependency injection, a technique for achieving separation of concerns, to define

the relationships and coupling of different components.

A web-based platform has been introduced to support efficient multivariate visual-

ization of environmental data from sensor observation networks (Li et al., 2016). Data

are collected based on the SOAP framework and XML format from different location-

s/resources for creating various visualizations and analyses using JSON. This platform

uses a caching system (collected from distributed sensors via web-services) to store

data in databases (PostgreSQL for locally storing and Hadoop-based OpenTSDB for

distributed storing) to increase data access efficiency. Also, a data cube model is

established to reshape heterogeneous data and support unified data operations.
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Agent-based modeling is also proposed and used for water resource management

systems. Agents have their own goals and behaviors and can adapt and modify

their behaviors (Akhbari, 2012). In water resources systems modeling, agents can

be individual ground and surface water users, water polluters, various infrastructural

elements, cities, or policymakers on different levels (Nikolic & Simonovic, 2015). A

framework to model and simulate water supply and demand for urban households has

been developed based on Agent-Based Modeling and System Dynamic modeling (Alvi

et al., 2018). This is an approach to model water management at micro (short-term)

and macro (long-term) abstraction levels. Another approach for simulating urban wa-

ter resource management uses a multiagent Q-learning-based allocation agent-based

algorithm (with adaptive reward value function to improve the performance) (Ni

et al., 2013). This algorithm supports allocating water resources efficiently among

stakeholders. An agent-based framework has also been developed to simulate the

behavioral characteristics of urban water users while accounting for their social inter-

actions (Darbandsari et al., 2017). A model has interactions between agents as well

as agents and environments. The focus of this framework is to help study and eval-

uate the impact of different climate and government policies. Although agent-based

frameworks are inherently grounded in the concepts of components, they are not as

flexible and scalable as service-oriented frameworks and thus can be challenging to

be loosely integrated with other tools.

The WEAP system is used as the primary tool for modeling and simulating water

management under different socio-economic and climate scenarios for regions includ-

ing South Africa, China, Greece, Benin, and Pakistan (Amin et al., 2018; J. Gao et al.,

2017; Höllermann et al., 2010; Lévite et al., 2003; Psomas et al., 2016). This suggests

that the WEAP system’s componentization can help combine these and other WEAP

water simulations with separate simulations for agriculture, climate, and energy sys-
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tems. Given the related works highlighted above, the Componentized WEAP is a

tool built using the RESTful SOA architecture, and the data cube structure allows

integrating it with tools for simulating energy and food systems (Fard & Sarjoughian,

2020, 2021b).

3.2 Tools/Frameworks to Model the FEW-Nexus

Software frameworks for combining models can be categorized into a Common Li-

brary, Product Line Architecture, Interoperability Protocol, Object Model, Formal, and

Integrative Environment (Petty et al., 2014). The Common Library simulation frame-

work is based on a collection/set of software modules (without standalone execution)

reusable through conformance to standard interfaces that allow the modules to inter-

operate with the other modules. The Product Line Architecture simulation framework

is based on the planned development of multiple related simulation products that, to

the extent possible, share common software components. The Interoperability Pro-

tocol simulation framework is based on the run-time exchange of simulation data or

services. The Object Model simulation framework is based on a standard for compo-

nent specifications (not implementation). Typically, the components are not them-

selves standalone simulation systems but rather compose each other in the context

of an overall simulation system. The Formal simulation framework depends upon

a mathematical notation to define the components (usually models), compositions

of models, and the interfaces between them. Finally, the Integrative Environment

simulation framework is an execution environment used to connect components that

may have been written with no initial intent to interoperate. Usually, specialized

software wrappers and scripts are part of the simulation framework to connect the

simulation components. From this vantage point, our research can be placed in the

Interoperability Protocol software frameworks.
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Numerous and diverse tools/frameworks have been presented in different contexts

since the interpretation and centrality of the FEW-Nexus. Those tools/frameworks

can be roughly categorized into resource-environmental footprint quantification, as-

sessment and systematic simulation, and optimal management / integrated models

(P. Zhang et al., 2019). The resource-environmental footprint quantification mod-

els are widely used to quantify the resource and economic efficiency associated with

the FEW system, which is consistent with the “interdependence” property of the

nexus concept (e.g., UWOT (Baki & Makropoulos, 2014) and REWSS (A. T. Dale

& Bilec, 2014)). The assessment and systematic simulation models help to assess

and model the performance of the FEW system (e.g., WEF Nexus Tool 2 (Daher &

Mohtar, 2015) and CMDP (Nanduri & Saavedra-Antolnez, 2013)). Three types of

methods have been used in this domain; indicator systems, system dynamics, and net-

work analysis models. The optimal management/integrated models consider multiple

systems and the interactions between them as an intricate process involving several

modeling and computational complexities (e.g., CLEWS (Howells et al., 2013) and

WEAP-LEAP (SEI, 2022b; Sieber et al., 2005)). The last model has more complex-

ity (based on the aggregation of qualitative and quantitative measures) than the first

models (Dargin et al., 2019). Our research is in the category of integrated models.

In recent years, there has been a significant increase in studying the Water-Energy

Nexus (WEN). The number of studies and the ability of the scientific community to

assess has been on the rise, mainly to understand the water and energy interactions.

One study examined 35 methods, tools, and frameworks related to the WEN based

on the geographical scale and the nexus scope, focusing on the interactions between

water, energy, and others, including environment, food, land, and climate (Dai et

al., 2018). The Stockholm Environment Institute conducted research on integrated

analysis of water, energy, and greenhouse gas (GHG) emissions. For example, a study
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on the water and energy systems in Sacramento, California, over the period 1980–2001

with weekly time-step was undertaken on four climate scenarios that represent the

impact of future temperature and precipitation extremes (L. L. Dale et al., 2015). In

another study, four possible scenarios with a direct impact on demand and supply

water and energy systems on the Jajrood river, Tehran, Iran, over the period 2016-

2026 with monthly time-step was undertaken (Javadifard et al., 2020). The impact

of changing water demand, GHG emissions, and cost-effectiveness via nine different

scenarios on the Western Canadian province of Alberta is another study (Agrawal

et al., 2018). This study forecasts water consumption and GHG emissions from the

power sector for the 2015-2050 period.

Considering simulation studies of integrated food, energy, and water systems,

frameworks, and tools such as Precipitation Runoff Modeling System (PRMS) (Mark-

strom et al., 2015) and Ground-water and Surface-water FLOW (GSFLOW) (Mark-

strom et al., 2008) and WEF-Nexus Tool 2.0 (Daher & Mohtar, 2015) have been

developed. These tools are not based on component-based modeling principles and

service-oriented computing. The PRMS is a deterministic, distributed-parameter,

physical process-based modeling system developed to evaluate the impacts of various

combinations of climate and land use on surface-water runoff, sediment yields, and

general basin hydrology. The GSFLOW is designed to simulate coupled ground-water

and surface-water systems. The WEF Nexus Tool 2.0 is a scenario-based tool for guid-

ing resource allocation at the country level for a given level of food self-sufficiency

and a set of technologies, land uses, and resource availabilities. These approaches and

tools, unlike those briefly described above, can provide limited capabilities needed for

integrating food, energy, and water models developed in different simulation tools

(Sarjoughian, 2006).
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The Climate, Land, Energy, Water (CLEW) framework is likely the most relevant

work for our research. The CLEW framework is based on a system’s approach to an-

alyzing interactions between interconnected sectors (Kaddoura & El Khatib, 2017).

It uses existing simulation tools (WEAP, LEAP, and AEZ) based on a modular struc-

ture to illustrate synergies and trade-offs within the CLEW areas for decision-making

related to achieving development goals (Howells et al., 2013). The CLEW framework

applies to different geographical scales from global to regional, national (e.g., Mauri-

tius, Uganda and Nicaragua, Bolivia, and Kenya), and urban levels (e.g., Oskarshamn

and New York City) (“CLEWS-Home”, 2022).

The Nexus Simulation System (NexSym) models the local techno-ecological inter-

actions relevant to the FEW-Nexus by integrating models for ecological, technological,

and consumption components. It allows the user to build, simulate, and analyze a

“flowsheet” of a local system (Martinez-Hernandez et al., 2017). Users must define

the system level and simulation parameters, then use the component-flow diagram

to draw the virtual local production system, finally execute the tool to process the

model, and generate the results (in tables and plots). The NexSym allows explor-

ing not only how parts of the nexus are affected by a change in another part but

also to evaluate key interactions that could be developed into synergistic integrations

(Martinez-Hernandez et al., 2017).

The integrated WEAP and LEAP systems use a hidden internal linking mecha-

nism to interact with one another. In each system, a table specifies the mappings

between the WEAP and LEAP scenarios and time granularities for given projects.

Two restrictions must be satisfied for this connectivity. First, both projects must

have the same start and end years for a simulation. Second, both projects must have

a matching set of time-steps (e.g., monthly and daily); otherwise, some data will be

lost. After establishing the connection, a system has access (via the equations/ex-
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pressions) to read the Data and Result variables of different entities from the other

system.

The WEF Nexus Tool 2.0 is a web-based tool for guiding resource allocation at

the country level, for a given level of food self-sufficiency, and a set of technologies,

land uses, and resource availabilities (Daher & Mohtar, 2015). The modeling steps

in the tool start by defining the scenarios, then quantifying the flows of matter and

energy between the three nexus areas. The tool provides seven outputs (total water

requirement, total land requirement, local energy requirement, local carbon footprint,

financial cost, energy consumed through import, and carbon emissions through im-

port) based on the user-defined scenarios to calculate an overall sustainability index

(for scenario comparison). Unlike the CLEW framework, the WEF Nexus Tool 2.0

allows the user to factor economic modules into the scenarios (Kaddoura & El Khatib,

2017).

The Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (Mu-

SIASEM) is an open framework that aids in determining the feasibility and desirabil-

ity of socioeconomic systems. It uses Complex System Theory concepts (multi-scale

accounting, multi-purpose grammar, impredicative loop analysis) and Bioeconomic

concepts (flow-fund model) to simultaneously assess technical, economic, social, de-

mographic, and ecological variables (to normalize and analyze data from different

hierarchal scales, such as national and sub-national levels). The MuSIASEM frame-

work can be used for diagnostics (a snapshot of a society’s current metabolic process)

or simulations (analysis of possible scenarios from the perspectives of feasibility, vi-

ability, and desirability). Furthermore, forecasting is not possible using MuSIASEM

because it does not calculate benefits and costs neither provide typical technical vari-

able outputs over time.
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According to the research done by Dargin et al. on the FEW tool’s complexities

(significant data requirements and resource intensity), tools receiving higher complex-

ity scores (e.g., CLEW, MuSIASEM, WEAP, and LEAP), while being able to capture

details to specific resource interactions, are unable to cover a larger number of interac-

tions and system components simultaneously, as compared to lower complexity score

tools (e.g., WEF Nexus Tool 2.0) (Dargin et al., 2019). While many studies aim

to develop new methods and frameworks to comprehensively assess different nexus

scopes, none can or do provide a singular framework for performing the WEN nexus.

Two comprehensive studies focusing on water and energy for the Phoenix AMA

were carried using the WEAP and LEAP systems. In one study, five possible future

scenarios were developed and analyzed for the 2010-2060 period (Guan et al., 2020).

In the other study, four possible forecasts of the future energy demand and supply

are generated for the 2019-2060 period (Mounir et al., 2019). These research findings

underscore the importance of modeling and understanding water and energy systems

interactions flexibly and at high fidelity.

3.3 WEAP-LEAP Internal Linkage

From a model coupling perspective, From a model coupling perspective, the

WEAP and LEAP systems have an internal linking mechanism established in 2012

that can bi-directionally share data to read variables from one to another. As shown

in Figure 3.1, in each system, a table is displayed in a form to specify mappings be-

tween the WEAP and LEAP scenarios and time granularities for given projects. Two

restrictions must be satisfied for this connectivity. First, both projects must have the

same start and end years for a simulation (same time interval). Second, both projects

must have a matching set of time-steps, e.g., monthly and daily (same time granular-

ity). Otherwise, some data may be lost during the coupling. After establishing the
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connection, a system has access (via the expressions) to read the Data and Result

variables of different entities from the other system.

(a) (b)

Figure 3.1: WEAP/LEAP’s Component Data Schema. (a) Internal Linkage Map-
ping in the WEAP System. (b) Internal Linkage Mapping in the LEAP System.

The WEAP and LEAP systems can bi-directionally share data with one an-

other. Each system can read the Data and Result variables of different entities

from the other system. The path to an entity and a specific variable must be de-

fined via form wizards (in the tree view for the entities and the list view for the

variables) or by writing the expression via text wizards. Paths are difficult to de-

fine using wizards when the user wants to manipulate more than one variable from

another system for a variable in another system. Users must know the details of

the models in the WEAP and LEAP systems. Using the wizards becomes increas-

ingly more challenging as the scales of the water and energy models increase. The

“WEAPValue(entityPath:variableName[unitName])” function needs to be defined in

a LEAP model for accessing a variable in the WEAP model. And, the “LEAP-
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Value(entityPath:variableName[unitName])” function needs to be defined in a WEAP

model in the same way for accessing a variable in the LEAP model. All algebraic

equations, some of which can be complex, must be defined in the expression part of

the variable of the destination model. Defining a variable in a water model to use

variables from multiple entities in an energy model is cumbersome. Defining paths

between an energy model with many variables that use many variables in a water

model becomes complicated and error-prone.

The variables in the WEAP and LEAP models can be mapped to one another

using the time resolution types I, II, and III shown in Figure 3.2. The arrow directions

in the figures signify the data of a target time-step/time-slice is read from the data

of source one. Also, it is supposed that the first time-step/time-slice is mapped

to the first time-slice/time-step, the second time-step/time-slice to the second time-

slice/time-step, and so on in the WEAP-LEAP Internal Linking form (see Figure 3.1).

For the Type I time resolution, both variables have the same number of time-steps

and time-slices in the WEAP and LEAP systems, respectively. Figure 3.2a shows

that the time resolution for the water and energy models are the same. For the Type

II time resolution, one of the variables (from the WEAP or LEAP) has a smaller

time resolution, and the variable with the smaller time resolution reads the variable

with a larger time resolution from the other system. In Figure 3.2b, the variable X

in the LEAP model with yearly time-slice is read by the variable Y in the WEAP

model with n time-steps. As a result, the x1 variable is used by all time-steps for

values y1,y2,. . .,yn of variable Y . From a yearly perspective, the value x1 which is for

the whole year of the variable X in the LEAP system is multiplied by n for variable

Y in the WEAP system. This problem can be solved by applying a distribution

on a smaller time resolution. For example, by dividing the x1 by n on the WEAP

side in Figure 3.2b for uniform distribution. For the Type III time resolution, one
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of the variables (from the WEAP or LEAP) has a smaller time resolution, and the

variable with a smaller time resolution is read by the other variable. In Figure 3.2c,

the variable Y in the WEAP system with n time-steps is read by the variable X in

the LEAP system with yearly time-slice. The value of the first time-step of variable

Y is read by the variable X and the remaining values yi (i = 2, . . . , n) are ignored.

This restriction cannot be removed using the WEAP-LEAP internal linking, and

some data is lost. A well-defined specification is presented in the proposed coupled

WEAP-LEAP framework for all types of interactions in the WEAP-LEAP internal

linkage (based on the time resolutions).

Defining the time granularity for the water and energy models has an important

distinction in the WEAP and LEAP systems. The time-step in the WEAP system

divides a year into a finite equal number of segments, for example, yearly (one step per

year), monthly (12 steps per year), or daily (365 steps per year). Unlike time-steps,

the time-slices must be defined one by one by the user, and the size of the segments

can be different; however, the aggregation of time-slices must cover the whole year.

For example, the first time-slice can cover the first three months of a year, and the

next time-slice can cover the rest (9 months).

Domain experts and researchers widely use the coupled WEAP and LEAP tools

for WEN analyses (Howells et al., 2013). The WEAP and LEAP models’ scenarios

and time granularities must be mapped for given projects. Some restrictions must be

satisfied for this connectivity. First, both projects must have the same start and end

year for the simulation. Second, both projects must have a matching set of time-steps,

e.g., monthly or daily (see section 5 of (Fard & Sarjoughian, 2020) for more details).

Third, WEAP and LEAP systems must be installed on the same machine. Forth, the

WEAP and LEAP tools must be executed manually and sequentially. After coupling

the WEAP and LEAP systems, they can bi-directionally share data. Nevertheless,

53



(a)

(b)

(c)

Figure 3.2: The Interaction Types in the WEAP-LEAP Internal Linking, Based
on the Time Granularity. (a) Type I: Same Time Resolution for WEAP and LEAP
Models. (b) Type II: Larger to Smaller Time Resolution for WEAP and LEAP
Models. (c) Type III: Smaller to Larger Time Resolution for WEAP and LEAP
Models.
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users must know all details of the defined water and energy models in the WEAP

and LEAP systems. Any changes in one system need strict consideration in the other

system. In the WEAP-LEAP Internal Linking, the modeler must decide and manually

execute data exchanges between the water and energy models. After the WEAP-

LEAP Internal Linking, the execution of each system depends on the execution of

the other one because a system may generate some data (as the output) which are

used by the other system. All the input data for the whole simulation interval (from

the start year to the end year) must be ready before simulation execution in the

WEAP or LEAP systems. Also, all output results are generated after the simulation

execution (before the execution, they are zero).

Consider a situation where each model reads the output of the other model as

its input. Initially, both models have some data as their inputs and zero values as

their outputs. Then, the modeler must manually execute either the water or energy

model first. Consequently, the first model reads zero values (outputs) from the second

model and generates its own results. Then, the second model is executed and read

the outputs of the other system (which can be non-zero values). In this proposed

coupled WEAP-LEAP framework, the order of data transformations is defined in the

interaction model and supported with automated execution.

3.4 Developed Frameworks Based on the KIB Approach

Regarding the realization of the KIB approach, an interaction model is presented

for composition between the DEVS and Composable Cellular Automata (CCA) mod-

els at formalism, system architecture, and model execution levels (Mayer, 2009). The

interaction model is exemplified using an agent-environment hybrid model using the

DEVS formalism to model the agents and the Geographical Resources Analysis Sup-

port System (GRASS) to model the environment. Another example of this interaction
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model is implemented for modeling long-term dynamics of complex socio-ecological

systems using stochastic land-use modeling coupled with the landscape evolution

model (for land use, water, and landscape) (Barton et al., 2010). Continuing this

context, a discrete-event composable cellular automata (CCA-DEVS) framework is

proposed to compose discrete-time CCA and parallel DEVS models at the I/O level

(C. Zhang et al., 2020). The DEVS-Suite simulator supports the modeling and simu-

lation of CCA-DEVS models with complementary run-time textual and 2D displays

(i.e., time-based input, state, and output trajectories). This approach can help better

understand cell-to-cell and CCA-to-CCA interactions to develop alternative or bet-

ter designs for compositions of multiple cellular automata. The interactions between

CCAs in the CCA-DEVS framework can be modulated in terms of data transforma-

tions, control schemes, distributed execution, and spatiotemporal granularity.

In another research, the Geographic Knowledge Interchange Broker (GeoKIB)

is proposed as a mediator to regulate unidirectional interactions between composed

geographical models (Boyd & Sarjoughian, 2020). The GeoKIB performs the basic

operations required of interaction models while providing functionality that facilitates

spatial operations. Different input and output data types are supported using passive

or active data transmission. Synchronization of time-tagged input and output values

is possible via connections to shared simulation clocks. Using the GeoKIB, a spa-

tial conversion algorithm can transform a two-dimensional geographic data map to

another region (probably with different map cell sizes and boundaries). Indeed, the

GeoKIB was designed to compose simulations that use the GRASS GIS system. A

composition of a cellular automaton model (to represent changes to a geographic area

over time) and an agent-based model are developed to demonstrate the functionality

of the proposed approach. The interaction model presented in this article is based
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on a formal specification. In contrast, the GeoKIB is grounded on object-oriented

principles.

A framework using the KIB approach was developed for composing distinct models

of the DEVS, Model Predictive Control (MPC), and Linear Programming (LP) mod-

els in the semiconductor manufacturing supply-chain systems (Huang et al., 2009).

This framework provides a set of suitable message mappings and transformations.

A causal parallel execution protocol with logical time synchronization was devised

and used to develop a prototype distributed simulation framework for DEVSJAVA,

MATLAB, and OPLStudio (linear optimization tool) tools. The interaction model

can be defined using an XML file (unlike the design in this article which models can be

defined using REST APIs and programming languages). Another example of imple-

menting the KIB approach for supply-chain systems is the Optimization, Simulation,

and Forecast (OSF) platform (Smith, 2012). The optimization and simulation mod-

els are developed in the OPLStudio/CPLEX (an optimization engine to develop LP

models managed by IBM) and the DEVS-Suite simulator. The OSF also improved

the structure of the XML file to create a multi-echelon model for better usability and

scalability.

3.5 Interoperability

The High-Level Architecture (HLA) represents a major advance in Modeling &

Simulation methodology as a standard mandated by the U.S. Department of Defense

(DoD) to promote simulation interoperability and reuse (Dahmann et al., 1997). It

provides the specification of a common technical architecture for reuse and inter-

operation (interoperability) across simulations. The baseline definition of the HLA

includes the Rules, the Interface Specification, and the Object Model Template. An

HLA-based architecture must have modular components with well-defined function-

57



ality and interfaces. Further, it must separate the functionality needed for individual

simulations from the infrastructure required for interoperability among simulations

(Dahmann et al., 1997).

There is a fundamental distinction between the Composability of Models and

Interoperability of Simulations viewed from the theory of modeling and simulation

on the one hand and HLA standardization on the other hand (Sarjoughian & Zei-

gler, 2000). The execution of a model over time is understood as the simulation.

While modeling targets the abstraction level (conceptualization), simulation chal-

lenges mainly focus on the implementation level. Interoperability allows exchanging

of information between the simulations. Composability ensures the consistent repre-

sentation of truth in all participating simulation systems of the federation. In other

words, Interoperability is enabling interactions through common interfaces based on

common conceptual models and shared context, whereas Composability is a shared

understanding between components of their behavior. There are standards that focus

on Interoperability, such as Basic Model Interface (BMI) (Hutton et al., 2020) and

Open Modeling Interface (OpenMI) (Harpham et al., 2019).

The BMI is a library specification created by the Community Surface Dynamics

Modeling System (CSDMS) to facilitate the conversion of a model or dataset into

a reusable, plug-and-play component. Recall that, in this context, an interface is

a named set of functions with prescribed arguments and return values. The BMI

functions make a model self-describing and fully controllable by a modeling framework

or application. By design, the BMI functions are straightforward to implement in any

language, using only simple data types from standard language libraries. Also, BMI

functions are noninvasive. This means that a model’s BMI does not make calls to

other components or tools and is not modified to use any framework-specific data

structures. A BMI introduces no dependencies into a model, so the model can still be
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used in a stand-alone manner. While a BMI can be written for any language, CSDMS

currently supports five languages: C, C++, Fortran, Java, and Python. BMI allows

the model code to be externally controlled and the variables to be exchanged at

runtime (“BMI-2 Documentation”, 2022).

Jiang et al. (Jiang et al., 2017) published environmental models as RESTful web

services using the BMI and then integrated these services within the CSDMS frame-

work. The Componentized WEAP RESTful framework will be explained in the next

chapter. Comparing BMI with our research, the BMI functions have the same role as

Componentized WEAP services. Also, the Componentized WEAP REST APIs are

comparable with the web service-based version of the BMI (Jiang et al., 2017). There

is one-to-one mapping between some of the BMI functions and the Componentized

WEAP REST APIs (consequently, with the WEAP APIs). Some BMI functions do

not have any equivalent API in the WEAP system due to WEAP’s characteristics/at-

tributes for water modeling and simulation. Different WEAP entities with their input

and output variables and their data can be extracted and mapped to the BMI func-

tions. The WEAP models are developed in 2D geographically, so the BMI functions

regarding the Z axis are not meaningful in the WEAP system.

The OpenMI is an interface standard and consists of a core group of requirements

and optional extensions. The core is fragile and defines the requirements for describing

components and the data they can exchange, linking, and exchanging data; extensions

deal with the more sophisticated data exchange requirements, such as the TimeSpace

extension. The purpose of the core and extension concept is to allow for the future

incremental development of the OpenMI. The original intention behind OpenMI was

to provide a standard method that could be applied to independent numerical model

components and allow them to exchange data while running.
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The key feature of the standard is to enable the creation of links between com-

ponents, where a link matches a variable in one component with its equivalent in

another. These variables are referred to as either input or output exchange items.

Related to the links are the GetValues and SetValues calls. These calls enable com-

ponents to obtain/get the values of a variable from one component or change/set

them in another. Bi-directional links are also possible. In the OpenMI context, the

Adaptor element handles unit transformations and differences in model temporal and

spatial transformations (e.g., vector/raster/non-spatial).

Many existing works tried to dynamically exchange data among web services using

a legacy component-based framework. For example, Goodall et al. (Goodall et al.,

2011), Castronova et al. (Castronova et al., 2013), and Gao et al. (F. Gao et al.,

2019) developed OpenMI-compliant components to act as a client that is responsible

for handling data transfers to and from the model service and then integrated the

component using OpenMI framework.

3.6 Simulation Verification & Validation

Verification and Validation (V&V) are two distinct but complementary processes

in modeling and simulation (Helton, 1993). Verification ensures that a simulation

model is implemented correctly and free of errors (Yaung et al., 2014). Validation

ensures that the model is an accurate representation of the real-world system being

simulated (Oberkampf & Trucano, 2002; Roache, 1998). Both verification and vali-

dation are processes that accumulate evidence of a model’s correctness or accuracy

for some specific scenarios; thus, V&V cannot prove that a model is correct and ac-

curate for all possible scenarios, but, rather, it can provide evidence that the model

is sufficiently accurate for its intended use (Thacker et al., 2004). It is important to

note that verification and validation are ongoing processes that should be conducted
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throughout the development of the simulation model (Sargent, 2010). Quantifying

the confidence and predictive accuracy of model calculations provides the decision-

maker with the information necessary for making high-consequence decisions. The

expected outcome of the model V&V process is the quantified level of agreement be-

tween experimental data and model prediction, as well as the predictive accuracy of

the model.

Model V&V fundamentally differs from software V&V. Code developers develop-

ing computer programs perform software V&V to ensure code correctness, reliability,

and robustness. In model V&V, the end product is a predictive model based on

the fundamental physics of the problem being solved. In all applications of practical

interest, the calculations involved in obtaining solutions with the model require a

computer code. Therefore, engineers seeking to develop credible predictive models

critically need model V&V guidelines and procedures (Thacker et al., 2004).

There are different methods to verify and validate a simulation model, such as:

• Code review : This method involves a thorough examination of the simulation

code to ensure that it is correct and that it accurately represents the system

being simulated (Kenney, 2017).

• Unit testing : This method involves the testing of individual components of the

simulation code to ensure that each component functions correctly (Kenney,

2017).

• Software testing : This method involves the testing of the simulation code as a

whole to ensure that it functions correctly and produces the expected output

(Kenney, 2017).

• Sensitivity analysis : This method involves varying the inputs to the simulation

model and analyzing the resulting outputs to determine the sensitivity of the
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model to changes in input parameters (Helton & Davis, 2003; Wainwright &

Sivilotti, 2018).

• Statistical analysis : In this method, statistical tests are used to verify the model.

The output of the model is compared with the statistical properties of the

system, such as mean, variance, and correlation. If the output of the model

matches the statistical properties of the system, then the model is said to be

verified (Law & Kelton, 2000).

• Analytical V&V : In this method, the model is verified and validated using

mathematical analysis or analytical techniques. This method is useful when the

model has a closed-form solution or when the behavior of the system can be

predicted mathematically (Bhatnagar & Narang, 2014).

• Expert review : This method involves the review of the simulation model by

experts in the field to ensure that it accurately represents the system being

simulated (Banks, 1998; Khosrowjerdi, 2020).

• Cross-Validation: In this method, a dataset is split into two or more subsets,

and the model is trained on one subset and tested on the other subset. This

helps to estimate the performance of the model on unseen data (Kohavi, 1995).

• Experimentation: Validation can also be achieved through experimentation, in

which the simulation model is compared with data obtained from experiments

conducted on the real-world system being simulated. If the experts agree that

the model is correct, accurate, and relevant, then the model is said to be verified

(Wainwright & Sivilotti, 2018).
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• Visual Inspection: In this method, the data is visually inspected for any anoma-

lies or inconsistencies. This can help to identify data errors, such as incorrect

labels or mislabeled data (Tukey, 1977).
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Chapter 4

WEAP AND LEAP COMPONENTIZATION DESIGN & IMPLEMENTATION

The WEAP and LEAP systems are used as the primary tools for modeling and sim-

ulating water and energy management under different socio-economic and climate

scenarios for regions including South Africa, China, Greece, Benin, and Pakistan

(Amin et al., 2018; J. Gao et al., 2017; Höllermann et al., 2010; Lévite et al., 2003;

Psomas et al., 2016). This suggests that the WEAP and LEAP system’s componen-

tization can help combine these and other simulations with separate simulations for

agriculture, climate, and land systems. Given the related works highlighted before,

the Componentized WEAP and LEAP are tools built using the RESTful SOA archi-

tecture, and the data cube structure (see Figure 2.8) allows integrating it with other

tools for simulating the FEW-Nexus.

In the rest of the dissertation, a simple WEN example is used to exemplify the

concepts and ideas. The WEN example is presented in the following frame to make

it distinguishable from the conceptual sections.

WEN Example

As a simple example, Figure 4.1 illustrates a schematic water-energy model of a

prototypical region. Each part in this water-energy model has a level of detail given

its exact counterparts. Given their use for understanding and supporting decision

policies, the water and energy models satisfy some primary, high-level constraints

individually and relative to one another. In Figure 3, the “Farm” needs 0.2hm3

(1hm3 = 1, 000, 000m3) of water and 5GWh of electricity per year. The required water

for the “Farm” is supplied from an aqueduct (i.e., “Canal 2”) through a pumping and
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treating station with an energy intensity of 7kWh/m3 (i.e., “Pump 2”). The required

energy for the whole model is generated by a coal power plant that diverts (for its

operation) water from the river (i.e., “Canal 1”) through a pumping and treating

station with an energy intensity of 4kWh/m3 (i.e., “Pump 1”). The objective is

to model the interactions between the water and energy systems to satisfy their

constraints. The water system has two suppliers and two demands, and the energy

system has one supplier and three demands (the “Farm” is a demand in both water

and energy systems).

Figure 4.1: A Schematic View of a Region with Common Types of Water and
Energy Systems.

Suppose having seasonal time granularity for the water mode and yearly time

granularity for energy model, the Formulas 4.1, 4.2, and 4.4 show the data trans-

formations between the systems. The year property can be between the start-year

and end-year of the simulation. The required energy for “Pump 1” equals the sum of

the Flow in “Canal 1” in all seasons of a year, multiplies by 0.004 (see Figure 4.1).

The same formula applies for the required energy in “Pump 2”, but with different

constant factors (i.e., 0.007). Finally, formula (4) shows that the required water for

the “Power Plant” entity is calculated by dividing the generated electricity by four

(number of seasons in a year), and then multiplies by 4.5 (see Figure 4.1).
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Required EnergyyearPump 1 = (
∑

1≤ts≤4

Flowts,year
Canal 1)× 0.004 (4.1)

Required EnergyyearPump 2 = (
∑

1≤ts≤4

Flowts,year
Canal 2)× 0.007 (4.2)

Generated ElectricityyearPowerP lant = Required EnergyyearPump 1+

Required EnergyyearPump 2 +Required EnergyyearFarm

(4.3)

Required WateryearPowerP lant = (
Generated ElectricityyearPowerP lant

4
)× 4.5 (4.4)

Figure 4.2 illustrates the developed models in the WEAP and LEAP tools for the

presented water and energy systems in Figure 4.1 (suppose ignoring the different time

granularity in the systems and using the WEAP-LEAP internal linkage). The water

model has two River, two Transmission, and two Demand Site entities. The energy

model has one Resource, one Transformation, and three Demand entities. Based on

the Formulas 4.1, 4.2, and 4.4, the solid red (reading Electricity values) and dotted

blue (reading Flow values) arrows between the water and energy models present

the direct inter-connection among the systems (without using a separate interaction

model).

The “PowerPlant” demand site entity in the WEAP model needs to know the

amount of generated Electricity by the “PowerPlant” transformation entity in the

LEAP model. The “Pump1” and “Pump2” demand entities in the LEAP model need

to know the amount of Flow in the “Canal1” and “Canal2” transmission link entities

in the WEAP model. The required amount of water for the “Farm” demand site

entity in the WEAP model (which is 5000kWh/year), and the required amount of

energy for the “Farm” demand entity in the LEAP model (which is 200, 000m3/year)

66



Figure 4.2: A Defined Model for the Exemplar Wen Model in the WEAP and LEAP
Systems and Their Direct Inter-connections.

are set as constants in the corresponding models. Using the data-sharing approach,

the formulas and constraints presented in Figure 4.1 must be calculated and satisfied

inside the WEAP and LEAP models (usually in the target system). In other words,

the energy model must read the Flow values from the water model to apply the

conversions and check the constraints (the same scenario for reading Electricity values

from the energy model by the water model). In addition to the constraints in using

the WEAP-LEAP internal linkage mechanism, changing and maintaining the WEN

model would be cumbersome due to the direct and strong dependency between the

connected models.

4.1 Web-Service Framework for the WEAP System

According to the constraint for using the JavaScript language (to invoke Automat-

ing the use of WEAP APIs (SEI, 2022d)) and the difficulties of using XML-based

protocols (extensive code development to create XML structure) (Tihomirovs & Gra-
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bis, 2016), the RESTful framework is used to implement the web-service framework

for the WEAP system.

4.1.1 Models of the WEAP Entities

To componentize the WEAP system, the entities that are included in the WEAP

system with their data are mapped to components using the Ecore Modeling Frame-

work (EMF) (Budinsky et al., 2004; Steinberg et al., 2008). The Ecore meta-model is

used to model the WEAP entities at an abstract view without specifying their func-

tions. At this abstraction level, the data structure of different WEAP sections, enti-

ties, variables, and the relationship among these parts are modeled. The specification

in Figure 4.3 is defined using the EClass, EAttribute, EDataType, and EReference

elements of the Ecore meta-model diagrams. It is important to note that the WEAP’s

APIs expose the scope and functionality of the componentized entities defined for the

WEAP framework (SEI, 2022a). For example, it is not possible to add new variables

for any entity via WEAP’s API; thus, adding these variables must be achieved by the

user within the WEAP system (see Figure 2.5b).

In Figure 4.3, the WEAP class has various projects, each associated with a

geographic area. Each Project has its configuration (name, startYear, endYear,

timeStepPerYear, and so on), which are mapped to the properties in Figure 2.4. The

Node and Link are two abstract classes that are detailed in the following sections.

The WEAP, Project, Version, and Scenario are concrete classes. These correspond

to the entities in the WEAP system which instantiate a specific domain model in the

WEAP RESTful framework. The remaining abstract and concrete classes are helpful

for the design to be simple yet flexible.

A simulation model in the WEAP system has a structure defined by the modeler,

but the behaviors for the specialized node and link entities are predefined. The date
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Figure 4.3: Ecore Specification to Model WEAP’s Entities, Variables, and Data.

specified in a scenario is needed to simulate some aspects of a water system. Every

project has at least one scenario, the Current Accounts, which provides a snapshot of

actual water demand, pollution loads, resources, and supplies for the system (Sieber

et al., 2005). It is used to define the initial data for the inputs at the start of a

simulation. The hierarchical structure of scenario data in the WEAP system does

not have any functional role. Each data for a scenario is independent of any other

scenario data (see our perspective about the data in Figure 2.8). Also, every project

has at least one version (refer to the creation time of the project). The name property

is the key attribute in the Project, Scenario, Variable, Key, and Node classes (see

Figure 4.3). The key for the Version class is the concatenation of its properties

(date and name). The Componentized WEAP RESTful framework has a complete

set of model components that cover all the entities and variables in the Schematic,

Data, and Result views of the WEAP system (see Figure 2.5). The derived model

components do not add any operations to those provided for the WEAP entities. The
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model components are categorized into the Node and Link types according to their

properties (see Figure 4.3). Each Link has one source node and one target node.

All model components have some input and output variables (see Figure 4.3). The

WEAP system has some predefined entity variables and equations. New variables and

equations may be added by users as needed. For each variable, one or more intervals

are defined per scenario, and each interval can have many data values (a value repre-

sents a specific time-step of a year). The Variable class has a unique name property

as the key with the unit, timeScale, isReadOnly, min, and max properties. A variable

can have just one value per year if the timeScale property sets to “Annual”, or it can

have multiple values (the number of values should be equal to the timeStepPerYear

property in Project class) if timeScale sets to “TimeStep”. The value of an input

variable cannot change if the isReadOnly property is set to “True”. The properties

min and max place constraints on the acceptable values for a variable. From a higher

abstraction view shown in Figure 4.3, the Node and Link classes with their input and

output variables define the structure of a model.

The Componentized WEAP RESTful framework has the same schema (a generic

view) for all the WEAP entity types (e.g., Demand Site, Catchment, and Transmission

Link) and their variables. For example, a catchment can have a different set of input

variables based on its selected simulation method (such as Rainfall Runoff, Irrigation

Demand Only, and MABIA), and the Componentized WEAP framework presents

a set of input variables (see Figure 4.3) for this entity at a high abstraction level.

Thus, two catchments in a project can have different sets of input variables. The

Variable, ScenarioData, Scenario, Interval, and Data classes with their relations

define the overall input data and output result for a model in the Componentized

WEAP RESTful framework that mirrors those defined in the WEAP system.
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As shown in Figure 4.4, different nodes (correspond to the entities in Figure 2.5a)

are inherited from Node, Flow, or ReachPoint abstract classes. The River and

Diversion nodes have some sub-nodes, which are an ordered collection of reach

point nodes. Consequently, a variable of a flow entity can have different values in

its reach points. As shown in Figure 4.5a, the WEAP system has three link entities

(Transmission Link, Return Flow, and Runoff ). Each link starts from a node and

ends at another node with some constraint for the source and target nodes based on

the link type (Sieber et al., 2005). The allowable source and target nodes for the

Transmission Link, Return Flow, and Runoff classes are shown in Figures 4.5b,

4.5c, and 4.5d, respectively. Each of the entities has its input and output variables

and data (see Figure 4.3).

4.1.2 Mapping Componentized WEAP Models to a RESTful framework

The model components of the WEAP system are the actual resources in the

Componentized WEAP RESTful framework, so a well-defined structure for the URL

needs to be present to operate on the resources (ACIMS, 2022b). The data needed for

the RESTful framework is in JSON format. The RESTful API categories are Project,

Version, Key, Node, Link, and Flow. In the pattern of the URLs, constants are written

in PascalCase style; parameters start with colons and are written in camelCase style;

query parameters (to apply to some filters on returned data) written after the question

mark by Key=Value (camelCase style for the Key part). The retrieve, insert, update,

and delete operations for each URL are supported with the HTTP GET, POST, PUT

and DELETE methods, respectively.

The URL patterns for six API types are shown in Table 4.1. The pattern inside

each open and close pair bracket is optional. The appropriate types are presented

in Table 4.2. There is a mapping between the URL patterns in Table 4.1 and the

71



Figure 4.4: Ecore Specification for the Node Entities in the WEAP RESTful Frame-
work.
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(a)

(b)

(c)

(d)

Figure 4.5: Specified Ecore Models for the WEAP Link Entities. (a) Three Link
Types in a WEAP Model. (b) Source and Target Nodes for a Transmission Link
Entity. (c) Source and Target Nodes for a ReturnFlow Entity. (d) Source and Target
Nodes for a Runoff Entity.
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Ecore specifications in Figure 4.3, Figure 4.4, and Figure 4.5. All URLs start with the

constant “/Water”, which refers to the WEAP class shown in Figure 4.3. For example,

calling “/Water” returns the name of all projects (an array of string) corresponding to

the composite relation from the WEAP class to the Project class in Figure 4.3. When

a project is selected using the :projectName parameter, the project configuration

information can be read or changed depending on the URL’s method. Finally, a model

(e.g., demo) can be executed using the URL “/Water/demo/Run”. The Version

saves the project in different timestamps. The list of versions can be retrieved using

the URL “/Water/demo/Version”. The project reverts to a specific version (e.g.,

20200820-test) using the URL “/Water/demo/20200820-test/Revert”.

In the patterns for the Node, Link, or Flow categories in Table 4.1, the constant

types must be replaced by one of the values in its corresponding type in Table 4.2.

The name of a Node or Flow, and the names of the source and target nodes of

a Link are used to select a component. For example, the URL “/Water/demo/

DemandSite/phoenix” returns the phoenix demand site’s data of the demo project.

The VariableType in the URL patterns must be replaced by the “Inputs” or “Out-

puts” (refer to the Data or Result variable in the WEAP system). The data of a

variable can be retrieved by mentioning the name of the variable and the intended

scenario. The expression of a variable can be retrieved by adding the Expression

constant in the URL. Query parameters can be used to filter the returned data (the

years and time-steps). In the Flow URLs, the subNodeType must be replaced with

the corresponding value in Table 4.2 (the reference properties in Flow abstract class

in Figure 4.4) to access a specific collection of sub-nodes, and then use :subNodeName

to select one.

The “Weaping River Basin” project is one of the default projects in the WEAP

system, with 12 time-steps per year from 2010 to 2020 (Yates et al., 2005). Figure 2.5a
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Table 4.1: URL Signatures for Different Types of Componentized WEAP APIs.

Category URL Signatures

Project /Water[/:projectName[/Run]]

Version /Water/:projectName/Versions[/:versionName/Revert]

Key
/Water/:projectName/Keys[/:KeyName/:

scenarioName[/Expression]]

Node

/Water/:projectName/NodeType[/:nodeName[/VariableType[/:

variableName/:scenarioName[/Expression][?startYear=N&

endYear=N&startTimeStep=N&endTimeStep=N]]]]

Link

/Water/:projectName/LinkType[/:sourceName/:

targetName[/VariableType[/:variableName/:

scenarioName[/Expressi on][?startYear=N&endYear=N&

startTimeStep=N&endTimeStep=N]]]]

Flow

/Water/:projectName/FlowType[/:flowName[/subNodeType[/:

subNodeName]][/VariableType[/:variableName/:

scenarioName[/Expression][?&startYear=N&endYear=N&

startTimeSt ep=N&endTimeStep=N]]]]

shows the Schematic View of this project in the WEAP system. Figure 4.6a shows

the result of calling an API to get the rivers in the Weaping River Basic model. The

returned data is an array that contains three River objects. Figure 4.6b shows the

result of calling an API to get the data for the Annual Activity Level variable of

the West City demand site for the Reference scenario between 2010 and 2012. The

returned data is an array of Interval objects. The variable in this example has a

yearly time-scale, so the result has one instance of Data class (one pair of timeStep

and value). Using a variable with the TimeStep time scale will return 12 (due to the
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/Water/:projectName/FlowType[/:flowName[/subNodeType[/:subNodeName]][/VariableType[/:variableName/:scenarioName[/Expression][?&startYear=N&endYear=N&startTimeSt ep=N&endTimeStep=N]]]]
/Water/:projectName/FlowType[/:flowName[/subNodeType[/:subNodeName]][/VariableType[/:variableName/:scenarioName[/Expression][?&startYear=N&endYear=N&startTimeSt ep=N&endTimeStep=N]]]]
/Water/:projectName/FlowType[/:flowName[/subNodeType[/:subNodeName]][/VariableType[/:variableName/:scenarioName[/Expression][?&startYear=N&endYear=N&startTimeSt ep=N&endTimeStep=N]]]]
/Water/:projectName/FlowType[/:flowName[/subNodeType[/:subNodeName]][/VariableType[/:variableName/:scenarioName[/Expression][?&startYear=N&endYear=N&startTimeSt ep=N&endTimeStep=N]]]]


Table 4.2: Constants in the URL Signatures of Table 4.1.

Type Value

NodeType
Catchments, DemandSites, Groundwaters, Reservoirs,

OtherSupplies, WastewaterTreatments

LinkType Transmissions, Runoffs, ReturnFlows

FlowType Rivers, Diversions

VariableType Inputs, Outputs

subNodeType
Reaches, Reservoirs, RunOfRiverHydros,

StreamflowGauges, FlowRequirements

timeStepsPerYear value of the project in Figure 2.4) instances of Data class for each

year. Tree structures for the Node and Interval shown in Figure 4.6 are generated by

the Componentized WEAP RESTful framework.

4.1.3 Design and Implementation

The layered architecture of the Componentized WEAP RESTful framework is

shown in Figure 4.7. The dotted area indicates the server-side layers of this frame-

work. The “WEAP” system and the “File System” are placed at the framework’s

bottom layer. The externalized WEAP model components and their configurations

are stored in a CSV file. The “Data Access Objects” layer is responsible for ensuring

the consistency of the componentized models and their configurations at all times

with its WEAP system counterpart. Only this layer has direct access to the “File

System” and to the “WEAP” system via its APIs (SEI, 2022d). It can communicate

with any model that exists in the bottom layer (i.e., for creating and/or executing

WEAP models). The frameworks are supported by a local catching mechanism to

increase the performance of structure-related requests. It means that, given receiving
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(a) (b)

Figure 4.6: Result of Calling Componentized WEAP APIs. (a) Result of
Calling the URL= “/Water/Weaping River Basin/Rivers”. (b) Result of Call-
ing the URL= “/Water/Weaping River Basin/DemandSites/West City/Inputs/
Annual Activity Level/Reference?startYear=2010&endYear=2012”.

a request related to the structure of a model, the catching system is first checked.

Suppose the data is not in the catching system. In that case, it will be fetched from

the WEAP system and inserted into the catching system for the following requests.

All communications between the “Data Access Objects” and the “Web APIs”

layers are managed by the “Data Transfer Object” and “Service” parts (see Figure 4.3,

Figure 4.4, and Figure 4.5). The “Service” layer is responsible for communicating and

processing information about the WEAP entities (contained in the bottom layer) via

the componentized “Data Access Object” layer to the “Web APIs” layer. Every

Componentized WEAP model (which is identical to the WEAP system entities) can

be manipulated by an “API Caller” in an independent fashion. The “Web APIs” layer
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contains the web-server and controller parts (not shown in Figure 4.7) for handling

various client API requests.

Figure 4.7: Componentized WEAP RESTful Framework Layer Architecture.

Figure 4.8 illustrates the major packages of the Componentized WEAP RESTful

framework. The src package contains the packages that correspond to the layers

in Figure 4.7. The utilities package contains the constants, enums, helpers,

and factories packages. The controllers, services, and dataAccess packages

contain concrete classes and a sub-package for their interfaces.

Figure 4.8: Componentized WEAP RESTful Framework Package Diagram.
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Figure 4.9 shows the interfaces defined in the controllers/interfaces package

in Figure 4.8. The INodeController is the super class for all node-type compo-

nents (see Figure 4.4). It has 11 methods to get and/or set the properties of the

node, input and output ports/variables, and their relevant data and/or defined ex-

pression. The ILinkController, the super class for all link-type components, has the

same methods as defined in the INodeController, except a specific component can

be addressed using source and target names (instead of component name). For ex-

ample, ”getInputs(projName: string, source: string, target: string):

Variable[]“ defines to return all inputs of a link started from a source node and

ending at a target node. The IFlowController, the superclass for all components of

type Flow, is inherited from INodeController. It also has the same set of meth-

ods (defined in the INodeController) for sub-nodes components (ReachPoints,

Reservoirs, RunofRiverHydros, StreamflowGuages, and FlowRequirements; see

Figure 4.4). The Water (referring to the WEAP class in Figure 4.3), Project, Scenario,

Version, and Key controllers have their specific interfaces.

The services/interfaces package has the same set of interfaces (by changing

the term “Control” to “Service” in the name of the interfaces). Indeed, controllers

are responsible for getting the incoming requests on the web-server, validating their

parameters, and calling the appropriate methods from the service layer. A set of con-

crete classes (as the controllers) are defined in the services package. Each controller

implements its corresponding interface and has a relation to the relevant service.

Figure 4.10 presents the classes defined in the domains package of the Compo-

nentized WEAP RESTful framework to transfer data between different layers, and

define the structure of the returned data to the API’s caller. The Component class in

Figure 4.10 is an abstract class and the rest are concrete classes. This is a realization

of the Ecore specification defined in Figure 4.3, Figure 4.4, and Figure 4.5. There
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Figure 4.9: A Class Diagram of the Web APIs Interfaces of the Componentized
WEAP RESTful Framework.

are two composite relations in Figure 4.10 from the Water class to the Project class

and the Interval class to the Data class. Also, the source and target nodes for a

link are defined using two association relations from the Link class to the Node class.
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For brevity, the set(...) and get() operations are excluded from the classes in the

diagram.

Figure 4.10: A Class Diagram of the Data Transfer Object Models of the Compo-
nentized WEAP RESTful Framework.

Figure 4.9 shows the interfaces defined in the dataAccess/interfaces package.

The data access is designed based on a Fluent Interface design pattern. A Fluent In-

terface is an object-oriented API that relies extensively on method chaining and pro-
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vides more readable code. Thus, the “Inputs()“ method in the IAbstractNodeDao

in Figure 4.9 returns a list of variables, but the ”Input(name: string)“returns

IVariableDao object (by setting the port name). The NodeX, LinkX, and FlowX in

the method names of the ProjectDao must be replaced with corresponding node,

link, and flow entity types. As an example, Listing 4.1 contains two methods that

present how to set an input port expression, and how to get an output port data in the

DemandSiteService class. Calling the service methods always starts from WEAPDao

object, then goes to the ProjectDao object, and so on (in getting the output example,

going to the DemandSite, then Output, and finally calling the get() method).

Listing 4.1: setInputExpression and getOnput Methods in the
DemandSiteService of the Componentized WEAP RESTful Framework.

1 setInputExpression(projName: string , compName: string , portName:

string , scenName: string , value: string): boolean {

2 boolean res = new WEAPDao ()

3 .Project(projName)

4 .DemandSite(compName)

5 .Input(portName)

6 .Value(scenName)

7 .setExpression(value);

8 return res;

9 }

10

11 getOutput(projName: string , compName: string , portName: string):

Variable {

12 Variable res = new WEAPDao ()

13 .Project(projName)

14 .DemandSite(compName)

15 .Output(portName)

16 .get();

17 Return res;
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18 }

Figure 4.11: A Class Diagram of Interfaces in the “Data Access Objects” Layer in
the Componentized WEAP RESTful Framework.

A partial class diagram for the concrete classes of the “Data Access Objects”

layer is shown in Figure 4.12. This is a realization of the Ecore specification defined

in Figure 4.3. The AbstractNodeDao is a generic abstract class, and the rest are

concrete classes. Only one method is presented for each class in the diagram to show

the required parameters of the class constructor. The WEAPDao class is the entry point
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of the “Data Access Objects” layer to apply changes or retrieve information from the

WEAP system. The WEAPDao just has the weap attribute, which instantiates a WEAP

ActiveXObject (using winax library). The WEAPDao class implements the IWEAPDao

interface, retrieving a list of all projects and retrieving a specific project (using the

project name) by returning a ProjectDao object. The instantiated weap object in

the WEAPDao class always must be passed to other classes as a constructor’s parame-

ter in addition to other parameters (e.g., the name of the project in the ProjectDao

class or component type in the VariableDao class). The ProjectDao class imple-

ments the IProjectDao interface (see Figure 4.11). It has access to all nodes, links,

flows, scenarios, versions, and so on. (only the Demand Site, Reservoir, Scenario,

and Version are presented in the diagram). The AbstractNodeDao implements all

functions defined in the IAbstractNodeDao interface in a generic structure, and gen-

eralized classes (e.g., DemandSite, Catchment, Reservoir, and so on) define the

component type in their constructor. The relation between the classes is shown using

the association relation between them. For example, a project is accessible from the

WEAPDao class; a scenario, version, demand site, reservoir, etc. are accessible from

the ProjectDao; the input and output of a specific component are accessible from

the DemandSiteDao and ReservoirDao classes in Figure 4.12; the value of an input

or output is accessible from the VariableDao class.

A sequence diagram scenario for a client fetching the rivers of the Weaping River

Basin project is shown in Figure 4.13. This specification is devised to show a normal

(positive) sequence of messages among a select set of objects instantiated from the

classes shown in Figure 4.13. At the end of this scenario, the three rivers in the

Weaping River Basin project are identified. The incoming message 1 (RESTful API

request) by the cl object is processed by the ctrl object. Subsequently, in steps 2-4,

the svc, wDao, and weap objects are created. In step 5, the ctrl object parses an
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incoming request to extract some parameter of interest (e.g., a project name). Then,

message 6 is invoked on the svc object to find all existing rivers. The svc object

invokes message 7 on the wDao object. A pDao object is created and then returned to

the svc object. The svc object invokes message 9 on the pDao object for identifying

the rivers in the project. The pDao object invokes message 10 on the weap object,

which in turn finds the data for the rivers (SEI, 2022a). In the loop section, the riv

objects are created in step 11 using the returned array in step 10 (see Figure 4.4).

The properties of the riv object for each branch are updated in step 12. Finally, the

list of the created rivers is returned to the svc, ctrl, and cl objects. This scenario

depicts a complete cycle starting from a client application to the WEAP system and

ending at the client (see Figure 4.7).

The componentization of the WEAP system supports a higher degree of con-

trol for manipulating and simulating the water entity models (Fard & Sarjoughian,

2021a). The approach can help simplify the design of simulation experiments and

optimization studies that can be difficult using the scripting languages supported in

the WEAP system. The RESTful framework with the WEAP/LEAP componenti-

zation can lend itself to better support the development of customized tools. The

Componentized WEAP framework represents the defined model in the WEAP and

LEAP systems in a well-structured format. Figure 4.14 illustrates the data retrieving

in the Componentized WEAP RESTful framework. The process steps for a request

are shown by the numbers 1 to 5 in the diagram. The process starts with receiving

a request from the “API Gateway”. Based on received parameters (i.e., Entity Type,

Entity Name, and so on), a proper method from the “Componentization” part is

called to fetch data from a specific WEAP entity. Each entity has a list of variables

(e.g., V ariable1 to V ariablei of Entity1 in Figure 4.14). Also, the values of a variable

are specified according to the year, timestep, and scenario parameters (specified by

85



Figure 4.12: Class Diagram for the “Data Access Objects” Layer of the Componen-
tized WEAP Framework.
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Figure 4.13: Sequence Diagram to Get All Rivers of a Project via the Componen-
tized WEAP RESTful Framework.
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(y1,∆t1,s1) to (ym,∆tn, sr) for each variable in Figure 4.14). The data specified by

d1,1 to dm,n are real data type values. The “Componentization” part retrieves the

values of a variable one by one to create a list of values based on years and timesteps

(step 4 in Figure 4.14). Finally, the values will be converted to JSON format and

sent to the “REST API Caller”.

Figure 4.14: Data Retrieving in the Componentized WEAP RESTful Framework.

There are two approaches for the componentization process; Pre-Componentization

to componentize to entire water model before receiving any request, and Runtime-

Componentization to componentize the required parts of a model based on the re-

ceived requests at run-time. The first approach needs considerable time to compo-

nentize the whole model, whereas a small part of the model usually interacts with

other systems. Furthermore, sometimes the API needs a portion of the values related

to a variable (e.g., the first year of values). So, in this research, the Componentized

WEAP is developed based on the Runtime-Componentization approach. The Com-

ponentized WEAP can filter the interval of the data (from d1,1 to dm,n) for specific

years and/or timesteps (using the parameters of the API request). It also has some

APIs to control the model execution (i.e., configure, reset, and run the simulation).

The frameworks are supported by a local catching mechanism to increase the per-
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formance of structure-related requests. It means, given receiving a request related

to the structure of a model, the catching system is first checked. In the case of not

having the data in the catching system, it will be fetched from the WEAP system

and inserted into the catching system for the following requests. The water model

can be parameterized and executed, but its model structure cannot be changed using

the REST APIs (the water model must be defined inside the WEAP system).

4.1.4 File System

Time-series functions for the variables in theWEAP system do not allow specifying

time-step values for all years of the simulation (external CSV/Excel files must be

used). Figure 4.15 shows the file system structure used by the Componentized WEAP

framework to store the CSV files and use them with the entities in the WEAP system.

The Workspace folder is located next to the executable Componentized WEAP file.

Two inputs.csv and outputs.csv files, under the “Project Name” folder, are used

to configure the Min, Max, and TimeScale properties for the variables of the WEAP’s

entities. The data for variables are generated and stored in CSV files under the “Data”

folder. The required folder names, such as project name and component type, are

retrieved from the invoked URLs. The ReadFromFile function (defined in the WEAP

system) is used to refer to the CSV files (SEI, 2022d). The folder structure shown

in Figure 4.15 prevents any conflict of the data for different projects, components,

variables, and scenarios.

4.1.5 Performance Evaluation

Using a MILP Solver (LPSolve, XA, or Gurobi) for the WEAP system, or using

any other calculation methods for the entities (e.g., Catchment and Demand Site) do

not affect the execution of the entities (i.e., the Componentized WEAP framework
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Figure 4.15: The Componentized WEAP Framework File System Structure.

does not affect the execution time for any WEAP model). The execution time of the

componentized WEAP is higher than the standalone execution of the WEAP system

due to the computation time of the RESTful framework. Changes to any project

configuration and scenarios do not change the WEAP entities and their structure

(see Figure 4.3).

As described before, the WEAP system is closed-source software. The Automat-

ing WEAP scripting language supports the VB-Script, JScript, and Python lan-

guages to manipulate and execute WEAP models (SEI, 2022d). The Componen-

tized WEAP system’s time efficiency is evaluated against a JScript algorithm (i.e.,

non-componentized) for the “Weaping River Basin” example (one of the predefined

projects in the WEAP system). In both approaches, the simulated experiments have

identical set-up (i.e., properties and the values for the input variables are configured).

The executions of these simulations are not interrupted and are carried out by the

APIs. The Componentized WEAP RESTful framework requires additional steps for

identifying WEAP elements, constructing WEAP components, and de/constructing

data.

The elements of the “Weaping River Basin” model are 3 River, 2 Reservoir, 2

Groundwater, 6 Demand Site, 8 Transmission Link, 2 Wastewater Treatment Plant,

12 Return Flow, 1 Run of River Hydro, and 3 Flow Requirement entities. The model
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is configured for daily and monthly time-steps (12 and 365 steps per year). The

efficiency of the Componentized WEAP RESTful framework relative to its proprietary

counterpart for each model configuration is compared for a 30-year period (e.g., 2000-

2029) with 5-year intervals. Execution times are measured in seconds and averaged

over 10 replications. An isolated personal computer with 20 GB RAM and Core

i5 Intel CPU on Windows-10 64 bits is used for running all the experiments. The

execution times for different time intervals (from 2000 to 2030 with 5 years intervals)

in monthly and daily time-steps (12 and 365 steps per year) are collected for the two

experimentation settings. All execution times are in seconds and averaged over 10

replications.

Figure 4.16 shows the performance evaluations for the WEAP script and Compo-

nentized WEAP RESTful framework simulation experiments. There are slight differ-

ences between the componentized and no-componentized models. These differences

are due to the available system resources and the creation of the WEAP instance

using ActiveX and Winax. The execution times for the Script and Componentized

WEAP RESTful framework are shown in Figure 4.16a and Figure 4.16b for monthly

and daily time-steps, respectively. Table 4.3 and Table 4.4 present the minimum, av-

erage, maximum, difference, and average data execution times for monthly and daily

scenarios. The Min, Max, and Dif data show expected variations in the execution

times of the Script and RESTful framework.

Figure 4.16c shows the overhead of using the Componentized WEAP RESTful

framework for daily scenarios for a 30-year simulation period with data collected

every 5 years. For each year, the times are the time belongs to the componentization.

For example, just 10 seconds of 279.9 seconds (see Table 4.4) for a 30-year simulation

scenario belongs to the componentization, and the rest is the execution time of the

WEAP system. For this configuration, the computation times in Figure 4.16c is the
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maximum overhead of the componentization for the “Weaping River Basin” model.

The execution times reduce as less data is retrieved (see Figure 9). The execution

overhead changes linearly from 0.1 to 10 seconds for a one-year to 30-year simulation.

This trend has a direct relation to the number of time-steps per year of the simulation

period. For example, the extra computation time for the monthly time-step for the

30-year simulation (30 × 12 = 360 timestamps) is almost the same for the daily

time-step for a one-year simulation period (1× 365 = 365 timestamps).

(a) (b)

(c) (d)

Figure 4.16: The Componentized WEAP RESTful Framework Performance vs.
WEAP Script Evaluation. (a) Total Execution Times (Monthly Time-steps). (b) To-
tal Execution Times (Daily Time-steps). (c) Componentized WEAP RESTful Frame-
work Overhead (Daily Time-steps). (d) Componentized WEAP RESTful Framework
Overhead in Comparison to the WEAP Script.

The impact of componentizing the WEAP on the total time for simulation studies

is negligible. Figure 4.16d presents the overhead percentage in using the Componen-
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Table 4.3: The Execution Times (Monthly Time-steps) Using the Componentized
WEAP RESTful Framework and the WEAP System Script.

End Year
Script Framework

Min Max Dif Ave Min Max Dif Ave

2000 1.1 1.3 0.2 1.2 1.2 1.4 0.2 1.3

2004 3.1 3.5 0.4 3.3 3.3 3.6 0.3 3.4

2009 5.3 5.5 0.2 5.4 5.5 5.7 0.2 5.6

2014 7.2 7.3 0.1 7.3 7.4 7.6 0.2 7.5

2019 9.4 9.8 0.4 9.5 9.6 10 0.4 9.8

2024 11.3 11.5 0.2 11.4 11.7 11.9 0.2 11.8

2029 13.2 13.8 0.6 13.4 13.8 14 0.2 13.8

Table 4.4: The Execution Times (Daily Time-steps) Using the Componentized
WEAP RESTful Framework and the WEAP System Script.

End Year
Script Framework

Min Max Dif Ave Min Max Dif Ave

2000 3 3.3 0.3 3.1 3.3 3.4 0.1 3.3

2004 39.1 40.1 1 39.5 39.1 40.2 1.1 39.9

2009 84.2 85 0.8 84.5 87 87.6 0.6 87.2

2014 128.3 130.2 1.9 128.8 133.3 134.1 0.8 133.8

2019 174.1 175.5 1.4 175.3 181.7 184.6 2.9 182.6

2024 222.4 223.5 1.1 222.9 229 230.9 1.9 230

2029 268.4 269.2 0.8 268.7 278 280.4 2.4 279.7

tized WEAP RESTful framework for daily and monthly time-steps (the ratio of the

Framework average execution time to the Script average execution time in Table 4.3

and Table 4.4) for the “Weaping River Basin” model. The most considerable overhead

at ∼ 8% is for the first simulation period with the daily time-step. This overhead can
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be attributed to the model and simulation initialization. For the subsequent simu-

lation periods, the maximum overhead monthly and daily time-steps ranges between

3% and 4%.

The impact of the WEAP system componentization on the simulation execution

time is observed to have a direct relation to the number of timestamps, while the

scale of a model does not. The overhead of the Componentized WEAP RESTful

framework (CWO) function is defined as

CWO = CI + CWE +DS × TS (4.5)

where CI is for component identification time, CWE is for Componentized WEAP

RESTful framework execution time, and TSis the number of timestamps for the du-

ration ((EndY ear − StartY ear) × #TimeStepPerY ear) of simulation experiment

and DS is for the data de/construction time. The CI factor has a generic imple-

mentation, so it has a constant value for a model. The CWE and DS factors have

constant values for a given model. According to these factors, below a threshold value

for the number of timestamps (i.e., executing 400 runs of the “Weaping River Basin”

simulation), the CI and CWE play the dominant role in total simulation execution

time; otherwise, the TS is the main contributor to total simulation time. For the

above simulation experiments, the overhead for the Componentized WEAP RESTful

framework executing on a monthly time-step was 0.1 seconds for all time intervals.

However, it increased for daily time-steps, as shown in Figure 4.16c. The execution

time ratio of the Componentized WEAP RESTful framework over the Script WEAP

system is defined as

Ratio =
Init+WE + CWO

Init+WE
(4.6)
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where the Init is for the time period required for initializing the WEAP system,

and the WE is for the time period needed to execute a model in the WEAP system.

The Init and WE factors belong to the WEAP system and are directly related to a

model’s scale. Thus, the ratio of using the Componentized WEAP RESTful frame-

work vs. WEAP script will decrease as the scale of the model increases. Table 4.5

and Table 4.6 present the execution times of a more complex “Weaping River Basin”

model (the number of entities is 3-times of the previous experiment) for one-year,

15-year, and 30-year simulation periods for Monthly and Daily timesteps. The ta-

bles show in these configurations that the componentization’s overhead decreases by

increasing the scale of the model, having longer execution time for the WEAP sys-

tem (WE), and constant Componentized WEAP RESTful framework execution time

overhead (CW ).

Table 4.5: The Execution Times (Monthly Time-steps) of the Complex “Weaping
River Basin” Model Using the Componentized WEAP RESTful Framework and the
WEAP Script.

End Year

Script Framework

R
a
ti
o

Min Max Dif Ave Min Max Dif Ave

2000 1.9 2.2 0.3 2 1.9 2.4 0.5 2.2 1.1

2014 12.7 14.4 1.7 13.3 13.3 14.7 1.4 13.8 1.04

2029 23.9 25.4 1.5 24.5 24.1 25.7 1.6 24.8 1.01

4.1.6 Framework Software

The Componentized WEAP is a web-service framework that uses the NodeJS

(Cantelon et al., 2014) and Typescript frameworks for implementing the server-side

application. Typescript is an open-source framework and the superset of JavaScript
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Table 4.6: The Execution Times (Daily Time-steps) of the Complex “Weaping River
Basin” Model Using the Componentized WEAP RESTful Framework and the WEAP
Script.

End Year

Script Framework

R
a
ti
o

Min Max Dif Ave Min Max Dif Ave

2000 5.8 6.6 0.8 6 6 7.1 1.1 6.3 1.05

2014 228.9 238.5 10.4 232.4 228.2 238.5 10.3 232.2 1

2029 455.5 460.3 4.8 458.2 463.4 472 8.6 468.6 1.02

(Wittgenstein, 2012), which has some added and facilitated features (strongly typed

programming, module and namespace, generic, interface, and abstraction). The cur-

rent Componentized WEAP implementation requires using version 2021.0 of the com-

mercial WEAP system (SEI, 2022d). Stockholm Environment Institute (SEI) can

publish new versions of the WEAP system, but thus far, the changes are UI-related.

The WEAP system has numerous APIs, but the Componentized WEAP framework

uses a portion of them (see Appendix A). Changes to the Componentized WEAP

RESTful framework are not anticipated, as the models have remained unchanged

for several years. Furthermore, making changes to the optimization solvers does not

affect the Componentized WEAP RESTful framework. Thus, if no APIs can have

side effects on the Entities, Project, and Scenario, they do not cause changes to the

RESTful framework. However, changes to the Componentized WEAP framework are

expected as the RESTful framework, and its enabling APIs are expected to evolve in

the future.

Due to the use of the WEAP APIs listed in Appendix A, it is necessary to have a

WEAP system license to use the Componentized WEAP framework. The executable

version of the Componentized WEAP framework and a User-Guide are available
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(ACIMS, 2022b). The main packages which have been used to develop the Componen-

tized WEAP framework are TS-Node 8.10.2 (Typescript-Node) to use Typescript in

the NodeJS server-side application; Express 4.17.1 to build a web application and

APIs; Routing-Controller 0.9.0 to create structured, declarative, and beautifully

organized class-based controllers; Body-Parser 1.19.0 to parse the body of the in-

coming request to web-server, and Winax 3.1.5 to define ActiveXObject in NodeJS

(create WEAP instance in server-side application), and some additional packages; for

example, class-transformer, class-validator, and reflect-metadata.

Figure 4.17 illustrates the frameworks and tools used in the interaction model and

the Componentized WEAP RESTful framework. The number between parentheses

for each tool/framework presents the version used. The interaction model is imple-

mented using Java 11 (Java application), and the Jersey (Kalin, 2013) framework

is used to build and invoke the APIs of the Componentized WEAP (and Compo-

nentized LEAP) RESTful framework. The WEAP and LEAP systems can act as

standard “COM Automation Server”, and other programming languages (e.g., Visual

Basic or C) or scripting languages (e.g., VB Script, JavaScript, Perl, and Python)

can interact with the systems via APIs (SEI, 2022d).

The Componentized WEAP is wrapped in a web-service framework implemented

in the NodeJS and TypeScript frameworks. They have been chosen because NodeJS

(Cantelon et al., 2014) is an Event-Driven, Non-Blocking I/O Model and Open-Source

C++ framework. It is built on V8 (the engine was written by google) and adds

some features to handle the JavaScript server-side programming. Also, TypeScript

(Wittgenstein, 2012) is an open-source framework and a superset of JavaScript with

some added and facilitated features (strongly typed programming, module, names-

pace, generic, interface, and abstraction).
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Popular NodeJS frameworks have been used to handle routine tasks. The ex-

press.js is a minimal and flexible framework to build web-based architectures. The

routing-controllers.js and its dependencies (class-transformer.js and class-validator.js)

allow creating controller classes with methods as actions that handle requests. The

framework’s middleware (“Using Express Middleware”, 2022) processes incoming re-

quests before calling the appropriate methods from the controllers of the Compo-

nentized WEAP framework. The winax.js defines an ActiveXObject for the WEAP

system in the NodeJS web-server. The architecture of the Componentized WEAP

is used for the Componentized LEAP RESTful framework, as well. The current

Componentized WEAP and Componentized LEAP implementations require using

the commercial WEAP (versions 2021.0) and LEAP (version 2020.1.0.33/32-Bit) sys-

tems.

Figure 4.17: The Used Libraries and Packages for the Interaction Model and the
Componentized WEAP RESTful Framework.

4.2 Web-Service Framework for the LEAP System

The same scenario applied to the WEAP system is applicable to the LEAP system

to use with other simulations. Also, the WEAP and LEAP have many similarities

from the structure and behavior point of view. So, the Componentized LEAP is

a framework built using the SOA architecture, and the data cube structure (see

Figure 2.8) allows integrating it with tools for simulating the water system. According

to the constraint for using the JavaScript language and the difficulties of using XML-
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based protocols (Tihomirovs & Grabis, 2016), the RESTful framework is used to

implement the web-service framework for the LEAP system.

4.2.1 Models of the LEAP Entities

The same steps to componentize the WEAP system are applicable to the LEAP

system. So, the Ecore meta-model is used to model the LEAP entities at an abstract

view without specifying their functions. At this abstraction level, the data struc-

ture of different LEAP sections, entities, variables, and the relationship among these

parts are modeled. The specification in Figure 4.18 is defined using the EClass, EAt-

tribute, EDataType, and EReference elements of the Ecore meta-model diagrams.

Like the WEAP system, the LEAP’s APIs expose the scope and functionality of the

componentized entities defined for the LEAP framework.

Figure 4.18: Ecore Specification to Model Entities, Variables, and Data of the LEAP
System.

In Figure 4.18, the LEAP class has an array of projects, each associated with a sep-

arate area. Each Project has its own configuration (name, startYear, endYear, and

tsPerYear). The LEAP system has five types of components which are represented
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via the Resource, Transformation, Demand, Process, and Effect classes. The

Component is an abstract class, and the rest are concrete classes. A Transformation

entity gets some fuels as the input (incomingFuels composite relation between Transformation

and Fuel classes in Figure 4.18), do some process on them (processes composite re-

lation between Transformation and Process classes in Figure 4.18), and generate

some fuels as the output (outgoingFuels composite relation between Transformation

and Fuel classes in Figure 4.18). A Demand can have multiple fuels to consume.

Furthermore, a Fuel can have multiple effects (most of the time, the environmental

effects).

Like the WEAP system, each entity in the LEAP system has some predefined

input and output variables. New variables and equations may be added by users as

needed. For each variable, one or more intervals are defined per scenario, and each

interval can have many data values (a value represents a specific time-slice of a year).

The Variable class in Figure 4.18 has a unique name property as the key with unit,

timeScale, min, and max properties. A variable can have just one value per year if the

timeScale property sets to “Annual”, or it can have multiple values if timeScale sets

to “TimeSliced”. The properties min and max place constraints on the acceptable

values for a variable.

A simulation model in the LEAP system has a structure defined by the modeler,

but the behaviors for the specialized entities are predefined. The date specified in a

scenario is needed to simulate some aspects of an energy system. Like the WEAP

system, every project has at least one scenario, the Current Accounts, which provides

a snapshot of actual energy resources, supplies, and demands. The name property is

the key attribute in the Project, Scenario, Variable, Component, and Key classes

(see Figure 4.18). The key for the Version class is the concatenation of its prop-

erties (date and name). The Componentized LEAP RESTful framework has the
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same schema (a generic view) for all the LEAP entity types (e.g., Demand, Resource,

and Transformation) and their variables. The Variable, ScenarioData, Scenario,

Interval, and Data classes with their relations define the overall input data and out-

put result for a model in the Componentized LEAP RESTful framework that mirrors

those defined in the LEAP system.

4.2.2 Mapping Componentized LEAP Models to a RESTful framework

The Componentized LEAP RESTful framework operates on the LEAP resources

(like what was presented for the Componentized WEAP). The communication data

is in JSON format. The RESTful API categories for the Componentized LEAP

are Project, Version, Key, Demand, Resource, and Transformation. The pattern’s

structure is like what was presented for the Componentized WEAP. The URL patterns

for six API types are shown in Table 4.7. There is a mapping between the URL

patterns in Table 4.7 and the Ecore specifications in Figure 4.18. All URLs start with

the constant “/Energy”, which refers to the LEAP class shown in Figure 4.18. The

VariableType in the URL patterns must be replaced by the “Inputs” or “Outputs”

(refer to the Data or Result variable in the LEAP system). For example, a model

(e.g., demo) can be executed using the URL “/Energy/demo/Run”.

4.2.3 Componentized LEAP Retrieving Data

Provided LEAP APIs do not return the value of a variable in a time-slice granu-

larity. As explained in Section 2.4.2, multiple time-slices (for a year) can be defined

in the LEAP system, and they can have different sizes (but their accumulation must

cover the whole year). This fine-grain resolution can be used inside the LEAP tool,

but it is not accessible via its APIs. However, the individual year values of a Data

or Result variable can be stored in the flat file. Figure 4.19 presents the flowchart of
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Table 4.7: URL Signatures for Different Types of Componentized LEAP APIs.

Category URL Signatures

Project /Energy[/:projectName[/Run]]

Version /Energy/:projectName/Versions[/:versionName/Revert]

Key
/Energy/:projectName/Keys[/:KeyName/:

scenarioName[/Expression]]

Demand

/Energy/:projectName/Demands[/:

demandName[/VariableType[/:variableName/:

scenarioName[/Expression][?startYear=N&endYear=N]]]]

Resource

/Energy/:projectName/Resources[/:

resourceName[/VariableType[/:variableName/:

scenarioName[/Expression][?startYear=N&endYear=N]]]]

Transfor-

mation

/Energy/:projectName/Transformations[/:

transformationName[/Processes[/:

processName]][/VariableType[/:variableName/:

scenarioName[/Expression][?startYear=N&endYear =N]]]]

retrieving sliced-based data (in the data access layer) in the Componentized LEAP

RESTful framework. It starts by checking that the temp directory exists to save the

temporal flat files and creates it if it does not exist. Then, in a loop format from the

start year to the end year of the simulation, it stores each year’s data in a flat file,

reads the flat file, and adds the read values to a result object (an array of Interval

objects in Figure 4.18). Finally, it returns the result object. As can be seen, retrieving

variable data in time-sliced resolution is not as trivial as the Componentized WEAP

framework. Creating, writing, and reading the flat files for operations to retrieve
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/Energy/:projectName/Demands[/:demandName[/VariableType[/:variableName/:scenarioName[/Expression][?startYear=N&endYear=N]]]]
/Energy/:projectName/Demands[/:demandName[/VariableType[/:variableName/:scenarioName[/Expression][?startYear=N&endYear=N]]]]
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/Energy/:projectName/Transformations[/:transformationName[/Processes[/:processName]][/VariableType[/:variableName/:scenarioName[/Expression][?startYear=N&endYear =N]]]]


the variable’s data in a time-slice-based makes the Componentized LEAP framework

slower than the corresponding operations in the Componentized WEAP framework.

The design and implementation of the Componentized LEAP framework follow

the structures that have been presented for the Componentized WEAP framework

(see Section 4.1.2). However, the defined classes for the domains, controllers, ser-

vices, and data access objects are different (relevant to the LEAP system). Also, the

Componentized LEAP framework has the same file system structure as presented for

the Componentized WEAP framework to store and use the generated flat files (see

Section 4.1.4).

Figure 4.19: Flowchart of Retrieving Sliced-based Data in the LEAP RESTful
Framework.
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Chapter 5

INTERACTION MODEL DESIGN & IMPLEMENTATION

5.1 Approach

The KIB approach has been introduced to formalize the interactions between

the models specified in different modeling formalisms (Sarjoughian, 2006). The KIB

formalism can be used to define data mappings, synchronization, concurrency, and

timing. The conceptual basis of the KIB disparities between different syntaxes and

semantics need to be accounted for with a separate model syntax and semantics.

Thus, it enables independent modeling of interactions between the composed models.

This approach has been applied to different domains (Barton et al., 2016; Huang

et al., 2009). In this research, the KIB concept is used to define the relationship

between the WEAP and LEAP models externally.

The architecture presented in Figure 5.1 illustrates the abstract specification of

the interaction between the WEAP and LEAP systems (using componentized frame-

works). Choices of the water and energy model components are defined via the ports

between the interaction model and the disparate systems. The constraint under which

the data can be transformed for use by one another is defined in the Data Transforma-

tion part of the interaction model. The data sets in the water and energy models are

used to define a set of modules (data transformation schema) that can be executed

under a time-based control regime. An execution protocol prescribes a control regime

supported by synchronous calls and returns enabled by RESTful web services and

JSON. A simple time management scheme is devised to synchronize different time

resolutions used in the water and energy models. The interaction model has interfaces
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of the Componentized WEAP and Componentized LEAP frameworks. The WEAP

Interface is defined as a part of the interaction model for bi-directional, synchronous

communication with the Componentized WEAP models. It also mediates commu-

nication between the RESTful web services of the Componentized WEAP and the

modules in the interaction model. In response, the Componentized WEAP returns

the data (JSON) from the water system to the WEAP Interface. The LEAP Interface

is defined in the same way as the WEAP Interface.

Figure 5.1: A Water-Energy Nexus High-level Architecture in the Algorithmic-IM.

5.2 Algorithmic Interaction Model

As a first attempt to address the need for composing heterogeneous models, this

research presents a new modeling and simulation framework based on the Knowl-

edge Interchange Broker (KIB) approach. It helps to understand and assess the

FEW-Nexus and coupling developed models in the WEAP and LEAP systems (using

the Componentized WEAP and Componentized LEAP frameworks). Knowing how

each system interacts with another system is essential to understand them together.

Even though WEAP and LEAP tools are internally linked, defining interactions be-

tween water and energy models in their internal linkage is limited in terms of flexibly

defining choices of data to be communicated, time resolution, and control. The Algo-

rithmic Interaction Model (Algorithmic-IM) is developed based on the KIB approach

to compose the water and energy models. It has a cyclic control regime.
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5.2.1 Model Specification

The UML class diagrams for the WEN interaction model are included in the core

andWEAP-LEAP package diagrams, as shown in Figure 5.2 and Figure 5.3. The core

package has IM, Coupling, TransformationInputPort, and TransformationOutputPort

concrete classes (the yellow color classes) that must be instantiated, and the interface

IMessage (the white color classes) that must be implemented. The System, Module,

ModuleInputPort, and ModuleOutputPort abstract classes (the gray color classes)

must be inherited for a specific coupled Water-Energy model. Following the internally

integrated WEAP and LEAP system execution mechanism (SEI, 2022d; Yates et al.,

2005), the interaction model executes any two composed water and energy models

in a round-based fashion. The ComponentTypes in the Component abstract class is

either the Module or Transformation enumerated datatype. Also, the PortTypes

in the Port abstract class is either the Input or Output enumerated datatype. For

brevity, the setter and getter operations are excluded from the diagrams.

The IM class has totalRound and currentRound properties to set the total number

of rounds for execution and present the current round of execution, respectively. It

also has two run() and run(count) methods to execute the interaction model. The

former method is used to execute the interaction model for totalRound-currentRound

rounds. The latter method is used to execute the model formin(totalRound-currentRound,

count) rounds.

In Figure 5.2, the IM class has toCSV() method to export data to CSV file.

The IM class contains a set of modules (the composite relation from IM class to the

Module class). Each Module contains input and output ports (the composite rela-

tions from Module class to the ModuleInputPort and ModuleOutputPort classes)

as the connection points between the module and the external world. A Module
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Figure 5.2: A Class Diagram for the Core Package of the Algorithmic-IM.

class also contains a set of transformations (the aggregate relation from the Module

class to Transformation class), and the couplings inside the module. The isAc-

tive(. . . ) method is used during the simulation to determine if the module is active

in a specific round or not (it returns true if it is active). Each transformation has

its input and output ports (composite relations from Transformation class to the

TransformationInputPort and TransformationOutputPort classes).

The WEAP and LEAP classes in Figure 5.3 are proxies for the Componentized WEAP

and Componentized LEAP models. The module input ports (i.e., InputFromWEAP

and InputFromLEAP classes) and the module output ports (i.e., OutputToWEAP and

OutputToLEAP classes) are defined for the connected ports to the Componentized

WEAP and Componentized LEAP models. Few attributes (projName, compType,

compName, etc.) are defined to make the APIs for the related systems (attributes

for these classes are the same) (Fard & Sarjoughian, 2019). The module ports are

entirely independent of each other, and they can have different attributes and op-

erations. The WEAPMessage and LEAPMessage implement the IMessage interface.

They are defined as the structures for the incoming/outgoing messages from/to the

Componentized WEAP and Componentized LEAP model (see Figure 5.3). Each

WEAPMessage/LEAPMessage has a finite number of time intervals, subject to the con-

straints of the frameworks, with each time interval having a time-step/time-slice and
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a value (see Section 2.4.3). As an example, two modules (named “Module1” and

“Module2”) and two transformations (named “Transformation1” and “Transforma-

tion2”) are defined in the WEAP-LEAP package diagram are instantiated from the

Module and Transformation abstract classes, respectively (see Figure5.3).

The interaction model interacts with external systems using the inputs and out-

puts defined for its modules. The interaction model defined for the WEN system

communicates with the RESTful Componentized WEAP and Componentized LEAP

frameworks. The input and output ports for the modules are independent as well as

those that are defined for the transformations. All connections within the interaction

model are uni-directional. In Figure 5.4, the cloud shape represents the web-server

with the APIs defined for the Componentized WEAP and Componentized LEAP

models. The APIs are depicted as circles in the cloud. Each component is shown

as a rounded rectangle with its input and output ports shown as arrows. Multiple

APIs can communicate with a component. Each API can read the input or output

data of a component or apply some changes to the inputs. As an example, the URL

“/Water/demo/DemandSites/phoenix/Inputs/Annual Activity Level/Reference” ac-

cesses the data of the Annual Activity Level input variable of the phoenix demand

site of the Reference scenario in the demo project of the WEAP system (see Sec-

tion 4.2.2). The relevant URLs to call APIs from the Componentized WEAP/LEAP

models can be defined in the InputFromWEAP/InputFromLEAP classes (see Figure 5.3).

The component, port, and scenario properties are used to specify values to retrieve

data from the external systems. The OutputToWEAP and OutputToLEAP classes are

defined for writing data to the WEAP and LEAP systems. The APIs calls are de-

fined in the mapping() method of the classes inherited from the ModuleInputPort

and ModuleOutputPort classes (see Figure 5.2 and Figure 5.3).
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Figure 5.3: A Class Diagram for the WEAP-LEAP Coupling in the Algorithmic-IM.

All data transformation specifications must follow certain constraints. The name

of each element in its content must be unique. Examples include the module’s name

in the Interaction Model content, the module input/output port’s name in a mod-

ule content, the transformation’s name in a module content, and the transformation

input/output port’s name in a transformation content. Also, there are three valid

types of coupling (connections between two ports). First, coupling from a module’s

input port to a transformation’s input port. Second, coupling from a transformation’s

output port to a module’s output port. Third, coupling from a transformation’s out-

put port to another transformation’s input port. Thus, it is not valid to have a

self-coupling for any transformation. Figure 5.4 shows the schema of a valid data

transformation for a WEN model. This “IM” contains one module (named “Mod-

ule 1”) with two input ports (named “In1” and “In2”) and two output ports (named
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“Out1” and “Out2”). These ports are linked to the Componentized WEAP and Com-

ponentized LEAP models. The module contains two transformations, “Transforma-

tion 1” with two input ports (named “In1” and “In2”) and two output ports (named

“Out1” and “Out2”), and “Transformation 2” with one input port (named “In1”)

and one output port (named “Out1”). The module has six couplings, three couplings

from module input ports to the transformation input ports (i.e., from “Module 1.In1”

to “Transformation 1.In1”), two couplings from transformation output ports to the

module output ports (i.e., from “Transformation 2.Out1” to “Module 1.Out2”), and

one coupling from the transformation output port to the transformation input port

(i.e., from “Transformation 1.Out2” to “Transformation 2.In1”). The structure of in-

coming or outgoing data on a port (the class implemented the IMessage class) cannot

change during execution. Each module or transformation port can accept a specific

message type. As a result, the source and the target of every coupling must have the

same message structure (see Figure 5.2).

Figure 5.4: An Illustration of the Data Transformation Process for the Coupled
Water-Energy System in the Algorithmic-IM.
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5.2.2 Execution Protocol

The execution engine for the Algorithmic-IM has a round-based execution. Each

complete round consists of six steps, as shown in Algorithm 1. In the first step, the

connected systems to the module’s input ports are executed. In the second step,

the data are invoked by module input ports from the systems. In the third step,

the received data are sent to the transformation input ports. In the fourth step,

the transformation units are executed (to transform input data to output data).

In the fifth step, the processed data are sent to the module’s output ports/other

transformation input ports. In the sixth step, the output data (collected in the

module’s output ports) are sent to the systems. Both systems independently and

simultaneously execute.

Algorithm 1 presents a pseudo-code for the execution protocol of the Algorithmic-

IM. The number of running rounds specifies as the input parameter of the Run(count)

method. The totalRound and currentRound properties are referring to the corre-

sponding properties of the IM class in Figure 5.2. The S variable, in line 2, presents

a set of all connected systems to the interaction model (e.g., the Componentized

WEAP and Componentized LEAP systems). In lines 3-5, the init() function of all

connected systems to the interaction model is executed if it is at the beginning of the

simulation execution (current round equals zero). In line 6, the variable upperBound

sets to the minimum of tr and currentRound+count, and the body of the while loop

(lines 8-41) runs for upperBound iterations. As the first step (lines 8-10), the run()

function of the active systems is executed. A system is active when it is connected to

at least one active module and the modulo of the currentRound to its rate equals to

zero (line 9). In lines 11-14, the active modules are selected using their isActive(. . . )

method. In the second step (lines 15-18), the mapping() function of the module’s
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input ports of active modules which are connected to the active systems is executed.

In the third step (lines 19-25), the data in the module’s input ports (if there is data)

are transferred via couplings to the transformations input ports. If a module input

port is coupled to multiple transformation’s input ports (e.g., module input port “In

2” in Figure 5.4), the data is copied to all destinations (lines 22-24), then the mod-

ule’s input port is vacated (line 25). In the fourth step (lines 26-28), the transform()

function of all active modules is performed (i.e., all transformation’s input data are

processed and the results are generated on the transformations’ output ports). In the

fifth step (lines 29-36), the data on the transformations’ output ports are transferred

via couplings to the transformations’ input ports/module’s output ports. Again, if

a transformation output port is coupled to multiple destination ports, the data is

copied to all the receiving transformations in the module (lines 33-35) and then the

transformations’ output ports are vacated (line 36). The currentRound value is in-

creased by one unit in line 37. In the sixth step (lines 38-41), the mapping() function

of the module’s output ports of active modules that are connected to the active sys-

tems is executed to send data to the systems. Finally, after executing the interaction

model for count round, all external systems are run to generate their results. It is

noted that all modules execute independently of one another. For brevity, the sorting

operation for modules, transformations, and ports is not shown in the Algorithm. For

example, modules are sorted by priority in line 14, and module input ports are sorted

by priority in line 16.
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Algorithm 1 Run Simulation

1: procedure Run(count)

2: S← distinct Systems connected to the input & output ports of all modules in the IM

3: if (currentRound == 0) then

4: for all (s in S) do

5: s.init()

6: upperBound← MIN(count+currentRound, totalRound)

7: while (currentRound < upperBound) do

8: for all (s in S) do

9: if (currentRound % p.system.rate == 0) then

10: p.system.run()

11: activeModules← ϕ

12: for all (m in IM.modules) do

13: if (m.isActive(currentRound)) then

14: activeModules.add(m)

15: for all (m in activeModules) do

16: for all (p in m.inputs) do

17: if (currentRound % p.system.rate == 0) then

18: p.mapping()

19: for all (m in activeModules) do

20: for all (p in m.inputs) do

21: if (p.messages.size() > 0) then

22: for all (c in m.couplings) do

23: if (c.source == p) then

24: c.target.messages← c.source.messages

25: p.messages← ϕ
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Algorithm 1 Continued Run Simulation

26: for all (m in activeModules) do

27: for all (t in m.transformations) do

28: t.transform()

29: for all (m in activeModules) do

30: for all (t in m.transformations) do

31: for all (p in t.outputs) do

32: if (p.messages.size() > 0) then

33: for all (c in m.couplings) do

34: if (c.source == p) then

35: c.target.messages← c.source.messages

36: p.messages← ϕ

37: currentRound← currentRound + 1

38: for all (m in activeModules) do

39: for all (p in m.outputs) do

40: if ((currentRound % p.system.rate == 0) & (p.messages.size() >

0)) then

41: p.mapping()

42: for all (s in S) do

43: s.run()

5.2.3 Time Management

The time resolution for coupled WEAP and LEAP models uses the timing speci-

fication defined in the Water-Energy nexus model. The rate property in the System

class (see Figure 5.2) and the execution protocol (see Section 5.2.2) synchronize the
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WEAP and LEAP models. The classes implementing the IMessage interface and the

defined transformations (see Figure 5.2) control matching the time intervals defined

for the water and energy models in each execution round. The rate property of the

System class in Figure 5.2 defines the ratio of running the system related to the round

of the interaction model. For example, if the time interval for a water model is a year

(e.g., the start year is 2020 and the end year is 2021) and the time interval for an

energy model is ten years (e.g., the start year is 2020 and the end year is 2029),

then the rate of a WEAP must be one, and the rate of the LEAP must be 10 in the

interaction model. For a coupled WEAP-LEAP model, the period for the WEAP is

given for the first year with all subsequent years to be simulated. In this scenario,

for every 10 execution cycles of the WEAP model, there is 1 execution cycle of the

LEAP model.

Finer-grain time resolution can be defined using the classes implementing the

IMessage interface. For example, a WEAP or LEAP model can have a finite discrete-

time resolution for a year (Fard & Sarjoughian, 2021b). The time resolutions for the

data transformations from the WEAP to the LEAP (or vice versa) follow the restric-

tions provided in the WEAP and LEAP systems, individually and together. The time-

values relevant to the classes realized for the IMessage interface (the WEAPMessage

and LEAPMessage in Figure 5.3) can be mapped to some other values by aggregating

and/or disaggregating data in the water and energy models. The modeler can de-

fine time interval conversions for each data transformation consistent with the time

intervals used in the water and energy models.

5.2.4 Algorithmic-IM Configuration

A JSON file, named “config.json”, is used to define the configuration for the

external systems (connected to the interaction model) and the interaction model.
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Figure 5.5a shows the schema of the config file, which contains two objects, inter-

actionModels, and systems. The former is an array of objects for interaction models.

Each object has a name (same as the interaction model name) and another object

to configure the export to CSV file feature (it will be explained in the next section).

A system is an array object that contains the connection properties of the external

systems. For example, the host and port of the Componentized WEAP and Com-

ponentized LEAP frameworks in this research. As an example, Figure 5.5b presents

a configuration file for the Algorithmic-IM model defined between the WEAP and

LEAP systems (using the Componentized versions) for the Phoenix Active Manage-

ment Area. The interaction model name is “PhoenixAMA”, and it has a configuration

for the export feature. The Componentized frameworks are running on the localhost

and on 8080 and 8081 ports, respectively. So, the interaction model application uses

these values at run-time to call Componentized WEAP and Componentized LEAP

APIs.

5.3 DEVS-Based Interaction Model

In earlier work, the Algorithmic-IM was proposed and developed to integrate the

componentized WEAP and LEAP RESTful frameworks for modeling and simulating

water and energy systems. However, this approach does not separate modeling and

simulation protocols from each other. It also does not support flexible, structured

model hierarchies. To overcome the Algorithmic-IM limitations, the parallel DEVS

formalism is used to develop an interaction model with the DEVS-Suite simulator. It

is advantageous to use a formal modeling method instead of an algorithm to model

and simulate the interactions between the nexus of the water-energy system.

Using a formal modeling method to model and simulate the interactions between

disparate models is advantageous. A component-based, hierarchical modeling ap-
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(a) (b)

Figure 5.5: Algorithmic-IM Configuration File. (a) Schema. (b) The Phoenix AMA
Configuration File as an Example.

proach that aligns with system thinking helps with the interaction model’s develop-

ment, reuse, and maintainability. An interaction model framework is designed and

developed based on the KIB approach and DEVS formalism (called the DEVS-IM

framework). The DEVS-IM is grounded in system theory and component-based mod-

eling. It has a unified concept for specifying general-purpose logical and persistent

atomic and coupled DEVS models. The models are used to specify the hierarchical

tree structure of the interaction model. The leaves of the tree structure are atomic

DEVS models, and the rest are coupled DEVS models. The input and output ports

can be defined for the models as the interface for message communication. The

atomic and/or coupled models can be connected using coupling between their ports.

The DEVS-IM framework supports storing models in the MongoDB database. Model
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creation, access, and manipulation are accessible via REST APIs. The DEVS-IM

framework has some predefined elements (derived from the atomic and coupled DEVS

models) to facilitate defining the interaction model for the users who are unacquainted

with the DEVS formalism. Furthermore, the framework has a set of elements to de-

fine a generic ontology for the disparate external systems connected to the interaction

model.

The Parallel DEVS formalism (Chow & Zeigler, 1994) is selected for designing the

Interaction Model due to its strong modularity, hierarchy, and support for discrete-

time state transitions with inputs and outputs used in Componentized WEAP and

Componentized LEAP frameworks. Furthermore, it is important to use established

modeling and simulation engines. The parallel DEVS models can be developed,

simulated, tested, and debugged using the DEVS-Suite simulator (ACIMS, 2022d;

McLaughlin & Sarjoughian, 2020). Together, the DEVS formalism and the DEVS-

Suite simulator provide a solid advancement to the interaction model’s algorithmic

approach and implementation.

Figure 5.6 illustrates the conceptual architecture of the DEVS-IM framework. It is

divided into three main sections; “IM Model”, “External System Schema”, and “Ex-

ternal System”. The first two sections (the purple area) define the interaction model

between disparate systems. The “IM Model” section is a coupled DEVS model to

realize the KIB properties. The “External System Schema” section defines a tree

structure as an interface for the external system. It implements the actual communi-

cation between the interaction model and the external systems. From the interaction

model perspective, any type of system/model can be considered as an external sys-

tem; A stand-alone application, web service, database, library, and file system; For

example, the developed WEN model in this article (using the WEAP and LEAP sys-
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tems) is based on web service communication. The external system schemas can be

used to model the external system at different levels of abstraction.

In Figure 5.6, the “Data Transformations” part contains all elements to process

the input messages (e.g., aggregate, disaggregate, or convert the data) and then gener-

ate output messages. This part is the realization of the data transformation property

of the KIB approach (the same functionality of the Transformation element in the

Algorithmic-IM framework). The data carried in a message in the DEVS-IM frame-

work can be as simple as a primitive data type value (e.g., integer or string) or as

complex as a user-defined model. The “Execution Control” part in Figure 5.6 involves

timing, synchronization, and concurrency properties of the KIB approach. Each dis-

parate model executes in its framework and follows its execution protocol. As the

coordinator, the DEVS-IM model has its execution protocol to coordinate and syn-

chronize the executions among the DEVS-IM models and disparate external systems.

Synchronization control is crucial to ensure message ordering and causality among

the models. The “Execution Control” section can send control messages (dotted red

arrows) to the data transformations or output connectors based on the received data

messages (solid red arrows) from input connectors and data transformations. Given

different DEVS-IM execution algorithms, the disparate models and the interaction

model can be executed sequentially or in parallel. The Time property of the KIB

in this research focuses on controlling the logical time of the DEVS-IM model and

the external systems. It ensures that when a model receives a message from another

model (probably with a different modeling formalism), the essential time associated

with the message represents the same time in the model. It must be done at the

modeling specification and simulation/execution levels.

The “Input Connectors”, “Data Transformations”, and “Execution Control” in

Figure 5.6 are pure DEVS models. The “Output Connectors” communicate with
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Figure 5.6: Conceptual Architecture of the DEVS-Based Interaction Model Frame-
work.

the outside world via the “External System Schema”. A communication message

between the “Interaction Model” section (specifically, the “Output Connectors” part)

and the “External System Schema” section (specifically, the “Function” part) must be

inherited from the Entity class (a base class in the DEVS-Suite simulator). So, the

“Function” part is responsible for receiving/sending data from/to the external systems

in any format or structure. Indeed, the results from the outside world (received in

the “Function” part) must be converted to the Entity type before returning them

to the “Output Connectors” part. During the simulation execution, the received

data in the “Output Connectors” part (from the external systems) are sent to the

“Input Connectors” (indicated by the solid red arrow from “Output Connectors”

to the “Input Connectors” in Figure 5.6). In general, disparate systems present

distinct specifications on the model structure. Therefore, the structural composition

specification of the KIB is desired to handle the differences in the interface structures

between the models in different systems.

5.3.1 Model Specification

Figure 5.7 presents the main steps to model and simulate an interaction model

using the DEVS-IM framework. First, the structure of the interaction model must

be defined. Second, code is generated for the skeleton of a complete project in the
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DEVS-Suite simulator. Third, the behavior of the interaction model is defined by

identifying the external connectors and the data transformations under sequential

and synchronous control schemes. Forth, the DEVS-Suite simulator is used to test,

debug, and run the interaction model.

Figure 5.7: Steps of Developing a Model in the DEVS-IM Framework.

The DEVS-IM model can be defined using predefined IM, Input Connector, Out-

put Connector, Process, Task, Port, and Coupling elements. It also supports defining

an interface for external systems using predefined System, Component, and Function

elements. Figure 5.8 illustrates the order of defining different elements of a DEVS-IM

model. A Project element can contain multiple interaction models between disparate

systems. The purple and yellow color elements in Figure 5.8 are used to define the

“IM Model” and “External System Schema” sections in Figure 5.6. The IM element

defines the interaction model between the systems (the root element of an interaction

model). It can contain four types of sub-elements/children; Input Connector, Output

Connector, Process, and Task. The Input/Output Connector element defines an in-

terface for the IM element to receive/send data from/to the external system schemas.

The Task element defines a data transformation, and the Process element provides

the hierarchy modeling. A Process element has a set of Process and Task elements

as its sub-elements. The Port element (input and output) defines the communication

part between Task, Process, and Connector elements. Finally, a Coupling element

can be defined between two Port elements or between one Connector element and

one Port element (the solid and dotted red connections in the “IM Model” section in
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Figure 5.6). In defining the “External System Schema”, the System element defines

the root node of a tree (usually with the same name as the external system). Multiple

Component and/or Function elements can be defined under the System element (see

the Entity Relation diagram in the “External System Schema” section in Figure 5.6).

Each Component element is a representation of a specific entity in the external sys-

tem. It can contain multiple Component and/or Function elements to define the

hierarchical structure of the tree. The Function element (which is always a leaf of

the tree) handles a specific functionality of the representative entity in the external

system. Each Function element has two responsibilities; 1) sending/receiving data

to/from the external systems (e.g., calling APIs in the WEN Example), 2) data type

conversion between the acceptable type by the DEVS-IM simulator (i.e., Entity class)

and an acceptable type/format by the external system (convert Message to JSON and

vice versa).

Figure 5.8: Order of Element’s Creation in the DEVS-IM Model.

The specification of the interaction model using the parallel DEVS formalism

leads to rigorous, systematic model development. This interaction model satisfies two

needs. One is to model the interactions among the water and entity models. Another

is for the highest level DEVS coupled model to communicate with other simulators.

In Figure 5.9, the modeling package highlights the DEVS’s core modeling engine. The

abstract, interface and concrete classes are shown in gray, white, and yellow colors,
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respectively. All classes are inherited from Entity abstract class. Some attributes (id,

createDate, lastModifyDate, and version) will be filled automatically at runtime by

the engine (at the time of storing the data in the database). According to the DEVS

formalism, there are two main classes to define the models (which are inherited from

the Model abstract class); the AtomicModel and CoupledModel classes. The atomic

models define the behavior of a system, and the coupled models define the structure

of a system. A model has some ports (see the composition relation between the Model

and Port classes). The DEVS formalism just have input and output ports (presented

via InputPort and OutputPort concrete classes in Figure 5.9). Defining the Port class

as a high abstract class provides the flexibility to define different types of ports for

the interaction models. Like the Algorithmic-IM approach, a port has the messages

aggregate relation to the IMessage interface. A CoupledModel element can have

many sub-models (the aggregate relation from the CoupledModel class to the Model

class) and the couplings between them (the composite relation from the CoupledModel

class to the Coupling class). The Relation abstract class is defined for the same

purpose described for the Port class (having flexibility for future needs). The DEVS

formalism supports one type of coupling (which is defined via the Coupling concrete

class in Figure 5.9). A coupling starts from a port and ends at another port. Based on

the DEVS formalism, just valid couplings are allowed to be defined; External-Input-

Coupling (EIC), External-Output-Coupling (EOC), and Internal-Coupling (IC).

Figure 5.10 illustrates the class diagram of the component package in the DEVS-

IM framework. Two main classes in the component package are IMAtomicModel and

IMCoupledModel. The componentType attribute in these two classes is an enumera-

tion and can have one “IM”, “INPUT CONNECTOR”, “OUTPUT CONNECTOR”,

“PROCESS”, “TASK”, and “LOGIC” values. Each atomic or coupled inherited

class sets the componentType value in its constructor. The required functionalities
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Figure 5.9: The Class Diagram of the Modeling Package for the DEVS-IM Frame-
work.

for the components are defined in their corresponding interfaces. Depending on its

functionality, an OutputConnector class may select an InputConnector class (the

input association relation between the classes), depending on its functionality. The

Project class, in the im package, is inherited from the Entity class and can have

multiple interaction models (see the composition relation between the Project and

IM classes). The Project, IM, Process, and Task are concrete classes, and the Logic,

InputConnector, and OutputConnector abstract classes must be specialized.

The composition of the WEAP and LEAP models can have one or more interac-

tion model components for a given project. Because the IM/Process class inherits

from the IMCoupledModel class, the IM /Process element can have many Process,

Task, and Logic elements as its sub-elements. Each IM element can have multiple

InputConnector and OutputConnector elements. These input and output elements,
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Figure 5.10: The Class Diagram of the Component Package for the DEVS-IM
Framework.

defined using DEVS atomic models, can be coupled with any DEVS model and com-

municate (via function calls) with the Componentized WEAP and Componentized

LEAP frameworks. The Process element cannot have any InputConnector or Out-

putConnector elements as its sub-elements. The DEVS coupled IM element does

not have any input and output ports. The init() method in the IM class defines the

initialization for the interaction model.

The system package in Figure 5.11 includes three concrete classes to represent

the external systems (i.e., the WEAP and LEAP tools) in a hierarchical component-

based manner. Multiple systems can be defined in each project (see the composite

relation from the Project class to the System class in Figure 5.11). All classes

have the id (as the key attribute) and unique name attributes. The ISystem and

IFunction interfaces defined the method signatures to be implemented in the System

and Function concrete classes. The init() and run() methods in the ISystem are

used for initialization (running at the beginning of the interaction model simulation

execution) and executing the external simulation system, respectively. A hierarchy of
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components can be defined in a system, and each component can have many functions.

A Function instance can have one parameter of type Object. In the case of having

multiple input parameters for a function, they must be wrapped in an object/class.

The desired objective of the Function must be implemented in the exec(. . . ) method.

The getResult() method returns an IMessage as the result of the execution. In the

WEAP and LEAP systems, the functions of each component must call the RESTful

APIs defined by the Componentized WEAP and Componentized LEAP frameworks.

In the Algorithmic-IM framework, all these steps are generalized and handled inside

the mapping() methods of the module’s ports (see Figure 5.2). The Algorithmic-IM

did not have any consideration for the details of the external system’s models. In

the DEVS-IM framework, an interface of the external system must be defined in the

interaction model.

As mentioned before, the interaction model connectors are atomic models from

the DEVS viewpoint. Simultaneously, they are connectors to the external systems

from the interaction model standpoint. Some predefined input and output con-

nectors (with specific behavior) are defined in the current DEVS-IM design (the

predefinedComponent package in Figure 5.11). The InputConnector and OutputConnector

abstract classes in Figure 5.11 (the DEVS-IM design) have the same role as the

ModuleInputPort and ModuleOutputPort abstract classes in Figure 5.2 (the Algorithmic-

IM design). In the module’s ports of the Algorithmic-IM, the mapping() functions

defined the port behavior. However, in the DEVS-IM design, the behavior defines

using the DEVS specification functions. From the DEVS specification, all the inter-

action model connectors have one input port (named “in”) and can have one output

port (named “out”).
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Figure 5.11: The Class Diagram of the Predefined and System Packages for the
DEVS-IM Framework.

5.3.2 RESTful Framework Specification

Figure 5.12 illustrates the architecture of manipulating the structure of a model

in the DEVS-IM framework. The DEVS-IM is supported by a RESTful framework

to define the model’s structure and store them in the MongoDB database. Different

elements can be created, read, updated, and deleted (CRUD operations) via the

HTTP POST, GET, PUT, and DELETE methods. The “REST Request Handler”

receives a request and routes it to a proper service. A separate service for each DEVS-

IM element is defined in the “Service Handler” section. At this step, the required

verifications are checked on the incoming request (from the client), then the changes

are applied to the database if all verifications are passed. A proper error message

will be returned to “API Caller” if the request is not defined correctly or violates

a rule. Otherwise, the database will be changed, and the retrieved data from the

database (Domain models) is converted to the Data Transfer Object (DTO) model

by the “Service Handler”, and then converted to the JSON object by the “REST

Request Handler”. Eventually, the client receives a response in JSON format.

127



Figure 5.12: The DEVS-IM Dramework Architecture to Define the Model’s Struc-
ture.

Table 5.1 presents the URL signatures for existing REST APIs of the DEVS-IM

framework to define a model. In the signature of the URLs, constants are written in

PascalCase style; parameters are written in camelCase style, and they must be inside

the open and close pair curly brackets. The content inside each open and closed pair

of square brackets is optional to define different APIs for an element. Figure 7 in

[54] presents the REST APIs’ communication data schema (body of the requests).

As an example of using APIs, calling the URL “/IM/Projects” via a POST method

with “{“name”: “WEN”}” as the body of the request will create a new project and

return the Id of the inserted data into the database if it passes the verification phase

(i.e. if the project name has a correct pattern and it is not repetitive). As another

example, calling the URL “/IM/Models/1” as a GET method will return a list of all

sub-models and the couplings of the sub-model with modeled equally to one (given

having a valid Id).

In Figure 5.12, the body of the insert/update requests and the communications

between “REST Request Handler” and “Service Handler” sections are based on the

Data Transfer Objects (DTOs). Figure 5.13a and Figure 5.13b present the DTOs to

retrieve data (the response of the GET requests) and insert/update data (the body of

the POST or PUT requests), respectively. The delete operation handles by setting the

id of an element as a URL parameter. The data needed for the RESTful framework

is in JSON format. The {JsonIgnore} constraint for some attributes in Figure 48(b)

indicates that these attributes are hidden for the “API Caller”.
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Table 5.1: URL Signatures for Different REST APIs of the DEVS-IM Framework.

Element URL Signatures

Project /IM/Projects[/{projectId}]

IM /IM/Projects/{projectId}/IMS[/{imId}[/GenerateCode]]

Model /IM/Models/{modelId}

Input

Connector
/IM/Models/{modelId}/InputConnectors[/{connectorId}]

Output

Connector

/IM/Models/{modelId}/OutputConnectors[/{connectorId}

[/Functions[/functionId]]]

Process /IM/Models/{modelId}/Processes[/{processId}]

Task /IM/Models/{modelId}/Tasks[/{taskId}]

Input Port /IM/Models/{modelId}/InputPorts[/{portId}]

Output Port /IM/Models/{modelId}/OutputPorts[/{portId}]

Coupling /IM/Models/{modelId}/Couplings[/{couplingId}]

System /IM/Projects/{projectId}/Systems[/{systemId}]

Component /IM/Systems/{systemsId}/Components[/{componentId}]

Function /IM/Components/{componentId}/Functions[/{functionId}]

A portion of the class diagram for the “Service” and the “Data Access” lay-

ers of the DEVS-IM is shown in Figure 5.14. Each service class in the Service

package has some association relation with other service classes, and one associ-

ation relation with the corresponding repository in the Data Access package (as-

sociation from ModelService and IMService classes to the ModelRepository and

IMRepository classes are shown in the diagram). The interfaces define the required

methods which the corresponding classes must implement. Other details of the classes

in the Services and Data Access packages are omitted for brevity.

129

/IM/Projects[/{projectId}]
/IM/Projects/{projectId}/IMS[/{imId}[/GenerateCode]]
/IM/Models/{modelId}
/IM/Models/{modelId}/InputConnectors[/{connectorId}]
/IM/Models/{modelId}/OutputConnectors[/{connectorId}[/Functions[/functionId]]]
/IM/Models/{modelId}/OutputConnectors[/{connectorId}[/Functions[/functionId]]]
/IM/Models/{modelId}/Processes[/{processId}]
/IM/Models/{modelId}/Tasks[/{taskId}]
/IM/Models/{modelId}/InputPorts[/{portId}]
/IM/Models/{modelId}/OutputPorts[/{portId}]
/IM/Models/{modelId}/Couplings[/{couplingId}]
/IM/Projects/{projectId}/Systems[/{systemId}]
/IM/Systems/{systemsId}/Components[/{componentId}]
/IM/Components/{componentId}/Functions[/{functionId}]


(a)

(b)

Figure 5.13: A Portion of the Class Diagram for the DTOs in the DEVS-IM. (a)
To Retrieve Data. (b) To Insert or Update Data.

A sequence diagram scenario for a client inserting an IM element is shown in

Figure 5.15. The incoming message 1 by the ui object is processed by the imc object.

The id of the project sets in step 2. In step 3, a message is invoked on the ims object

to insert a new interaction model. The ims object checks some validation in step 4

(i.e., the name attribute cannot be null or empty, having a valid id for the project,

and prevent duplicate names for the interaction model). Then, the DTO object maps

130



Figure 5.14: A Partial Class Diagram for the Service and Data Access Layers of the
DEVS-IM Framework.

to a Domain object, and a new valid sequential unique id is set. The ims object

invokes message 7 on the imr object for inserting the interaction model. The imr

object invokes message 8 on the db object (i.e., MongoDB database) and returns the

inserted data to the database. Finally, the im object (the Domain object) maps to the

IMDTO object and returns as a result in step 9. The result returns to the imc and ui

objects, consequently.
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Figure 5.15: A Sequence Diagram to Insert an IM Element via the DEVS-IM
Framework.
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5.3.3 Model Verification

The applied verification on each received request guarantees that the stored model

in the database is always a valid model from the structure point of view. Different

verifications are defined for CRUD operations on each element. A proper error mes-

sage is returned in JSON format if the request breaks any verification rule of defining

the structure of the model. Otherwise, a JSON object with proper attributes to

show a successful operation will return as the response. For example, the framework

prevents duplicate names for a type of element (e.g., Process, Task, or Input/Output

Port) in the same scope (the same hierarchy level).

Figure 5.16 illustrates a verification flowchart for inserting a Coupling element in

the DEVS-IM framework. Suppose an API caller requests the URL “/IM/Models/

1/Couplings” via a POST method with “{\sourcePortId": 1, \targetPortId":

2}” as the body of the request. After routing to a proper service (see Figure 5.12),

the verification starts by checking the modelId. It retrieves a model with id that

equals one (based on the received id in the URL). The first check will be passed if the

model exists. Otherwise, an exception with the message “invalid modelId” returns

to the caller. In the second step, the type of the model must be checked. The IM

and Process elements (coupled DEVS models) can have coupling. So, an exception

with the message “invalid modelType” returns to the caller if the type is not valid.

In the third step, the model is checked for trying to insert repetitive coupling. So,

an exception with the message “repetitive coupling” returns if the coupling already

exists in the current model. The next step is finding the source and target models of

the coupling (using the sourcePortId and targetPortId in the body of the request)

to verify the coupling based on the DEVS specification. A coupling is valid if it

is an External Input Coupling (EIC): coupling from the input port of the current
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model to the input port of a sub-model, External Output Coupling (EOC): coupling

from the output port of a sub-model to the output port of the current model, or

Internal Coupling (IC): coupling from the output port of a sub-model to the input

port of another sub-model (see Section 2.2). An exception with the message “invalid

coupling” returns if none of the conditions are satisfied (specified by numbers 4 to 6

in Figure 5.16). The model in the database will be updated (add the coupling to the

model) if all checking are passed.

Figure 5.16: Verification Flowchart for Inserting a Coupling Element in the DEVS-
IM Framework.

Furthermore, a tree structure must be defined for the “Interaction Model” and the

“External System Schema” sections in Figure 5.6. So, the framework always checks

not to have a loop in defining a model. In other words, a model cannot be a self-child.

Otherwise, it makes an infinite loop in the defined model. Also, the name attribute of

all elements (except the Port element) must follow the pattern “[a-zA-Z][a-zA-Z $

0-9]” because the name of these elements will be used in the code generation phase to

define the name of the generated packages and files (the code generation is explained

in the next section).
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5.3.4 Database Specification

Figure 5.17 illustrates the database schema in the DEVS-IM design. There are

four collections with id as the primary key. The pk, fk, and dk show the primary

key, foreign key, and destination key in a collection/relation, respectively. Mandatory

values are indicated by the star. The projects collection stores Project elements (see

Figure 5.11). All atomic and coupled models (i.e., all hierarchy of IM, Logic, Task,

Process, and Connector elements) defined in an interaction model are stored in the

models collection. The ports and couplings of a model are stored as nested collections.

The couplings collection for an atomic model would be empty. The data of the

external system interfaces (see Figure 5.11) are stored in the systems and components

collections. The ports and couplings in the models collection and the functions in the

components collection are defined using one-to-many relationships with embedded

documents. The hierarchy structure for the models and components is defined using

a one-to-one relationship with document references (using parentId field). The rest

relationships are defined using one-to-many relationships with document references.

The stored data in the database (specifically the models collection) will be used to

generate the skeleton of a complete project in the DEVS-Suite simulator to define the

behavior of the atomic models in the Java programming language. The predefined

behavior of the Logic and Connector elements define during the code generation.

Thus, the modeler can define the Task and Function elements’ behavior. The test,

debug, and visualization features of the DEVS-Suite simulator can also be used to

validate the interaction model’s correctness.

As mentioned before, the DEVS-Suite simulator is used in this research to simulate

the interaction model. The structure of a models is defined using the DEVS-IM REST

APIs and the data are stored in the MongoDB database. The required classes (in
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Figure 5.17: Database Schema to Store the DEVS-IM Models.

Java programming language) for the DEVS-Suite simulator must be generated to add

the behavior for the atomic models (Task and Function elements) by the modeler.

WEN Simple Example

The DEVS-IM model for the exemplar WEN system (see Figure 4.1 and Figure 4.2)

is defined using 88 APIs with the POST method from Table 5.1 (one Project, two Sys-

tem, 10 Component, eight Function, one IM, seven Input Connector, eight Call Output

Connector, two Process, five Task, 22 Port, and 22 Coupling elements). Figure 5.18

presents a schematic view (drawn manually) of the defined DEVS-IM model. Two in-

terfaces are defined for the water and energy external systems, and they are presented

in a tree structure. The water interface has a run() function to execute the WEAP

model and two sub-components for the demands and supplies. The required functions

to get/set the values from/to the external systems are defined under the correspon-

dence components (i.e., the setFlow() function under the “PowerPlant” component

and the getFlow() function under “Canal1” and “Canal2” components). The same

approach is applied to the energy interface to define its demands and supplies. The
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tree structure of an interface is not required to be the same as the structure of the

external correspondence system. Different interfaces at different levels of abstraction

can be defined for an external system (based on the modeler’s approach). Compare

the defined interfaces in Figure 5.18 with the defined model in the WEAP and LEAP

systems in Figure 4.2. For example, the “Canal1” element in Figure 5.18 (under the

supplies of the water interface) is a reference to the Transmission Link entity from

the “River” to the “PowerPlant” entities in the WEAP model (see Figure 4.2). It

is simplified to one element in the interface for the external system in Figure 5.18

(instead of defining the whole hierarchy presented in the WEAP model) and hides

some details which are not important or not used in the interaction model.

Figure 5.18: A Schematic Diagram of the Defined DEVS-IMModel for the Exemplar
WEN Model.

The interaction model is defined using seven Input Connector, eight Call Output

Connector, two Process, and five Task elements (the left side in Figure 5.18). Each

output connector connects to a specific function of the external system schemas.

There are couplings between the output connectors and input connectors, but they

are not presented in Figure 5.18 for simplification and focus on the connection between

the IM and external system schemas. Indeed, all output connectors are coupled with a
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specific input connector (e.g., the “Get Flow Canal1” output connector is coupled with

the “Flow of Canal1” input connector) to send the results. The “Control” element

controls the synchronization between different parts of the interaction model and

the external systems. It also manages the concurrency/execution of the three main

systems (i.e., water, energy, and interaction model). The Process elements contain

the Task elements to transform the Flow/Electricity values from the water/energy

model to the Electricity/Flow values for the energy/water model (i.e., implementing

the Formulas 4.1 and 4.4). The execution mechanism is explained in the next sections.

5.3.5 DEVS-Suite Simulator Code Generation

The code generator of the DEVS-IM framework supports translating the models

that are stored in the database to source code for target simulation and markup

languages. Figure 5.19 presents the code generation schema from the DEVS-IM

model to generate meaningful java classes, as the skeleton of a complete project, in

the DEVS-Suite simulator. The stored model in the database (defined via the REST

APIs) is fetched and passed to the “Template Files” (using the “Template Models”)

to generate multiple packages and files. A set of “stg” files (String Template Group)

are used as the template to define the skeleton of the final generated classes for

different types of models (Parr, 2022). The “Template Models” contains a set of

Data Transfer Object classes to transfer data from the database to the “Template

Files”. A package with the same name (as the project name) will be generated and

contains all files related to the project. For each project, the code generator generates

one package for each IM model and one package for each system (System 1 Adaptor to

System n Adaptor in Figure 5.19). As shown in Figure 5.19, the generated package for

the IM model contains the classes for the IM, Process, Task, and Connector elements
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(see Figure 5.8). Also, the generated package for each external system contains the

classes for System, Component, and Function elements.

Figure 5.19: The Code Generation Schema from the DEVS-IM Model to the DEVS-
Suite Simulator.

From the DEVS specification point of view, the IM and Process elements are cou-

pled models (but the IM does not have any input or output ports), and the Connector

and Task elements are atomic models. The coupled models are presented using a java

file to define the structure of the model and a package containing the sub-models.

For example, in Figure 5.19, the “IMi.java” file and the “IMiModels” package de-

fine the ith IM element. Also, the “Processj.java” file and the “ProcessiModels”

package define the jth Process element. The atomic models are presented using a

java file to define the structure and the behavior of the model. For example, the

“Connectork.java” and “Taskl.java” in Figure 5.19 define the kth Connector and

the lth Task elements.
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To define a tree structure as an interface for the external system, the System

and Component elements are presented using a java file to define the system/com-

ponent and two packages for its sub-components and functions. For example, in

Figure 5.19, the “Componenty.java” file with the “ComponentyComponents” and

“ComponentyFunctions” packages define the yth Component element (the same files

and packages structure is used for the System element). The Function elements are

presented using a java file (to define the behavior). For example, the “Functionz.java”

in Figure 5.19 defines the zth Function element. The code generator defines the entire

structure of the interaction model. The behavior of the connectors is generated, and

the user needs to complete the behavior for Task and Function elements (the green

files pointed by green arrows in Figure 5.19).

The “Interaction Model” and “External System Schema” sections of Figure 5 have

been explained. Now, the communication between the “Function” part and the “Ex-

ternal Systems” section in Figure 5.6 needs to be defined. There exist a wide variety

of tools for modeling and simulating the external systems (i.e., the water and en-

ergy systems). As a generic approach, legacy and object-oriented software systems

can be encapsulated as services in Service Oriented Architecture (SOA) paradigm.

Various approaches have been proposed to transform legacy software systems into

integrable with other software systems (Bisbal et al., 1999). One of these approaches

is “wrapping”, where any proprietary legacy software system with input/output API

(e.g., WEAP and LEAP systems) can be encapsulated inside other software systems

(Sneed, 2006; Sneed et al., 2006). Indeed, individual functions in the legacy software

are wrapped into web services. This research follows the rationale and the gen-

eral approach of transforming a legacy system into flexible service-oriented software

frameworks in addition to component-based modeling and simulation.
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The WEAP/LEAP system is appealing to domain experts from the standpoint

of ease of use for rapid model development. In our previous publication (Fard &

Sarjoughian, 2021a), the WEAP entities, input and output variables, and their data

are represented using the Ecore meta-modeling approach, where each proxy model

component corresponds to a WEAP entity. The Ecore presents a well-defined compo-

nentized specification for the WEAP legacy modeling and simulation system. These

components are used in a flexible service-oriented framework. The outcome is the

Componentized WEAP RESTful framework. The framework helps to consider a set

of component models instead of thinking about a group of shared variables (belong-

ing to different entities) that are used in mass-balanced equations. Also, the REST

APIs ease the use of the WEAP system in modern computing platforms, including

its integration with other tools to model and simulate more complex systems, like

the WEN system. Every model entity developed in the WEAP system is automati-

cally extracted and included as a componentized model in the Componentized WEAP

RESTful framework. In the following section, the Componentized WEAP RESTful

framework is presented from the communication perspective. The same approach is

applied to the LEAP system.

WEN Simple Example

After using the Code Generation module of the DEVS-IM framework for the defined

model in the previous step, the SimView window of the DEVS-Suite simulator and

the generated packages (the focus of the Energy External System interface) for the

exemplar WEN model are presented in Figure 5.20 (compare it with Figure 5.18 and

Figure 5.19). The Process elements are converted to the coupled DEVS models. The

Task and Connector (input and output) elements are converted to the atomic DEVS

models. The purple atomic models are used to control the execution (concurrency
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and synchronization), and the blue and yellow atomic models are connected to the

water and energy models, respectively. Each connector has one input port (named

“in”) and one output port (named “out”), which are added automatically during the

model definition phase. The couplings between the output and input connectors are

presented in this view (i.e., the coupling from the “out” output port of an output

connector to the “in” input port of an input connector).

(a) (b)

Figure 5.20: Automatic Generated Code for the Exemplar WEN Model. (a) The
DEVS-Suite SimView. (b) Generated Packages, Focus on the Energy External System
Interface.

Considering the defined water and energy models in the WEAP and LEAP tools in

Figure 4.2, presents the JSON results of calling some APIs to get data for the defined

entities, variables, and simulation values. Given the execution of the WEAP/LEAP

tool and the Componentized WEAP/LEAP framework, Figure 5.21a shows the result

of calling “/Energy/WENExample/Demands” via the GET HTTP method. The re-

sult contains a list of demands defined in the “WENExample” project (see Figure 4.2).

Each demand has name, id, parentId, and order properties. Figure 5.21b shows the re-

sult of calling “/Water/WENExample/Demands/PowerPlant/Outputs” via the GET
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HTTP method. The result contains a list of all output variables of the “PowerPlant”

demand site in the “WENExample” project. Each variable has name, unit, min,

max, isReadOnly, and isUserDefined properties. Figure 5.21c presents the retrieved

dummy data from the water model for the “Water Demand” variable of the “Power-

Plant” demand site for “CurrentAccount” scenario and data are filtered for 2010 val-

ues (by calling URL= “/Water/WENExample/DemandSites/PowerPlant/Outputs/

Water Demand/Current Account?startYear=2010,endYear=2010”). The data sec-

tion has four values for different timesteps (i.e., seasons). The similar API from the

LEAP system, Figure 5.21d, returns one value per year because it is assumed to have

yearly time granularity for the energy system in the WEN example (see Figure 4.1).

5.3.6 Behavior Definition

Calling the Componentized WEAP REST APIs must be defined in the Function

elements of the interaction model (see Figure 5.6). A base package named “core” is

implemented in the DEVS-Suite simulator, which contains the super abstract classes

for all element types of the DEVS-IM framework (see Figure 2 and Figure 3 in (Fard

& Sarjoughian, 2021b)). A partial behavior for the Task abstract class is defined

in the core package. The inherited class from the Task class must complete the

behavior. The Input/Output Connector abstract classes in the core package are

inherited from the Task class, and their default behavior is defined, as well. The

design of the classes in the core package has the flexibility to define a new type of

element by the modeler (e.g., a new connector element).

The Task element in the DEVS-IM design serves the purpose of the Transforma-

tion element in the Algorithmic-IM approach. The main difference between these two

elements is the capability to set the time advance value in the Task element. Also,
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(a) (b)

(c) (d)

Figure 5.21: (a) JSON Result of Calling URL = “/Energy/WENExam-
ple/Demands”. (b) JSON Result of Calling URL= “/Water/WENExam-
ple/DemandSites/PowerPlant/Outputs”. (c) JSON Result of Calling URL =
“/Water/WENExample/DemandSites/PowerPlant/Outputs/Water Demand/ Cur-
rentAccount?startYear=2010,endYear=2010”. (d) JSON Result of Calling URL
= “/Energy/WENExample/Demands/Pump1/Inputs/Energy Intensity/CurrentAc-
count?startYear=2010,endYear=2010”.

a modeler can define other new elements (derived from the IMAtomicModel class in

Figure 5.9) which have different behavior compared to the Task element. The DEVS

specification of the Task element is defined in Listing 5.1. The modeler must define

the input and output port names and values. The state variable is defined using the

phase, sigma, queue, current message, and active time attributes. The “Active”

and “Passive“ are two valid values for the phase attribute. The queue attributes to

store the input messages received on the input ports if the model is processing an-
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other input. The current message attribute indicates the message that the model is

processing. The active time attribute indicates the required time to process input

(amount of time for being in the “Active” phase). The default value for the active

time is zero. However, it is an input parameter of the Task class in the DEVS-Suite

simulator, so it can be set to different values for different task instances. The external

transition function sets the active time and input message to the sigma and current

message state variables if a model is in the “Passive” phase. Otherwise, the input

message is added to the queue variable, and the sigma is updated. The internal tran-

sition function starts processing the next input message if the queue is not empty.

Otherwise (the queue is empty), the phase is changed to “Passive”. The actual data

transformation must be defined in the perform(cv,Y) method. The output function

is responsible for calling the perform method and passing the required parameters

to it (the current message and the output set). The specifications for the remaining

functions are straightforward. By having these specifications for the Task element, a

modeler who is not an expert in the DEVS formalism can define the behavior of the

transformations (in the perform method) without going deep into different functions

of the atomic DEVS model. Some useful predefined elements (such as Queue, Stack,

Random Generator, Periodic Generator, and so on) can be inherited from the Task

class to have simpler and faster modeling.

Listing 5.1: Parallel DEVS Specification of the Task Element.

MTask =< X, Y, S, δint, δext, δcon, λ, ta >

IPorts = {. . . }, OPorts = {. . . }
X = {(ip, v)|ip ∈ IPorts, v ⊂ V alues}
Y = {(op, v)|op ∈ OPorts, v ⊂ V alues}
S = {“Passive”, “Active”} × R+∞

0 ×Queue < (ip, v) > ×(ip, v)× R+∞
0

s0 =

{
(“Passive”, Infinity,∅,∅, 0) initPhase == “Passive”

(“Active”, ActiveT ime(),∅,∅, 0) otherwise

δext((phase, σ, q, cv, at), e, (p, v)) =
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{
(“Active”, at,∅, (p, v), at) initPhase == “Passive”

(“Active”, σ − e, q.add((p, v)), cv, at) otherwise

δint(phase, σ, q, cv, at) =

{
(“Active”, at, q, q.pop(), at) q.size() > 0

(“Passive”, Infinity,∅,∅, at) otherwise

δcon((phase, σ, q, cv, at), e, (p, v)) = δext(δint(phase, σ, q, cv, at), 0, (p, v))
λ(“Active”, σ, q, cv, at) = perform(cv, Y )
ta(phase, σ, q, cv, at) = R+∞

0

In addition, the Logic element is an atomic model with a specific behavior that

does not increase the simulation clock. It can be used to define some logical oper-

ations. For example, the Junction element sends data on the input/s to all output

ports, the Choice element sends the input data to one of the outputs based on some

condition, and the Synchronization element to sync the inputs and send them on out-

put/s. As an example, Listing 5.2 presents the specification for the Choice element.

The incoming message will send to one of the output ports (in the perform() method)

based on a set of conditions. No explicit concept of the logic component was used in

the Algorithmic-IM. Like the Task element, the Logic elements can be defined by the

user.

Listing 5.2: Parallel DEVS Specification of the Choice Element.

MTask =< X, Y, S, δint, δext, δcon, λ, ta >

IPorts = {. . . }, OPorts = {. . . }
X = {(ip, v)|ip ∈ IPorts, v ⊂ V alues}
Y = {(op, v)|op ∈ OPorts, v ⊂ V alues}
S = {“Passive”, “Active”} × R+∞

0 × Set < condition, p >
s0 = (“Passive”, Infinity,∅)
δext((phase, σ, s), e, (p, v)) = (“Active”, 0, s)
δint(phase, σ, s) = (“Passive”, Infinity, s)
δcon((phase, σ, s), e, (p, v)) = δext(δint(phase, σ, s), 0, s)
λ(“Active”, σ, s) = perform(s, Y )
ta(phase, σ, s) = R+∞

0

One input connector type is defined in the DEVS-IM framework (i.e., the Tran-

sient Input Connector element) (Fard & Sarjoughian, 2021b). Its DEVS formal spec-
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ification is presented in Listing 5.3. All predefined input/output connectors in the

DEVS-IM framework have one input port (named “in”) and one output port (named

“out”). The behavior is defined as transiently transferring any input message on the

“in” input port to the “out” output port of the model (active time is zero). The

state variable is defined using the phase, sigma, and the received Values on the

message.

Listing 5.3: Parallel DEVS Specification of the Transient Input Connector Element.

MTransientOutput =< X, Y, S, δint, δext, δcon, λ, ta >

IPorts = {in}, OPorts = {out}
X = {(ip, v)|ip ∈ IPorts, v ⊂ V alues}
Y = {(op, v)|op ∈ OPorts, v ⊂ V alues}
S = {“Passive”, “Active”} × R+∞

0 × V alues
s0 = (“Passive”, Infinity,∅)
δext((phase, σ,m), e, (p, v)) = (“Active”, 0, v)
δint(phase, σ,m) = (“Passive”, Infinity,∅)
δcon((phase, σ,m), e, (p, v)) = δext(δint(phase, σ,m), 0, (p, v))
λ(“Active”, σ, q, cv, at) = (“out”,m)
ta(phase, σ, q, cv, at) = R+∞

0

Three types of output connector elements are defined in the DEVS-IM framework;

CallOutput, TransientOutput, and QueueOutput connectors. The TransientOutput

connector immediately sends data to the external systems. The received data on the

input can be sent to a list of Function elements (using the exec(. . . ) method of the se-

lected function). The DEVS specification for TransientOutput connector is presented

in Listing 6. The output function corresponds to sending the incoming message to all

destinations. For example, the data for the input variables of the WEAP or LEAP

models can be set using the TransientOutput connector (via Componentized WEAP

and Componentized LEAP APIs).

Listing 5.4: Parallel DEVS Specification of the Transient Output Connector Ele-
ment.

MTask =< X, Y, S, δint, δext, δcon, λ, ta >

IPorts = {in}, OPorts = {out}
X = {(ip, v)|ip ∈ IPorts, v ⊂ V alues}
Y = ∅
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S = {“Passive”, “Active”} × R+∞
0 × V alues

s0 = “Passive”, Infinity,∅
δext((phase, σ,m), e, (p, v)) = (“Active”, 0, v)
δint(phase, σ,m) = (“Passive”, Infinity,∅)
δcon((phase, σ,m), e, (p, v)) = δext(δint(phase, σ,m), 0, (p, v))
λ(“Active”, σ,m) = destinations(d).exec(m)[∀d ∈ N+

0 , d < destinations.length]
ta(phase, σ, q, cv, at) = R+∞

0

The CallOutput connector is connected to one Function element. The defined

behavior for this model is sending the received message on the “in” input port to the

connected Function element. Then, execute the exec(. . . ) method of the Function

element and put the result of the execution to the “out” output port of the connector

(which will be sent to an input connector). The DEVS formal specification of the

CallOutput connector is presented in Listing 5.5. Like the TransientInput connector,

the state variable is defined using the phase, sigma, and the received Values on the

message. The destination in the output function refers to the connected Function ele-

ment to the model. The TransientOutput connector is connected to a set of Fucntion

elements. The defined behavior for this model is sending the message received on

the “in” input port to all connected Function elements and executing their exec(. . . )

method. The QueueOutput connector queues the message received on the “in” input

port to be read in the future.

Listing 5.5: Parallel DEVS Specification of the Call Output Connector Element.

MCallOutput =< X, Y, S, δint, δext, δcon, λ, ta >

IPorts = {. . . }, OPorts = {. . . }
X = {(ip, v)|ip ∈ IPorts, v ⊂ V alues}
Y = {(op, v)|op ∈ OPorts, v ⊂ V alues}
S = {“Passive”, “Active”} ×R+∞

0 × V alues
s0 = “Passive”, Infinity,∅
δext((phase, σ,m), e, (p, v)) = (“Active”, 0, v)
δint(phase, σ,m) = (“Passive”, Infinity,∅)
δcon((phase, σ,m), e, (p, v)) = δext(δint(phase, σ,m), 0, (p, v))
λ(“Active”, ϕ,m) = (“out”, destination.exec(m))
ta(phase, ϕ,m) = R+∞

0
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Figure 5.22 illustrates an imaginary example in the DEVS-IM (the visualization is

drawn manually). The created model by the modeler is presented at the top layer, and

the equivalent DEVS model is shown at the bottom. The input and output connectors

must be connected to the system interfaces (which are not presented in the diagram).

From the modeler perspective, there are three InputConnector, three OutputConnec-

tor, one Process, one Task, one Junction elements, and the coupling between them.

The connectors named “out1”, “out2”, and “out3” of the “IM” interaction model

are TransientOutput, QueueOutput, and CallOutput elements, respectively. Suppose

the input connector “in3” of the “IM” component is selected in the output connector

“out3” for the input attribute (see Figure 5.9). In the equivalent DEVS model, all

components are presented as atomic or coupled models. There are eight atomic mod-

els and one coupled model in the “IM” component (the “Process 1” coupled model

has sub-elements, as well).

As described before, all elements in the DEVS-IM design are derived from the

atomic or coupled DEVS models. Thus, the interaction model is a parallel DEVS

model (with some specific atomic models as the connectors to communicate with the

outside world). Consequently, the DEVS simulation protocol is used to simulate the

interaction model. To simulate the DEVS models, a hierarchy of simulator objects

that mirrors the hierarchical tree structure of the DEVS model is used. There is

a DEVS simulator corresponding to each atomic model and a DEVS coordinator

corresponding to each coupled model (see Section 2.2). A root coordinator oversees

controlling the executions of all atomic and coupled simulators. The simulators and

coordinators are responsible for the correct simulation of coupled models. A key

advantage of using a well-defined simulation protocol is that it allows a simulator to

execute models independent of their specific behaviors.
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Figure 5.22: An Example DEVS-IM Viewed as a DEVS Model.

5.3.7 Execution Control

Different modeling formalisms in a heterogeneous modeling environment provide

their own approaches for modeling behavioral specification and execution protocol.

Consequently, the simulation time management and synchronization mechanisms of

different modeling formalisms can be so distinct that the dynamic interaction between

the disparate models may result in unexpected errors without a well-defined compos-

ite behavioral specification or a well-designed coordination execution protocol. The

DEVS-IM framework is grounded in system theory and component-based modeling.

The model specification and execution protocol are separated in the DEVS-IM frame-

work (based on using DEVS formalism). It supports the model reusability, flexibility,

and maintainability traits essential for developing realistic simulations (such as cou-

pled energy and water systems). The Parallel DEVS supports concurrent execution

of the DEVS models. Therefore, the DEVS-IM model may send messages to dis-

parate external systems simultaneously. Also, the DEVS-IM model must be capable

of dealing with concurrent messages from external systems.

The DEVS-IM simulator framework supports synchronous communications/exe-

cutions. Based on the defined execution control in the interaction model, multiple

requests from the external system/s (e.g., send data, receive data, run the external
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simulation, and so on) can be invoked sequentially or in parallel. The time inside the

interaction model would not be elapsed while it is waiting for the result/s from the

external system/s. In sequential execution control, the interaction model requests a

specific action from an external system and waits for its result. Then, another request

from the same or another external system can be invoked. In the parallel execution

control, the interaction model requests from multiple external systems simultane-

ously and waits for all results. A hybrid execution can be defined in the interaction

model, meaning that some intervals follow the sequential execution, and others follow

the parallel execution (based on the defined execution control for the model). Even

though asynchronous execution can be supported by the programming language of

the DEVS-Suite simulator (the Java programming language), the simulator cannot

guarantee a robust execution for the asynchronous behavior.

WEN Simple Example

Figure 5.23 shows a pseudo-code to control the execution for the exemplar WEN

model. It has five input ports and four output ports. Lines 1-5 define the local vari-

ables with their initial values. Lines 6-8 must be implemented by all Task elements

to define the behavior of the model. In this example, two sub-procedures are called

to read the messages on the input ports and produce some messages on the output

ports. The CheckInputMessages procedure (lines 9-20 in Figure 5.23a) sets the local

variables based on the read messages on the input ports. For example, the control

starts executing by receiving a message on “Start” input port; Or it increases the

EnergyInputApplied variable for one unit by receiving a message on the port “Energy

Input Applied”; And so on.

The FillOutputMessages procedure can have behavior like Figure 5.23b to have a

sequential execution for the external systems. In the sequential execution, the water
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and energy models run alternatively (see toggling the isWaterExecuted and isEner-

gyExecuted local variables). The WaterInputApplied and EnergyInputApplied vari-

ables check that all output values are applied to the external systems (i.e., set Elec Pump1

and set Elec Pump2 for the energy system, and set Flow PowerPlant for the water

system). Figure 5.23c presents the parallel execution of the water and energy systems.

These are two samples of the sequential and parallel executions applied by the Con-

trol model. Any other execution can be implemented by the user (based on the input

and output messages and the coupling from Control to the other models). Obviously,

different execution controls for the same systems can produce different results.

Figure 5.24 illustrates the sequence diagram of executing the water system (WEN

project of the WEAP tool) in the defined DEVS-IM model. Compare the models (and

the color of the objects) in the sequence diagram with the models in Figure 5.20.

In step 1, a message is sent from cont object (an instance of the Control atomic

model) to the ew object (an instance of the Execute Water output connector) via

their coupling. In step 2, the ew object calls the exec() method of the runWEAP object

(an instance of the run function). In step 3, an API from the Componentized WEAP

framework is called to run the “WEN” project. In step 4, the Componentized WEAP

framework executes the project and returns the True value in JSON format. Then,

the runWEAP object puts the received JSON result in a message of type Entity and

returns the message to the ew object. All communications from step 2 up to this point

were a synchronous process. In step 5, the ew object sends the received message to

the we object (an instance of the Water Executed input connector) via their coupling.

Consequently, the received message is sent to the cont object in step 6. Finally, the

isWaterExecuted variable of the cont object is set to True (see Figure 14 5.23a). The

same steps apply to read/write values from/to a specific variable of an entity in the

WEAP and/or LEAP models.
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(a) (b)

(c)

Figure 5.23: The Sketch of the Defined Execution Control for the WEN Example.
(a) The Perform and CheckInputMessage Procedures. (b) FillOutputMessages to
Apply Sequential Execution. (c) FillOutputMessages to Apply Parallel Execution.

5.3.8 Model Validation

Verification is the process of determining that a model implementation and its

associated data accurately represent the developer’s conceptual description and spec-

ifications (answering the question “Have we built the model, right?”). Validation is

the process of determining the degree to which a simulation model and its associated
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Figure 5.24: Sequence Diagram to Execute the Water Model (Defined Model in the
WEAP System) by a DEVS-IM Model.

data accurately represent the real world from the perspective of the intended uses of

the model (answering the question “Have we built the right model?”).

Figure 5.25 illustrates the parts and their relationships for the internal linkage and

interaction model. The Read(x) on the arrows between the systems means reading the

x variable from the source system. Also, the Write(x,y) means writing the values of

the variable x (from the source system) to the y variable (from the target system). The

WV and LV in the formulas represent the “WEAP Variables” and “LEAP Variables”,

respectively. In the WEAP-LEAP internal linkage (see Figure 5.25a), the value of a

WEAP/LEAP variable drives from some function(s) of the WEAP variables, some

function(s) of the LEAP variable, and some constants. As an example, the values

of the WVi calculated by reading the LVp variable from the LEAP system, reading

the WVo variable from the WEAP system, and constant-coefficient values (i.e., c1, c2,

and c3).

In the Interaction Model approach (Figure 5.25b), the data transformation for-

mulas can be completely or partially applied to the data in the interaction model.

For example, the computation formulas for the WVi in Figure 5.25b applied com-

pletely, and the computation formulas for the WVj applied partially to the data in
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(a)

(b)

Figure 5.25: Comparing the Data Processing in the WEAP-LEAP Internal Linkage
and Interaction Model.

the Interaction Model. Completely applying data transformation to the Interaction

Model formalizes and reduces the complexity of the relationship between the WEAP

and LEAP models. In the WEAP-LEAP internal linkage, the systems are responsible

for reading the required data from the other system and applying the data transfor-

mation before starting the execution (the Read(x) on the arrows between the system

in Figure 5.25a). Whereas, in our approach, the Interaction Model is responsible

for reading the data from the system, performing data transformations, writing the

transformed data to the system, and controlling the execution of the componentized

WEAP and LEAP systems (i.e., managing the Read(x) and Write(x,y) operations for

time-driven data transformations shown in Figure 5.25b).

A variety of methods are used to validate simulation models; for example, “Face

Validity”, “Historical Data Validation”, “Sensitivity Analysis”, an so on. (Law, 2019).

The validation in this research is based on the “Comparison to Other Models” method.

The WEAP-LEAP internal linkage model is considered to be the real-world data for
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validating the DEVS-IMmodel. The initial states of the “Phoenix AMA” model in the

WEAP and LEAP systems are the same as those in the WEAP-LEAP internal linkage

and DEVS-IM models. The water and energy “Phoenix AMA” systems are defined

as deterministic mass-balance equations. Given the same WEAP and LEAP models

with the same initial states, the transformation formulas defined in the Interaction

Model should have the same results as those of the internal linkage.

The results of executing the Phoenix AMA DEVS-IM model are validated in two

scenarios. First, the WEAP model is executed (considering zeros for the dependent

variables to the LEAP system), its results are read, and the transformed data are

applied to the LEAP model. Then, the LEAP system is executed (using the applied

data by the Interaction Model), its results are read, and the transformed data are

applied to the WEAP model. At this step, the results of both WEAP-LEAP internal

linkage and DEVS-IM approaches are exported to CSV files. Then, a separate ap-

plication (written in Java programming language) compares the results based on the

components, variables, years, and time steps. The outcome shows that the results are

identical in most cases. In some cases, the results have negligible differences (∼ 10−6)

due to the transferred data precision and computation/rounding mechanism. The

WEAP and LEAP APIs allow extracting the data from their systems up to 15 digits

(maximum six decimal places). However, their computation engines may use data

with higher precision. Second, the same mechanism, but first running the LEAP

system and then the WEAP system, is applied. Consequently, simulating the WEN

model via the WEAP-LEAP internal linkage and the DEVS-IM have nearly identical

results.

Table 5.2 compares the main differences in modeling and simulation an interaction

model using the Algorithmic-IM or DEVS-IM frameworks.

156



Table 5.2: Main Differences in Modeling and Simulation an Interaction Model Using
the Algorithmic-IM and DEVS-IM Frameworks.

Algorithmic-IM DEVS-IM

Designed based on the software design

principles

Designed based on the system theory

and formal specification

Having a flat modeling structure (one

level of hierarchy)

Having a component-based structure

for modeling (hierarchical)

Concatenated model specification and

simulation protocol

Separate Model specification and

simulation protocol (based on the

DEVS formalism)

Fixed execution control
Dynamic step-by-step execution

control

Storing the models in flat files (java

classes)

Storing the models in MongoDB

database

Defining the Model via Programming

Language
Defining the Model via REST APIs

Direct communication between the

interaction model and disparate

systems

Communication between the

interaction model and disparate

systems via a separate interface for

each external system

Simpler to use, but restricted (in both

modeling and simulation)

More complex to use, but more

flexible and maintainable (in both

modeling and simulation)
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Chapter 6

CASE STUDY

(WATER-ENERGY NEXUS)

The metropolitan Phoenix, a city in the US desert southwest, is a subject study

area for understanding the water and energy nexus. As an Active Management Area

(AMA) region, sustainable aquifer withdrawal/recharge is one of the primary goals

to be achieved by 2025 (Guan et al., 2020). Both water and energy serve as both

demand and supply. They form a supplier and consumer collective where they control

one another. There are other players that directly or indirectly affect/affected by the

water-energy feedforward and feedback relationships. In the context of this research,

a study of the water and energy system for the Phoenix AMA is carried out using

the WEAP and LEAP systems (Guan et al., 2020; Mounir et al., 2019). To develop

and calibrate water and energy models for the Phoenix AMA, the WEAP and LEAP

systems, and publicly available data sources. Data sets from 1985 through 2009 are

used to develop the water and energy models. Simulation scenarios cover the period

starting in 2008 and ending in 2018.

An illustration of the water and energy entities for the Phoenix AMA is shown

in Figure 6.1. This visualization of the water-energy system provides a simplified

representation of all the Phoenix AMA entities that are developed and validated. The

water system is supplied by four primary sources: the Salt River Project (SRP), the

Central Arizona Project (CAP), groundwater, and reclaimed water. Also, the main

water demands in the area are for irrigation, municipal, industry, Indian communities,

riparian, and energy generation (power plants) (Guan et al., 2020). The water needs

to be transmitted from the supply sources to the demand nodes. This high-fidelity
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water model has two River (SRP and CAP), two Groundwater, and two Wastewater

Treatment Plant entities, collectively representing the water supply. This model has

twelve Catchment (for irrigation) and six Demand Site (for the rest of demands)

entities, representing the water demand. The water supply and demand entities form

a network using fifty-six Transmission Link and five Return Flow entities.

(a) (b)

Figure 6.1: An Illustration of a Model for the Phoenix AMA Water-Energy System.

The energy model for the Phoenix AMA has the goal of tracking the energy em-

bedded in all water uses and infrastructures (Mounir et al., 2019). The energy model

is supplied by two utilities: Salt River Project (SRP) and Arizona Public Service

Company (APS). They mainly use Coal, Nuclear, Natural Gas, and Renewable (solar

and wind) primary resources to generate electricity. The energy is supplied via two

entities: one for electricity generation and another for electricity transmission and

distribution. All customer electricity demand is provided by APS, SRP, and CAP.

The energy demands are defined via three main sectors: Residential, Commercial,

and Industrial. The first two sectors are affected by population growth (e.g., required

energy for water heating), but the last sector is for satisfying the water-related energy

demands required for pumping, water treatment, and distribution. The Industrial sec-

tor also has a subsector for water treatment facilities (Wastewater Treatment Plant

(WWTP) and Water Reclamation Facilities (WRF)). The energy model has nine Re-
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source, one Transformation with twenty-seven processes, and ninety-three Demand

entities.

Sustainable aquifer withdrawal/recharge is one of the primary goals to be achieved

in the Phoenix AMA by 2025 (Guan et al., 2020). A study of the water and energy

system for the “Phoenix AMA“ is carried out using the WEAP and LEAP systems.

The food model is defined inside the water model (using the WEAP-MABIA). The

defined water model for the “Phoenix AMA” in the WEAP system has six water

supplies (two River, two Groundwater, and two Wastewater Treatment Plant entities)

and 18 demands (12 Catchment for irrigation and six Demand Site entities for the

rest of the demands) using 61 connections between them (56 Transmission Link and

five Return Flow entities) to form the water network. The defined energy model for

the “Phoenix AMA” in the LEAP system has nine Resource, one Transformation

with 27 Processes, and 93 Demand entities. The water and energy models have 183

(172 from water to energy and nine from energy to water) interactions with each

other. The whole WEN model for the “Phoenix AMA” has been developed using the

WEAP-LEAP internal linkage (Guan et al., 2020; Mounir et al., 2019), Algorithmic-

IM framework (Fard et al., 2020), and DEVS-IM framework (Fard & Sarjoughian,

2022). The results of the DEVS-IM framework contribute to the transparency of

building high-fidelity simulations of water-energy systems (compared to the data-

sharing mechanism used by the WEAP-LEAP internal linkage).

6.1 WEN Modeling for the Phoenix AMA via WEAP-LEAP Internal Linkage

As mentioned in Section 3.3, the WEAP and LEAP systems have an internal

linking mechanism that can bi-directionally share data to read variables from one to

another (given satisfying the restrictions). An illustration of a portion of the water

and energy models for the “Phoenix AMA” is shown in Figure 6.2. A portion of the
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schematic of the water model and the Data views (tree structures) for the water and

energy models are shown, as well. The connections between the water and energy

model entities are hand-drawn as solid and dotted lines. The dotted blue lines from

the water model to the energy model illustrate the flow from the transmission link

entities to the demand entities. The calculations for the amount of energy that can

be produced given the amount of water that can be made available are defined in the

energy entities (e.g., Kyrene Generating Station). The solid red lines illustrate the

flow of power (electricity) from the energy model to the water model. Similarly, the

amount of water that can be supplied to meet demand depends on the amount of

energy. These calculations are defined in the appropriate water entities (e.g., demand

site). The “Power Plant” demand site entity in the water model needs to know

the amount of generated electricity by nine processes in the “Electricity Generation”

transformation entity in the energy model (to fill the “Monthly Demand” variable).

Also, the “Treatment and Distribution” demand entity in the energy model needs to

know the amount of flow in the transmission links from “Groundwater” and “GW-

Backup” to the “Municipal” in the water model (to fill the “Final Energy Intensity”

variable). Calculations for aggregating and/or converting the generated electricity in

the energy model must be defined in the “Power Plant” demand site entity in the

water model. Similarly, calculations for aggregating and/or converting the amount of

flow in the water model must be defined in the “Treatment and Distribution” demand

entity in the energy system.

6.2 WEN Modeling for the Phoenix AMA via Algorithmic-IM

The Componentized WEAP and Componentized LEAP systems, the encapsulated

WEAP and LEAP systems in RESTful frameworks, are coupled using an Interaction

Model (Fard & Sarjoughian, 2020). The coupling follows the Knowledge Interchange
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Figure 6.2: A Portion of the Water Model Schematic and Data View, Energy Model
Data View, the Water-Energy Model, and Illustrated Connections Linking the Water
and Energy Models for the Phoenix AMA.

Broker (KIB) approach, where relationships between the two disparate models are

defined as separate models (Sarjoughian, 2006). A portion of the internally linked

water and energy model (see Figure 6.2) is depicted in a component view in Fig-

ure 6.3. This diagram illustrates the logical specifications for the water and energy

model interactions. An interaction model has a set of modules, each responsible for

transforming data from one model for use by another model. Each module has its

own input/output ports to receive/send the data from/to water and energy models.

The module’s ports are connected to specific entities and variables in the Compo-

nentized WEAP and Componentized LEAP models. The structure of the received

or sent data in the module’s ports must be defined in the interaction model. Each

module has one-to-many transformations, where each transformation has its input

and output ports. Three types of coupling are allowed between the module and/or

transformation ports. They are modules’ input to transformations’ input, transfor-

mations’ output to transformations’ input, and transformations’ output to modules’

output (see Figure 6.3). Each transformation can process one or more data values on

its input ports and send data values on its output ports. The interaction model has
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a cyclic, time-step, synchronous execution protocol for concurrent and bidirectional

data transformations between water and energy models. With the use of the interac-

tion model, the water and models do not need to have direct knowledge of each other.

The WEAP model has the data (input and output) of the type Flow, and the LEAP

model has the data (input and output) of the type Electricity. Since the water and

energy models are decoupled, they can execute concurrently with one another and

the interaction model in every simulation cycle.

The interaction model is responsible for receiving, processing, and sending the

data required for the water and energy models, as depicted in Figure 6.3. The Treat-

ment and Distribution demand component in the energy model does not have any

knowledge about the water source. It receives the required generated electricity from

the module named “Mun-GW.treat” port of the interaction model. In this exam-

ple, the “Treatment and Distribution” demand component in the energy model and

the “Groundwater to Municipal” and “GW-Backup to Municipal” transmission com-

ponents in the water model are coupled using the transformation “F-E” (Flow to

Electricity) in the module named “Mun-GW”. The processes in the “Electricity

Generation” transformation component in the energy model and the “Power Plant”

demand site component in the water model are coupled using the transformation

“E-F” (Electricity to Flow) in the module named “Elect-Flow”. The port names

defined for the modules and transformations in the Interaction Model are provided

in Figure 6.3.

The IM communicates with the Componentized WEAP/LEAP using the desig-

nated APIs. According to the signature of the APIs, every module’s ports need

to know the project name, component type, component name, variable type, variable

name, and scenario name of the componentized water and/or energy models. The

structure of the incoming/outgoing messages to/from the interaction model is defined
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Figure 6.3: An Illustration of the Algorithmic-IM for a Portion of the Phoenix AMA
WEN Model Using Componentized WEAP and LEAP.

according to the APIs of the Componentized WEAP/LEAP RESTful framework. In

the AMA interaction model, the data from the water and energy models (WEAPMes-

sage and LEAPMessage) share the same structure. Each message has a finite number

of time intervals; each time interval has a year value and a finite number of data; each

data has a time-step/time-slice and a value.

In the Phoenix AMA model, the demand for the energy model needs the values of

the Flow result variable of two transmission links in the water model. These values

(with m3 unit) are converted to values (with KW/h unit) for the Energy Intensity

variable of a demand entity in the energy model using a coefficient. Essentially,

the “F-E” transformation defines data conversion from “Groundwater to Municipal”

and “GW-Backup to Municipal” transmission entities (in the Componentized WEAP

model) to the “Treatment and Distribution” demand entity (in the Componentized

LEAP model). Similarly, the electric data from the energy model is read and con-

verted to water quantity for the water model (in the “E-F” transformation of the

IM). The required computation in the interaction model handles by the transforma-

tions. The data conversion calculation for the Phoenix AMA interaction model is

shown in Equation 6.1. Transformation’s input ports are read (based on the year
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and time-step/time-slice) and multiplied by a factor F to calculate the output val-

ues. The range of the year and time granularity (time-steps in the WEAP model and

time-slices in the LEAP model) parameters are assigned by the corresponding values

in the source model of the transformation.

Out.vy,ts =
∑

in∈tran.inputs

[in.v(y, ts)× Fin,y,ts]

y ∈ N, startY ear ≤ y ≤ endY ear; ts ∈ N, 1 ≤ ts ≤ #timeGranularityForY ear

(6.1)

The factor F in Equation 6.1 can be constant for all input values or specified

for each input port, year, and time-step/time-slice. For example, F is 130.34 ×

0.000810714 for all the input ports, years, and time-steps in the “F-E transformation”

in Figure 6.3. For the “E-F transformation” in Figure 6.3, F is different based on

the input ports, years, and time granularities (months). Equation 6.2 shows the

computation in the “E-F transformation” in Figure 6.3. The value for each k is

predefined to be the number of days d for a month in each year multiplied by 24.

For example, the value of k is 31 × 24 for Jan. 2018. The simulation duration is 11

years (2008 ≤ y ≤ 2018) with monthly time granularity (1 ≤ ts ≤ 12). The charts in

Figure 6.4 show the input and output port values of the transformations (i.e., “E-F”

and ”F-E”) for 2018.
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(a) (b)

(c) (d)

Figure 6.4: The Input and Output Data of the Interaction Model Simulation for
the Phoenix AMA Area. (a) The ”F-E” Transformation Inputs, (b) The ”F-E”
Transformation Output, (c) The ”E-F” Transformation Inputs, and (d) The ”E-F”
Transformation Output.

Out1.valuey,ts = in1.v(y, ts)× Fin1 + in2.v(y, ts)× Fin2

+in3.v(y, ts)× Fin3 + in4.v(y, ts)× Fin4

+in5.v(y, ts)×


Fin51 y ≤ 2013

Fin52 otherwise



+in6.v(y, ts)×


Fin61 y ≤ 2013

Fin62 2013 < y ≤ 2013

Fin63 otherwise


+in7.v(y, ts)× Fin7 + in8.v(y, ts)× Fin8 + in9.v(y, ts)× Fin9

Fin1 = 1.9× k;Fin2 = 3.1× k;Fin3 = 1.3× k;Fin4 = 4.4× k;Fin51 = 3.2× k;Fin52 = 1.6× k;

Fin61 = 7× k;Fin62 = 4× k;Fin7 = 1.08× k;Fin9 = 6.006× k;

(6.2)
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Specifying transformations depends on the specifics of the water and energy mod-

els. However, using interaction modeling, data transformations can be defined as

separate dynamical models instead of making changes to the water and energy mod-

els. For example, Equation 6.3 is a hypothetical data conversion calculation from the

energy output to the water input. The transformation’s input ports are read (based

on the year and time-step) and multiplied by a factor F . The output value for a given

year and time-step/time-slice is the average of the previous p time steps in the source

model of the transformation.

Out.vy,ts =
∑

in∈tran.inputs

∑ts
i=ts−p


in.v(y − 1, TG+ i)× Fin,y−1,TG+i i ≤ 1

in.v(y, i)× Fin,y,i i > 1


p

y ∈ N, startY ear ≤ y ≤ endY ear; ts ∈ N, 1 ≤ ts ≤ #timeGranularityForY ear(TG); p ∈ N

(6.3)

The charts in Figure 6.5 show the input and output port values of a hypothetical

transformation for the Phoenix AMA interaction model. Each month’s output value

is the average of the current and its previous two months in the LEAP model (see

Equation 6.3). For example, the output for Feb. 2018 is the average of the Feb. 2018,

Jan. 2018, and Dec. 2017 inputs values. As expected, the outputs in Figure 6.4d

and Figure 6.5b are two different interactions between the water and energy models,

representing two different water-energy nexuses. This example in Figure 6.5 shows one

of many alternative ways the nexus dynamics of the water-energy model could have

regulated the data exchanges between the energy and water models. In a standalone

fashion, the interaction model serves to explore different nexus policies that can satisfy

combined supply and demands both within and between water and energy systems.

The schemes of the complete Phoenix AMA nexus model via the WEAP-LEAP

internal linkage and the interaction model are shown in Figure 6.6. The blue and
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(a) (b)

Figure 6.5: The Input and Output Data of the Interaction Model Simulation for the
Phoenix AMA Area. (a) The Transformation Inputs from Nov. 2017 to Dec. 2018,
(b) The Transformation Output for 2018.

red arrows between the componentized water and energy models and the interaction

model represent the Flow and Electricity data of the source entity (or component),

respectively. The water and energy model components are depicted as boxes with

black borders and include their ports as filled black boxes without names. The ports

located on the left (right) side of every component are designated as inputs (outputs).

In Figure 6.6a, the “Municipal” demands in the energy model read the Flow result

variables of the corresponding transmission links of the water mode. The “SRP” and

“CAP” demands need to read the Flow of one transmission link, whereas the ground-

water demands need to read the Flow of two transmission links. In Figure 6.6b, the

interaction model illustrates receiving the Flow output from the transmission compo-

nents of the Componentized WEAP model (i.e., the WEAPMessage), transforming

the data based on the time-step and/or time-slice, and sending the transformed data

(i.e., the LEAPMessage) to the corresponding demand components of the Compo-

nentized LEAP model. The “Indian” and “Industrial” demands are the same as the

“Municipal” demands. Figure 6.6c shows the WEAP-LEAP internal linkage, and

Figure 6.6d illustrates the interaction model for the “Agricultural” demands. Each

“CAP”, ”SRP”, and “Groundwater” demand in the LEAP model needs to read the
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Flow result variable of 8, 10, and 12 different transmission links, respectively. Mod-

ules and transformations in the interaction model have the same functionality as

described for the “Municipal” demands, except the module “Agr-CAP” which has

many transformation’s output ports. All the conversions with one output and multi-

ple inputs in the Phoenix AMA interaction model in Figure 6.6 are calculated using

a formula with different configurations. Interaction modeling provides flexibility to

make changes to each module independently of other modules as well as decomposing

complex interactions into simpler ones in a systematic fashion.

To better understand these different approaches of the water-energy nexus model-

ing described in the previous sections, the stages in their execution cycles, as shown in

Figure 42, can be examined in detail. The execution steps show holistic computation

time periods for simulating the Phoenix AMA water and energy models and their

nexus. This model has a total of 85 WEAP entities and 103 LEAP entities and 13

modules, and 82 transformations in the Interaction model.

Considering the models shown in Figure 37 and Figure 6.7a and 6.7c, it can be

seen every simulation cycle is comprised of computations for executing the entities

of the water model and all the entities of the energy model. Figure 6.7a shows the

computation time for every cycle that includes reading the data needed for executing

the water and energy models. The total time for an execution cycle for the internal

linkage approach is δtw + δtl. The time periods for the water and energy model to

read data from one another are δtw, 0 < δtwr < δtw and δtlr, 0 < δtlr < δtl. The

computation times for the WEAP-LEAP internal linkage is 169.5 seconds, with 25%

and 75% consumed by the WEAP and LEAP systems (see Figure 6.7b).

The breakdown of the computation time for the interaction models is shown in

Figure 6.7c. The computation time for a complete execution cycle is the maximum of

the δtw for executing the water and δtl for the energy models. The computation times
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(a) (b)

(c) (d)

Figure 6.6: Comparing the WEAP-LEAP Internal Linkage and the Algorithmic-IM
for the Phoenix AMA Model. (a) the Internal Linkage for the Required Electricity by
the “Municipal” Demands. (b) The Interaction Model for the Required Electricity by
the “Municipal” Demands. (c) The Internal Linkage for the Required Electricity by
the “Agricultural” Demands. (d) The Interaction Model for the Required Electricity
by the “Agricultural” Demands.
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(a) (b)

(c)

(d)

Figure 6.7: Stages for Modeling the Phoenix AMA Nexus Using the WEAP-LEAP
Internal Linkage and Algorithmic-IM. (a) Execution Periods for the WEAP-LEAP
Internal Linkage. (b) Execution Time Percentages for the WEAP-LEAP Internal
Linkage. (c) Execution Periods for the Algorithmic-IM. (d) Execution Time Percent-
ages for the Algorithmic-IM.

for the WEAP and LEAP systems are 24.5 and 84.2 seconds, respectively. The APIs

for the Componentized WEAP and Componentized LEAP frameworks, executed in

parallel on multiple CPU cores, consume time for receiving and reading and data (i.e.,

δtcwr + δtclr) from the WEAP and LEAP systems. The δtcwr + δtclr period is shown
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for the Componentized WEAP and Componentized LEAP parts of the execution

cycle. The δtcwr

δtcwr+δtclr
portion of the δtcwr+δtclr section belongs to the Componentized

WEAP framework, and the rest belongs to the Componentized LEAP framework.

The portion of the execution cycle time for writing and sending data to the WEAP

and LEAP systems is δtcwwr+δtclw. As shown in Figure 6.7c, the IM consumes a small

portion of time for all the computations in the IM modules. Figure 6.7d shows the

breakdown of periods consumed for executing the interaction model. The periods for

δtcwr + δtclr and δtcww + δtclw are 7.5 and 186.8 seconds, respectively. The period for

transformations in the modules is 42 milliseconds. The periods allocated to different

tasks in the Interaction Model are shown in Figure 6.7d. The execution time for

the interaction model is 64% higher than the time needed for the internal linkage.

The Phoenix AMA model was simulated ten times using the internal linkage and ten

times using the interaction modeling approaches. A standalone desktop computer

with Windows-10 64-bit OS with four Core i5 Intel CPUs and 20 GB RAM is used

for all the experimental results.

6.3 WEN Modeling for the Phoenix AMA via DEVS-IM

The DEVS-IM REST APIs are used to define the structure of the Phoenix AMA

Water-Energy model (via around 2,000 APIs). The model has two interfaces for

the entities belonging to the Componentized WEAP and Componentized LEAP sys-

tems. The interfaces are defined using 181 Component and 144 Function elements

(see Section 5.3.2). The interaction model has 15 Process, 91 Task, and 201 Con-

nector elements. The interaction model has around 307 atomic and coupled DEVS

models with 942 ports and 740 couplings. This interaction model replicates the same

WEN model developed using the WEAP-LEAP internal linkage (same as the devel-
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oped model using the Algorithmic-IM framework). The DEVS-IM model structure is

verified for correctness before storing it in MongoDB.

Using the code generator module, the skeleton of the DEVS-Suite simulator project

is created using the stored data in the MongoDB database. A package with the same

name as the DEVS-IM project (called “Project”) is added under the InteractionModel

package (which is under the Models package). The root of the interaction model (a

coupled DEVS model) is implemented using Java with the same name as the DEVS-

IM project and a package (DEVS-IM project’s name + “Models”) for the sub-models

(i.e., “Project.java” file and “ProjectModels” package). The same approach is applied

to implement the Process elements of the interaction model (i.e., “Coupled.java” file

and “CoupledModels” package). Also, all Task elements of the interaction model are

implemented using Java (i.e., “Atomic.java” file). This approach is used for the whole

hierarchy of the interaction model. Likewise, each external system is implemented

using Java with the same name as the external system and a package (external sys-

tem’s name + “Components”) for its sub-components (i.e., “System.java” file and

“SystemComponents” package). Each component is implemented using Java and two

packages for its sub-components and functions (i.e., “Entity.java” file and “Entity-

Components” and “EntityFunctions” packages). This approach is also used to define

an interface for the WEAP or LEAP systems. Figure 6.8 presents a portion of the gen-

erated files and packages for the DEVS-IM model in the DEVS-Suite simulator. The

“PhoenixAMA.java” file and “PhoenixAMAModels” package contain the required

files to model the interaction model. Also, the “WEAP.java” and “LEAP.java” files

and “WEAPComponents” and “LEAPComponents” packages contain the required

files to define the interfaces for the WEAP and LEAP systems.

Having an interface for the external system increases the model complexity, but

it has two main advantages. First, it promotes the interaction model to define the
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Figure 6.8: The Generated Source Code via DEVS-IM Framework for the
“PhoenixAMA” Project in the Eclipse IDE.

external system at different levels of abstraction or ignore some parts of the actual

model. Second, it helps to have a high level of modularity between how to get data

from the external systems and how the interaction model is manipulating the sent/re-

ceived data. As an example, the “Phoenix AMA” WEAP model has six Demand Site

entities, but just one of them is used inside the “Phoenix AMA” DEVS-IM model (pre-

sented via Models/InteractionModel/PhoenixAMA/WEAPComponents/DemandsComp

onents/Power Plant.java in Figure 6.8).
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Figure 6.9 shows a portion of the “Phoenix AMA” DEVS-IM model in the DEVS-

Suite simulator’s SimView which hides the sub-models of some coupled models (pre-

sented in black-box mode). For example, the sub-models of the “Municipal CAP”

and “Municipal SRP” coupled models are hidden in Figure 6.9. The black-box mode

in the DEVS-Suite simulator allows hierarchical viewing of large-scale models. The

white-box mode (shown for “Municipal Groundwater” coupled model in Figure 6.9)

presents one level of the hierarchy for the coupled models. This viewing mode is for

developing and debugging complex models via step-by-step tracking of the input and

output messages among models and monitoring the states of atomic models.

Figure 6.9: Hierarchical WEAP-LEAP Portion of the Phoenix AMA DEVS-IM
Model Depicted in the DEVS-Suite Simulator’s SimView.

Figure 6.10 presents another portion of the DEVS-IM model in the DEVS-Suite

simulator. The output connectors are connected to the Componentized WEAP and

Componentized LEAP systems. The purple models are used to control the execution,

and the gray models are used for time-based data transformations. Applying the data

transformation to the received data from the external systems must be defined by the

modeler via adding behavior to the Task elements (the atomic models in the DEVS-

Suite simulator). Also, the execution control for the whole interaction model must be

defined in a Task element named “Control”. The “Control” model defines the ordering
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of receiving/sending data from/to the external systems and the order of executing the

WEAP and LEAP systems. As shown in Figure 6.10, the “Control” model has five

inputs (“start”, “LEAP Executed”, “LEAP Input Applied”, “WEAP Executed”, and

“WEAP Input Applied”) and four outputs (“Get LEAP Data”, “Get WEAP Data”,

“Run LEAP”, and “Run WEAP”). The “Control” model replicates the execution of

the WEAP and LEAP systems via the WEAP-LEAP internal linkage.

Figure 6.10: A Portion of the “Phoenix AMA” DEVS-IM Model Shown in the
DEVS-Suite Simulator.

Figure 6.11 presents a state machine for the “Control” task element of the Phoenix

AMA DEVS-IM model. Initially, two WEAPAppliedCount and LEAPAppliedCount

variables (indicate the number of write data on the WEAP and LEAP systems) are

set to zero, and the state is changed to Idle. By receiving a message on the “start“

input port, a message will be sent on the “runWEAP“ output port, and the state

will be changed to “Running WEAP”. As shown in Figure 6.10, the message will be

sent to the “Execute WEAP” output connector, which calls an API from the Com-

ponentized WEAP framework to run the WEAP simulation. After completing the

execution, a message will be sent on the “out” output port of the “Execute WEAP”
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output connector. This message will be transferred to the “WEAP-Executed” input

connector and then will be transferred to the “WEAP Executed” input port of the

“Control” model.

As shown in Figure 6.11, the arrived message changes the state from the Running

WEAP to the Getting WEAP Data, and a message is sent on the “Get WEAP Data“

output port. The output message will be sent to the output connectors to get data

from the WEAP system (by calling the corresponding APIs from the Componentized

WEAP framework). The received data from the WEAP system will be sent to the

input connectors and then to a task element to apply data transformation (e.g., the

“Flow Electricity” in Figure 6.10). After that, the transformed data will be sent

to an output connector to send it to the LEAP system via calling a proper API

from the Componentized LEAP framework. Then, the output connector sends an

acknowledgment of applying data which will receive on the “LEAP Input Applied”

input port of the “Control” model. The LEAPAppliedCount variable in Figure 6.11

increments one unit by receiving this message and checks the variable’s value. The

state will not change if the variable’s value is less than the total number of write

processes that must be applied to the LEAP system (the value 88 in Figure6.11).

Otherwise, the state will be changed to Running LEAP and the LEAPAppliedCount

variable sets to zero. The same scenario happens for running the LEAP system,

getting data from the LEAP system, and applying the transformed data to the WEAP

system (see Figure 6.10 and Figure 6.11).

6.4 Performance Evaluation of the WEN Modeling Approaches

In this section, the “Phoenix AMA” model is simulated

Table 6.1, Table 6.2, and Figure 6.12 present the allocated time and their order

for different execution steps for one round of simulating the “Phoenix AMA” model
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Figure 6.11: A State Machine for the “Control” Task Element of the Phoenix AMA
DEVS-IM Model.

using three simulation approaches. In the WEAP-LEAP internal linkage, the WEAP

and LEAP systems are running alternatively (the WEAP system runs first in this ex-

periment). As shown in Table 6.1, the execution time of each system includes reading

the required data (interconnection between the systems) from the other system (the

amount is not distinguishable from the outside), applying the data transformations,

then computing the results. As shown in Figure 6.12, the total time for an execution

cycle for the WEAP-LEAP internal linkage is δtw+δtl. The periods for the water and

energy models to read the data from one another are δtwr and δtlr (0 < δtwr < δtw

and 0 < δtlr < δtl). For one complete simulation round, the WEAP system first

reads the LEAP data; then, the water model executes. Next, the LEAP system first

reads the WEAP data, and then the energy model executes (see Figure 6.12). The

execution time of the Phoenix AMA model using the WEAP-LEAP internal linkage

is 394.5 seconds, with around 20% and 80% of computation time consumed by the

WEAP and LEAP systems, respectively.

The numbers in Table 6.1 and Table 6.2 are the average of 10 different runs

presented in the second unit. The last three columns show the center (median) and

the spread of the data (Quartile 1 and Quartile 3). The same experiment has

been performed for the same “Phoenix AMA” model (for the internal linkage and
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Table 6.1: Time Allocation of Executing the “Phoenix AMA” Model Using WEAP-
LEAP Internal Linkage.

Algorithmic-IM) using older versions of the WEAP and LEAP system (Fard et al.,

2020), which results in different execution times.

As mentioned before, the defined Phoenix AMA models in Algorithmic-IM and

DEVS-IM frameworks replicate the execution regime in the WEAP-LEAP internal

linkage (ACIMS, 2022d). Table 6.2 presents the order of different steps and their

allocated time for the “Phoenix AMA” model simulated via Algorithmic-IM and

DEVS-IM approaches. As shown in Figure 6.12, a complete simulation round in both

approaches starts by running the WEAP system. Then, the WEAP results are read

by calling the proper Componentized WEAP APIs in the DEVS-IM model. In the

third step, the data transformations are applied to the received data. Finally, the

results are sent to the LEAP system in the fourth step (via calling the Componentized

LEAP APIs). The same scenario applies in the other direction, which means run-

ning the LEAP system, reading the data from the LEAP system, applying the data

transformation, and writing the results to the WEAP system. In both approaches,

applying the data transformation in the interaction model takes a negligible amount

of time. The significant computation time is for writing data to the LEAP system

(84% in both approaches). It was observed in some of our experiments that based on

the version of the WEAP, LEAP, and third-party dependencies and the free resources

of the hardware/software, this step was as fast as around 600 seconds. Based on our

last experiments, the total execution time for one round of the Phoenix AMA model
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via the Algorithmic-IM and DEVS-IM are 975.2 and 960.8 seconds, respectively. The

Algorithmic-IM and DEVS-IM approaches have around 150% computational over-

head compared to the WEAP-LEAP internal linkage approach.

Table 6.2: Time Allocation of Executing the ”Phoenix AMA” Model Using Inter-
action Model.

Figure 6.12: Phoenix AMA model execution time allocation via three simulation
approaches.

A standalone desktop computer with Windows-10 64-bit OS with four Core i5 Intel

CPUs and 20 GB RAM is used for all the experimental results included in this paper.

The Componentized WEAP and Componentized LEAP frameworks are implemented

using the NodeJS and TypeScript frameworks. The main third-party dependencies

used in the frameworks are Typescript-Node 8.10.2 for using Typescript in the NodeJS

server-side application; Express 4.17.13 is used to build a web application and APIs;

Routing-Controller 0.9.0 is used to create structured, declarative, and organized class-

based controllers; Body-Parser 1.19.1 to parse the incoming request to the web-server,
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andWinax 3.3.4 is used to define ActiveXObject in NodeJS (create WEAP and LEAP

instance in server-side applications). The Algorithmic-IM and DEVS-IM frameworks

are implemented using Java 11. The Jersey framework is used to call the RESTful

web services for the Componentized WEAP and Componentized LEAP frameworks

(Kalin, 2013). The WEAP tool (version 2021.0101) and the LEAP tool (version

2020.1.0.56 32-Bit) are used for the above demonstration example.

6.5 Phoenix AMA Model Verification & Validation

As mentioned in Section 3.6, verification ensures that a simulation model is imple-

mented correctly and validation ensures that the model is an accurate representation

of the real-world system being simulated. The Phoenix AMA model in the WEAP-

LEAP Internal Linkage is validated using Sensitivity Analysis, Expert Review, and

Cross-Validation. Applying the cross-Validation for the water model of the Phoenix

AMA, the historical data for the period 1985–1997 are used to calibrate and the

data for the period 1998-2009 are used to validate the model correction and perfor-

mance. Also, multiple future scenarios are defined for the period 2010-2069 (Guan

et al., 2020). Applying the cross-Validation for the energy model of the Phoenix

AMA, the historical data for the period 2001–2018 are used for model calibration.

Multiple future scenarios are defined for the period 2019-2060 (Mounir et al., 2019).

Also, both water and energy models for Phoenix AMA are validated by experts from

main resource suppliers in Arizona (e.g., SRP and CAP). Modeling the interactions

between water and energy systems for Phoenix AMA, the WEAP and LEAP models

are used (period 2008-2018 for model calibration, and 2019-2060 for future scenar-

ios) under different spatiotemporal resolutions and coupling configurations (Mounir

et al., 2021). In our research, the WEAP-LEAP Internal Linkage model is used as the

base model for simulation validation of the interaction models. In other words, the

181



validated WEAP-LEAP Internal Linkage model is used for validating the interaction

models (i.e., the Algorithmic-IM and DEVS-IM frameworks).

The Code Review, Analytical V&V, and Experimentation methods are used in

this research to verify and validate the defined models and their simulation in the

presented interaction models (see Section 3.6). The generated code in the code gen-

eration phase of the DEVS-IM framework (see Section 5.3.5) is verified precisely.

Also, the DEVS-Suite Simulator has a robust simulator, so the executable generated

codes for the DEVS-Suite (via DEVS-IM framework) verify individual defined mod-

els/components. Figure 6.13a shows the mathematical schema in the WEAP-LEAP

Internal Linkage. As mentioned in Section 2.4.1 and Section 2.4.2, a model in the

WEAP/LEAP is defined via a set of specific components (Entity A, Entity B, and

Entity C in Figure 6.13a), and each component has a set of variables (WV and LV

stand for the WEAP Variable and LEAP Variable in Figure 6.13a). Each formula

must be implemented inside the WEAP or LEAP components, and it can be a func-

tion of different variables in the WEAP and/or LEAP systems. For example, WVi

in Figure 6.13a is defined as c1 × LVp + C2 ×WVo + c3 which means it is reading

the LVp from the LEAP system and WVo from the WEAP system and using some

constants. There is a Read(V ariabletarget) function between the WEAP and LEAP

systems representing the reading data from the other system. For example, LVk is

reading WVn and WVm from the WEAP system (see the defined formula for LKv in

Entity C). In this approach, each system has the control to execute the simulation

and read the data from the other system (see the gear icons in the WEAP and LEAP

systems in Figure 6.13a).

An implementation of the formulas in Figure 6.13a is presented in Figure 6.13b

which transfer the wholeWVi and LVk and part of theWVj formulas to the Interaction

Model. Variables are defined in the Interaction Model (i.e., IMx, IMy, and IMz) to
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(a)

(b)

Figure 6.13: The mathematical schema for a defined model in the (a) WEAP-LEA
P Internal Linkage and (b) Interaction Model (i.e., Algorithmic-IM and DEVS-IM).

hold the results of the computation. In this approach, the WEAP and LEAP systems

are slaves and the Interaction Model is the master to control the simulation execution

(see the gear icon in the Interaction Model in Figure 6.13b). The WEAP and LEAP

systems do not have any capability to read the data from the other system. There

are two functions controlled by the Interaction Model (i.e., Read(V ariabletarget) and

Write(V ariablesource, V ariabletarget)) representing reading/writing data from/to the

components of the connected WEAP and LEAP systems.

The validated WEAP-LEAP Internal Linkage model is used for validating the

interaction models. Figure 6.14 shows a simple procedure where data sets are collected

from the Internal Linkage and DEVS-IM. In the first step, the defined model using

the WEAP-LEAP Internal Linkage and DEVS-IM. The DEVS-IM model is using the

same water and energy models defined in the WEAP-LEAP Internal Linkage, except

removing the direct internal connection between the models. In the second step, a

specific set of outputs from both simulations are collected in CSV files (using JScript
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and Java for WEAP-LEAP Internal Linkage and DEVS-IM, respectively). A CSV

file contains the simulation results (i.e., the values for different years and timesteps

of the simulation) for a specific project, component, scenario, and variable. In the

third step, a validator (written in Java) compares the corresponding values.

Figure 6.14: DEVS-IM model simulation validation using corresponding WEAP-
LEAP Internal Linkage model.

The output of the validation for the Phoenix AMA model shows that the results

of the simulation executions are identical in most cases (for the values which have less

than 15 digits in the WEAP and LEAP models). There are some small differences

(around 1 × 10−3) between some results (for the values which have more than 15

digits in the WEAP and LEAP models). The negligible differences are because of the

rounding mechanism in using the WEAP and LEAP APIs. The internal linkage of

the WEAP and LEAP systems transfers data with complete precision, whereas the

WEAP and LEAP APIs export data with a maximum of 15-digit precision. So, the

task components (to transform the data) in the DEVS-IM model receive data with a

maximum of 15-digit precision.
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Chapter 7

CONCLUSION & FUTURE WORK

7.1 Conclusion

The WEAP/LEAP system is appealing to domain experts from the standpoint of

ease of use for rapid model development. This research provides detail for defining

the WEAP/LEAP components as proxies for the WEAP/LEAP entities using meta-

modeling and Model Driven Architecture. The WEAP/LEAP entities, input and out-

put variables, and their data are represented using the Ecore meta-modeling approach,

where each proxy model component corresponds to a WEAP/LEAP entity. These

components are useful for service-oriented modeling and simulation frameworks. The

outcome is the Componentized WEAP/LEAP RESTful framework which helps to

consider a set of component models instead of thinking about a group of shared

variables (belonging to different entities) that are used in mass-balanced equations.

Also, the REST APIs ease the use of the WEAP/LEAP system in modern computing

platforms, including its integration with other tools to model and simulate complex

systems such as the Phoenix Active Management Area. The componentization of

the WEAP/LEAP systems supports a higher degree of control for manipulating and

simulating the water and energy entity models. For example, the Componentized

WEAP/LEAP framework can help simplify the design of simulation experiments and

optimization studies that can be difficult using the scripting languages supported in

the WEAP system. The realization of the Componentized WEAP/LEAP RESTful

framework can be adopted to simplify their integration with other web-services.
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The Phoenix Active Management Area (Phoenix AMA) serves as the case study

in this research. A model was developed in the WEAP tool to define the water and

food systems of the Phoenix AMA. Another model was developed in the LEAP sys-

tem to define the energy system of the Phoenix AMA. These models are connected

via WEAP-LEAP internal linkage, Algorithmic-IM framework, and DEVS-IM frame-

work. The simulation results of the Algorithmic-IM and DEVS-IM frameworks are

validated using the WEAP-LEAP internal linkage. The computational cost of sim-

ulating the Phoenix AMA model using the interaction models (Algorithmic-IM and

DEVS-IM) is about twice the cost of the data sharing allowed in the WEAP-LEAP

internal linkage. However, the benefit of composing hybrid water and energy models

with interaction models outweighs its higher computational cost as compared with

data sharing, especially when the key consideration is flexible model composability,

not the amount of time it takes to simulate hybrid models.

7.2 Future Work

The Componentized WEAP and Componentized LEAP frameworks support read-

ing existing models from the WEAP and LEAP systems, respectively. Enabling these

frameworks to create/update models via APIs can allow using the WEAP and LEAP

systems remotely and in distributed settings. The Algorithmic-IM and DEVS-IM

models can be created using textual programming language and REST APIs. In-

stead, visual modeling of FEW-nexus is attractive for domain experts or those who

prefer not to write code. The Componentized WEAP, Componentized LEAP, and

Algorithmic-IM/DEVS-IM with the proposed unified persistence and visual model-

ing capability are important for developing and using Food-Energy-Water systems.

Visual modeling frameworks for Parallel DEVS exist and can be utilized (ACIMS,

2022a; Sarjoughian & Elamvazhuthi, 2010; Sarjoughian et al., 2011).
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During this research, the food system was embedded inside the water model (us-

ing the WEAP system). In the Phoenix-AMA model, the food model is used as

input. It is beneficial to have a separate model for the food system. This can allow

bi-directional interactions between the water and the energy model. The Algorithmic-

IM and DEVS-IM frameworks have an abstract specification to define an interaction

model for disparate systems that form systems-of-systems. From the structure speci-

fication point of view, adding the Food system to the current interaction model should

be straightforward. However, it is necessary to verify and validate the execution of

the whole Food-Energy-Water Nexus for an actual system such as the Phoenix AMA.

The set of Logic elements for the DEVS-IM must be designed and implemented.

The DEVS-IM framework has some considerations for the Logic elements (e.g., the

Choice, Junction, and Sync). A complete predefined set of logic elements in the

DEVS-IM framework can offer more support for model development.
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Table A.1: The WEAP’s Scripting APIs Used in the Componentized WEAP Frame-
work
Category Scripting API Return Object

WEAP

WEAP.ActiveArea Area
WEAP.ActiveArea.Name String
WEAP.WaterYearStart Integer
WEAP.ActiveScenario Scenario
WEAP.BaseYear Integer
WEAP.EndYear Integer
WEAP.TimeStepName(Id) String
WEAP.NumTimeSteps Integer
WEAP.View String
WEAP.Calculate(LastYear, LastTimestep,
AlwaysCalculate)

∅

WEAP.ResultValue(BranchName:VariableName,
Year, TimeStep,ScenarioName)

Double

Area
WEAP.Areas(Id) Area[]
WEAP.Areas.Count Integer

Version

WEAP.Versions.Count Integer
WEAP.Versions(Name/Id) Version
WEAP.Versions.Exist(VersionName) Boolean
WEAP.SaveVersion(VersionName) ∅
WEAP.Versions(VersionName).Revert() ∅

Scenario

WEAP.Scenarios(Id) Scenario[]
WEAP.Scenarios.Exists(ScenarioName) Boolean
WEAP.Scenarios.Add(ScenarioName) ∅
WEAP.Scenarios(ScenarioName).Delete() ∅

Branch

WEAP.Branch(BranchName) Branch
WEAP.BranchExists(BranchName) Boolean
WEAP.Branch(BranchName).Children Branch[]
WEAP.Branch(BranchName).Variables Variable[]
WEAP.Branch(BranchName).Variables.Exists(
VariableName)

Boolean
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The code generation module of the DEVS-IM framework to the DEVS-Suite sim-
ulator is based on using the StringTemplate library (Parr, 2022), a template engine
for generating source code, web pages, emails, or any other formatted text output.
Listing B.1 to Listing B.10 present the content of the template files for different type
of DEVS-IM elements.

Listing B.1: The Content of the IM.stg Template File of the DEVS-IM Framework.
1 IM(packageName , component , date) ::= <<
2 /*
3 * Author : ACIMS(Arizona Center for Integrative Modeling &

Simulation)
4 * Version : DEVS -IM 1.0
5 * Date : <date >
6 */
7 package <packageName >;
8
9 import java.awt .*;
10 import view.modeling.ViewableAtomic;
11 import view.modeling.ViewableDigraph;
12 import view.modeling.ViewableComponent;
13 import InteractionModel.core.Process;
14 <component.imports:AddImport (); separator = "\n">
15
16 /*
17 * id: <component.id >
18 * componentType: <component.componentType >
19 * description: <component.description >
20 */
21 public class <component.name > extends Process {
22 public <component.name >() {
23 super("< component.name >");
24 <InsertBlank(component.connectors)>
25 <component.connectors:AddConnector (); separator = "\n">
26 <InsertBlank(component.tasks)>
27 <component.tasks:AddAtomicModel (); separator = "\n">
28 <InsertBlank(component.processes)>
29 <component.processes:AddCoupledModel (); separator = "\n">
30 <InsertBlank(component.couplings)>
31 <component.couplings:AddCoupling (); separator = "\n">
32 }
33 }
34 >>
35
36 InsertBlank(it) ::= <<
37 <if(it)>
38
39 <endif >
40 >>
41
42 AddImport(it) ::= <<
43 import <it >;
44 >>
45
46 AddConnector(it) ::= <<
47 ViewableAtomic _<it.name > = new <it.name >();
48 add(_<it.name >);
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49 >>
50
51 AddAtomicModel(it) ::= <<
52 ViewableAtomic _<it.name > = new <it.name >(0);
53 add(_<it.name >);
54 >>
55
56 AddCoupledModel(it) ::= <<
57 ViewableDigraph _<it.name > = new <it.name >();
58 add(_<it.name >);
59 >>
60
61 AddCoupling(it) ::= <<
62 addCoupling(<it.sourceModelName >, "<it.sourcePortName >", <it.

targetModelName >, "<it.targetPortName >");
63 >>

Listing B.2: The Content of the Process.stg Template File of the DEVS-IM Frame-
work.

1 Process(packageName , component , date) ::= <<
2 /*
3 * Author : ACIMS(Arizona Center for Integrative Modeling &

Simulation)
4 * Version : DEVS -IM 1.0
5 * Date : <date >
6 */
7 package <packageName >;
8
9 import java.awt .*;
10 import view.modeling.ViewableAtomic;
11 import view.modeling.ViewableDigraph;
12 import view.modeling.ViewableComponent;
13 import InteractionModel.core.Process;
14 <component.imports:AddImport (); separator = "\n">
15
16 /*
17 * id: <component.id >
18 * componentType: <component.componentType >
19 * description: <component.description >
20 */
21 public class <component.name > extends Process {
22 public <component.name >() {
23 super("< component.name >");
24 <InsertBlank(component.inputs)>
25 <component.inputs:AddInputPort (); separator = "\n">
26 <InsertBlank(component.outputs)>
27 <component.outputs:AddOutputPort (); separator = "\n">
28 <InsertBlank(component.tasks)>
29 <component.tasks:AddAtomicModel (); separator = "\n">
30 <InsertBlank(component.processes)>
31 <component.processes:AddCoupledModel (); separator = "\n">
32 <InsertBlank(component.couplings)>
33 <component.couplings:AddCoupling (); separator = "\n">
34 }
35 }
36 >>
37
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38 InsertBlank(it) ::= <<
39 <if(it)>
40
41 <endif >
42 >>
43
44 AddImport(it) ::= <<
45 import <it >;
46 >>
47
48 AddInputPort(it) ::= <<
49 addInport ("<it.name >"); // {id: <it.id>, description: <it.

description >}
50 >>
51
52 AddOutputPort(it) ::= <<
53 addOutport ("<it.name >"); // {id: <it.id>, description: <it.

description >}
54 >>
55
56 AddAtomicModel(it) ::= <<
57 ViewableAtomic _<it.name > = new <it.name >(0);
58 add(_<it.name >);
59 >>
60
61 AddCoupledModel(it) ::= <<
62 ViewableDigraph _<it.name > = new <it.name >();
63 add(_<it.name >);
64 >>
65
66 AddCoupling(it) ::= <<
67 addCoupling(<it.sourceModelName >, "<it.sourcePortName >", <it.

targetModelName >, "<it.targetPortName >");
68 >>

Listing B.3: The Content of the Task.stg Template File of the DEVS-IM Framework.
1 Task(packageName , component , date) ::= <<
2 /*
3 * Author : ACIMS(Arizona Center for Integrative Modeling &

Simulation)
4 * Version : DEVS -IM 1.0
5 * Date : <date >
6 */
7 package <packageName >;
8
9 import InteractionModel.core.Task;
10 import model.modeling.message;
11
12 /*
13 * id: <component.id >
14 * componentType: <component.componentType >
15 * description: <component.description >
16 */
17 public class <component.name > extends Task {
18 public <component.name >( double activeTime) {
19 super("< component.name >", activeTime);
20
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21 <component.inputs:AddInputPort (); separator = "\n">
22
23 <component.outputs:AddOutputPort (); separator = "\n">
24 }
25
26 @Override
27 protected void perform(message inputMsg , message outputMsg) {
28 // TODO Auto -generated method stub
29
30 }
31 }
32 >>
33
34 AddInputPort(it) ::= <<
35 addInport ("<it.name >"); // {id: <it.id>, description: <it.

description >}
36 >>
37
38 AddOutputPort(it) ::= <<
39 addOutport ("<it.name >"); // {id: <it.id>, description: <it.

description >}
40 >>

Listing B.4: The Content of the TransientInputConnector.stg Template File of the
DEVS-IM Framework.

1 TransientInputConnector(packageName , component , date) ::= <<
2 /*
3 * Author : ACIMS(Arizona Center for Integrative Modeling &

Simulation)
4 * Version : DEVS -IM 1.0
5 * Date : <date >
6 */
7 package <packageName >;
8
9 import InteractionModel.core.TransientInputConnector;
10
11 /*
12 * id: <component.id >
13 * componentType: <component.componentType >
14 * connectorType: <component.connectorType >
15 * description: <component.description >
16 */
17 public class <component.name > extends TransientInputConnector {
18 public <component.name >() {
19 super("< component.name >");
20 }
21 }
22 >>

Listing B.5: The Content of the TransientOutputConnector.stg Template File of
the DEVS-IM Framework.

1 TransientOutputConnector(packageName , component , date) ::= <<
2 /*
3 * Author : ACIMS(Arizona Center for Integrative Modeling &

Simulation)
4 * Version : DEVS -IM 1.0
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5 * Date : <date >
6 */
7 package <packageName >;
8
9 import InteractionModel.core.TransientOutputConnector;
10
11 /*
12 * id: <component.id >
13 * componentType: <component.componentType >
14 * connectorType: <component.connectorType >
15 * description: <component.description >
16 */
17 public class <component.name > extends TransientOutputConnector {
18 public <component.name >() {
19 super("< component.name >");
20 }
21
22 @Override
23 protected void setDestinations () {
24 <component.functions:AddFunction (); separator = "\n">
25 }
26 }
27 >>
28
29 AddFunction(it) ::= <<
30 addDestination(new <it >());
31 >>

Listing B.6: The Content of the CallOutputConnector.stg Template File of the
DEVS-IM Framework.

1 CallOutputConnector(packageName , component , date) ::= <<
2 /*
3 * Author : ACIMS(Arizona Center for Integrative Modeling &

Simulation)
4 * Version : DEVS -IM 1.0
5 * Date : <date >
6 */
7 package <packageName >;
8
9 import InteractionModel.core.CallOutputConnector;
10
11 /*
12 * id: <component.id >
13 * componentType: <component.componentType >
14 * connectorType: <component.connectorType >
15 * description: <component.description >
16 */
17 public class <component.name > extends CallOutputConnector {
18 public <component.name >() {
19 super("< component.name >");
20 <if(component.function)>
21 setDestination(new <component.function >());
22 <endif >
23 }
24 }
25 >>
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Listing B.7: The Content of the QueueOutputConnector.stg Template File of the
DEVS-IM Framework.

1 QueueOutputConnector(packageName , component , date) ::= <<
2 /*
3 * Author : ACIMS(Arizona Center for Integrative Modeling &

Simulation)
4 * Version : DEVS -IM 1.0
5 * Date : <date >
6 */
7 package <packageName >;
8
9 import InteractionModel.core.QueueOutputConnector;
10
11 /*
12 * id: <component.id >
13 * componentType: <component.componentType >
14 * connectorType: <component.connectorType >
15 * description: <component.description >
16 */
17 public class <component.name > extends QueueOutputConnector {
18 public <component.name >() {
19 super("< component.name >");
20 }
21 }
22 >>

Listing B.8: The Content of the System.stg template File of the DEVS-IM Frame-
work.

1 System(packageName , component , date) ::= <<
2 /*
3 * Author : ACIMS(Arizona Center for Integrative Modeling &

Simulation)
4 * Version : DEVS -IM 1.0
5 * Date : <date >
6 */
7 package <packageName >;
8
9 import InteractionModel.core.System;
10 <component.imports:AddImport (); separator = "\n">
11
12 /*
13 * id: <component.id >
14 * description: <component.description >
15 */
16 public class <component.name > extends System {
17 public <component.name >() {
18 super("< component.name >");
19 <InsertBlank(component.components)>
20 <component.components:AddComponent (); separator = "\n">
21 }
22 }
23 >>
24
25 InsertBlank(it) ::= <<
26 <if(it)>
27
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28 <endif >
29 >>
30
31 AddImport(it) ::= <<
32 import <it >;
33 >>
34
35 AddComponent(it) ::= <<
36 addComponent(new <it.name >()); // {id: <it.id >, description: <it.

description >}
37 >>

Listing B.9: The Content of the Component.stg Template File of the DEVS-IM
Framework.

1 Component(packageName , component , date) ::= <<
2 /*
3 * Author : ACIMS(Arizona Center for Integrative Modeling &

Simulation)
4 * Version : DEVS -IM 1.0
5 * Date : <date >
6 */
7 package <packageName >;
8
9 import InteractionModel.core.Component;
10 <component.imports:AddImport (); separator = "\n">
11
12 /*
13 * id: <component.id >
14 * description: <component.description >
15 */
16 public class <component.name > extends Component {
17 public <component.name >() {
18 <addSuperClass(component)>
19 <InsertBlank(component.components)>
20 <component.components:AddComponent (); separator = "\n">
21 <InsertBlank(component.functions)>
22 <component.functions:AddFunction (); separator = "\n">
23 }
24 }
25 >>
26
27 InsertBlank(it) ::= <<
28 <if(it)>
29
30 <endif >
31 >>
32
33 addSuperClass(it) ::= <<
34 <if(it.parentId)>
35 super("< component.name >", Long.valueOf(<component.parentId >));<else >
36 super("< component.name >", null);<endif >
37 >>
38
39 AddImport(it) ::= <<
40 import <it >;
41 >>
42
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43 AddComponent(it) ::= <<
44 addComponent(new <it.name >()); // {id: <it.id >, description: <it.

description >}
45 >>
46
47 AddFunction(it) ::= <<
48 addFunction(new <it.name >()); // {id: <it.id>, description: <it.

description >}
49 >>

Listing B.10: The Content of the Function.stg Template File of the DEVS-IM
Framework.

1 Function(packageName , component , date) ::= <<
2 /*
3 * Author : ACIMS(Arizona Center for Integrative Modeling &

Simulation)
4 * Version : DEVS -IM 1.0
5 * Date : <date >
6 */
7 package <packageName >;
8
9 import GenCol.entity;
10 import InteractionModel.core.Function;
11
12 /*
13 * id: <component.id >
14 * description: <component.description >
15 */
16 public class <component.name > extends Function {
17 public <component.name >() {
18 super("< component.name >");
19 }
20
21 @Override
22 public entity exec(entity param) {
23 // TODO Auto -generated method stub
24
25 return null;
26 }
27 }
28 >>
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