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ABSTRACT

The variable projection method has been developed as a powerful tool for solving

separable nonlinear least squares problems. It has proven effective in cases where

the underlying model consists of a linear combination of nonlinear functions, such as

exponential functions. In this thesis, a modified version of the variable projection

method to address a challenging semi-blind deconvolution problem involving mixed

Gaussian kernels is employed. The aim is to recover the original signal accurately

while estimating the mixed Gaussian kernel utilized during the convolution process.

The numerical results obtained through the implementation of the proposed algo-

rithm are presented. These results highlight the method’s ability to approximate the

true signal successfully. However, accurately estimating the mixed Gaussian kernel

remains a challenging task. The implementation details, specifically focusing on con-

structing a simplified Jacobian for the Gauss-Newton method, are explored. This

contribution enhances the understanding and practicality of the approach.
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Chapter 1

INTRODUCTION

1.1 The Semi-Blind Deconvolution Problem

Consider a one-dimensional convolution problem of the form

d(s) = ∫
b

a
g(s − s′)x(s′)ds′. (1.1)

This is a one-dimensional version of a model that occurs in two-dimensional imaging

problems [1]. In imaging applications, the function x represents light source intensity

as a function of spatial position, and the function d represents image intensity. The

function g is referred to as the kernel of the convolution and characterizes the blurring

effects that occur during the formation of the image.

In this thesis, we consider the particular case when the kernel g is a mixture of

two Gaussian functions:

g(s; b1, b2, σ1, σ2) = b1
exp (− s2

2σ2
1
)

∫ exp (− s2

2σ2
1
) ds

+ b2
exp (− s2

2σ2
2
)

∫ exp (− s2

2σ2
2
) ds

. (1.2)

Notice that each Gaussian kernel is normalized. The normalization is important in

applications such as imaging problems because to correctly model the image deblur-

ring process, it is required that the intensity of each pixel does not become greater

than its true intensity after being blurred.

The convolution problem (1.1) can be transformed into its discrete form by using

midpoint quadrature and can then be formulated in matrix-vector notation,

d = G(ytrue)xtrue,
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where G(ytrue) is an m ×m matrix whose entries depend on the kernel g and the

vector of true parameters denoted by ytrue = (b1, b2, σ1, σ2) that defines it. We call G

the blurring operator. The matrix-vector product G(ytrue)xtrue then represents the

convolution (or blur) of the true signal. In coefficient form, the matrix G(ytrue) can

be expressed as

[G((b1, b2, σ1, σ2))]ij = b1
exp (−(i−j)

2

2σ2
1
)

∑k exp (−k
2

2σ2
1
)
+ b2

exp (−(i−j)
2

2σ2
2
)

∑k exp (−k
2

2σ2
2
)
.

In the application of imaging, during the capture of an image, it is inevitable that

small random errors (or noise) may become present in the recorded signal [2]. Gaus-

sian noise is added to the convoluted signal to model when the signal d contains noisy

observations. Therefore, a better formulation of the process is given by

d = G(ytrue)xtrue + ϵnoise. (1.3)

The aim is now to approximate the true signal, xtrue ∈ Rm, given the blurred signal,

d ∈ Rm, provided that there is a parameterized model for the kernel. When the

blurring operator is not explicitly known, the problem is called blind deconvolution. In

this case, a parameterized kernel model is assumed, and it defines a blurring operator.

Therefore, this problem is referred to as a semi-blind deconvolution problem.

The blurring matrix becomes increasingly ill-conditioned as the number of dis-

cretization points used to construct it increases. Thus, errors in the blurred signal

caused by noise become greatly amplified during the inversion process, ultimately

leading to poor approximations of the true signal [1]. Therefore, regularization is

introduced to penalize the noise present in the blurred signal. More specifically,

regularization by spectral filtering can be employed. To explain the need for regular-

ization, suppose the discrete model (1.3) is given with fixed parameter y. Then, we
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use the singular value decomposition (SVD) [2, p. 9] of G(y) ∈ Rm×m defined as

G(y) = UΣV T , (1.4)

where U and V are orthogonal matrices, satisfying UTU = I and V TV = I, and

Σ = diag(si) is a diagonal matrix whose elements are nonnegative and appear in

nonincreasing order,

s1 ≥ s2 ≥ ⋅ ⋅ ⋅ ≥ sm ≥ 0. (1.5)

The quantities si are called the singular values of G(y). The columns ui of U are

called the left singular vectors, while the columns vi are called the right singular

vectors. If all singular values are assumed to be strictly positive, then it follows that

G(y)−1 = V Σ−1UT . (1.6)

And, since Σ is a diagonal matrix, its inverse Σ−1 is also diagonal, with entries 1/si for

i = 1, . . . ,m. Moreover, using the SVD of G(y), the blurring operator can be written

as a linear combination of rank-one matrices. That is,

G(y) = UΣV T

= [u1 . . . um]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1

⋱

sm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vT1

⋮

vTm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= u1s1v
T
1 + ⋅ ⋅ ⋅ + umsmv

T
m

=
m

∑
i=1

siuiv
T
i .

Let G−1(y) denote the inverse of the matrix G(y). Then similarly,

G−1(y) =
m

∑
i=1

1

si
viu

T
i .

3



Next, if the noise in the signal is ignored and solving for xtrue in a näıve way is

considered, then,

G−1(y)d = G−1(y)(G(y)xtrue + ϵnoise)

= xtrue +G−1(y)ϵnoise

= xtrue +
m

∑
i=1

(uT
i ϵnoise)vi

si
.

Notice that if the noise term ϵnoise were not present, then taking the inverse of G(y)

would solve for xtrue exactly; however, noise is indeed present in the signal. Instability

in the solution arises from the division of singular values, si, which are close to zero.

The errors in the noisy signal and the small singular values from the ill-conditioned

matrix G(y) contaminate the solution. A regularization filter function can be used to

filter out these troublesome singular values and thus approximate a solution to xtrue.

An example of what the solution to xtrue looks like when regularization is not used,

is provided in Figure 1.1 where it can be observed how the noise contaminates the

solution. According to [2, p. 10], for discrete ill-posed problems as ours, the vectors

ui and vi tend to have more sign changes as the index i increases, representing high-

frequency information. An example of this can be seen in Figure 1.2. The authors

explain that the higher-frequency information is amplified as the magnitude of the

coefficients uT
i ϵnoise/si grows. Regularization aims to filter out this higher-frequency

information.

In this thesis, the Tikhonov regularization filter is implemented,

wλ(s) =
s2

s2 + λ2
,

resulting in the approximate solution to xtrue given by

x =
m

∑
i=1

wλ(si)uT
i dvi =

m

∑
i=1

si
s2i + λ2

uT
i dvi. (1.7)
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Figure 1.1: Näıve solution. The noisy signal is produced by using convolution on the
true signal and then adding noise. The näıve solution is achieved by inverting the
blur operator, G, resulting in a poor approximation to the ground truth.

The positive constant λ is called the regularization parameter and plays a fundamental

role in the reconstruction, which we discuss below.

Now, we adopt the notation presented in [2, Chapter 6] and reformulate (1.7) in

matrix notation, x = V ΦΣ−1UT , using Φ to denote the diagonal matrix consisting

of the diagonal elements wλ(si). The relationship between the regularization and

perturbation errors can then be examined. Following the analysis presented in [2,

5



Figure 1.2: High-frequency behavior of singular vectors. The vectors vi oscillate more
as i increases.

p. 78], we write

x = V ΦΣ−1UTd

= V ΦΣ−1UTG(y)xtrue + V ΦΣ−1UT ϵnoise

= V ΦV Txtrue + V ΦΣ−1UT ϵnoise.

Then, we compare the true solution with the filtered solution,

xtrue − x = xtrue − V ΦV Txtrue − V ΦΣ−1UT ϵnoise

= (I − V ΦV T )xtrue − V ΦΣ−1UT ϵnoise.

The authors in [2] refer to the first component (I −V ΦV T )xtrue as the regularization

6



error and the second component V ΦΣ−1UT ϵnoise as the perturbation error. The two

different errors depend on Φ. The matrix Φ is determined by the regularization filter

wλ(si). If too many filter factors wλ(si) are close to one, then Φ is closer to the

identity matrix. Therefore, the regularization error is smaller, but the perturbation

error is larger. If too many filter factors are close to zero, then Φ is close to the

zero matrix. Similarly, the perturbation error is zero, but the regularization error

increases. Picking an appropriate regularization parameter λ is necessary to balance

the regularization and perturbation errors.

Moreover, the choice of the regularization parameter can be informed by the fol-

lowing analysis by the authors in [2, p. 73]. Using Taylor expansions, consider first

the case when si >> λ:

wλ(si) =
1

1 + λ2/s2i
= 1 − λ2

s2i
+ 1

2

λ4

s4i
+ . . . ,

then, consider the case when si << λ:

wλ(si) =
s2i
λ2

1

1 + s2i /λ2
=
s2i
λ2
(1 −

s2i
λ2
+ 1

2

s4i
λ4
+ . . . ).

Next, it can be concluded that the Tikhonov filter factors satisfy the following:

wλ(si) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 − ( λsi )
2 +O(( λsi )

4), si >> λ,

( si
λ
)2 +O(( siλ )

4), si << λ.

Therefore, choosing λ ∈ [sm, s1] results in wλ(si) ≈ 1 for small indices of i while

wλ(si) ≈ s2i /λ2 for large indices. The authors also demonstrate that, for a given λ, the

point at which the filter factors change behavior is at the index for which si ≈ λ. There

is no reason to choose λ outside the interval [sm, s1]. Moreover, the regularization

parameter in the Tikhonov filter is used to dampen the coefficients that correspond

to the high-frequency singular vectors.
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Figure 1.3: Illustration of the Spectral Coefficients Involved in the Error Analysis and

the Singular Values.

Furthermore, a regularized approximation to the true signal can be computed

because spectral filtering can suppress much of the inverted noise while keeping the

regularization error small [2, p. 78]. The filtering can achieve this goal because the

discrete Picard condition is satisfied: the coefficients ∣uT
i d∣ decay faster (on average)

than the corresponding singular values [2, p. 69]. When the true solution is approx-

imated, only the components corresponding to the coefficients ∣uT
i d∣ above the noise

level should be included. An illustration of this is depicted in Figure 1.3. In the figure,

the components corresponding to the signal without noise are denoted by ∣uT
i dtrue∣.
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It can also be seen from the figure that an appropriate regularization parameter for

filtering out the noise would be λ ≈ 0.1 since this value dampens all the components

that correspond to the coefficients ∣uT
i d∣ which are within the noise level. Any value of

λ < 10−2 would result in poor regularization. Solving for xtrue without regularization

leads to a solution dominated by high-frequency behavior. So, regularization is an

effective tool for filtering out errors, such as noise, that contaminate the solution.

In addition, the filtered solution in the spectral form (1.7) has the equivalent

matrix-vector form,

x = (G(y)TG(y) + λ2I)−1G(y)Td, (1.8)

where x is the solution to the minimization problem:

min
x
∥G(y)x − d∥22 + λ2∥x∥22. (1.9)

When the Tikhonov problem is formulated as it is in (1.9) it is said to be in standard

form. The regularization used in this thesis is called generalized regularization and

has the form:

min
x,y
∥G(y)x − d∥22 + λ2∥Lx∥22. (1.10)

Here L is an m ×m regularization matrix. The damped least squares problem or the

general Tikhonov regularization problem in (1.10) can be equivalently written using

the identity provided by

∥w∥22 + ∥z∥22 = wTw + zT z = [wz ]T [wz ] = ∥[wz ]∥22, (1.11)

to obtain the least squares problem:

min
x,y
∥(G(y)

λL
)x − ( d0 )∥

2

2
. (1.12)
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The advantage of realizing that (1.10) can be written in the form of (1.12) is that the

latter formulation is better for developing algorithms [2, p. 91].

In this work, we assume that the solution xtrue has zero boundary conditions,

therefore, the matrix G(y) has a Toeplitz structure:

G(y) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

g0 g−1 g−2 . . . g−(m−1)

g1 g0 g−1 . . . g−(m−2)

g2 g1 g0 . . . g−(m−3)

⋮ ⋮ ⋮ ⋱ ⋮

gm−1 gm−2 gm−3 . . . g0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

The structure of G(y) depends on the assumed boundary conditions [2, Chapter 4];

and, an algorithm for building a Toeplitz matrix given a discrete kernel is provided

in [2, p. 118].

Although the aim is to find a solution that provides a good estimate for the true

signal, it would also be advantageous to predict a good estimate for the true kernel.

This thesis will review how the general variable projection method can be used in

conjunction with the Gauss-Newton method to solve the semi-blind deconvolution

problem with mixed Gaussian kernels, demonstrate how to find the expressions for

the partial derivatives of the kernel mixture, which will be necessary for the Gauss-

Newton iteration, and present the numerical results of implementing the algorithm

for solving this problem.
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Chapter 2

METHODS

2.1 The Generalized Variable Projection Method

The variable projection (VarPro) method was originally introduced by Golub and

Pereyra in [3] for solving separable nonlinear least squares problems. It is often

considered in applications where two sets of unknown parameters exist, where one

set is dependent on the other and can be explicitly eliminated. In [4], Golub and

Pereyra review 30 years of developments and applications of the variable projection

method for solving separable nonlinear least squares problems. The problems range

from applications in applied chemistry, neural networks, and biological imaging. The

authors also mention that “it would be worthwhile to consider a variable projection

algorithm for the regularization of ill-conditioned separable nonlinear least squares

problems [4].” In [5], the authors introduced a regularized variable projection algo-

rithm for the regularization in the standard form. In [6], the authors presented a

regularized approach for large-scale inverse problems. This thesis will consider the

generalized variable projection (GenVarPro) method proposed by the authors in [7].

They propose a modified VarPro method for regularization in the general form. The

authors also propose an approach for reconstructing images in semi-blind deblurring

problems. The GenVarPro method is now reviewed; it aims to solve the minimization

problem given by (1.12).

For ease in notation, let

GL(y) ∶= (G(y)λL
) and d̃ ∶= ( d0 ).

11



Then, the minimization problem can be written in this notation as,

min
x,y
∥GL(y)x − d̃∥22. (2.1)

It is important to notice that (2.1) is a linear least squares problem if the vector of

parameters y is assumed to be known. The linear variable x can then be obtained in

terms of y by solving the linear least squares problem. The solution is provided in

closed form by

x = G†
L(y)d̃, (2.2)

where G†
L(y) is the Moore-Penrose generalized inverse of GL(y). Define r(x, y) =

GL(y)x − d̃. Then, the functional F(x, y) = ∥r(x, y)∥22 is often referred to as the full

functional or the original functional. Next, substituting (2.2) into (2.1) provides the

following minimization problem:

min
y
∥GL(y)G†

L(y)d̃ − d̃∥
2

2
. (2.3)

Notice that the linear variable x has been eliminated and that a nonlinear least

squares problem in terms of the parameters y is left. The variable projection method

has eliminated the linear variable x by exploiting the separability inherent in the

model. According to [3, 4], using the variable projection method, the matrix

P⊥GL(y)
∶= I −GL(y)G†

L(y)

is the projector on the orthogonal complement of the column space of GL(y). Then,

the vector r2(y) = P⊥GL(y)
d̃ is called the variable projection of d̃. Furthermore, the

functional F̃(y) = ∥r2(y)∥22 may be called the variable projection functional or may

often be referred to as the reduced functional. Notice that the minimization of the

reduced functional in (2.3) is a nonlinear least squares problem and can be solved

using the Gauss-Newton method, which we explain below.

12



In short, the variable projection method consists of first minimizing the reduced

functional F̃(y) and then using the optimal value obtained for y to solve for x in (2.2).

The main advantage of this reduced functional is that the minimization always con-

verges in fewer iterations than the full functional [4]. Moreover, the authors in [4]

emphasize that using the variable projection method to exploit the separability of

the problem is more powerful than methods that alternate between the two sets of

variables.

2.2 The Gauss-Newton Method

The Gauss-Newton method is a quasi-Newton iterative method developed to solve

nonlinear least squares problems [8]. Suppose the full functional is reduced to obtain

the minimization problem provided by (2.3). Let f(y) = GL(y)G†
L(y)d̃. Then, the

resulting unconstrained nonlinear optimization problem is:

min
y
∥f(y) − d̃∥22. (2.4)

The Gauss-Newton method starts with an initial guess, y(0), and aims to obtain

y(k+1) given some current iterate y(k). Consider that f(y(k+1)) is approximated linearly

by f(y(k)) + J(y(k))s̃(k) where J(y(k)) is the Jacobian matrix of f and s̃(k) is the

correction vector. Substituting this approximation into the optimization problem

in (2.4), the linear least squares problem is obtained:

min
s̃(k)
∥J(y(k))s̃(k) − (d̃ − f(y(k)))∥22. (2.5)

Then, solve for s̃(k) in (2.5) by utilizing the normal equations:

J(y(k))TJ(y(k))s̃(k) = J(y(k))T (d̃ − f(y(k))). (2.6)

Next set the update using a line search strategy y(k+1) = y(k) + α(k)s̃(k) where α(k) is

known as the step length.

13



In summary, the Gauss-Newton iteration as it pertains to GenVarPro can be

described as follows: first, solve the linear least squares problem provided by (2.5);

second, set y(k+1) = y(k) + α(k)s̃(k).

2.3 Computing the Jacobian

A key component of the Gauss-Newton iteration is the Jacobian matrix. Golub

and Pereyra developed in [3] expressions for the derivatives of the reduced functional

resulting in a formulation for the Jacobian. The authors in [7] refer to this formulation

as the Golub-Pereyra Jacobian:

DP⊥GL(y)
d = (−P⊥GL(y)

D(GL(y))G†
L(y) − (P⊥GL(y)

D(GL(y))G†
L(y))T )d,

where D denotes the Fréchet derivative. Various authors have proposed several differ-

ent approximations of the Golub-Pereyra Jacobian. One simplification of the Golub-

Pereyra Jacobian that has been proposed is the Kaufman simplification which has

been shown to reduce cost and increase the speed of convergence [4]. The Kaufman

simplification has the form:

DP⊥GL(y)
d ≈ −P⊥GL(y)

D(GL(y))G†
L(y)d.

Also, a simplification was proposed by Ruano, Jones, and Fleming [9], which is the

Jacobian that is implemented in this thesis:

DP⊥GL(y)
d ≈ −D(G)G†(y)d.

This Jacobian will be referred to as RJF Jacobian. In [7], it is further described how

the columns of the RJF Jacobian are defined by

J(i)(∶, j) = ∂G(y)
∂yj

x(i), where y1 = b1, y2 = b2, y3 = σ1, y4 = σ2.

14



Here ∂G(y)
∂yj

is the Toeplitz matrix built from the partial derivative of the kernel with

respect to yj. This then requires us to compute the expressions for the partial deriva-

tives of the kernel function with respect to each parameter. In the following, it will

be demonstrated how expressions for the partial derivatives of the kernel can be de-

termined. Suppose the kernel is given by

κ(r; y) = b1κ̂1(r;σ1) + b2κ̂2(r;σ2),

where

κ̂j(r;σj) =
exp(−r2/(2σ2

j ))

∫ exp(−r2/(2σ2
j ))dr

for j = 1,2.

Then, the partial derivatives are given by

∂b1κ = κ̂1, ∂b2κ = κ̂2, ∂σ1κ = b1∂σ1κ̂1, ∂σ2κ = b2∂σ2κ̂2.

Recall the quotient rule:

(f(x)
g(x)

)
′

= f ′(x)g(x) − f(x)g′(x)
[g(x)]2

.

Then,

∂σj
κ̂i =
(∂σj

exp(−r2/(2σ2
j )))(∫ exp(−r2/(2σ2

j ))dr)

(∫ exp(−r2/(2σ2
j ))dr)

2

−
(exp(−r2/(2σ2

j )))(∂σj ∫ exp(−r2/(2σ2
j ))dr)

(∫ exp(−r2/(2σ2
j ))dr)

2 .

Let κj = exp(−r2/(2σ2
j )). Then, simplifying,

∂σj
κ̂j =

∂σj
κj

∫ κj dr
−
κj ∫ ∂σj

κj dr

(∫ κj dr)
2 .

15



So the partial derivatives of the kernel function can be written as

∂bjκ = κ̂j =
exp(−r2/(2σ2

j ))

∫ exp(−r2/(2σ2
j ))dr

(2.7)

and

∂σj
κ = bj(

∂σj
κj

∫ κj dr
−
κj ∫ ∂σj

κj dr

(∫ κj dr)
2 ). (2.8)

After discretizing (2.7) and (2.8) and building the corresponding Toeplitz matrices

one obtains the RJF Jacobian matrix required for the Gauss-Newton iteration.

2.4 Algorithm

The GenVarPro method implemented in this thesis is a Gauss-Newton method

(with line search strategy) on the reduced functional with a simplified Jacobian matrix

called the RJF Jacobian.

In the following, the algorithm used in this thesis provided by Algorithm 1 is

discussed. In line 2, the linear variable x(i) is updated by solving the linear least

squares problem with iterate y(i), which is done by utilizing Equation (2.2). Then,

in line 3, the residual of the variable projection functional is updated. Note that line

3 is essentially in reduced form since the iterate x(i) has been solved in terms of y(i)

in the manner mentioned in (2.2). In line 4, the RJF Jacobian is updated with the

new iterate y(i) and then computed. Finally, a Gauss-Newton iteration is performed

on lines 5 and 6, thus updating the iterate y(i).

The algorithm requires an initial guess of the parameters y(0) = (b(0)1 , b
(0)
2 , σ

(0)
1 , σ

(0)
2 ),

the regularization matrix L, an appropriate value for the regularization parameter λ,

and the blurred signal denoted by d. For the implementation used in this thesis, the

regularization matrix L is chosen to be a discrete approximation to the first-order
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Algorithm 1 GenVarPro Method with Gauss-Newton Iteration

Require: G(y(0)), L, λ, and d.

1: for i = 0,1, . . . do

2: x(i) = argminx ∥G(y(i))x − d∥22 + λ2∥Lx∥22

3: r(i) = G(y(i))x(i) − d

4: Compute/Update the Jacobian matrix J
(i)
r

5: s̃(i) = argmins̃ ∥J(i)r s̃ + r(i)∥
2

2

6: y(i+1) = y(i) + α(i)s̃(i)

derivative operator, which is given by the difference matrix:

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−1 1

⋱ ⋱

−1 1

−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

The motivation for using this regularization matrix is that differentiation is known to

magnify high-frequency components, so penalizing high-frequency components leads

to a smoother solution [2, p. 92].

The implementation of Algorithm 1 used in this thesis contains three stopping

conditions. The first stopping condition is based on the size of the full functional.

A tolerance is provided, and the algorithm stops when the size of the full functional

becomes smaller than the tolerance.

The second stopping condition used in this implementation is a value that denotes

the maximum number of iterations. This condition is there in case the algorithm does

not reach the first stopping condition. In some cases, the algorithm may fail to reach

the first stopping condition yet still provide an approximate solution to the true signal.

Finally, the third stopping condition is useful for debugging purposes. This stop-
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ping condition is based on the conditioning of the matrix J(y)TJ(y). It has been

observed, in the implementation of the algorithm used in this thesis, that in some

cases the matrix J(y)TJ(y) becomes singular to working precision. This results in

the normal equations of (2.6) being numerically unsolvable.

The regularization parameter, denoted by λ, is provided by the user of the al-

gorithm and remains fixed for each iteration. Different values for the regularization

parameters are tested within an interval [sm, s1] where sm and s1 are the smallest

and largest singular values of the matrix G(y(0)). Then, each solution is graphed and

visually inspected, and the solutions that appear to approximate the true solution

well are selected.
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Chapter 3

NUMERICAL RESULTS

In this thesis chapter, the numerical results of implementing the GenVarPro method

with the RJF Jacobian are presented. Only the case of zero boundary conditions

is considered. The results are obtained by creating a synthetic signal representing

the true signal, blurring the true signal with the true blurring operator, and then

adding noise to obtain what is called the blurred signal. With this blurred signal,

the GenVarPro method provided by Algorithm 1 is used to finding a solution that is

called the deblurred signal. The aim is that the deblurred signal approximates the

true signal accurately, given the blurred signal.

When deciding on a regularization parameter, a value is chosen by inspecting a

chart similar to Figure 1.3, running the algorithm with this guess, and then visually

inspecting the results.

In Figure 3.2, the algorithm is run on a smooth signal. The true signal is seen in

Figure 3.2 as the solid blue curve. Then, the blurred signal is produced using the true

kernel provided in Figure 3.1. The true parameters are ytrue = (0.4,0.6,6,15) and the

initial guess is y(0) = (0.5,0.5,8,17). The blurred signal that is obtained is depicted

as the solid green line in Figure 3.2.

The GenVarPro method is run with the initial guess and a fixed regularization

parameter of approximately 0.12. The deblurred signal is shown in Figure 3.2 as the

dotted red circles. The deblurred signal is obtained after running the GenVarPro

method for 20 iterations, it stopped once it reached the maximum iteration count.

See that the deblurred signal appears to approximate the true signal reasonably well

upon inspecting the graph. This appears to be a satisfactory result. So given a
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Figure 3.1: Example of the true kernel and a corresponding initial guess. The true

parameters are ytrue = (0.4,0.6,6,15) and the initial guess is y(0) = (0.5,0.5,8,17).

good initial guess and an appropriate regularization parameter the GenVarPro can

effectively approximate the true signal even with a fixed value of λ.

In the following, the method is tested on different signals, and the errors in the

numerical results are investigated. The algorithm is used on a signal with edges, true

parameters ytrue = (0.4,0.6,3,10), and initial guess y(0) = (0.5,0.5,3.5,10.5). It can

be observed from Figure 3.3 that the quality of the deblurred signal depends on an

appropriate value of the regularization parameter. See that the deblurred signal is

noisy for a small value of the regularization parameter. Also, see that if the value of

the regularization parameter is too large, the deblurred signal is very smooth.
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Figure 3.2: The solution obtained by using the GenVarPro method on a smooth

signal. The regularization parameter provided is approximately 0.12.

In either case, it can be seen from inspecting the graph that the deblurred signal

does not provide a good solution for regularization parameters that are too small

or too large. According to [2, p. 91], this behavior is expected if the regularization

parameter is too large. Too much emphasis is put on dampening the noise in the

solution, which causes a loss of detail. In contrast, if the regularization parameter is

too small, the solution is influenced too much by the noise in the blurred signal.

In Figure 3.4, a different signal with edges is chosen. In this case, the signal is

strictly non-negative. The stopping condition for the tolerance of the full functional
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Figure 3.3: The variable projection method for a signal that contains edged sections
and smooth sections with different values for the regularization parameter. The upper
left shows the true solution xtrue and the signal d. The rest of the figures show the
approximations of the signal and the true solution for comparison.

is chosen to be too small to be triggered so that the method can run for 50 iterations

in order to observe convergence behavior. The upper left subplot shows the true

signal as a dashed blue line, the blurred signal as a solid red line, and the deblurred

signal as red dots. The value of the regularization parameter is approximately 0.019.

The upper right subplot shows the value of the full functional for each iteration. The

lower left subplot shows the relative error of the deblurred signal, which is given by

ERR(x(i)) = ∥xtrue − x(i)∥2
∥xtrue∥2

,

where x(i) is the deblurred signal at the ith iterate. The lower right subplot shows
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Figure 3.4: The variable projection method for a nonnegative signal with both smooth
and edged sections and with full functional and errors for deblurred signal and pre-
dicted kernel per iteration.

the error between the true kernel and the predicted kernel. The predicted kernel is

the value of the kernel for each iterate y(i), and its relative error is defined by

ERR(g(s; y(i))) = ∥g(s; ytrue) − g(s; y
(i))∥2

∥g(s; ytrue)∥2
.

See from Figure 3.4 that the full functional appears to be getting smaller for each

iteration. Also, notice the semi-convergence behavior of the predicted kernel and that

even though the predicted kernel begins to diverge from the true kernel, the error of

the deblurred signal eventually decreases. The decreasing values of the full functional

are expected since the aim was to minimize it. This suggests that the method is indeed

minimizing the full functional. However, the semi-convergence of the predicted kernel
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Figure 3.5: The variable projection with different initial guesses of kernel parameters.

requires more investigation. It appears that the implementation of the method in this

thesis provides a decent prediction of the true signal but not a good prediction of the

true kernel. In Figure 3.5, the predicted solution is shown for two initial guesses of

the parameters for the kernel. The subplot on the left has an initial guess of y(0) =

(0.5,0.5,3,18). The subplot on the right has an initial guess y(0) = (0.5,0.5,6,30).

The true parameters for each case are given by ytrue = (0.4.0.6,2,15). Also, for each

subplot, the regularization parameter is the same and is approximately 0.0192. Both

methods ran for a total of 50 iterations. The figure shows that the initial guess, which

is closer to the true parameters, approximates the true signal better than the initial

guess that is further away.
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Figure 3.6: The approximated solution to a signal that is a single edge.

For a signal that contains a single edge, it can be observed in Figure 3.6, that

the approximate solution contains a decent amount of oscillation. According to [1],

the total variation functional can be used to penalize this high oscillatory behavior.

These oscillatory artifacts are not present in Figure 3.2 because the true signal is

smooth. In [1, Chapter 8], the author describes how the total variation functional

is better for “blocky” signals. These observations illustrate how the implementation

in this thesis may work well for smooth signals but not as well for signals that have

straight-edged sections. Next, how the parameters of the iterate y(i) evolve over time

is investigated. In Figure 3.7, each parameter is plotted for b1, b2, σ3, and σ4 over

each iteration. The horizontal line that can be seen in each subplot is the value of
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Figure 3.7: Evolution of parameters over each iteration. The evolution of the param-
eter corresponding to the approximate solution of the signal is presented in Figure
3.6.

the true parameters of the kernel mixture ytrue. Notice that each parameter does not

converge to its corresponding true parameter. Also, see how the parameters b1 and

b2 behave when b1 goes down, and b2 goes up. The parameters σ1 and σ2 appear

to be getting smaller per iteration. In particular, notice that σ1 approaches zero

and then becomes negative. In Figure 3.8, the predicted kernel corresponding to

the approximate solution of the edge signal provided by Figure 3.6 is shown. See

that even though the initial guess is close to the true kernel, the predicted kernel

does not approximate the true kernel well. Also, notice the “spike” in the center of

the predicted kernel near zero. The cause of this artifact needs to be investigated
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Figure 3.8: The predicted kernel corresponding to the approximate solution of the
signal presented in Figure 3.6.

further, however, it seems that the “spike” may be formed because the parameter σ1

is near zero. This behavior might be eliminated by incorporating constraints onto the

parameters in the kernel mixture.

In short, examples pertaining to how GenVarPro performs on different signals have

been provided. The method works well for an appropriate choice of the regularization

parameter and a good initial guess of the parameter ytrue. The method appears to

behave better for smooth signals than it does for “blocky” signals. However, the

method does not predict the true kernel well.
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Chapter 4

CONCLUSION

In summary, this thesis has reviewed a semi-blind deconvolution problem with mixed

Gaussian kernels. It has explored using the GenVarPro method for reducing the prob-

lem into a form that can be solved using the Gauss-Newton method. Furthermore,

this thesis illustrates how to compute the required partial derivatives of the mixed

Gaussian kernel, and it shows the numerical results of implementing the GenVarPro

method with a simplified Jacobian. This thesis provides figures to illustrate the be-

havior of the method for various signals, regularization parameters, and initial guesses

of the parameters for the true kernel.

Future work might include extending the semi-blind model to include more Gaus-

sian functions, mixing the Gaussian kernels with other kernel functions, modifying

the regularization to use total variation, incorporating constraints on the parameters

of the kernel mixture, assuming other boundary conditions of the true signal, extend-

ing the model to be used on images, and testing the model against real-world data.

There are also improvements to be made in implementing methods for appropriately

choosing the regularization parameter. The current implementation has a fixed reg-

ularization parameter and relies on the user to experiment with various values which

is inefficient and time-consuming. In [2, Chapter 6], the authors discuss parameter

choice methods such as the discrepancy principle, generalized cross validation, and

the L-curve criterion. The robustness and effectiveness of the current implementation

may be increased by using a parameter choice method such as the generalized cross

validation for each time the parameters to the kernel mixture are updated. Further-

more, future work could include exploring different techniques for normalizing the

28



kernel mixture. In this implementation, each Gaussian function has been normalized

independently using the sum of the corresponding Gaussian, however, it could be

possible to normalize each function using a normalization constant or by normalizing

the entire kernel rather than each individual Gaussian.

In conclusion, for appropriate values of the regularization parameter and a good

initial guess of the parameters in the true kernel, the GenVarPro method provides a

decent approximate solution. The method does not approximate signals with edges

as well as it does smooth signals. The method exhibits a semi-convergence behavior

towards the true kernel which requires further investigation.
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