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ABSTRACT

Statistical Shape Modeling is widely used to study the morphometrics of deformable

objects in computer vision and biomedical studies. There are mainly two viewpoints to

understand the shapes. On one hand, the outer surface of the shape can be taken as a

two-dimensional embedding in space. On the other hand, the outer surface along with

its enclosed internal volume can be taken as a three-dimensional embedding of interests.

Most studies focus on the surface-based perspective by leveraging the intrinsic features

on tangent plane. But a two-dimensional model may fail to fully represent the realistic

properties of shapes with both intrinsic and extrinsic properties. In this thesis, several

Stochastic Partial Differential Equations (SPDEs) are thoroughly investigated and

several methods are originated from these SPDEs to try to solve the problem of

both two-dimensional and three-dimensional shape analyses. The unique physical

meanings of these SPDEs inspired the findings of features, shape descriptors, metrics,

and kernels in this series of work. Initially, the data generation of high-dimensional

shapes, here, the tetrahedral meshes, is introduced. The cerebral cortex is taken as

the study target and an automatic pipeline of generating the gray matter tetrahedral

mesh is introduced. Then, a discretized Laplace-Beltrami operator (LBO) and a

Hamiltonian operator (HO) in tetrahedral domain with Finite Element Method (FEM)

are derived. Two high-dimensional shape descriptors are defined based on the solution

of the heat equation and the Schrödinger’s equation. Considering the fact that high-

dimensional shape models usually contain massive redundancies, and the demands

on effective landmarks in many applications, a Gaussian process landmarking on

tetrahedral meshes is further studied. A SIWKS-based metric space is used to define

a geometry-aware Gaussian process. The study of periodic potential diffusion process

further inspired the idea of a new kernel call the geometry-aware convolutional kernel.
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A series of Bayesian learning methods are then introduced to tackle the problem of

shape retrieval and classification. Experiments of each single item are demonstrated.

From the popular SPDE such as the heat equation and the Schrödinger’s equation to

the general potential diffusion equation and the specific periodic potential diffusion

equation, it clearly shows that classical SPDEs play an important role in discovering

new features, metrics, shape descriptors and kernels. I hope this thesis could be an

example of using interdiscipline knowledge to solve problems.
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Chapter 1

INTRODUCTION

Statistical Shape Modeling is widely used to study the morphometrics of deformable

objects in computer vision and biomedical imaging. On one hand, the outer surface

of the shape can be taken as a two-dimensional embedding in space. On the other

hand, we can take the outer surface along with its enclosed internal volume as a

higher dimensional embedding of interests. Most current studies focus on the surface-

based perspective by investigating intrinsic features on the tangent plane. But a

two-dimensional model may fail to fully represent the realistic features of shapes with

both intrinsic and extrinsic properties. In this thesis, a series of methods based on

solving certain SPDEs are introduced to tackle the problem of analyzing both the

two-dimensional and three-dimensional shapes. The following problems are to be

solved:

1. Generating the tetrahedral mesh for shapes with complicated structures. Specif-

ically, the gray matter (GM) tetrahedral mesh is to be generated automatically;

2. Deriving the discretized LBO and HO in tetrahedral domain. Spectral analysis

is one of the widely used methods in shape analysis. The prerequisite is to

solve the eigen-problem of the LBO or HO, but the discretized LBO and HO on

tetrahedral meshes is rarely investigated;

3. Designing distinguishable shape descriptors for high-dimensional shape models;

4. Landmarking on high-dimensional shape models. More exactly, we intend to

design unsupervised landmarking via Gaussian process (GP) regressions.
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5. Defining geometry-aware GPs on multi-dimensional shapes and pushing the

Bayesian network on manifolds to the manner of multi-layer deep architectures.

The morphometric study of the cerebral cortex is initially taken as the main

application scenario. The cerebral cortex is a highly folded anatomical region in human

brain. Our motivation comes from the existing abundant evidences that cerebral

disorders can greatly influence brain morphological characteristics (Lin et al. 2017;

Xiao et al. 2017; Watkins, Gadian, and Vargha-Khadem 1999; Mateos et al. 2019;

Wolters et al. 2019). In particular, the GM morphometry has become a popular topic

of Magnetic resonance imaging (MRI) research, as GM abnormalities have been found

in many neurological diseases such as Alzheimer’s disease (AD) (Mateos et al. 2019;

Cuingnet et al. 2011), autism spectrum disorder (Di Martino et al. 2014; Xiao et

al. 2017), Parkinson’s disease (Wolters et al. 2019; Kluger et al. 2019), etc. This

indicates that the characterization of GM morphometry may provide discriminative

features or patterns to estimate the disease status and evolution (Lin et al. 2017;

Labayru et al. 2019; Watkins, Gadian, and Vargha-Khadem 1999).The accurate

modeling of the GM is the prerequisite for any further analyses. The challenge lies

in its complex structure. The highly folded sulci and gyri make it complicated to

generate geometric error-free high-dimensional models. Besides this, reliable and

consistent morphometric measurements on high-dimensional manifold-valued data are

still under being investigation.

High-dimensional modeling increases the precision and performance of cortical

morphometry analysis by densely sampling on the grey matters. But we also notice

that the model usually contains massive redundant information which heavily increases

the computational cost. A model with N points and M length point-wise features

(here N � M) has a RN×M feature space. For guaranteeing sufficient sampling
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power without suffering from the high dimensionality issue in further computations,

we would like to extract a subspace N ′ from the N points, here N ′ � N , while

keeping M unchanged. This process of determining a significant subspace is called

landmarking, and a selected representative point is called a landmark. Noting that

the saliency detection and salient point selection are used as the same concepts in

some literature. In this proposal, we interchangeably use both types. Clinical data

analysis also supports that some diseases have more significantly effects on certain

cortical regions (Thompson et al. 2003). In computer vision fields, such techniques are

also widely applied to scene understanding, shape registration and face recognition

etc. (Liang and Paisley 2015). Gaussian process regression has been successfully applied

for extracting anatomically meaningful landmarks (Gao et al. 2018; Guhaniyogi and

Dunson 2016; Liang and Paisley 2015; Rasmussen 2004; Fan et al. 2021; Fan and

Wang 2020). This inspired the idea of defining an appropriate GP on GM tetrahedral

models towards a more efficient and accurate cortical morphometry analysis. The most

important property of a GP on manifold-valued data is the preservation of relevant

morphometric properties or geometric features (Gao et al. 2018). The characterization

of prior knowledge should encode these features to ensure that the conditional posterior

prediction truly reflects their morphometric significance (Rasmussen 2004; Liang and

Paisley 2015). However, the current methods may not fit for high-dimensional shape

models because they consider less in extracting geometric features on high-dimensional

manifold. As a result, a less insignificant embedding may be selected. We intend to

investigate a suitable GP model on high-dimensional data.

In this PhD thesis, a series of methods are proposed towards a practical multi-

dimensional shape analysis. Our contributions are summarized as following:

• An automatic pipeline to generate GM tetrahedral meshes;
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• A Double Laplace-Beltrami Operator Discretization scheme (DLBOD) as a set

of FEM discretization methods for the LBO eigen-problem on the tetrahedral

meshes;

• Two tetrahedron-based shape descriptors, the tetrahedron-based Heat Flux

Signature (tHFS) and the scale-invariant Wave Kernel Signature (WKS), as

spectral analysis tools;

• Two Gaussian Processes as Bayesian inference methods to implement unsuper-

vised landmarking on multi-dimensional manifold-valued models.

• A hierarchical Bayesian network strategy to do shape analysis for multiple types

of manifolds.
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Chapter 2

RELATED WORK

Speaking of shape morphometric analysis, existing methods may be generally

categorized into voxel and surface based morphometry. The voxel based morphom-

etry (VBM) is the most traditional, fundamental and direct method. An example

of the voxel based morphometry (VBM) is illustrated in Fig. 2(a). For voxel based

methods, shape information exists in the intensities on spatially organized grids. Such

morphometric methods have the advantages of convenient data preparation and low

computational cost (Ashburner and Friston 2000; Baron et al. 2001; Draganski et

al. 2004; Davatzikos 2004; Bookstein 2001; Whitwell 2009; Bas-Hoogendam et al. 2017;

Tuokkola et al. 2019). Deformation-based morphometry (DBM) and Tensor-based

morphometry (TBM) are two representatives. The former computes the anatomical

differences on deformation fields and the latter identifies structural differences from

the gradients of deformation fields (Penny et al. 2011). Pattern based morphom-

etry (PBM) is also a widely used voxel based method in neuroimaging study. It

computes subject differences by extracting global patterns through dictionary learning

algorithms (Gaonkar, Pohl, and Davatzikos 2011; Verma et al. 2005). The voxel is the

original data type of brain scanning, therefore above methods are naturally efficient in

data preparation and computation. However, such methods are limited by the fixed

size of one voxel, which prohibits a higher resolution analyses. Meanwhile, neither

pixel nor voxel is clinically meaningful unit and many approaches dependent on high

quality preprocessings, such as the registration and normalization. The surface based

morphometry (SBM) usually uses a simplicial complex, for instance a set of vertices,
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WM

GM

CSF

Figure 1. Cortical thickness analysis approaches. (a) Voxel-based methods. The red
curve indicates the pial surface, while the yellow curve represents the grey (GM) -
white matter (WM) one. P1, P2, P3 are registered to W1,W2,W3, respectively. The
line distances of P1-W1, P2-W2 and P3-W3 are thicknesses. (b) Surface-based
morphometry. The orange belt is the pial surface, and the yellow belt the GM-WM
interface. Vertices x and y are mapped to x′ and y′. Line distances x-x′ and y-y′ are
thicknesses. (c) Tetrahedron-based volumetric morphometry. Vertex a is on pial
surface and vertex b is on the GM-WM interface. Heat flow trajectories are marked
as black curves from a to a′ and b to b′. The lengths of trajectories are thicknesses
defined on a and b. (d) Zoomed in temperature distribution. One heat flow line is
shown in red and circled in red in (c).

faces and edges in a triangle mesh, to shape cerebral structures from structural MRI

data. The gray matter surface model contains two boundary surfaces extracted from

the segmented cortex image, as shown in Fig. 2(b):

(1) the pial surface which is the boundary between gray matter and cerebrospinal

fluid (CSF), marked in orange; and (2) the white surface, which is the boundary

between the GM and the white matter (WM), marked in yellow (Fischl and Dale 2000).

SBM is considered to be a more precise method because of the nodal three-dimensional

coordinate records and the possibility of floating point computing (J. Shi et al. 2013;

Wang et al. 2012; R. Shi et al. 2017; Ge et al. 2016). Therefore, it is the current

mainstream in meeting higher application demands such as the precise calculation

of cortical area and curvatures, cortical parcellation, sub-cortical segmentation and
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subject registrations (Xia et al. 2020; Liu et al. 2019; J. Shi et al. 2015). While SBM

is sufficient to deal with the intrinsic geometry, they lack enough structural support

to computing extrinsic properties. In many applications of gray matter morphometry,

such as the cortical thickness estimation, the extrinsic properties are of key importance.

To combine the advantages of above two approaches while remedying their short-

comings, a volumetric modeling method seems to be a good choice, as shown in

Figure. 2(c). But generating such a high-resolution geometric error-free gray matter

volumetric model is still an open problem. Existing methods require global smoothing,

which greatly modify the geometric properties of the original data. Smoothing is

often not sufficient to solve the problem, therefore the successful meshing rate is

low (G. Wang and Y. Wang 2017; Fan et al. 2018). Meanwhile, discretization methods

matching with the volumetric models are also needed. Previous attempts require

global smoothing, but such treatment may greatly modify the geometric properties of

the original data and smoothing is often not sufficient to solve the problem. Therefore,

the successful meshing rate is low and many manual adjustments are needed (G. Wang

and Y. Wang 2017). Regarding to the discretization, a rough lumped method is used

to the numerical analysis, which has plenty potentials to be more accurate.

The GP is one of the most important Bayesian machine learning approaches for

constructing probability models in the function space (Williams and Rasmussen 2006;

Fan and Wang 2020). Previous researches have successfully applied this stochastic

process on 1D signals, 2D and 3D images for prediction, regression, registration and

classification (Wachinger et al. 2014; Lorenzi et al. 2015). The current Gaussian

process studies on manifolds mainly focus on triangle meshes (Liang and Paisley 2015;

Lin et al. 2018). In a smooth Riemannian metric space, the Gaussian process is defined

by classical kernels or sometimes the weighted kernels by considering well-defined
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geometric features, such as Gaussian curvature and mean curvature. These algorithms

also yield good applications to landmarking (Gao et al. 2018; Fan, Lepore, and Wang

2020; Fan et al. 2021), motion capture (Boukhayma, Franco, and Boyer 2017), and

shape recovery (Zhu, Hoi, and Lyu 2009), etc.

Classical GP kernels are the mostly used approaches, such as the Gaussian kernel,

heat kernel, periodic kernel and the spectral mixture kernel. These methods work

well in applications in Euclidean domain but not perform well on manifold. Many

related work uses Riemannian metric and space mapping techniques to do the domain

transform (Fahrmeir et al. 2013; Mallasto, Feragen, et al. 2018). The central idea

of these methods is to transform the metric space to pursue a reasonable spatial

measurement.

But the Euclidean metric is not totally discardable for certain data types, such as

the volumetric mesh and the point cloud. Recent studies propose to add geometry-

aware properties in prior knowledge learning and kernel design (gao2019gaussian;

Prisacariu and Reid 2011; Fan, Lepore, and Wang 2020). For example, the weighted

GP (W-GP) proposed in (Gao, Kovalsky, and Daubechies 2019) yields state-of-the-art

posterior inferences of the topological structure by weighting the classical heat kernel

with the mean curvature and the Gaussian curvature; the morphometric GP in (Fan,

Lepore, and Wang 2020) uses wave kernel signature feature distances and entropy

weight to define a kernel function in tetrahedral meshes. Other applications, such

as the intrinsic framework in (Castillo, Kerkyacharian, and Picard 2014) and the

extrinsic framework in (Lin et al. 2018), also demonstrate inspiring results after

involving proper geometric measurements. However, these existing methods have

considerably limitations on universality of the data type. This is because most available

geometric measurements are only defined in 2-dimensional manifold and features on
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3-dimensional manifold are rarely discussed. Meanwhile, the scattering effect observed

in many regression applications decrease the confidence of consistency and robustness

of the current mainstream. This motivates the further study on GP kernel design for

manifold-based regression and classification.
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Chapter 3

TETRAHEDRAL MESH GENERATION

3.1 GM Tetrahedral Mesh Generation Pipeline

GM tetrahedral mesh generation is the process of reconstructing the GM with

tetrahedrons. The purpose is to generate a computerized volumetric representation

based on structural 3D MRI for further quantitative analysis. A fundamental re-

quirement of constructing a tetrahedral mesh in our pipeline is the geometrically

accurate and topologically correct boundary surface models. Fortunately, the pial

and white matter surfaces of the GM can be segmented from the brain MRI and

transferred to triangular meshes successfully with existing approaches. The difficult

step is to combine them together as a mutual isolated composition. Even though each

surface is logically and geometrically error free, the intersection error may occur during

the combination because of the complex sulcal and gyral structures. For instance,

one typical error is self-intersection, which is not only clinically meaningless but an

impediment to generating the tetrahedral mesh.

Considering a bundle of possible geometrical errors and the mesh quality require-

ments of finite element analysis, we design our automatic GM tetrahedral mesh

generation pipeline as follows (see also Fig 2: (1) Pre-processing. The pipeline uses

Freesurfer (Fischl et al. 2002) to segment and generate the pial and white matter

surfaces from brain MRI, as shown in the top row in Fig 2. (2) Marking errors. The

initial surfaces must be error-free. We combine the pial and white surfaces together

and detect errors. Marking all the error vertices ve, as the red area shown in Fig 2. For
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(1) Preprocessing. The raw 3D brain MRI scan is automatically segmented 
by Freesurfer. Images of grey matter and white matter are separated.

(2) Initial grey matter surface generation and intersection detection. The Freesurfer generates the triangular 
meshes of (a) pial surface as the surface modeling of the pial matter and (b) white surface as the surface 
modeling of the white matter. The initial grey matter surface is the combination of pial surface mesh and white 
surface mesh. The detected intersections are marked as the red regions in (c) and (d). 

(a) (b) (c) (d)

(3) Grey matter surface mesh generation. (e) The fixed intersection-free cortical surface mesh. The pial surface is 
marked in red, the white surface is marked in blue, the corpus callosum is marked in black. A cutting slice from (f) the 
horizontal plane, (g) the coronal plane, and (h) the sagittal plane. (i) shows a zoom-in local region.  

(f)
(e) (g) (h) (i)

(4) Grey matter tetrahedral mesh generation. (j) A generated grey matter tetrahedral mesh. Three cutting views are 
demonstrated in (k) the horizontal cutting view, (l) the coronal cutting view, and (m) the sagittal cutting view. (n) shows 
a zoom-in local tetrahedral mesh. The surface is marked in green, the internal regions are marked in pink. The corpus 
callosum is marked in red.

(j)
(k)

(l) (m) (n)

Figure 2. The pipeline for GM tetrahedral mesh generation.

11



example, the corpus callosum should be marked, because it does not belong to cerebral

cortex. (3) Fixing. For a vertex ve in the mesh, we define closed neighborhoods Np[ve]

on pial surfaces and Nw[ve] on white surfaces, respectively. For v in Np[ve], we pull

the vertices outwards along the normal direction by a small distance ε, and then do

a local smoothing of Np[ve]. For v in Nw[ve], we push the vertices inwards along

the inverse normal direction by ε and also do a local smoothing. We then record

{Np[ve], Nw[ve]} in a list, because these vertices are manually modified and their future

results will be adjusted or even abandoned. (4) Combining surfaces and generating

tetrahedral meshes. The final step is to combine pial and white surfaces again and fill

in tetrahedrons with Tetgen (Si 2015). In the forth block of Fig 2, we demonstrate

one left hemisphere example and part of the entorhinal cortex tetrahedral mesh.

3.2 Experiments

In this group of experiments, two ADNI sub-datasets are employed. The first

subset, ADNI2 new-package baseline imaging cohort, consists of 50 AD, 50 CU and

50 MCI patients. The second subset, ADNI2 baseline newly-visit imaging cohort,

consists of 94 AD patients, 137 CU and 137 MCI patients. All subjects were scanned

using 3T MRI scanners in multiple sites across the United States and Canada.

The initial MRI are the inputs to our GM tetrahedral mesh generation pipeline.

To balance computation capability and accuracy, the surfaces are down-sampled to

120,000 faces.

The pipeline and classification experiments are run on an Intel(R) Core(TM) i7-4790

3.60GHz CPU and 64 GB globally addressable memory. The average processing time
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Table 1. GM tetrahedral mesh Generation Information
Average Vertices Number Average Tetrahedron Number

154040 600970
Average One Iteration Time(s) Min/Max One Iteration Time(s)

1042.51 883.93/1217.73
Success Rate After One Iteration(%) Success Rate After Three Iterations(%)

80.7 98.4

of computing tHFS is about 3.10 hours, including 2.49 hours of one-time tetrahedral

mesh generation.

3.2.1 Tetrahedral Mesh Generation

The complex folded structures and inevitable geometric errors (self-intersections,

holes etc.) are the bottlenecks of modeling the cortex with tetrahedrons. Our

technical pipeline solves these problems by performing minimally invasive surgery on

the erroneous structures automatically and generating the error-free mesh by TetGen.

Fig.2 (4) shows a randomly-selected GM tetrahedral mesh. Fig.2 (4)(k)-(m) display

horizontal, coronal and sagittal planes of (j), respectively. Fig.2 (n) is a zoomed-in

figure showing the details of a small region. The information of our tetrahedral mesh

generation is listed in Table 1.
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Chapter 4

SOLVING SPDES FOR SHAPE DESCRIPTORS

4.1 DLBOD Scheme

Characterization of the volumetric GM morphology is performed based on the

spectral analysis. We use the numerical finite element method (FEM) to derive a set of

discretization formulations called double Laplace-Beltrami operator discretization (DL-

BOD) scheme. As shown in Fig. 3 (c), the scheme includes: (1) tetrahedron-based

heat equation and (2) tetrahedron-based LBO spectrum.

4.1.1 Tetrahedron-based Heat Equation

The tetrahedron-based heat equation solves for the interior heat distribution given

proper boundary conditions. The heat distribution on the boundary is prescribed

and static. We use Galerkin’s method to derive a FEM discretization with Dirichlet

boundary conditions (Wang, Gu, Yau, et al. 2003; Delkhosh, Delkhosh, and Jamali

2012; Shi and Chan 2010; Rustamov 2007). We firstly define the discrete harmonic

energy S as:

S =


1
12

∑
vj⊆N(vi)

∑
Tl⊆N(vi,vj)

L(i,j)cotθ
(i,j)
l , if vj ⊆ N(vi)

0, otherwise

(4.1)

where N(vi) are the neighboring vertices of vi; N(vi, vk) are the tetrahedrons

sharing the edge E(i,k); L(i,j) is the length of the opposite edge of E(i,j); and θi,jl is
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DLBOD

Tetrahedron-based 
Heat Equation

Tetrahedron-based LBO 
Eigendecomposition

（a） （b） （c） （d） （e）

Figure 3. Summarized pipeline of DLBOD scheme and tHFS computation. (a)
Pre-processing; (b) Cortical tetradedral mesh generation; (c) DLBOD scheme; (d) A
single tHFS; (e) Sparse grouped tHFS.

the dihedral angle of E(i,j). Taking vertex 1 in Fig. 3.3(a) as an example, N(v1) are

the green points, while N(v1, vk) are yellow edges. In Fig. 4 (b), two tetrahedrons

sharing E(1,2) are colored by green. In Fig. 4 (c), E(3,8) is the opposite edge of E(1,2).

The dihedral angle of E(1,2) is θ.

We extract two matrices from S: (1) Wii: a square matrix with inner nodes as

rows and columns; (2) Wib: a matrix with inner nodes i and boundary nodes b as rows

and columns. Under the Dirichlet boundary condition, the interior heat distribution

Hin is computed by solving a linear equation:

LtetHin = H∂Ω (4.2)

where H∂Ω is the prescribed boundary heat. The LBO Ltet is defined as:

Ltet = diag(
∑
i

Wii) + diag(
∑
i

Wib)−Wii (4.3)

According to Newton’s law of cooling (Burmeister 1993), the discretized heat flux

in direction s per unit time on vertex m is defined as a weighted heat transfer between

m and a neighboring vertex n in direction s: −k(hsn − hm), where k is a constant;

The minus sign refers to the inverse direction of the temperature gradient. The heat

flow trajectory is defined as a searching path from one surface to the other along the

greatest descent direction of the heat flux. The thickness is the accumulated length of

all the passing edges in the trajectory. The starting vertex x and destination vertex
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(a) (b) (c)

Figure 4. A discretization example on a six-tetrahedron model.

y are recorded as a surfaces point pair (x, y), which is used to define the tHFS. A

heat map example is visualized in Fig. 5 We can see the interior heat level sets which

represent the heat flows from outer to internal space.

4.1.2 Tetrahedron-based LBO Spectrum

The tetrahedron-based LBO spectrum (λn, φn) is calculated by solving the eigen-

decomposition: Lφ = λφ. A Neumann boundary condition is applied here. We define

another matrix form LBO as:

L = B−1(D − S) (4.4)

where S is defined in Eq. 4.11, and D is the diagonal matrix defined as the sum of

each row in S. We define the heat capacity matrix B as:

Bi,j =


∑

tl⊆N(vi)
|Vl|
10

+
∑

k⊆N(vi)

∑
tl⊆N(vi,vk)

|Vl|
20
, if i = j∑

tl⊆N(vi,vj)
|Vl|
20
, if vj ⊆ N(vi)

0, otherwise

(4.5)

where N(vi) is the neighboring tetrahedrons of vi; N(vi, vk) is the neighboring tetra-

hedrons of E(i, k).
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(a)

(b)

(c) (d)

(e)

Figure 5. Tetrahedral heat map. The pial surface has the high heat and the white
surface has the low heat. (a) Example of the heat map. (b)-(d) Three cutting planes
of the volumetric heat map. A zoomed in figure is illustrated in (e).

4.1.3 Tetrahedral Heat Flow Signature

4.1.3.1 Single tHFS

We build the tHFS based on the results of DLBOD scheme. With point pair (x, y)

and the spectrum (λn, φn), the single tHFS is defined as:

tHFS(x, y|t0 + δt) =
N∑
n

φn(x)′φn(y)

eλn(t0+δt)
(4.6)

where t0 is an initial constant; step size δt is defined by:

δt =
2

0.8× λmax
(4.7)

The tHFS is considered to be a collection of time series vectors, regarding δt as a time

interval and t0 as the initial time as shown in Fig. 3(d).

4.1.3.2 Grouped tHFS

The single tHFS defines a pointwise cortical thickness pattern in matrix form. But

the matrix form is inconvenient when solving a groupwise problem. Therefore, we
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define a vector form by concatenating the principal components of the tHFS matrix.

The individual tHFS is now a vector GP with length P . In our experiments, the P is

50. Furthermore, a grouped tHFS matrix GN×P is defined by piling up the N tHFS

vectors coming from the same group. The group tHFS is an over-complete feature

matrix and it is further expressed in a sparse way by stochastic coordinate coding (Liu,

Ji, Ye, et al. 2009). A general process is:

(1) Initialize dictionary D1
1. Partition the input matrix GN×P into several segments

by setting time slots, GN×P = (g1, g2, ..., gq), where q is the total number of segments.

Set sparse code z0
i = 0 for all segments.

(2) For each segment, update the sparse code by coordinate descent:

zki ← CoordinateDescent(Dk
i , z

k−1
i , gi) (4.8)

(3) Update the Hessian matrix and learning rate η:

H ← H + zki (zki )T , ηki,j =
1

H(j, j)
(4.9)

(4) Update the dictionary D by using stochastic gradient descent:

Dk
i+1 = PBm(Dk

i − ηki 5Dki
fi(D

k
i , z

k
i )) (4.10)

where P is the projection operator, η is the learning rate, estimated by the inverse

of the jth diagonal element of Hessian matrix.

(5) Repeat (2)(3)(4) until all segments are processed. The final group tHFS is a

sparse matrix with the number of subjects as the row dimension and feature length as

the column dimension.
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4.1.4 Tetrahedron-based HO, Time-independent Schrödinger’s Equation and Scale-

invariant Wave Kernel Signature

We employs the Schrödinger’s Equation to define a tetrahedron-based scale-

invariant WKS (SIWKS) as a spectral shape descriptor. The Schrödinger’s equation

describes the behavior of quantum mechanical particles, and it is the theoretical basis

of the WKS (Aubry, Schlickewei, and Cremers 2011). In this scenario, we assume the

cortex is a quantum system and every point in a cortical shape is taken as a particle

according to the theory of classical mechanics. Any shape changes are simulated to

be the spatial movement of particles over a period of time. Their movements are not

determined beforehand but their static destination at a location x is measured by

a probability distribution which is predicted by the time-independent Schrödinger’s

equation:

HΦ(x) = ΛΦ(x) (4.11)

where Φ(x) is the wave equation, Λ is the total energy of the system, and H is the HO:

H = −}2

2

D∑
d=1

1

md

∇2
d + P (4.12)

where } is the Planck constant, m is the particle mass, dimentionality D is 3; P is a

potential energy function. Eq. (4.11) indicates that the time-independent Schrödinger’s

equation is essentially the spectra problem of the Hamiltonian operator (HO). Define

the discrete harmonic energy S as in our prior work (Wang, Gu, Yau, et al. 2003):

S =


1
12

∑
t⊆Nt(vi,vj) L

(i,j)cotθ
(i,j)
l , if vj ⊆ Nv(vi)

0, otherwise

(4.13)

L(i,j) is the length of the opposite edge of e(i, j), and θi,jl as the dihedral angle of e(i, j).

Taking the vertex 1 in a six-tetrahedron model shown in Fig. 4 (a-b) as an example,
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5 10 30

Figure 6. Visualizations of the 5th, 10th, and 30th eigenvectors on three anatomical
cutting planes.

Nv(v1) is the set of green spheres, and Nt(1, 8) is the set of all six tetrahedrons.

In Fig. 4 (b), two tetrahedrons sharing e(1, 8) are shown in green. In Fig. 4 (c),

around e(1, 2), e(3, 8) is its opposite edge and θ is its dihedral angle. Eq. (4.11)

defines a |V| × |V| symmetric matrix. Then, we derive a mass matrix B from the

tetrahedron-based barycentric coordinate system:

Bi,j =


∑

t⊆Nt(vi)
|V|
35

+
∑

k⊆Nt(t)
∑

t⊆Nt(vi,vk)
|V|
140
, if i = j∑

k⊆Nt(f)

∑
f⊆Nf (vi,vj)

|V|
420

+
∑

k⊆Nt(t)
∑

t⊆Nt(vi,vj)
|V|
840
, if vj ⊆ Nv(vi)

0, otherwise

(4.14)

where |Vl| is the volume of the lth tetrahedron. The derivation of coefficients in

Eq. 4.14 is given in the Appendix. Finally, the HO with Neumann boundary condition

is defined as:

H = B−1(G− S), G = diag(
∑
i

Sii), (4.15)

where G is a diagonal matrix of the sum of each row in S. When the potential energy

is zero, we can numerically estimate the HO to be same as the LBO given the same

boundary condition. Here, stressing the HO instead of LBO is because the wave kernel

signature is built on the theorem of wave equation and achieved great success as an ef-

fective shape descriptor (Aubry, Schlickewei, and Cremers 2011). By solving Eq. (4.15),
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we obtain K smallest positive eigenvalues Λ = {λ1, λ2, ..., λK}, λ > 0 and the corre-

sponding eigenfunctions Φ = {φ1, ..., φK} (the first eigenvalue and its eigenvector are

excluded). In Fig. 6, we can see examples of the 5th, 10th, and 30th eigenvectors on the

sagittal, horizontal and coronal cutting planes of a GM tetrahedral mesh. Supposing

that the meshM has a scaled version βM, the eigenvalues and eigenvectors have

the corresponding scaled values: λβM = β2λM, φβM = βφM. Therefore, multiplying

by an inversed eigenvalue will make the WKS scale-invariant (li2018scale). The

tetrahedron-based scale-invariant WKS (SIWKS) of vertex v is defined as:

SIWKS(v, ε) =
1

λK
Cε

K∑
k

φ2
k(v)e−

(ε−logλk)
2

2σ2 , Cε =

(
K∑
k

e−
(ε−logλk)

2

2σ2

)−1

(4.16)

where ε is a evenly spaced vector of the energy scale between εmin = log(λ1) and

εmax = log(λK). The length of ε is the length of the SIWKS feature vector. λK is

the selected largest eigenvalue, hence its inverse is taken as a normalization of the

SIWKS. The SIWKS distance map is defined using the accumulated absolute SIWKS

differences as a feature-based metric:

M(vi, vj) =


∑εmax

εmin

∣∣∣SIWKS(vi,ε)−SIWKS(vj ,ε)

SIWKS(vi,ε)+SIWKS(vj ,ε)

∣∣∣ , j ∈ N(vi),

0, i = j or j /∈ N(vi).
(4.17)

In implementations, we use K-Nearest Neighbor (KNN) algorithm to get the N(vi),

while we simply use the connection information to get N(vi) in constructing the

harmonic energy and the mass matrix. It is clear that M is a |V| × |V| sparse matrix

with M(vi, N(vi)) as the only nonzero entries. The sparsity is determined by the K

in KNN. We demonstrate a SIWKS distance map in Fig. 7. Since we reorganize the

vertex orders by placing boundary vertices ahead of internal vertices, the distance

map shows a more sparse pattern in the top left region than in the other regions. We

will use this SIWKS distance map in our Bayesian method to replace the Euclidean
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Figure 7. A SIWKS distance map is a sparse matrix. Two regions are zoomed in.

distance. This substitution emphasizes the importance of similarities in geometric

features instead of the spatial positions, which helps to make reasonable posterior

inferences in a Bayesian model.

4.2 Experiments

4.2.1 GM tetrahedral mesh Spectrum Visualization

The visualization of GM tetrahedral mesh spectrum is solved by (1) Cutting the

cortex according to coronal, horizontal and sagittal planes. (2) Scaling the values of

the eigenvectors and rendering the color map based on the rescaled values in each

eigenvector. In experiments, we selected four eigenvectors, the first, fifth, tenth and

thirtieth eigenvector, for the visualization. The results are shown in Fig. 6. We

selected cross-section views from all three planes. We tried to choose slices passing

through some key regions, such as the posterior cingulate and superior temporal and

precuneus regions, which are considered to be closely connected with AD progression.
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(a) (b)

Figure 8. An illustration of the cortical thickness ranging from 0.5 to 5 (mm).

Color changes within the same region reflect the rich spectrum features under

different orthogonal basis.

4.2.2 Cortical Thickness Map

The direct definition of the cortical thickness is not numerically tested in this

paper, as tHFS is a more powerful measurement of morphological properties, but we

show a standard thickness map in Fig. 8. The figure is rendered by scaling, with the

thicknesses ranging from 0.5 to 5 (mm).

4.2.3 Cortical Atrophy Severity Classifications

The two comparison methods are: (1) the surface-based thickness morphometry

method used in FreeSurfer (Fischl and Dale 2000); (2) the lumped tetrahedron-based

volumetric method in (G. Wang and Y. Wang 2017), whose LBO is defined as:

Lp = D−1S, D = diag(d1, ..., dn). (4.18)
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Table 2. Classification results of the first dataset
GROUP 15: Lumped 15: tHFS 25: Lumped 25: tHFS FreeSurfer

AD-CU
ACC 0.847 0.855 0.885 0.897 0.783
SEN 0.913 0.877 0.932 0.922 0.692
SPE 0.761 0.826 0.818 0.864 0.9

AD-MCI
ACC 0.836 0.848 0.857 0.884 0.739
SEN 0.895 0.896 0.904 0.915 0.818
SPE 0.761 0.784 0.795 0.841 0.667

CU-MCI
ACC 0.809 0.852 0.835 0.844 0.696
SEN 0.835 0.862 0.849 0.814 0.733
SPE 0.783 0.842 0.823 0.875 0.625

GROUP 30: Lumped 30: tHFS 40: Lumped 40: tHFS FreeSurfer

AD-CU
ACC 0.917 0.941 0.931 0.951 0.783
SEN 0.939 0.965 0.957 0.965 0.692
SPE 0.886 0.909 0.898 0.932 0.9

AD-MCI
ACC 0.896 0.916 0.914 0.926 0.739
SEN 0.913 0.939 0.915 0.930 0.818
SPE 0.875 0.886 0.909 0.920 0.667

CU-MCI
ACC 0.887 0.913 0.913 0.939 0.696
SEN 0.878 0.925 0.898 0.948 0.733
SPE 0.896 0.903 0.929 0.930 0.625

dn is the weighted volume sum of all the tetrahedrons sharing vertex i:

dn =
∑

Tl∈N(i)

V(tl)/4 (4.19)

We perform classifications using a 10-fold cross validation. Accuracy (AC), sensi-

tivity (SEN) and specificity (SPE) are computed for performance evaluation. For the

first dataset, we use AdaBoost (Freund, Schapire, and Abe 1999) as the classifier and

25-step tHFS. Performance increases through selecting 15, 25, 30 and 40 eigenfunctions

are shown in Table 2. The results of using the second datasets with the same setting

are shown in Table 3. On average, tHFS outperforms the lumped method by 1%-2.4%

and the FreeSurfer method by 11%-17% in classifying the first dataset. The accuracy

converges to about 95% after using 40 eigenfunctions.
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Table 3. Classification results of the second dataset
GROUP 15: Lumped 15: tHFS 25: Lumped 25: tHFS FreeSurfer Thickness

AD-CU
ACC 0.792 0.818 0.795 0.818 0.762
SEN 0.861 0.913 0.809 0.817 0.770
SPE 0.705 0.693 0.783 0.818 0.785

AD-MCI
ACC 0.709 0.767 0.739 0.768 0.674
SEN 0.80 0.852 0.843 0.852 0.737
SPE 0.591 0.659 0.602 0.659 0.776

CU-MCI
ACC 0.774 0.822 0.796 0.835 0.534
SEN 0.739 0.861 0.835 0.861 0.682
SPE 0.818 0.783 0.757 0.809 0.716

GROUP 30: Lumped 30: tHFS 40: Lumped 40: tHFS FreeSurfer Thickness

AD-CU
ACC 0.828 0.853 0.927 0.941 0.762
SEN 0.748 0.8 0.948 0.965 0.770
SPE 0.932 0.920 0.898 0.909 0.785

AD-MCI
ACC 0.785 0.793 0.886 0.894 0.674
SEN 0.8 0.8 0.887 0.904 0.737
SPE 0.761 0.784 0.886 0.875 0.776

CU-MCI
ACC 0.870 0.874 0.861 0.869 0.534
SEN 0.791 0.765 0.896 0.904 0.682
SPE 0.948 0.983 0.826 0.826 0.716
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Chapter 5

SOLVING SPDES FOR GAUSSIAN PROCESSES

5.1 Morphological Gaussian Processes

Gaussian process (GP), especially Gaussian process regression (GPR), is widely

used in spatial inference problems known as the “Kriging” (gao2019gaussian; Ras-

mussen 2004). Suppose Vn = {v1, ..., vn} is the set of n training samples and

Yn = {y(v1), ..., y(vn)} is the set of corresponding observations. The classical GPR

learns a multivariate distribution to fit the training data and predict the observation

y(vn+1) when a testing sample vn+1 comes. The Bayes theorem is used to infer the

posterior prediction from the prior knowledge. One important property of GP is

that every finite marginal distribution of a GP still follows a multivariate Gaussian

distribution GP(mn+1, Kn+1) and the new distribution is explicitly determined by:

mn+1 = KT
n,n+1K

−1
n+1,n+1Yn (5.1)

Kn+1 = Kn −KT
n,n+1K

−1
n+1,n+1Kn,n+1 (5.2)

Kn,n+1 = KT
n+1,n =


K(v1, v1) · · · K(v1, vn), K(v1, vn+1)

...
...

K(vn, v1) · · · K(vn, vn), K(vn, vn+1)

 (5.3)

Kn+1,n+1 =



K(v1, v1) · · · K(v1, vn), K(v1, vn+1)

...
...

K(vn, v1) · · · K(vn, vn), K(vn, vn+1)

K(vn+1, v1) · · · K(vn+1, vn), K(vn+1, vn+1)


(5.4)
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Motivations of choosing GPs: Despite the commonly-mentioned advantages of

GP regression and Bayesian inference in spatial data analysis, we summarize two

reasons of choosing GPR as the framework in our applications: (1) for implementa-

tions on large-scale data, GP regression is capable of working with active learning

strategy (Liang and Paisley 2015; Gao, Kovalsky, and Daubechies 2019). At each

time step, only one vertex is selected and one dimension is added to the kernel matrix

after the current extraction. This consideration has a significant acceleration effect in

computational efficiency; (2) GP is the best tool we can find to construct a process

that allows for the geometric dependence varying as a function of the distance lags. A

stationary kernel function is a perfect platform for defining local spatial features.

5.1.1 Scale-Invariant Wave Kernel Signature Distance Map

Comparing with several matured geometric feature descriptors, WKS is more

powerful in depicting local features but it is initially scale-variant (Aubry, Schlickewei,

and Cremers 2011). Here, we propose a scale-invariant WKS. It is known that

WKS is rooted in the Schrödinger Equation. Under an estimation circumstance, the

Schrödinger Equation is approximated to be the Neumann eigenvalue problem of LBO.

We apply the discretized solution on tetrahedral meshes mentioned in (Fan et al. 2018)

to obtain K pairs of eigenfunctions Ψ = {ψ1, ..., ψK} and non-negative eigenvalues

Λ = {λ1, λ2, ..., λK}. Then a scale-invariant WKS is defined as:

W =
1

λK
Ce

K∑
i

ψ2
i e
− (ei−logλi)

2

2σ2 , Ce =

(
K∑
i

e−
(ei−logλi)

2

2σ2

)−1

(5.5)

where ε is a evenly spaced vector of the energy scale between log(λ1) and log(λK). We

use the same setting of ε and σ with those in (Aubry, Schlickewei, and Cremers 2011).
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Lemma 1. WKS defined by Eq. 5.5 is scale-invariant.

Proof. Suppose that there exists a scaled tetrahedral modelM ′ ofM with the relation-

ship: M ′ = αM , where α is a constant. If M has the eigenvalues λ and eigenfunctions

ψ, then the eigenvalues and eigenfunctions of M ′ are λ′ = α2λ and ψ′ = αψ. Substi-

tuting the above eigenvalues and eigenfunctions in Eq. (5.5) to calculate the WKS

of M ′, W ′. We can see that W ′ = W and the constant α has no effect to the results.

Therefore, Eq. (5.5) defines a scale-invariant WKS.

The scale-invariant WKS distance map is then defined as:

S =


∑

e

∣∣∣W (vi)−W (vj)

W (vi)+W (vj)

∣∣∣ , j ∈ N(vi)

0, i = j or j /∈ N(vi)
(5.6)

where N(vi) is the n neighboring vertices of vi. N(vi) is generated by K-Nearest

Neighbor (KNN) algorithm. It is clear to see that S is a |V | × |V | sparse matrix

with S(vi, N(vi)) as the only nonzero entries. In designing the covariance function

of M-GP, we replace the Euclidean distance of the Cartesian coordinates with this

feature space distance. This choice emphasizes the similarities of geometric features

but the spatial positions, which fits better with the expectations. A visualization of

the four dimensions of the spectrum is shown in Fig. 9.

5.1.2 Heat Flow Entropy

Assuming the cortex is a thermodynamic equilibrium system, the internal temper-

ature distribution, as shown in Fig. 3.4, is resolved by the heat equation with Dirichlet

boundary condition: LtetHin = H∂M , where Hin is the desired interior temperature

distribution; H∂M is the prescribed temperature on two boundary surfaces. The pial
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Figure 9. Examples of the spectrum of a randomly selected GM tetrahedral model.

surface has a high temperature 1 and the white surface has a low temperature 0; The

LBO Ltet is specified by using the method in (Fan et al. 2018). There are several heat

flow tendencies denoted as degrees of freedom on each vertex. Each degree comes

with a heat transition probability. The heat flow on vi in direction s per unit time is

defined by the weighted temperature variation between vi and the neighbors along

s. In tetrahedral meshes, this is defined by the weighted Newton’s law of cooling:

−k(hs − hi). Here h is the temperature, the conductivity k is set to be 1. The minus

sign refers to the inversed direction of the temperature gradient. An HFE is defined

to measure the amount of thermodynamics information:

HHFE(vi) = −
J∑
j

|hj − hi|∑
j |hj − hi|

log

(
|hj − hi|∑
i |hj − hi|

)
, vj ∈ N(vi) (5.7)

where J indicates the total degrees of the freedom of vi. On a vertex, J equals to

the number of edges connected to this point. The HFE is a positive scalar function

inspired by the Shannon entropy. The meanings of HFE is also interpretable from the

view of information theory. Furthermore, HFE is not only a statistical measurement of
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Algorithm 1 Landmark Selection based on M-GP regression
1: procedure M-GP(M ,k) . Tetrahedral Model M , number of landmarks k
2: W ← Scale-invariant WKS . calculate scale-invariant WKS with Eq. 5.5
3: N(V )← K-Nearest Neighbors . calculate n nearest neighbors of each vertex
4: S ← WKS Distance Map . calculate the WKS distance map with Eq. 5.6
5: H ← Heat Flow Entropy . calculate the diagonal matrix of HFE with Eq. 5.7
6: K ← Covariance function . calculate the covariance function with Eq. 5.8
7: Ṽ =

{
v1, ..., vk

}
← ∅ . initialize the set of landmarks

8: D ← diag(K) . get the initial uncertainty score
9: while i ≤ k do

10: if i=1 then
11: ΣM(vi)← D
12: else
13: ΣM(vi) . update uncertainty score with Eq. A.3,A.4
14: end if
15: vi ← argmaxΣM . select a landmark with Eq. A.5
16: Ṽ ← vi . save new landmark to Ṽ
17: i← i+ 1
18: end while
19: return Ṽ
20: end procedure

a thermodynamic system but also a valid dimension-free geometric feature descriptor.

The dimension-free means HFE is feasible on any dimensional manifolds.

Lemma 2. The heat flow equals to curvature flow. Heat flow entropy is a point-wise

dimension-free measurement of the amount of curvature flow.

The proof is given in Appendix C. Lemma 3 states that the curve flow is analogous

to the heat flow. On a 3-dimensional manifold, such as a tetrahedral mesh, the curve

function is a 2D function and the curvature flow can be regarded as the level-set.
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5.1.3 Morphometric Gaussian Process Landmarking

Suppose a prior function of v satisfies M-GP, f(v) ∼ GPM (0, K), if the covariance

function K is defined by:

K = SwHSw (5.8)

Sw =


S(v1, ·)− S(v1, N(vi))

...

S(v|V |, ·)− S(v|V |, N(v|V |))

 , H =


HFE(v1)

. . .

HFE(v|V |))

 (5.9)

For each vi, there exists a unique f (vi). The conditional marginal probability of

predicting the (k + 1)th landmark given previous k landmarks
{
v1, ..., vk

}
follows the

Gaussian distribution:

f(vk+1|v1,v2,...,vk) ∼ GPM(0, K ′) (5.10)

K ′ = diag(K)−KT
k,k+1K

−1
k Kk,k+1 (5.11)

Kk,k+1 =


K(vi, v

1)

...

K(vi, v
k−1)

 , Kk =


K(v1, v1) · · · K(v1, vk−1)

...
...

K(vk−1, v1) · · · K(vk−1, vk−1)

 (5.12)

where diag(K) is the diagonal of K. We define the covariance function of each iteration

as the uncertainty score ΣM . The (k + 1)th landmark is greedily selected by choosing

the vertex with the maximal uncertainty score:

vk+1 = argmax
vi∈V \{v1,...,vk}

ΣM(vi) (5.13)

The first landmark is determined by the maximum value of diag(K). The whole

process is shown in Algorithm. 5.1.2.
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5.2 Periodic Potential Diffusion Gaussian Processes

5.2.1 Periodic Potential Diffusion Process

A diffusion process is a solution to a stochastic differential equation. It usually

has specific physical meanings in a prescribed scenario (Oksendal 2013). Taking the

acknowledged heat conduction as an example, the diffusion process solves for a heat

distribution of a bounded region at certain time given proper initial and boundary

conditions. Let T (v, t) denotes the heat at position v at time t in region D in Rd.

Given an initial value and a boundary condition, a diffusion process solves for this

parabolic partial differential equation:

∂T

∂t
= α∆T + F t ≥ 0 (5.14)

where ∆ is the Laplace operator, F is the potential function. Constant α is usually 1.

A fundamental solution to Eq. (A.7) is:

T = e−t∆f +

∫ t

0

e−(t−s)∆F (s)ds (5.15)

The potential function F is a spatial-temporal function for defining the location

and pattern of the heat source. We can write it as the multiplication of a Dirac

delta function at location v with neighborhood NG(v) and a temporal function h(t):

F = h(t)δ(v − NG(v)). Denote the Green’s function of Laplace operator under the

Dirichlet boundary condition as G(v,NG(v), t). Then Eq. (5.15) is:

T (v,NG(v), t) =

∫ t

0

G(v,NG(v), t− s)h(s)ds (5.16)

Green’s function in a Rd diffusion problem has the standard form: G = e−v
2/4t

(4πt)d/2
. If the

temporal function is periodic h(t) = cos(ωt), then Eq. (A.8) with the standard form
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and the periodic temporal function is a periodic Dirac delta potential heat equation:

T =

∫ t

0

cosω(t− s) e
−v2/4s

(4πt)d/2
ds (5.17)

Eq. (A.9) is called periodic potential diffusion process, which is one of the theoretical

foundations of our work.

5.2.2 Equivalence between Diffusion Process and Curvature Flow on Manifold

In differential geometry, a curvature flow numerically links intrinsic geometric

features and extrinsic flows together (Kichenassamy et al. 1995). We recall the proof

on a planar curve by assuming G is on 2-dimensional manifold in R3 for convenience.

Figure 3.7 shows sketch plots of the symbols used in this proof. Suppose v is a

point on the manifold. C(v) is the intersection between the manifold and the normal

plane on v. As known, C(v) is a 1-dimensional smooth curve. Assume one point

moves along C from v to v′. Let ∆s be the arc length of this movement and θ be

the rotation angle of the tangent vector, then we can define the following concepts:

(i) the velocity vector at v is dC
dv
; (ii) the velocity is the magnitude of the velocity

vector, which is
∣∣dC
dv

∣∣ = ds
dv
; (iii) the unit tangent vector T = dC

ds
/
∣∣dC
ds

∣∣ and the unit

normal vector N = RT , R is the π/2 rotation matrix; (iv) the curvature κ measures

how fast the unit tangent vector rotates relative to the arc length, therefore, κ is

defined as: κ = lim
∆s→0

∣∣∆θ
∆s

∣∣. And we can further get dT
ds

= (−sinθ, cosθ)dθ
ds

= κN and

similarly dN
ds

= −κT . Assume all points on the curve start to move along their normal

directions at a velocity of κ(v) during time t, we have curvature flow: dC
dt

= κN .

With the equation (iii) and (iv), we write the curvature flow as: dC
dt

= d
ds
dC
ds
, which

suggests a diffusion process. This equivalence indicates that the diffusion process can

theoretically reflect the geometric features. The intrinsic example is more commonly
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Figure 10. Saliency maps and saliency extraction of a molar model (Boyer
et al. 2011). The saliency map is rendered by the normalized saliency values. (a) The
progress of sequentially selecting the first three salient vertices. The candidate and
selected salient vertices are shown as the black and red spheres, respectively. Note
the saliency change after a candidate is selected. (b) The first 12 salient vertices and
the 13th salient vertex candidate. (c) The saliency map during the 40th saliency
extraction. The high saliency regions are still centralized in ROIs.

seen in heat kernel based work (Bronstein et al. 2017). This is another theoretical

foundation of PPDK and it explains why PPDK is able to capture geometric features

without adding any explicit feature descriptors.

5.2.3 Periodic Potential Diffusion Kernel

Our inspiration starts from the following two observations:

(1) The first observation is that the integral Laplace transform of function f(t) =

td−1e−
1
4
at in Rd has several similar terms with the well-known Matérn kernel as shown

in Eq. (A.10) and (A.11) respectively:∫ ∞
0

td−1e−
1
4
ate−stdt = 2

[
(
1

4
a)

1
2 s−

1
2

]d
Kd(a

1
2 s

1
2 ) (5.18)

C(τ) =
σ2

Γ(d)2d−1
(2
√
dτκ)dKd(2

√
dτκ) (5.19)

Both equations have a term of modified Bessel function of the second kind Kd and

the rest parts are functions with the same dimension order d. This indicates a way to

derive a solid kernel function from solving the integral.
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(2) The second observation is that the Green’s function of ∆ in 3D diffusion

problem is a specific realization from the family of td−1e−
1
4
at, d = 3. Furthermore,

Bochner (Bochner 2005) proved that a stationary kernel is positive definite in Rd if

it has the Fourier transform of such measure function F : K(x, x′) =
∫
Rd cos(ω(x −

x′))Fdω. Therefore, Eq. (4.14) is a temporal stationary kernel function regarding the

temporal variable. If we can prove that it is positive semi-definite (PSD) regarding

the spatial part, then Eq. (A.10) is a solid spatial-temporal stationary kernel function.

The theoretical inspiration is straightforward, but the challenge is that Eq. (A.10)

has no explicit solution (Hartikainen and Särkkä 2010; Särkkä 2011). Hence, reasonable

approximations are used to solve the integral. Eq. (A.10) is estimated to be the

combination of a cosine Fourier transformf̂c(ω) and a sine Fourier transformf̂s(ω)

when t is large:

T = cos(ωt)

∫ t

0

cos(ωs)G(s)ds+ sin(ωt)

∫ t

0

sin(ωs)G(s)ds

≈ cos(ωt)f̂c(ω) + sin(ωt)f̂s(ω)

(5.20)

The cosine and sine transforms from the Laplace transform in Eq. (A.12) are:

f̂c(ω) = 2−1−d/2π−d/2
[
(
√
−iω)d−2Σ1 + (

√
iω)d−2Σ2

]
(5.21)

f̂s(ω) = −i2−1−d/2π−d/2
[
(
√
−iω)d−2Σ1 − (

√
iω)d−2Σ2

]
(5.22)

where Σ1 and Σ2 are:

Σ1 = (‖v‖
√
−iω)1−d/2K1−d/2(‖v‖

√
−iω) (5.23)

Σ2 = (‖v‖
√
iω)1−d/2K1−d/2(‖v‖

√
iω) (5.24)
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The solution to the periodic potential diffusion problem is then produced by substi-

tuting Eq. (A.13) and Eq. (A.14) into Eq. (A.12):

T = 2−1−d/2π−d/2
[
(
√
−iω)d−2Σ1 + (

√
iω)d−2Σ2

]
cos(ωt)

− i2−1−d/2π−d/2
[
(
√
−iω)d−2Σ1 − (

√
iω)d−2Σ2

]
sin(ωt)

(5.25)

If we define two complex functions f and f ∗ as:

f = (
√
−iω)d−2Σ1 − (

√
iω)d−2Σ2

f ∗ = (
√
−iω)d−2Σ1 + (

√
iω)d−2Σ2

(5.26)

Then, Eq. (5.25) is simplified to be:

T = 2−1−d/2π−d/2 [cos(ωt)f − isin(ωt)f ∗] (5.27)

Each sine and cosine term in Eq. (5.27) is weighted with a complex function. Noting

that this composite form is different from the sine-cosine form of the Fourier series of

a periodic function. When the manifold is in R3, Eq. (5.23) and (5.24) become

Σ1 =

√
π

2
e−‖v‖

√
−iω, Σ2 =

√
π

2
e−‖v‖

√
iω (5.28)

and Eq. (5.27) is written as:

T =
1

4π
e−‖v‖

√
1
2
ωcos(‖v‖

√
1

2
ω + ωt) (5.29)

The frequency ω can be a single value or a multi-frequency setting. In our applications,

we define Nfre frequencies with ω =
√

0.2πn, n = [1, ..., Nfre]. We use the same number

of values for t by dividing [0, π
2
] into Nfre equal line-spaces. The final kernel matrix is

the average of accumulated all single value covariance functions. The ω and t can also

be hyper-parameters and determined by parameter tuning methods. Such setting is

widely used in variational inference or posterior estimation, and this is beyond our

topic in this paper. Inspired by the kernel principal component analysis (KPCA)
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Algorithm 2 Saliency Extraction on manifold with PPD-GP
1: procedure G:PPD-GP
2: S . Number of salient vertices needed, S << |V|
3: NG . Neighborhood via KNN or Fast Marching
4: K = TWT . Kernel building with Eq. (5.30), (5.31)
5: Ṽ ← ∅ . initialize salient vertex set Ṽ as empty
6: while s ≤ S do
7: if s=1 then
8: ΣG ← diag(K) . initialize saliency map
9: else

10: ΣG . calculate saliency map.
11: end if
12: ṽs ← argmaxΣG . vertex with the highest saliency
13: s← s+ 1
14: end while
15: return Ṽ =

{
ṽ1, ..., ṽS

}
. low-dimensional embedding

16: end procedure

which uses a weighted multiplication of the covariance matrix (Schölkopf, Smola, and

Müller 1998), we define PPDK in a weighted squared form: K = TWT . The weight

matrix W is a diagonal matrix with the absolute sum of each row as the diagonal

entry. The final version of the kernel function K and weight matrix W is:

K(v,NG(v)) =
1

4πNfre

Nfre∑
n=1

e−‖v‖
√

1
2
ωncos(‖v‖

√
1

2
ωn + ωntn) (5.30)

W (v) =
∑
|K(v, ·)| (5.31)

Lemma 3. PPDK is a spatial-temporal stationary kernel function.

Proof. The proof of the temporal part is solved by using Bochner’s theorem regarding

the variable t. The rest is to prove Eq. (5.29) is also PSD regarding the spatial variable

v before summarizing to Eq. (5.30). Eq. (5.29) is the composition of an exponential

function e−||v||
√

1
2
ω and a cosine function cos(||v| |

√
1
2
ω + ωt). It is acknowledged that

these two functions are PSD according to variable v. By calling the composition

37



property of PSD matrix, we get that Eq. (5.29) is also PSD regarding the variable v.

Entries in weight matrix W are positive. By calling the property of a PSD matrix

that the multiplication between a positive real function and a PSD function is still

PSD (Bhatia 2007), we get that Eq. (5.30) is PSD. Lemma 3 is proved. Another

proof method is using the Cholesky decomposition which is often applied in posterior

approximation and variational inference. Cholesky decomposition restricts that only

a PSD matrix can be factorized into the product of a lower triangular matrix and its

conjugate transpose. PPDK is feasible to be decomposed in tests.

Although we focus on the spatial analysis here, we mention the proof of temporal

part for giving the possibility of extending to some spatial-temporal applications. The

temporal variable is used as a parameter like frequency ω in our applications. Lemma 1

provides a thought of deriving eligible families of kernels through proper ordinary

derivative equation (ODE) or partial derivative equation (PDE) that describes a real

physics process. It is said that a kernel based on a rational physics process guarantees

the inference well matches with the inherent structures (Stein 1991).

Theorem 1. A real valued function T (v, t) on Rd is a spatial-temporal kernel function

if it is a diffusion process given proper initial values v0 and boundary conditions:

∂T
∂t

= α∆T + P (t)δ(v). α is a positive constant. P (t) is a periodic function. δ(v − v0)

is the Dirac delta function. ∆ is the Laplace operator.

Proof. Theorem 1 is the generalization of Lemma 1. As known, any parabolic partial

differential equation has a corresponding Green’s function so that the solution has

the form of Eq. (4.13). If a periodic function P has a general cosine form, then

the proof will be similar with that of Lemma 1 as the spatial part is the same

Dirac delta function. The generalization mainly happens in temporal part. The
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Fourier series of a periodic function is: P (t) ∼ 1
2
a0 +

∑∞
n=1 [ancos(nt) + bnsin(nt)],

a, b are real numbers. By using the trigonometric sum formulae, we get: xn =

±
√
a2
n + b2

n and y = arctan(−
√

bn
an

) when assuming the existence of a cosine function

xncos(nt + yn) that is equal to ancos(nt) + bnsin(nt). Then the Fourier series is

P (t) ∼ 1
2
a0 ±

∑∞
n=1

√
a2
n + b2

ncos
[
nt+ arctan(−

√
bn
an

)
]
. So any periodic functions

can be approximated to be the linear combination of cosine functions. Because of the

PSD summation property, the solution to the parabolic PDE is PSD.

In (Särkkä 2011), Särkkä indicates that any stochastic partial differential equa-

tion is potential to be a kernel. Theorem 1 provides an applicable class of solu-

tions. Comparing with methods derived from analogous theory background, e.g.

the heat kernel (HK) (Berline, Getzler, and Vergne 2003), PPDK is in a dynamic

potential scenario which is more flexible and accurate than those without potential

definitions. An insight is its connection with discrete convolution operation. On

a smooth manifold, the convolution operation is in a discrete accumulated form:

D(v)f =
∑

V f(v′)u(v, v′) (Bronstein et al. 2017). Weight function u(v, v′) measures

the similarities between x and x′, which matches with the meaning of a kernel. So the

convolution on point x is essentially weighted accumulation of function values on x.

Therefore, PPDK accomplishes a result of pointwise convolutional filtering.

5.3 Experiments

5.3.1 Morphological Gaussian Processes

This group of experiments focus on the cortical morphometry analysis for the study

of AD. Previous research (Fan et al. 2018; Thompson et al. 2003) has demonstrated a
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Figure 11. Visualization of landmarks on a grey matter tetrahedral mesh. (a) Slices
of horizontal plane; (b) Slices of sagittal plane; (c) Slices of coronal plane. The
landmarks are identified by the red spots. Some regions of interest are marked by red
circles with annotations on the side.

strong correlation between grey matter morphometry and the AD severity and here we

aim to discriminate AD clinical groups by cortical atrophy analyses. We use 518 left

cerebral hemisphere structural MR images including 144 AD patients, 187 cognitively

unimpaired (CU) visitors and 187 mild cognitive impairment (MCI) patients from the

baseline subset of the Alzheimer’s Disease Neuroimaging Initiative 2 (ADNI2) (S. G.

Mueller et al. 2005). Their grey matter tetrahedral meshes are generated by using the

pipeline in (Fan et al. 2018) and the average number of vertices in each mesh is about

154,000. When computing the scale-invariant WKS, we select the smallest 50 pairs of

eigenvalues and eigenfunctions. The first eigenvalue λ0 is abandoned because λ0 ≈ 0;

we select 100 ε values by evenly dividing the scope (εmin, εmax), where εmin = log(λmin),

εmax = log(λmax); the increment of ε is (εmax − εmin)/100.

40



10-fold cross validation is applied in classifications. The performance measurements

include accuracy (ACC), sensitivity (SEN) and specificity (SPE). We adopt Support

Vector Machine (SVM) as the classifier. The feature for classifications is not a key

consideration in this paper. Any pointwise features are acceptable. For convenience,

we still use the scale-invariant WKS. We choose the following methods for comparisons:

(1) Full feature space method denoted as Full. The feature vector on each vertex

is truncated to be a feature matrix. We use principal component analysis (PCA)

to organize the feature matrices of different subjects into the same dimension (Fan

et al. 2018). (2) The heat kernel GP denoted as HK-GP. HK-GP is also used to select

landmarks and form a feature subspace. The definition is the same as that in (Gao

et al. 2018). (3) The Spectral Mixture GP denoted as SM-GP. We use the SM-GP

defined in (Wilson and Adams 2013) to select landmarks.

5.3.1.1 Visualization of the Landmarks

We randomly select one grey matter tetrahedral model and choose 5,000 landmarks

by Algorithm. 5.1.2. The landmarks are shown in Fig. 11. We render one face that

the landmark vertex belongs to so that the result is more visible. The landmarks are

illustrated from three anatomical cutting planes: coronal plane, sagittal plane, and

horizontal plane. We choose slices that contain as many landmarks as possible on

each cutting plane. The landmarks are marked by red spots. Some regions of interests

are marked by red circles with annotations on the side. The vertices in the corpus

callosum have been excluded from the candidates before the landmarking because

this region is not part of the cortex. We can observe that the landmarks have a good

aggregation in regions of interests. Some regions have been clinically proved to be

41



GROUP Full HK-GP (200) SM-GP(200) M-GP(100) M-GP(150) M-GP(200)
AD
-

CU

ACC 0.9158 0.8391 0.9049 0.90 0.9455 0.9455
SEN 0.913 0.8174 0.9036 0.9231 0.9739 0.9826
SPE 0.9195 0.8609 0.9085 0.8571 0.9080 0.8966

AD
-

MCI

ACC 0.8911 0.8221 0.9196 0.8267 0.9158 0.9307
SEN 0.8783 0.8261 0.9275 0.8261 0.9391 0.9304
SPE 0.9080 0.8161 0.9080 0.8276 0.8391 0.931

CU
-

MCI

ACC 0.813 0.797 0.8076 0.7478 0.7522 0.8304
SEN 0.7565 0.7739 0.9652 0.8261 0.9652 0.8
SPE 0.8696 0.8276 0.7816 0.5304 0.5391 0.8609

Table 4. Classifications of different AD clinical groups. The highest value of each row
is in bold. The number of used landmarks is annotated in brackets. Full denotes
using the features of all vertices. HK-GP denotes the landmarking by heat kernel GP.
SM-GP denotes the landmarking by spectral mixture GP. M-GP is our method.

closely related to the progression of AD, such as the precuneus, entorhinal cortex,

temporal pole, and superior parietal lobule (L. Pini et al. 2016).

5.3.1.2 Classifications of AD Clinical Groups

This is a further numerical experiment of the previous one. A representative

subspace is expected to yield a similar or even better classification result compared

with using the full feature space. We apply algorithm 5.1.2 on all the grey matter

tetrahedral meshes and generate N = 100, 150, 200 landmarks. Then we use these

landmarks to form differently sized subspaces and do the classification. The results

are given in Table 4. We can see that the performance of M-GP is similar to or even

better than that of using the full feature space. The numerical results prove that the

subset inherits or even improves the discriminability of the original data, which means

we can trust this simplified subset in cortical morphometry analysis as an effective

substitution of the full point set and reduce the computation burden.
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5.3.2 Periodic Potential Diffusion Gaussian Processes

There are two main categories of applications in this group of experiments: saliency

extraction and shape retrieval as classifications. We use 10-fold cross-validation and

support vector machine (SVM) as the classifier in all retrieval applications.

Comparison methods: (1) Heat kernel GP (HK-GP) (Berline, Getzler, and Vergne

2003). We choose this method because it shares the same theory foundations but

consider no source function. The diffusion kernel in (Kondor and Lafferty 2002)

also shares the same theoretic basis. It yields similar performance with HK-GP in

tests, so we skip it in this paper; (2) Spectral mixture kernel GP (SMK-GP) (Wilson

2014). SMK has a convincing performance in image domain and it has a quite similar

expression with PPDK. We also test some other successful kernels such as the Matérn

kernel family (Stein 1991). But the performances are not comparable, so we neither

demonstrate them here; (3) Periodic kernel GP (PK-GP) (Williams and Rasmussen

2006). PK is the exponential of a periodic function. We use PK to check if a simple

periodicity consideration can contribute to the task; (4) Mesh saliency (MS) (Lee,

Varshney, and Jacobs 2005). This is a highly cited classical method in saliency

detection on meshes; (5) W-GP (Gao, Kovalsky, and Daubechies 2019). W-GP is

the current state-of-the-art GP method on manifolds. We directly use the parameter

settings in their paper.

We tested more than five methods, but some of them yield similar results. So

we choose five representatives to demonstrate. Since the curvature is only defined in

2-dimensional manifold space, W-GP and MS are only used in the first two experiments.
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Figure 12. Visualization of salient vertices. (a) and (b) illustrate 20, 80, 200 salient
vertices of distal radii and metatarsal models. The upper row is the results of
W-GP (Gao, Kovalsky, and Daubechies 2019), the bottom row is ours. (c-i)-(c-vi)
illustrate 50 salient vertices recognized by comparison methods and PPD-GP on a
molar model. Each mesh is rendered by the normalized Gaussian curvatures. The
ROI is the high-curvature yellow region. The salient vertices are marked by the red
spheres.

5.3.2.1 Saliency Extraction on Triangle Meshes

In the first experiment, we evaluate the geometry-aware property of PPD-GP and

its stability in continuous saliency extraction. We further compare the computational

efficiency by counting the average running time of updating the saliency map once.

Three datasets released in (Boyer et al. 2011) are used: (i) “Mandibular molars”, or

“molar”, contains 116 teeth surface models shown in Fig. 4.3(c); (ii) “First metatarsals”,

or “metatarsal”, contains 57 models shown in Fig. 4.3(b); (iii) Distal radii contains 45

models shown in Fig. 4.3(a). Please refer to (Boyer et al. 2011) for more information

about the data. We follow the same parameter setting with (Gao, Kovalsky, and

Daubechies 2019). We use the fast marching method to compute geodesic distances

and select the neighborhood. When a small number of neighborhood is considered,

Euclidean distance and geodesic distance have similar performance in tests.
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Figure 13. (a)-(c) AC curves of distal radii, metatarsal and molar datasets. (d)
Average running time of updating the saliency map once. The x-axis is the number of
extracted salient vertices. The unit of running time is second.

In paleobiology and taxonomy, the study regions of such fossil data are usually the

marginal ridges, teeth crowns and outline contours where distinguishable geometric

features are found (Boyer et al. 2011; Couette and White 2010). We render the meshes

with the normalized Gaussian curvature as the ground-truth (Guennebaud, Germann,

and Gross 2008). We select 20, 80 and 200 salient vertices and illustrate them in
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Figure 14. Saliency maps and salient vertices on 3D human models. Salient vertices
are marked as red spheres.

Fig. 12. The desired selection is expected to aggregate in yellow regions. Fig. 12(a)

and (b) visualize the results of distal radii and metatarsal meshes. The top row is the

results of W-GP and the bottom row is ours. We give one example of other comparison

methods in Fig. 12(c-i) to (c-vi) since their results are generally not comparable with

W-GP and PPD-GP from all aspects. It is clear to see that salient vertices recognized

by PPD-GP fit better with expectations as most of them are clustered in significant

regions consistently. Numerically, we define an Accumulated Curvature value (AC

value) to measure the scattering effect: ACκ = log
∑κ

k=1 |GCk|+ |MCk|, where GC

and MC are normalized Gaussian curvature and mean curvature; κ is the number of

salient vertices. A larger AC value is preferred here.

The AC values of each mesh aggregate to an AC curve. We average the AC values

of meshes within the same dataset at each number of salient vertices to get an average

AC curve of the dataset which is shown in Fig. 13(a)-(c). Obviously, a maximum AC

value exists when only selecting points with the largest accumulated curvatures at

each time. It returns the highest AC curve as the dash curves in the figures. Although

this maximum curve is usually meaningless in applications (selected vertices are too
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locally clustered to be the ground-truth), it is a good reference to others. To a certain

extent, AC curve measures the clustering performance but the visual facts, so we

recommend to use both the visual and numerical way to verify. Results show that the

scattering effect is well suppressed and PPD-GP has excellent stability in preserving

the geometry-aware property during continuous regressions.

The computational efficiency is measured by averaging the running time of updating

the saliency map once, as shown in Fig. 13(d). The MS method is not affected by the

number of selected points, but active learning methods gradually slow down because of

the dimension increase in the prior knowledge. PPD-GP has an acceptable increment

of the computational time considering its performance.

5.3.3 Saliency Extraction on Tetrahedral Meshes and Volumetric Shape Retrieval

In the third experiment, we demonstrate that PPD-GP is competent for mor-

phometric analysis on 3-dimensional manifolds, i.e., the tetrahedral meshes as our

choice. Volumetric modeling has unique advantages in solving complex structural

problems but it also suffers from the huge dimensions of the data due to the dense

spatial sampling over the volume. Our goal is to select a much smaller discriminative

subset from internal body or the surface of the object by applying Algorithm 5.1.2.

Furthermore, we take the grey matter atrophy classification as a volumetric shape

retrieval problem to numerically evaluate the representativeness of the embedding.

We classify the patients and healthy visitors based on their grey matter atrophy levels

measured by geometric features. Structurally, Alzheimer’s disease causes abnormal

atrophy of the cerebral cortex, which results in a gradually thinner grey matter, i.e.
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Figure 15. Results of Saliency extraction on Tetrahedral Meshes. Visualization on
three anatomical cutting planes: (a) sagittal cutting plane; (b) coronal cutting plane;
(c) horizontal cutting plane.

thinner cortical thickness, than the normally aged people (Lorenzo Pini et al. 2016;

Gang Wang and Yalin Wang 2017).

We use 3D magnetic resonance imaging (MRI) data from the baseline collection of

ADNI2 (Susanne G Mueller et al. 2005; Jack Jr et al. 2008). We follow the pipeline

in (Fan et al. 2018) to generate the grey matter tetrahedral meshes. Each mesh

contains about 150,000 vertices. We compute 5,000 salient vertices for visualization

so that the targets are visible. Numerically, we use the WKS features of 1000, 1500,

2000, and 3000 salient vertices to separate patients from healthy visitors. Noting

that this WKS is different from the one used in the second experiment. We use the

discretization method in (Fan et al. 2018) to solve the eigen decomposition problem

and define the WKS. Totally we use 275 left cerebral hemisphere structural MRIs

including 88 AD patients and 187 Cognitively Unimpaired (CU) visitors.The Euclidean

KNN is used to compute the neighborhood.

Figure 15(a) shows the saliency map of one randomly-selected grey matter tetrahe-
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dral mesh on the sagittal cutting plane. We sum up the saliency values of four vertices

as the saliency of the tetrahedron. Then, we normalize the tetrahedron saliency values

and divide them into 10 classes to visualize. Fig. 15(b) show the salient vertices

from different anatomical cutting planes. For a better visual effect, we render the

tetrahedron to red if it consists of any numbers of salient vertex. The visualization

results show that points mainly centralize in ROIs such as the temporal pole and

temporal gyrus as expected. Previous studies show that these regions may be closely

related to AD judged by their functionalities, clinical diagnosis and morphometry

changes (Lorenzo Pini et al. 2016). Table 5 shows the classification results by using

WKS of the embeddings. It proves that a well-selected subset may be more discrimi-

native than using global features. We can reason that an optimized number of salient

vertices exists, but we stop testing more points due to a consideration of balancing

the accuracy and the computational time. In general, we successfully decrease the

dimension of the effective regions from hundred thousand level to thousand level and

this simplified embedding is more distinguishable than that of comparisons or using

the whole features in classifying the healthy visitors from patients.

5.3.3.1 Saliency Extraction on Point Clouds

In the fourth experiment, we demonstrate that our method is applicable to point

clouds. In many vision applications, an object or a scene is scanned and stored as

a point cloud. The lack of connection information disables many existing saliency

detection and saliency extraction methods when analyzing point clouds.

We use McGill 3D shape benchmark (Siddiqi et al. 2008) in this experiment. It
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AD-CU HK-GP P-GP SM-GP PPD-GP Global

1000
ACC 0.9500 0.90 0.9643 0.9714 0.9733
SEN 0.9535 0.9032 0.9474 0.9605 0.9570
SPE 0.9459 0.8966 0.9844 0.9844 0.9927

1500
ACC 0.9333 0.9325 0.9583 0.9750 0.9733
SEN 0.9355 0.919 0.9403 0.9659 0.9570
SPE 0.9310 0.9586 0.9811 0.9861 0.9927

2000
ACC 0.9417 0.9000 0.9500 0.9778 0.9733
SEN 0.9552 0.8636 0.9286 0.9703 0.9570
SPE 0.9245 0.9444 0.9773 0.9873 0.9927

3000
ACC 0.9409 0.9125 0.9500 0.9800 0.9733
SEN 0.9527 0.9302 0.9302 0.9737 0.9570
SPE 0.9275 0.8919 0.973 0.9884 0.9927

Table 5. GM atrophy classification. The performance of PPD-GP escalates with more
salient vertices added. The results of using global features are references.

contains 400 triangle meshes of different objects. We remove the connection information

and only take the point coordinates information as inputs. Euclidean KNN is used

to compute the neighborhood and distances. Fig. 16 shows results of 20-30 salient

vertices on point cloud inputs. The results indicate that our method can detect the

potential geometric features from the mass and select points in the distinguishable

regions, such as the fingers, wings, and the heads and legs of animals. Noticing that

our method still yields reasonable inferences when inputs contain non-isometric or

ambiguity deformations, such as the first two hand models. Additionally, our method

works better on evenly distributed point clouds where the density of samplings is

generally the same everywhere. The results on unevenly distributed point clouds show

that high-density regions have a higher priority to be selected. Further investigation

is warranted to characterize its performance with more applications.
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Figure 16. saliency extraction on point clouds of different shapes. salient vertices are
marked by the red spheres.

5.3.3.2 Human Pose Retrieval

In the second experiment, we numerically evaluate the geometric significance of

the salient embeddings by solving a shape retrieval problem. We use SHREC14 non-

rigid 3D human model dataset (Pickup et al. 2014) in this experiment. This dataset

contains 400 closed-surface triangle meshes of 40 human subjects with 10 different

poses. Each mesh contains about 15000 vertices. Our goal is to retrieve human poses,

or called the pose recognition, in manner of classifications. The Scale Invariant Heat
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SIHKS HK-GP W-GP P-GP SM-GP MS PPD-GP Global WKS HK-GP W-GP P-GP SM-GP MS PPD-GP Global

50
ACC 0.5258 0.5444 0.5022 0.5667 0.5272 0.6247 0.5478

50
0.9378 0.9869 0.9775 0.9764 0.9264 0.9847 0.9736

SEN 0.5383 0.5461 0.5133 0.5744 0.5267 0.6278 0.5500 0.9383 0.9889 0.9789 0.9794 0.9244 0.9828 0.9772
SPE 0.5133 0.5428 0.4911 0.5589 0.5278 0.6217 0.5456 0.9372 0.9850 0.9761 0.9733 0.9283 0.9867 0.9700

80
ACC 0.5092 0.5106 0.5378 0.5131 0.5428 0.6411 0.5478

80
0.9544 0.9861 0.9633 0.9731 0.9186 0.9864 0.9736

SEN 0.500 0.5172 0.5406 0.5139 0.5422 0.6433 0.5500 0.9567 0.9878 0.9650 0.9744 0.9167 0.9856 0.9772
SPE 0.5183 0.5039 0.5350 0.5122 0.5433 0.6389 0.5456 0.9522 0.9844 0.9617 0.9717 0.9206 0.9872 0.9700

250
ACC 0.4908 0.4972 0.5219 0.4903 0.5886 0.5992 0.5478

250
0.9722 0.9617 0.9453 0.9458 0.9436 0.9903 0.9736

SEN 0.4833 0.5022 0.5344 0.4878 0.6050 0.5928 0.5500 0.9739 0.9617 0.945 0.9528 0.9433 0.9911 0.9772
SPE 0.4983 0.4922 0.5094 0.4928 0.5722 0.6056 0.5456 0.9706 0.9617 0.9456 0.9389 0.9439 0.9894 0.9700

Table 6. Human pose retrieval with SIHKS and WKS. The best measurements are
marked in bold. Regardless of the features, the performance of PPD-GP is generally
better than comparisons and global features. This proves our method is more
representative and significant. A well-selected number of salient vertices and a proper
feature can maximize the performance.

Kernel Signature (SIHKS) (Bronstein and Kokkinos 2010) and WKS are used as the

vertex-wise feature descriptors. We transform the 10 poses retrieval problem to 45

binary classifications and use 10-folds cross-validation on each of them. The final

performance is measured by averaging all the results. For avoiding the bias brought by

different saliency extraction sequences, we apply principal component analysis (PCA)

on the initial concatenated feature matrices to regularize the inputs. We select six

sets of salient vertices with the dimension from 50 to 450. A demonstration of saliency

map is shown in Fig. 14 and the retrieval results of 50, 80 and 250 salient vertices

are shown in Table 6. By comparing the performance within each feature space, it

shows that the results of PPD-GP are generally better than comparisons. This verifies

that PPD-GP is able to stably capture the geometric significance and well infer the

representative spatial positions from the original data.

5.3.3.3 Unsupervised Salient Point Selection on ModelNet40

We provide more salient point selection results on point clouds here. Figure. 17

shows twelve examples of salient point selection on McGill 3D shape benchmark (Siddiqi
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(a) (b) (c)

Figure 17. Illustration of saliency selection on Modelnet40 (wu20153d).
(a)Demonstrations of saliency maps after selecting 200 salient points.
(b)Demonstrations of 200 salient points. The salient points are marked by red spheres.
(c) The selected 200 salient points out of 10000 vertices can generally represent the
original shape.

et al. 2008). The shapes have different sampling densities. The original data type

is the triangle mesh. We remove their edge connections and only use the vertex

coordinates as inputs. The results show that the GAC-GP can learn the geometric

property of the inputs in the prior and the selected salient points are representative

in distinguishing the shapes.

Figure. 17 illustrates two examples of salient point selection on Modelnet40 dataset.

Figure. 17 (a) demonstrates the saliency maps after selecting 200 salient points.

Figure. 17 (b) shows salient points on the original point clouds. Figure. 17 (c) is 200

salient points. We can see that 200 salient points can generally depict the original

shapes. Noting that we did not use salient point selection algorithm in the point

cloud classifications in the main submission. This is mainly because the comparison

methods used the whole data as inputs, for fairness and convenience, we also use

10000 vertices as inputs in the experiments.
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Chapter 6

SOLVING SPDES FOR BAYESIAN LEARNING

6.1 Deep Gaussian Processes with Doubly Stochastic Variational Inference

A DGP is a deep belief network that hierarchically concatenates multiple Gaussian

process latent variable models together (GP-LVMs) (Damianou and Lawrence 2013).

It mimics the composition of restricted Boltzmann machines (RBMs) in NNs. The

sparse variational inference is usually used in GPR to estimate the posterior and

avoid the cubic complexity (sheth2015sparse). Suppose M inducing points Z =

{z1, ..., zM}(M � N) are selected, the complexity is decreased to O(M2N) in a single

GPR. For a DGP, the doubly stochastic variational inference is often applied to

estimate the posterior (salimbeni2017doubly; blomqvist2019deep). Specifically,

the sparse variational inference is used to simplify the correlations within layers and

keep the correlations between layers unchanged. In a DGP with L layers, the prior is

recursively defined on a series of vector-valued stochastic functions F = {F 1, ..., FL}.

The ith row of F l is denoted as f li . Function values at inducing points Z are U . Each

single function has an independent Gaussian prior and inducing points. A joint density

of a DGP can be expressed as:

p(Y, {F l, U l}Ll=1) =

N∏
i=1

p(yi|fLi )︸ ︷︷ ︸
likelihood

L∏
l=1

p(F l|U l;F l−1, Z l−1)p(U l;Z l−1)︸ ︷︷ ︸
prior

(6.1)
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According to the theories of variational inference, a factorized form of the posterior

joint density is defined as (salimbeni2017doubly):

q({f l, U l}Ll=1) =
L∏
l=1

p(f l|f l−1, U l, Z l)q(U l) (6.2)

where q(U l) is a Gaussian with mean function ml and covariance function Sl for layer

l. Eq. (6.2) indicates that the prediction of the lth layer, f l, depends on the previous

prediction f l−1 and the inducing points of the current layer. By marginalising the

approximation q(U l) from each layer, the ith factorized variational posterior of the

final layer is the integral of all paths (f 1
i , ..., f

L
i ) through the Gaussian distributions

defined by parameters ml, and Sl:

q(fLi ) =

∫ L−1∏
l=1

q(f li |ml, Sl; f l−1
i , Z l−1)df li (6.3)

The objective function is the doubly stochastic evidence lower bound (ELBO):

L =
N∑
i=1

Eq(fLi )[logp(yi|fLi )]−
L∑
l=1

KL(q(U l)||p(U l)) (6.4)

where KL is the Kullback–Leibler divergence. The ELBO has the complexity

O(M2N(D1 + ...+DL)) to compute, Dl is the size of the lth layer. The variational

expection likelihood E in Eq. 6.4 is computed using the Monte Carlo approximation.

Please refer to (salimbeni2017doubly) for more details.

6.2 Hierarchical Bayesian Model on Manifolds

We define a GAC-GP layer with the GAC kernel and follow the framework of

DGPs to construct a hierarchical Bayesian learning model by stacking up multiple

GP layers. Thanks to the intra-kernel convolution property, the GAC-GP layer has a

good feature aggregation ability. In a pure hierarchical Bayesian learning model on
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manifolds, a computational pipeline is shown in Figure. 18. The first step is to process

the input. Assume κ salient points are selected by Algorithm 5.2.3. The feature

on each salient point fṽ is a vector of length l. For shape i, we link all features of

salient points in the order of their selections: fi = {fṽ1 ...fṽκ}. Noting that all shapes

here belong to the same dataset and all salient points are selected with the same

parameter setting in Algorithm 5.1.2. Otherwise, point-to-point registration is needed

to concatenate features. Suppose H shapes are used, the input X is an H × (κ× l)

matrix. We compose a sequence of layers that map the input xi to its label yi in a

hierarchical Bayesian model for classifications:

xi = f 0︸ ︷︷ ︸
1×(κ×l)

GP0→ f 1︸︷︷︸
1×S1

→ · · · GPL−1→ fL︸︷︷︸
1×C

softmax→ yi︸︷︷︸
Ci

(6.5)

The output of hidden layer l is a vector of the size 1× Sl, where Sl is the layer size.

This is similar to the relationship of the input channel and output channel in a NN.

When the batch processing is applied, the output of each hidden layer has dimension

B × Sl, B is the batch size. A final layer is appended with a softmax multi-class

likelihood. The output vector has the dimension 1 × C, where C is the number of

classes. Each entry stands for the probability belonging to a certain class. Arbitrary

numbers of GP layers can be added as hidden layers. We use the doubly stochastic

variational inference approach to estimate the posterior (salimbeni2017doubly).

The optimization process is to maximize the ELBO in Eq. (6.4). The K-means method

is used to choose inducing points.

Because the input of the Bayesian model is the point-wise features on manifolds,

and NNs are strong in feature learning, we are inspired to further explore the potential

of NN+Bayesian methods. Such a mixed model can take advantage of both the feature

learning ability of NNs and the feature aggregation ability of Bayesian models. We
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Figure 18. Pipeline of human pose retrieval. (a) Point-wise feature computation and
salient point selection. The mesh is rendered by normalized mean curvatures. (b)
Shape feature preparation. (c) Hierarchical Bayesian learning model for feature
aggregation and inference. A softmax likelihood function is used at the last layer.

generally follow the pipeline in deep kernel learning (wilson2016deep). The input

format is determined by the NN part. The output of NNs is the shape feature. The

feature is then fed into a Bayesian model, and the following processing is the same as

the pure Bayesian method. The negative marginal log-likelihood (MLL) is used as the

loss function.

6.3 Experiments

6.3.1 Human Pose Retrieval

In the second experiment, the task is to classify different human poses modeled by

triangle meshes. The first purpose is to further evaluate the salient point selections

by fixing the Bayesian learning architecture. The second purpose is to fix the inputs

57



SIWKS RBF-GP W-GP Matern-GP SMK-GP MS GAC-GP
50 0.850 0.898 0.885 0.898 0.866 0.915
100 0.859 0.901 0.886 0.908 0.872 0.921
250 0.862 0.905 0.890 0.912 0.899 0.925

Table 7. Results of human pose retrieval with Bayesian models defined by different
kernels and numbers of salient points.

and evaluate different hierarchical Bayesian learning architectures. The pipeline in

Figure. 18 is used. We choose the SIWKS as the feature. When computing the SIWKS,

30 smallest eigenvalues are used. The other parameter settings are the same as those

in (Aubry, Schlickewei, and Cremers 2011). Features of 50, 100, and 250 salient points

are used. In customizing the Bayesian model, we use the multitask variational strategy

and the softmax likelihood in GPytorch. The number of inducing points is 50. We

use Adam as the optimizer with an initial learning rate of 0.001. After the first 200

epochs, the learning rate changes to 10−4. We trained for 2000 epochs. The cost

function is the variational ELBO mentioned in Sec 6.1. The comparison methods are

the same as the prior experiment.

The SHREC14 non-rigid 3D human model is used as the dataset (Pickup et

al. 2014). It contains 400 triangle meshes of 40 human subjects with 10 poses. Each

mesh contains about 15000 vertices. We randomly split the dataset into three portions:

90% for training, 5% for validation, and 5% for testing.

For the first purpose, we fix the Bayesian model to be a one-layer GAC-GP and

feed in features from different methods. Table 7 shows the results. Classification with

the features of all points has an accuracy of 0.910. Taking this value as a reference,

we can draw conclusions that (1) our strategy of selecting salient points works for

distinguishing different shapes. When enough salient points are selected, it is possible
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Method Accuracy
GCGP* 91.2%
1RBF 91.1%
1GAC 92.5%

1GAC(10)+1RBF 92.7%
1GAC(10)+1GAC 93.4%
*(Using self-reproduced code.)

Table 8. Human pose retrieval with different Bayesian learning architectures.

to use a small subset to represent the original data; (2) the geometry-aware selection

of GAC-GP is more distinguishable than other comparison methods.

For the second purpose, we fix the inputs to be GAC-GP salient features and evalu-

ate different Bayesian learning architectures. Here we use GCGP (walker2019graph)

as a comparison method. The results are shown in Table. 8. Noting that the code of

GCGP is not available and we use our implementations, so we put a star mark on

GCGP’s result. We can see that the accuracy is generally increased after adding a GAC

layer, supporting a strong feature aggregation property. Meanwhile, a hierarchical

concatenation of GAC layers shows a better accuracy than the single layer structure.

6.3.2 Point Cloud Classification

In the third experiment, the task is to classify different point cloud models. The

purpose of this experiment is to demonstrate the work of integrating NNs with

the Bayesian model. Here, we use the hierarchical feature learning architecture in

PointNet++ (qi2017pointnet++) to learn the point cloud features. We perform

multi-class classification on ModelNet40 which contains 12311 3D CAD models of

40 categories. Each point cloud has 10000 points. We use 9843 models for training

and 2468 models for testing. The setting of feature extraction part is the same
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Method Error rates
PCNN 86.1%

PointNet++ 90.7%
PointNet++ +Normal 91.9%

PCNN+1GAC 87.2%
PointNet++ +1GAC 91.8%

PointNet++ +Normal+1GAC 92.1%
PointNet++ +Normal+2GAC 92.8%
PointNet++ +Normal+3GAC 93.1%

Table 9. Multi-class classifications on ModelNet40.

as (qi2017pointnet++). In the feature aggregation part, we use one single GAC-

GP layer (ten mixtures). 64 inducing points are used. The optimizer is Adam

and the initial learning rate is 0.04. The comparison methods include PointNet++,

PointNet++ with normal information, and the Pointwise Convolutional NNs (PCNN)

in (hua2018pointwise). The results in Table 9 show that (1) the mechanism of

NN+Bayesian can be jointly trained for tasks on manifolds; (2) models with Bayesian

aggregation layers generally outperforms the classical multiple fully connected layers

in our tests. We notice that the performance gain of using single GAC layer shrinks

after adding normal information. Our hypothesis is that the features become more

complicated, and the inference capability of single GAC layer is not powerful enough

to well aggregate the new features. By adding 2&3 GAC layers, the improvements

increase to 0.9% and 1.2%, respectively.

The overall results demonstrate that the performances of architectures with GAC

layers are universally better than their original ones, which also proves that such a

co-design directly incorporates the strengths of both approaches and benefits the final

performance. A reasonable outlook is to investigate more effective architectures that

integrate both methods for end-to-end tasks on manifolds.
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Chapter 7

DISCUSSION

7.1 Summary of Contributions

The main contribution of this thesis was to exploit the potential of different SPDEs

for effective and efficient shape analysis. The high-dimensional shape analysis was

firstly studied. In Chapter 3, a new pipeline of generating cortical tetrahedral mesh

was proposed. In Chapter 4, several shape descriptors was introduced. The FEM

discretization was derived for tetrahedral meshes as the DLBOD scheme. Based on the

solution of the heat equation and the eigen decomposition of the Schrödinger’s equation,

the single tHFS and the grouped tHFS were able to be defined for high-dimensional

shapes. The applications around DLBOD scheme include cortical thickness computa-

tion and cortical atrophy severity classifications. Furthermore, a morphological GP

was introduced for realizing reasonable landmarking on tetrahedral meshes in Chapter

5. The MGP can be taken as a high-level application of the above shape descriptors

because the metric in MGP is the feature space defined by SIWKS. Considering the

limitations of MGP, a more universal GP method, the GAC kernel was derived from

a specific SPDE. The GAC-GP realized hand-craft feature-free geometry-aware for

the first time. Around the GAC kernel, a series of Bayesian methods was proposed. A

hierarchical Bayesian network was introduced to realize a deep GP on manifolds. The

NN+Bayesian architecture was further introduced to embed the advantages of both

NN and Bayesian methods together.
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7.2 Bayesian Networks vs. Neural Networks

The superior performances of convolutional neural networks (CNNs) in solv-

ing computer vision problems are closely related to the adaptive convolutional lay-

ers (voulodimos2018deep). This motivates the studies of introducing convolutional

structures to Gaussian processes (GPs) for pursuing an expressive global generaliza-

tions of vision data in a Bayesian framework (Van der Wilk, Rasmussen, and Hensman

2017; Blomqvist, Kaski, and Heinonen 2018). Meanwhile, the theoretical feasibility of

taking GPs as neural networks under certain conditions is proved (Neal 1996; Williams

and Rasmussen 2006). Considering a fully-connected neural network with i.i.d. random

parameters, each single fully-connected layer is a collection of adaptive functions (Lee

et al. 2017). The training of a neural network is to find optimized parameters of

adaptive functions so that a prescribed cost function is minimized. Assuming the

hidden layers have an infinite width, the Central Limit Theorem indicates that the

learned adaptive functions and the output y form a GP (Neal 1996; Williams 1997).

This implies priors over parameters of a neural network are analogous to priors of a

GP and the output is a Bayesian inference result (Lee et al. 2017).

Above information indicates the connections between Bayesian networks and neural

networks. But they also have their uniquenesses. NNs are strong in learning features

of the input. This is one of the reasons why the NNs are widely used in various tasks

currently. Bayesian network has limited ability of learning features directly. Therefore,

the input of Bayesian networks is the feature of raw data. This limitation causes the

application of Bayesian network is restrained. Besides, NNs are much easier to be

created, manipulated, trained and applied while the application of Bayesian network

is still narrower and difficult. Training a Bayesian network is usually slower than that
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of a NN. Building a deep NN with several layers is not a problem in nowadays, but

building a Bayesian network with more than 5 layers still has many problems. How to

increase the training efficiency of a deep Bayesian network is still an open problem.

Overall, the current Bayesian network is not competitive with NNs in many tasks

over performances. But it is reasonable and feasible to combine both methods together

and yield a better result than only using either single one of them.

7.3 Summary of Conclusions

It shows clearly that many achievements in applied mathematics and physics are

providing inspirations to many studies in other fields. In this thesis, different SPDEs

play an important role in discovering expressive features, metrics, descriptors and

kernels. Interdisciplinary information could provide broader and different perspectives

and sources for the new findings of the problem. Useful hints may hide in different

scenarios and wait for us to dig. This is also what I wish to reflect in this thesis. Hope

this thesis could make contributions and give inspirations to the studies in this or

other fields.
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NOTES

Notations: Suppose M = (V,E, T ) is a tetrahedral mesh; V is the vertex list; E
is the edge list; T is the tetrahedron list; vi is the ith vertex; tl is the lth tetrahedron;
Vl is the volume of the lth tetrahedron; E(i,j) is the edge defined by the ith and jth
vertices. H is the heat distribution; h is the static heat value. L is the LBO; λn and
φn are the nth eigenvalue and eigenvector. N(·) is the open neighborhood function;
N [·] the closed neighborhood function. Some other definitions will be introduced
where they are defined.

Data is downloaded from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database ((Susanne G Mueller et al. 2005), adni.loni.usc.edu). ADNI is the result
of efforts of many co-investigators from a broad range of academic institutions and
private corporations. Subjects have been recruited from over 50 sites across the U.S.
and Canada. The primary goal of ADNI is to test whether biological markers, such
as serial MRI and positron emission tomography (PET), combined with clinical and
neuropsychological assessments, can measure the progression of MCI and early AD.
Subjects originally recruited for ADNI-1 and ADNI-GO had the option to be followed
in ADNI-2. For up-to-date information, see www.adniinfo.org.

In this work, we adopt the ADNI-2 cohort, for which subjects’ structural MRI
data was collected from 16 sites across the United States and Canada. Each subject
underwent whole-brain MRI scanning on 3-Tesla GE Medical Systems scanners. T1-
weighted SPGR (spoiled gradient echo) sequences (256 × 256 matrix; voxel size =
1.2× 1.0× 1.0 mm3; TI = 400 ms; TR = 6.98 ms; TE = 2.85 ms; flip angle = 11◦),
were collected; more imaging details may be found at http://adni.loni.usc.edu/wp-
content/uploads/2010/05/ADNI2_GE_3T_22.0_T2.pdf. In total, we downloaded
MR images of 542 subjects from the baseline subset of ADNI-2 (June 2016). During
processing, seven subjects were excluded by the quality control. Finally, we used
the left cerebral hemisphere structural MR images of 535 subjects, including 105
AD patients, 289 MCI patients and 141 cogntively unimpaired (CU) subjects. Their
demographic information is summarized in Table 10.

Table 10. Demographic characteristics of the baseline ADNI-2 used in this work.
AD (n=105) MCI (n=289) CU (n=141)

Male/Female 58/47 154/135 69/72
Age 74.6±7.8 71.6±7.6 73.4±6.5

Education 15.8±2.7 16.4±2.6 16.6±2.5
MMSE 23±2.1 28.0±1.7 29.1±1.2
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Figure 19. Barycentric coordinates example.

A.1 Discretization of Mass Matrix B

Defining mass matrix B based on finite element analysis is implemented through
the barycentric coordinate integral formulation (cook2007concepts). More exactly,
defining mass matrix B is to solve a coefficient function at each entry in the matrix
and this coefficient function is the integrands in a simplex region. For convenience,
we start from a fundamental case, a typical triangle on 2-dimensional manifold as
illustrated in Fig. 19. Suppose P (x, y) is an arbitrary point in this triangle and it
is expressed as (λ1, λ2, λ3) in a barycentric coordinate system. λ1, λ2 and λ3 stand
for the area ratio between the splited triangle and the whole region, for example,λ1

is the area of ∆(PAB) divided by the area of ∆(ABC). Clearly, the sum of three
coordinates is 1, so any barycentric coordinate can be expressed as the residual of 1
minus the sum of other two coordinates, such as: λ3 = 1− λ1 − λ2. The relationship
between the barycentric coordinates and the spatial coordinates is:

{
x = λ1x1 + λ2x2 + λ3x3

y = λ1y1 + λ2y2 + λ3y3
⇒
{
x = λ1x1 + λ2x2 + (1− λ1 − λ2)x3

y = λ1y1 + λ2y2 + (1− λ1 − λ2)y3
(A.1)

The coefficient function is expressed as the integral over all triangular elements:

I =

∫
µ

λm1 λ
n
1λ

q
1dµ (A.2)

where µ remarks the area of the triangle; m,n, q is the order of each coordinate, the
maximum order is the number of vertices. According to Eq. A.1 and A.2,{∫

µ
λm1 λ

n
1λ

q
1dµ =

∫
µ
λm1 λ

n
1 (1− λ1 − λ2)qdµ

dµ = det( ∂(x,y)
∂(λ1,λ2)

)dλ1dλ2.
(A.3)
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The area of the triangle can be expressed by using the determinant of the Jacobian
matrix.

det

( ∂x
∂λ1

∂x
∂λ2

∂y
∂λ1

∂y
∂λ2

)
=

[
x1 − x3 x2 − x3

y1 − y3 y2 − y3

]
= 2A(µ) (A.4)

We can rewrite the integral as:∫
µ

λm1 λ
n
1λ

q
1dµ = 2A

∫ 1

0

dλ2

∫ 1−λ2

0

λm1 λ
n
2 (1− λ1 − λ2)qdλ1 (A.5)

Define t as:
t =

λ1

1− λ2

→ λ1 = t(1− λ2) (A.6)

Further derive the integral:∫
µ

λm1 λ
n
1λ

q
1dµ = 2A

∫ 1

0

dλ2

∫ 1

0

λm1 λ
n
2 (1− λ1 − λ2)q(1− λ2)dt

= 2A

∫ 1

0

dλ2

∫ 1

0

tm(1− λ2)mλn2 (1− t)q(1− λ2)q(1− λ2)dt

= 2A

∫ 1

0

λn2 (1− λ2)m+q+1dλ2

∫ 1

0

tm(1− t)qdt

(A.7)

According to Euler formula:∫ 1

0

sα(1− s)βds =
α!β!

(α + β + 1)!
(A.8)

The integral can be further derived:∫
µ

λm1 λ
n
1λ

q
1dµ = 2A

n!(m+ q + 1)!

(m+ n+ q + 2)!

m!q!

(m+ q + 1)!

= 2A
m!n!q!

(m+ n+ q + 2)!

(A.9)

The coefficients are computed by considering the orders under certain scenarios. An ex-
ample of implementing this method on triangle meshes is provided in (shi2014metric).
The tetrahedron is on 3-dimensional manifold, therefore, a simplex region contains 4
vertices as illustrated in Fig. 19(b). The integral over tetrahedral elements is defined
as
∫

Ω
λi1λ

j
2λ

k
3λ

l
4dΩ, where Ω is the volume of the tetrahedron. Similarly, i, j, k, l is the

order of the barycentric coordinates λ1, λ2, λ3, λ4, respectively and their maximum is
4. By adding one more dimension and repeating above derivations in the same way,
the integral over all tetrahedral elements is computed as:∫

Ω

λi1λ
j
2λ

k
3λ

l
4dΩ =

i!j!k!l!

(i+ j + k + l + 3)!
6V (A.10)

76



Now considering the explicit coefficient on each entry of the matrix. The matrix
reflects the adjacent relationship among vertices, thus, the type of connections to
a target vertex includes: non-adjacency, edge and vertex itself. For non-adjacent
vertices, the coefficient is set to be zero. There are two cases when the entry stands for
the vertex itself (this is actually the diagonal of the matrix). The first case is that the
arbitrary point only falls on the target vertex. Then one vertex reaches the highest
order 4, and the other three vertices are not involved. In this case, only tetrahedrons
around the vertex are considered. The coefficient is computed as:∫

Ω

λ4
1dΩ =

4!

7!
· 6V =

V

35
(A.11)

The second case is that the arbitrary point falls on the vertex that connects to the
target vertex. In this case, we traverse all the tetrahedrons that connect with edges
involving the target vertex. The coefficient under such situation is computed as:∫

Ω

λ3
1λ1dΩ =

3!

7!
· 6V =

V

140
(A.12)

When one vertex forms an edge with the target vertex, there are also two cases. The
first case is that one more vertex connecting to this edge is considered. In this case,
the target vertex has an order 2 and these three vertices form a face. We consider
all faces with the target vertex as one endpoint and accumulate all tetrahedrons that
share with each face. The coefficient under this situation is computed as:∫

Ω

λ2
1λ

1
2λ

1
3dΩ =

2!

7!
· 6V =

V

420
(A.13)

Finally, all coordinates have order one. In this case, we consider all tetrahedrons
involving this edge and accumulate all tetrahedrons neighboring with each tetrahedron.
The coefficient is computed as:∫

Ω

λ1
1λ

1
2λ

1
3λ

1
4dΩ =

1!

7!
· 6V =

V

840
(A.14)

We also note that another method for finite element analysis is the unit coordinate
integration. It has one less dimension comparing with the barycentric coordinate
integration: ∫

Ω

λi1λ
j
2λ

k
3dΩ =

i!j!k!

(i+ j + k + 3)!
6V (A.15)

An example of this method on triangle meshes is shown in (Reuter et al. 2009). We
tested both methods and found the barycentric coordinate integration is slightly better
than the unit coordinate integration regarding to the classification performance though
the computation of the mass matrix B is easier. Therefore, we do not provide further
explanations about the unit coordinate integration and its implementations here.
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B.1 Theorem1 and Proof

Theorem 1: A real-valued function T (v, t) on Rd is a spatial-temporal kernel
function if it is a linear/non-linear diffusion process: ∂T

∂t
= α∆T + P (t)δ(v), where

α is a positive constant, P (t) is a periodic function, δ(v) is the Dirac delta function,
and ∆ is the Laplace operator.

Proof. As known, there exists a corresponding Green’s function G(v, v′, t, t′) for
a parabolic partial differential equation so that the diffusion process expressed
by this parabolic partial differential equation has the form (ehrlich1980surface;
strauss2013partielle):

T (v, v′, t) =

∫ t

0

G(v, v′, t− s)P (s)ds (B.1)

In the main submission we have proved that the analytical solution to the following
equation is PSD:

T =

∫ t

0

G(v, v′, t− s)cosω(t− s)ds (B.2)

Since the spatial variable mainly exists in the Green’s function and the Green’s
function is spatial stationary in a Rd diffusion process, the primary task is to prove any
choices of periodic function P (t) can lead to the same conclusion. Because Eq. (B.2)
has been prove to be PSD, we can draw the same conclusion if Eq. (B.1) has a similar
form with Eq. (B.2). Therefore, the main idea is using cosine function to generalize a
periodic function P : R→ R. As known, a periodic function can be estimated with
the Fourier series expansion:

P (t) =
1

2
a0 +

∞∑
n=1

[ancos(nt) + bnsin(nt)] (B.3)

where a, b are arbitrary real numbers. Assuming there exists a cosine function
xncos(nt + yn) that is equal to ancos(nt) + bnsin(nt), n is a constant. By using
the trigonometric sum formulae, we get: xn = ±

√
a2
n + b2

n and y = arctan(−
√

bn
an

).
Eq. (B.3) is then transformed to:

P (t) =
1

2
a0 ±

∞∑
n=1

√
a2
n + b2

ncos

[
nt+ arctan(−

√
bn
an

)

]
(B.4)

Eq. (B.4) shows that any periodic functions can be approximated by the linear
combination of cosine functions. By substituting Eq. (B.4) into Eq. (B.1), we see
that the diffusion process is estimated to be the integral of Green’s function times
the combination of cosine functions. Applying the PSD summation identity, we can
draw the conclusion that the solution to Eq. (B.1) is also PSD. Therefore, it is a valid
kernel function.
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C.1 Lemma 1 and Proof

Lemma 1:The GAC Kernel embeds the mean curvature flow in R3, which enables
it to be geometry-aware.

Proof. In differential geometry, a curvature flow numerically links intrinsic geometric
features and extrinsic flows together (Kichenassamy et al. 1995). We take the proof
on a planar curve by assuming manifoldM is a two dimensional manifold in R3 as
an example for convenience. In this case, the GAC kernel is actually equivalent to a
curve-shortening flow which can be considered as a one dimension mean curvature
flow (altschuler1993shortening). Figure 20 shows sketch plots of the symbols used
in this proof. Suppose v is a point on the manifold. C(v) is the intersection between
the manifold and the normal plane on v. As known, C(v) is a 1-dimensional smooth
curve. Assume one point moves along C from v to v′. Let ∆s be the arc length of
this movement and θ be the rotation angle of the tangent vector, then we can define
the following concepts:
(i) the velocity vector at v is dC

dv
;

(ii) the velocity is the magnitude of the velocity vector, which is
∣∣dC
dv

∣∣ = ds
dv
;

(iii) the unit tangent vector T = dC
ds
/
∣∣dC
ds

∣∣ and the unit normal vector N = RT . R is
a π/2 rotation matrix;
(iv) the curvature κ, which measures how fast the unit tangent vector rotates relative
to the arc length: κ = lim

∆s→0

∣∣∆θ
∆s

∣∣. And we can further get dT
ds

= (−sinθ, cosθ)dθ
ds

= κN

and similarly dN
ds

= −κT .
Assume all points on the curve start to move along their normal directions at

a velocity of κ(v) during time t, we have the curvature flow: dC
dt

= κN . With the
equation (iii) and (iv), we write the curvature flow as: dC

dt
= d

ds
dC
ds
, which is clearly

v:t

v’:t+Δt
Ɵ

Δs
C(v,t)

N

N’
T T’

v
Δs

ƟN

v’

T

T’

N’

(a) (b)

(c)

Figure 20. Sketch plots of (a) a planar curve example; (b) the curve in a 2D plane.
The shaded circles are inscribed circles on v and v′; (c) the curve moves from top to
down by curvature flow.
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a diffusion process with a zero reaction function. This equivalence proves that the
GAC kernel can theoretically reflect the geometric features. From the perspective
of physical meanings, G(v, v′) means how much curvature changes from point v to
its neighborhood v′ during a period of time. Therefore, the physical meanings also
support that the GAC kernel embeds the geometric information of the manifolds.
Lemma 1 is proved.
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D.1 Lemma 2 and Proof

Lemma 2: The GAC Kernel embeds a convolution filtering within the kernel
structure, called intra-kernel convolution.

Proof. According to the reaction diffusion theory (kuttler2011reaction;
strauss2013partielle), Eq. (B.1) can be expressed as:

T =

∫ t

0

∫ ∞
−∞

G(v − v′, t− s)P (v′, s)dv′ds (D.1)

If integrating along the temporal variable, then the result has the form∫
P (v′)G(v, v′)dv′, which matches with the definition of a convolutional filter-

ing
∫
f(v′)ht(v, v

′)dv′ = (f0 ∗ht)(v). Our kernel derivation also indicates the existence
of a convolution on manifolds. Reminding that we estimate the integral in Eq. (B.1)
as the summation of a sine Fourier transform and a cosine Fourier transform (Eq.14
in the main submission). Each term implements the transform from time domain to
frequency domain. According to the Convolution Theorem, we can draw the same
conclusion. The similar theory has also been applied in geometric deep learning to
realize the convolution on manifolds (Bronstein et al. 2017). Lemma 2 is proved.
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